WO2021065199A1 - フッ素ゴム組成物およびシール材 - Google Patents
フッ素ゴム組成物およびシール材 Download PDFInfo
- Publication number
- WO2021065199A1 WO2021065199A1 PCT/JP2020/030143 JP2020030143W WO2021065199A1 WO 2021065199 A1 WO2021065199 A1 WO 2021065199A1 JP 2020030143 W JP2020030143 W JP 2020030143W WO 2021065199 A1 WO2021065199 A1 WO 2021065199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- fluororubber composition
- parts
- carbon black
- melamine resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1006—Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
- C09K3/1009—Fluorinated polymers, e.g. PTFE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34922—Melamine; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/267—Magnesium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/02—Inorganic compounds
- C09K2200/0204—Elements
- C09K2200/0208—Carbon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/02—Inorganic compounds
- C09K2200/0243—Silica-rich compounds, e.g. silicates, cement, glass
- C09K2200/0247—Silica
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/04—Non-macromolecular organic compounds
- C09K2200/0458—Nitrogen-containing compounds
- C09K2200/0476—Heterocyclic nitrogen compounds, e.g. melamine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0615—Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09K2200/0635—Halogen-containing polymers, e.g. PVC
- C09K2200/0637—Fluoro-containing polymers, e.g. PTFE
Definitions
- the present invention relates to a fluororubber composition and a sealing material.
- peroxide crosslinkable fluorine-containing elastomers generally include polymers with cross-linking points, fillers, organic peroxide cross-linking agents, polyfunctional unsaturated compound co-crosslinking agents and metal oxide acid receiving agents.
- a fluororubber molded product using a fluorine-containing elastomer has excellent properties such as heat resistance and chemical resistance, and is therefore used as a sealing material for fuel peripheral parts such as fuel hoses and tubes of automobiles.
- biodiesel fuel oil when used as the fuel, the hydrolysis of the higher fatty acid ester contained in the biodiesel fuel oil is promoted due to the influence of moisture, humidity, etc. in the conventional fuel peripheral parts molded from fluororubber, and the water content thereof. There is concern that the decomposition products will accelerate the deterioration of fluororubber. Therefore, the development of fluororubber showing biodiesel fuel oil resistance is being studied.
- Patent Document 1 discloses that volume swelling in biodiesel fuel oil can be reduced by using a dicarboxylic acid diester having a predetermined structural formula in a fluororubber product containing a polyhydroxycured fluorine-containing elastomer.
- Patent Document 2 describes swelling of biodiesel fuel oil by adding a predetermined amount of an acid receiving agent consisting only of metal oxides or hydroxides to a molded product of a fluorine-containing elastomer composition containing hydrotalcites. It is disclosed that can be suppressed.
- Patent Document 3 describes a biodiesel fuel oil by blending a molded product of a curable fluorine-containing elastomer composition containing a curing agent with an acid receptor selected from the group consisting of a bismuth hydroxide-containing compound and bismuth oxide. It is disclosed that volume swelling in the medium can be reduced.
- Patent Document 4 discloses a fluororubber composition in which spherical composite cured melamine resin particles are blended with a fluororubber having crosslink points that can be crosslinked with peroxide in order to improve the compression set. Further, in order to apply a seal material vulcanized and molded from such a fluororubber composition to a semiconductor manufacturing apparatus required to have plasma resistance, it is disclosed that carbon black is not contained in the fluororubber composition. ..
- Patent Document 4 does not mention the improvement of biodiesel fuel oil resistance. Further, although Patent Documents 1 to 3 mention compression permanent strain characteristics, the sealing material vulcanized from a recent fluororubber composition is subjected to more severe conditions (for example, 200 ° C., 70 hours). ) However, it is desired to have excellent compression set characteristics.
- the present invention provides a fluororubber composition that provides a vulcanized product having excellent compression set characteristics and biodiesel fuel oil resistance.
- One aspect of the present invention is (a) a fluorine-containing elastomer capable of cross-linking peroxide, (b) silica composite spherically cured melamine resin particles, (c) carbon black, (d) an organic peroxide cross-linking agent, and (e).
- a fluororubber composition containing a co-crosslinking agent is (a) a fluorine-containing elastomer capable of cross-linking peroxide, (b) silica composite spherically cured melamine resin particles, (c) carbon black, (d) an organic peroxide cross-linking agent, and (e).
- a fluororubber composition containing a co-crosslinking agent is (a) a fluorine-containing elastomer capable of cross-linking peroxide, (b) silica composite spherically cured melamine resin particles, (c) carbon black, (d) an organic peroxide cross-linking agent, and (e).
- the fluororubber composition does not contain a metal compound antacid.
- the fluororubber composition contains 5 parts by weight or more of the (b) silica composite spherically cured melamine resin particles with respect to 100 parts by weight of the (a) peroxide crosslinkable fluoroelastomer. It contains 35 parts by weight or less, and 1 part by weight or more and 30 parts by weight or less of the carbon black (c).
- the fluororubber composition is used as a vulcanization molding material for a sealing material.
- Another aspect of the present invention is a sealing material obtained by vulcanizing and molding the fluororubber composition.
- the sealing material is a sealing material for a member that comes into contact with biodiesel fuel oil.
- the fluororubber composition according to the present embodiment includes (a) a fluorine-containing elastomer capable of cross-linking peroxide, (b) silica composite spherically cured melamine resin particles, (c) carbon black, and (d) an organic peroxide cross-linking agent. And (e) contain a co-crosslinking agent.
- the fluororubber composition according to the present embodiment is vulcanized by the synergistic action of (b) silica composite spherically cured melamine resin particles and (c) carbon black to achieve both excellent compression set characteristics and biodiesel fuel oil resistance. You can give things.
- each component constituting the fluororubber composition according to the present embodiment will be described in detail.
- the fluororubber composition contains a fluorine-containing elastomer that can be crosslinked with peroxide as a main component for molding a vulcanized product.
- Peroxide crosslinkable fluoroelastomer is a main raw material for producing a fluororubber molding material, and such a fluoroelastomer is, for example, a fluoropolymer represented by the following general formula (I). A polymer obtained by polymerizing or copolymerizing at least one of them alone is used. Further, these fluorine-containing elastomers may be used alone or in combination of two or more.
- CX 2 CXY ... (I)
- X is independent of each other, H or F
- Y is F, C 1 to C 3 perfluoroalkyl group, C 1 to C 3 perfluorooxyalkyl group, R f (OC 2 F 3 Z) n O-
- R f is a C 1 ⁇ C 3 perfluoroalkyl group
- Z is an F or CH 3 group
- n is an integer of 1 to 6.
- fluorine-containing monomer represented by the general formula (I) examples include tetrafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, perfluoroalkoxyethyl vinyl ether, perfluoroalkoxypropyl vinyl ether, vinyl fluoride, and fluoride.
- copolymer examples include vinylidene, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene ternary copolymer, vinylidene fluoride-hexafluoropropylene binary copolymer, tetrafluoroethylene-per. Fluoroalkyl vinyl ether binary copolymer and the like can be mentioned.
- the fluorine-containing elastomer that can be crosslinked with peroxide contains an iodine group and / or a bromine group in the molecule as a crosslink point.
- the introduction of iodine and / or bromine groups that allow peroxide cross-linking of fluororubbers can be carried out by a copolymerization reaction in the presence of iodine and / or bromine group-containing saturated or unsaturated compounds.
- the side chain of the fluorine-containing copolymer contains an iodine group and / or a bromine group, for example, perfluoro (2-bromoethylvinyl ether), 3,3,4,4-tetrafluoro-4-bromo-1-butene. , 2-Bromo-1,1-difluoroethylene, bromotrifluoroethylene, perfluoro (2-iodoethyl vinyl ether), iodotrifluoroethylene and other copolymers of cross-linking point forming monomers.
- both-terminal halogenated fluoroalkylene compound represented by the general formula (II) a compound in which n is an integer of 1 to 6 is preferable from the viewpoint of the balance between reactivity and handling, for example, 1-bromoper.
- X 1 and X 2 are I and / or Br
- a cross-linking point can be introduced at the end of the fluorine-containing copolymer.
- Such compounds include, for example, 1-bromo-2-iodotetrafluoroethane, 1-bromo-3-iodoperfluoropropane, 1-bromo-4-iodoperfluorobutane, 2-bromo-3-iodoperfluoro.
- silica composite spherically cured melamine resin particles are composite spherical particles of silica and melamine resin, and are preferably spherical melamine resin particles containing more silica in the surface layer portion than in the central portion. is there.
- Such silica composite spherically cured melamine resin particles are excellent in acid resistance, alkali resistance and solvent resistance, and thus exhibit excellent resistance to biodiesel fuel oil.
- the fluororubber composition contains silica composite spherically cured melamine resin particles, it is possible to impart excellent biodiesel fuel oil resistance to the vulcanized product obtained from the fluororubber composition.
- silica composite spherically cured melamine resin particles are, for example, 5 to 70 nm in an aqueous medium or an aqueous medium in which an inorganic acid alkali metal salt is dissolved, as described in Japanese Patent No. 3903809 and Japanese Patent No. 4234838.
