WO2020251055A1 - 電気化学デバイス用被圧縮部材 - Google Patents

電気化学デバイス用被圧縮部材 Download PDF

Info

Publication number
WO2020251055A1
WO2020251055A1 PCT/JP2020/023415 JP2020023415W WO2020251055A1 WO 2020251055 A1 WO2020251055 A1 WO 2020251055A1 JP 2020023415 W JP2020023415 W JP 2020023415W WO 2020251055 A1 WO2020251055 A1 WO 2020251055A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine
fluorinated
compressed
electrochemical device
Prior art date
Application number
PCT/JP2020/023415
Other languages
English (en)
French (fr)
Inventor
祐輔 神谷
喬大 古谷
竹村 光平
陸 山口
啓介 塩見
正樹 入江
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US17/596,480 priority Critical patent/US20220306781A1/en
Priority to JP2021526178A priority patent/JP7323822B2/ja
Priority to EP20823135.7A priority patent/EP3985038A4/en
Priority to CN202080041708.5A priority patent/CN113924340A/zh
Priority to KR1020217039152A priority patent/KR20220003590A/ko
Publication of WO2020251055A1 publication Critical patent/WO2020251055A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/222Vinylidene fluoride with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/184Monomers containing fluorine with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a member to be compressed for an electrochemical device.
  • Patent Document 1 a battery case having a through hole, a gasket which is overlapped so as to face the case and has a through hole, and the through hole of the case and the through hole of the gasket are penetrated from the inside of the case.
  • a sealed battery with a rivet provided in is described.
  • This gasket is made of fluororubber (for example, fluororubber such as tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride (FKM), tetrafluoroethylene-propylene (FEPM), etc.), ethylene- It can be an insulating elastic member such as propylene rubber (EPM), ethylene-propylene-diene copolymer rubber (EPDM), or butyl rubber.
  • fluororubber for example, fluororubber such as tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride (FKM), tetrafluoroethylene-propylene (FEPM), etc.
  • ethylene- It can be an insulating elastic member such as propylene rubber (EPM), ethylene-propylene-diene copolymer rubber (EPDM), or butyl rubber.
  • An object of the present disclosure is to provide a member to be compressed for an electrochemical device, which is excellent in compression set and electrolytic solution resistance, and also exhibits good releasability at the time of molding.
  • CX 1 2 CF-Rf 1- X 2
  • X 1 independently represents H or F
  • Rf 1 represents a fluorinated alkylene group or a fluorinated oxyalkylene group
  • X 2 represents I or Br.
  • each group has 2 or more carbon atoms.
  • Each group may have an oxygen atom between two carbon atoms, may have an aromatic ring, and may be linear or branched.
  • X 3 is independently H, F, an alkyl group or a fluorinated alkyl group
  • Z 1 is an alkylene group, a fluorinated alkylene group, a cycloalkylene group, a fluorinated cycloalkylene group, an oxyalkylene group, or , Fluorinated oxyalkylene group.
  • each group may have an oxygen atom between two carbon atoms and has an aromatic ring. Also, it may be linear or branched.
  • a member to be compressed for an electrochemical device obtained by cross-linking a cross-linking composition containing a fluorine-containing elastomer.
  • CF 2 CF (OCF 2 CF (CF 3 )) n (OCF 2 CF 2 CH 2 ) m I (In the formula, n represents an integer of 0 to 3 and m represents an integer of 1 to 5), which is preferably a crosslinkable group-containing monomer.
  • the fluorine-containing elastomer further contains tetrafluoroethylene units, and the content of the tetrafluoroethylene units in the fluorine-containing elastomer is 15 to 60 mol% with respect to all the monomer units. It is preferable that the fluorine-containing elastomer further contains vinylidene fluoride units, and the content of vinylidene fluoride units in the fluorine-containing elastomer is 35 to 70 mol% with respect to all the monomer units. It is preferable that the crosslinkable composition further contains a fluorine-containing elastomer that does not contain a unit based on the crosslinkable group-containing monomer. It is preferable that the crosslinkable composition further contains a peroxide crosslinking agent.
  • the member to be compressed for an electrochemical device of the present disclosure can be suitably used as a member to be compressed for a non-aqueous electrolyte secondary battery.
  • the member to be compressed for an electrochemical device of the present disclosure can be suitably used as a sealing member or an insulating member.
  • a member to be compressed for an electrochemical device which is excellent in compression set and electrolytic solution resistance, and also exhibits good releasability at the time of molding.
  • the member to be compressed for an electrochemical device of the present disclosure is a member used by being compressed and deformed.
  • the present inventors have found that a member to be compressed formed of a fluoroelastomer containing a unit based on a specific crosslinkable group-containing monomer has excellent compression set and electrolytic solution resistance, and also has good mold releasability during molding.
  • it is suitable as a member to be compressed for an electrochemical device, and have completed the member to be compressed for an electrochemical device of the present disclosure.
  • excellent compression set means that the compression set (%) of the member to be compressed for an electrochemical device is small.
  • the member to be compressed for an electrochemical device of the present disclosure is obtained by cross-linking a cross-linkable composition containing a fluorine-containing elastomer, and the fluorine-containing elastomer is a cross-linkable group-containing monomer (1) and a cross-linkable group-containing monomer (2).
  • a crosslinkable group-containing monomer unit a unit based on at least one crosslinkable group-containing monomer selected from the group consisting of (in the present disclosure, it may be simply referred to as a “crosslinkable group-containing monomer unit”).
  • the fluorine-containing elastomer used in the present disclosure is an amorphous fluoropolymer.
  • “Amorphous” means a melting peak ( ⁇ H) that appears in differential scanning calorimetry [DSC] (difference heating rate 10 ° C./min) or differential thermal analysis [DTA] (heating rate 10 ° C./min) of a fluoropolymer. ) Is 4.5 J / g or less.
  • Fluorine-containing elastomers exhibit elastomeric properties by cross-linking. Elastomer properties mean properties that allow the polymer to be stretched and retain its original length when the forces required to stretch the polymer are no longer applied.
  • X 1 is independently H or F.
  • X 1 is preferably F because it is more excellent in compression set, electrolytic solution resistance, and mold releasability of the member to be compressed for an electrochemical device.
  • Rf 1 is a fluorinated alkylene group or a fluorinated oxyalkylene group.
  • the fluorinated alkylene group or the fluorinated oxyalkylene group may contain an oxygen atom between the two carbon atoms. .. Further, the fluorinated alkylene group or the fluorinated oxyalkylene group may have an aromatic ring.
  • the fluorinated alkylene group or the fluorinated oxyalkylene group may be linear or branched as long as a part or all of H bonded to the carbon atom is substituted with F.
  • the carbon number of Rf 1 is preferably 1 to 40, more preferably 1 to 30, still more preferably 2 to 24, particularly preferably 3 to 12, and most preferably 3 to 9. ..
  • Rf 1 a fluorinated oxyalkylene group is preferable, ⁇ (ORf 2 ) p ⁇ (in the formula, Rf 2 is a linear or branched alkylene group having 1 to 4 carbon atoms, and p is 1 to 10 Fluorinated oxyalkylene group represented by) is more preferable.
  • Examples of the crosslinkable group-containing monomer (1) include a monomer represented by the following general formula. These can be used alone or in combination, respectively.
  • CX 1 2 CF-Rf 3- CHR 1- X 2 (Wherein, as X 1 and X 2 are described above, Rf 3 is a fluorinated alkylene group or a fluorinated oxyalkylene group, R 1 represents H or CH 3)
  • CX 1 2 CF- (CF 2 ) n- X 2 (In the equation, X 1 and X 2 represent integers 1 to 8 as described above)
  • CX 1 2 CF-CF 2 Rf 4- X 2 (In the formula, X 1 and X 2 are as described above, Rf 4 is ⁇ (OCF 2 ) n ⁇ or ⁇ (OCF (CF 3 )) n ⁇ , n represents an integer of 0 to 5)
  • CF 2 CFCF 2 (OCF (CF 3 ) CF 2 ) m (OCH 2
  • the fluorinated alkylene group or the fluorinated oxyalkylene group of Rf 3 has 2 or more carbon atoms
  • the fluorinated alkylene group or the fluorinated oxyalkylene group contains an oxygen atom between the two carbon atoms. You may. Further, the fluorinated alkylene group or the fluorinated oxyalkylene group may have an aromatic ring.
  • the fluorinated alkylene group or the fluorinated oxyalkylene group may be linear or branched as long as a part or all of H bonded to the carbon atom is substituted with F.
  • a fluorinated oxyalkylene group is preferable, and a fluorinated oxyalkylene group represented by ⁇ (ORf 2 ) p ⁇ (in the formula, Rf 2 and p are as described above) is more preferable.
  • CF 2 CF-OCF 2 CF 2 CH 2 I
  • CF 2 CF- (OCF 2 CF 2 CH 2 ) 2 I
  • CF 2 CF-( OCF 2 CF 2 CH 2 ) 3 I
  • CF 2 CF-OCF 2 CF (CF 3 ) -OCF 2 CF 2 CH 2 I
  • CF 2 CF- (OCF 2 CF (CF 3 )) 2- OCF
  • X 3 are independently H, F, an alkyl group or a fluorinated alkyl group.
  • the alkyl group or the fluorinated alkyl group may contain an oxygen atom between the two carbon atoms.
  • the alkyl group or the fluorinated alkyl group may have an aromatic ring.
  • the alkyl group or the fluorinated alkyl group may be linear or branched chain.
  • H compression set of the electrochemical device for the compressed member, electrolyte resistance, since the further releasability at the time of molding is excellent further, H, F, an alkyl group or a C 1 to 5 carbon atoms Alkyl fluorinated groups of numbers 1 to 5 are preferred, H, F, CH 3 or CF 3 are more preferred, H or F is even more preferred, and H is particularly preferred.
  • Z 1 is an alkylene group, a fluorinated alkylene group, a cycloalkylene group, a fluorinated cycloalkylene group, an oxyalkylene group, or a fluorinated oxyalkylene group.
  • these groups may contain an oxygen atom between the two carbon atoms.
  • these groups may have an aromatic ring.
  • These groups may be linear or branched chain.
  • a fluoroalkylene group is preferable, and a fluoropolyoxyalkylene group is more preferable.
  • a fluoropolyoxyalkylene group - (Q) p -CF 2 O- (CF 2 CF 2 O) m - (CF 2 O) n -CF 2 - (Q) p - (In the formula, Q is an alkylene group having 1 to 10 carbon atoms or an oxyalkylene group having 2 to 10 carbon atoms, p is 0 or 1, and m and n have an m / n ratio of 0.2 to 5.
  • the group represented by the above formula is preferably an integer in which the molecular weight of the fluoropolyoxyalkylene group is in the range of 500 to 10000, preferably 1000 to 4000).
  • Z 1 -(CF 2 ) a- (OCF (Z a ) CF 2 ) b -O- (CF 2 ) c- (OCF (Z a ) CF 2 ) d- (O) e- (CF (A)) f-
  • a is an integer of 0 to 2
  • b is an integer of 0 to 2
  • c is an integer of 0 to 8
  • d is an integer of 0 to 2
  • e is an integer of 0 or 1
  • f is an integer of 0 to 6.
  • Z a is independently, F or CF 3
  • a may also be a group represented by F or a perfluoroalkyl group).
  • the general formula (4) is particularly excellent because it is more excellent in compressive permanent strain, electrolytic solution resistance, and mold releasability of the member to be compressed for an electrochemical device.
  • at least one selected from the group consisting of the crosslinkable group-containing monomer represented by the general formula (5) is more preferable, and the crosslinkable group-containing monomer represented by the general formula (4) is further preferable,
  • the fluorine-containing elastomer preferably contains a fluorinated monomer unit (excluding the crosslinkable group-containing monomer unit represented by the general formulas (1) and (2)) in addition to the crosslinkable group-containing monomer unit. ..
  • CX 5 X 6 CX 7 X 8
  • X 8 contains an H, a halogen atom, a carboxyl group, and when the number of carbon atoms is 2 or more, an oxygen atom is contained between the two carbon atoms.
  • fluorinated monomers at least one of X 5 ⁇ X 8 is F, represented by a is) fluorinated alkyl groups or fluorinated alkoxy groups Can be mentioned.
  • fluorinated monomer examples include hexafluoropropylene (HFP), vinylidene fluoride (VdF), tetrafluoroethylene (TFE), trifluoroethylene, pentafluoropropylene, vinyl fluoride, hexafluoroisobutene and chlorotrifluoroethylene (CTFE).
  • CTFE chlorotrifluoroethylene
  • Trifluoropropylene, pentafluoropropylene, tetrafluoropropylene, hexafluoroisobutene, vinyl fluoride, etc. but vinylidene fluoride (VdF), hexafluoropropylene (HFP), tetra, etc. from the viewpoint that an elastomer composition can be easily obtained.
  • Fluoroethylene (TFE) trifluoroethylene, pentafluoropropylene, vinyl fluoride and hexafluoroisobutene are preferred.
  • the fluorinated elastomer may contain a functional group-containing fluorinated monomer unit different from the crosslinkable group-containing monomer unit represented by the general formulas (1) and (2) as the fluorinated monomer unit.
  • the fluorinated elastomer may contain non-fluorinated monomer units.
  • the non-fluorinated monomer include ⁇ -olefin monomers having 2 to 10 carbon atoms such as ethylene, propylene, butene, and pentene.
  • Fluorine-containing elastomers are more excellent in compression set, electrolytic solution resistance, and mold releasability during molding of members to be compressed for electrochemical devices, and therefore are crosslinked by the general formulas (1) and (2). It is preferable to further contain TFE units in addition to the sex group-containing monomer units.
  • the content of TFE in the fluorine-containing elastomer is preferably 15 to 60 mol%, more preferably 17 mol% or more, still more preferably 19 mol% or more, and more preferably 19 mol% or more, based on all the monomer units. It is preferably 58 mol% or less, and more preferably 56 mol% or less.
  • Fluorine-containing elastomers are more excellent in compression set, electrolytic solution resistance, and mold releasability during molding of members to be compressed for electrochemical devices, and therefore are crosslinked by the general formulas (1) and (2).
  • the content of VdF units in the fluorine-containing elastomer is preferably 35 to 70 mol%, more preferably 45 mol% or more, and 60 mol% or less, based on all the monomer units.
  • the fluoroelastomer is further excellent in compression set, electrolytic solution resistance, and mold releasability during molding of the member to be compressed for an electrochemical device, and therefore is crosslinked by the general formulas (1) and (2).
  • it is preferable to further contain HFP units and it is more preferable to further contain at least one selected from the group consisting of TFE units and HFP units, and it is more preferable to further contain TFE units, VdF units and HFP. It is more preferable to further contain at least one selected from the group consisting of units.
  • fluorine-containing elastomer examples include VdF / HFP / crosslinkable group-containing monomer copolymer, VdF / HFP / TFE / crosslinkable group-containing monomer copolymer, VdF / CTFE / crosslinkable group-containing monomer copolymer, and VdF / CTFE.
  • / TFE / crosslinkable group-containing monomer copolymer examples of the fluorine-containing elastomer
  • VdF / TFE / Pr / crosslinkable group-containing monomer copolymer VdF / Et / HFP / crosslinkable group-containing monomer copolymer and the like can be mentioned.
  • a VdF / HFP / TFE / crosslinkable group-containing monomer copolymer is particularly preferable.
  • the fluorine-containing elastomer is a VdF / HFP / crosslinkable group-containing monomer copolymer
  • the molar ratio of VdF / HFP is preferably (45 to 85) / (55 to 15) (mol%), and more. It is preferably (50 to 80) / (50 to 20) (mol%), and more preferably (60 to 80) / (40 to 20) (mol%).
  • the fluoroelastomer is a VdF / HFP / TFE / crosslinkable group-containing monomer copolymer
  • the molar ratio of VdF / HFP / TFE is preferably (25 to 80) / (10 to 40) / (10 to 10 to). 35) (mol%), more preferably (31-74) / (13-37) / (13-32) (mol%), still more preferably (37-68) / (16-34) / (16- 29) (mol%).
  • the fluorine-containing elastomer includes TFE / propylene / crosslinkable group-containing monomer copolymer, TFE / propylene / VdF / crosslinkable group-containing monomer copolymer, and ethylene / HFP / crosslinkable group-containing monomer.
  • examples include a polymer, an ethylene / HFP / VdF / crosslinkable group-containing monomer copolymer, and an ethylene / HFP / TFE / crosslinkable group-containing monomer copolymer.
  • the content of the crosslinkable group-containing monomer unit represented by the general formulas (1) and (2) in the fluorine-containing elastomer is the total content of the fluorinated monomer unit and the non-fluorinated monomer unit (however, the general formula (however, the general formula ( It is preferably 0.001 to 5 mol%, more preferably 0.01 to 3 mol%, based on the content of the crosslinkable group-containing monomer unit represented by 1) and (2). , More preferably 0.03 to 1 mol%, and particularly preferably 0.05 to 0.5 mol%.
