WO2022168654A1 - 封止部材及び電池 - Google Patents
封止部材及び電池 Download PDFInfo
- Publication number
- WO2022168654A1 WO2022168654A1 PCT/JP2022/002408 JP2022002408W WO2022168654A1 WO 2022168654 A1 WO2022168654 A1 WO 2022168654A1 JP 2022002408 W JP2022002408 W JP 2022002408W WO 2022168654 A1 WO2022168654 A1 WO 2022168654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sealing member
- vdf
- group
- fluorine
- battery
- Prior art date
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 140
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000007906 compression Methods 0.000 claims abstract description 27
- 230000006835 compression Effects 0.000 claims abstract description 27
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 18
- 239000013013 elastic material Substances 0.000 claims abstract description 12
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical group FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 85
- 229920001971 elastomer Polymers 0.000 claims description 78
- 239000000806 elastomer Substances 0.000 claims description 77
- 229910052731 fluorine Inorganic materials 0.000 claims description 57
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 50
- 239000011737 fluorine Substances 0.000 claims description 50
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 14
- 229910001416 lithium ion Inorganic materials 0.000 claims description 14
- 239000008151 electrolyte solution Substances 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 8
- 230000003247 decreasing effect Effects 0.000 abstract 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 50
- 229920001577 copolymer Polymers 0.000 description 48
- 239000000178 monomer Substances 0.000 description 45
- 238000004132 cross linking Methods 0.000 description 31
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 31
- 239000000203 mixture Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 21
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 19
- 229910052740 iodine Inorganic materials 0.000 description 17
- 238000000465 moulding Methods 0.000 description 17
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 15
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 15
- 239000003431 cross linking reagent Substances 0.000 description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 125000001153 fluoro group Chemical group F* 0.000 description 14
- -1 nickel metal hydride Chemical class 0.000 description 13
- 229920006169 Perfluoroelastomer Polymers 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 12
- 238000004088 simulation Methods 0.000 description 10
- 125000002947 alkylene group Chemical group 0.000 description 9
- 229920001973 fluoroelastomer Polymers 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 8
- 239000011630 iodine Substances 0.000 description 8
- 125000005702 oxyalkylene group Chemical group 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 description 6
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 6
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 6
- 229910052794 bromium Inorganic materials 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 125000004093 cyano group Chemical group *C#N 0.000 description 6
- 150000001451 organic peroxides Chemical class 0.000 description 6
- 125000004430 oxygen atom Chemical group O* 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 3
- 125000002355 alkine group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 125000005739 1,1,2,2-tetrafluoroethanediyl group Chemical group FC(F)([*:1])C(F)(F)[*:2] 0.000 description 2
- WUMVZXWBOFOYAW-UHFFFAOYSA-N 1,2,3,3,4,4,4-heptafluoro-1-(1,2,3,3,4,4,4-heptafluorobut-1-enoxy)but-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)=C(F)OC(F)=C(F)C(F)(F)C(F)(F)F WUMVZXWBOFOYAW-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical group CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 2
- VQXINLNPICQTLR-UHFFFAOYSA-N carbonyl diazide Chemical group [N-]=[N+]=NC(=O)N=[N+]=[N-] VQXINLNPICQTLR-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 125000002993 cycloalkylene group Chemical group 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical group 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- HSVFKFNNMLUVEY-UHFFFAOYSA-N sulfuryl diazide Chemical group [N-]=[N+]=NS(=O)(=O)N=[N+]=[N-] HSVFKFNNMLUVEY-UHFFFAOYSA-N 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- KHXKESCWFMPTFT-UHFFFAOYSA-N 1,1,1,2,2,3,3-heptafluoro-3-(1,2,2-trifluoroethenoxy)propane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)C(F)(F)F KHXKESCWFMPTFT-UHFFFAOYSA-N 0.000 description 1
- RMHCWMIZBMGHKV-UHFFFAOYSA-N 1,1,2,3,3,4,4,5,5,6,6,6-dodecafluorohex-1-ene Chemical compound FC(F)=C(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F RMHCWMIZBMGHKV-UHFFFAOYSA-N 0.000 description 1
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- QMIWYOZFFSLIAK-UHFFFAOYSA-N 3,3,3-trifluoro-2-(trifluoromethyl)prop-1-ene Chemical compound FC(F)(F)C(=C)C(F)(F)F QMIWYOZFFSLIAK-UHFFFAOYSA-N 0.000 description 1
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000004129 EU approved improving agent Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- GQRCDUBMGNBKOX-UHFFFAOYSA-N deca-1,8-diene Chemical compound CC=CCCCCCC=C GQRCDUBMGNBKOX-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- FFYWKOUKJFCBAM-UHFFFAOYSA-N ethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC=C FFYWKOUKJFCBAM-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000000864 peroxy group Chemical group O(O*)* 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/193—Organic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/021—Sealings between relatively-stationary surfaces with elastic packing
- F16J15/022—Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/102—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/104—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/10—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
- F16J15/104—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by structure
- F16J15/106—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by structure homogeneous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/184—Sealing members characterised by their shape or structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/186—Sealing members characterised by the disposition of the sealing members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/198—Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to sealing members and batteries.
- Patent Document 1 discloses compressing and mounting such a sealing member in a cylindrical battery.
- An object of the present disclosure is to provide a sealing member that achieves both the effect of suppressing the permeation and leakage of the electrolytic solution and the effect of reducing the occurrence rate of breakage of the sealing member. be.
- This disclosure is A sealing member for a battery using a non-aqueous electrolyte
- the material constituting the sealing member is made of an elastic material, Compression ratio R at the time of wearing is 50% or more,
- Compression ratio R at the time of wearing is 50% or more
- the elongation at break according to JIS K6251 of the material constituting the sealing member is Eb
- the aspect ratio of the cross section is ⁇
- the sealing member has an annular shape with a rectangular cross section.
- T is 0.4mm ⁇ T ⁇ 3.5mm is preferably satisfied.
- W is 0.4mm ⁇ W ⁇ 3.5mm is preferably satisfied.
- the compressibility is preferably 52% or more.
- the material having elasticity is preferably a fluorine-containing elastomer.
- the elastic material is preferably an elastomer containing vinylidene fluoride units.
- a battery using a non-aqueous electrolyte is preferably a lithium ion battery.
- the battery is preferably a rectangular battery.
- the present disclosure also provides a battery using a non-aqueous electrolytic solution, which is characterized by having any of the sealing members described above.
- the sealing member of the present disclosure is excellent in that it can suppress the permeation and leakage of the electrolytic solution and also reduces the incidence of breakage of the sealing member. It can be suitably used in a battery using a non-aqueous electrolyte.
- FIG. 1 is a schematic diagram showing a cross-sectional view of an example of a sealing member of the present disclosure
- FIG. FIG. 4 is a cross-sectional view showing an example of a sealed state of the present disclosure
- FIG. 5 is a diagram showing the relationship between the maximum strain and compressibility on the sealing member surface by simulation.
- FIG. 4 is a diagram showing the relationship between the maximum strain on the surface of the sealing member and the cross-sectional aspect ratio by simulation.
- the sealing member in a battery using a non-aqueous electrolyte plays an important role of suppressing permeation of the electrolyte. Furthermore, since the sealing member needs to be in close contact with the member, it is generally made of an elastic material such as an elastomer. A part of the components of the electrolytic solution permeate through such a sealing member, and the electrolytic solution decreases after long-term use. If the amount of the electrolyte decreases, the performance of the battery deteriorates, so it is necessary to suppress permeation of such components in the electrolyte. In particular, since secondary batteries are used for a long period of time, suppression of such permeation is an important issue.
- the present disclosure is a sealing member for a battery using a non-aqueous electrolyte, which is made of an elastic material, has a compressibility R of 50% or more when attached, and is a sealing member.
- the breaking elongation of the constituent material is Eb and the aspect ratio of the cross-sectional dimension is ⁇
- the sealing member of the present disclosure is a sealing member used in batteries using non-aqueous electrolytes. As described above, since it has the feature of being able to suppress permeation of electrolyte, it can be used in any battery having a non-aqueous electrolyte.
- batteries include lithium ion batteries, lithium batteries, lithium sulfur batteries, sodium ion batteries, nickel metal hydride batteries, and the like. Among these, it can be used particularly preferably in lithium ion batteries.
- the battery of the present disclosure uses a non-aqueous electrolyte. That is, since it has the effect of suppressing the permeation of the electrolytic solution components, excellent effects are exhibited when the sealing member of the present disclosure is used in a battery having such a non-aqueous electrolytic solution.
- the electrolyte in this embodiment is a lithium salt such as LiPF6 .