- an aqueous solution of an initial condensate of a water-soluble melamine resin is produced, and then , It can be produced by a method of adding an acid catalyst to this aqueous solution to precipitate silica composite spherically cured melamine resin particles.
- the average particle size of the silica composite spherically cured melamine resin particles is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 4.5 ⁇ m or less as measured by an SEM image.
- the lower limit of the average particle size is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 2.0 ⁇ m or more.
- the compression set can be improved.
- silica composite spherically cured melamine resin particles for example, a series of "Optobeads (registered trademark)” manufactured by Nissan Chemical Industry Co., Ltd., for example, "Optobeads (registered trademark) 10500M” (average particle size 10.5 ⁇ m) , “Optobeads (registered trademark) 6500M” (average particle size 6.5 ⁇ m), “Optobeads (registered trademark) 3500M” (average particle size 3.5 ⁇ m), “Optobeads (registered trademark) 2000M” (average particle size) 2.0 ⁇ m), “Optobeads (registered trademark) 500S” (average particle size 0.5 ⁇ m) and the like can be used.
- the silica composite spherically cured melamine resin particles may be used alone or in combination of two or more.
- the blending amount of the silica composite spherically cured melamine resin particles is preferably 5 parts by weight or more and 50 parts by weight or less, more preferably 5 parts by weight or more and 35 parts by weight or less, based on 100 parts by weight of the (a) peroxide-crosslinkable fluorine-containing elastomer. It is more preferably 10 parts by weight or more and 30 parts by weight or less.
- the blending amount of the silica composite spherically cured melamine resin particles is 5 parts by weight or more and 35 parts by weight or less, excellent biodiesel fuel oil resistance can be imparted, and the blending amount is 10 parts by weight or more. Thereby, the biodiesel fuel oil resistance can be further improved.
- the blending amount is 30 parts by weight or less, the hardness tends to be appropriate and the balance of vulcanized physical properties tends to be improved.
- Carbon black exhibits an action of improving compression set characteristics, which is indispensable for sealing applications. Further, the fluororubber composition contains both carbon black and silica composite spherically cured melamine resin particles, and due to the synergistic action of these materials, the vulcanized product obtained from the fluororubber composition has particularly excellent compression set characteristics. Can be given.
- Carbon black includes, for example, super abrasion resistant (SAF) carbon black, semi-super abrasion resistant (ISAF) carbon black, high abrasion resistant (HAF) carbon and carbon black.
- EPC Easy Processing Channel
- XCF eXtra Conducive Finance
- FEF Fast Extruding Finance
- GP General Purpose Carbon Black, High Modulus Carbon Black (HMF), Semi-Reinforcing Carbon Black (SRF), Fine Thermal Decomposition (FT) Carbon Black, and Medium Thermal Decomposition (FT)
- MT Medium Thermal
- Soft carbon such as carbon black can be mentioned.
- soft carbon is preferable as the carbon black, and among the soft carbons, medium-grain pyrolysis carbon black having a relatively large particle size is more preferable.
- medium-grain pyrolysis carbon black such as "THERMAX (registered trademark) N990" manufactured by Cancurve Co., Ltd. can be used.
- One type of carbon black may be used alone, or two or more types may be used in combination.
- the blending amount of carbon black is preferably 1 part by weight or more and 50 parts by weight or less, more preferably 1 part by weight or more and 30 parts by weight or less, and 5 parts by weight with respect to 100 parts by weight of (a) a fluorine-containing elastomer that can be crosslinked with peroxide. More than 25 parts by weight or less is more preferable.
- the blending amount of carbon black is 1 part by weight or more and 30 parts by weight or less, excellent compression set characteristics can be imparted, and the blending amount is preferably 5 parts by weight or more. Further, when the blending amount is 30 parts by weight or less, the balance of vulcanized physical properties tends to be maintained.
- organic peroxide cross-linking agent is used as a cross-linking agent for forming peroxide cross-linking of a fluorine-containing elastomer.
- examples of the organic peroxide cross-linking agent include dicumyl peroxide, cumene hydroperoxide, p-menthan hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, and di-tert-butyl peroxide.
- organic peroxide cross-linking agent for example, "Perhexa (registered trademark) 25B-40" manufactured by NOF Corporation can be used.
- the organic peroxide cross-linking agent may be used alone or in combination of two or more.
- the organic peroxide cross-linking agent is preferably (a) 0.5 parts by weight or more and 10 parts by weight or less, and more preferably 1 part by weight or more and 5 parts by weight or less, based on 100 parts by weight of the fluorine-containing elastomer that can be crosslinked with peroxide.
- the blending amount is 0.5 parts by weight or more, the cross-linking of the fluorine-containing elastomer becomes sufficient, and the mechanical properties of the obtained vulcanized product become good. Further, when the blending amount is 10 parts by weight or less, appropriate cross-linking proceeds and the physical properties such as elongation of the vulcanized product become excellent.
- Co-crosslinking agent is used in combination as a cross-linking aid for a fluorine-containing elastomer during peroxide cross-linking with an organic peroxide cross-linking agent.
- the co-crosslinking agent is preferably a polyfunctional unsaturated compound co-crosslinking agent.
- examples of the co-crosslinking agent include tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, triallyl trimellitate, N, N'-m-phenylene bismaleimide, diallyl phthalate, and tris (diallylamine) -s.
- co-crosslinking agent for example, "TAIC (registered trademark) WH-60” manufactured by Nihon Kasei Co., Ltd. can be used.
- the co-crosslinking agent may be used alone or in combination of two or more.
- the co-crosslinking agent is preferably 1 part by weight or more and 5 parts by weight or less, and more preferably 2 parts by weight or more and 4 parts by weight or less, based on 100 parts by weight of (a) fluorine-containing elastomer that can be crosslinked with peroxide.
- the blending amount is 1 part by weight or more, the fluorine-containing elastomer can be sufficiently crosslinked, and the mechanical properties and shape retention of the obtained vulcanized product can be maintained.
- the compounding amount is 5 parts by weight or less, various properties such as mechanical physical properties and heat resistance can be expected to be improved, which is economical.
- additives usually used in the rubber processing field can be appropriately added to the fluororubber composition, if necessary.
- additives include reinforcing materials or fillers such as barium sulfate, talc, clay, and silica, cross-linking accelerators, light stabilizers, plasticizers, processing aids, lubricants, adhesives, lubricants, and difficult additives.
- flame retardants, antifungal agents, antistatic agents, colorants, silane coupling agents, and crosslink retardants are examples of these additives.
- the blending amount of these additives is not particularly limited as long as it does not impair the purpose and effect of the present invention, and an amount suitable for the blending purpose can be appropriately blended.
- the method for producing the fluororubber composition according to the present embodiment is not particularly limited, but for example, each of the compounding components described in the above components (a) to (e), and if necessary, a rubber compounding.
- each component is kneaded or mixed by a closed kneader such as an intermix, a kneader, or a rubbery mixer or a stirring means such as an open roll. It can be manufactured by.
- pre-kneading or pre-mixing may be performed before kneading or mixing, if necessary.
- a sealing material can be produced by using the fluororubber composition according to the present embodiment as a vulcanization molding material.
- a desired sealing material can be produced by vulcanizing and molding a rubber dough obtained by forming a sheet of the fluororubber composition obtained by the above production method into a predetermined shape by a vulcanization press.
- the vulcanization molding is generally carried out by press vulcanization performed at about 100 to 250 ° C. for about 1 to 120 minutes and oven vulcanization (secondary vulcanization) performed at about 150 to 250 ° C. for about 0 to 30 hours. Will be done.
- the vulcanized product obtained by using the fluororubber composition according to the present embodiment is excellent in compression set characteristics and biodiesel fuel oil resistance, and therefore may be a sealing material for members in contact with biodiesel fuel oil.
- the member that comes into contact with the biodiesel fuel oil may be an entire or part of a particular device, machine, or a component.
- the sealing material used for such applications in contact with biodiesel fuel is suitably used as a piping sealing material for diesel vehicles such as O-rings, gaskets, packings, valves, oil seals, etc. that come into contact with biodiesel fuel. Can be done.
- the sealing material obtained by vulcanizing and molding the fluororubber composition according to the present embodiment is not limited to the above-mentioned sealing product material, but other industrial sealing product materials such as automobiles, chemical plants, and the like. It is also suitable as a sealing material for food production lines and the like.
- the biodiesel fuel oil is a liquid fuel containing fatty acid methyl ester obtained by esterifying biological raw material fats and oils such as rapeseed oil, soybean oil, and corn oil.
- the vulcanized product obtained by vulcanizing the fluororubber composition according to the present embodiment preferably has a compression set of 30% or less in accordance with ASTM D395 Method B (200 ° C., 70 hours). , 28% or less is more preferable.
- the biodiesel fuel oil resistance of the vulcanized product obtained by vulcanizing the fluororubber composition according to the present embodiment can be evaluated by performing a biodiesel fuel oil immersion test in accordance with JIS K6258: 2016. More specifically, it can be evaluated by measuring the change in Shore A hardness (pts) and the volume swelling rate (%) before and after immersing the vulcanized product in the biodiesel fuel oil. At that time, the biodiesel fuel oil resistance is evaluated for each type of the main component (a) fluorine-crosslinkable fluorine-containing elastomer.