  • the content of the crosslinkable group-containing monomer unit represented by the general formula (1) in the fluorine-containing elastomer the total content of iodine atoms or bromine atoms in the fluorine-containing elastomer is within the range described later.
  • the content may be such.
  • the monomer composition of the fluorine-containing elastomer can be measured by 19 F-NMR.
  • the fluorine content of the fluorine-containing elastomer is preferably 67% by mass or more, more preferably 68% by mass or more, and further preferably 69% by mass or more because it is excellent in electrolytic solution resistance.
  • the fluorine content can be calculated based on the monomer composition of the fluorine-containing elastomer.
  • the fluorine-containing elastomer may be obtained by using a chain transfer agent at the time of polymerization.
  • a bromine compound or an iodine compound may be used as the chain transfer agent.
  • a bromine compound or an iodine compound as a chain transfer agent, in addition to the iodine atom or bromine atom derived from the crosslinkable group-containing monomer represented by the general formula (1), the iodine atom or bromine derived from the chain transfer agent Atomic atoms are introduced into the main chain end and side chain end of the polymer, and the distance between the cross-linking points can be made uniform.
  • the fluorine-containing elastomer preferably has an iodine atom or a bromine atom at one or both of the main chain end and the side chain end of the polymer. Further, the fluorine-containing elastomer is preferably obtained by a polymerization method using a bromine compound or an iodine compound as a chain transfer agent.
  • Examples of the polymerization method using a bromine compound or an iodine compound include a method of performing emulsion polymerization in an aqueous medium under pressure in the presence of a bromine compound or an iodine compound in a substantially anoxic state.
  • Iodine transfer polymerization method Typical examples of the bromine compound or iodine compound used include, for example, the general formula: R 2 I x Br y (In the formula, x and y are integers of 0 to 2, respectively, and satisfy 1 ⁇ x + y ⁇ 2, and R 2 is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms or chlorofluoro.
  • Examples thereof include a compound represented by a hydrocarbon group, or a hydrocarbon group having 1 to 3 carbon atoms, which may contain an oxygen atom).
  • a bromine compound or an iodine compound an iodine atom or a bromine atom is introduced into the polymer and functions as a cross-linking point.
  • the total content of iodine atoms and bromine atoms of the fluorine-containing elastomer is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.1% by mass or more. , It is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the bond positions of the iodine atom and the bromine atom in the fluorine-containing elastomer may be the end of the main chain or the end of the side chain of the fluorine-containing elastomer, or both.
  • the total content of iodine atom and bromine atom is represented by the content of iodine atom and bromine atom introduced into the polymer by the bromine compound used as the chain transfer agent or the iodine compound, and the general formula (1). Includes the content of iodine and bromine atoms introduced into the polymer by polymerizing the crosslinkable group-containing monomer.
  • the total content of iodine and bromine atoms is 12 mg of fluorine-containing elastomer mixed with 5 mg of Na 2 SO 3, and 20 ml of pure water mixed with Na 2 CO 3 and K 2 CO 3 in a ratio of 1: 1 (weight ratio).
  • a KI standard solution and a KBr standard solution one containing 0.5 ppm of iodine ions and bromine ions, and one containing 1.0 ppm can be used.
  • Examples of the iodine compound and the bromine compound include 1,3-diiodoperfluoropropane, 2-iodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, and 1 , 5-Diode-2,4-dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodine perfluoro hexadecane, diiodomethane, 1,2-diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFC
  • 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 2-iodoperfluoropropane are used from the viewpoints of polymerization reactivity, cross-linking reactivity, availability, and the like. Is preferable.
  • the glass transition temperature of the fluorine-containing elastomer is preferably ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, and further preferably ⁇ 50 ° C. or higher, because it is excellent in compression set at high temperatures. Further, since the cold resistance is good, it is preferably 5 ° C. or lower, more preferably 0 ° C. or lower, and further preferably -3 ° C. or lower.
  • a DSC curve is obtained by raising the temperature of 10 mg of the sample at 20 ° C./min using a differential scanning calorimeter (DSC822e manufactured by METTLER TOLEDO or X-DSC823e manufactured by Hitachi Technoscience). Therefore, it can be obtained as a temperature indicating the intersection of the extension of the baseline before and after the quadratic transition of the DSC curve and the tangent at the turning point of the DSC curve.
  • the Mooney viscosity ML (1 + 10) of the fluorine-containing elastomer at 121 ° C. is preferably 10 or more, more preferably 15 or more, preferably 120 or less, and more preferably 100 because of its good heat resistance. It is as follows. Mooney viscosity is a value measured in accordance with ASTM-D1646 and JIS K6300.
  • the number average molecular weight (Mn) of the fluorine-containing elastomer is preferably 1000 to 300,000, and more preferably 10,000 to 200,000.
  • the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the fluorine-containing elastomer is preferably 1.3 or more, more preferably 1.5 or more, and preferably 8 or less.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), and Mw / Mn are values measured by the GPC method.
  • the fluorine-containing elastomer may be a branched type fluorine-containing elastomer.
  • the mark-howin gradient a when plotting the absolute weight molecular weight and the intrinsic viscosity on the mark-howin plot in which the horizontal axis is the absolute weight molecular weight and the vertical axis is the intrinsic viscosity is preferably 0.6. Is less than. The lower limit may be 0.
  • the Mark-Howin plot is created to see the state of long-chain branching of a polymer, and is a graph in which the horizontal axis is the absolute weight molecular weight and the vertical axis is the intrinsic viscosity. From this Mark-Hawin plot, the state of long-chain branching of the polymer can be known, and in particular, the Mark-Hawin gradient a calculated by plotting the absolute weight molecular weight and the intrinsic viscosity is the long-chain branching of the fluoroelastomer.
  • the degree of the substance can be specified, and it can also be used as a parameter for specifying (classifying) a substance.
  • the absolute weight molecular weight can be determined, for example, by GPC light scattering.
  • the crosslinkable composition is added to a fluoroelastomer containing a crosslinkable group-containing monomer unit represented by the general formulas (1) and (2) (hereinafter, may be referred to as “fluorine-containing elastomer (A)”). It is also preferable to further contain a fluorine-containing elastomer (hereinafter, sometimes referred to as “fluorine-containing elastomer (B)”) that does not contain the crosslinkable group-containing monomer unit represented by the general formulas (1) and (2). ..
  • fluorine-containing elastomer (B) examples include VdF / HFP copolymer, VdF / HFP / TFE copolymer, TFE / propylene copolymer, TFE / propylene / VdF copolymer, ethylene / HFP copolymer, and ethylene / At least one selected from the group consisting of HFP / VdF copolymers, ethylene / HFP / TFE copolymers, VdF / TFE / perfluoro (alkyl vinyl ether) (PAVE) copolymers, and VdF / CTFE copolymers. Species are preferred, and at least one selected from the group consisting of VdF / HFP copolymers and VdF / HFP / TFE copolymers is more preferred.
  • PAVE perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), and perfluoro (propyl vinyl ether) (PPVE).
  • the fluorine-containing elastomer (B) a fluorine-containing elastomer that can be crosslinked with peroxide is preferable, and a fluorine-containing elastomer having a crosslinkable site that can be crosslinked with peroxide such as an iodine atom, a bromine atom, and a cyano group is more preferable. Further, the fluorine-containing elastomer (B) is preferably obtained by a polymerization method using a bromine compound or an iodine compound as a chain transfer agent.
  • the glass transition temperature of the fluorine-containing elastomer (B) is preferably ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, and even more preferably ⁇ 50 ° C. or higher. Further, since the cold resistance is good, it is preferably 5 ° C. or lower, more preferably 0 ° C. or lower, and further preferably -3 ° C. or lower.
  • the Mooney viscosity ML (1 + 10) of the fluorine-containing elastomer (B) at 121 ° C. is preferably 10 or more, more preferably 20 or more, preferably 120 or less, and more preferably 100 or less.
  • the number average molecular weight (Mn) of the fluorine-containing elastomer (B) is preferably 1000 to 250,000, more preferably 5000 to 140000, and even more preferably 15000 to 100,000.
  • the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the fluorine-containing elastomer (B) is preferably 1.1 or more, and preferably 4 or less.
  • the fluoroelastomer (B) is preferably a linear fluoropolymer.
  • the fluorine-containing elastomer (B) has a mark-howin gradient a when the absolute weight molecular weight and the intrinsic viscosity are plotted on a mark-howin plot in which the horizontal axis is the absolute weight molecular weight and the vertical axis is the intrinsic viscosity, preferably 0. 6 or more.
  • the upper limit may be 1.
  • the mass ratio ((A) / (B)) of the fluorine-containing elastomer (A) and the fluorine-containing elastomer (B) in the crosslinkable composition is preferably 10 to 90/90 to 10, and more. It is preferably 20 to 80/80 to 20.
  • the composition containing the fluorine-containing elastomer (A) and the fluorine-containing elastomer (B) can be prepared by, for example, the following methods, but is not limited thereto.
  • the above-mentioned fluorine-containing elastomer can be produced by a general radical polymerization method.
  • the polymerization form may be any of bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization, but emulsion polymerization is preferable because it is industrially easy to carry out.
  • a polymerization initiator a chain transfer agent, a surfactant, and a solvent
  • conventionally known ones can be used for each.
  • the crosslinkable composition preferably contains a fluorine-containing elastomer and a crosslinking agent.
  • the cross-linking agent is not particularly limited as long as it is a cross-linking agent usually used in polyamine cross-linking, polyol cross-linking, peroxide cross-linking and the like, but at least one selected from the group consisting of polyamine compounds, polyhydroxy compounds and peroxide cross-linking agents. Species are preferable, and since the fluoroelastomer containing the crosslinkable group-containing monomer units represented by the general formulas (1) and (2) is a fluoroelastomer capable of cross-linking with peroxide, a peroxide cross-linking agent is more preferable. ..
  • an organic peroxide is preferable.
  • the organic peroxide may be any organic peroxide that can easily generate radicals in the presence of heat or an oxidation-reduction system. For example, 1,1-bis (t-butylperoxy) -3,5.
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and 2,5-dimethyl-2,5-di (t-butylperoxy) -hexyne-3 are preferable.
  • the cross-linking composition preferably contains a cross-linking aid.
  • the cross-linking aid include triallyl cyanurate, trimetalyl isocyanurate, triallyl isocyanurate (TAIC), triallyl formal, triallyl trimerite, N, N'-m-phenylene bismaleimide, and dipropagil.
  • triallyl is
  • the content of the cross-linking agent in the cross-linking composition is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the fluorine-containing elastomer. If the amount of the cross-linking agent is too small, the degree of cross-linking is insufficient and the performance of the obtained member to be compressed for the electrochemical device tends to be impaired. If the amount of the cross-linking agent is too large, the cross-linking density becomes too high and the cross-linking time becomes long. In addition to becoming, it is also economically unfavorable.
  • the blending amount of the cross-linking aid is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5.0 parts by mass with respect to 100 parts by mass of the fluorine-containing elastomer. If the amount of cross-linking aid is too small, the cross-linking time tends to be too long for practical use, and if the amount of cross-linking aid is too large, the cross-linking time becomes too fast and the resistance of the compressed member for an electrochemical device is increased. The compression set property also tends to deteriorate.
  • the crosslinkable composition contains a filler.
  • a filler metal oxides such as calcium oxide, titanium oxide and aluminum oxide; metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium hydroxide; magnesium carbonate, aluminum carbonate, calcium carbonate, barium carbonate and the like.
  • silicates such as magnesium silicate, calcium silicate, sodium silicate, aluminum silicate
  • sulfates such as aluminum sulfate, calcium sulfate, barium sulfate
  • synthetic hydrotalcite molybdenum disulfide, iron sulfide, sulfide
  • Metal sulfides such as copper; diatomaceous soil, asbestos, lithopone (zinc sulfide / barium sulfide), graphite, carbon black, carbon fluoride, calcium fluoride, coke, quartz fine powder, zinc flower, talc, mica powder, wax
  • lastnite carbon fiber, aramid fiber, various whiskers, glass fiber, organic reinforcing agent, organic filler, polytetrafluoroethylene, mica, silica, celite, clay and the like.
  • the content of the filler in the crosslinkable composition is preferably 0.01 to 50 parts by mass, and more preferably 1 to 30 parts by mass with respect to 100 parts by mass of the fluorine-containing elastomer.
  • the crosslinkable composition is preferably obtained by kneading the fluorine-containing elastomer and, if desired, a crosslinking agent, a crosslinking aid, a filler and the like.
  • an open roll a Banbury mixer, a pressurized kneader, an extruder, etc. can be used.
  • the member to be compressed for an electrochemical device of the present disclosure By cross-linking the cross-linking composition, the member to be compressed for an electrochemical device of the present disclosure can be obtained.
  • the member to be compressed for an electrochemical device of the present disclosure can be produced by molding the above-mentioned crosslinkable composition and cross-linking the obtained molded product, or by simultaneously performing molding and cross-linking. You can also.
  • the molding method is not particularly limited, and examples thereof include compression molding, extrusion molding, transfer molding, injection molding, and the like. Since the member to be compressed for an electrochemical device of the present disclosure is excellent in mold releasability, it can be produced with high productivity even when a molding method using a mold is adopted.
  • Cross-linking can be performed by a usual method such as a method of heating and compressing with a mold, a method of press-fitting into a heated mold, a method of extruding with an extruder and then cross-linking. Cross-linking is also performed in the order of primary cross-linking and finally secondary cross-linking to obtain the member to be compressed for the electrochemical device of the present disclosure.
  • the primary cross-linking conditions it is preferable to carry out at 150 to 230 ° C. for 5 to 120 minutes, more preferably to carry out at 150 to 200 ° C. for 5 to 90 minutes, and particularly preferably to carry out at 160 to 190 ° C. for 10 to 60 minutes.
  • the cross-linking means a known cross-linking means may be used, and examples thereof include press cross-linking.
  • the secondary cross-linking condition it is preferable to carry out at 160 to 320 ° C. for 2 to 168 hours, and more preferably to carry out at 180 to 310 ° C. for 4 to 36 hours.
  • the cross-linking means a known cross-linking means may be used, and examples thereof include oven cross-linking.
  • the size and shape of the member to be compressed for the electrochemical device of the present disclosure may be appropriately set according to the application, and is not particularly limited.
  • the shape of the member to be compressed for an electrochemical device of the present disclosure may be, for example, an annular shape.
