WO2021006194A1 - ガラスレンズ成形型 - Google Patents

ガラスレンズ成形型 Download PDF

Info

Publication number
WO2021006194A1
WO2021006194A1 PCT/JP2020/026121 JP2020026121W WO2021006194A1 WO 2021006194 A1 WO2021006194 A1 WO 2021006194A1 JP 2020026121 W JP2020026121 W JP 2020026121W WO 2021006194 A1 WO2021006194 A1 WO 2021006194A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
molding
top portion
glass lens
glass
Prior art date
Application number
PCT/JP2020/026121
Other languages
English (en)
French (fr)
Inventor
裕己 倉澤
白石 幸一郎
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN202080039871.8A priority Critical patent/CN113891862B/zh
Priority to CN202410124775.3A priority patent/CN117964216A/zh
Publication of WO2021006194A1 publication Critical patent/WO2021006194A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0013Re-forming shaped glass by pressing

Definitions

  • the present invention relates to a molding mold for molding a glass lens.
  • a method of pressing (pressing) a glass material that has been heated and softened with a molding die (hereinafter referred to as a molding die) has been put into practical use.
  • the production of glass lenses by press molding with a molding mold is easier to mass-produce aspherical lenses having complicated shapes at low cost than the production of glass lenses obtained by grinding or polishing a glass material.
  • a molding die for manufacturing a glass lens is known in which a top portion having a molding surface forming a lens surface and a pedestal portion (holding portion) for holding the top portion are configured as separate members (for example,).
  • Patent Document 1 A molding die for manufacturing a glass lens is known in which a top portion having a molding surface forming a lens surface and a pedestal portion (holding portion) for holding the top portion are configured as separate members (for example,).
  • the shape of the molding surface of the molding mold is transferred to the glass material to become the lens surface, so if an abnormality such as a scratch occurs on the molding surface, the molding mold is reprocessed to form the molding surface. Needed to be fixed.
  • the reworking time can be reduced by replacing the top part with an abnormality on the molded surface with another piece part manufactured in advance, and productivity is achieved. It becomes advantageous in.
  • Patent Document 1 describes that the coma portion of the molding die is made of glass.
  • a master mold having a reference molding surface is prepared, and the glass material is pressed by the master mold to manufacture a glass top portion to which the molding surface is transferred. If there is a master mold, a large amount of glass tops can be efficiently manufactured in a short time, and processing time and manufacturing cost can be reduced.
  • An object of the present invention is to provide a glass lens molding die capable of easily and surely and accurately position the top portion with respect to the holding portion that holds the top portion during molding.
  • the present invention includes a top portion having a molding surface for forming the lens surface of the glass lens and a holding portion for positioning and holding the top portion, and presses the glass material to be molded in the mold moving direction to mold the glass lens.
  • the holding portion and the top portion have a positioning surface that fits at the molding temperature of the glass material to be molded, which is the material of the glass lens, to determine the position of the top portion with respect to the holding portion.
  • the tilt angle of the positioning surface with respect to the direction perpendicular to the mold movement direction in the plane including the central axis passing through the center of the holding portion and facing the mold movement direction is ⁇
  • the fitting length in which the positioning surface contacts is L
  • the maximum of the top portion When the outer diameter is DM, the following conditions (1) and (2) are satisfied. (1) 60 ° ⁇ ⁇ ⁇ 90 ° (2) L ⁇ DM (90- ⁇ / 180) However, L> 0
  • the present invention also includes a top portion having a molding surface forming the lens surface of the glass lens and a holding portion for positioning and holding the top portion, and presses the glass material to be molded in the mold moving direction to press the glass lens.
  • the holding portion and the top portion have a positioning surface that fits at the molding temperature of the glass material to be molded, which is the material of the glass lens, to determine the position of the top portion with respect to the holding portion, and the mold moves.
  • the tilt angle of the positioning surface with respect to the direction perpendicular to the direction is ⁇
  • the average thermal expansion coefficient of the material of the top part at 100 ° C to 300 ° C is ⁇ 1
  • the average thermal expansion coefficient of the material of the holding part is 100 ° C to 300 ° C.
  • the Young's modulus of the material of the top portion is 85 GPa or more.
  • a body mold and a lower mold and an upper mold that can move in the mold moving direction with respect to the body mold are provided, and the lower mold is inside the body mold in the mold moving direction.
  • a pedestal portion that is movably supported and a top portion that is held with respect to the pedestal portion via a positioning surface are provided, and the pedestal portion serves as a holding portion.
  • a body mold and a lower mold and an upper mold that can move in the mold moving direction with respect to the body mold are provided, and the upper mold has a mold moving direction inside the body mold. It is provided with a top portion that is movably supported and a pressing portion that is located above the top portion and transmits downward pressing force to the top portion.
  • the body mold is used as a holding portion, and a positioning surface with respect to the trunk mold is provided. The top part is held through.
  • the coma portion can be easily and surely and accurately positioned with respect to the holding portion during the molding process, and the workability of the glass lens can be improved. Can be improved.
  • FIG. 1 to 4 show the first to fourth forms of the glass lens molding mold.
  • the lower mold 11 and the upper mold 12 are relatively moved in the vertical direction (mold movement direction), and the glass preform (not shown) which is the glass material to be molded before molding is pressed. It is processed to form a glass lens (not shown).
  • the axis line that passes through the centers of the lower die 11 and the upper die 12 and faces in the vertical direction is defined as the central axis Z.
  • 1 to 4 are cross-sectional views of the glass lens molding mold with a cross section including the central axis Z, and the cross section including the central axis Z is a cross section in the axial direction. Further, the direction perpendicular to the central axis Z is the radial direction, the side toward the central axis Z in the radial direction is the inner diameter side, and the side away from the central axis Z is the outer diameter side.
  • the glass lens molding mold 1 of the first embodiment will be described with reference to FIG.
  • the glass lens molding mold 1 has a body mold 10, a lower mold 11, and an upper mold 12.
  • the lower mold 11 is composed of two members, a pedestal portion 13 and a top portion 14.
  • the pedestal portion 13 constitutes a holding portion that positions and holds the top portion 14.
  • the central axis Z corresponds to the optical axis of the glass lens (not shown) molded by the glass lens molding mold 1.
  • the lower mold 11 and the upper mold 12 are positioned (centered) in the radial direction so that their central axes Z coincide with each other. More specifically, the pedestal portion 13 and the upper mold 12 of the lower mold 11 are each directly fitted to the body mold 10 to determine the radial position.
  • the top portion 14 of the lower mold 11 is fitted to the pedestal portion 13 to determine the positions in the radial direction and the vertical direction.
  • the body type 10 is a tubular body that surrounds the central axis Z, and has an internal space that penetrates in the vertical direction.
  • a lower mold guide surface 15 is formed in a predetermined range from the lower end side
  • an upper mold guide surface 16 is formed in an intermediate portion in the vertical direction
  • an upper mold guide surface is formed in a predetermined range from the upper end side. 17 is formed.
  • the lower guide surface 15, the upper guide surface 16, and the upper guide surface 17 are all cylindrical surfaces (inner surfaces of the cylinder) centered on the central axis Z, and the lower guide surface 15 and the upper guide surface 17 are The inner diameter is larger than the inner diameter of the upper guide surface 16.
  • An annular upward movement restricting surface 18 is formed between the upper guide surface 17 and the lower guide surface 15.
  • an annular downward downward type regulating surface 19 is formed.
  • the pedestal portion 13 of the lower mold 11 has a small diameter portion 20 that is movably inserted inside the body mold 10 in the vertical direction, and a large diameter portion 21 that is located below the small diameter portion 20.
  • an outer peripheral surface 22 which is a cylindrical surface (outer surface of the cylinder) centered on the central axis Z is formed.
  • the outer diameter of the outer peripheral surface 22 corresponds to the inner diameter of the lower guide surface 15 of the body mold 10.
  • the large diameter portion 21 has a larger outer diameter than the small diameter portion 20, and the large diameter portion 21 projects toward the outer diameter side of the outer peripheral surface 22 below the small diameter portion 20.
  • the pedestal portion 13 can insert and remove the small diameter portion 20 from below with respect to the body type 10.
  • the position of the pedestal portion 13 in the radial direction is determined by surrounding the outer peripheral surface 22 with the lower mold guide surface 15 (diameter of the pedestal portion 13).
  • the center of the direction is the position of the central axis Z shown in FIG. 1).
  • the pedestal portion 13 is supported so as to be slidable in the vertical direction with respect to the body mold 10 without causing inclination or rattling.
  • a rotation restricting structure may be provided between the body mold 10 and the pedestal portion 13 so as to prevent the body mold 10 and the pedestal portion 13 from rotating relative to each other in the circumferential direction about the central axis Z.
  • the large diameter portion 21 having a larger diameter than the small diameter portion 20 corresponds to the lower mold regulation surface 19.
  • the maximum insertion amount of the small diameter portion 20 with respect to the body mold 10 is determined.
  • FIG. 1 shows a state in which the large diameter portion 21 is in contact with the lower mold regulation surface 19 and the small diameter portion 20 is maximally inserted into the body mold 10.
  • the pedestal portion 13 has a top accommodating portion 24.
  • the frame accommodating portion 24 is a recess opened on the upper surface side of the small diameter portion 20, and has a positioning surface 25 as an inner surface of the coma accommodating portion 24.
  • the positioning surface 25 is a part of a conical surface (inner surface of the cone) centered on the central axis Z, and the diameter decreases as it goes downward from the upper surface of the small diameter portion 20 in which the top accommodating portion 24 opens (toward the inner diameter side). It has a mortar-shaped shape (which increases the amount of protrusion).
  • a suction space 26 is continuously formed below the frame accommodating portion 24.
  • the frame portion 14 is held inside the frame accommodating portion 24.
  • the top portion 14 has a positioning surface 27 on an outer surface in the radial direction.
  • the positioning surface 27 is a part of a conical surface (outer surface of the cone) centered on the central axis Z, and more specifically, a part of the conical surface having the same (equal apex angle) as the positioning surface 25.
  • the top portion 14 further has a concave molded surface 28 that faces upward, and a downward projecting portion 29 that projects downward and enters the suction space 26 of the pedestal portion 13.
  • the position of the top portion 14 with respect to the pedestal portion 13 is determined by fitting (contacting) the positioning surface 27 of the top portion 14 with the positioning surface 25 of the pedestal portion 13.