- the temperature is 120 ° C. for 168 hours.
- the change in Shore A hardness (change in hardness) is preferably -2 pts or more, more preferably -1 pts or more, and the volume expansion rate (change in volume) is preferably + 0.7% or less, and +0. More preferably, it is 0.6% or less.
- a ternary copolymer such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
- the conditions of immersion at 120 ° C. for 168 hours and immersion for 336 hours are used.
- the change in Shore A hardness (hardness change) is preferably ⁇ 5 pts or more, more preferably -4 pts or more, and the volume swelling rate (volume change) is preferably + 3.5% or less, more preferably + 3.2% or less.
- the rubber polymer B corresponds to (a) a fluorine-containing elastomer that can be crosslinked with peroxide.
- Example 1 100 parts by weight of rubber polymer A (TFE-PMVE copolymer) obtained above, carbon black (medium grain thermal decomposition (MT: Medium Thermal) carbon black: trade name "THERMAX N990", manufactured by Cancurve) 20 By weight, silica composite spherically cured melamine resin particles (trade name “Optobeads (registered trademark) 2000M", manufactured by Nissan Chemical Industries, Ltd.) 10 parts by weight, organic peroxide cross-linking agent (2,5-dimethyl-2,5-) Bis (tert-butylperoxy) hexane: trade name "Perhexa (registered trademark) 25B-40", manufactured by Nihon Kasei Co., Ltd.
- Example 2 A fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 1 except that the blending amount of carbon black was 5 parts by weight and the blending amount of silica composite spherically cured melamine resin particles was 30 parts by weight. , The above measurements and evaluations were performed. The results are shown in Table 1.
- Example 3 A fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 1 except that the blending amount of carbon black was 1 part by weight and the blending amount of silica composite spherically cured melamine resin particles was 34 parts by weight. , The above measurements and evaluations were performed. The results are shown in Table 1.
- Example 4 A fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 1 except that the blending amount of carbon black was 30 parts by weight and the blending amount of silica composite spherically cured melamine resin particles was 5 parts by weight. , The above measurements and evaluations were performed. The results are shown in Table 1.
- Example 5 A fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 1 except that the blending amount of carbon black was 25 parts by weight and the blending amount of silica composite spherically cured melamine resin particles was 10 parts by weight. , The above measurements and evaluations were performed. The results are shown in Table 1.
- Example 6 A fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 1 except that the rubber polymer B was used instead of the rubber polymer A, and the above measurement and evaluation were performed. The results are shown in Table 1.
- Example 7 A fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 2 except that the rubber polymer B was used instead of the rubber polymer A, and the above measurement and evaluation were performed. The results are shown in Table 1.
- Comparative Example 1 instead of the silica composite spherically cured melamine resin particles, 3 parts by weight of a metal compound acid receiving agent A (hydrotalcite: trade name "DHT-4A (registered trademark)", manufactured by Kyowa Chemical Industry Co., Ltd.) is blended, and carbon is further blended.
- a fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 1 except that the blending amount of black was 35 parts by weight, and the above measurement and evaluation were performed. The results are shown in Table 1.
- Comparative Example 2 Instead of the silica composite spherically cured melamine resin particles, 5 parts by weight of a metal compound acid receiving agent B (zinc oxide, manufactured by Honjo Chemical Co., Ltd.) is blended, and further, rubber polymer B is used instead of rubber polymer A, and carbon is used. A fluororubber composition and a vulcanized product thereof were prepared in the same manner as in Example 1 except that the blending amount of black was 35 parts by weight, and the above measurement and evaluation were performed. The results are shown in Table 1.
- a metal compound acid receiving agent B zinc oxide, manufactured by Honjo Chemical Co., Ltd.
- -Carbon black Medium-grain pyrolysis (MT: Medium Thermal) Carbon black (trade name "THERMAX (registered trademark) N990" manufactured by Cancurve)
- -Silica composite spherically cured melamine resin particles Product name "Optobeads (registered trademark) 2000M” (manufactured by Nissan Chemical Industries, Ltd.)
- -Organic peroxide cross-linking agent 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane (trade name "Perhexa (registered trademark) 25B-40"
- Comparative Example 1 in which a vulcanized product was formed by using a fluororubber composition containing hydrotalcite as a metal compound acid receiving agent instead of the silica composite spherically cured melamine resin particles, the vulcanized physical properties and compression set characteristics