  • the member to be compressed for an electrochemical device of the present disclosure may have a shape such as a square, a circle, an oval, or a quadrangle with rounded corners in a plan view, and may have a through hole in the central portion thereof. ..
  • the member to be compressed for an electrochemical device of the present disclosure is a member that constitutes an electrochemical device and is used by being compressed and deformed.
  • the electrochemical device is not particularly limited as long as it is a device that converts electrical energy and chemical energy, but batteries such as lithium ion secondary batteries, lithium ion capacitors, hybrid capacitors, electric double layer capacitors, aluminum electrolytic capacitors, etc. are used. can give.
  • batteries such as lithium ion secondary batteries, lithium ion capacitors, hybrid capacitors, electric double layer capacitors, aluminum electrolytic capacitors, etc. are used. can give.
  • the electrochemical device a lithium ion secondary battery or a lithium ion capacitor is preferable.
  • the constituent members of the electrochemical device include a sealing member for an electrochemical device and an insulating member for an electrochemical device.
  • the member to be compressed for an electrochemical device of the present disclosure can be suitably used as, for example, a sealing member such as a sealing gasket and a sealing packing, and an insulating member such as an insulating gasket and an insulating packing.
  • the sealing member is a member used to prevent leakage of liquid or gas or intrusion of liquid or gas from the outside.
  • the insulating member is a member used to insulate electricity.
  • the members to be compressed for electrochemical devices of the present disclosure may be members used for both sealing and insulating purposes.
  • the member to be compressed for an electrochemical device of the present disclosure is excellent in compression set and resistance to electrolytic solution, it can be suitably used as a member to be compressed for a battery, and can be particularly preferably used as a member to be compressed for a secondary battery.
  • the member to be compressed for an electrochemical device of the present disclosure has excellent resistance (electrolytic solution resistance) to an electrolytic solution used in a non-aqueous electrolytic solution secondary battery. Therefore, the member to be compressed for an electrochemical device of the present disclosure can be suitably used as a member to be compressed for a non-aqueous electrolyte secondary battery, and can be particularly preferably used as a member to be compressed for a non-aqueous electrolyte lithium ion secondary battery. ..
  • the non-aqueous electrolyte secondary battery includes a positive electrode plate (positive electrode sheet), a separator, a negative electrode plate (negative electrode sheet), a battery case, a sealing body, and a gasket.
  • the gasket the electrochemical device of the present disclosure is provided. Examples thereof include a non-aqueous electrolyte secondary battery provided with a member to be compressed.
  • the non-aqueous electrolyte secondary battery seals, for example, a battery case having an opening, a positive electrode plate, a separator, a negative electrode plate and a non-aqueous electrolyte solution housed in the battery case, and the opening of the battery case. It has a sealing body.
  • the battery case and the sealing body are sealed with a gasket.
  • the sealing body may also serve as an external connection terminal (positive electrode terminal or negative electrode terminal).
  • the non-aqueous electrolyte secondary battery includes, for example, a battery case having an opening, a positive electrode plate, a separator, a negative electrode plate and a non-aqueous electrolyte solution housed in the battery case, and the opening of the battery case. It is provided with a sealing body for sealing, and the sealing body is provided with an electrode terminal (positive electrode terminal or negative electrode terminal) that is electrically connected to an electrode plate (positive electrode plate or negative electrode plate). The sealing body and the electrode terminal are sealed with a gasket.
  • the gasket By sealing with a gasket, leakage of the non-aqueous electrolyte solution is prevented, and water is prevented from entering the inside of the non-aqueous electrolyte solution secondary battery. Further, by sealing with a gasket, the positive electrode terminal and the negative electrode terminal are insulated from each other, and a short circuit between the terminals is prevented. Therefore, the gasket is required to have low compressive permanent distortion and excellent electrolytic solution resistance as well as insulating property.
  • the member to be compressed for the electrochemical device is used as a gasket in order to seal between the members. Since the member to be compressed for an electrochemical device of the present disclosure has a low compressive permanent strain rate and excellent electrolytic solution resistance as well as insulating properties, the non-aqueous electrolytic solution secondary battery has insulating properties. Is maintained for a long period of time, and leakage of the non-aqueous electrolyte solution and infiltration of water from the outside are unlikely to occur, and leakage and infiltration of water are prevented for a long period of time.
  • Non-aqueous electrolytic solution used in the secondary battery preferably contains a solvent.
  • the content of the solvent is preferably 70 to 99.999% by mass, more preferably 80% by mass or more, and more preferably 92% by mass or less in the electrolytic solution.
  • the solvent preferably contains at least one selected from the group consisting of carbonate and carboxylic acid ester.
  • the carbonate may be a cyclic carbonate or a chain carbonate.
  • the cyclic carbonate may be a non-fluorinated cyclic carbonate or a fluorinated cyclic carbonate.
  • non-fluorinated saturated cyclic carbonate examples include ethylene carbonate, propylene carbonate, cis-2,3-pentylene carbonate, cis-2,3-butylene carbonate, 2,3-pentylene carbonate, 2,3-butylene carbonate, and the like. At least one selected from the group consisting of 1,2-pentylene carbonate, 1,2-butylene carbonate and butylene carbonate is preferable.
  • the fluorinated cyclic carbonate may be a fluorinated saturated cyclic carbonate or a fluorinated unsaturated cyclic carbonate.
  • the fluorinated saturated cyclic carbonate is a saturated cyclic carbonate having a fluorine atom, and specifically, the following general formula (A):
  • X 1 to X 4 are the same or different, and each has an -H, -CH 3 , -C 2 H 5 , -F, a fluorinated alkyl group which may have an ether bond, or an ether bond.
  • a represents an even better fluorinated alkoxy group.
  • at least one of X 1 ⁇ X 4 are, -F, good fluorinated alkyl group which may have an ether bond, or may have an ether bond It is a good fluorinated alkoxy group.
  • the fluorinated alkyl group is -CF 3 , -CF 2 H, -CH 2 F, or the like.
  • the chain carbonate may be a non-fluorinated chain carbonate or a fluorinated chain carbonate.
  • non-fluorinated chain carbonate examples include CH 3 OCOOCH 3 (dimethyl carbonate: DMC), CH 3 CH 2 OCOOCH 2 CH 3 (diethyl carbonate: DEC), and CH 3 CH 2 OCOOCH 3 (ethyl methyl carbonate: EMC).
  • the fluorinated chain carbonate has the general formula (B): Rf 2 OCOOR 7 (B) (In the formula, Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms, and R 7 is an alkyl group which may contain a fluorine atom having 1 to 7 carbon atoms.) Can be mentioned.
  • Rf 2 is a fluorinated alkyl group having 1 to 7 carbon atoms
  • R 7 is an alkyl group which may contain a fluorine atom having 1 to 7 carbon atoms.
  • the above-mentioned fluorinated alkyl group is obtained by substituting at least one hydrogen atom of the alkyl group with a fluorine atom.
  • R 7 is an alkyl group containing a fluorine atom, it becomes a fluorinated alkyl group.
  • the above-mentioned chain carboxylic acid ester may be a non-fluorinated chain carboxylic acid ester or a fluorinated chain carboxylic acid ester.
  • one type may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the solvent contains the cyclic carbonate and at least one selected from the group consisting of the chain carbonate and the chain carboxylic acid ester, the cyclic carbonate, the chain carbonate and the chain carboxylic acid ester It is preferable to contain at least one selected from the group consisting of 10 to 100% by volume, more preferably 30 to 100% by volume, and even more preferably 50 to 100% by volume.
  • Non-aqueous electrolyte solution used in the secondary battery preferably further contains an electrolyte salt.
  • electrolyte salt in addition to lithium salt, ammonium salt and metal salt, liquid salt (ionic liquid), inorganic polymer type salt, organic polymer type salt and the like can be used in the electrolyte solution. Any one can be used.
  • a lithium salt is preferable as the electrolyte salt of the electrolytic solution for a lithium ion secondary battery.
  • lithium salts can be used, and specific examples thereof include the following.
  • at least one lithium salt selected from the group consisting of LiPF 6 , LiN (FSO 2 ) 2 and LiBF 4 is preferred.
  • electrolyte salts may be used alone or in combination of two or more.
  • a preferable example when two or more kinds are used in combination is a combination of LiPF 6 and LiBF 4 , or a combination of LiPF 6 and LiPO 2 F 2 , C 2 H 5 OSO 3 Li or FSO 3 Li, which have high temperature storage characteristics. It has the effect of improving load characteristics and cycle characteristics.
  • the blending amount of LiPF 6 , LiN (FSO 2 ) 2 , LiBF 4 , LiPO 2 F 2 , C 2 H 5 OSO 3 Li or FSO 3 Li with respect to 100% by mass of the entire electrolytic solution, and the present disclosure It is optional as long as the effect is not significantly impaired, but is usually 0.01% by mass or more, preferably 0.1% by mass or more, and usually 30% by mass or less, preferably 20% by mass, based on the electrolytic solution. Below, it is more preferably 10% by mass or less, still more preferably 5% by mass or less.
  • the concentration of these electrolyte salts in the electrolyte is not particularly limited.
  • the total molar concentration of lithium in the electrolytic solution is preferably 0.3 mol / L or more, more preferably 0.4 mol / L, from the viewpoint of keeping the electric conductivity of the electrolytic solution in a good range and ensuring good battery performance. As mentioned above, it is more preferably 0.5 mol / L or more, preferably 3 mol / L or less, more preferably 2.5 mol / L or less, still more preferably 2.0 mol / L or less.
  • ⁇ Iodine atom content> Made of quartz using an absorbent solution in which 5 mg of Na 2 SO 3 is mixed with 12 mg of a fluorine-containing elastomer, and 30 mg of a mixture of Na 2 CO 3 and K 2 CO 3 in a ratio of 1: 1 (weight ratio) is dissolved in 20 ml of pure water. The flask was burned in oxygen and left for 30 minutes, and then measured using a Shimadzu 20A ion chromatograph. As the calibration curve, a KI standard solution, one containing 0.5 ppm of iodine ions and one containing 1.0 ppm were used.
  • ⁇ Glass transition temperature (Tg)> Using a differential scanning calorimeter (Mettler Toledo, DSC822e, or Hitachi Technoscience, X-DSC823e), a DSC curve was obtained by raising the temperature of 10 mg of the sample at 20 ° C./min, and the DSC curve was obtained. The temperature indicating the intersection of the extension of the baseline before and after the secondary transition and the tangent at the turning point of the DSC curve was defined as the glass transition temperature.
  • ⁇ 100% modulus (M100)> The crosslinkable composition was first crosslinked at 160 ° C. for 10 minutes and then secondarily crosslinked at 180 ° C. for 4 hours to obtain a sheet having a thickness of 2 mm, and the obtained sheet was used for JIS. -Measured according to K6251.
  • Tb tensile breaking strength
  • Eb tensile breaking elongation
  • the crosslinkable composition was first crosslinked at 160 ° C. for 10 minutes and then secondarily crosslinked at 180 ° C. for 4 hours to obtain a sheet having a thickness of 2 mm, and the obtained sheet was used for JIS.
  • the hardness (PEAK value) was measured according to K6253.
  • the compression set of the P-24 size O-ring specified in JIS-B2401 was measured according to JIS-K6262. Specifically, the O-rings obtained in Examples and Comparative Examples after the secondary cross-linking were held under 25% pressure compression at 200 ° C. for 72 hours and then opened, and placed in a thermostatic chamber at 25 ° C. for 30. After leaving for a minute, the thickness of the O-ring was measured to determine the compression set.
  • a die provided with cavities capable of creating 65 O-rings at a time was installed in a vacuum press, the chamber was degassed, and then the die was filled with a crosslinkable composition.
  • the packed crosslinkable composition was pressed at a pressure of 10 MPa and first crosslinked at 160 ° C. for 7 minutes to obtain an O-ring sheet, and then the obtained O-ring sheet was taken out from the mold. These operations were repeated a total of 3 times without application of the release agent.
  • the mold used for the third molding and the O-ring sheet obtained by the third molding were observed, and the releasability was evaluated according to the following criteria.
  • There is little dirt on the upper and lower surfaces of the mold due to burrs and deposits, and there are few O-rings with poor molding.
  • X The O-ring sheet is torn or has many burrs, and molding defects such as cracks and dents are conspicuous in the O-ring.
  • APS ammonium persulfate
  • Production Example 6 When the monomer mixture in Production Example 5 was continuously charged, an emulsion was obtained in the same manner as in Production Example 5 except that 4.23 g of octafluoro-1,4-diiodobutane was press-fitted when 19 g was supplied. After completion of the reaction, the inside of the polymerization tank was returned to atmospheric pressure and cooled to obtain an emulsion. The weight of the obtained emulsion was 2570 g, and the polymer concentration was 23.8% by mass. Table 1 shows various physical properties of the obtained fluorine-containing elastomer 6.
  • Example 1 100 parts by mass of fluoroelastomer 1, 20 parts by mass of carbon black (Cancarb, Thermomax N990), 4 parts by mass of triallyl isocyanurate (Nihon Kasei, TAIC), and 1.5 parts by mass.
  • Peroxide manufactured by Nihon Kasei Co., Ltd., Perhexa 25B was kneaded at 20 to 70 ° C. by a usual method using an 8-inch two-roll to prepare a crosslinkable composition.
  • the obtained crosslinkable composition is molded using a sheet having a thickness of 2 mm or a mold capable of producing a P-24 size O-ring, and is first crosslinked at 160 ° C. for 10 minutes, and then the mold is used.
  • Table 2 shows the evaluation results of the crosslinkable composition and the crosslinked molded article.
  • Examples 2 to 6 and Comparative Examples 1 to 2 A crosslinkable composition was prepared in the same manner as in Example 1 except that the type of the fluorine-containing elastomer was changed as shown in Table 2, and a crosslinked molded product was prepared. Table 2 shows the evaluation results of the crosslinkable composition and the crosslinked molded article.
  • Example 7 A fluorine-containing elastomer mixture was prepared by kneading 80 parts by mass of the fluorine-containing elastomer 1 and 20 parts by mass of the fluorine-containing elastomer 8 using an open roll.
  • a crosslinkable composition was prepared in the same manner as in Example 1 except that the obtained fluorine-containing elastomer mixture was used, and a crosslinked molded product was prepared. Table 2 shows the evaluation results of the crosslinkable composition and the crosslinked molded article.
  • Example 8 A fluorine-containing elastomer mixture was prepared by kneading 50 parts by mass of the fluorine-containing elastomer 3 and 50 parts by mass of the fluorine-containing elastomer 8 using an open roll.
  • a crosslinkable composition was prepared in the same manner as in Example 1 except that the obtained fluorine-containing elastomer mixture was used, and a crosslinked molded product was prepared. Table 2 shows the evaluation results of the crosslinkable composition and the crosslinked molded article.
  • Example 9 A fluorine-containing elastomer mixture was prepared by kneading 80 parts by mass of the fluorine-containing elastomer 3 and 20 parts by mass of the fluorine-containing elastomer 8 using an open roll.
  • a crosslinkable composition was prepared in the same manner as in Example 1 except that the obtained fluorine-containing elastomer mixture was used, and a crosslinked molded product was prepared. Table 2 shows the evaluation results of the crosslinkable composition and the crosslinked molded article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一般式(1):CX =CF-Rf-X (式中、Xは、独立に、HまたはF、Rfはフッ素化アルキレン基またはフッ素化オキシアルキレン基、XはIまたはBrを表す)で表される架橋性基含有モノマー(1)、および、 一般式(2):CX =CX-Z-CX=CX (式中、Xは、独立に、H、F、アルキル基またはフッ素化アルキル基、Zは、アルキレン基、フッ素化アルキレン基、シクロアルキレン基、フッ素化シクロアルキレン基、オキシアルキレン基、または、フッ素化オキシアルキレン基を表す)で表される架橋性基含有モノマー(2)からなる群より選択される少なくとも1種の架橋性基含有モノマーに基づく単位を含有する含フッ素エラストマーを含有する架橋性組成物を架橋して得られる電気化学デバイス用被圧縮部材を提供する。