  • the positioning surface 25 and the positioning surface 27 are conical tapered surfaces that are in surface contact with each other, and are fitted in a state in which their central axes (straight lines extending in the height direction of the cone and passing through the apex) coincide with each other.
  • the position of the top portion 14 in the vertical direction with respect to the pedestal portion 13 is determined, and the position of the top portion 14 in the radial direction centered on the central axis Z is also determined.
  • the radial centers of the pedestal portion 13 and the top portion 14 coincide with the central axis Z. That is, the pedestal portion 13 and the top portion 14 are properly centered with respect to the body mold 10, and the central axis Z passes through the center of the molding surface 28. There is a radial clearance between the inner surface of the suction space 26 and the downward projecting portion 29, which does not hinder the positioning of the top portion 14 by fitting the positioning surface 25 and the positioning surface 27.
  • the pedestal portion 13 is formed with a suction hole 30 that communicates from the suction space 26 to the lower surface of the large diameter portion 21.
  • the lower end of the suction hole 30 is connected to a suction pipe 32 extending from the suction source 31.
  • a suction force acts on the suction space 26 through the suction pipe 32 and the suction hole 30.
  • the frame portion 14 can be closely fitted to the frame accommodating portion 24 of the pedestal portion 13.
  • the positioning surface 25 and the positioning surface 27 that determine the position of the frame portion 14 have an inclination angle ⁇ with respect to the direction perpendicular to the mold moving direction (central axis Z) (that is, the radial direction) in the axial cross section of the glass lens molding mold 1. It is 60 °.
  • the maximum outer diameter DM of the top portion 14 in the axial cross section and the fitting length L, which is the length at which the positioning surface 25 and the positioning surface 27 are fitted in the axial cross section, are shown in FIG.
  • the top portion 14 has an inverted trapezoidal cross-sectional shape in which the outer diameter of the positioning surface 27 increases as it advances upward, the outer diameter size of the upper end portion of the top portion 14 is the maximum outer diameter DM of the top portion 14. It becomes.
  • two portions where the positioning surface 25 and the positioning surface 27 are in contact with each other at the fitting length L are symmetrically present with the central axis Z in between.
  • the upper mold 12 is inserted into the body mold 10 so as to be movable in the vertical direction.
  • the upper mold 12 has a small diameter portion 33 located below and a large diameter portion 34 located above the small diameter portion 33.
  • an outer peripheral surface 35 which is a cylindrical surface (outer surface of the cylinder) centered on the central axis Z and has an outer diameter corresponding to the inner diameter of the upper mold guide surface 16 in the body mold 10 is formed.
  • an outer peripheral surface 36 which is a cylindrical surface (outer surface of the cylinder) centered on the central axis Z and has an outer diameter corresponding to the inner diameter of the upper mold guide surface 17 in the body mold 10 is formed.
  • An annular downward movement restricting surface 37 is formed between the outer peripheral surface 35 and the outer peripheral surface 36.
  • the position of the upper die 12 in the radial direction is determined, and the center of the upper die 12 coincides with the central axis Z. Further, by fitting the upper die guide surface 16 and the upper die guide surface 17 with the outer peripheral surface 35 and the outer peripheral surface 36, the upper die 12 can slide in the vertical direction with respect to the body die 10 without causing inclination or rattling. Supported by. When the movement restricting surface 37 comes into contact with the movement restricting surface 18, the upper die 12 is prevented from falling off from the body die 10.
  • a rotation restricting structure may be provided between the body mold 10 and the upper mold 12 so as to prevent the relative rotation of the body mold 10 and the upper mold 12 in the circumferential direction about the central axis Z.
  • the drive means 5 and the drive means 6 are composed of a cylinder piston mechanism, a drive source thereof, and the like provided in the glass lens manufacturing apparatus in which the glass lens molding mold 1 is installed.
  • a coating layer (not shown) may be formed on the molding surface 28 of the lower mold 11 and the molding surface 38 of the upper mold 12.
  • the coating layer is made of a carbon film or the like, and has an effect of suppressing fusion of the glass material to be molded constituting the glass lens.
  • a configuration in which the molding surface 28 and the molding surface 38 are exposed without the coating layer can be selected.
  • the process of molding a glass lens by the glass lens molding mold 1 having the above configuration will be described.
  • the glass lens is molded in a state of being heated to a molding temperature (above the glass transition point) at which the glass material to be molded as a material softens.
  • a glass preform (not shown), which is a glass material to be molded, is placed on the molding surface 28 of the top portion 14.
  • the driving means 5 is driven to move the lower mold 11 upward, and the small diameter portion 20 of the pedestal portion 13 is inserted into the body mold 10 from below.
  • the driving means 6 is driven to move the upper die 12 downward, and the upper die 12 is inserted into the body die 10.
  • the glass preform softened by heating is formed from above and below by the molding surface 28 of the lower mold 11 (top portion 14) and the molding surface 38 of the upper mold 12. It is pressed and deformed.
  • the lower mold 11 is restricted from moving upward with respect to the body mold 10 at a position where the large diameter portion 21 of the pedestal portion 13 abuts on the lower mold regulation surface 19.
  • the driving means 6 pushes the upper die 12 downward until the upper end surface of the large diameter portion 34 and the upper surface surface of the body die 10 are flush with each other.
  • a glass lens meniscus lens
  • the driving means 6 is driven to pull up the upper mold 12, and the driving means 5 is driven to lower the lower mold 11. Then, the molded glass lens is taken out from the glass lens molding mold 1 and collected.
  • FIG. 2 shows the glass lens molding mold 2 of the second form.
  • the body mold 10 and the upper mold 12 in the glass lens molding mold 2 have the same configuration as the glass lens molding mold 1 described above, and the description thereof will be omitted.
  • the composition of the frame portion 40 in the lower mold 11 and the frame accommodating portion 41 of the pedestal portion 13 accommodating the frame portion 40 is different from the frame portion 14 and the frame accommodating portion 24 of the glass lens molding mold 1. It's different.
  • the frame accommodating portion 41 is a recess opened on the upper surface side of the pedestal portion 13, and has a bottom surface 42 and a positioning surface 43 as an inner surface of the coma accommodating portion 41.
  • the bottom surface 42 is a plane perpendicular to the central axis Z, and is formed in a circular range centered on the central axis Z.
  • the positioning surface 43 is a cylindrical surface (inner surface of the cylinder) centered on the central axis Z, and projects upward from the peripheral edge of the bottom surface 42.
  • the frame portion 40 is held inside the frame accommodating portion 41.
  • the top portion 40 has a bottom surface 45 and a positioning surface 46 on the outer surface.
  • the bottom surface 45 is a plane perpendicular to the central axis Z, and has a circular shape corresponding to the bottom surface 42 of the frame accommodating portion 41.
  • the positioning surface 46 is a cylindrical surface (outer surface of the cylinder) centered on the central axis Z, and projects upward from the peripheral edge of the bottom surface 45.
  • the top portion 40 further has a concave molding surface 47 facing upward.
  • the position of the top portion 40 in the vertical direction with respect to the pedestal portion 13 is determined by bringing the bottom surface 45 into contact with the bottom surface 42. Further, the positioning surface 46 is fitted to the positioning surface 43, and the radial position of the top portion 40 with respect to the pedestal portion 13 is determined. In this positioning state, the radial center of the top portion 40 coincides with the central axis Z. That is, the pedestal portion 13 and the top portion 40 are properly centered with respect to the body mold 10, and the central axis Z passes through the center of the molding surface 47.
  • the pedestal portion 13 is formed with a continuous suction space 44 below the top accommodating portion 41.
  • the upper end of the suction hole 30 communicates with the suction space 44, and when the suction source 31 is driven, a suction force acts on the suction space 44 through the suction pipe 32 and the suction hole 30. By this suction force, the top portion 40 can be closely fitted to the top accommodating portion 41.
  • the positioning surface 43 and the positioning surface 46 that determine the position of the frame portion 40 have an inclination angle ⁇ with respect to the direction perpendicular to the mold moving direction (central axis Z) (that is, the radial direction) in the axial cross section of the glass lens molding mold 2. It is 90 °.
  • the diameter of the cylindrical positioning surface 46 is the maximum outer diameter DM of the top portion 40 in the axial cross section.
  • the height of the positioning surface 43 and the positioning surface 46 in the vertical direction is the fitting length L which is the length at which the positioning surface 43 and the positioning surface 46 are fitted in the axial cross section. In the axial cross section, two portions where the positioning surface 43 and the positioning surface 46 are in contact with each other at the fitting length L are symmetrically present with the central axis Z in between.
  • the lower die 11 is formed by the pedestal portion 13 and the frame portions 14 and 40, and the frame portions 14 and 40 form the molding surface. It is a small member including only 28, 47 and its surroundings. More specifically, the wall thickness of the top portions 14 and 40 in the vertical direction is less than half of the size of the entire lower mold 11 in the vertical direction. Further, the maximum outer diameter DM of the top portion 14 and the maximum outer diameter DM of the top portion 40 are less than half of the outer diameter of the entire lower mold 11 (outer diameter of the large diameter portion 21). Therefore, less material is required to form the tops 14 and 40, and it is easy to control the accuracy of the tops 14 and 40 including the molding surfaces 28 and 47. That is, the frame portions 14 and 40 can be efficiently manufactured at low cost.
  • the frame portion 14 or 40 in which the abnormality has occurred is replaced with another frame portion 14 or 40 manufactured in advance, whereby the entire lower mold 11 is replaced. Can be quickly returned to a moldable state without the trouble of reworking. It is also possible to prepare a plurality of types of frame portions 14 and 40 having different shapes of the molded surfaces 28 and 47 and replace the frame portions 14 and 40 to manufacture glass lenses having different lens surface shapes. .. By separately forming the lower mold 11 from the pedestal portion 13 and the frame portions 14 and 40 in this way, the productivity of the glass lens by the glass lens molding molds 1 and 2 can be improved.
  • the pedestal portion 13 and the top portions 14 and 40 are not fixed to each other by adhesion or the like, and the top portions 14 and 40 are positioned (centered) by fitting the positioning surfaces 25 and 27 and fitting the positioning surfaces 43 and 46. Therefore, even if the coefficients of thermal expansion of the materials constituting the pedestal portion 13 and the top portions 14 and 40 are different to some extent, excessive stress is unlikely to be applied to the mating portions of each other when heated to the molding temperature. That is, as compared with the configuration in which the pedestal portion 13 and the top portions 14 and 40 are fixed to each other, the allowable range of the coefficient of thermal expansion of the pedestal portion 13 and the top portions 14 and 40 is wide, and the degree of freedom in selecting the material is improved.