- the hardness change was -3 pts
- the biodiesel resistance was compared with Examples 1 to 5 using the fluororubber composition containing the silica composite spherically cured melamine resin particles.
- the fuel oil property was inferior.
- Comparative Example 2 in which a vulcanized product was formed by using a fluororubber composition containing zinc oxide as a metal compound acid receiving agent instead of the silica composite spherically cured melamine resin particles, in the biodiesel fuel oil immersion test, the vulcanized product was formed.
- the hardness change is less than -5 pts, the volume change is larger than + 3.5%, and the biodiesel fuel oil resistance is inferior to that of Examples 6 to 7 using the fluororubber composition containing the silica composite spherically cured melamine resin particles.
- Comparative Example 3 in which a vulcanized product was formed using a fluororubber composition containing no carbon black, although the vulcanized physical properties and the biodiesel fuel oil resistance were excellent, the compression set was 31% and carbon. Compared with Examples 6 to 7 in which the fluororubber composition containing black was used, the compression set was large and the compression set property was inferior.
- the vulcanized product obtained by vulcanization molding using a fluororubber composition containing both (b) silica composite spherically cured melamine resin particles and (c) carbon black is a metal compound acid receiving. It can be seen that even if no agent is used, it exhibits good vulcanization physical properties and is excellent in both compressive permanent strain characteristics and biodiesel fuel oil resistance.
- the vulcanized product obtained by vulcanizing and molding the fluororubber composition can be suitably used, for example, as a sealing material for a member in contact with biodiesel fuel oil.
- the present invention is not limited by the content of the present embodiment.
- the above-mentioned components include those that can be appropriately designed by those skilled in the art, those that are substantially the same, that is, those having a so-called equal range.
- the components described above can be combined as appropriate. Further, various omissions, replacements or changes of components can be made without departing from the gist of the above-described embodiment.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Material Composition (AREA)
Abstract
本発明は、(a)パーオキサイド架橋可能なフッ素含有エラストマー、(b)シリカ複合球状硬化メラミン樹脂粒子、(c)カーボンブラック、(d)有機過酸化物架橋剤、および(e)共架橋剤を含有する、フッ素ゴム組成物に関する。
Description
本発明は、フッ素ゴム組成物およびシール材に関する。
従来のパーオキサイド架橋可能なフッ素含有エラストマーの配合では、一般的に、架橋点を有するポリマー、フィラー類、有機過酸化物架橋剤、多官能性不飽和化合物共架橋剤および金属酸化物受酸剤等の組み合わせにより、その用途に適した特性を発現させている。特に、フッ素含有エラストマーを用いたフッ素ゴム成形物は、耐熱性、耐薬品性等の特性に優れるため、シール材として、自動車の燃料ホース、チューブ等の燃料周辺部品に使用されている。
しかしながら、燃料としてバイオディーゼル燃料油を用いる場合、従来のフッ素ゴムで成形した燃料周辺部品では、水分、湿度等の影響によりバイオディーゼル燃料油に含まれる高級脂肪酸エステルの加水分解が促進され、その加水分解物によりフッ素ゴムの劣化が早まることが懸念されている。そのため、耐バイオディーゼル燃料油性を示すフッ素ゴムの開発が検討されている。
特許文献1には、ポリヒドロキシ硬化フッ素含有エラストマーを含むフッ素ゴム製品に、所定の構造式を有するジカルボン酸ジエステルを使用することにより、バイオディーゼル燃料油中における体積膨潤を低減できることが開示されている。特許文献2には、ハイドロタルサイト類を含むフッ素含有エラストマー組成物の成形品に、金属の酸化物または水酸化物のみからなる受酸剤を所定量配合することにより、バイオディーゼル燃料油の膨潤を抑制できることが開示されている。特許文献3には、硬化剤を含む硬化性フッ素含有エラストマー組成物の成形品に、含水酸化硝酸ビスマス化合物および酸化ビスマスからなる群から選択される酸受容体を配合することにより、バイオディーゼル燃料油中における体積膨潤を低減できることが開示されている。
一方、Oリング、パッキン等のシール材として使用されるゴム製品では、ゴムによる圧縮を元に戻そうとする圧力でシール機能を発揮する。しかしながら、シール材は、長期間の使用により部分的に永久変形(歪み)が生じて、シール性能が低下してしまう。そのため、フッ素ゴムをシール用途に適用する場合、圧縮永久歪み特性に優れることも望まれる。
特許文献4には、圧縮永久歪み特性を改善するために、パーオキサイド架橋可能な架橋点を有するフッ素ゴムに、球状複合硬化メラミン樹脂粒子を配合したフッ素ゴム組成物が開示されている。また、このようなフッ素ゴム組成物から加硫成形したシール材を耐プラズマ性が求められる半導体製造装置へ適用するため、フッ素ゴム組成物中にカーボンブラックを不含とすることが開示されている。
しかしながら、特許文献4には、耐バイオディーゼル燃料油性の向上については言及されていない。また、特許文献1~3には、圧縮永久歪み特性について触れられているものの、近年のフッ素ゴム組成物から加硫成形したシール材には、より過酷な条件下(例えば、200℃、70時間)でも圧縮永久歪み特性に優れることが望まれている。
本発明は、圧縮永久歪み特性および耐バイオディーゼル燃料油性に優れた加硫物を与えるフッ素ゴム組成物を提供するものである。
本発明の一態様は、(a)パーオキサイド架橋可能なフッ素含有エラストマー、(b)シリカ複合球状硬化メラミン樹脂粒子、(c)カーボンブラック、(d)有機過酸化物架橋剤、および(e)共架橋剤を含有するフッ素ゴム組成物である。
本発明の一態様によれば、前記フッ素ゴム組成物は金属化合物受酸剤を含有しない。
本発明の一態様によれば、前記フッ素ゴム組成物は、前記(a)パーオキサイド架橋可能なフッ素含有エラストマー100重量部に対し、前記(b)シリカ複合球状硬化メラミン樹脂粒子を5重量部以上35重量部以下、および前記(c)カーボンブラックを1重量部以上30重量部以下含有する。
本発明の一態様において、前記フッ素ゴム組成物はシール材の加硫成形材料として用いられる。
本発明の他の態様は、前記フッ素ゴム組成物を加硫成形して得られたシール材である。
本発明の他の態様において、前記シール材はバイオディーゼル燃料油に接触する部材用のシール材である。
本発明によれば、圧縮永久歪み特性および耐バイオディーゼル燃料油性に優れた加硫物を与えるフッ素ゴム組成物を提供することができる。
以下、本発明の実施形態について説明する。本実施形態に係るフッ素ゴム組成物は、(a)パーオキサイド架橋可能なフッ素含有エラストマー、(b)シリカ複合球状硬化メラミン樹脂粒子、(c)カーボンブラック、(d)有機過酸化物架橋剤、および(e)共架橋剤を含有する。本実施形態に係るフッ素ゴム組成物は、(b)シリカ複合球状硬化メラミン樹脂粒子および(c)カーボンブラックの相乗作用により、優れた圧縮永久歪み特性および耐バイオディーゼル燃料油性を両立させた加硫物を与えることができる。以下、本実施形態に係るフッ素ゴム組成物を構成する各成分について詳細に説明する。
(a)パーオキサイド架橋可能なフッ素含有エラストマー
フッ素ゴム組成物は、加硫物成形のための主成分として、パーオキサイド架橋可能なフッ素含有エラストマーを含有する。パーオキサイド架橋可能なフッ素含有エラストマーはフッ素ゴムの成形材料を作製するための主原料であり、このようなフッ素含有エラストマーとしては、例えば、下記の一般式(I)で表されるフッ素含有モノマーの少なくとも1種を単独で重合または共重合させて得られた重合体が用いられる。また、これらのフッ素含有エラストマーは、1種単独で使用してもよく、2種以上を併用してもよい。