Description

電気化学デバイス用被圧縮部材
 本開示は、電気化学デバイス用被圧縮部材に関する。
 特許文献1には、貫通孔を有する電池ケースと、前記ケースに対向するように重ね合わされ、貫通孔を有するガスケットと、前記ケースの貫通孔と前記ガスケットの貫通孔とをケース内側から貫通するように設けられたリベットとを備える密閉型電池が記載されている。このガスケットは、フッ素ゴム(例えば、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン系(FKM)、テトラフルオロエチレン-プロピレン系(FEPM)、等のフッ素ゴム)、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-ジエン共重合体ゴム(EPDM)、ブチルゴムなどの絶縁性を有する弾性部材であり得る。
特開2016-4668号公報
 本開示では、圧縮永久歪み、耐電解液性に優れ、さらに成型時に良好な離型性を示す電気化学デバイス用被圧縮部材を提供することを目的とする。
 本開示によれば、一般式(1):CX =CF-Rf-X
(式中、Xは、独立に、HまたはF、Rfはフッ素化アルキレン基またはフッ素化オキシアルキレン基、XはIまたはBrを表す。各基の炭素数が2以上である場合には、各基は、2つの炭素原子間に酸素原子を有していてもよく、芳香環を有していてもよく、直鎖状または分岐鎖状であってよい。)で表される架橋性基含有モノマー(1)、および、
 一般式(2):CX =CX-Z-CX=CX
(式中、Xは、独立に、H、F、アルキル基またはフッ素化アルキル基、Zは、アルキレン基、フッ素化アルキレン基、シクロアルキレン基、フッ素化シクロアルキレン基、オキシアルキレン基、または、フッ素化オキシアルキレン基を表す。各基の炭素数が2以上である場合には、各基は、2つの炭素原子間に酸素原子を有していてもよく、芳香環を有していてもよく、直鎖状または分岐鎖状であってよい。)で表される架橋性基含有モノマー(2)からなる群より選択される少なくとも1種の架橋性基含有モノマーに基づく単位を含有する含フッ素エラストマーを含有する架橋性組成物を架橋して得られる電気化学デバイス用被圧縮部材が提供される。
 架橋性基含有モノマー(1)が、
 一般式(3):CF=CF(OCFCF(CF))(OCFCFCH
(式中、nは0~3の整数、mは1~5の整数を表す)で表される架橋性基含有モノマーであることが好ましい。
 架橋性基含有モノマー(2)が、
 一般式(4):CH=CH-(CF-CH=CH
(式中、kは2~8の整数を表す)で表される架橋性基含有モノマーであることが好ましい。
 前記含フッ素エラストマーが、テトラフルオロエチレン単位をさらに含有し、前記含フッ素エラストマー中のテトラフルオロエチレン単位の含有量が、全モノマー単位に対して、15~60モル%であることが好ましい。
 前記含フッ素エラストマーが、ビニリデンフルオライド単位をさらに含有し、前記含フッ素エラストマー中のビニリデンフルオライド単位の含有量が、全モノマー単位に対して、35~70モル%であることが好ましい。
 前記架橋性組成物が、前記架橋性基含有モノマーに基づく単位を含有しない含フッ素エラストマーをさらに含有することが好ましい。
 前記架橋性組成物が、パーオキサイド架橋剤をさらに含有することが好ましい。
 本開示の電気化学デバイス用被圧縮部材は、非水電解液二次電池用被圧縮部材として好適に用いることができる。
 本開示の電気化学デバイス用被圧縮部材は、封止部材または絶縁部材として好適に用いることができる。
 本開示によれば、圧縮永久歪み、耐電解液性に優れ、さらに成型時に良好な離型性を示す電気化学デバイス用被圧縮部材を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示の電気化学デバイス用被圧縮部材は、圧縮変形させて用いられる部材である。本発明者らは、特定の架橋性基含有モノマーに基づく単位を含有する含フッ素エラストマーにより形成される被圧縮部材が、圧縮永久歪み、耐電解液性に優れ、さらに成型時に良好な離型性を有しており、電気化学デバイスに用いる被圧縮部材として好適であることを見出し、本開示の電気化学デバイス用被圧縮部材を完成するに至った。本開示において、圧縮永久歪みに優れるとは、電気化学デバイス用被圧縮部材の圧縮永久歪み(%)が小さいことをいう。
 本開示の電気化学デバイス用被圧縮部材は、含フッ素エラストマーを含有する架橋性組成物を架橋して得られ、含フッ素エラストマーは、架橋性基含有モノマー(1)および架橋性基含有モノマー(2)からなる群より選択される少なくとも1種の架橋性基含有モノマーに基づく単位(本開示において、単に「架橋性基含有モノマー単位」ということがある)を含有する。
 本開示で用いる含フッ素エラストマーは、非晶質フルオロポリマーである。「非晶質」とは、フルオロポリマーの示差走査熱量測定〔DSC〕(昇温速度10℃/分)あるいは示差熱分析〔DTA〕(昇温速度10℃/分)において現われた融解ピーク(ΔH)の大きさが4.5J/g以下であることをいう。含フッ素エラストマーは、架橋することにより、エラストマー特性を示す。エラストマー特性とは、ポリマーを延伸することができ、ポリマーを延伸するのに必要とされる力がもはや適用されなくなったときに、その元の長さを保持できる特性を意味する。
 架橋性基含有モノマー(1)は、
 一般式(1):CX =CF-Rf-X
(式中、Xは、独立に、HまたはF、Rfはフッ素化アルキレン基またはフッ素化オキシアルキレン基、XはIまたはBrを表す)で表される。
 式中、Xは、独立に、HまたはFである。Xとしては、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、いずれも、Fであることが好ましい。
 Rfは、フッ素化アルキレン基またはフッ素化オキシアルキレン基である。フッ素化アルキレン基またはフッ素化オキシアルキレン基の炭素数が2以上である場合には、フッ素化アルキレン基またはフッ素化オキシアルキレン基は、2つの炭素原子間に酸素原子を含むものであってもよい。また、フッ素化アルキレン基またはフッ素化オキシアルキレン基は、芳香環を有していてもよい。フッ素化アルキレン基またはフッ素化オキシアルキレン基は、炭素原子に結合したHの一部または全部がFにより置換されていればよく、直鎖状であっても、分岐鎖状であってもよい。
 Rfの炭素数は、好ましくは1~40であり、より好ましくは1~30であり、さらに好ましくは2~24であり、特に好ましくは3~12であり、最も好ましくは3~9である。
 Rfとしては、フッ素化オキシアルキレン基が好ましく、-(ORf-(式中、Rfは、炭素数1~4の直鎖状または分岐鎖状のアルキレン基、pは1~10を表す)で表されるフッ素化オキシアルキレン基がより好ましい。
 架橋性基含有モノマー(1)としては、たとえば、以下の一般式で表されるモノマーを挙げることができる。これらは、それぞれ、単独で、または、組み合わせて用いることができる。
CX =CF-Rf-CHR-X
(式中、XおよびXは上記したとおり、Rfはフッ素化アルキレン基またはフッ素化オキシアルキレン基、RはHまたはCHを表す)
CX =CF-(CF-X
(式中、XおよびXは上記したとおり、nは1~8の整数を表す)
CX =CF-CFRf-X
(式中、XおよびXは上記したとおり、Rfは-(OCF-または-(OCF(CF))-、nは0~5の整数を表す)
CF=CFCF(OCF(CF)CF(OCHCFCFOCHCF-X
(式中、Xは上記したとおり、mは0~5の整数、nは0~5の整数を表す)
CF=CFCF(OCHCFCF(OCF(CF)CFOCF(CF)-X
(式中、Xは上記したとおり、mは0~5の整数、nは0~5の整数を表す)
CF=CF(OCFCF(CF))O(CF-X
(式中、Xは上記したとおり、mは0~5の整数、nは1~8の整数を表す)
CF=CF(OCFCF(CF))-X
(式中、Xは上記したとおり、mは1~5の整数を表す)
CF=CFOCF(CF(CF)OCFCF(-X)CF
(式中、Xは上記したとおり、nは1~4の整数を表す)
CF=CFO(CFOCF(CF)-X
(式中、Xは上記したとおり、nは2~5の整数を表す)
CF=CFO(CF-(C)-X
(式中、Xは上記したとおり、nは1~6の整数を表す)
CF=CF(OCFCF(CF))OCFCF(CF)-X
(式中、Xは上記したとおり、nは1~2の整数を表す)
CH=CFCFO(CF(CF)CFO)CF(CF)-X
(式中、Xは上記したとおり、nは0~5の整数を表す)、
CF=CFO(CFCF(CF)O)(CF-X
(式中、Xは上記したとおり、mは0~5の整数、nは1~3の整数を表す)
CH=CFCFOCF(CF)OCF(CF)-X
(式中、Xは上記したとおり)
CH=CFCFOCHCF-X
(式中、Xは上記したとおり)
CF=CFO(CFCF(CF)O)CFCF(CF)-X
(式中、Xは上記したとおり、mは0以上の整数を表す)
CF=CFOCF(CF)CFO(CF-X
(式中、Xは上記したとおり、nは1以上の整数を表す)
CF=CFOCFOCFCF(CF)OCF-X
(式中、Xは上記したとおり)
CF=CF-(CF-(O-CF-CF(CF))-O-(CF-(O)-(CF-CF(Rf)-X
(式中、Xは上記したとおり、RfはFまたはCF、gは0または1、hは0~3の整数、iは0~5の整数、jは0または1、kは0~6の整数を表す)
 Rfのフッ素化アルキレン基またはフッ素化オキシアルキレン基の炭素数が2以上である場合には、フッ素化アルキレン基またはフッ素化オキシアルキレン基は、2つの炭素原子間に酸素原子を含むものであってもよい。また、フッ素化アルキレン基またはフッ素化オキシアルキレン基は、芳香環を有していてもよい。フッ素化アルキレン基またはフッ素化オキシアルキレン基は、炭素原子に結合したHの一部または全部がFにより置換されていればよく、直鎖状であっても、分岐鎖状であってもよい。Rfとしては、フッ素化オキシアルキレン基が好ましく、-(ORf-(式中、Rfおよびpは、上記したとおり)で表されるフッ素化オキシアルキレン基がより好ましい。
 架橋性基含有モノマー(1)としては、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、なかでも、
 一般式:CX =CF-Rf-CHR-X
(式中、X、X、RfおよびRは、上記したとおり)で表される架橋性基含有モノマーが好ましく、
 一般式(3):CF=CF(OCFCF(CF))(OCFCFCH
(式中、nは0~3の整数、mは1~5の整数を表す)で表される架橋性基含有モノマーがより好ましい。
 一般式(3)で表される架橋性モノマーとしては、CF=CF-OCFCFCHI、CF=CF-(OCFCFCHI、CF=CF-(OCFCFCHI、CF=CF-OCFCF(CF)-OCFCFCHI、および、CF=CF-(OCFCF(CF))-OCFCFCHIからなる群より選択される少なくとも1種が好ましく、CF=CF-OCFCFCHIがより好ましい。
 架橋性基含有モノマー(2)は、
一般式(2):CX =CX-Z-CX=CX
(式中、Xは、独立に、H、F、アルキル基またはフッ素化アルキル基、Zは、アルキレン基、フッ素化アルキレン基、シクロアルキレン基、フッ素化シクロアルキレン基、オキシアルキレン基、または、フッ素化オキシアルキレン基を表す)で表される。
 式中、Xは、独立に、H、F、アルキル基またはフッ素化アルキル基である。アルキル基またはフッ素化アルキル基の炭素数が2以上である場合には、アルキル基またはフッ素化アルキル基は、2つの炭素原子間に酸素原子を含むものであってもよい。また、アルキル基またはフッ素化アルキル基は、芳香環を有していてもよい。アルキル基またはフッ素化アルキル基は、直鎖状であっても、分岐鎖状であってもよい。
 Xとしては、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、H、F、炭素数1~5のアルキル基または炭素数1~5のフッ素化アルキル基が好ましく、H、F、CHまたはCFがより好ましく、HまたはFがさらに好ましく、Hが特に好ましい。
 Zは、アルキレン基、フッ素化アルキレン基、シクロアルキレン基、フッ素化シクロアルキレン基、オキシアルキレン基、または、フッ素化オキシアルキレン基である。これらの基の炭素数が2以上である場合には、これらの基は、2つの炭素原子間に酸素原子を含むものであってもよい。また、これらの基は、芳香環を有していてもよい。これらの基は、直鎖状であっても、分岐鎖状であってもよい。
 Zとしては、フルオロアルキレン基が好ましく、フルオロポリオキシアルキレン基がより好ましい。フルオロポリオキシアルキレン基としては、
-(Q)-CFO-(CFCFO)-(CFO)-CF-(Q)
(式中、Qは炭素数1~10のアルキレン基または炭素数2~10のオキシアルキレン基であり、pは0または1であり、mおよびnは、m/n比が0.2~5となり、かつ、上記式で表されるフルオロポリオキシアルキレン基の分子量が500~10000、好ましくは1000~4000の範囲となるような整数である。)で表される基が好ましい。
 式中、Qとしては、-CHOCH-または-CHO(CHCHO)CH-(式中、sは1~3の整数を表す)が好ましい。
 また、Zとしては、
-(CF-(OCF(Z)CF-O-(CF-(OCF(Z)CF-(O)-(CF(A))
(式中、aは0~2の整数、bは0~2の整数、cは0~8の整数、dは0~2の整数、eは0または1、fは0~6の整数、Zは、独立に、FまたはCF、AはFまたはパーフルオロアルキル基を表す)で表される基を挙げることもできる。このような基を含む架橋性基含有モノマーとしては、たとえば、CF=CF-O-(CF-O-CF=CF(式中、nは2~6の整数を表す)で表されるモノマー、CF=CF-(CF-O-(CF-O-(CF-CF=CF(式中、nは2~6の整数、aは0または1、bは0または1を表す)で表されるモノマーなどが挙げられる。
 架橋性基含有モノマー(2)としては、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、なかでも、
 一般式(4):CH=CH-(CF-CH=CH
(式中、kは2~8の整数を表す)で表される架橋性基含有モノマー、
 一般式(5):CH=CH-Z-CH=CH
(式中、Zは-CHOCH-CFO-(CFCFO)-(CFO)-CF-CHOCH-(m/nは0.2~5))で表される架橋性基含有モノマー、および、
 一般式(6):CF=CF-(CF-O-(CF-O-(CF-CF=CF
(式中、lおよびnは、独立に、0または1、mは2~6の整数を表す)で表される架橋性基含有モノマーからなる群より選択される少なくとも1種が好ましい。
 架橋性基含有モノマー(2)としては、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、なかでも、一般式(4)および一般式(5)で表される架橋性基含有モノマーからなる群より選択される少なくとも1種がより好ましく、一般式(4)で表される架橋性基含有モノマーがさらに好ましく、CH=CH-(CF-CH=CHおよびCH=CH-(CF-CH=CHからなる群より選択される少なくとも1種が特に好ましく、CH=CH-(CF-CH=CHが最も好ましい。
 含フッ素エラストマーは、架橋性基含有モノマー単位に加えて、フッ素化モノマー単位(ただし、一般式(1)および(2)で表される架橋性基含有モノマー単位を除く)を含有することが好ましい。
 フッ素化モノマーとしては、
 一般式(7):CX=CX
(式中、X~Xは、独立に、Hまたはハロゲン原子、Xは、H、ハロゲン原子、カルボキシル基、炭素数が2以上の場合は2つの炭素原子間に酸素原子を含んでもよい炭素数1~9のフッ素化アルキル基またはフッ素化アルコキシ基を表し、X~Xの少なくとも1つはF、フッ素化アルキル基またはフッ素化アルコキシ基である)で表されるフッ素化モノマーが挙げられる。