- a lithium salt such as LiPF6
- an appropriate amount of lithium salt such as LiPF 6 can be dissolved in a non-aqueous electrolyte such as a mixed solvent of diethyl carbonate and ethylene carbonate and used as the electrolyte.
- the battery of the present embodiment is constructed by injecting the electrolyte and sealing.
- Lithium ion batteries are known in the form of squares, cylinders, and the like, and any of these can be used.
- An example of a prismatic lithium ion battery is shown in FIG.
- a battery member is mounted in a rectangular parallelepiped housing, and electrodes are installed in two through-holes provided on the upper surface of FIG.
- the sealing member of the present disclosure is attached together with the electrodes to prevent permeation and leakage of the non-aqueous electrolytic solution in the housing. Therefore, in this case, two sealing members are used for one battery.
- Cylindrical lithium ion batteries use a sealing member when fitting the anode into a through hole provided in a cylindrical container. In this case, one sealing member is used for one battery.
- Cylindrical lithium-ion batteries generally have a low amount of non-aqueous electrolyte present in the battery. Therefore, even if the absolute amount of permeation is small, the rate of decrease in battery performance is large. Therefore, it is presumed that it is required to have a permeability equal to or higher than that of the prismatic lithium ion. From the above point of view, even when the sealing member of the present disclosure described above is applied to a cylindrical lithium ion battery, excellent effects can be obtained.
- compression rate R In the present disclosure, the sealing member is attached with a compressibility of 50% or more. Attaching the sealing member in a state of high compressibility reduces the transmittance. This point was examined through experiments.
- the compressibility R is a ratio obtained by dividing the dimensional change in thickness from before compression to after compression in the compression direction of the sealing member by the dimensional value of the thickness before compression. . When expressed in percentage (%), the numerical value is multiplied by 100.
- the compressibility is more preferably 50% or more, still more preferably 52% or more, and even more preferably 54% or more.
- the compressibility is more preferably 80% or less, even more preferably 70% or less, even more preferably 65% or less.
- the upper limit of the compression rate is not particularly limited, but applying a compression rate above a certain level in the assembly process may cause problems due to deformation of peripheral members that constitute the battery, such as the battery lid. Therefore, the above range is a preferable value as a practically practicable range. The grounds for deriving such numerical ranges are shown.
- Batteries are desired to have a durability of 100,000 hours. In order to achieve this, it is desired that the permeation amount of the electrolyte after 1000000 hours is less than 10%. On the other hand, in a general prismatic lithium ion battery, about 100 g of electrolytic solution is enclosed. Therefore, it is necessary to set the permeation amount of the electrolytic solution to less than 0.05 g in 1000 hours.
- the device is composed of a container in which the electrolytic solution is sealed, and a cover modeled on an electrode for sealing the container outlet together with the sealing member, similar to the component structure of the electrode part in the battery. It is compressed in the thickness direction at a predetermined compression rate by the lid body, and then held in that state for a certain period of time.
- the container and lid are made of aluminum alloy, which has sufficient rigidity against the sealing member so as not to be deformed during operation, and is impermeable to the non-aqueous electrolyte, and is used in actual batteries. The amount of permeation was determined by measuring the amount of change in the total weight of the device over time.
- the elastomer used here was obtained by molding an elastomer having the following composition by the following molding method.
- the manufactured sealing member had an annular shape with a rectangular cross section, and the outer diameter of the annular ring was 17.7 mm, T was 1.6 mm, and W was 1.75 mm.
- the sealing member of the present disclosure is made of an elastic material. That is, by using a material having elasticity, performance as a sealing member is obtained.
- Materials having elasticity are not particularly limited, and polymers generally called elastomers or crosslinked products thereof can be used. Crosslinked elastomers are generally more preferred.
- the material having elasticity is most preferably a fluorine-containing elastomer or a cross-linked product thereof, because of its low permeability to electrolyte components.
- the above-mentioned cross-linked product may be obtained by internal cross-linking in which the elastomer has a cross-linking group, or may be used in combination with a cross-linking agent.
- fluorine-containing elastomers examples include partially fluorinated elastomers and perfluoroelastomers. These are described in detail below.
- the partially fluorinated elastomer includes VdF-based fluorinated elastomer, TFE/propylene (Pr)-based fluorinated elastomer, TFE/Pr/VdF-based fluorinated elastomer, ethylene (Et)/HFP-based fluorinated elastomer, Et/ HFP/VdF-based fluorine-containing elastomers, Et/HFP/TFE-based fluorine-containing elastomers, and the like are included.
- VdF-based fluorine-containing elastomers are more preferable in terms of heat aging resistance and oil resistance.
- a VdF-based fluorinated elastomer is a partially fluorinated elastomer having VdF units.
- the VdF unit is preferably 20 mol% or more and 90 mol% or less of the total number of moles of the VdF unit and the monomer units derived from other monomers, and 40 mol% or more and 85 mol % or less is more preferable, 45 mol % or more and 80 mol % or less is still more preferable, and 50 mol % or more and 80 mol % or less is particularly preferable.
- VdF-based fluorine-containing elastomer are not particularly limited as long as they are copolymerizable with VdF, and for example, fluorine-containing monomers can be used.
- VdF-based fluorine-containing elastomers include VdF/HFP copolymers, VdF/TFE/HFP copolymers, VdF/CTFE copolymers, VdF/CTFE/TFE copolymers, VdF/PAVE copolymers, and VdF/TFE.
- /PAVE copolymer, VdF/HFP/PAVE copolymer, VdF/HFP/TFE/PAVE copolymer, VdF/TFE/Pr copolymer, VdF/Et/HFP copolymer and VdF/ CH2 CFCF
- At least one copolymer selected from the group consisting of 3 copolymers is preferred.
- the VdF/PAVE copolymer preferably has a VdF/PAVE composition of (65-90)/(35-10) (mol %).
- the composition of VdF/PAVE is also one of the preferred forms in which it is (50 to 78)/(50 to 22) (mol %).
- the VdF/TFE/PAVE copolymer preferably has a VdF/TFE/PAVE composition of (40-80)/(3-40)/(15-35) (mol %).
- the VdF/HFP/PAVE copolymer preferably has a VdF/HFP/PAVE composition of (65-90)/(3-25)/(3-25) (mol %).
- the composition of VdF/HFP/TFE/PAVE is (40-90)/(0-25)/(0-40)/(3-35) (mol%) is preferred, and (40 to 80)/(3 to 25)/(3 to 40)/(3 to 25) (mol%) is more preferred.
- VdF/CH 2 CFCF 3
- VdF and CH 2 CFCF 3
- other monomer units are 1 to 50 mol % of the total monomer units.
- PEVE perfluoroethyl vinyl ether
- CTFE trifluoroethylene
- hexafluoroisobutene vinyl fluoride
- Et, Pr an alkyl vinyl ether
- a monomer that provides a crosslinkable group are preferable, and PMVE, CTFE, HFP and TFE are more preferable.
- TFE/Pr partial fluorine elastomer refers to a fluorine-containing copolymer composed of 45 to 70 mol% of TFE and 55 to 30 mol% of Pr. In addition to these two components, a specific third component may be included.
- Specific third components include, for example, fluorine-containing olefins other than TFE (e.g., VdF, HFP, CTFE, perfluoro(butyl ethylene), etc.), fluorine-containing vinyl ethers (perfluoro(propyl vinyl ether), perfluoro(methyl vinyl ether) etc.); ⁇ -olefins (ethylene, 1-butene, etc.), vinyl ethers (ethyl vinyl ether, butyl vinyl ether, hydroxybutyl vinyl ether, etc.), vinyl esters (vinyl acetate, vinyl benzoate, crotonic acid (vinyl, vinyl methacrylate, etc.);
- the specific third component may be used alone or in combination of two or more.
- the TFE/Pr-based partial fluoroelastomer preferably contains VdF, and among the TFE/Pr-based partial fluoroelastomers, an elastomer composed of TFE, Pr, and VdF is called a TFE/Pr/VdF-based fluoroelastomer.
- the TFE/Pr/VdF-based fluoroelastomer may further contain the above specific third component other than VdF.
- the specific third component may be used alone or in combination of two or more.
- the total content of the third component in the TFE/Pr-based partially fluoroelastomer is preferably 35 mol% or less, more preferably 33 mol% or less, and even more preferably 31 mol% or less.
- the Et/HFP copolymer preferably has an Et/HFP composition of (35 to 80)/(65 to 20) (mol %), (40 to 75)/(60 to 25) (mol %) is more preferred.
- the Et/HFP/TFE copolymer preferably has an Et/HFP/TFE composition of (35 to 75)/(25 to 50)/(0 to 15) (mol%), and (45 to 75 )/(25-45)/(0-10) (mol %) is more preferred.