  • the applicant can easily make the top portion with respect to the holding portion (corresponding to the pedestal portion 13 in the lower mold 11) by satisfying the predetermined conditions in the glass lens molding mold having the above configuration. Moreover, it has been found that it can be reliably and accurately held. The conditions will be described below.
  • the inclination angle of the positioning surface that determines the position of the top portion with respect to the holding portion and the conditions for the fitting length of the positioning surface are determined as follows.
  • the tilt angle of the positioning surface with respect to the direction perpendicular to the mold movement direction is ⁇
  • the fitting length in which the positioning surfaces of the holding portion and the top portion are in contact with each other is L
  • the maximum of the top portion is DM
  • the condition (1) and the condition (2) are satisfied. (1) 60 ° ⁇ ⁇ ⁇ 90 ° (2) L ⁇ DM (90- ⁇ / 180) (However, L> 0)
  • Condition (1) is a condition related to the tilt angle of the positioning surface.
  • the positioning surfaces 25 and 27 of the glass lens molding mold 1 of FIG. 1 are 60 °, which is the lower limit value of the condition (1), and the positioning surfaces 43 and 46 of the glass lens molding mold 2 of FIG. 2 are the lower limit values of the condition (1).
  • the upper limit is 90 °, which satisfies the condition (1).
  • the positioning surface does not interfere with the assembly, and the holding portion and the top portion are brought closer to each other in the mold moving direction for easy and reliable positioning.
  • the mated state of the surface can be obtained.
  • the tilt angle ⁇ of the positioning surface is smaller than the lower limit of the condition (1), the restraint of the top portion in the radial direction becomes unstable, and the top portion tends to be eccentric or tilted with respect to the holding portion. .. Further, when the inclination angle ⁇ of the positioning surface is larger than the upper limit value of the condition (1), the structure is such that the positioning surfaces cannot be fitted to each other by the operation of bringing the holding portion and the top portion closer to each other in the mold moving direction. The sex deteriorates and it becomes difficult to assemble.
  • Condition (2) is a condition related to the fitting length of the positioning surface.
  • the total length can be reduced.
  • the inclination angle ⁇ of the positioning surface is 90 ° (in the case of the glass lens molding mold 2 of FIG. 2), the positioning surfaces are not in surface contact but in point contact (that is, minimum fitting) in the axial cross section. Even with the combined length), the top can be stabilized in the radial direction.
  • the fitting length of the positioning surface required for ensuring the radial position accuracy and stability of the top portion becomes larger. Further, the larger the maximum outer diameter DM of the top portion, the larger the fitting length of the positioning surface required to stably hold the top portion.
  • Condition (2) is obtained by obtaining the minimum fitting length L for accurately and stably holding the top portion based on the relationship between the maximum outer diameter DM of the top portion and the inclination angle ⁇ of the positioning surface. Is.
  • the minimum value of the fitting length L that satisfies this condition (2) is called a fitting length lower limit standard.
  • conditions for the coefficient of thermal expansion of the materials constituting the holding portion and the top portion are defined as follows.
  • (3) ⁇ 1 15 ⁇ 10 -7 / °C ⁇ 100 ⁇ 10 -7 / °C
  • ⁇ 2 15 ⁇ 10 -7 / °C ⁇ 100 ⁇ 10 -7 / °C
  • a highly accurate and highly durable glass lens that responds to temperature changes such as heating to the molding temperature (above the glass transition point of the glass preform) and cooling after molding by satisfying the conditions (3) and (4).
  • a molding die can be obtained. More preferably, the average coefficient of thermal expansion ⁇ 1 of the material of the top portion is 30 ⁇ 10 -7 / ° C to 80 ⁇ 10-7 / ° C, and the average coefficient of thermal expansion ⁇ 2 of the material of the holding portion is 15 ⁇ 10 -7 / ° C to It may be set in the range of 60 ⁇ 10-7 / ° C.
  • the present invention is established in both the case where the top portion and the holding portion are made of the same material and the case where the top portion and the holding portion are made of different materials. Therefore, the condition (3) and the condition (4) include both the case where the values of ⁇ 1 and ⁇ 2 are the same and the case where the values are different.
  • the relationship between the material of the top part and the material of the holding part is the condition (5) or the condition ( It is configured to satisfy 6).
  • the condition (5) and the condition (6) have an alternative relationship according to the inclination angle ⁇ of the positioning surface.
  • the above-mentioned condition (1) is satisfied.
  • Condition (5) and condition (6) are related to the holding accuracy of the top portion when heated to the molding temperature during molding.
  • the top portion and the holding portion are slightly deformed (expanded) according to the coefficient of thermal expansion of each material.
  • the difference in the coefficient of thermal expansion between the top portion and the holding portion can be tolerated by not fixing the top portion to the holding portion by adhesion or the like.
  • the holding portion and the top portion are fitted more firmly by utilizing the difference in the amount of deformation of the top portion and the holding portion due to heating. be able to.
  • the positioning surface on the holding portion side (the expansion coefficient is relatively large) is positioned on the top portion side when heated to the molding temperature. It will be pressed against the surface.
  • the positioning surface on the top portion side (the expansion coefficient is relatively large) is pressed against the positioning surface on the holding portion side. .. In either case, the effect of increasing the fitting strength of the positioning surface and improving the stability and accuracy of the position of the top portion with respect to the holding portion can be obtained.
  • Condition (6) is a case where the positioning surface on the holding portion side having a larger coefficient of thermal expansion than the top portion tightens the positioning surface on the top portion side to improve the holding property, and the case where the top portion has a larger coefficient of thermal expansion than the holding portion. Includes both cases where the positioning surface of the above is pressed against the positioning surface on the holding portion side to improve the holding property.
  • the upper limit value and the lower limit value of each of the condition (5) and the condition (6) are set as the boundary values that can secure the position accuracy of the frame portion.
  • ⁇ 1 / ⁇ 2 1.0 to 1.5 when the tilt angle ⁇ of the positioning surface is 90 °
  • ⁇ 1 / ⁇ 2 when the tilt angle ⁇ of the positioning surface is 60 ° ⁇ ⁇ ⁇ 90 °. Setting it in the range of 0.5 to 1.5 is even more effective.
  • Condition (7) is related to the rigidity of the top part.
  • the glass lens is press-molded by the glass lens molding die, if the frame portion is bent, the shape of the molded surface is not maintained, which affects the molding accuracy of the glass material to be molded.
  • the Young's modulus of the material of the top portion is 85 GPa or more, even if a predetermined pressing force is applied during molding of the glass material to be molded, the top portion can be prevented from bending due to a load, and molding is performed without impairing the accuracy of the molded surface. be able to.
  • Both the positioning surfaces 25 and 27 of the glass lens molding die 1 of FIG. 1 and the positioning surfaces 43 and 46 of the glass lens molding die 2 of FIG. 2 satisfy the conditions (1) and (2). Further, the pedestal portion 13 (holding portion) and the top portion 14 in the glass lens molding mold 1 and the pedestal portion 13 (holding portion) and the top portion 40 in the glass lens molding mold 2 all satisfy the conditions (3) and (4). It is made of a satisfactory material. Further, the pedestal portion 13 and the top portion 14 of the glass lens molding mold 1 are made of a material satisfying the condition (6), and the pedestal portion 13 and the top portion 40 of the glass lens molding mold 2 are made of a material satisfying the condition (5). Further, the top portions 14 and 40 are all made of a material that satisfies the condition (7). An example including a case where each of these conditions is satisfied and a case where each of these conditions is not satisfied will be described with reference to FIG.
  • a glass preform which is a glass material to be molded
  • the lower mold is heated to the molding temperature by a heater.
  • the result of forming the glass lens by pressing the glass preform with a predetermined pressure by moving the upper mold closer to each other is shown in FIG. 5 as an example.
  • the materials of the pedestal and the top portion are selected from the candidate materials A to E, the maximum outer diameter of the top portion (DM), the fitting length of the positioning surface (L), and the taper angle of the positioning surface ( ⁇ ). The value of is set appropriately. All of the materials A to E satisfy the condition (3) and the condition (4).
  • the relationship ( ⁇ 1 / ⁇ 2) between the average coefficient of thermal expansion ( ⁇ 1) of the coma portion and the average coefficient of thermal expansion ( ⁇ 2) of the holding portion is calculated based on the selected candidate material.
  • -Material A Silicon Carbide (SiC) Young's modulus (GPa): 430 Average coefficient of thermal expansion (100 ° C to 300 ° C): 37 ⁇ 10-7 / ° C Specific gravity: 3.20 g / cm 3 -Material B: Tungsten carbide (WC) alloy Young's modulus (GPa): 530 Average coefficient of thermal expansion (100 ° C to 300 ° C): 47 x 10-7 / ° C Specific gravity: 15.63 g / cm 3 -Material C: Silicon nitride (Si3N4) Young's modulus (GPa): 290 Average coefficient of thermal expansion (100 ° C to 300 ° C): 24 x 10-7 / ° C Specific gravity: 3.20 g / cm 3 -Material D: Glass Young's modulus (GPa): 95 Glass transition temperature (Tg): 691 ° C Average coefficient of thermal expansion (100 ° C to 300 ° C): 51 x 10-7
  • the frame portion is formed by selecting from the materials A, D, and E
  • the holding portion is formed by selecting from the materials A, B, and C
  • the glass is formed by a plurality of combination patterns for these materials.
  • a lens molding mold was constructed.
  • the inclination angle ( ⁇ ) 60 ° of the positioning surface in the table of FIG. 5 has the same configuration as the positioning surfaces 25 and 27 of the glass lens molding mold 1 described above, and the inclination of the positioning surface in the table of FIG. 5 is formed.
  • the angle ( ⁇ ) 90 ° has the same configuration as the positioning surfaces 43 and 46 of the glass lens molding mold 2 described above.
  • the case where a good molding result is obtained without causing a molding defect in the molding of the glass lens is indicated by “ ⁇ ”, and the case where a molding defect occurs is indicated by “ ⁇ (Q1 to Q10)”. ..
  • the molding defects in Q5 to Q9 are all caused by the tilt angle 55 ° of the positioning surface falling below the lower limit (60 °) of the condition (1), and the molded glass lens has an eccentricity exceeding the allowable range. occured.
  • the molding defect of Q10 is caused by the fact that the fitting length of the positioning surface of 1.5 mm is less than the lower limit of the condition (2) (1.8 mm, which is the lower limit of the fitting length), and the molded glass lens has a molding defect. An unacceptable eccentricity occurred.
  • the glass lens molding die 1 of FIG. 1 and the glass lens molding die 2 of FIG. 2 are examples in which the lower die 11 is composed of the pedestal portion 13 and the frame portions 14, 40.
  • the relationship between the top portion and the holding portion in the present invention is not limited to this.
  • the present invention is also applicable to a configuration in which the top portion of the upper die 12 is held.