 フッ素化モノマーとしては、ヘキサフルオロプロピレン(HFP)、ビニリデンフルオライド(VdF)、テトラフルオロエチレン(TFE)、トリフルオロエチレン、ペンタフルオロプロピレン、ビニルフルオライド、ヘキサフルオロイソブテン、クロロトリフルオロエチレン(CTFE)、トリフルオロプロピレン、ペンタフルオロプロピレン、テトラフルオロプロピレン、ヘキサフルオロイソブテン、フッ化ビニルなどがあげられるが、エラストマー組成が得られやすい点から、ビニリデンフルオライド(VdF)、ヘキサフルオロプロピレン(HFP)、テトラフルオロエチレン(TFE)、トリフルオロエチレン、ペンタフルオロプロピレン、ビニルフルオライド、ヘキサフルオロイソブテンが好ましい。
 また、含フッ素エラストマーは、フッ素化モノマー単位として、一般式(1)および(2)で表される架橋性基含有モノマー単位とは異なる官能基含有フッ素化モノマー単位を含有してもよい。
 含フッ素エラストマーは、非フッ素化モノマー単位を含有してもよい。非フッ素化モノマーとしては、エチレン、プロピレン、ブテン、ペンテンなどの炭素数2~10のα-オレフィンモノマーなどがあげられる。
 含フッ素エラストマーは、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、一般式(1)および(2)で表される架橋性基含有モノマー単位に加えて、TFE単位をさらに含有することが好ましい。
 含フッ素エラストマー中のTFEの含有量としては、全モノマー単位に対して、好ましくは15~60モル%であり、より好ましくは17モル%以上であり、さらに好ましくは19モル%以上であり、より好ましくは58モル%以下であり、さらに好ましくは56モル%以下である。
 含フッ素エラストマーは、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、一般式(1)および(2)で表される架橋性基含有モノマー単位に加えて、VdF単位をさらに含有することが好ましく、TFE単位およびVdF単位をさらに含有することがより好ましい。
 含フッ素エラストマー中のVdF単位の含有量としては、全モノマー単位に対して、好ましくは35~70モル%であり、より好ましくは45モル%以上であり、60モル%以下である。
 含フッ素エラストマーは、電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性がより一層優れることから、一般式(1)および(2)で表される架橋性基含有モノマー単位に加えて、HFP単位をさらに含有することが好ましく、TFE単位ならびにHFP単位からなる群より選択される少なくとも1種をさらに含有することがより好ましく、TFE単位、VdF単位ならびにHFP単位からなる群より選択される少なくとも1種をさらに含有することがさらに好ましい。
 含フッ素エラストマーとしては、VdF/HFP/架橋性基含有モノマー共重合体、VdF/HFP/TFE/架橋性基含有モノマー共重合体、VdF/CTFE/架橋性基含有モノマー共重合体、VdF/CTFE/TFE/架橋性基含有モノマー共重合体、VdF/TFE/Pr/架橋性基含有モノマー共重合体、VdF/Et/HFP/架橋性基含有モノマー共重合体などを挙げることができる。含フッ素エラストマーとしては、なかでも、VdF/HFP/TFE/架橋性基含有モノマー共重合体が好ましい。
 含フッ素エラストマーがVdF/HFP/架橋性基含有モノマー共重合体である場合のVdF/HFPのモル比としては、好ましくは(45~85)/(55~15)(モル%)であり、より好ましくは(50~80)/(50~20)(モル%)であり、さらに好ましくは(60~80)/(40~20)(モル%)である。
 含フッ素エラストマーがVdF/HFP/TFE/架橋性基含有モノマー共重合体である場合のVdF/HFP/TFEのモル比としては、好ましくは(25~80)/(10~40)/(10~35)(モル%)、より好ましくは(31~74)/(13~37)/(13~32)(モル%)、さらに好ましくは(37~68)/(16~34)/(16~29)(モル%)である。
 含フッ素エラストマーとしては、上述した以外にも、TFE/プロピレン/架橋性基含有モノマー共重合体、TFE/プロピレン/VdF/架橋性基含有モノマー共重合体、エチレン/HFP/架橋性基含有モノマー共重合体、エチレン/HFP/VdF/架橋性基含有モノマー共重合体、エチレン/HFP/TFE/架橋性基含有モノマー共重合体なども挙げることができる。
 含フッ素エラストマー中の一般式(1)および(2)で表される架橋性基含有モノマー単位の含有量としては、フッ素化モノマー単位および非フッ素化モノマー単位の合計含有量(ただし、一般式(1)および(2)で表される架橋性基含有モノマー単位の含有量を除く)に対して、好ましくは0.001~5モル%であり、より好ましくは0.01~3モル%であり、さらに好ましくは0.03~1モル%であり、特に好ましくは0.05~0.5モル%である。また、含フッ素エラストマー中の一般式(1)で表される架橋性基含有モノマー単位の含有量としては、含フッ素エラストマー中のヨウ素原子または臭素原子の合計含有率が、後述する範囲内となるような含有量であってもよい。
 含フッ素エラストマーのモノマー組成は、19F-NMRにて測定することができる。
 含フッ素エラストマーのフッ素含有率としては、耐電解液性に優れることから、67質量%以上が好ましく、68質量%以上がより好ましく、69質量%以上がさらに好ましい。フッ素含有率は、含フッ素エラストマーのモノマー組成に基づいて、計算により求めることができる。
 含フッ素エラストマーは、重合時に連鎖移動剤を使用して得られたものであってもよい。上記連鎖移動剤として、臭素化合物またはヨウ素化合物を使用してもよい。臭素化合物またはヨウ素化合物を連鎖移動剤として用いることによって、一般式(1)で表される架橋性基含有モノマーに由来するヨウ素原子または臭素原子に加えて、連鎖移動剤に由来するヨウ素原子または臭素原子が重合体主鎖末端および側鎖末端に導入され、架橋点間距離を均一に近づけることができる。結果として、得られる電気化学デバイス用被圧縮部材の圧縮永久歪み、耐電解液性、さらに成型時の離型性を、一層向上させることができる。したがって、含フッ素エラストマーは、重合体主鎖末端および側鎖末端の一方または両方に、ヨウ素原子または臭素原子を有することが好ましい。また、含フッ素エラストマーは、臭素化合物またはヨウ素化合物を連鎖移動剤として用いた重合方法により得られたものであることが好ましい。
 臭素化合物またはヨウ素化合物を使用して行う重合方法としては、たとえば、実質的に無酸素状態で、臭素化合物またはヨウ素化合物の存在下に、加圧しながら水媒体中で乳化重合を行う方法があげられる(ヨウ素移動重合法)。使用する臭素化合物またはヨウ素化合物の代表例としては、たとえば、一般式:
   RBr
(式中、xおよびyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、Rは炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基、または炭素数1~3の炭化水素基であり、酸素原子を含んでいてもよい)で表される化合物があげられる。臭素化合物またはヨウ素化合物を使用することによって、ヨウ素原子または臭素原子が重合体に導入され、架橋点として機能する。
 含フッ素エラストマーのヨウ素原子および臭素原子の合計含有率としては、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.1質量%以上であり、好ましくは10質量%以下であり、より好ましくは5質量%以下である。含フッ素エラストマーにおけるヨウ素原子および臭素原子の結合位置は、含フッ素エラストマーの主鎖の末端でも側鎖の末端でもよく、両者であってもよい。ヨウ素原子および臭素原子の合計含有率には、連鎖移動剤として用いた臭素化合物またはヨウ素化合物により重合体に導入されたヨウ素原子および臭素原子の含有率、ならびに、一般式(1)で表される架橋性基含有モノマーを重合することにより重合体に導入されたヨウ素原子および臭素原子の含有率が含まれる。
 ヨウ素原子および臭素原子の合計含有率は、含フッ素エラストマー12mgにNaSOを5mg混ぜ、純水20mlにNaCOとKCOとを1対1(重量比)で混合したものを30mg溶解した吸収液を用い、石英製のフラスコ中、酸素中で燃焼させ、30分放置後、島津20Aイオンクロマトグラフを用いて測定することができる。検量線は、KI標準溶液およびKBr標準溶液、ヨウ素イオンおよび臭素イオン0.5ppmを含むもの及び1.0ppmを含むものを用いることができる。
 ヨウ素化合物および臭素化合物としては、たとえば1,3-ジヨードパーフルオロプロパン、2-ヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに(2-ヨードエチル)および(2-ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。
 これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、2-ヨードパーフルオロプロパンを用いるのが好ましい。
 含フッ素エラストマーのガラス転移温度は、高温における圧縮永久歪みに優れることから、好ましくは-70℃以上であり、より好ましくは-60℃以上であり、さらに好ましくは-50℃以上である。また、耐寒性が良好であることから、好ましくは5℃以下であり、より好ましくは0℃以下であり、さらに好ましくは-3℃以下である。
 ガラス転移温度は、示差走査熱量計(メトラー・トレド社製、DSC822e、もしくは、日立テクノサイエンス社製、X-DSC823e)を用い、試料10mgを20℃/分で昇温することによりDSC曲線を得て、DSC曲線の二次転移前後のベースラインの延長線と、DSC曲線の変曲点における接線との交点を示す温度として求めることができる。
 含フッ素エラストマーの121℃におけるムーニー粘度ML(1+10)は、耐熱性が良好であることから、好ましくは10以上であり、より好ましくは15以上であり、好ましくは120以下であり、より好ましくは100以下である。ムーニー粘度は、ASTM-D1646およびJIS K6300に準拠して測定する値である。
 含フッ素エラストマーの数平均分子量(Mn)は、好ましくは1000~300000であり、より好ましくは10000~200000である。含フッ素エラストマーの分子量分布(重量平均分子量Mw/数平均分子量Mn)は、好ましくは1.3以上であり、より好ましくは1.5以上であり、好ましくは8以下である。数平均分子量(Mn)、重量平均分子量(Mw)、および、Mw/Mnは、GPC法により測定する値である。
 含フッ素エラストマーは、分岐型含フッ素エラストマーであってもよい。分岐型含フッ素エラストマーは、絶対重量分子量および固有粘度を横軸が絶対重量分子量で縦軸が固有粘度であるマーク-ハウィンプロットにプロットしたときのマーク-ハウィン勾配aが、好ましくは0.6未満である。下限は、0であってよい。
 マーク-ハウィンプロットとは、ポリマーの長鎖分岐の状態をみるために作成するものであり、横軸を絶対重量分子量とし縦軸を固有粘度とするグラフである。このマーク-ハウィンプロットからは、ポリマーの長鎖分岐の状態を知ることができ、特に絶対重量分子量および固有粘度をプロットして算出されるマーク-ハウィン勾配aは、含フッ素エラストマーの長鎖分岐の度合いを特定することができ、物質を特定する(区分けする)パラメータとしても使用できる。同一の絶対重量分子量のポリマー同士でも、長鎖の分岐が多いと最も長い鎖の分子量は小さくなり、固有粘度は小さくなる。したがって、同一の絶対重量分子量のポリマー同士では、勾配aが小さくなるほど(すなわち絶対重量分子量に対する固有粘度が小さくなるため)長鎖の分岐が多いことを示しており、一方、直鎖型のポリマーの勾配aは大きい。絶対重量分子量は、たとえばGPC光散乱により求めることができる。
 上記架橋性組成物は、一般式(1)および(2)で表される架橋性基含有モノマー単位を含有する含フッ素エラストマー(以下、「含フッ素エラストマー(A)」ということがある)に加えて、一般式(1)および(2)で表される架橋性基含有モノマー単位を含有しない含フッ素エラストマー(以下、「含フッ素エラストマー(B)」ということがある)をさらに含有することも好ましい。
 含フッ素エラストマー(B)としては、VdF/HFP共重合体、VdF/HFP/TFE共重合体、TFE/プロピレン共重合体、TFE/プロピレン/VdF共重合体、エチレン/HFP共重合体、エチレン/HFP/VdF共重合体、エチレン/HFP/TFE共重合体、VdF/TFE/パーフルオロ(アルキルビニルエーテル)(PAVE)共重合体、および、VdF/CTFE共重合体からなる群より選択される少なくとも1種が好ましく、VdF/HFP共重合体およびVdF/HFP/TFE共重合体からなる群より選択される少なくとも1種がより好ましい。
 PAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)などがあげられる。
 含フッ素エラストマー(B)としては、パーオキサイド架橋可能な含フッ素エラストマーが好ましく、ヨウ素原子、臭素原子、シアノ基などのパーオキサイド架橋可能な架橋部位を有する含フッ素エラストマーがより好ましい。また、含フッ素エラストマー(B)は、臭素化合物またはヨウ素化合物を連鎖移動剤として用いた重合方法により得られたものであることが好ましい。
 含フッ素エラストマー(B)のガラス転移温度は、好ましくは-70℃以上であり、より好ましくは-60℃以上であり、さらに好ましくは-50℃以上である。また、耐寒性が良好であることから、好ましくは5℃以下であり、より好ましくは0℃以下であり、さらに好ましくは-3℃以下である。
 含フッ素エラストマー(B)の121℃におけるムーニー粘度ML(1+10)は、好ましくは10以上であり、より好ましくは20以上であり、好ましくは120以下であり、より好ましくは100以下である。
 含フッ素エラストマー(B)の数平均分子量(Mn)は、好ましくは1000~250000であり、より好ましくは5000~140000であり、さらに好ましくは15000~100000である。含フッ素エラストマー(B)の分子量分布(重量平均分子量Mw/数平均分子量Mn)は、好ましくは1.1以上であり、好ましくは4以下である。
 含フッ素エラストマー(B)は、直鎖型含フッ素ポリマーであることが好ましい。含フッ素エラストマー(B)は、絶対重量分子量および固有粘度を横軸が絶対重量分子量で縦軸が固有粘度であるマーク-ハウィンプロットにプロットしたときのマーク-ハウィン勾配aが、好ましくは0.6以上である。上限は1であってよい。
 上記架橋性組成物における、含フッ素エラストマー(A)と、含フッ素エラストマー(B)との質量比((A)/(B))としては、好ましくは10~90/90~10であり、より好ましくは20~80/80~20である。
 含フッ素エラストマー(A)と含フッ素エラストマー(B)とを含有する組成物は、たとえばつぎの方法により調製できるが、これらに限定されるものではない。
(1)含フッ素エラストマー(A)を重合した後、同一の重合槽で引き続き含フッ素エラストマー(B)を重合する方法(1槽法)。
(2)含フッ素エラストマー(A)の水性分散液と含フッ素エラストマー(B)の水性分散液を混合する方法(湿式混合法)。
(3)含フッ素エラストマー(A)と含フッ素エラストマー(B)をドライブレンドする方法(乾式混合法)。
(4)含フッ素エラストマー(A)の有機溶剤分散液と含フッ素エラストマー(B)の有機溶剤分散液を混合する方法。
 上記含フッ素エラストマーは、一般的なラジカル重合法により製造することができる。重合形態は、塊状重合、溶液重合、懸濁重合および乳化重合のいずれの形態でもよいが、工業的に実施が容易であることから、乳化重合であることが好ましい。