- the partially fluoroelastomer is preferably a partially fluoroelastomer containing a VdF unit, more preferably a VdF/HFP copolymer or a VdF/HFP/TFE copolymer, and the composition of VdF/HFP/TFE is (32-85)/( 10-34)/(0-34) (mol%) is particularly preferred.
- the composition of VdF / HFP / TFE is more preferably (32-85) / (15-34) / (0-34) (mol%), (47-81) / (17-29) / (0- 26) (mole %) is more preferred.
- the composition of VdF/HFP is preferably (45 to 85) / (15 to 55) (mol%), more preferably (50 to 83) / (17 ⁇ 50) (mol%), more preferably (55 to 81) / (19 to 45) (mol%), particularly preferably (60 to 80) / (20 to 40) (mol%) be.
- the composition of VdF/HFP/TFE is preferably (32-80)/(10-34)/(4-34) (mol%).
- the configuration described above is the configuration of the main monomer of the partially fluoroelastomer, and in addition to the main monomer, a monomer that provides a crosslinkable group may be copolymerized.
- a monomer that provides the crosslinkable group any monomer can be used as long as it can introduce an appropriate crosslinkable group into the partially fluorinated elastomer depending on the production method and the crosslinking system.
- Known polymerizable compounds containing crosslinkable groups such as bonds, cyano groups, carboxyl groups, hydroxyl groups, amino groups, and ester groups can be mentioned.
- CY 1 2 CY 2 R f 2 X 1 (2) (wherein Y 1 and Y 2 are fluorine atoms, hydrogen atoms or —CH 3 ; R f 2 may have one or more etheric oxygen atoms and may have an aromatic ring , a linear or branched fluorine-containing alkylene group in which some or all of the hydrogen atoms are substituted with fluorine atoms; X 1 is an iodine atom or a bromine atom)
- Y 1 and Y 2 are fluorine atoms, hydrogen atoms or —CH 3 ; R f 2 may have one or more etheric oxygen atoms and may have an aromatic ring , a linear or branched fluorine-containing alkylene group in which some or all of the hydrogen atoms are substituted with fluorine atoms; X 1 is an iodine atom or a bromine atom)
- the compound represented by can be mentioned.
- CY 1 2 CY 2 R f 3 CHR 1 -X 1 (3) (Wherein, Y 1 , Y 2 and X 1 are as defined above, R f 3 may have one or more etheric oxygen atoms, and some or all of the hydrogen atoms may be substituted with fluorine atoms.
- linear or branched chain fluorine-containing alkylene group that is, a linear or branched chain fluorine-containing alkylene group in which some or all of the hydrogen atoms are substituted with fluorine atoms, some or all of the hydrogen atoms
- R 1 is a hydrogen atom or a methyl group)
- Iodine- or bromine-containing monomers represented by general formulas (4) to (21):
- CY 4 2 CY 4 (CF 2 ) n - X 1 (4) (Wherein, Y 4 are the same or different, a hydrogen atom or a fluorine atom, n is an integer of 1 to 8)
- CF2 CFCF2Rf
- "(per)fluoropolyoxyalkylene group” means "fluoropolyoxyalkylene group or perfluoropolyoxyalkylene group”.
- Z is preferably a (per)fluoroalkylene group having 4 to 12 carbon atoms, and R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are preferably hydrogen atoms.
- Z is a (per)fluoropolyoxyalkylene group, the formula: -(Q) p -CF 2 O-(CF 2 CF 2 O) m -(CF 2 O) n -CF 2 -(Q) p - (wherein Q is an alkylene group having 1 to 10 carbon atoms or a carbon an oxyalkylene group of numbers 2 to 10, p is 0 or 1, m and n have an m/n ratio of 0.2 to 5, and the (per)fluoropolyoxyalkylene group has a molecular weight of 500 to 10,000; , preferably an integer in the range of 1000 to 4000.) is preferably a (per)fluoropolyoxyalkylene group.
- the number average molecular weight Mn of the partially fluorinated elastomer is preferably 1,000 to 1,000,000, more preferably 10,000 to 500,000, and particularly preferably 20,000 to 300,000.
- the partially fluorinated elastomer preferably has a fluorine content of 50% by mass or more, more preferably 55% by mass or more, and even more preferably 60% by mass or more.
- the upper limit of the fluorine content is preferably 75% by mass or less, more preferably 73% by mass or less.
- the fluorine content is calculated based on the values measured by 19 F-NMR, 1 H-NMR, elemental analysis, and the like.
- the partially fluoroelastomer preferably has a Mooney viscosity at 100°C (ML1+10 (100°C)) of 130 or less.
- the Mooney viscosity is more preferably 110 or less, even more preferably 90 or less.
- the Mooney viscosity is more preferably 10 or more, and still more preferably 20 or more.
- the Mooney viscosity is a value measured according to JIS K 6300-1.2013.
- the partially fluorinated elastomer preferably has a glass transition temperature of -50 to 0°C.
- the glass transition temperature is more preferably ⁇ 2° C. or lower, still more preferably ⁇ 3° C. or lower. Further, the glass transition temperature is more preferably ⁇ 45° C. or higher, further preferably ⁇ 40° C. or higher.
- the glass transition temperature may be -10°C or higher, or -9°C or higher.
- the glass transition temperature is measured using a differential scanning calorimeter (e.g., X-DSC7000 manufactured by Hitachi High-Tech Science) to obtain a DSC curve by heating 10 mg of the sample at 20 ° C./min, according to JIS K6240: 2011. , the glass transition temperature can be determined from the DSC differential curve.
- the partially fluorinated elastomer preferably has an iodine content of 0.05 to 1.0% by mass.
- the iodine content is more preferably 0.08% by mass or more, still more preferably 0.10% by mass or more, and more preferably 0.80% by mass or less, and even more preferably 0.60% by mass or less.
- the iodine content can be determined by elemental analysis. Specifically, 12 mg of the partial fluorine elastomer was mixed with 5 mg of Na 2 SO 3 , and Na 2 CO 3 and K 2 CO 3 were mixed in 20 ml of pure water at a ratio of 1:1 (mass ratio), and 30 mg of the solution was dissolved. can be used, burned in oxygen in a quartz flask, allowed to stand for 30 minutes, and then measured using a Shimadzu 20A ion chromatograph. As a calibration curve, a KI standard solution, one containing 0.5 ppm by mass of iodine ions, and one containing 1.0 ppm by mass of iodine ions can be used.
- a perfluoroelastomer can be produced by polymerizing a perfluoromonomer as a fluorine-containing monomer.
- Rf 13 represents a perfluoroalkyl group having 1 to 8 carbon atoms.
- a perfluoromonomer represented by CF2 CFOCF2ORf14 ( 24)
- Rf 14 is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, a cyclic perfluoroalkyl group having 5 to 6 carbon atoms, or a 2 carbon atom containing 1 to 3 oxygen atoms.
- CF2 CFO( CF2CF ( Y15)O) m ( CF2) nF (25) (Wherein, Y 15 represents a fluorine atom or a trifluoromethyl group; m is an integer of 1 to 4; n is an integer of 1 to 4). At least one more selected is preferable.
- a monomer that provides a crosslinkable group may be polymerized together with the perfluoromonomer.
- CX42 CX5Rf15X6 ( 26 )
- X 4 and X 5 are each independently H, F or an alkyl group having 1 to 5 carbon atoms
- Rf 15 may have one or more etheric oxygen atoms, a linear or branched alkylene group or oxyalkylene group in which some or all of the hydrogen atoms may be substituted with fluorine atoms, which may have an aromatic ring
- X 6 is an iodine atom; bromine atom, cyano group, carboxyl group, alkoxycarbonyl group, hydroxyl group, vinyl group, azide group, sulfonyl azide group, carbonyl azide group or alkyne group).
- An alkyne group may be an ethynyl group.
- CX 16 2 CX 16 -Rf 16 CHR 16 X 17 (27)
- X 16 is each independently a hydrogen atom, a fluorine atom or CH 3
- Rf 16 is a fluoroalkylene group, a perfluoroalkylene group, a fluoro(poly)oxyalkylene group or a perfluoro(poly)oxyalkylene group
- R 16 is a hydrogen atom or CH 3
- X 17 is an iodine atom or a bromine atom
- CX 16 2 CX 16 -Rf 17 X 17 (28)
- X 16 is each independently a hydrogen atom, a fluorine atom or CH 3
- Rf 17 is a fluoroalkylene group, a perfluoroalkylene group, a fluoro(poly)oxyalkylene group or a perfluoro(poly)oxyalkylene group
- Z 20 is a linear or branched alkylene group having 1 to 18 carbon atoms, which may have an oxygen atom, a cycloalkylene group having 3 to 18 carbon atoms, or an at least partially fluorinated carbon an alkylene or oxyalkylene group of number 1 to 10, or -(Q) p -CF 2 O-(CF 2 CF 2 O) m (CF 2 O) n -CF 2 -(Q) p - (Wherein, Q is an alkylene group or an oxyalkylene group; p is 0 or 1; m/n is 0.2 to 5.) and has a molecular weight of 500 to 10,000 (per) It is a fluoropolyoxyalkylene group. ) is preferably at least one selected from the group consisting of monomers represented by
- X 16 is preferably a fluorine atom.