フッ素ゴム組成物は、加硫物成形のための主成分として、パーオキサイド架橋可能なフッ素含有エラストマーを含有する。パーオキサイド架橋可能なフッ素含有エラストマーはフッ素ゴムの成形材料を作製するための主原料であり、このようなフッ素含有エラストマーとしては、例えば、下記の一般式(I)で表されるフッ素含有モノマーの少なくとも1種を単独で重合または共重合させて得られた重合体が用いられる。また、これらのフッ素含有エラストマーは、1種単独で使用してもよく、2種以上を併用してもよい。
CX2=CXY・・・・(I)
(式(I)中、
Xは、互いに独立して、HまたはFであり、
Yは、F、C1~C3パーフルオロアルキル基、C1~C3パーフルオロオキシアルキル基、Rf(OC2F3Z)nO-であり、
Rfは、C1~C3パーフルオロアルキル基であり、
Zは、FまたはCH3基であり、且つ
nは、1~6の整数である。)
(式(I)中、
Xは、互いに独立して、HまたはFであり、
Yは、F、C1~C3パーフルオロアルキル基、C1~C3パーフルオロオキシアルキル基、Rf(OC2F3Z)nO-であり、
Rfは、C1~C3パーフルオロアルキル基であり、
Zは、FまたはCH3基であり、且つ
nは、1~6の整数である。)
このような一般式(I)で表されるフッ素含有モノマーとして、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、パーフルオロアルコキシエチルビニルエーテル、パーフルオロアルコキシプロピルビニルエーテル、フッ化ビニル、フッ化ビニリデン等が挙げられ、また、共重合体の例として、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン3元共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン2元共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル2元共重合体等が挙げられる。
パーオキサイド架橋可能なフッ素含有エラストマーは、架橋点として分子中にヨウ素基および/または臭素基を含んでいる。フッ素ゴムのパーオキサイド架橋を可能とするヨウ素基および/または臭素基の導入は、ヨウ素基および/または臭素基含有飽和または不飽和化合物の存在下での共重合反応によって行うことができる。フッ素含有共重合体の側鎖にヨウ素基および/または臭素基を含有させる場合、例えばパーフルオロ(2-ブロモエチルビニルエーテル)、3,3,4,4-テトラフルオロ-4-ブロモ-1-ブテン、2-ブロモ-1,1-ジフルオロエチレン、ブロモトリフルオロエチレン、パーフルオロ(2-ヨードエチルビニルエーテル)、ヨードトリフルオロエチレン等の架橋点形成単量体の共重合体が挙げられる。
フッ素含有共重合体の末端にヨウ素基および/または臭素基を含有させる場合、下記の一般式(II)で表される両末端ハロゲン化フルオロアルキレン化合物が用いられる。
X1CnF2nX2・・・・(II)
(式(II)中、
X1は、F、BrまたはIであり、
X2は、BrまたはIであり、
nは、1~12の整数である。)
(式(II)中、
X1は、F、BrまたはIであり、
X2は、BrまたはIであり、
nは、1~12の整数である。)
このような一般式(II)で表される両末端ハロゲン化フルオロアルキレン化合物として、反応性、ハンドリングのバランスの点から、nが1~6の整数である化合物が好ましく、例えば、1-ブロモパーフルオロエタン、1-ブロモパーフルオロプロパン、1-ブロモパーフルオロブタン、1-ブロモパーフルオロペンタン、1-ブロモパーフルオロヘキサン、1-ヨードパーフルオロエタン、1-ヨードパーフルオロプロパン、1-ヨードパーフルオロブタン、1-ヨードパーフルオロペンタン、1-ヨードパーフルオロヘキサン等に由来するヨウ素基および/または臭素基を含有する共重合体が用いられる。
また、一般式(II)において、X1およびX2が、Iおよび/またはBrであることにより、フッ素含有共重合体の末端に架橋点を導入することができる。このような化合物として、例えば、1-ブロモ-2-ヨードテトラフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、モノブロモモノヨードパーフルオロペンタン、モノブロモモノヨードパーフルオロ-n-ヘキサン、1,2-ジブロモパーフルオロエタン、1,3-ジブロモパーフルオロプロパン、1,4-ジブロモパーフルオロブタン、1,5-ジブロモパーフルオロペンタン、1,6-ジブロモパーフルオロヘキサン、1,2-ジヨードパーフルオロエタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨードパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン等が用いられる。これらの化合物は、連鎖移動剤としても用いることができる。
(b)シリカ複合球状硬化メラミン樹脂粒子
シリカ複合球状硬化メラミン樹脂粒子は、シリカとメラミン樹脂との複合球状粒子であり、好ましくは、シリカを中心部よりも表層部に多く含む球状メラミン樹脂粒子である。このようなシリカ複合球状硬化メラミン樹脂粒子は、耐酸性、耐アルカリ性および耐溶媒性に優れるため、バイオディーゼル燃料油に対して優れた耐性を示す。フッ素ゴム組成物がシリカ複合球状硬化メラミン樹脂粒子を含むことにより、フッ素ゴム組成物から得られる加硫物に優れた耐バイオディーゼル燃料油性を付与することができる。また、シリカ複合球状硬化メラミン樹脂粒子の添加により、良好な加硫物性が付与される。そのため、フッ素ゴム組成物が、金属成分として、ハイドロタルサイト、酸化亜鉛等の金属化合物受酸剤を含有していなくとも、良好な加硫物性を示す加硫物を得ることができる。シリカ複合球状硬化メラミン樹脂粒子は、例えば、特許第3903809号公報、特許第4243848号公報に記載されているように、水性媒体中または無機酸アルカリ金属塩を溶解させた水性媒体中、5~70nmの平均粒子径を有するコロイダルシリカのけん濁下で、メラミン化合物とアルデヒド化合物とを塩基性条件下で反応させることにより、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させ、次いで、この水溶液に酸触媒を加えてシリカ複合球状硬化メラミン樹脂粒子を析出させる方法等によって製造できる。
シリカ複合球状硬化メラミン樹脂粒子は、シリカとメラミン樹脂との複合球状粒子であり、好ましくは、シリカを中心部よりも表層部に多く含む球状メラミン樹脂粒子である。このようなシリカ複合球状硬化メラミン樹脂粒子は、耐酸性、耐アルカリ性および耐溶媒性に優れるため、バイオディーゼル燃料油に対して優れた耐性を示す。フッ素ゴム組成物がシリカ複合球状硬化メラミン樹脂粒子を含むことにより、フッ素ゴム組成物から得られる加硫物に優れた耐バイオディーゼル燃料油性を付与することができる。また、シリカ複合球状硬化メラミン樹脂粒子の添加により、良好な加硫物性が付与される。そのため、フッ素ゴム組成物が、金属成分として、ハイドロタルサイト、酸化亜鉛等の金属化合物受酸剤を含有していなくとも、良好な加硫物性を示す加硫物を得ることができる。シリカ複合球状硬化メラミン樹脂粒子は、例えば、特許第3903809号公報、特許第4243848号公報に記載されているように、水性媒体中または無機酸アルカリ金属塩を溶解させた水性媒体中、5~70nmの平均粒子径を有するコロイダルシリカのけん濁下で、メラミン化合物とアルデヒド化合物とを塩基性条件下で反応させることにより、水に可溶なメラミン系樹脂の初期縮合物の水溶液を生成させ、次いで、この水溶液に酸触媒を加えてシリカ複合球状硬化メラミン樹脂粒子を析出させる方法等によって製造できる。
シリカ複合球状硬化メラミン樹脂粒子の平均粒子径は、SEM画像で測定して、15μm以下であることが好ましく、10μm以下であることがより好ましく、4.5μm以下であることがさらに好ましい。また、平均粒子径の下限値は、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、2.0μm以上であることがさらに好ましい。特に、シリカ複合球状硬化メラミン樹脂粒子の平均粒子径が、0.5μm以上4.5μm以下であることにより、圧縮永久歪み特性を向上することができる。
シリカ複合球状硬化メラミン樹脂粒子の市販品として、例えば、日産化学工業社製の「オプトビーズ(登録商標)」のシリーズ、例えば、「オプトビーズ(登録商標) 10500M」(平均粒子径10.5μm)、「オプトビーズ(登録商標) 6500M」(平均粒子径6.5μm)、「オプトビーズ(登録商標) 3500M」(平均粒子径3.5μm)、「オプトビーズ(登録商標) 2000M」(平均粒子径2.0μm)、および「オプトビーズ(登録商標) 500S」(平均粒子径0.5μm)等を用いることができる。シリカ複合球状硬化メラミン樹脂粒子は、1種単独で使用してもよく、2種以上を併用してもよい。
シリカ複合球状硬化メラミン樹脂粒子の配合量は、(a)パーオキサイド架橋可能なフッ素含有エラストマー100重量部に対し5重量部以上50重量部以下が好ましく、5重量部以上35重量部以下がより好ましく、10重量部以上30重量部以下がさらに好ましい。特に、シリカ複合球状硬化メラミン樹脂粒子の配合量が5重量部以上35重量部以下であることにより、優れた耐バイオディーゼル燃料油性を付与させることができ、当該配合量が10重量部以上であることにより、耐バイオディーゼル燃料油性をより向上させることができる。また、当該配合量が30重量部以下であることにより適度な硬度となり加硫物性のバランスが良くなる傾向にある。
(c)カーボンブラック
カーボンブラックは、シール用途では不可欠な圧縮永久歪み特性を改善させる作用を示す。また、フッ素ゴム組成物は、カーボンブラックとシリカ複合球状硬化メラミン樹脂粒子を共に含有することによってこれらの材料の相乗作用により、フッ素ゴム組成物から得られる加硫物に特に優れた圧縮永久歪み特性を付与することができる。カーボンブラックは、例えば、超耐摩耗性(SAF:Super Abrasion Furnace)カーボンブラック、準超耐摩耗性(ISAF:Intermediate Super Abrasion Furnace)カーボンブラック、高耐摩耗性(HAF:High Abrasion Furnace)カーボンブラックおよび良加工性チャンネル(EPC:Easy Processing Channel)カーボンブラック等のハードカーボン、並びに、導電性(XCF:eXtra Conductive Furnace)カーボンブラック、良押出性(FEF:Fast Extruding Furnace)カーボンブラック、汎用性(GPF:General Purpose Furnace)カーボンブラック、高応力(HMF:High Modulus Furnace)カーボンブラック、中補強性(SRF:Semi-Reinforcing Furnace)カーボンブラック、微粒熱分解(FT:Fine Thermal)カーボンブラック、および中粒熱分解(MT:Medium Thermal)カーボンブラック等のソフトカーボンが挙げられる。これらの中でも、カーボンブラックとしては、ソフトカーボンが好ましく、ソフトカーボンの中でも、比較的粒子径が大きい中粒熱分解カーボンブラックがより好ましい。