 上記の重合においては、重合開始剤、連鎖移動剤、界面活性剤、および、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
 上記架橋性組成物は、含フッ素エラストマーおよび架橋剤を含有することが好ましい。架橋剤としては、ポリアミン架橋、ポリオール架橋、パーオキサイド架橋などで通常使用される架橋剤であれば特に限定されないが、ポリアミン化合物、ポリヒドロキシ化合物およびパーオキサイド架橋剤からなる群より選択される少なくとも1種が好ましく、一般式(1)および(2)で表される架橋性基含有モノマー単位を含有する含フッ素エラストマーがパーオキサイド架橋可能な含フッ素エラストマーであることから、パーオキサイド架橋剤がより好ましい。
 パーオキサイド架橋剤としては、有機過酸化物が好ましい。有機過酸化物としては、熱や酸化還元系の存在下で容易にラジカルを発生し得る有機過酸化物であればよく、たとえば1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゼン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエイトなどをあげることができる。これらの中でも、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-ヘキシン-3が好ましい。
 架橋剤が有機過酸化物である場合、上記架橋性組成物は架橋助剤を含むことが好ましい。架橋助剤としては、例えば、トリアリルシアヌレート、トリメタリルイソシアヌレート、トリアリルイソシアヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、N,N′-m-フェニレンビスマレイミド、ジプロパギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレート(1,3,5-トリス(2,3,3-トリフルオロ-2-プロペニル)-1,3,5-トリアジン-2,4,6-トリオン)、トリス(ジアリルアミン)-S-トリアジン、亜リン酸トリアリル、N,N-ジアリルアクリルアミド、1,6-ジビニルドデカフルオロヘキサン、ヘキサアリルホスホルアミド、N,N,N′,N′-テトラアリルフタルアミド、N,N,N′,N′-テトラアリルマロンアミド、トリビニルイソシアヌレート、2,4,6-トリビニルメチルトリシロキサン、トリ(5-ノルボルネン-2-メチレン)シアヌレート、トリアリルホスファイトなどがあげられる。これらの中でも、架橋性および電気化学デバイス用被圧縮部材の物性が優れる点から、トリアリルイソシアヌレート(TAIC)が好ましい。
 上記架橋性組成物の架橋剤の含有量としては、含フッ素エラストマー100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~5質量部である。架橋剤が少なすぎると、架橋度が不足するため、得られる電気化学デバイス用被圧縮部材の性能が損なわれる傾向があり、架橋剤が多すぎると、架橋密度が高くなりすぎるため架橋時間が長くなることに加え、経済的にも好ましくない。
 架橋助剤の配合量は、含フッ素エラストマー100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~5.0質量部である。架橋助剤が、少なすぎると、架橋時間が実用に耐えないほど長くなる傾向があり、架橋助剤が多すぎると、架橋時間が速くなり過ぎることに加え、電気化学デバイス用被圧縮部材の耐圧縮永久歪み性も悪化する傾向がある。
 上記架橋性組成物は充填剤を含むことも好ましい。充填剤としては、酸化カルシウム、酸化チタン、酸化アルミニウムなどの金属酸化物;水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムなどの金属水酸化物;炭酸マグネシウム、炭酸アルミニウム、炭酸カルシウム、炭酸バリウムなどの炭酸塩;ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ナトリウム、ケイ酸アルミニウムなどのケイ酸塩;硫酸アルミニウム、硫酸カルシウム、硫酸バリウムなどの硫酸塩;合成ハイドロタルサイト、二硫化モリブデン、硫化鉄、硫化銅などの金属硫化物;ケイ藻土、アスベスト、リトポン(硫化亜鉛/硫化バリウム)、グラファイト、カーボンブラック、フッ化カーボン、フッ化カルシウム、コークス、石英微粉末、亜鉛華、タルク、雲母粉末、ワラストナイト、炭素繊維、アラミド繊維、各種ウィスカー、ガラス繊維、有機補強剤、有機充填剤、ポリテトラフルオロエチレン、マイカ、シリカ、セライト、クレー等があげられる。
 上記架橋性組成物の充填剤の含有量としては、含フッ素エラストマー100質量部に対して、好ましくは0.01~50質量部であり、より好ましくは1~30質量部である。
 上記架橋性組成物は、上記含フッ素エラストマー、および、所望により架橋剤、架橋助剤、充填剤などを、混練して得られたものであることが好ましい。
 上記混練には、オープンロール、バンバリーミキサー、加圧ニーダー、押出機等を使用できる。
 上記架橋性組成物を架橋することにより、本開示の電気化学デバイス用被圧縮部材を得ることができる。本開示の電気化学デバイス用被圧縮部材は、上記架橋性組成物を成形し、得られた成形品を架橋することにより製造することもできるし、成形と架橋とを同時に行うことによって製造することもできる。
 成形方法は、特に限定されず、例えば、圧縮成形、押出し成形、トランスファー成形、射出成形等が挙げられる。本開示の電気化学デバイス用被圧縮部材は、離型性に優れることから、金型を用いた成形方法を採用した場合であっても、高い生産性で生産することができる。
 架橋は、たとえば、金型にて加熱圧縮する方法、加熱された金型に圧入する方法、押出機で押出した後架橋する方法などの通常の方法で行うことができる。架橋も一次架橋、最後に二次架橋の順で行い、本開示の電気化学デバイス用被圧縮部材を得ることができる。
 一次架橋条件としては、150~230℃で5~120分間行うことが好ましく、150~200℃で5~90分間行うことがより好ましく、160~190℃で10~60分間行うことが特に好ましい。架橋手段としては、公知の架橋手段を用いればよく、たとえばプレス架橋などをあげることができる。
 二次架橋条件としては、160~320℃で2~168時間行うことが好ましく、180~310℃で4~36時間行うことがより好ましい。架橋手段としては、公知の架橋手段を用いればよく、たとえばオーブン架橋などをあげることができる。
 本開示の電気化学デバイス用被圧縮部材の大きさや形状は用途に応じて適宜設定すればよく、特に限定されない。本開示の電気化学デバイス用被圧縮部材の形状は、たとえば、環状であってよい。また、本開示の電気化学デバイス用被圧縮部材は、平面視で角形、円形、長円形、角を丸めた四角形などの形状を有し、かつその中央部に貫通孔を有するものであってよい。
 本開示の電気化学デバイス用被圧縮部材は、電気化学デバイスを構成する部材であって、圧縮変形させて用いられる部材である。電気化学デバイスとしては、電気エネルギーと化学エネルギーとを変換するデバイスであれば特に限定されないが、リチウムイオン二次電池などの電池、リチウムイオンキャパシタ、ハイブリットキャパシタ、電気二重層キャパシタ、アルミ電解コンデンサなどがあげられる。電気化学デバイスとしては、リチウムイオン二次電池またはリチウムイオンキャパシタが好ましい。電気化学デバイスの構成部材としては、たとえば、電気化学デバイス用封止部材、電気化学デバイス用絶縁部材などがあげられる。
 本開示の電気化学デバイス用被圧縮部材は、たとえば、封止ガスケット、封止パッキンなどの封止部材、絶縁ガスケット、絶縁パッキンなどの絶縁部材として、好適に利用できる。封止部材は、液体もしくは気体の漏出または外部からの液体もしくは気体の侵入を防止するために用いられる部材である。絶縁部材は、電気を絶縁するために用いられる部材である。本開示の電気化学デバイス用被圧縮部材は、封止および絶縁の両方の目的のために用いられる部材であってもよい。
 本開示の電気化学デバイス用被圧縮部材は、圧縮永久歪みおよび耐電解液性に優れることから、電池用被圧縮部材として好適に使用でき、二次電池用被圧縮部材として特に好適に使用できる。
 本開示の電気化学デバイス用被圧縮部材は、非水電解液二次電池に用いられる電解液に対して、優れた耐性(耐電解液性)を有している。したがって、本開示の電気化学デバイス用被圧縮部材は、非水電解液二次電池用被圧縮部材として好適に使用でき、非水電解液リチウムイオン二次電池用被圧縮部材として特に好適に使用できる。
 上記の非水電解液二次電池としては、正極板(正極シート)、セパレータ、負極板(負極シート)、電池ケース、封口体およびガスケットを備えており、上記ガスケットとして、本開示の電気化学デバイス用被圧縮部材を備える非水電解液二次電池が挙げられる。
 非水電解液二次電池は、たとえば、開口部を有する電池ケースと、上記電池ケースに収容された正極板、セパレータ、負極板および非水電解液と、上記電池ケースの上記開口部を封口する封口体とを備えている。上記電池ケースと上記封口体とは、ガスケットにより封止される。上記封口体は、外部接続端子(正極端子または負極端子)を兼ねていてもよい。
 また、非水電解液二次電池は、たとえば、開口部を有する電池ケースと、上記電池ケースに収容された正極板、セパレータ、負極板および非水電解液と、上記電池ケースの上記開口部を封口する封口体とを備えており、上記封口体に、電極板(正極板または負極板)と電気的に接続される電極端子(正極端子または負極端子)が設けられている。上記封口体と上記電極端子とは、ガスケットにより封止される。
 ガスケットにより封止することによって、非水電解液の漏出が防止されるとともに、非水電解液二次電池の内部への水の浸入が防止される。また、ガスケットにより封止することによって、正極端子と負極端子との間が絶縁されて、端子間での短絡が防止される。したがって、ガスケットには、絶縁性とともに、低い圧縮永久歪み率および優れた耐電解液性が求められる。
 本開示の電気化学デバイス用被圧縮部材を備える非水電解液二次電池においては、部材間を封止するために、ガスケットとして、上記電気化学デバイス用被圧縮部材が用いられている。本開示の電気化学デバイス用被圧縮部材は、絶縁性とともに、低い圧縮永久歪み率および優れた耐電解液性を有していることから、上記非水電解液二次電池によれば、絶縁性が長期間維持され、しかも、非水電解液の液漏れおよび外部からの水の浸入が生じにくく、液漏れおよび水の浸入が長期間防止される。
 非水電解液二次電池に用いられる電解液は、溶媒を含むことが好ましい。上記溶媒の含有量は、電解液中70~99.999質量%であることが好ましく、80質量%以上がより好ましく、92質量%以下がより好ましい。
 上記溶媒は、カーボネート及びカルボン酸エステルからなる群より選択される少なくとも1種を含むことが好ましい。上記カーボネートは、環状カーボネートであってもよいし、鎖状カーボネートであってもよい。
 上記環状カーボネートは、非フッ素化環状カーボネートであってもよいし、フッ素化環状カーボネートであってもよい。
 上記非フッ素化飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、シス-2,3-ペンチレンカーボネート、シス-2,3-ブチレンカーボネート、2,3-ペンチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、1,2-ブチレンカーボネート及びブチレンカーボネートからなる群より選択される少なくとも1種が好ましい。
 上記フッ素化環状カーボネートは、フッ素化飽和環状カーボネートであってもよいし、フッ素化不飽和環状カーボネートであってもよい。
上記フッ素化飽和環状カーボネートは、フッ素原子を有する飽和環状カーボネートであり、具体的には、下記一般式(A):
Figure JPOXMLDOC01-appb-C000001
(式中、X~Xは同じか又は異なり、それぞれ-H、-CH、-C、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基を表す。ただし、X~Xの少なくとも1つは、-F、エーテル結合を有してもよいフッ素化アルキル基、又は、エーテル結合を有してもよいフッ素化アルコキシ基である。)で示される化合物が挙げられる。上記フッ素化アルキル基とは、-CF、-CFH、-CHF等である。
 上記鎖状カーボネートは、非フッ素化鎖状カーボネートであってもよいし、フッ素化鎖状カーボネートであってもよい。
 上記非フッ素化鎖状カーボネートとしては、例えば、CHOCOOCH(ジメチルカーボネート:DMC)、CHCHOCOOCHCH(ジエチルカーボネート:DEC)、CHCHOCOOCH(エチルメチルカーボネート:EMC)、CHOCOOCHCHCH(メチルプロピルカーボネート)、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、メチルイソプロピルカーボネート、メチル-2-フェニルフェニルカーボネート、フェニル-2-フェニルフェニルカーボネート、トランス-2,3-ペンチレンカーボネート、トランス-2,3-ブチレンカーボネート、エチルフェニルカーボネート等の炭化水素系鎖状カーボネートが挙げられる。なかでも、エチルメチルカーボネート、ジエチルカーボネート及びジメチルカーボネートからなる群より選択される少なくとも1種であることが好ましい。
 上記フッ素化鎖状カーボネートとしては、一般式(B):
RfOCOOR   (B)
(式中、Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。)で示される化合物を挙げることができる。
 Rfは、炭素数1~7のフッ素化アルキル基であり、Rは、炭素数1~7のフッ素原子を含んでいてもよいアルキル基である。上記フッ素化アルキル基は、アルキル基が有する水素原子の少なくとも1つをフッ素原子で置換したものである。Rがフッ素原子を含むアルキル基である場合、フッ素化アルキル基となる。
 上記鎖状カルボン酸エステルは、非フッ素化鎖状カルボン酸エステルであってもよいし、フッ素化鎖状カルボン酸エステルであってもよい。
 上記溶媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記溶媒が上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを含む場合、上記環状カーボネートと、上記鎖状カーボネート及び上記鎖状カルボン酸エステルからなる群より選択される少なくとも1種とを合計で、10~100体積%含むことが好ましく、30~100体積%含むことがより好ましく、50~100体積%含むことが更に好ましい。
 非水電解液二次電池に用いられる電解液は、更に、電解質塩を含むことが好ましい。上記電解質塩としては、リチウム塩、アンモニウム塩、金属塩のほか、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩等、電解液に使用することができる任意のものを用いることができる。
 リチウムイオン二次電池用電解液の電解質塩としては、リチウム塩が好ましい。
 上記リチウム塩として任意のものを用いることができ、具体的には以下のものが挙げられる。例えば、LiPF、LiN(FSO及びLiBFからなる群より選択される少なくとも1種のリチウム塩が好ましい。
 これらの電解質塩は単独で用いても、2種以上を併用してもよい。2種以上を併用する場合の好ましい一例は、LiPFとLiBFとの併用や、LiPFとLiPO、COSOLi又はFSOLiとの併用であり、高温保存特性、負荷特性やサイクル特性を向上させる効果がある。