- Rf 16 and Rf 17 are preferably perfluoroalkylene groups having 1 to 5 carbon atoms.
- R 16 is preferably a hydrogen atom.
- X 18 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 I.
- X 19 is preferably a cyano group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or CH 2 OH.
- Perfluoroelastomers include perfluoroelastomers containing TFE units, such as TFE/monomer copolymers represented by general formula (23), (24) or (25), and TFE/general formula (23). , (24) or (25)/crosslinkable group-providing monomer copolymer is preferred.
- the composition is preferably 45-90/10-55 (mol %), more preferably 55-80/20-45. , more preferably 55-70/30-45.
- TFE/PMVE/monomer copolymer that provides a crosslinkable group
- it is preferably 45 to 89.9/10 to 54.9/0.01 to 4 (mol%), more preferably 55 to 77 .9/20-49.9/0.1-3.5, more preferably 55-69.8/30-44.8/0.2-3.
- TFE/a monomer copolymer represented by general formula (23), (24) or (25) having 4 to 12 carbon atoms it is preferably 50 to 90/10 to 50 (mol%). , more preferably 60-88/12-40, more preferably 65-85/15-35.
- TFE/a monomer represented by the general formula (23), (24) or (25) having 4 to 12 carbon atoms/a monomer copolymer giving a crosslinkable group preferably 50 to 89. 9/10 to 49.9/0.01 to 4 (mol%), more preferably 60 to 87.9/12 to 39.9/0.1 to 3.5, more preferably 65 to 84.8/15 to 34.8/0.2 to 3. If the composition is out of these ranges, the properties as a rubber elastic body are lost, and the properties tend to be similar to those of a resin.
- perfluoroelastomer examples include TFE/monomer represented by general formula (25)/monomer copolymer that provides a crosslinkable group, and TFE/monomer copolymer represented by general formula (25). , TFE/a monomer copolymer represented by the general formula (23), and TFE/a monomer represented by the general formula (23)/a monomer copolymer that provides a crosslinkable group. It is preferably at least one selected from the group.
- perfluoroelastomers examples include perfluoroelastomers described in International Publication No. 97/24381, Japanese Patent Publication No. 61-57324, Japanese Patent Publication No. 4-81608, Japanese Patent Publication No. 5-13961, etc. can.
- the perfluoroelastomer preferably has a glass transition temperature of ⁇ 70° C. or higher, more preferably ⁇ 60° C. or higher, and preferably ⁇ 50° C. or higher, from the viewpoint of excellent compression set resistance at high temperatures. More preferred. From the viewpoint of good cold resistance, the temperature is preferably 5°C or lower, more preferably 0°C or lower, and even more preferably -3°C or lower.
- the above glass transition temperature is obtained by obtaining a DSC curve by heating 10 mg of a sample at 10 ° C./min using a differential scanning calorimeter (manufactured by Mettler Toledo, DSC822e), and obtaining a DSC curve before and after the secondary transition of the DSC curve. It can be obtained as the temperature at the midpoint of the two intersections of the extension of the line and the tangent line at the point of inflection of the DSC curve.
- the perfluoroelastomer preferably has a Mooney viscosity ML(1+20) at 170°C of 30 or more, more preferably 40 or more, and even more preferably 50 or more, in terms of good heat resistance. From the viewpoint of good workability, it is preferably 150 or less, more preferably 120 or less, and even more preferably 110 or less.
- the perfluoroelastomer preferably has a Mooney viscosity ML(1+20) at 140°C of 30 or more, more preferably 40 or more, and even more preferably 50 or more, in terms of good heat resistance. From the viewpoint of good workability, it is preferably 180 or less, more preferably 150 or less, and even more preferably 110 or less.
- the perfluoroelastomer preferably has a Mooney viscosity ML(1+10) at 100°C of 10 or more, more preferably 20 or more, and even more preferably 30 or more, in terms of good heat resistance. From the viewpoint of good workability, it is preferably 120 or less, more preferably 100 or less, and even more preferably 80 or less.
- the Mooney viscosity can be measured according to JIS K6300 at 170°C, 140°C, and 100°C using a Mooney viscometer MV2000E manufactured by Alpha Technologies.
- the fluorine-containing elastomer obtained by the production method of the present disclosure can be made into a crosslinked product by adding a crosslinking agent.
- the type and amount of the cross-linking agent are not particularly limited, and can be used within a known range.
- the method for obtaining the fluorine-containing elastomer composition is not particularly limited as long as the method is capable of uniformly mixing the fluorine-containing elastomer and the cross-linking agent.
- the method is capable of uniformly mixing the fluorine-containing elastomer and the cross-linking agent.
- the crosslinking system includes, for example, a peroxide crosslinking system, a polyol crosslinking system, a polyamine crosslinking system, and the like. It is preferably at least one selected from the group consisting of a cross-linking system and a polyol cross-linking system. From the viewpoint of chemical resistance, a peroxide crosslinked system is preferred, and from the viewpoint of heat resistance, a polyol crosslinked system is preferred.
- the cross-linking agent is preferably at least one cross-linking agent selected from the group consisting of a polyol cross-linking agent and a peroxide cross-linking agent, more preferably a peroxide cross-linking agent.
- the amount of the cross-linking agent to be blended may be appropriately selected depending on the type of the cross-linking agent, etc., but it is preferably 0.2 to 5.0 parts by mass, more preferably 0 part by mass, based on 100 parts by mass of the fluorine-containing elastomer composition. .3 to 3.0 parts by mass.
- Peroxide crosslinking can be performed by using an uncrosslinked elastomer capable of peroxide crosslinking as the fluorine-containing elastomer and an organic peroxide as the crosslinking agent.
- the uncrosslinked elastomer that can be peroxide-crosslinked is not particularly limited as long as it has a site that can be peroxide-crosslinked.
- the peroxide-crosslinkable site is not particularly limited, and examples thereof include a site having an iodine atom and a site having a bromine atom.
- Any organic peroxide can be used as long as it can easily generate peroxy radicals in the presence of heat or a redox system.
- peroxy)hexane 2,5-dimethyl-2,5-di(t-butylperoxy)-hexyne-3 and the like.
- the blending amount of the organic peroxide is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 5 parts by mass, per 100 parts by mass of the fluorine-containing elastomer.
- the fluorine-containing elastomer composition preferably further contains a cross-linking aid.
- cross-linking aids include triallyl cyanurate and triallyl isocyanurate (TAIC).
- the amount of the cross-linking aid compounded is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 7.0 parts by mass, and still more preferably 0 parts by mass with respect to 100 parts by mass of the fluorine-containing elastomer. .1 to 5.0 parts by mass.
- Polyol crosslinking can be performed by using an uncrosslinked elastomer that can be polyol-crosslinked as a fluorine-containing elastomer and a polyhydroxy compound as a crosslinking agent.
- the polyol-crosslinkable uncrosslinked elastomer is not particularly limited as long as it has a polyol-crosslinkable site.
- the polyol-crosslinkable site is not particularly limited, and examples thereof include sites having vinylidene fluoride (VdF) units.
- Examples of the method for introducing the cross-linking site include a method of copolymerizing a monomer that provides the cross-linking site during polymerization of the uncrosslinked elastomer.
- polyhydroxy compound a polyhydroxy aromatic compound is preferably used because of its excellent heat resistance.
- the material having elasticity described above may be added as necessary to ordinary additives that are blended into elastomers, such as fillers, processing aids, plasticizers, colorants, stabilizers, adhesion aids, mold release agents, and conductive additives.
- additives such as agents, thermal conductivity imparting agents, surface non-adhesive agents, flexibility imparting agents, heat resistance improving agents, flame retardants, etc., can be blended, and these additives do not impair the effects of the present disclosure. It should be used within the range.
- a sealing member can be obtained from the elastic material.
- the sealing member can be obtained by molding and crosslinking the elastic material.
- the fluorine-containing elastomer composition can be molded by a conventionally known method.
- the method and conditions for molding and crosslinking may be within the range of known methods and conditions for molding and crosslinking to be employed.
- the order of molding and crosslinking is not limited, and crosslinking may be performed after molding, molding may be performed after crosslinking, or molding and crosslinking may be performed simultaneously.