  • FIG. 3 shows the glass lens molding mold 3 of the third form.
  • the lower mold 11 (pedestal portion 13 and frame portion 14) in the glass lens molding mold 3 has the same configuration as the glass lens molding mold 1 of FIG. 1 described above, and the description thereof will be omitted.
  • the upper mold guide surface 50 is formed within a predetermined range from the upper end side.
  • the upper guide surface 50 is a cylindrical surface (inner surface of the cylinder) centered on the central axis Z.
  • a positioning surface 51 continuous below the upper guide surface 50 is further formed inside the body mold 10.
  • the positioning surface 51 is a part of a conical surface (inner surface of the cone) centered on the central axis Z, and its diameter decreases from the upper side (upper guide surface 50 side) to the lower side (protrusion amount toward the inner diameter side). It has a mortar-shaped shape.
  • the lower end of the positioning surface 51 leads to a space surrounded by the lower guide surface 15 in the body mold 10.
  • the upper mold 12 in the glass lens molding mold 3 is composed of two members, a pressing portion 52 and a top portion 53.
  • the pressing portion 52 has a cylindrical outer peripheral surface 54, and the outer diameter of the outer peripheral surface 54 corresponds to the inner diameter of the upper mold guide surface 50 in the body mold 10.
  • the lower end surface 55 of the pressing portion 52 is a plane perpendicular to the central axis Z.
  • a cylindrical outer peripheral surface 56 and a positioning surface 57 following the outer peripheral surface 56 are formed on the outer surface of the top portion 53.
  • the outer diameter of the outer peripheral surface 56 is slightly smaller than the inner diameter of the upper mold guide surface 50 in the body mold 10.
  • the positioning surface 57 is a part of a conical surface (outer surface of the cone) centered on the central axis Z, and more specifically, is a part of a conical surface having the same (equal apex angle) as the positioning surface 51.
  • the top portion 53 further has a convex molding surface 58 at the lower end portion following the positioning surface 57, and has an upper end surface 59 on the upper end side opposite to the molding surface 58.
  • the upper end surface 59 is a plane perpendicular to the central axis Z.
  • the pressing portion 52 slides the outer peripheral surface 54 against the upper mold guide surface 50 and moves in the vertical direction with respect to the body mold 10. Then, the position of the pressing portion 52 in the radial direction is determined by the outer peripheral surface 54 being surrounded by the upper mold guide surface 50.
  • the top portion 53 slides the outer peripheral surface 56 against the upper mold guide surface 50 and moves in the vertical direction with respect to the body mold 10. Then, as shown in FIG. 3, the positioning surface 57 fits into the positioning surface 51, so that the position of the top portion 53 in the radial direction and the vertical direction with respect to the body die 10 is determined. There is a slight clearance between the outer peripheral surface 56 and the upper guide surface 50, which does not interfere with the radial positioning of the top portion 53 by the positioning surfaces 51 and 57.
  • the glass preform When molding a glass lens with the glass lens molding mold 3, the glass preform is placed on the molding surface 28 of the frame portion 14 of the lower mold 11 and driven in a state of being heated to a molding temperature at which the glass preform softens.
  • the upper end surface of the pressing portion 52 is pushed downward by the means 6.
  • the lower end surface 55 of the pressing portion 52 abuts on the upper end surface 59 of the top portion 53, and the top portion 53 moves downward together with the pressing portion 52.
  • the upper mold 12 including the pressing portion 52 and the top portion 53 is pushed off by the driving means 6, the upper mold 12 is sandwiched between the molding surface 58 of the top mold portion 53 of the upper mold 12 and the molding surface 28 of the top mold portion 14 of the lower mold 11.
  • the glass preform is deformed to form a glass lens.
  • the conical positioning surface 57 fits into the conical positioning surface 51, and the position of the top portion 53 with respect to the body mold 10 is determined. Therefore, the glass lens can be pressed while the upper and lower frame portions 14 and 53 are aligned with each other.
  • the body die 10 is designated as the above-mentioned "holding portion” and the top die 12 is designated as the above-mentioned “top section”, and by satisfying the above-mentioned conditions, the pedestal portion 13 of the lower die 11 is formed.
  • the same effect as in the case of the frame portion 14 (the effect that the frame portion can be easily and surely and accurately positioned with respect to the holding portion) can be obtained.
  • the positioning surfaces 51 and 57 shown in FIG. 3 have an inclination angle ⁇ of 60 ° with respect to the central axis Z, and satisfy the above condition (1). Further, the maximum outer diameter DM of the top portion 53 (outer diameter of the outer peripheral surface 56) and the fitting length L of the positioning surfaces 51 and 57 satisfy the above condition (2). Further, the material of the body mold 10 and the material of the top portion 53 are selected so as to meet the above conditions (3) to (7).
  • FIG. 4 shows the glass lens molding mold 4 of the fourth form.
  • the lower mold 11 (pedestal portion 13 and frame portion 40) in the glass lens molding mold 4 has the same configuration as the glass lens molding mold 2 of FIG. 2 described above, and the description thereof will be omitted.
  • the upper mold guide surface 60 is formed within a predetermined range from the upper end side.
  • the upper guide surface 60 is a cylindrical surface (inner surface of the cylinder) centered on the central axis Z.
  • a positioning surface 61 continuous below the upper guide surface 60 is further formed inside the body mold 10.
  • the positioning surface 61 is a cylindrical surface (inner surface of the cylinder) centered on the central axis Z, and the inner diameter of the positioning surface 61 is smaller than the inner diameter of the upper guide surface 60.
  • the lower end of the positioning surface 61 leads to a space surrounded by the lower guide surface 15 in the body mold 10.
  • the upper mold 12 in the glass lens molding mold 4 is composed of two members, a pressing portion 62 and a top portion 63.
  • the pressing portion 62 has a cylindrical outer peripheral surface 64, and the outer diameter of the outer peripheral surface 64 corresponds to the inner diameter of the upper mold guide surface 60 in the body mold 10.
  • the lower end surface 65 of the pressing portion 62 is a plane perpendicular to the central axis Z.
  • the top portion 63 is formed with a flange 66 projecting to the outer diameter side and a positioning surface 67 continuing below the flange 66.
  • the outer diameter of the flange 66 is slightly smaller than the inner diameter of the upper die guide surface 60 in the body die 10.
  • the positioning surface 67 is a cylindrical surface (outer surface of the cylinder) centered on the central axis Z, and the outer diameter of the positioning surface 67 corresponds to the inner diameter of the positioning surface 61.
  • the top portion further has a convex molding surface 68 at the lower end portion following the positioning surface 67, and has an upper end surface 69 on the upper end side opposite to the molding surface 68.
  • the upper end surface 69 is a plane perpendicular to the central axis Z.
  • the pressing portion 62 slides the outer peripheral surface 64 against the upper mold guide surface 60 and moves in the vertical direction with respect to the body mold 10. Then, the position of the pressing portion 62 in the radial direction is determined by surrounding the outer peripheral surface 64 with the upper mold guide surface 60.
  • the top portion 63 slides the flange 66 against the upper mold guide surface 60 and moves in the vertical direction with respect to the body mold 10. Then, as shown in FIG. 4, the positioning surface 67 fits into the positioning surface 61, so that the position of the top portion 63 in the radial direction with respect to the body die 10 is determined. There is a slight clearance between the flange 66 and the upper die guide surface 60, which does not interfere with the radial positioning of the top portion 63 by the positioning surfaces 61 and 67.
  • the glass preform When molding a glass lens with the glass lens molding mold 4, the glass preform is placed on the molding surface 47 of the frame portion 40 of the lower mold 11 and driven in a state of being heated to a molding temperature at which the glass preform softens.
  • the upper end surface of the pressing portion 62 is pushed downward by the means 6.
  • the lower end surface 65 of the pressing portion 62 abuts on the upper end surface 69 of the top portion 63, and the top portion 63 moves downward together with the pressing portion 62.
  • the upper mold 12 including the pressing portion 62 and the top portion 63 is pushed off by the driving means 6, the upper mold 12 is sandwiched between the molding surface 68 of the top portion 63 of the upper mold 12 and the molding surface 47 of the top portion 40 of the lower mold 11.
  • the glass preform is deformed to form a glass lens.
  • the cylindrical positioning surface 67 fits into the cylindrical positioning surface 61, and the position of the top portion 63 with respect to the body mold 10 is determined. Therefore, the glass lens can be pressed while the upper and lower frame portions 14 and 63 are aligned with each other.
  • the body mold 10 is designated as the above-mentioned "holding portion” and the top mold 12 is designated as the above-mentioned "top portion”, and by satisfying the above-mentioned conditions, the pedestal portion 13 of the lower mold 11
  • the same effect as in the case of the frame portion 40 (the effect that the frame portion can be easily and surely and accurately positioned with respect to the holding portion) can be obtained.
  • the positioning surfaces 61 and 67 shown in FIG. 4 have an inclination angle ⁇ of 90 ° with respect to the central axis Z, and satisfy the above condition (1). Further, the maximum outer diameter DM of the top portion 63 (outer diameter of the positioning surface 67) and the fitting length L of the positioning surfaces 61 and 67 satisfy the above condition (2). Further, the material of the body mold 10 and the material of the top portion 63 are selected so as to meet the above conditions (3) to (7).
  • the frame portion (the frame portion 14 of the lower mold 11) is opposed to the holding portion (the pedestal portion 13 in the lower mold 11 or the body mold 10).
  • the holding portion the pedestal portion 13 in the lower mold 11 or the body mold 10.
  • 40, or the frame portions 53, 63) of the upper mold 12 can be easily and reliably positioned with high accuracy, and when the glass lens is molded by heating to a molding temperature, molding defects are less likely to occur and high-precision molding is performed. Can be realized.
  • the present invention is not limited to the above embodiment, and various modifications can be made within the gist of the invention.
  • the inclination angle ⁇ of the positioning surface that determines the positions of the frame portions 14 and 53 is set to 60 with respect to the direction perpendicular to the central axis Z.
  • the inclination angle ⁇ of the positioning surface that determines the positions of the frame portions 40 and 63 is set to ° in the direction perpendicular to the central axis Z.
  • the inclination angle of the positioning surface can be set to any angle within the range of the above condition (1). For example, an angle such as 75 ° included in the embodiment of FIG. 5 or another angle may be selected.
  • ceramics such as silicon carbide (material A) and silicon nitride (material C) and cemented carbide such as tungsten carbide alloy (material B) are selected as the material of the holding portion. It is also possible to select glass or the like as the material of the holding portion.
  • the present invention it is possible to easily and surely position the top portion with respect to the holding portion with high accuracy during molding processing by the glass lens molding mold, and it is particularly required to efficiently manufacture a large number of glass lenses. Useful for lens molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