カーボンブラックは、シール用途では不可欠な圧縮永久歪み特性を改善させる作用を示す。また、フッ素ゴム組成物は、カーボンブラックとシリカ複合球状硬化メラミン樹脂粒子を共に含有することによってこれらの材料の相乗作用により、フッ素ゴム組成物から得られる加硫物に特に優れた圧縮永久歪み特性を付与することができる。カーボンブラックは、例えば、超耐摩耗性(SAF:Super Abrasion Furnace)カーボンブラック、準超耐摩耗性(ISAF:Intermediate Super Abrasion Furnace)カーボンブラック、高耐摩耗性(HAF:High Abrasion Furnace)カーボンブラックおよび良加工性チャンネル(EPC:Easy Processing Channel)カーボンブラック等のハードカーボン、並びに、導電性(XCF:eXtra Conductive Furnace)カーボンブラック、良押出性(FEF:Fast Extruding Furnace)カーボンブラック、汎用性(GPF:General Purpose Furnace)カーボンブラック、高応力(HMF:High Modulus Furnace)カーボンブラック、中補強性(SRF:Semi-Reinforcing Furnace)カーボンブラック、微粒熱分解(FT:Fine Thermal)カーボンブラック、および中粒熱分解(MT:Medium Thermal)カーボンブラック等のソフトカーボンが挙げられる。これらの中でも、カーボンブラックとしては、ソフトカーボンが好ましく、ソフトカーボンの中でも、比較的粒子径が大きい中粒熱分解カーボンブラックがより好ましい。
カーボンブラックの市販品として、例えば、キャンカーブ社製の「THERMAX(登録商標) N990」等の中粒熱分解カーボンブラックを用いることができる。カーボンブラックは、1種単独で使用してもよく、2種以上を併用してもよい。
カーボンブラックの配合量は、(a)パーオキサイド架橋可能なフッ素含有エラストマー100重量部に対し、1重量部以上50重量部以下が好ましく、1重量部以上30重量部以下がより好ましく、5重量部以上25重量部以下がさらに好ましい。特に、カーボンブラックの配合量が1重量部以上30重量部以下であることにより、優れた圧縮永久歪み特性を付与させることができ、当該配合量が5重量部以上であることが好ましい。また、当該配合量が30重量部以下であると、加硫物性のバランスを維持することが可能な傾向にある。
(d)有機過酸化物架橋剤
有機過酸化物架橋剤は、フッ素含有エラストマーのパーオキサイド架橋を形成する架橋剤として使用される。有機過酸化物架橋剤としては、例えば、ジクミルパーオキサイド、クメンヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ベンゾイルパーオキシド、m-トルイルパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)-3-ヘキシン、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシラウレート、ジ(tert-ブチルパーオキシ)アジペート、ジ(2-エトキシエチルパーオキシ)ジカルボナート、ビス(4-tert-ブチルシクロヘキシル)パーオキシジカルボナート等が挙げられる。これらの中でも、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサンが好ましい。
有機過酸化物架橋剤は、フッ素含有エラストマーのパーオキサイド架橋を形成する架橋剤として使用される。有機過酸化物架橋剤としては、例えば、ジクミルパーオキサイド、クメンヒドロパーオキサイド、p-メンタンヒドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ベンゾイルパーオキシド、m-トルイルパーオキサイド、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)-3-ヘキシン、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシラウレート、ジ(tert-ブチルパーオキシ)アジペート、ジ(2-エトキシエチルパーオキシ)ジカルボナート、ビス(4-tert-ブチルシクロヘキシル)パーオキシジカルボナート等が挙げられる。これらの中でも、2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサンが好ましい。
有機過酸化物架橋剤の市販品として、例えば、日油社製の「パーヘキサ(登録商標) 25B-40」等を用いることができる。有機過酸化物架橋剤は、1種単独で使用してもよく、2種以上を併用してもよい。
有機過酸化物架橋剤は、(a)パーオキサイド架橋可能なフッ素含有エラストマー100重量部に対し、0.5重量部以上10重量部以下が好ましく、1重量部以上5重量部以下がより好ましい。当該配合量が0.5重量部以上であると、フッ素含有エラストマーの架橋が十分となり、得られる加硫物の機械的物性が良好なものとなる。また、当該配合量が10重量部以下であると、適度な架橋が進行し、加硫物の伸び等の物性が優れたものとなる。
(e)共架橋剤
有機過酸化物架橋剤によるパーオキサイド架橋に際して、フッ素含有エラストマーの架橋助剤として共架橋剤が併用される。共架橋剤は、多官能性不飽和化合物共架橋剤であることが好ましい。共架橋剤としては、例えば、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジアリルフタレート、トリス(ジアリルアミン)-s-トリアジン、亜リン酸トリアリル、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,3-ポリブタジエン等が挙げられる。これらの中でも、トリ(メタ)アリルイソシアヌレートが好ましい。尚、(メタ)アリルとは、アリルまたはメタアリルを意味し、同様に、(メタ)アクリレートとは、アクリレートまたはメタクリレートを意味する。
有機過酸化物架橋剤によるパーオキサイド架橋に際して、フッ素含有エラストマーの架橋助剤として共架橋剤が併用される。共架橋剤は、多官能性不飽和化合物共架橋剤であることが好ましい。共架橋剤としては、例えば、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジアリルフタレート、トリス(ジアリルアミン)-s-トリアジン、亜リン酸トリアリル、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,3-ポリブタジエン等が挙げられる。これらの中でも、トリ(メタ)アリルイソシアヌレートが好ましい。尚、(メタ)アリルとは、アリルまたはメタアリルを意味し、同様に、(メタ)アクリレートとは、アクリレートまたはメタクリレートを意味する。
共架橋剤の市販品として、例えば、日本化成社製の「TAIC(登録商標) WH-60」等を用いることができる。共架橋剤は、1種単独で使用してもよく、2種以上を併用してもよい。
共架橋剤は、(a)パーオキサイド架橋可能なフッ素含有エラストマー100重量部に対し、1重量部以上5重量部以下が好ましく、2重量部以上4重量部以下がより好ましい。当該配合量が1重量部以上であると、フッ素含有エラストマーの架橋を十分に行うことができ、得られる加硫物の機械的物性、形状保持性を維持することができる。また、当該配合量が5重量部以下であると、機械的物性、耐熱性等の諸特性の向上が見込め、経済的である。
(他の成分)
フッ素ゴム組成物には、上記各成分に加えて、必要に応じて、ゴム加工分野において通常使用される各種添加剤を適宜配合することができる。このような添加剤としては、例えば、硫酸バリウム、タルク、クレー、シリカ等の補強材または充填剤、架橋促進剤、光安定剤、可塑剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、帯電防止剤、着色剤、シランカップリング剤、架橋遅延剤等が挙げられる。これらの添加剤の配合量は、本発明の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を適宜配合することができる。
フッ素ゴム組成物には、上記各成分に加えて、必要に応じて、ゴム加工分野において通常使用される各種添加剤を適宜配合することができる。このような添加剤としては、例えば、硫酸バリウム、タルク、クレー、シリカ等の補強材または充填剤、架橋促進剤、光安定剤、可塑剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、帯電防止剤、着色剤、シランカップリング剤、架橋遅延剤等が挙げられる。これらの添加剤の配合量は、本発明の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を適宜配合することができる。
(フッ素ゴム組成物の製造方法)
本実施形態に係るフッ素ゴム組成物の製造方法は、特に限定されるものではないが、例えば、上記成分(a)~(e)に記載される各配合成分、必要に応じて、ゴムの配合剤として一般的に用いられている各種添加剤を所定の割合で適宜配合した後、インターミックス、ニーダ、バンバリーミキサ等の密閉型混練装置またはオープンロール等の撹拌手段により各成分を混練または混合することにより製造することができる。また、混練または混合の前に、必要に応じて、予備混練または予備混合を施してもよい。
本実施形態に係るフッ素ゴム組成物の製造方法は、特に限定されるものではないが、例えば、上記成分(a)~(e)に記載される各配合成分、必要に応じて、ゴムの配合剤として一般的に用いられている各種添加剤を所定の割合で適宜配合した後、インターミックス、ニーダ、バンバリーミキサ等の密閉型混練装置またはオープンロール等の撹拌手段により各成分を混練または混合することにより製造することができる。また、混練または混合の前に、必要に応じて、予備混練または予備混合を施してもよい。
(シール材)
本実施形態に係るフッ素ゴム組成物を、加硫成形材料として用いることにより、シール材を製造することができる。例えば、上記製造方法により得られたフッ素ゴム組成物をシート状にしたゴム生地を加硫プレスにより所定の形状に加硫成形することにより、所望とするシール材を製造することができる。その際、加硫成形は、一般に、約100~250℃で約1~120分間行われるプレス加硫および約150~250℃で約0~30時間行われるオーブン加硫(二次加硫)によって行われる。本実施形態に係るフッ素ゴム組成物を用いて得られた加硫物は、圧縮永久歪み特性および耐バイオディーゼル燃料油性に優れるため、バイオディーゼル燃料油に接触する部材用のシール材であることが好ましい。バイオディーゼル燃料油に接触する部材は、特定の機器、機械の全体または一部であってもよく、部品であってもよい。このようなバイオディーゼル燃料に接触する用途に用いられるシール材は、例えば、バイオディーゼル燃料に接触するOリング、ガスケット、パッキン、バルブ、オイルシール等のディーゼル車用の配管シール材として好適に用いることができる。また、本実施形態に係るフッ素ゴム組成物を加硫成形して得られたシール材の用途は、上述したシール製品材料に限らず、他の工業用シール製品材料、例えば、自動車、化学プラント、食品の製造ライン等のシール材としても好適である。尚、バイオディーゼル燃料油は、菜種油、大豆油、コーン油等の生物由来の原料油脂をエステル化した脂肪酸メチルエステルを含む液体燃料である。