- Examples of the molding method include pressure molding using a mold and injection molding, but are not limited to these.
- a steam cross-linking method a conventional method in which a cross-linking reaction is initiated by heating, a radiation cross-linking method, or the like can be employed.
- a cross-linking reaction by heating is preferable.
- Specific cross-linking conditions which are not limited, are usually within a temperature range of 140 to 250° C. and a cross-linking time of 1 minute to 24 hours.
- Eb is the elongation at break of the material forming the sealing member.
- the breaking elongation can be measured according to JIS K6251, using a dumbbell-shaped No. 5 test piece with a thickness of 2 mm, the elongation at break when the test piece is cut by tension, the ratio to the test length before the test is represented by
- the strain when the sealing member is compressed and mounted depends largely on the shape of the sealing member.
- the susceptibility to breakage of the sealing member is related to the elongation at break of the material forming the sealing member. That is, if the sealing member is subjected to a strain exceeding the elongation at break, it will cause cracks.
- the shape In order to achieve the purpose of the present disclosure, which is to prevent breakage of the sealing member, it is important that the shape be such that strain exceeding the breaking elongation of the material is not applied. From this point of view, in the present disclosure, the maximum strain when a sealing member having a specific shape is compressed is calculated, and the shape of the sealing member is calculated so that the maximum strain is smaller than Eb. It is something to do.
- the breaking elongation is measured for 10 samples, and the average value excluding the maximum and minimum values is taken as the breaking elongation.
- the elongation at break of the fluorine-containing elastomer is preferably 200% to 300%, and the standard deviation ⁇ is preferably 20 or less.
- the sealing member of the present disclosure preferably has an annular shape with a rectangular cross section as shown in FIG. Then, it is preferable to use such a ring-shaped one by sandwiching it between the lid and the battery container shown in FIG. Such a sealing member is compressed between the lid and the battery container and has a high compressibility.
- square cross section means that the cross section of the ring-shaped sealing member cut outward from the center of the circle is square or rectangular.
- FIG. 4 shows the cross-sectional shape of the ring-shaped sealing member.
- the cross-sectional aspect ratio can be defined as The aspect ratio is a value measured in an uncompressed state, and is a value obtained by measurement by a normal method.
- the annular sealing member preferably has an outer diameter of 10 mm to 50 mm. Such a range is sized for current cell shapes.
- W is preferably 0.5 to 2.5 mm. In order to exhibit the function as a sealing member, it is desirable to have the width in such a range.
- the lower limit of W is preferably 0.4 mm, more preferably 0.45 mm, and even more preferably 0.5 mm.
- the upper limit of W is preferably 3.5 mm, more preferably 3.0 mm, and even more preferably 2.5 mm.
- the above T is preferably 0.5 to 2.5 mm. In order to exhibit the function as a sealing member, it is desirable to have the thickness in such a range.
- the lower limit of T is preferably 0.4 mm, more preferably 0.45 mm, and even more preferably 0.5 mm.
- the upper limit of T is preferably 3.5 mm, more preferably 3.0 mm, and even more preferably 2.5 mm.
- the material of the sealing member used in the simulation here is a VdF-based fluorine-containing elastomer, and the specific physical property values are a tensile stress of 5.0 MPa at 100% elongation according to JIS K6251, and a breaking elongation of 210%. belongs to.
- a tensile test was performed according to JIS K6251, and the tensile stress and elongation test data obtained thereby were used to calculate material parameters by precise curve fitting to a superelastic model prepared by ANSYS.
- a superelastic model to which the calculated material parameters are applied is set as the material properties of the sealing member.
- the member A and the member B are rigid planes, assuming that they have sufficiently high rigidity relative to the elastomeric sealing member. It has been found that the strain value produced by compressing the sealing member, which will be described later, does not depend on the stiffness of the elastomer, ie, in this case, the shape and size of the stress-strain diagram. In other words, in this sense, the physical properties of the material of the sealing member may be fluorine-containing elastomers other than those described above, and elastomer materials other than fluorine-containing elastomers may be used. Under the simulation conditions described above, sealing members having various ⁇ values were compressed at predetermined compression ratios, and the maximum strain was obtained for each compression ratio. Here, the maximum strain is obtained by measuring the maximum principal strain generated on the surface of the sealing member in a predetermined compressed state and converting the principal strain into a nominal strain equivalent to uniaxial tension.
- FIG. 8 shows the relationship between the maximum strain and compressibility on the surface of the sealing member for various ⁇ .
- FIG. 9 shows the relationship between the maximum strain on the surface of the sealing member and the cross-sectional aspect ratio ⁇ for various compression ratios R.