 この場合、電解液全体100質量%に対するLiPF、LiN(FSO、LiBF、LiPO、COSOLi又はFSOLiの配合量に制限は無く、本開示の効果を著しく損なわない限り任意であるが、電解液に対して、通常、0.01質量%以上、好ましくは0.1質量%以上であり、また、通常30質量%以下、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。
 電解液中のこれらの電解質塩の濃度は、特に制限されない。電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、電解液中のリチウムの総モル濃度は、好ましくは0.3mol/L以上、より好ましくは0.4mol/L以上、更に好ましくは0.5mol/L以上であり、また、好ましくは3mol/L以下、より好ましくは2.5mol/L以下、更に好ましくは2.0mol/L以下である。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した。
<組成分析>
 19F-NMRを用いて測定した。
   測定装置:バリアン社製 VNMRS400
   共鳴周波数:376.04(Sfrq)
   パルス幅:30°(pw=6.8)
<フッ素原子含有率>
 含フッ素エラストマーのモノマー組成から算出した。
<ヨウ素原子含有率>
 含フッ素エラストマー12mgにNaSOを5mg混ぜ、純水20mlにNaCOとKCOとを1対1(重量比)で混合したものを30mg溶解した吸収液を用い、石英製のフラスコ中、酸素中で燃焼させ、30分放置後、島津20Aイオンクロマトグラフを用い測定した。検量線として、KI標準溶液、ヨウ素イオン0.5ppmを含むもの及び1.0ppmを含むものを用いた。
<ガラス転移温度(Tg)>
 示差走査熱量計(メトラー・トレド社製、DSC822e、もしくは、日立テクノサイエンス社製、X-DSC823e)を用い、試料10mgを20℃/分で昇温することによりDSC曲線を得て、DSC曲線の二次転移前後のベースラインの延長線と、DSC曲線の変曲点における接線との交点を示す温度をガラス転移温度とした。 
<ムーニー粘度(ML(1+10)121℃)>
 ASTM-D1646およびJIS K6300-1に準拠して測定した。
   測定機器:上島製作所社製の自動ムーニー粘度計
   ローター回転数:2rpm
   測定温度:121℃
<重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)>
 つぎの装置および条件で測定した。
   装置:HLC-8020(東ソー社製)
   カラム:GPC KF-806M 2本
       GPC KF-801 1本
       GPC KF-802 1本
   検出器:示差屈折率計
   展開溶媒:テトラヒドロフラン
   温度:35℃
   試料濃度:0.1重量%
   標準試料:単分散ポリスチレン各種((Mw/Mn)=1.14(Max))、TSK standard POLYSTYRENE(東ソー社製)
<架橋特性>
 レオメータ(エムアンドケー社製、MDRH2030)を用いて、160℃で10分の条件で、架橋性組成物の架橋曲線を求め、トルクの変化より、最低粘度(ML)、最高粘度(MH)、誘導時間(T10)および最適架橋時間(T90)を求めた。
<100%モジュラス(M100)>
 架橋性組成物を、160℃で10分間の条件で一次架橋させた後、180℃で4時間の条件で二次架橋させて、厚さ2mmのシートとし、得られたシートを用いて、JIS-K6251に準じて測定した。
<引張破断強度(Tb)および引張破断伸び(Eb)>
 架橋性組成物を、160℃で10分間の条件で一次架橋させた後、180℃で4時間の条件で二次架橋させて、厚さ2mmのシートとし、得られたシートを用いて、JIS-K6251に準じて測定した。
<硬度>
 架橋性組成物を、160℃で10分間の条件で一次架橋させた後、180℃で4時間の条件で二次架橋させて、厚さ2mmのシートとし、得られたシートを用いて、JIS-K6253に準じて、硬度(PEAK値)を測定した。
<圧縮永久歪み>
 JIS-B2401に規定されたP-24サイズのO-リングの圧縮永久歪みを、JIS-K6262に準じて測定した。具体的には、実施例および比較例で得られた二次架橋後のO-リングを、25%加圧圧縮下に、200℃で72時間保持したのち開放し、25℃の恒温室内に30分間放置した後、O-リングの厚みを測定し、圧縮永久歪みを求めた。
<耐電解液性>
 厚さ2mmの架橋後シートから2cm角の試験片を切り出し、60℃のリチウムイオン二次電池用非水電解液(1M-LiPF、エチレンカーボネート/エチルメチルカーボネート=30/70(体積%))に浸漬させ、72時間放置した後、以下の式により体積膨潤率を測定した。体積膨潤率が低いほど、耐電解液性に優れる。
   ΔV=(V-Vo)/Vo×100
    ΔV:体積膨潤率
    Vo:浸漬前の試験片体積
    V:浸漬後の試験片体積
<離型性>
 一度に65個のO-リングを作成できるキャビティを備える金型を、真空プレス機に設置し、チャンバー内を脱気した後、金型に架橋性組成物を充填した。充填した架橋性組成物を、10MPaの圧力でプレスし、160℃で7分間の条件で一次架橋させてO-リングシートを得た後、得られたO-リングシートを金型から取り出した。これらの操作を離型剤の塗布なしに合計で3回繰り返した。3回の成型に用いた金型および3回目の成型で得られたO-リングシートを観察して、以下の基準により離型性を評価した。
   ○:金型の上下面にバリや付着物による汚れが少なく、成型不良のO-リングが少ない。
   ×:O-リングシートが裂けたり、バリ汚れが多くあり、O-リングに割れやくぼみといった成型不良が目立つ。
作製例1
 攪拌装置として、電磁誘導攪拌装置を有する内容積3リットルの重合槽に、純水1925gとC11COONH3.85gと2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(1,1,2-トリフルオロアリルオキシ)プロポキシ]プロピオン酸アンモニウム塩0.096gを仕込み、系内を充分に窒素置換したのち減圧にした。この操作を5回繰返したのち、560rpmでの攪拌下に80℃まで昇温し、VdF/TFE/HFP=19.3/11.5/69.2(モル%)となるように内圧を1.47MPaに保持した。ついで、純水に溶解した過硫酸アンモニウム(APS)0.019gを窒素ガスにて圧入し、内圧を維持するようにVdF/TFE/HFP=50.3/19.3/30.4(モル%)に調整したモノマー混合物を連続的に580g圧入するまで反応を継続させた。また、反応終了までの3時間おきに分割圧入したものを含めて導入したAPS総量は0.19gであった。モノマー混合物を12.8g供給した時に、1,6-ジヨードパーフルオロヘキサン0.29g、さらに201.2g供給した時に、IMモノマー(CF=CFOCFCFCHI)2.09g、さらに243.2g供給した時に、1,6-ジヨードパーフルオロヘキサン2.05g、さらに303.4g供給した時に、IMモノマー2.09g、さらに375.6g供給した時に、IMモノマー2.09g、さらに445.8g供給した時に、IMモノマー2.09g、を窒素ガスにて圧入した。
 反応終了後に重合槽内を大気圧に戻して冷却し、乳濁液を得た。得られた乳濁液の重量は2525g、ポリマー濃度は23.0質量%であった。得られた含フッ素エラストマー1の各種物性を表1に示す。
作製例2
 攪拌装置として、電磁誘導攪拌装置を有する内容積138リットルの重合槽に、純水82リットルとC11COONH160gと2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(1,1,2-トリフルオロアリルオキシ)プロポキシ]プロピオン酸アンモニウム塩8.1gを仕込み、系内を充分に真空窒素置換した。そののち、150rpmでの攪拌下に80℃まで昇温し、VdF/TFE/HFP=18.9/10.2/71.0(モル%)となるように内圧を2MPaに保持した。ついで、純水に溶解したAPS4.2gを窒素ガスにて圧入し、内圧を維持するようにVdF/TFE/HFP=46.9/20.2/32.9(モル%)に調整したモノマー混合物を連続的に25.3kg圧入するまで反応を継続させた。また、反応終了までの3時間おきに分割圧入したものを含めて導入したAPS総量は6.2gであった。モノマー混合物を505g供給した時に、オクタフルオロ-1,4-ジヨードブタン53.9g、さらに1263g供給した時に、IMモノマー(CF=CFOCFCFCHI)153.7g、さらに19.4kg供給した時に、オクタフルオロ-1,4-ジヨードブタン95.4gを窒素ガスにて圧入した。
 反応終了後に重合槽内を大気圧に戻して冷却し、乳濁液を得た。得られた乳濁液の重量は105.7kg、ポリマー濃度が23.4質量%であった。得られた含フッ素エラストマー2の各種物性を表1に示す。
作製例3
 攪拌装置として、電磁誘導攪拌装置を有する内容積3リットルの重合槽に、純水1730gとC11COONH1.73gと2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(1,1,2-トリフルオロアリルオキシ)プロポキシ]プロピオン酸アンモニウム塩0.173gを仕込み、系内を充分に窒素置換したのち減圧にした。この操作を5回繰返し、減圧状態でVdF35g、TFE42g、HFP1090gを仕込み、攪拌下に80℃まで昇温した。ついで、純水10gに溶解したAPS0.24gを窒素ガスにて圧入して重合を開始し、(a)、(b)、(c)および(d)の条件で重合を継続し、4時間後に攪拌を止め、モノマーを放出して重合を停止した。
 (a)重合槽内組成VdF/TFE/HFP=6.5/5.0/88.5(モル%)に対するPeng-Robinson式による臨界温度・臨界圧力計算をAspen Plus Ver.11.1を用いて行ったところ、Tc=87.7℃、Pc=3.05MPaであった。さらに換算温度TR0.95、換算圧力PR0.80による変換を行なうと、T=69.7℃、P=2.44MPaとなり、ここでの重合条件(80℃、4.5MPa)は、換算温度以上かつ換算圧力以上である。
 (b)VdF/TFE/HFP(65.2/25.1/9.7(モル%))モノマー混合物を連続的に供給し、気相部分の圧力を3.5MPaに維持した。また、重合終了までに、400gのモノマー混合物を槽内に供給した。
 (c)攪拌速度を560rpmで維持した。
 (d)(b)記載のモノマー混合物を8g供給した時に、オクタフルオロ-1,4-ジヨードブタン1.65g、さらに28g供給した時に、IMモノマー(CF=CFOCFCFCHI)4.8g、さらに307g供給した時に、オクタフルオロ-1,4-ジヨードブタン2.66gを窒素ガスにて圧入した。
 反応終了後に重合槽内を大気圧に戻して冷却し、乳濁液を得た。得られた乳濁液の重量は2350g、ポリマー濃度が26.8質量%であった。得られた含フッ素エラストマー3の各種物性を表1に示す。
作製例4
 作製例2におけるモノマー混合物を連続的に仕込む際、505g供給した時に、オクタフルオロ-1,4-ジヨードブタン37.2g、さらに1263g供給した時に、IMモノマー106.2g、さらに19.4kg供給した時に、オクタフルオロ-1,4-ジヨードブタン66.0gを窒素ガスにて圧入した以外は、作製例2と同様にして、乳濁液を得た。得られた乳濁液の重量は105.6kg、ポリマー濃度は22.8質量%であった。得られた含フッ素エラストマー4の各種物性を表1に示す。
作製例5
 攪拌装置として、電磁誘導攪拌装置を有する内容積3リットルの重合槽に、純水1924gとC11COONH13.9gと2,3,3,3-テトラフルオロ-2-[1,1,2,3,3,3-ヘキサフルオロ-2-(1,1,2-トリフルオロアリルオキシ)プロポキシ]プロピオン酸アンモニウム塩0.096gを仕込み、系内を充分に真空窒素置換した。そののち、攪拌下に80℃まで昇温し、VdF/TFE/HFP=18.4/11.4/70.2(モル%)となるように内圧を2MPaに保持した。ついで、純水に溶解したAPS0.04gを窒素ガスにて圧入し、内圧を維持するようにVdF/TFE/HFP=50.6/23.2/26.2(モル%)に調整したモノマー混合物を連続的に618g圧入するまで反応を継続させた。また、反応終了までの3時間おきに純水に溶解したAPS0.04gを圧入した。モノマー混合物を19g供給した時に、オクタフルオロ-1,4-ジヨードブタン5.90gを窒素で圧入した。さらに、最初にAPSを窒素ガスにて圧入してからモノマー混合物を30g供給するごとに、CH=CH-(CF-CH=CH3.74gを20回に分割して槽内に圧入した。
 反応終了後に重合槽内を大気圧に戻して冷却し、乳濁液を得た。得られた乳濁液の重量は2563g、ポリマー濃度が24.0質量%であった。得られた含フッ素エラストマー5の各種物性を表1に示す。
作製例6
 作製例5におけるモノマー混合物を連続的に仕込む際、19g供給した時に、オクタフルオロ-1,4-ジヨードブタン4.23gを圧入した以外は、作製例5と同様にして、乳濁液を得た。
 反応終了後に重合槽内を大気圧に戻して冷却し、乳濁液を得た。得られた乳濁液の重量は2570g、ポリマー濃度が23.8質量%であった。得られた含フッ素エラストマー6の各種物性を表1に示す。
作製例7
 含フッ素エラストマー7として、表1に記載の物性を有する含フッ素エラストマーを用いた。
作製例8
 含フッ素エラストマー8として、表1に記載の物性を有する含フッ素エラストマーを用いた。
Figure JPOXMLDOC01-appb-T000002
実施例1
 100質量部の含フッ素エラストマー1、20質量部のカーボンブラック(Cancarb社製、サーマックスN990)、4質量部のトリアリルイソシアヌレート(日本化成社製、TAIC)、および、1.5質量部のパーオキサイド(日油社製、パーヘキサ25B)を、8インチ2本ロールを用いて、通常の方法で20~70℃にて混練し、架橋性組成物を調製した。
 厚さ2mmのシートやP-24サイズのO-リングを作成できる金型を用いて、得られた架橋性組成物を成型し、160℃で10分間の条件で一次架橋させた後、金型から取り出し、オーブン中で、180℃で4時間の条件で二次架橋を行い、架橋成形物を作製した。架橋性組成物および架橋成形物の評価結果を表2に示す。
実施例2~6および比較例1~2
 含フッ素エラストマーの種類を表2に記載のとおりに変更した以外は、実施例1と同様にして、架橋性組成物を調製し、架橋成形物を作製した。架橋性組成物および架橋成形物の評価結果を表2に示す。
実施例7
 80質量部の含フッ素エラストマー1および20質量部の含フッ素エラストマー8を、オープンロールを用いて、混練することによって、含フッ素エラストマー混合物を調製した。得られた含フッ素エラストマー混合物を用いた以外は、実施例1と同様にして、架橋性組成物を調製し、架橋成形物を作製した。架橋性組成物および架橋成形物の評価結果を表2に示す。
実施例8
 50質量部の含フッ素エラストマー3および50質量部の含フッ素エラストマー8を、オープンロールを用いて、混練することによって、含フッ素エラストマー混合物を調製した。得られた含フッ素エラストマー混合物を用いた以外は、実施例1と同様にして、架橋性組成物を調製し、架橋成形物を作製した。架橋性組成物および架橋成形物の評価結果を表2に示す。
実施例9
 80質量部の含フッ素エラストマー3および20質量部の含フッ素エラストマー8を、オープンロールを用いて、混練することによって、含フッ素エラストマー混合物を調製した。得られた含フッ素エラストマー混合物を用いた以外は、実施例1と同様にして、架橋性組成物を調製し、架橋成形物を作製した。架橋性組成物および架橋成形物の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003