本実施形態に係るフッ素ゴム組成物を、加硫成形材料として用いることにより、シール材を製造することができる。例えば、上記製造方法により得られたフッ素ゴム組成物をシート状にしたゴム生地を加硫プレスにより所定の形状に加硫成形することにより、所望とするシール材を製造することができる。その際、加硫成形は、一般に、約100~250℃で約1~120分間行われるプレス加硫および約150~250℃で約0~30時間行われるオーブン加硫(二次加硫)によって行われる。本実施形態に係るフッ素ゴム組成物を用いて得られた加硫物は、圧縮永久歪み特性および耐バイオディーゼル燃料油性に優れるため、バイオディーゼル燃料油に接触する部材用のシール材であることが好ましい。バイオディーゼル燃料油に接触する部材は、特定の機器、機械の全体または一部であってもよく、部品であってもよい。このようなバイオディーゼル燃料に接触する用途に用いられるシール材は、例えば、バイオディーゼル燃料に接触するOリング、ガスケット、パッキン、バルブ、オイルシール等のディーゼル車用の配管シール材として好適に用いることができる。また、本実施形態に係るフッ素ゴム組成物を加硫成形して得られたシール材の用途は、上述したシール製品材料に限らず、他の工業用シール製品材料、例えば、自動車、化学プラント、食品の製造ライン等のシール材としても好適である。尚、バイオディーゼル燃料油は、菜種油、大豆油、コーン油等の生物由来の原料油脂をエステル化した脂肪酸メチルエステルを含む液体燃料である。
(圧縮永久歪み特性)
本実施形態に係るフッ素ゴム組成物を加硫成形して得られた加硫物は、ASTM D395 Method B(200℃、70時間)に準拠した圧縮永久歪みが、30%以下であることが好ましく、28%以下であることがより好ましい。
本実施形態に係るフッ素ゴム組成物を加硫成形して得られた加硫物は、ASTM D395 Method B(200℃、70時間)に準拠した圧縮永久歪みが、30%以下であることが好ましく、28%以下であることがより好ましい。
(耐バイオディーゼル燃料油性)
本実施形態に係るフッ素ゴム組成物を加硫成形して得られた加硫物の耐バイオディーゼル燃料油性は、JIS K6258:2016に準拠したバイオディーゼル燃料油浸漬試験を行うことにより評価できる。より具体的には、バイオディーゼル燃料油に加硫物を浸漬前後のショアA硬度の変化(pts)および体積膨潤率(%)を測定することで評価できる。その際、主成分である成分(a)パーオキサイド架橋可能なフッ素含有エラストマーの種類ごとに耐バイオディーゼル燃料油性を評価する。例えば、パーオキサイド架橋可能なフッ素含有エラストマーとしてフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体等の2元共重合体を使用する場合、120℃で168時間浸漬および336時間浸漬の条件下で、ショアA硬度の変化(硬度変化)は-2pts以上が好ましく、-1pts以上がより好ましく、体積膨張率(体積変化)は+0.7%以下が好ましく、+0.6%以下がより好ましい。また、パーオキサイド架橋可能なフッ素含有エラストマーとしてフッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体等の3元共重合体を使用する場合、120℃で168時間浸漬および336時間浸漬の条件下で、ショアA硬度の変化(硬度変化)は-5pts以上が好ましく、-4pts以上がより好ましく、体積膨潤率(体積変化)は+3.5%以下が好ましく、+3.2%以下がより好ましい。
本実施形態に係るフッ素ゴム組成物を加硫成形して得られた加硫物の耐バイオディーゼル燃料油性は、JIS K6258:2016に準拠したバイオディーゼル燃料油浸漬試験を行うことにより評価できる。より具体的には、バイオディーゼル燃料油に加硫物を浸漬前後のショアA硬度の変化(pts)および体積膨潤率(%)を測定することで評価できる。その際、主成分である成分(a)パーオキサイド架橋可能なフッ素含有エラストマーの種類ごとに耐バイオディーゼル燃料油性を評価する。例えば、パーオキサイド架橋可能なフッ素含有エラストマーとしてフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体等の2元共重合体を使用する場合、120℃で168時間浸漬および336時間浸漬の条件下で、ショアA硬度の変化(硬度変化)は-2pts以上が好ましく、-1pts以上がより好ましく、体積膨張率(体積変化)は+0.7%以下が好ましく、+0.6%以下がより好ましい。また、パーオキサイド架橋可能なフッ素含有エラストマーとしてフッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体等の3元共重合体を使用する場合、120℃で168時間浸漬および336時間浸漬の条件下で、ショアA硬度の変化(硬度変化)は-5pts以上が好ましく、-4pts以上がより好ましく、体積膨潤率(体積変化)は+3.5%以下が好ましく、+3.2%以下がより好ましい。
以下に、本発明の実施例について説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。
(ゴム重合体Aの作製)
撹拌機を備えた容量3Lのステンレス鋼製反応器を真空にした後、反応器中に、脱イオン水1.2kg、CF3CF2CF2OCF(CF3)CF2OCF(CF3)COONH418g、リン酸水素二ナトリウム12水和物1.5g、およびICF2CF2Br2.4gを加えた後、テトラフルオロエチレン(TFE)292gおよびパーフルオロメチルビニルエーテル(PMVE)297gをさらに加えて、反応器内の温度を50℃まで昇温した。昇温後の反応器内の圧力は0.88MPa・Gであった。次いで、脱イオン水に溶解した過硫酸アンモニウム1.35gおよび亜硫酸ナトリウム0.04gを圧入し、重合反応を開始した。重合反応が進行するにつれて反応器内の圧力が低下するため、反応器内の圧力が0.75~0.85MPa・Gの範囲内を維持するように、TFF/PMVE=65/35mol%の混合ガスを8時間にわたって反応器内に分添した。反応終了後、得られた水性乳濁液に5重量%塩化マグネシウム水溶液を添加して重合物を凝析し、次いで、水洗い、乾燥して、490gのゴム重合体Aを得た。得られたゴム重合体Aの組成は、TFE/PMVE=65.0/35.0(mol%)であった。ゴム重合体Aは、(a)パーオキサイド架橋可能なフッ素含有エラストマーに相当する。
撹拌機を備えた容量3Lのステンレス鋼製反応器を真空にした後、反応器中に、脱イオン水1.2kg、CF3CF2CF2OCF(CF3)CF2OCF(CF3)COONH418g、リン酸水素二ナトリウム12水和物1.5g、およびICF2CF2Br2.4gを加えた後、テトラフルオロエチレン(TFE)292gおよびパーフルオロメチルビニルエーテル(PMVE)297gをさらに加えて、反応器内の温度を50℃まで昇温した。昇温後の反応器内の圧力は0.88MPa・Gであった。次いで、脱イオン水に溶解した過硫酸アンモニウム1.35gおよび亜硫酸ナトリウム0.04gを圧入し、重合反応を開始した。重合反応が進行するにつれて反応器内の圧力が低下するため、反応器内の圧力が0.75~0.85MPa・Gの範囲内を維持するように、TFF/PMVE=65/35mol%の混合ガスを8時間にわたって反応器内に分添した。反応終了後、得られた水性乳濁液に5重量%塩化マグネシウム水溶液を添加して重合物を凝析し、次いで、水洗い、乾燥して、490gのゴム重合体Aを得た。得られたゴム重合体Aの組成は、TFE/PMVE=65.0/35.0(mol%)であった。ゴム重合体Aは、(a)パーオキサイド架橋可能なフッ素含有エラストマーに相当する。
(ゴム重合体Bの作製)
撹拌機を備えた容量3Lのステンレス鋼製反応器を真空にした後、反応器中に、脱イオン水1.3kg、CF3CF2CF2OCF(CF3)CF2OCF(CF3)COONH43.9g、リン酸水素二ナトリウム12水和物2.6g、CBr2=CHF2.6g、およびICF2CF2Br2.4gを加えた後、テトラフルオロエチレン(TFE)49g、ビニリデンフロライド(VdF)118g、ヘキサフルオロプロピレン(HFP)233gをさらに加えて、反応器内の温度を70℃まで昇温した。昇温後の反応器内の圧力は3.88MPa・Gであった。次いで、50gの脱イオン水に2.4gの過硫酸アンモニウムが溶解した水溶液を圧入し、重合反応を開始した。重合反応が進行するにつれて反応器内の圧力が低下するため、反応器内の圧力が3.75~3.85MPa・Gの範囲内を維持するように、TFF/VdF/HFP=16.4/62.2/21.4mol%の混合ガスを10時間にわたって反応器内に分添した。反応終了後、得られた水性乳濁液に5重量%塩化マグネシウム水溶液を添加して重合物を凝析し、次いで、水洗い、乾燥して、400gのゴム重合体Bを得た。得られたゴム重合体Bの組成は、TFF/VdF/HFP=16.0/67.1/16.9(mol%)であった。ゴム重合体Bは、(a)パーオキサイド架橋可能なフッ素含有エラストマーに相当する。
撹拌機を備えた容量3Lのステンレス鋼製反応器を真空にした後、反応器中に、脱イオン水1.3kg、CF3CF2CF2OCF(CF3)CF2OCF(CF3)COONH43.9g、リン酸水素二ナトリウム12水和物2.6g、CBr2=CHF2.6g、およびICF2CF2Br2.4gを加えた後、テトラフルオロエチレン(TFE)49g、ビニリデンフロライド(VdF)118g、ヘキサフルオロプロピレン(HFP)233gをさらに加えて、反応器内の温度を70℃まで昇温した。昇温後の反応器内の圧力は3.88MPa・Gであった。次いで、50gの脱イオン水に2.4gの過硫酸アンモニウムが溶解した水溶液を圧入し、重合反応を開始した。重合反応が進行するにつれて反応器内の圧力が低下するため、反応器内の圧力が3.75~3.85MPa・Gの範囲内を維持するように、TFF/VdF/HFP=16.4/62.2/21.4mol%の混合ガスを10時間にわたって反応器内に分添した。反応終了後、得られた水性乳濁液に5重量%塩化マグネシウム水溶液を添加して重合物を凝析し、次いで、水洗い、乾燥して、400gのゴム重合体Bを得た。得られたゴム重合体Bの組成は、TFF/VdF/HFP=16.0/67.1/16.9(mol%)であった。ゴム重合体Bは、(a)パーオキサイド架橋可能なフッ素含有エラストマーに相当する。
(実施例1)
上記で得られたゴム重合体A(TFE-PMVE共重合体)100重量部、カーボンブラック(中粒熱分解(MT:Medium Thermal)カーボンブラック:商品名「THERMAX N990」、キャンカーブ社製)20重量部、シリカ複合球状硬化メラミン樹脂粒子(商品名「オプトビーズ(登録商標) 2000M」、日産化学工業社製)10重量部、有機過酸化物架橋剤(2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン:商品名「パーヘキサ(登録商標) 25B-40」、日油社製)2.5重量部、および共架橋剤(トリアリルイソシアヌレート:商品名「TAIC(登録商標) WH-60」、日本化成社製)3.5重量部を、8インチミキシングロールにより混練してフッ素ゴム組成物を作製した。次いで、得られたフッ素ゴム組成物の混練物を180℃で10分間プレス加硫し、さらに200℃で6時間オーブン加硫(二次加硫)した。得られた加硫物について、以下の特性を測定し、各種性能を評価した。
上記で得られたゴム重合体A(TFE-PMVE共重合体)100重量部、カーボンブラック(中粒熱分解(MT:Medium Thermal)カーボンブラック:商品名「THERMAX N990」、キャンカーブ社製)20重量部、シリカ複合球状硬化メラミン樹脂粒子(商品名「オプトビーズ(登録商標) 2000M」、日産化学工業社製)10重量部、有機過酸化物架橋剤(2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン:商品名「パーヘキサ(登録商標) 25B-40」、日油社製)2.5重量部、および共架橋剤(トリアリルイソシアヌレート:商品名「TAIC(登録商標) WH-60」、日本化成社製)3.5重量部を、8インチミキシングロールにより混練してフッ素ゴム組成物を作製した。次いで、得られたフッ素ゴム組成物の混練物を180℃で10分間プレス加硫し、さらに200℃で6時間オーブン加硫(二次加硫)した。得られた加硫物について、以下の特性を測定し、各種性能を評価した。