- Eb ⁇ a ⁇ b ( ⁇ is the standard deviation of Eb) may satisfy the relational expression of As described above, since the elongation at break has a certain amount of variation, a plurality of samples are measured in order to obtain the value of the elongation at break, as described above. Since a plurality of data are obtained when obtaining such an average value, the standard deviation ⁇ can be calculated from this. If the calculated strain is smaller than Eb- ⁇ , the percentage of sealing members that crack can be reduced. If Eb-2 ⁇ is smaller, the rate of cracking can be further reduced.
- the elastomer used here was obtained by molding an elastomer having the following composition by the following molding method. It has a breaking elongation of 210% according to JIS K6251. Furthermore, the standard deviation of elongation at break is 20%.
- sealing members were attached to a lithium ion battery at a compressibility of 62.5% based on the following evaluation method. After mounting, the sealing member was taken out, and the presence or absence of cracks was determined according to the criteria of ⁇ when no cracks or cracks were observed on the surface of the sealing member, and x when observed. The test was performed on 10 samples and the results are shown in Table 2.
- Table 3 shows the maximum strain ⁇ calculated by applying the formula of the present disclosure to the produced sealing member when the compressibility R is 52.5%.
- sealing members were attached to a lithium ion battery at a compressibility of 52.5% based on the following evaluation method. After mounting, the sealing member was taken out, and the presence or absence of cracks was determined according to the criteria of ⁇ when no cracks or cracks were observed on the surface of the sealing member, and x when observed. The test was performed on 10 samples and the results are shown in Table 4.
- the sealing member of the present disclosure can be used in batteries using non-aqueous electrolytes.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Secondary Cells (AREA)
Abstract
Description
特許文献2は、円筒型電池において、このような封止部材を圧縮して装着することを開示している。
非水系電解液を使用する電池用の封止部材であって、
前記封止部材を構成する素材は、弾性を有する素材からなるものであり、
装着時の圧縮率Rが50%以上であり、
封止部材を構成する素材のJIS K6251準拠による破断伸びをEb、断面縦横比をβとした場合、
Eb≧a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
を満たすことを特徴とする封止部材である。
上記封止部材は、角形断面を有する円環形状であることが好ましい。
0.4mm≦T≦3.5mm
を満たすものであることが好ましい。
Wは、
0.4mm≦W≦3.5mm
を満たすものであることが好ましい。
圧縮率は、52%以上であることが好ましい。
弾性を有する素材は、ビニリデンフルオライド単位を含有するエラストマーであることが好ましい。
本開示の封止部材は、
3.0≧a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
を満たすことが好ましい。
電池は、角型電池であることが好ましい。
本開示は、上述したいずれかの封止部材を有することを特徴とする非水系電解液を使用する電池でもある。
上述したように、非水系電解液を使用する電池における封止部材は、電解液の透過を抑制することが重要な役割である。
更に、封止部材は、部材を高度に密着させることが必要であるため、一般にはエラストマー等の弾性を有する素材からなるものが使用される。電解液の成分は、一部がこのような封止部材を透過し、長期使用した場合には電解液が減少する。電解液が減少すると、電池性能の劣化の原因となるため、このような電解液中の成分の透過を抑制することが必要となる。特に二次電池は、長期間使用されるものであることから、このような透過の抑制は重要な課題となる。
Eb≧a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
を満たすことを特徴とする封止部材である。
以下、これを順次詳述する。
本開示の封止部材は、非水系電解液を使用する電池に使用される封止部材である。上述したように、電解液の透過を抑制できるという特徴を有するものであることから、非水系電解液を有する任意の電池において使用することができる。
角型リチウムイオン電池の一例を図1に示した。角型リチウムイオン電池は、直方体型の筐体中に電池部材を装着し、図1の上部面に設けられた2個の貫通孔に対して、電極を設置する。その際に、電極とともに、本開示の封止部材を装着し、筐体内の非水系電解液の透過・漏洩を防ぐものである。したがって、この場合は、1つの電池につき、2個の封止部材が使用されることとなる。
本開示においては、封止部材を圧縮率50%以上で装着する。圧縮率が高い状態で封止部材を装着することで、透過率が低下する。この点について、実験による検討を行った。なお、本開示において、圧縮率Rは、封止部材の圧縮方向における、圧縮前から圧縮後への厚みの寸法変化量を、圧縮前の厚みの寸法値で除した比率で表したものである。百分率(%)で表記する場合は、その数値に100を掛けた数値とする。
上記VdF系含フッ素エラストマー100質量部、MTカーボン20質量部、トリアリルイソシアヌレート(TAIC)4質量部、有機過酸化物(2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン)1.5質量部をオープンロールにて混練し、組成物を作製した。
(成型方法)
上記組成物を金型内に入れ、圧縮成形機により圧力をかけ、170℃×10分で二次加硫処理して成型し、封止部材を得た。
図2に示したように、圧縮率を50%以上とすることで、1000時間で電解液の透過量を0.05g以下とすることができることが実験によって明らかとなった。
一方、圧縮率が高くなれば歪みもまた高くなるため、割れや破損を生じやすくなる。このため、圧縮率50%以上で装着しても割れや破損の発生率を低減できるような形状とすることが必要とされる。このような形状及び封止部材を構成する素材について、以下に詳述する。
本開示の封止部材は、弾性を有する素材からなるものである。すなわち、弾性を有する素材を使用することで、封止部材としての性能を得るものである。弾性を有する素材としては特に限定されるものではなく、一般にエラストマーと呼ばれる重合体又はその架橋物を使用することができる。一般的には、エラストマーの架橋物がより好ましい。上記弾性を有する素材は、電解液成分の透過性が低いことから、含フッ素エラストマー、その架橋物が最も好適である。上記架橋物は、エラストマーが架橋基を有する内部架橋によるものであってもよいし、架橋剤と併用するものであってもよい。
部分フッ素エラストマーとしては、たとえばテトラフルオロエチレン(TFE)、フッ化ビニリデン(VdF)および一般式:CF2=CF-Rfa(式中、Rfaは-CF3または-ORfb(Rfbは炭素数1~5のパーフルオロアルキル基))で表されるパーフルオロエチレン性不飽和化合物(たとえばヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)など)からなる群より選ばれる少なくとも1種の単量体に由来する構造単位を含むことが好ましい。含フッ素エラストマーとしては、なかでも、VdF単位またはTFE単位を含有するエラストマーが好ましい。
また、VdF/PAVEの組成は、(50~78)/(50~22)(モル%)であることも好ましい形態の一つである。
CY1 2=CY2Rf 2X1 (2)
(式中、Y1、Y2はフッ素原子、水素原子または-CH3;Rf 2は1個以上のエーテル結合性酸素原子を有していてもよく、芳香環を有していてもよい、水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐鎖状の含フッ素アルキレン基;X1はヨウ素原子または臭素原子)
で示される化合物が挙げられる。
CY1 2=CY2Rf 3CHR1-X1 (3)
(式中、Y1、Y2、X1は前記同様であり、Rf 3は1個以上のエーテル結合性酸素原子を有していてもよく水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐鎖状の含フッ素アルキレン基、すなわち水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐鎖状の含フッ素アルキレン基、水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐鎖状の含フッ素オキシアルキレン基、または水素原子の一部または全部がフッ素原子で置換された直鎖状または分岐鎖状の含フッ素ポリオキシアルキレン基;R1は水素原子またはメチル基)
で示されるヨウ素または臭素含有単量体、一般式(4)~(21):
CY4 2=CY4(CF2)n-X1 (4)
(式中、Y4は、同一又は異なり、水素原子またはフッ素原子、nは1~8の整数)
CF2=CFCF2Rf 4-X1 (5)
(式中、R4は、-(OCF2)n-または-(OCF(CF3))n-であり、nは0~5の整数)
CF2=CFCF2(OCF(CF3)CF2)m(OCH2CF2CF2)nOCH2CF2-X1 (6)
(式中、mは0~5の整数、nは0~5の整数)
CF2=CFCF2(OCH2CF2CF2)m(OCF(CF3)CF2)nOCF(CF3)-X1 (7)
(式中、mは0~5の整数、nは0~5の整数)
CF2=CF(OCF2CF(CF3))mO(CF2)n-X1 (8)
(式中、mは0~5の整数、nは1~8の整数)
CF2=CF(OCF2CF(CF3))m-X1 (9)
(式中、mは1~5の整数)
CF2=CFOCF2(CF(CF3)OCF2)nCF(-X1)CF3 (10)
(式中、nは1~4の整数)
CF2=CFO(CF2)nOCF(CF3)-X1 (11)
(式中、nは2~5の整数)
CF2=CFO(CF2)n-(C6H4)-X1 (12)
(式中、nは1~6の整数)
CF2=CF(OCF2CF(CF3))nOCF2CF(CF3)-X1 (13)
(式中、nは1~2の整数)
CH2=CFCF2O(CF(CF3)CF2O)nCF(CF3)-X1 (14)
(式中、nは0~5の整数)、
CF2=CFO(CF2CF(CF3)O)m(CF2)n-X1 (15)
(式中、mは0~5の整数、nは1~3の整数)
CH2=CFCF2OCF(CF3)OCF(CF3)-X1 (16)
CH2=CFCF2OCH2CF2-X1 (17)
CF2=CFO(CF2CF(CF3)O)mCF2CF(CF3)-X1 (18)
(式中、mは0以上の整数)
CF2=CFOCF(CF3)CF2O(CF2)n-X1 (19)
(式中、nは1以上の整数)
CF2=CFOCF2OCF2CF(CF3)OCF2-X1 (20)
CH2=CH-(CF2)nX1 (21)
(式中、nは2~8の整数)
(一般式(4)~(21)中、X1は前記と同様)
で表されるヨウ素または臭素含有単量体などが挙げられ、これらをそれぞれ単独で、または任意に組合わせて用いることができる。