ガラスレンズのレンズ面を形成する成形面を有するコマ部と、コマ部を位置決めして保持する保持部とを備え、被成形ガラス材を型移動方向に押圧してガラスレンズを成形するガラスレンズ成形型において、保持部とコマ部は、ガラスレンズの素材である被成形ガラス材の成形温度で嵌合して保持部に対するコマ部の位置を定める位置決め面を有し、コマ部と保持部の中心を通り型移動方向に向く中心軸を含む平面内での、型移動方向と垂直な方向に対する位置決め面の傾き角をθ、位置決め面が接する嵌合長をL、コマ部の最大外径をDMとして、(1)60°≦θ≦90°と(2)L≧DM(90-θ/180)を満たすようにする。

Description

ガラスレンズ成形型
 本発明は、ガラスレンズを成形する成形型に関する。
 ガラスレンズの製造において、加熱して軟化させたガラス材料を成形用の型(以下、成形型)によって押圧(プレス)して成形する方法が実用化されている。成形型でのプレス成形によるガラスレンズの製造は、ガラス材料を研削や研磨して行うガラスレンズの製造に比べて、複雑な形状の非球面レンズなどを低コストで大量に生産しやすい。
 ガラスレンズ製造用の成形型で、レンズ面を形成する成形面を有するコマ部と、コマ部を保持する台座部(保持部)とを、別部材として構成したものが知られている(例えば、特許文献1)。
 プレスによるガラスレンズの製造では、成形型の成形面の形状がガラス材料に転写されてレンズ面になるため、成形面に傷などの異常が生じた場合に、成形型を再加工して成形面を修正する必要があった。コマ部と台座部を分けた構造では、成形面に異常が生じたコマ部を、予め製造しておいた別のコマ部に入れ替えることで、再加工の時間を削減することができ、生産性において有利になる。
 また、コマ部と台座部を分けた構成にした上で、異なる形状の成形面を有する複数種のコマ部を用意してもよい。これにより、レンズ面形状が異なる複数種のガラスレンズを、コマ部の入れ替えによって容易に成形可能になる。
 特許文献1では、成形型のコマ部をガラス製とすることが記載されている。基準となる成形面を有するマスター型を準備し、マスター型によってガラス材料を押圧することによって、成形面が転写されたガラス製のコマ部を製造する。マスター型があれば、短時間で大量のガラス製のコマ部を効率的に製造することができ、加工時間や製造コストの削減を実現できる。
特開2004-210550号公報
 コマ部と台座部を別部材とした成形型を構成する場合、台座部に対してコマ部が偏心や傾きを生じた状態でプレスを行うと、ガラスレンズの成形不良が生じてしまう。従って、台座部に対してコマ部を適正な位置で保持させる必要があり、コマ部と台座部を有する成形型を具現化するに当たって、適切な構成や条件を見出すことが求められていた。
 本発明は、成形加工時に、コマ部を保持する保持部に対してコマ部を簡単且つ確実に精度良く位置させることができるガラスレンズ成形型を提供することを目的とする。
 本発明は、ガラスレンズのレンズ面を形成する成形面を有するコマ部と、コマ部を位置決めして保持する保持部とを備え、被成形ガラス材を型移動方向に押圧してガラスレンズを成形するガラスレンズ成形型において、保持部とコマ部は、ガラスレンズの素材である被成形ガラス材の成形温度で嵌合して保持部に対するコマ部の位置を定める位置決め面を有し、コマ部と保持部の中心を通り型移動方向に向く中心軸を含む平面内での、型移動方向と垂直な方向に対する位置決め面の傾き角をθ、位置決め面が接する嵌合長をL、コマ部の最大外径をDMとしたとき、下記条件(1)及び(2)を満たすことを特徴とする。
(1)60°≦θ≦90°
(2)L≧DM(90-θ/180) 但し、L>0
 本発明はまた、ガラスレンズのレンズ面を形成する成形面を有するコマ部と、コマ部を位置決めして保持する保持部とを備え、被成形ガラス材を型移動方向に押圧してガラスレンズを成形するガラスレンズ成形型において、保持部とコマ部は、ガラスレンズの素材である被成形ガラス材の成形温度で嵌合して保持部に対するコマ部の位置を定める位置決め面を有し、型移動方向と垂直な方向に対する位置決め面の傾き角をθ、コマ部の材質の100℃~300℃での平均熱膨張係数をα1、保持部の材質の100℃~300℃での平均熱膨張係数をα2としたとき、下記条件(1)、(3)及び(4)の全てと、下記条件(5)又は(6)とを満たすことを特徴とする。
(1)60°≦θ≦90°
(3)α1=15×10-7/℃~100×10-7/℃
(4)α2=15×10-7/℃~100×10-7/℃
(5)θ=90°でのα1/α2=1.0~2.0
(6)60°≦θ<90°でのα1/α2=0.3~2.0
 以上の各条件に加えてさらに、コマ部の材質のヤング率が85GPa以上であることが好ましい。
 本発明によるガラスレンズ成形型の一形態として、胴型と、胴型に対して型移動方向に移動可能な下型及び上型とを備え、下型は、胴型の内部に型移動方向に移動可能に支持される台座部と、台座部に対して位置決め面を介して保持されるコマ部とを備え、台座部を保持部とする。
 本発明によるガラスレンズ成形型の別の形態として、胴型と、胴型に対して型移動方向に移動可能な下型及び上型とを備え、上型は、胴型の内部に型移動方向に移動可能に支持されるコマ部と、コマ部の上方に位置してコマ部に下方への押圧力を伝達する押圧部とを備え、胴型を保持部として、胴型に対して位置決め面を介してコマ部が保持される。
 以上の本発明のガラスレンズ成形型によれば、上記の各条件を満たすことによって、成形加工時に保持部に対してコマ部を簡単且つ確実に精度良く位置させることができ、ガラスレンズの加工性を向上させることができる。
ガラスレンズ成形型の第1の形態を示す断面図である。 ガラスレンズ成形型の第2の形態を示す断面図である。 ガラスレンズ成形型の第3の形態を示す断面図である。 ガラスレンズ成形型の第4の形態を示す断面図である。 本発明に関する各種条件を異ならせたガラスレンズ成形型によってガラスレンズを成形した実施例を示す図である。
 以下、図面を参照して、本発明を適用したガラスレンズ成形型の実施の形態について説明する。図1から図4は、ガラスレンズ成形型の第1から第4の形態を示すものである。各形態のガラスレンズ成形型はいずれも、下型11と上型12を上下方向(型移動方向)に相対移動させて、成形前の被成形ガラス材であるガラスプリフォーム(図示略)をプレス加工してガラスレンズ(図示略)を成形するものである。下型11と上型12の中心を通り上下方向に向く軸線を中心軸Zとする。図1から図4はいずれも、中心軸Zを含む断面でガラスレンズ成形型を断面視したものであり、中心軸Zを含む当該断面を軸方向断面とする。また、中心軸Zに対して垂直な方向を径方向とし、径方向で中心軸Zに向かう側を内径側、中心軸Zから離れる側を外径側とする。
 図1を参照して、第1の形態のガラスレンズ成形型1を説明する。ガラスレンズ成形型1は、胴型10と下型11と上型12を有している。下型11は、台座部13とコマ部14の2部材によって構成されている。台座部13は、コマ部14を位置決めして保持する保持部を構成する。
 中心軸Zは、ガラスレンズ成形型1により成形されるガラスレンズ(図示略)の光軸に一致するものである。下型11と上型12は、互いの中心軸Zが一致するように、径方向の位置が定められる(芯出しされる)。より詳しくは、下型11の台座部13と上型12はそれぞれ、胴型10に対して直接に嵌合して径方向の位置が定められる。下型11のコマ部14は、台座部13に嵌合して径方向及び上下方向の位置が定められる。
 胴型10は、中心軸Zを囲む筒状体であり、上下方向に貫通する内部空間を有する。胴型10の内部には、下端側から所定の範囲で下型案内面15が形成され、上下方向の中間部分に上型案内面16が形成され、上端側から所定の範囲で上型案内面17が形成される。下型案内面15と上型案内面16と上型案内面17はいずれも、中心軸Zを中心とする円筒面(円筒の内面)であり、下型案内面15と上型案内面17の内径が上型案内面16の内径よりも大きい。上型案内面17と下型案内面15の間に、環状で上向きの移動規制面18が形成されている。胴型10の下端には、環状で下向きの下型規制面19が形成されている。
 下型11の台座部13は、胴型10の内部に上下方向へ移動可能に挿入される小径部20と、小径部20の下部に位置する大径部21を有する。小径部20の外面には、中心軸Zを中心とする円筒面(円筒の外面)である外周面22が形成されている。外周面22の外径は、胴型10の下型案内面15の内径に対応している。大径部21は、小径部20よりも外径が大きく、小径部20の下方で大径部21が外周面22よりも外径側へ突出している。
 台座部13は、胴型10に対して下方から小径部20を挿脱させることができる。胴型10の内部に小径部20を挿入させた嵌合状態では、外周面22が下型案内面15に囲まれることによって、径方向での台座部13の位置が定まる(台座部13の径方向の中心が図1に示す中心軸Zの位置になる)。また、下型案内面15と外周面22の嵌合によって、台座部13は胴型10に対して傾きやガタつきを生じずに上下方向に摺動可能に支持される。なお、中心軸Zを中心とする周方向への胴型10と台座部13の相対回転を防ぐように、胴型10と台座部13の間に回転規制構造を備えてもよい。
 小径部20よりも大径である大径部21(より詳しくは、大径部21のうち、外周面22に対して外径側に突出している部分の上面)が下型規制面19に当接することによって、胴型10に対する小径部20の最大挿入量が決まる。図1は、大径部21が下型規制面19に当接して、小径部20が胴型10内に最大に挿入された状態を示している。
 台座部13はコマ収容部24を有する。コマ収容部24は小径部20の上面側に開口した凹部であり、コマ収容部24の内面として位置決め面25を有する。位置決め面25は、中心軸Zを中心とする円錐面(円錐の内面)の一部であり、コマ収容部24が開口する小径部20の上面から下方に進むにつれて径を小さくする(内径側への突出量を大きくする)すり鉢状の形状である。コマ収容部24の下方に連続して、吸引用空間26が形成されている。
 コマ収容部24の内部にコマ部14が保持される。コマ部14は径方向の外面に位置決め面27を有している。位置決め面27は、中心軸Zを中心とする円錐面(円錐の外面)の一部であり、より詳しくは、位置決め面25と同一の(頂角が等しい)円錐面の一部である。コマ部14はさらに、上方に向く凹面状の成形面28と、下方に向けて突出して台座部13の吸引用空間26内に進入する下方突出部29とを有する。
 コマ部14の位置決め面27が台座部13の位置決め面25と嵌合(当接)することによって、台座部13に対するコマ部14の位置が定まる。位置決め面25と位置決め面27は、互いに面接触する円錐状のテーパ面であり、互いの中心軸(円錐の高さ方向に延びて頂点を通る直線)が一致する状態で嵌合する。この嵌合により、台座部13に対して、上下方向へのコマ部14の位置が定まると共に、中心軸Zを中心とする径方向におけるコマ部14の位置も定まる。そして、胴型10の内部に台座部13(小径部20)を収めた状態では、台座部13とコマ部14のそれぞれの径方向の中心が中心軸Zと一致する。すなわち、胴型10に対して台座部13及びコマ部14がそれぞれ適正に調芯された状態になり、成形面28の中心を中心軸Zが通るようになる。なお、吸引用空間26の内面と下方突出部29との間には径方向のクリアランスがあり、位置決め面25と位置決め面27の嵌合によるコマ部14の位置決めを妨げない。
 台座部13には、吸引用空間26から大径部21の下面まで連通する吸引孔30が形成されている。吸引孔30の下端は、吸引源31から延びる吸引管32に接続している。吸引源31を駆動すると、吸引管32及び吸引孔30を通じて吸引用空間26に吸引力が作用する。この吸引力によって、台座部13のコマ収容部24に対してコマ部14を密着嵌合させることができる。
 コマ部14の位置を定める位置決め面25と位置決め面27は、ガラスレンズ成形型1の軸方向断面内において、型移動方向(中心軸Z)と垂直な方向(すなわち径方向)に対する傾き角θが60°である。軸方向断面内でのコマ部14の最大外径DMと、軸方向断面内で位置決め面25と位置決め面27が嵌合する長さである嵌合長Lを、図1中に示した。
 コマ部14は上方に進むにつれて位置決め面27の外径を大きくする逆台形状の断面形状を有しているため、コマ部14の上端部分の外径サイズが、コマ部14の最大外径DMとなる。軸方向断面内では、位置決め面25と位置決め面27が嵌合長Lで接する部分が、中心軸Zを挟んで対称に2箇所存在している。
 上型12は、胴型10の内部に上下方向へ移動可能に挿入される。上型12は、下方に位置する小径部33と、小径部33の上部に位置する大径部34とを有している。小径部33の外面には、中心軸Zを中心とする円筒面(円筒の外面)であり、胴型10における上型案内面16の内径に対応した外径を有する外周面35が形成されている。大径部34の外面には、中心軸Zを中心とする円筒面(円筒の外面)であり、胴型10における上型案内面17の内径に対応する外径を有する外周面36が形成されている。外周面35と外周面36の間には、環状で下向きの移動規制面37が形成されている。上型12における小径部33の下端には、下方に向く凸面状の成形面38を有する。
 外周面35及び外周面36が上型案内面16及び上型案内面17に囲まれることによって、径方向での上型12の位置が定まり、上型12の中心が中心軸Zと一致する。また、上型案内面16及び上型案内面17と外周面35及び外周面36の嵌合によって、上型12は胴型10に対して傾きやガタつきを生じずに上下方向に摺動可能に支持される。移動規制面37が移動規制面18に当接することによって、胴型10からの下方への上型12の脱落が防止される。なお、中心軸Zを中心とする周方向への胴型10と上型12の相対回転を防ぐように、胴型10と上型12の間に回転規制構造を備えてもよい。
 胴型10に対して下型11(台座部13)を上下方向に移動させる駆動手段5と、胴型10に対して上型12を上下方向に移動させる駆動手段6とを有する。駆動手段5や駆動手段6は、ガラスレンズ成形型1が設置されるガラスレンズ製造装置に設けた、シリンダピストン機構やその駆動源などによって構成される。
 下型11の成形面28や上型12の成形面38上にはコーティング層(図示略)を形成してもよい。コーティング層は炭素膜などからなり、ガラスレンズを構成する被成形ガラス材の融着を抑える効果を有する。あるいは、コーティング層を備えずに成形面28や成形面38が露出している構成も選択可能である。
 以上の構成のガラスレンズ成形型1によるガラスレンズの成形工程について説明する。ガラスレンズの成形は、素材となる被成形ガラス材が軟化する成形温度(ガラス転移点以上)まで加熱した状態で行う。