Claims (9)

  1.  一般式(1):CX =CF-Rf-X
    (式中、Xは、独立に、HまたはF、Rfはフッ素化アルキレン基またはフッ素化オキシアルキレン基、XはIまたはBrを表す。各基の炭素数が2以上である場合には、各基は、2つの炭素原子間に酸素原子を有していてもよく、芳香環を有していてもよく、直鎖状または分岐鎖状であってよい。)で表される架橋性基含有モノマー(1)、および、
     一般式(2):CX =CX-Z-CX=CX
    (式中、Xは、独立に、H、F、アルキル基またはフッ素化アルキル基、Zは、アルキレン基、フッ素化アルキレン基、シクロアルキレン基、フッ素化シクロアルキレン基、オキシアルキレン基、または、フッ素化オキシアルキレン基を表す。各基の炭素数が2以上である場合には、各基は、2つの炭素原子間に酸素原子を有していてもよく、芳香環を有していてもよく、直鎖状または分岐鎖状であってよい。)で表される架橋性基含有モノマー(2)からなる群より選択される少なくとも1種の架橋性基含有モノマーに基づく単位を含有する含フッ素エラストマーを含有する架橋性組成物を架橋して得られる電気化学デバイス用被圧縮部材。
  2.  架橋性基含有モノマー(1)が、
     一般式(3):CF=CF(OCFCF(CF))(OCFCFCH
    (式中、nは0~3の整数、mは1~5の整数を表す)で表される架橋性基含有モノマーである請求項1に記載の電気化学デバイス用被圧縮部材。
  3.  架橋性基含有モノマー(2)が、
     一般式(4):CH=CH-(CF-CH=CH
    (式中、kは2~8の整数を表す)で表される架橋性基含有モノマーである請求項1または2に記載の電気化学デバイス用被圧縮部材。
  4.  前記含フッ素エラストマーが、テトラフルオロエチレン単位をさらに含有し、前記含フッ素エラストマー中のテトラフルオロエチレン単位の含有量が、全モノマー単位に対して、15~60モル%である請求項1~3のいずれかに記載の電気化学デバイス用被圧縮部材。
  5.  前記含フッ素エラストマーが、ビニリデンフルオライド単位をさらに含有し、前記含フッ素エラストマー中のビニリデンフルオライド単位の含有量が、全モノマー単位に対して、35~70モル%である請求項1~4のいずれかに記載の電気化学デバイス用被圧縮部材。
  6.  前記架橋性組成物が、前記架橋性基含有モノマーに基づく単位を含有しない含フッ素エラストマーをさらに含有する請求項1~5のいずれかに記載の電気化学デバイス用被圧縮部材。
  7.  前記架橋性組成物が、パーオキサイド架橋剤をさらに含有する請求項1~6のいずれかに記載の電気化学デバイス用被圧縮部材。
  8.  非水電解液二次電池用被圧縮部材である請求項1~7のいずれかに記載の電気化学デバイス用被圧縮部材。
  9.  封止部材または絶縁部材である請求項1~8のいずれかに記載の電気化学デバイス用被圧縮部材。
PCT/JP2020/023415 2019-06-14 2020-06-15 電気化学デバイス用被圧縮部材 WO2020251055A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/596,480 US20220306781A1 (en) 2019-06-14 2020-06-15 Compressed member for electrochemical device
JP2021526178A JP7323822B2 (ja) 2019-06-14 2020-06-15 電気化学デバイス用被圧縮部材
EP20823135.7A EP3985038A4 (en) 2019-06-14 2020-06-15 COMPRESSED ELECTROCHEMICAL DEVICE ELEMENT
CN202080041708.5A CN113924340A (zh) 2019-06-14 2020-06-15 电化学器件用被压缩部件
KR1020217039152A KR20220003590A (ko) 2019-06-14 2020-06-15 전기 화학 디바이스용 피압축 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019111151 2019-06-14
JP2019-111151 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020251055A1 true WO2020251055A1 (ja) 2020-12-17

Family

ID=73782029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023415 WO2020251055A1 (ja) 2019-06-14 2020-06-15 電気化学デバイス用被圧縮部材

Country Status (6)

Country Link
US (1) US20220306781A1 (ja)
EP (1) EP3985038A4 (ja)
JP (1) JP7323822B2 (ja)
KR (1) KR20220003590A (ja)
CN (1) CN113924340A (ja)
WO (1) WO2020251055A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168654A1 (ja) * 2021-02-05 2022-08-11 ダイキン工業株式会社 封止部材及び電池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236407A (ja) * 1985-07-08 1987-02-17 アウシモント、ソチエタ、ペル、アツイオ−ニ 硬化性フルオロエラストマーの製法
JPH0812726A (ja) * 1993-12-29 1996-01-16 Ausimont Spa ビスオレフィンに由来するモノマー単位を含む新規フッ素エラストマー
JPH1180271A (ja) * 1997-09-05 1999-03-26 Nippon Mektron Ltd フルオロエラストマーおよびその製造法
JP2005350490A (ja) * 2004-06-08 2005-12-22 Yunimatekku Kk フッ素ゴム組成物
JP2008235081A (ja) * 2007-03-22 2008-10-02 Daikin Ind Ltd 二次電池用パッキン
JP2008303321A (ja) * 2007-06-08 2008-12-18 Yunimatekku Kk 燃料ホース成形用含フッ素エラストマー組成物
JP2009117063A (ja) * 2007-11-02 2009-05-28 Nok Corp 燃料電池セルシール用フッ素ゴム組成物
WO2009119409A1 (ja) * 2008-03-27 2009-10-01 ダイキン工業株式会社 パーオキサイド架橋系含フッ素エラストマー組成物
JP2010070632A (ja) * 2008-09-18 2010-04-02 Unimatec Co Ltd パーオキサイド架橋可能なフルオロエラストマー
JP2016004668A (ja) 2014-06-16 2016-01-12 トヨタ自動車株式会社 密閉型電池
WO2018008256A1 (ja) * 2016-07-06 2018-01-11 ダックエンジニアリング株式会社 印刷物検査装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227780A (ja) * 2008-03-21 2009-10-08 Daikin Ind Ltd 含フッ素グラフト共重合体、含フッ素グラフト共重合体の製造方法、および該含フッ素グラフト共重合体を用いた組成物
JP6414146B2 (ja) * 2016-06-22 2018-10-31 株式会社村田製作所 電解液、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN109963887A (zh) * 2016-11-09 2019-07-02 3M创新有限公司 可过氧化物固化的部分氟化聚合物
CN109071003A (zh) * 2017-12-22 2018-12-21 深圳市大疆创新科技有限公司 无人机及无人机控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236407A (ja) * 1985-07-08 1987-02-17 アウシモント、ソチエタ、ペル、アツイオ−ニ 硬化性フルオロエラストマーの製法
JPH0812726A (ja) * 1993-12-29 1996-01-16 Ausimont Spa ビスオレフィンに由来するモノマー単位を含む新規フッ素エラストマー
JPH1180271A (ja) * 1997-09-05 1999-03-26 Nippon Mektron Ltd フルオロエラストマーおよびその製造法
JP2005350490A (ja) * 2004-06-08 2005-12-22 Yunimatekku Kk フッ素ゴム組成物
JP2008235081A (ja) * 2007-03-22 2008-10-02 Daikin Ind Ltd 二次電池用パッキン
JP2008303321A (ja) * 2007-06-08 2008-12-18 Yunimatekku Kk 燃料ホース成形用含フッ素エラストマー組成物
JP2009117063A (ja) * 2007-11-02 2009-05-28 Nok Corp 燃料電池セルシール用フッ素ゴム組成物
WO2009119409A1 (ja) * 2008-03-27 2009-10-01 ダイキン工業株式会社 パーオキサイド架橋系含フッ素エラストマー組成物
JP2010070632A (ja) * 2008-09-18 2010-04-02 Unimatec Co Ltd パーオキサイド架橋可能なフルオロエラストマー
JP2016004668A (ja) 2014-06-16 2016-01-12 トヨタ自動車株式会社 密閉型電池
WO2018008256A1 (ja) * 2016-07-06 2018-01-11 ダックエンジニアリング株式会社 印刷物検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985038A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168654A1 (ja) * 2021-02-05 2022-08-11 ダイキン工業株式会社 封止部材及び電池
JP7121325B1 (ja) 2021-02-05 2022-08-18 ダイキン工業株式会社 封止部材及び電池
JP2022120805A (ja) * 2021-02-05 2022-08-18 ダイキン工業株式会社 封止部材及び電池

Also Published As

Publication number Publication date
EP3985038A4 (en) 2023-06-14
CN113924340A (zh) 2022-01-11
JP7323822B2 (ja) 2023-08-09
JPWO2020251055A1 (ja) 2020-12-17
EP3985038A1 (en) 2022-04-20
KR20220003590A (ko) 2022-01-10
US20220306781A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
KR102135634B1 (ko) 부분적으로 플루오르화된 엘라스토머 및 이의 제조 방법 및 사용 방법
JP5168918B2 (ja) 含フッ素エラストマーおよびその組成物
JP5075324B2 (ja) 硬化性フルオロエラストマー
EP1347012B2 (en) Curable Fluoroelastomers
JP4321922B2 (ja) フルオロエラストマー
JP4491547B2 (ja) 含フッ素エラストマー組成物
EP2655441B1 (en) Low viscosity fluoroelastomers
EP3350237B1 (en) Fluoroelastomer composition
JP7323822B2 (ja) 電気化学デバイス用被圧縮部材
JP7161137B2 (ja) 電気化学デバイス用被圧縮部材
US20100233580A1 (en) Fluororubber composition for cell seals of fuel cells
EP2115058A1 (en) Fluoroelastomer composition
JP2002114824A (ja) 含フッ素エラストマー
KR20210027422A (ko) 불소 함유 폴리머를 함유하는 조성물 및 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526178

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217039152

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020823135

Country of ref document: EP