(式中、R2、R3、R4、R5、R6およびR7は同じかまたは異なり、いずれもH、または炭素数1~5のアルキル基;Zは、直鎖もしくは分岐鎖状の、酸素原子を含んでいてもよい、好ましくは少なくとも部分的にフッ素化された炭素数1~18のアルキレンもしくはシクロアルキレン基、または(パー)フルオロポリオキシアルキレン基)で示されるビスオレフィン化合物も架橋性基を与える単量体として好ましい。なお、本開示において、「(パー)フルオロポリオキシアルキレン基」とは、「フルオロポリオキシアルキレン基又はパーフルオロポリオキシアルキレン基」を意味する。
-(Q)p-CF2O-(CF2CF2O)m-(CF2O)n-CF2-(Q)p-(式中、Qは炭素数1~10のアルキレン基または炭素数2~10のオキシアルキレン基であり、pは0または1であり、m及びnはm/n比が0.2~5となり且つ該(パー)フルオロポリオキシアルキレン基の分子量が500~10000、好ましくは1000~4000の範囲となるような整数である。)で表される(パー)フルオロポリオキシアルキレン基であることが好ましい。この式において、Qは好ましくは、-CH2OCH2-及び-CH2O(CH2CH2O)sCH2-(s=1~3)の中から選ばれる。
CH2=CH-(CF2)2-CH=CH2、
CH2=CH-(CF2)4-CH=CH2、
CH2=CH-(CF2)6-CH=CH2、
式:CH2=CH-Z1-CH=CH2
(式中、Z1は-CH2OCH2-CF2O-(CF2CF2O)m-(CF2O)n-CF2-CH2OCH2-(m/nは0.5)、分子量が好ましくは2000である)
などが挙げられる。
パーフルオロエラストマーは、含フッ素単量体として、パーフルオロ単量体を重合することによって、製造することができる。
(式中、Rf13は、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ単量体、
CF2=CFOCF2ORf14 (24)
(式中、Rf14は炭素数1~6の直鎖状または分岐鎖状パーフルオロアルキル基、炭素数5~6の環式パーフルオロアルキル基、1~3個の酸素原子を含む炭素数2~6の直鎖状または分岐鎖状パーフルオロオキシアルキル基である)で表されるパーフルオロ単量体
、および、
CF2=CFO(CF2CF(Y15)O)m(CF2)nF (25)
(式中、Y15はフッ素原子またはトリフルオロメチル基を表す。mは1~4の整数である。nは1~4の整数である。)で表されるパーフルオロ単量体
からなる群より選択される少なくとも1種であることが好ましい。
CX4 2=CX5Rf15X6 (26)
(式中、X4、X5は、それぞれ独立に、H、Fまたは炭素数1~5のアルキル基であり、Rf15は1個以上のエーテル結合性酸素原子を有していてもよく、芳香環を有していてもよい、水素原子の一部または全部がフッ素原子で置換されていてもよい直鎖状または分岐鎖状のアルキレン基またはオキシアルキレン基であり、X6はヨウ素原子、臭素原子、シアノ基、カルボキシル基、アルコキシカルボニル基、水酸基、ビニル基、アジド基、スルホニルアジド基、カルボニルアジド基またはアルキン基である)で表される単量体が挙げられる。アルキン基は、エチニル基であってよい。
CX16 2=CX16-Rf16CHR16X17 (27)
(式中、X16は、それぞれ独立に、水素原子、フッ素原子またはCH3、Rf16は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基またはパーフルオロ(ポリ)オキシアルキレン基、R16は、水素原子またはCH3、X17は、ヨウ素原子または臭素原子である)で表される単量体、
CX16 2=CX16-Rf17X17 (28)
(式中、X16は、それぞれ独立に、水素原子、フッ素原子またはCH3、Rf17は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基またはパーフルオロ(ポリ)オキシアルキレン基、X17は、ヨウ素原子または臭素原子である)で表される単量体、
CF2=CFO(CF2CF(CF3)O)m(CF2)n-X18 (29)
(式中、mは0~5の整数、nは1~3の整数、X18は、シアノ基、アジド基、スルホニルアジド基、カルボニルアジド基、カルボキシル基、アルコキシカルボニル基、アルキン基、ヨウ素原子、臭素原子、または、CH2Iである)で表される単量体、CH2=CFCF2O(CF(CF3)CF2O)m(CF(CF3))n-X19 (30)
(式中、mは0~5の整数、nは1~3の整数、X19は、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子、またはCH2OHである)で表される単量体、および、
CR20 2=CR20-Z20-CR20=CR20 2 (31)
(式中、R20は、それぞれ独立に、水素原子または炭素数1~5のアルキル基である。
Z20は、直鎖状または分岐鎖状で酸素原子を有していてもよい、炭素数1~18のアルキレン基、炭素数3~18のシクロアルキレン基、少なくとも部分的にフッ素化している炭素数1~10のアルキレン基もしくはオキシアルキレン基、または、-(Q)p-CF2O-(CF2CF2O)m(CF2O)n-CF2-(Q)p-
(式中、Qはアルキレン基またはオキシアルキレン基である。pは0または1である。m/nが0.2~5である。)で表され、分子量が500~10000である(パー)フルオロポリオキシアルキレン基である。)で表される単量体からなる群より選択される少なくとも1種であることが好ましい。
これらの組成の範囲を外れると、ゴム弾性体としての性質が失われ、樹脂に近い性質となる傾向がある。
上記封止部材は、上記弾性を有する素材を成形し、架橋することにより得ることができる。上記含フッ素エラストマー組成物は、従来公知の方法で成形することができる。成形及び架橋の方法及び条件としては、採用する成形及び架橋において公知の方法及び条件の範囲内でよい。成形及び架橋の順序は限定されず、成形した後架橋してもよいし、架橋した後成形してもよいし、成形と架橋とを同時に行ってもよい。
本開示の封止部材においては、封止部材を構成する素材の破断伸びをEbとする。当該破断伸びは、JIS K6251に従い測定することができ、厚み2mmのダンベル状5号形試験片を用いて、引張りにより試験片が切断したときの切断時伸びを、試験前の試験長さに対する比率で表したものである。
すなわち、上記破断伸びを超える歪みが封止部材にかかった場合、割れの原因となる。封止部材の破断を防ぐという本開示の目的を達成する上では、素材の破断伸びを超える歪みがかからないような形状にすることが重要である。
このような観点から、本開示においては、特定形状の封止部材を圧縮した際の最大歪みを算出し、この最大歪みが上記Ebよりも小さい範囲となるように、封止部材の形状を算出するものである。
本開示の封止部材は、図3に示したような角型断面を有する円環形状のものであることが好ましい。そして、このような円環形状のものを図5に示した蓋と電池容器との間に挟んで使用するものであることが好ましい。このような封止部材は、蓋と電池容器との間で圧縮され、高い圧縮率を有するものとなる。なお、ここで、「角型断面」とは、円環形状の封止部材を円の中心から外部方向に切断した場合の断面形状が正方形又は長方形であることを意味する。
β=T/W
として、断面縦横比を定義することができる。
当該縦横比は、圧縮していない状態で測定した値であり、通常の方法で測定して得られた値である。
上記Wは、0.5~2.5mmであることが好ましい。封止部材としての機能を発揮するには、このような範囲の幅を有することが望まれる。
上記Wの下限は、0.4mmであることが好ましく、0.45mmであることがより好ましく、0.5mmであることが更に好ましい。上記Wの上限は、3.5mmであることが好ましく、3.0mmであることがより好ましく、2.5mmであることが更に好ましい。
上記Tは、0.5~2.5mmであることが好ましい。封止部材としての機能を発揮するには、このような範囲の厚みを有することが望まれる。
上記Tの下限は、0.4mmであることが好ましく、0.45mmであることがより好ましく、0.5mmであることが更に好ましい。上記Tの上限は、3.5mmであることが好ましく、3.0mmであることがより好ましく、2.5mmであることが更に好ましい。
上述したような形状を有する封止部材を一定の圧縮率を付与した場合の歪みを、種々のβを有する封止部材に対して算出した。シミュレーションは、電池における電極部の部品構成と同様に、封止部材の軸方向下側に配置され、封止部材の径方向に広がった面を有する電極を模した部材Aと、封止部材の軸方向上側に配置され、封止部材の径方向に広がった面を有する蓋を模した部材Bがあり、部材Aを固定し、部材Bを水平に維持したまま下方へ移動させることで、両者間に配置された封止部材が押圧されることを条件として、ANSYS V19.0を用いて解析を行った。
上述のシミュレーション条件によって、種々のβを有する封止部材に対して所定の圧縮率で圧縮し、圧縮率ごとに最大歪みを求めた。ここで最大歪みとは、所定の圧縮状態において、封止部材の表面に発生する主歪みの最大値を計測し、その主歪みを単軸引張相当の公称歪みへと変換したものである。
このようなシミュレーション結果から、最大歪みεは、ε=a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
の関係を有することが明らかとなった。
Eb≧ε
の関係を有するように封止部材の形状を設計することで、破断が生じにくくなる。
以上より、
Eb≧a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
の関係式を満たすものとすることで、封止部材の破断や割れを生じにくくなることが明らかとなった。
Eb-σ ≧a×βb
(σは、Ebの標準偏差)
の関係式を満たすものとしてもよい。上述したように、破断伸びは一定のばらつきを有するものであることから、破断伸びの値を得るためには複数のサンプルについての測定を行うことは上述したとおりである。このような平均値を得る際に複数のデータを得ることから、ここから標準偏差σを算出することができる。そして、算出された歪みがEb-σ より小さいものとすれば、割れを生じる封止部材の割合はより低くすることができる。Eb-2σ小さいものとすれば、より割れを生じる割合を低くすることができる。
0.9×Eb≧a×βb
の関係式を満たすものとしてもよい。
3.0≧a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
との関係式を満たすものとすることが必要となる。さらに、
2.5≧a×βb
(aとbは上式と同じ)
との関係式を満たすことがより好ましく、
2.0≧a×βb
(aとbは上式と同じ)
との関係式を満たすことが更に好ましい。
ε=a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
との関係式は、封止部材の圧縮率と封止部材の形状に基づいて、最大歪みεを算出する一般式である。このことは、上述したシミュレーション条件からみて明らかである。したがって、使用する素材の種類にかかわらず成立する一般式である。
ε値や圧縮率は、使用する素材や使用方法によって変化するが、上記一般式は、広く一般化された数式である。したがって、本開示は、エラストマーの種類にかかわらず、圧縮率R、素材の最大歪みεを適宜使用することによって、適用することができる。
以下の実施例は、上述したシミュレーション結果を反映した封止部材を製造し、その物性を評価することによって行った。
上記VdF系含フッ素エラストマー100質量部、MTカーボン20質量部、トリアリルイソシアヌレート(TAIC)4質量部、有機過酸化物(2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン)1.5質量部をオープンロールにて混練し、組成物を作製した。
(成型方法)
上記組成物を金型内に入れ、圧縮成形機により圧力をかけ、170℃×10分で二次加硫処理して成型し、封止部材を得た。
2 電極端子
3 封止部材
4 非水系電解液
5 部材A
6 部材B(圧縮前)
6’部材B(圧縮後)
7 封止部材(圧縮前)
7’封止部材(圧縮後)
Claims (11)
- 非水系電解液を使用する電池用の封止部材であって、
前記封止部材を構成する素材は、弾性を有する素材からなるものであり、
装着時の圧縮率Rが50%以上であり、
封止部材を構成する素材のJIS K6251準拠による破断伸びをEb、断面縦横比をβとした場合、
Eb≧a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
を満たすことを特徴とする封止部材。 - 封止部材は、角形断面を有する円環形状である請求項1記載の封止部材。
- Tは、
0.4mm≦T≦3.5mm
を満たすものである請求項1又は2記載の封止部材。 - Wは、
0.4mm≦W≦3.5mm
を満たすものである請求項1又は2記載の封止部材。 - 圧縮率は、52%以上である請求項1、2、3、又は4記載の封止部材。
- 弾性を有する素材は、含フッ素エラストマーである請求項1~4のいずれかに記載の封止部材。