 胴型10から下方に下型11を離脱させた状態で、コマ部14の成形面28上に被成形ガラス材であるガラスプリフォーム(図示略)を載せる。続いて、駆動手段5を駆動して下型11を上方に移動させ、台座部13の小径部20を胴型10内に下方から挿入する。また、駆動手段6を駆動して上型12を下方に移動させ、胴型10内に上型12を挿入させる。そして、下型11と上型12を上下方向で接近させると、加熱で軟化した状態のガラスプリフォームが下型11(コマ部14)の成形面28と上型12の成形面38によって上下から押圧されて変形する。
 図1に示すように、下型11は、台座部13の大径部21が下型規制面19に当接する位置で、胴型10に対する上方への移動が制限される。駆動手段6は、大径部34の上端面と胴型10の上面面が面一になる位置まで上型12を下方に押し込む。この状態で、ガラスレンズ成形型1でのプレス加工が完了となり、成形面28と成形面38の形状が転写されたレンズ面を表裏に有するガラスレンズ(メニスカスレンズ)が完成する。なお、図1に示すプレス加工完了状態では、胴型10の移動規制面18と上型12の移動規制面37の間にはクリアランスがある。
 ガラスレンズの成形完了後に、駆動手段6を駆動して上型12を引き上げ、駆動手段5を駆動して下型11を下降させる。そして、成形されたガラスレンズをガラスレンズ成形型1から取り出して回収する。
 図2は、第2の形態のガラスレンズ成形型2を示している。ガラスレンズ成形型2における胴型10と上型12は、上述したガラスレンズ成形型1と共通の構成であり、説明を省略する。ガラスレンズ成形型2は、下型11におけるコマ部40と、コマ部40を収容する台座部13のコマ収容部41の構成が、ガラスレンズ成形型1のコマ部14及びコマ収容部24とは異なっている。
 コマ収容部41は台座部13の上面側に開口した凹部であり、コマ収容部41の内面として、底面42と位置決め面43とを有する。底面42は、中心軸Zに対して垂直な平面であり、中心軸Zを中心とする円形状の範囲に形成されている。位置決め面43は、中心軸Zを中心とする円筒面(円筒の内面)であり、底面42の周縁から上方に向けて突出している。
 コマ収容部41の内部にコマ部40が保持される。コマ部40は外面に底面45と位置決め面46を有している。底面45は中心軸Zに対して垂直な平面であり、コマ収容部41の底面42に対応する円形の形状である。位置決め面46は、中心軸Zを中心とする円筒面(円筒の外面)であり、底面45の周縁から上方に向けて突出している。コマ部40はさらに、上方に向く凹面状の成形面47を有する。
 コマ部40は、底面45を底面42に当接させることによって、台座部13に対する上下方向の位置が定まる。また、位置決め面46が位置決め面43に嵌合して、台座部13に対するコマ部40の径方向の位置が定まる。この位置決め状態で、コマ部40の径方向の中心が中心軸Zと一致する。すなわち、胴型10に対して台座部13及びコマ部40が適正に調芯された状態になり、成形面47の中心を中心軸Zが通るようになる。
 台座部13には、コマ収容部41の下方に連続する吸引用空間44が形成されている。吸引用空間44には吸引孔30の上端が通じており、吸引源31を駆動すると、吸引管32及び吸引孔30を通じて吸引用空間44に吸引力が作用する。この吸引力によって、コマ収容部41に対してコマ部40を密着嵌合させることができる。
 コマ部40の位置を定める位置決め面43と位置決め面46は、ガラスレンズ成形型2の軸方向断面内において、型移動方向(中心軸Z)と垂直な方向(すなわち径方向)に対する傾き角θが90°である。円筒状の位置決め面46の直径が、軸方向断面内でのコマ部40の最大外径DMとなる。上下方向での位置決め面43及び位置決め面46の高さが、軸方向断面内で位置決め面43と位置決め面46が嵌合する長さである嵌合長Lとなる。軸方向断面内では、位置決め面43と位置決め面46が嵌合長Lで接する部分が、中心軸Zを挟んで対称に2箇所存在している。
 図1のガラスレンズ成形型1と図2のガラスレンズ成形型2はいずれも、台座部13とコマ部14、40とによって下型11を構成しており、コマ部14、40は、成形面28、47とその周囲のみを含む小型な部材である。より詳しくは、上下方向への下型11全体の大きさに比して、上下方向へのコマ部14、40の肉厚が半分以下である。また、コマ部14の最大外径DMやコマ部40の最大外径DMは、下型11全体の外径(大径部21の外径)の半分以下である。そのため、コマ部14、40を形成する材料が少なくて済み、且つ成形面28、47を含むコマ部14、40の精度管理を行い易い。つまり、コマ部14、40を低コストで効率良く製造できる。
 成形面28、47に傷などの異常が生じた場合には、異常が生じたコマ部14、40を、予め製造しておいた別のコマ部14、40に入れ替えることで、下型11全体を再加工する手間を要さず迅速に成形可能な状態に復帰できる。また、成形面28、47の形状が異なる複数種のコマ部14、40を準備しておき、コマ部14、40を換装して、レンズ面形状の異なるガラスレンズを製造することも可能である。このように、台座部13とコマ部14、40とを分けて下型11を構成したことにより、ガラスレンズ成形型1、2によるガラスレンズの生産性を向上させることができる。
 台座部13とコマ部14、40は、互いに接着等で固定されず、位置決め面25、27の嵌合や位置決め面43、46の嵌合によってコマ部14、40を位置決め(芯出し)する。そのため、台座部13とコマ部14、40のそれぞれを構成する材質の熱膨張率がある程度異なっていても、成形温度まで加熱した際に互いの嵌合部分に過大なストレスがかかりにくい。すなわち、台座部13とコマ部14、40を互いに固定させる構成に比して、台座部13とコマ部14、40の熱膨張率の許容範囲が広く、材質の選択自由度が向上する。
 出願人は、研究及び実験の結果、以上のような構成のガラスレンズ成形型において所定の条件を満たすことで、保持部(下型11における台座部13に相当する)に対してコマ部を簡単且つ確実に精度良く保持させることができることを見出した。以下、その条件について説明する。
 まず、保持部に対するコマ部の位置を定める位置決め面の傾き角と、位置決め面の嵌合長についての条件を、次のように定める。ガラスレンズ成形型の軸方向断面内での、型移動方向と垂直な方向に対する位置決め面の傾き角をθ、保持部とコマ部の互いの位置決め面が接する嵌合長をL、コマ部の最大外径をDMとしたとき、条件(1)及び条件(2)を満たすように構成する。
(1)60°≦θ≦90°
(2)L≧DM(90-θ/180) (但し、L>0)
 条件(1)は、位置決め面の傾き角に関する条件である。図1のガラスレンズ成形型1の位置決め面25、27は、条件(1)の下限値の60°であり、図2のガラスレンズ成形型2の位置決め面43、46は、条件(1)の上限値の90°であり、それぞれ条件(1)を満たしている。条件(1)を満たすことで、位置決め面を嵌合させたときにコマ部を径方向に安定して保持して、コマ部の偏心や傾きを防ぐことができる。また、条件(1)の範囲では、保持部に対するコマ部の組み付けの際に、位置決め面が組み付けの妨げにならず、保持部とコマ部を型移動方向に接近させることにより容易且つ確実に位置決め面の嵌合状態を得られる。
 これに対し、位置決め面の傾き角θが条件(1)の下限値よりも小さいと、径方向へのコマ部の拘束が不安定になり、保持部に対するコマ部の偏心や傾きが生じやすくなる。また、位置決め面の傾き角θが条件(1)の上限値よりも大きいと、保持部とコマ部を型移動方向に接近させる動作で互いの位置決め面を嵌合させられない構造になり、組み付け性が悪化したり組み付けが困難になったりする。
 条件(2)は、位置決め面の嵌合長に関する条件である。条件(1)での位置決め面の傾き角θが大きいほど、保持部がコマ部を径方向に拘束しやすいので、コマ部の径方向の位置精度や安定性を確保するための位置決め面の嵌合長を小さくすることができる。例えば、位置決め面の傾き角θが90°の場合(図2のガラスレンズ成形型2の場合)、軸方向断面内で位置決め面同士が面接触ではなく点接触する構成(つまり、最小限の嵌合長)でも、コマ部を径方向に安定させることができる。逆に、傾き角θが小さくなるにつれて、コマ部の径方向の位置精度や安定性を確保するために必要な位置決め面の嵌合長は大きくなる。また、コマ部の最大外径DMが大きいほど、コマ部を安定保持させるために必要な位置決め面の嵌合長が大きくなる。
 条件(2)は、コマ部を精度良く安定して保持させるための最小限の嵌合長Lを、コマ部の最大外径DMと位置決め面の傾き角θとの関係に基づいて求めたものである。この条件(2)を満たす嵌合長Lの最小値を嵌合長下限規格と呼ぶ。
 また、保持部とコマ部を構成する材質の熱膨張率についての条件を、次のように定める。コマ部を構成する材質の100℃~300℃の平均熱膨張係数をα1、保持部を構成する材質の100℃~300℃の平均熱膨張係数をα2としたとき、条件(3)及び条件(4)を満たすように構成する。
(3)α1=15×10-7/℃~100×10-7/℃
(4)α2=15×10-7/℃~100×10-7/℃
 条件(3)と条件(4)を満たすことにより、成形温度(ガラスプリフォームのガラス転移点以上)までの加熱や成形後の冷却などの温度変化に対応した、高精度且つ高耐久のガラスレンズ成形型を得ることができる。より好ましくは、コマ部の材質の平均熱膨張係数α1を30×10-7/℃~80×10-7/℃、保持部の材質の平均熱膨張係数α2を15×10-7/℃~60×10-7/℃の範囲に設定するとよい。
 本発明は、コマ部と保持部が同じ材質からなる場合と、コマ部と保持部が異なる材質からなる場合のいずれでも成立する。従って、条件(3)と条件(4)は、α1とα2の値が同じである場合と異なる場合の両方を含む。
 コマ部と保持部のそれぞれの材質の熱膨張係数を条件(3)及び条件(4)の範囲内にした上で、コマ部の材質と保持部の材質の関係が条件(5)又は条件(6)を満たすように構成する。条件(5)と条件(6)は、位置決め面の傾き角θに応じた択一的な関係になる。なお、条件(5)と条件(6)の前提として、上述した条件(1)を満たすものとする。
(5)θ=90°でのα1/α2=1.0~2.0
(6)60°≦θ<90°でのα1/α2=0.3~2.0
 条件(5)と条件(6)は、成形時に成形温度まで加熱したときのコマ部の保持精度に関係する。成形温度まで加熱すると、コマ部と保持部がそれぞれの材質の熱膨張率に応じて僅かに変形(膨張)する。上述のように、保持部に対してコマ部を接着などで固定しないことにより、コマ部と保持部の熱膨張率の違いを許容できる。そして、ある程度の範囲内でコマ部と保持部の熱膨張率を異ならせると、加熱によるコマ部と保持部の変形量の違いを利用して、保持部とコマ部をより強固に嵌合させることができる。
 例えば、コマ部の熱膨張率よりも保持部の熱膨張率を大きく設定すると、成形温度まで加熱したときに、保持部側の位置決め面(膨張率が相対的に大きい)がコマ部側の位置決め面に押し付けられる状態になる。逆に、保持部の熱膨張率よりもコマ部の熱膨張率を大きく設定すると、コマ部側の位置決め面(膨張率が相対的に大きい)が保持部側の位置決め面に押し付けられる状態になる。いずれの場合も、位置決め面の嵌合強度を高めて、保持部に対するコマ部の位置の安定性と精度を向上させる効果が得られる。
 位置決め面の傾き角θが90°で条件(5)を満たすと、コマ部よりも熱膨張率が大きい保持部側の位置決め面が、コマ部側の位置決め面を締め付けて保持性を高める効果が得られる。条件(6)は、コマ部よりも熱膨張率が大きい保持部側の位置決め面が、コマ部側の位置決め面を締め付けて保持性を高める場合と、保持部よりも熱膨張率が大きいコマ部の位置決め面が保持部側の位置決め面に押し付けられて保持性を高める場合の両方を含んでいる。なお、条件(5)と条件(6)はいずれも、コマ部の平均熱膨張係数α1と保持部の平均熱膨張係数α2が同じ(α1/α2=1.0)である場合を含んでおり、この場合は成形温度まで加熱したときにコマ部と保持部の変形(膨張)が同等になる。
 コマ部の熱膨張率と保持部の熱膨張率の差が大きすぎると、成形温度まで加熱した際に、熱膨張によるコマ部の位置決め面と保持部の位置決め面の相対的なずれが無視できない大きさになり、コマ部の位置精度に影響が及んでしまう。コマ部の位置精度を確保できる境界値として、条件(5)と条件(6)のそれぞれの上限値と下限値が設定される。
 従って、条件(5)又は条件(6)を満たすことにより、ガラスレンズの成形時におけるコマ部の偏心や傾きを抑える効果が得られる。より好ましい値として、位置決め面の傾き角θが90°の場合にα1/α2=1.0~1.5、位置決め面の傾き角θが60°≦θ<90°の場合にα1/α2=0.5~1.5の範囲に設定すると、さらに効果的である。
 また、コマ部を構成する材質のヤング率βについて、下記の条件(7)を満たすことが好ましい。
(7)β≧85GPa
 条件(7)は、コマ部の剛性に関係する。ガラスレンズ成形型によってガラスレンズを押圧成形する際に、コマ部に撓みが発生すると、成形面の形状が維持されず、被成形ガラス材に対する成形精度に影響を及ぼす。コマ部の材質のヤング率が85GPa以上であると、被成形ガラス材の成形時に所定の押圧力を加えても、負荷によるコマ部の撓みを防止でき、成形面の精度を損なわずに成形することができる。
 図1のガラスレンズ成形型1の位置決め面25、27と、図2のガラスレンズ成形型2の位置決め面43、46はいずれも、条件(1)及び(2)を満足している。また、ガラスレンズ成形型1における台座部13(保持部)とコマ部14、ガラスレンズ成形型2における台座部13(保持部)とコマ部40は、いずれも条件(3)及び(4)を満足する材質で構成されている。また、ガラスレンズ成形型1における台座部13とコマ部14は条件(6)を満たす材質からなり、ガラスレンズ成形型2における台座部13とコマ部40は条件(5)を満たす材質からなる。さらに、コマ部14、40はいずれも条件(7)を満足する材質からなる。これらの各条件を満たした場合と満たさない場合を含む実施例を、図5を参照して説明する。
<実施例>
 ガラスレンズ製造装置において、ガラスレンズ成形型を構成する下型と上型の各成形面の間に、被成形ガラス材であるガラスプリフォームを配置し、ヒーターにより成形温度まで加熱して、下型と上型を接近移動させてガラスプリフォームを所定の圧力でプレスしてガラスレンズを成形した結果を、図5に実施例として示す。この実施例では、台座とコマ部の材質を、候補材質A~Eから選択し、コマ部の最大外径(DM)、位置決め面の嵌合長(L)、位置決め面のテーパ角(θ)の値を適宜設定している。材質A~Eはいずれも、条件(3)及び条件(4)を満たすものである。コマ部の平均熱膨張係数(α1)と保持部の平均熱膨張係数(α2)の関係(α1/α2)は、選択した候補材質に基づいて算出される。
・材質A:炭化ケイ素(SiC)
 ヤング率(GPa):430
 平均熱膨張係数(100℃~300℃):37×10-7/℃
 比重:3.20g/cm
 