- 弾性を有する素材は、ビニリデンフルオライド単位を含有するエラストマーである請求項1~5のいずれかに記載の封止部材。
- 3.0≧a×βb
(a=6.919×R-2.066
b=2.278×R-1.767)
を満たす請求項6記載の封止部材。 - 非水系電解液を使用する電池は、リチウムイオン電池である請求項1~7のいずれかに記載の封止部材。
- 電池は、角型電池である請求項1~8のいずれかに記載の封止部材。
- 請求項1~9のいずれかの封止部材を有することを特徴とする非水系電解液を使用する電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237029680A KR20230141833A (ko) | 2021-02-05 | 2022-01-24 | 밀봉 부재 및 전지 |
CN202280013255.4A CN116806388A (zh) | 2021-02-05 | 2022-01-24 | 密封构件和电池 |
EP22749529.8A EP4290104A1 (en) | 2021-02-05 | 2022-01-24 | Sealing member and battery |
US18/229,811 US20230411752A1 (en) | 2021-02-05 | 2023-08-03 | Sealing member and battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-017472 | 2021-02-05 | ||
JP2021017472 | 2021-02-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/229,811 Continuation US20230411752A1 (en) | 2021-02-05 | 2023-08-03 | Sealing member and battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022168654A1 true WO2022168654A1 (ja) | 2022-08-11 |
Family
ID=82741159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/002408 WO2022168654A1 (ja) | 2021-02-05 | 2022-01-24 | 封止部材及び電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230411752A1 (ja) |
EP (1) | EP4290104A1 (ja) |
JP (1) | JP7121325B1 (ja) |
KR (1) | KR20230141833A (ja) |
CN (1) | CN116806388A (ja) |
WO (1) | WO2022168654A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3065217B1 (fr) * | 2017-04-14 | 2020-02-28 | Arkema France | Compositions reticulables a base de copolymeres fluores electroactifs |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6157324B2 (ja) | 1981-10-22 | 1986-12-06 | Daikin Kogyo Co Ltd | |
JPH0481608B2 (ja) | 1983-06-23 | 1992-12-24 | Ii Ai Deyuhon De Nimoasu Ando Co | |
JPH0513961B2 (ja) | 1985-03-28 | 1993-02-23 | Daikin Ind Ltd | |
WO1997024381A1 (fr) | 1995-12-28 | 1997-07-10 | Daikin Industries, Ltd. | Copolymeres elastiques contenant du fluor, composition durcissable les contenant et materiau d'etancheite prepare a l'aide de ces copolymeres |
JP2000030675A (ja) | 1998-07-14 | 2000-01-28 | Hitachi Ltd | 二次電池 |
JP2001126684A (ja) | 1999-10-28 | 2001-05-11 | Sony Corp | 非水電解液電池 |
JP2013177574A (ja) * | 2012-02-01 | 2013-09-09 | Daikin Industries Ltd | 封止材料 |
WO2015129866A1 (ja) * | 2014-02-28 | 2015-09-03 | ダイキン工業株式会社 | 封止部材 |
WO2020137372A1 (ja) * | 2018-12-28 | 2020-07-02 | 三洋電機株式会社 | 密閉電池 |
WO2020251055A1 (ja) * | 2019-06-14 | 2020-12-17 | ダイキン工業株式会社 | 電気化学デバイス用被圧縮部材 |
WO2020251056A1 (ja) * | 2019-06-14 | 2020-12-17 | ダイキン工業株式会社 | 電気化学デバイス用被圧縮部材 |
-
2022
- 2022-01-24 WO PCT/JP2022/002408 patent/WO2022168654A1/ja active Application Filing
- 2022-01-24 CN CN202280013255.4A patent/CN116806388A/zh active Pending
- 2022-01-24 EP EP22749529.8A patent/EP4290104A1/en active Pending
- 2022-01-24 KR KR1020237029680A patent/KR20230141833A/ko active Search and Examination
- 2022-01-24 JP JP2022008400A patent/JP7121325B1/ja active Active
-
2023
- 2023-08-03 US US18/229,811 patent/US20230411752A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6157324B2 (ja) | 1981-10-22 | 1986-12-06 | Daikin Kogyo Co Ltd | |
JPH0481608B2 (ja) | 1983-06-23 | 1992-12-24 | Ii Ai Deyuhon De Nimoasu Ando Co | |
JPH0513961B2 (ja) | 1985-03-28 | 1993-02-23 | Daikin Ind Ltd | |
WO1997024381A1 (fr) | 1995-12-28 | 1997-07-10 | Daikin Industries, Ltd. | Copolymeres elastiques contenant du fluor, composition durcissable les contenant et materiau d'etancheite prepare a l'aide de ces copolymeres |
JP2000030675A (ja) | 1998-07-14 | 2000-01-28 | Hitachi Ltd | 二次電池 |
JP2001126684A (ja) | 1999-10-28 | 2001-05-11 | Sony Corp | 非水電解液電池 |
JP2013177574A (ja) * | 2012-02-01 | 2013-09-09 | Daikin Industries Ltd | 封止材料 |
WO2015129866A1 (ja) * | 2014-02-28 | 2015-09-03 | ダイキン工業株式会社 | 封止部材 |
WO2020137372A1 (ja) * | 2018-12-28 | 2020-07-02 | 三洋電機株式会社 | 密閉電池 |
WO2020251055A1 (ja) * | 2019-06-14 | 2020-12-17 | ダイキン工業株式会社 | 電気化学デバイス用被圧縮部材 |
WO2020251056A1 (ja) * | 2019-06-14 | 2020-12-17 | ダイキン工業株式会社 | 電気化学デバイス用被圧縮部材 |
Also Published As
Publication number | Publication date |
---|---|
KR20230141833A (ko) | 2023-10-10 |
CN116806388A (zh) | 2023-09-26 |
EP4290104A1 (en) | 2023-12-13 |
US20230411752A1 (en) | 2023-12-21 |
JP2022120805A (ja) | 2022-08-18 |
JP7121325B1 (ja) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2195350B1 (en) | Ultra low viscosity iodine containing amorphous fluoropolymers | |
JP5873026B2 (ja) | ペルオキシド硬化された部分的にフッ素化されたエラストマー | |
US10023670B2 (en) | Perfluoroelastomer | |
US8357757B2 (en) | Fluorine-containing alloyed copolymer | |
KR102101241B1 (ko) | 불소 함유 중합체를 포함하는 조성물 및 성형품 | |
JP6611606B2 (ja) | 架橋フルオロエラストマーの製造方法 | |
JP2007137994A5 (ja) | ||
EP1798252A1 (en) | Crosslinked fluorocopolymer moldings | |
KR102120657B1 (ko) | 용매를 포함하는 퍼옥사이드-경화성 플루오로중합체 조성물 및 이의 사용 방법 | |
KR101022727B1 (ko) | 내투과성이 향상된 플루오로엘라스토머 및 이의 제조 방법 | |
JP2008056739A (ja) | フッ素ゴム組成物 | |
US20230411752A1 (en) | Sealing member and battery | |
EP1539844A1 (en) | Fluoropolymers having improved compression set | |
JP5725167B2 (ja) | 含フッ素エラストマーの製造方法 | |
EP2214241A1 (en) | Fluororubber composition for cell seals of fuel cells | |
JPH1135637A (ja) | 含フッ素エラストマーの製造法 | |
EP2115058A1 (en) | Fluoroelastomer composition | |
JP2008303321A (ja) | 燃料ホース成形用含フッ素エラストマー組成物 | |
US20220064507A1 (en) | Perfluoroelastomer composition, cross-linked perfluoroelastomer and molded article | |
JP7161137B2 (ja) | 電気化学デバイス用被圧縮部材 | |
JP7323822B2 (ja) | 電気化学デバイス用被圧縮部材 | |
JP2005344074A (ja) | フッ素ゴム組成物 | |
JP2010174202A (ja) | フッ素ゴム組成物及びこれを用いて形成された成形品 | |
WO2021065199A1 (ja) | フッ素ゴム組成物およびシール材 | |
JP2013014785A (ja) | パーオキサイド架橋可能なフッ素ゴム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22749529 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280013255.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20237029680 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022749529 Country of ref document: EP Effective date: 20230905 |