・材質B:炭化タングステン(WC)合金
 ヤング率(GPa):530
 平均熱膨張係数(100℃~300℃):47×10-7/℃
 比重:15.63g/cm
 
・材質C:窒化ケイ素(Si3N4)
 ヤング率(GPa):290
 平均熱膨張係数(100℃~300℃):24×10-7/℃
 比重:3.20g/cm
 
・材質D:ガラス
 ヤング率(GPa):95
 ガラス転移温度(Tg):691℃
 平均熱膨張係数(100℃~300℃):51×10-7/℃
 比重:2.59g/cm
 
・材質E:ガラス
 ヤング率(GPa):87
 ガラス転移温度(Tg):720℃
 平均熱膨張係数(100℃~300℃):32×10-7/℃
 比重:2.60g/cm
 図5に示す実施例では、材質A、D、Eから選択してコマ部を形成し、材質A、B、Cから選択して保持部を形成し、これらの材質について複数の組み合わせパターンでガラスレンズ成形型を構成した。図5の表中での位置決め面の傾き角(θ)60°は、上述したガラスレンズ成形型1の位置決め面25、27と同様の構成であり、図5の表中での位置決め面の傾き角(θ)90°は、上述したガラスレンズ成形型2の位置決め面43、46と同様の構成である。図5の表中に、ガラスレンズの成形において成形不良を生じずに良好な成形結果が得られた場合を「○」、成形不良が生じた場合を「×(Q1~Q10)」で示した。
 Q1の成形不良は、α1/α2=0.86が条件(5)の下限値(1.0)を下回ったことに起因しており、成形したガラスレンズに許容範囲を超える偏心が生じた。
 Q2の成形不良は、α1/α2=2.13が条件(5)の上限値(2.0)を上回ったことに起因しており、成形したガラスレンズに許容範囲を超える偏心が生じた。
 Q3とQ4の成形不良はいずれも、α1/α2=2.13が条件(6)の上限値(2.0)を上回ったことに起因しており、成形したガラスレンズに許容範囲を超える偏心が生じた。
 Q5~Q9の成形不良はいずれも、位置決め面の傾き角55°が条件(1)の下限値(60°)を下回ったことに起因しており、成形したガラスレンズに許容範囲を超える偏心が生じた。
 Q10の成形不良は、位置決め面の嵌合長1.5mmが、条件(2)の下限値(嵌合長下限規格である1.8mm)下回ったことに起因しており、成形したガラスレンズに許容範囲を超える偏心が生じた。
 図5の表から分かるように、以上のQ1~Q10での成形不良以外は、上述した各条件を満たすことによって良好なガラスレンズの成形結果が得られた。
 図1のガラスレンズ成形型1と図2のガラスレンズ成形型2は、下型11を台座部13とコマ部14、40とで構成した例である。本発明におけるコマ部と保持部の関係は、これに限定されるものではない。例えば、図3や図4に示すように、上型12のコマ部を保持する構成においても本発明は適用可能である。
 図3は、第3の形態のガラスレンズ成形型3を示している。ガラスレンズ成形型3における下型11(台座部13とコマ部14)は、上述した図1のガラスレンズ成形型1と共通の構成であり、説明を省略する。
 ガラスレンズ成形型3における胴型10の内部には、上端側から所定の範囲で上型案内面50が形成される。上型案内面50は、中心軸Zを中心とする円筒面(円筒の内面)である。胴型10の内部にはさらに、上型案内面50の下方に連続する位置決め面51が形成されている。位置決め面51は、中心軸Zを中心とする円錐面(円錐の内面)の一部であり、上方(上型案内面50側)から下方に進むにつれて径を小さくする(内径側への突出量を大きくする)すり鉢状の形状である。位置決め面51の下端は、胴型10内の下型案内面15で囲まれる空間に通じている。
 ガラスレンズ成形型3における上型12は、押圧部52とコマ部53の2部材によって構成されている。押圧部52は円筒状の外周面54を有し、外周面54の外径は、胴型10における上型案内面50の内径に対応している。押圧部52の下端面55は、中心軸Zに対して垂直な平面である。
 コマ部53の外面には、円筒状の外周面56と、外周面56の下方に続く位置決め面57が形成されている。外周面56の外径は、胴型10における上型案内面50の内径よりも僅かに小さい。位置決め面57は、中心軸Zを中心とする円錐面(円錐の外面)の一部であり、より詳しくは、位置決め面51と同一の(頂角が等しい)円錐面の一部である。コマ部53はさらに、位置決め面57に続く下端部分に凸面状の成形面58を有し、成形面58と反対の上端側に上端面59を有する。上端面59は中心軸Zに対して垂直な平面である。
 押圧部52は、外周面54を上型案内面50に摺接させて、胴型10に対して上下方向へ移動する。そして、外周面54が上型案内面50に囲まれることによって、径方向での押圧部52の位置が定まる。
 コマ部53は、外周面56を上型案内面50に摺接させて、胴型10に対して上下方向へ移動する。そして、図3のように位置決め面57が位置決め面51に嵌合することで、胴型10に対する径方向及び上下方向でのコマ部53の位置が定まる。外周面56と上型案内面50の間には僅かなクリアランスがあり、位置決め面51、57によるコマ部53の径方向の位置決めを妨げない。
 ガラスレンズ成形型3によってガラスレンズを成形する際には、下型11のコマ部14の成形面28上にガラスプリフォームを設置し、ガラスプリフォームが軟化する成形温度まで加熱した状態で、駆動手段6によって押圧部52の上端面を下方に押し込む。押圧部52の下端面55がコマ部53の上端面59に当て付いて、押圧部52と共にコマ部53が下方に移動する。
 押圧部52とコマ部53からなる上型12が駆動手段6によって押し切られると、上型12のコマ部53の成形面58と、下型11のコマ部14の成形面28とで挟圧されたガラスプリフォームが変形してガラスレンズが成形される。このとき、円錐状の位置決め面57が円錐状の位置決め面51に嵌合して、胴型10に対するコマ部53の位置が定まる。従って、上下のコマ部14、53がそれぞれ調芯された状態でガラスレンズのプレス加工を行うことができる。
 ガラスレンズ成形型3では、胴型10を上述の「保持部」、上型12のコマ部53を上述の「コマ部」として、上述した各条件を満たすことによって、下型11の台座部13とコマ部14の場合と同様の効果(保持部に対してコマ部を簡単且つ確実に精度良く位置させることができるという効果)を得ることができる。
 図3に示す位置決め面51、57は、中心軸Zに対する傾き角θが60°であり、上記の条件(1)を満たしている。また、コマ部53の最大外径DM(外周面56の外径)と、位置決め面51、57の嵌合長Lは、上記の条件(2)を満たす関係にある。さらに、胴型10の材質とコマ部53の材質は、上記の条件(3)~(7)に合致するように選択される。
 図4は、第4の形態のガラスレンズ成形型4を示している。ガラスレンズ成形型4における下型11(台座部13とコマ部40)は、上述した図2のガラスレンズ成形型2と共通の構成であり、説明を省略する。
 ガラスレンズ成形型4における胴型10の内部には、上端側から所定の範囲で上型案内面60が形成される。上型案内面60は、中心軸Zを中心とする円筒面(円筒の内面)である。胴型10の内部にはさらに、上型案内面60の下方に連続する位置決め面61が形成されている。位置決め面61は中心軸Zを中心とする円筒面(円筒の内面)であり、位置決め面61の内径は上型案内面60の内径よりも小さい。位置決め面61の下端は、胴型10内の下型案内面15で囲まれる空間に通じている。
 ガラスレンズ成形型4における上型12は、押圧部62とコマ部63の2部材によって構成されている。押圧部62は円筒状の外周面64を有し、外周面64の外径は、胴型10における上型案内面60の内径に対応している。押圧部62の下端面65は、中心軸Zに対して垂直な平面である。
 コマ部63には、外径側に突出するフランジ66と、フランジ66の下方に続く位置決め面67が形成されている。フランジ66の外径は、胴型10における上型案内面60の内径よりも僅かに小さい。位置決め面67は、中心軸Zを中心とする円筒面(円筒の外面)であり、位置決め面67の外径が位置決め面61の内径に対応している。コマ部はさらに、位置決め面67に続く下端部分に凸面状の成形面68を有し、成形面68と反対の上端側に上端面69を有する。上端面69は中心軸Zに対して垂直な平面である。
 押圧部62は、外周面64を上型案内面60に摺接させて、胴型10に対して上下方向へ移動する。そして、外周面64が上型案内面60に囲まれることによって、径方向での押圧部62の位置が定まる。
 コマ部63は、フランジ66を上型案内面60に摺接させて、胴型10に対して上下方向へ移動する。そして、図4のように位置決め面67が位置決め面61に嵌合することで、胴型10に対する径方向でのコマ部63の位置が定まる。フランジ66と上型案内面60の間には僅かなクリアランスがあり、位置決め面61、67によるコマ部63の径方向の位置決めを妨げない。
 ガラスレンズ成形型4によってガラスレンズを成形する際には、下型11のコマ部40の成形面47上にガラスプリフォームを設置し、ガラスプリフォームが軟化する成形温度まで加熱した状態で、駆動手段6によって押圧部62の上端面を下方に押し込む。押圧部62の下端面65がコマ部63の上端面69に当て付いて、押圧部62と共にコマ部63が下方に移動する。
 押圧部62とコマ部63からなる上型12が駆動手段6によって押し切られると、上型12のコマ部63の成形面68と、下型11のコマ部40の成形面47とで挟圧されたガラスプリフォームが変形してガラスレンズが成形される。このとき、円筒状の位置決め面67が円筒状の位置決め面61に嵌合して、胴型10に対するコマ部63の位置が定まる。従って、上下のコマ部14、63がそれぞれ調芯された状態でガラスレンズのプレス加工を行うことができる。なお、図4に示すプレス加工完了状態では、コマ部63のフランジ66と、胴型10内の上型案内面60と位置決め面61の間の段差部との間にはクリアランスがある。
 ガラスレンズ成形型4では、胴型10を上述の「保持部」、上型12のコマ部63を上述の「コマ部」として、上述した各条件を満たすことによって、下型11の台座部13とコマ部40の場合と同様の効果(保持部に対してコマ部を簡単且つ確実に精度良く位置させることができるという効果)を得ることができる。
 図4に示す位置決め面61、67は、中心軸Zに対する傾き角θが90°であり、上記の条件(1)を満たしている。また、コマ部63の最大外径DM(位置決め面67の外径)と、位置決め面61、67の嵌合長Lは、上記の条件(2)を満たす関係にある。さらに、胴型10の材質とコマ部63の材質は、上記の条件(3)~(7)に合致するように選択される。
 以上のように、本発明を適用した実施形態のガラスレンズ成形型によれば、保持部(下型11における台座部13、あるいは胴型10)に対してコマ部(下型11のコマ部14、40、あるいは上型12のコマ部53、63)を簡単且つ確実に精度良く位置させることができ、成形温度に加熱してガラスレンズを成形する際に、成形不良が生じにくく高精度な成形を実現できる。なお、本発明は上記実施形態に限定されるものではなく、発明の要旨内において様々な変更を行うことが可能である。
 例えば、図1のガラスレンズ成形型1と図3のガラスレンズ成形型3は、各コマ部14、53の位置を定める位置決め面の傾き角θを、中心軸Zと垂直な方向に対して60°に設定し、図2のガラスレンズ成形型2と図4のガラスレンズ成形型4は、各コマ部40、63の位置を定める位置決め面の傾き角θを、中心軸Zと垂直な方向に対して90°に設定しているが、位置決め面の傾き角は、上記条件(1)の範囲内で任意の角度に設定することができる。例えば、図5の実施例中に含まれる75°のような角度や、それ以外の角度を選択してもよい。
 図5の実施例では、保持部の材質として、炭化ケイ素(材質A)や窒化ケイ素(材質C)のようなセラミックス、炭化タングステン合金(材質B)のような超硬合金を選択しているが、保持部の材質としてガラスなどを選択することも可能である。
 本発明によれば、ガラスレンズ成形型による成形加工時に、保持部に対してコマ部を簡単且つ確実に精度良く位置させることができ、特に多数のガラスレンズを効率良く製造することが求められるガラスレンズ成形型に有用である。
1~4  :ガラスレンズ成形型
10 :胴型(保持部)
11 :下型
12 :上型
13 :台座部(保持部)
14 :コマ部
24 :コマ収容部
25 :位置決め面
27 :位置決め面
28 :成形面
38 :成形面
40 :コマ部
41 :コマ収容部
43 :位置決め面
44 :吸引用空間
46 :位置決め面
47 :成形面
51 :位置決め面
52 :押圧部
53 :コマ部
57 :位置決め面
58 :成形面
61 :位置決め面
62 :押圧部
63 :コマ部
67 :位置決め面
68 :成形面

Claims (5)

  1.  ガラスレンズのレンズ面を形成する成形面を有するコマ部と、前記コマ部を位置決めして保持する保持部とを備え、被成形ガラス材を型移動方向に押圧して前記ガラスレンズを成形するガラスレンズ成形型において、
     前記保持部と前記コマ部は、前記ガラスレンズの素材である被成形ガラス材の成形温度で嵌合して前記保持部に対する前記コマ部の位置を定める位置決め面を有し、
     前記コマ部と前記保持部の中心を通り前記型移動方向に向く中心軸を含む平面内での、前記型移動方向と垂直な方向に対する前記位置決め面の傾き角をθ、前記位置決め面が接する嵌合長をL、前記コマ部の最大外径をDMとしたとき、下記条件(1)及び(2)を満たすことを特徴とするガラスレンズ成形型。
    (1)60°≦θ≦90°
    (2)L≧DM(90-θ/180) 但し、L>0
  2.  ガラスレンズのレンズ面を形成する成形面を有するコマ部と、前記コマ部を位置決めして保持する保持部とを備え、被成形ガラス材を型移動方向に押圧して前記ガラスレンズを成形するガラスレンズ成形型において、
     前記保持部と前記コマ部は、前記ガラスレンズの素材である被成形ガラス材の成形温度で嵌合して前記保持部に対する前記コマ部の位置を定める位置決め面を有し、
     前記型移動方向と垂直な方向に対する前記位置決め面の傾き角をθ、前記コマ部の材質の100℃~300℃での平均熱膨張係数をα1、前記保持部の材質の100℃~300℃での平均熱膨張係数をα2としたとき、下記条件(1)、(3)及び(4)の全てと、下記条件(5)又は(6)とを満たすことを特徴とするガラスレンズ成形型。
    (1)60°≦θ≦90°
    (3)α1=15×10-7/℃~100×10-7/℃
    (4)α2=15×10-7/℃~100×10-7/℃
    (5)θ=90°でのα1/α2=1.0~2.0
    (6)60°≦θ<90°でのα1/α2=0.3~2.0
  3.  前記コマ部の材質のヤング率が85GPa以上である、請求の範囲第1項又は第2項に記載のガラスレンズ成形型。
  4.  胴型と、前記胴型に対して前記型移動方向に移動可能な下型及び上型とを備え、
     前記下型は、前記胴型の内部に前記型移動方向に移動可能に支持される台座部と、前記台座部に対して前記位置決め面を介して保持される前記コマ部とを備え、
     前記台座部が前記保持部である請求の範囲第1項又は第2項に記載のガラスレンズ成形型。
  5.  胴型と、前記胴型に対して前記型移動方向に移動可能な下型及び上型とを備え、
     前記上型は、前記胴型の内部に前記型移動方向に移動可能に支持される前記コマ部と、前記コマ部の上方に位置して前記コマ部に下方への押圧力を伝達する押圧部とを備え、
     前記胴型が前記保持部であり、前記胴型に対して前記位置決め面を介して前記コマ部が保持される請求の範囲第1項又は第2項に記載のガラスレンズ成形型。
PCT/JP2020/026121 2019-07-05 2020-07-03 ガラスレンズ成形型 WO2021006194A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080039871.8A CN113891862B (zh) 2019-07-05 2020-07-03 玻璃透镜成型模具
CN202410124775.3A CN117964216A (zh) 2019-07-05 2020-07-03 玻璃透镜成型模具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-125998 2019-07-05
JP2019125998A JP7407528B2 (ja) 2019-07-05 2019-07-05 ガラスレンズ成形型

Publications (1)

Publication Number Publication Date
WO2021006194A1 true WO2021006194A1 (ja) 2021-01-14

Family

ID=74114183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026121 WO2021006194A1 (ja) 2019-07-05 2020-07-03 ガラスレンズ成形型

Country Status (3)

Country Link
JP (1) JP7407528B2 (ja)
CN (2) CN117964216A (ja)
WO (1) WO2021006194A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026430A (ja) * 2001-07-11 2003-01-29 Matsushita Electric Ind Co Ltd 高精度なプリズム成形用型とその製造方法、及び高精度なプリズムの製造方法
JP2003026429A (ja) * 2001-07-11 2003-01-29 Matsushita Electric Ind Co Ltd ガラス成形金型およびその製造方法
JP2004210550A (ja) * 2002-12-26 2004-07-29 Canon Inc モールド成形金型
JP2004359481A (ja) * 2003-06-03 2004-12-24 Minolta Co Ltd レンズ成形用レプリカ型の製造方法
JP2006143483A (ja) * 2004-11-16 2006-06-08 Hoya Corp モールドプレス成形型及びその製造方法、並びに光学素子の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886022B2 (ja) * 1997-07-30 2007-02-28 Hoya株式会社 ガラス成形体の製造方法及び装置
JP2001348232A (ja) * 2000-06-05 2001-12-18 Canon Inc ガラス成形品、光学素子、複数の光学素子を同時に成形する成形方法、及び、成形用金型駒部材の位置出し方法、並びに、ガラスレンズの成形装置
JP2004115296A (ja) * 2002-09-25 2004-04-15 Canon Inc 光学素子の成形装置
JP2006273661A (ja) * 2005-03-29 2006-10-12 Olympus Imaging Corp ガラス成形装置、ガラス素材保持治具およびガラス成形方法
JP2007131501A (ja) * 2005-11-14 2007-05-31 Asahi Glass Co Ltd 光学素子の成型方法及び成型装置
JP2009040642A (ja) * 2007-08-10 2009-02-26 Canon Inc 光学素子及びその製造方法
JP5269477B2 (ja) * 2008-05-23 2013-08-21 オリンパス株式会社 光学素子の製造方法、光学素子の製造装置、及び光学素子
CN202785961U (zh) * 2012-08-08 2013-03-13 豪雅光电科技(苏州)有限公司 模压成形模
JP6688630B2 (ja) * 2016-02-24 2020-04-28 Hoya株式会社 プレス成形型、及び、光学素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026430A (ja) * 2001-07-11 2003-01-29 Matsushita Electric Ind Co Ltd 高精度なプリズム成形用型とその製造方法、及び高精度なプリズムの製造方法
JP2003026429A (ja) * 2001-07-11 2003-01-29 Matsushita Electric Ind Co Ltd ガラス成形金型およびその製造方法
JP2004210550A (ja) * 2002-12-26 2004-07-29 Canon Inc モールド成形金型
JP2004359481A (ja) * 2003-06-03 2004-12-24 Minolta Co Ltd レンズ成形用レプリカ型の製造方法
JP2006143483A (ja) * 2004-11-16 2006-06-08 Hoya Corp モールドプレス成形型及びその製造方法、並びに光学素子の製造方法

Also Published As

Publication number Publication date
CN113891862B (zh) 2024-02-13
JP2021011402A (ja) 2021-02-04
CN113891862A (zh) 2022-01-04
JP7407528B2 (ja) 2024-01-04
CN117964216A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
JP5317962B2 (ja) ガラス成形体の製造方法およびモールドプレス成形装置
WO2021006194A1 (ja) ガラスレンズ成形型
CN112218832B (zh) 玻璃透镜成型模具
JP4549820B2 (ja) モールドプレス成形型及びその製造方法、並びに光学素子の製造方法
JP7286836B2 (ja) ガラスレンズ成形型
JP3618983B2 (ja) 光学素子の成形方法及びその装置
JP5112120B2 (ja) 光学素子の製造方法とその製造用金型組立体
JP4668657B2 (ja) モールドプレス成形装置、及び成形体の製造方法
JPH07330347A (ja) 光学素子成形方法
JP5059540B2 (ja) 光学素子の成形装置
JP5269477B2 (ja) 光学素子の製造方法、光学素子の製造装置、及び光学素子
JP4792140B2 (ja) モールドプレス成形型及び光学素子の製造方法
JP4118668B2 (ja) プレス成形用成形装置及びそれを用いた成形体の製造方法
JP4686928B2 (ja) プレス成形装置
JPH11157853A (ja) 光学素子の成形方法および成形型
JP4490761B2 (ja) モールドプレス成形型、及び光学素子の製造方法
JP4708958B2 (ja) 光学素子の成形用型
JP4508501B2 (ja) 光学ガラス素子の成形型
JP4686932B2 (ja) プレス成形装置
JP4373278B2 (ja) 光学素子の成形方法
JP2006219316A (ja) 光学素子の製造方法及び装置
JP3209722B2 (ja) 光学素子の成形方法及び光学素子
JPS6340733A (ja) 多機能キヤリア付光学素子
JP5505051B2 (ja) ガラスレンズの製造方法
JP2007297229A (ja) 光学素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837808

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837808

Country of ref document: EP

Kind code of ref document: A1