<加硫物性>
得られた加硫物について、硬度をJIS K6253-3:2012に準拠したタイプAデュロメータで測定し、100%モジュラス値、引張強さ、および切断時伸びをJIS K6251:2017に準拠して測定した。各特性の測定結果を表1に示す。
得られた加硫物について、硬度をJIS K6253-3:2012に準拠したタイプAデュロメータで測定し、100%モジュラス値、引張強さ、および切断時伸びをJIS K6251:2017に準拠して測定した。各特性の測定結果を表1に示す。
<圧縮永久歪み特性>
得られた加硫物をプレス成形して、P-24 Oリングのサンプルを作製した。得られたサンプルについて、圧縮永久歪みをASTM D395 Method B(200℃、70時間)に準拠して測定した。その結果を表1に示す。
得られた加硫物をプレス成形して、P-24 Oリングのサンプルを作製した。得られたサンプルについて、圧縮永久歪みをASTM D395 Method B(200℃、70時間)に準拠して測定した。その結果を表1に示す。
<バイオディーゼル燃料油浸漬試験>
得られた加硫物を2cm×4cm(厚みは2mm)に切った試験片を、脂肪酸メチルエステル(油藤商事社から入手)のバイオディーゼル燃料油中に120℃で168時間および336時間それぞれ浸漬し、浸漬前後のショアA硬度の硬度変化および体積膨潤率(体積変化)をJIS K6258:2016に準拠してそれぞれ評価した。その結果を表1に示す。
得られた加硫物を2cm×4cm(厚みは2mm)に切った試験片を、脂肪酸メチルエステル(油藤商事社から入手)のバイオディーゼル燃料油中に120℃で168時間および336時間それぞれ浸漬し、浸漬前後のショアA硬度の硬度変化および体積膨潤率(体積変化)をJIS K6258:2016に準拠してそれぞれ評価した。その結果を表1に示す。
(実施例2)
カーボンブラックの配合量を5重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を30重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
カーボンブラックの配合量を5重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を30重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(実施例3)
カーボンブラックの配合量を1重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を34重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
カーボンブラックの配合量を1重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を34重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(実施例4)
カーボンブラックの配合量を30重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を5重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
カーボンブラックの配合量を30重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を5重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(実施例5)
カーボンブラックの配合量を25重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を10重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
カーボンブラックの配合量を25重量部、シリカ複合球状硬化メラミン樹脂粒子の配合量を10重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(実施例6)
ゴム重合体Aに代えて、ゴム重合体Bを用いたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
ゴム重合体Aに代えて、ゴム重合体Bを用いたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(実施例7)
ゴム重合体Aに代えて、ゴム重合体Bを用いたこと以外は、実施例2と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
ゴム重合体Aに代えて、ゴム重合体Bを用いたこと以外は、実施例2と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(比較例1)
シリカ複合球状硬化メラミン樹脂粒子に代えて、金属化合物受酸剤A(ハイドロタルサイト:商品名「DHT-4A(登録商標)」、協和化学工業社製)3重量部を配合し、さらに、カーボンブラックの配合量を35重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
シリカ複合球状硬化メラミン樹脂粒子に代えて、金属化合物受酸剤A(ハイドロタルサイト:商品名「DHT-4A(登録商標)」、協和化学工業社製)3重量部を配合し、さらに、カーボンブラックの配合量を35重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(比較例2)
シリカ複合球状硬化メラミン樹脂粒子に代えて、金属化合物受酸剤B(酸化亜鉛、本荘ケミカル社製)5重量部を配合し、さらに、ゴム重合体Aに代えてゴム重合体Bを用い、カーボンブラックの配合量を35重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
シリカ複合球状硬化メラミン樹脂粒子に代えて、金属化合物受酸剤B(酸化亜鉛、本荘ケミカル社製)5重量部を配合し、さらに、ゴム重合体Aに代えてゴム重合体Bを用い、カーボンブラックの配合量を35重量部としたこと以外は、実施例1と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
(比較例3)
ゴム重合体Aに代えて、ゴム重合体Bを用い、さらに、カーボンブラックを含有しないものとしたこと以外は、実施例2と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
ゴム重合体Aに代えて、ゴム重合体Bを用い、さらに、カーボンブラックを含有しないものとしたこと以外は、実施例2と同様にしてフッ素ゴム組成物およびその加硫物を作製して、上記の測定および評価を行った。その結果を表1に示す。
上記表1に示される各成分は、下記の通りである。
・ゴム重合体A:TFE-PMVE 2元共重合体(モル比:TFE/PMVE=65.0/35.0)
・ゴム重合体B:TFF-VdF-HFP 3元共重合体(モル比:TFF/VdF/HFP=16.0/67.1/16.9)
・カーボンブラック:中粒熱分解(MT:Medium Thermal)カーボンブラック(商品名「THERMAX(登録商標) N990」キャンカーブ社製)
・シリカ複合球状硬化メラミン樹脂粒子:商品名「オプトビーズ(登録商標) 2000M」(日産化学工業社製)
・有機過酸化物架橋剤:2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン(商品名「パーヘキサ(登録商標) 25B-40」、日油社製)
・共架橋剤:トリアリルイソシアヌレート(商品名「TAIC(登録商標) WH-60」、日本化成社製)
・金属化合物受酸剤A:ハイドロタルサイト(商品名「DHT-4A(登録商標)」、協和化学工業社製)
・金属化合物受酸剤B:酸化亜鉛(本荘ケミカル社製)
また、上記表1中、上記各成分の値は「重量部」を表し、実施例2および3における「100%モジュラス値」の「-」は測定不能を意味する。
・ゴム重合体A:TFE-PMVE 2元共重合体(モル比:TFE/PMVE=65.0/35.0)
・ゴム重合体B:TFF-VdF-HFP 3元共重合体(モル比:TFF/VdF/HFP=16.0/67.1/16.9)
・カーボンブラック:中粒熱分解(MT:Medium Thermal)カーボンブラック(商品名「THERMAX(登録商標) N990」キャンカーブ社製)
・シリカ複合球状硬化メラミン樹脂粒子:商品名「オプトビーズ(登録商標) 2000M」(日産化学工業社製)
・有機過酸化物架橋剤:2,5-ジメチル-2,5-ビス(tert-ブチルパーオキシ)ヘキサン(商品名「パーヘキサ(登録商標) 25B-40」、日油社製)
・共架橋剤:トリアリルイソシアヌレート(商品名「TAIC(登録商標) WH-60」、日本化成社製)
・金属化合物受酸剤A:ハイドロタルサイト(商品名「DHT-4A(登録商標)」、協和化学工業社製)
・金属化合物受酸剤B:酸化亜鉛(本荘ケミカル社製)
また、上記表1中、上記各成分の値は「重量部」を表し、実施例2および3における「100%モジュラス値」の「-」は測定不能を意味する。
表1から分かるように、(b)シリカ複合球状硬化メラミン樹脂粒子と(c)カーボンブラックの双方を含有するフッ素ゴム組成物を用いて加硫物を形成した実施例1~7のうち、(a)パーオキサイド架橋可能なフッ素含有エラストマーとして2元共重合体を使用した実施例1~5では、圧縮永久歪みがいずれも30%以下であり、さらには、耐バイオディーゼル燃料油浸漬試験において、120℃で168時間浸漬および336時間浸漬の条件下で、硬度変化はいずれも-2pts以上であり、体積変化(体積膨張率)はいずれも+0.7%以下であった。一方、シリカ複合球状硬化メラミン樹脂粒子に代えて、金属化合物受酸剤としてハイドロタルサイトを含むフッ素ゴム組成物を用いて加硫物を形成した比較例1では、加硫物性および圧縮永久歪み特性は優れていたものの、耐バイオディーゼル燃料油浸漬試験において、硬度変化は-3ptsであり、シリカ複合球状硬化メラミン樹脂粒子を含むフッ素ゴム組成物を用いた実施例1~5に比べて耐バイオディーゼル燃料油性が劣っていた。
(a)パーオキサイド架橋可能なフッ素含有エラストマーとして3元共重合体を使用した実施例6~7では、圧縮永久歪みがいずれも30%以下であり、さらには、耐バイオディーゼル燃料油浸漬試験において、120℃で168時間浸漬および336時間浸漬の条件下で、硬度変化はいずれも-5pts以上であり、体積変化(体積膨張率)はいずれも+3.5%以下であった。一方、シリカ複合球状硬化メラミン樹脂粒子に代えて、金属化合物受酸剤として酸化亜鉛を含むフッ素ゴム組成物を用いて加硫物を形成した比較例2では、耐バイオディーゼル燃料油浸漬試験において、硬度変化は-5pts未満であり、体積変化は+3.5%より大きく、シリカ複合球状硬化メラミン樹脂粒子を含むフッ素ゴム組成物を用いた実施例6~7に比べて耐バイオディーゼル燃料油性が劣っていた。また、カーボンブラックを含まないフッ素ゴム組成物を用いて加硫物を形成した比較例3では、加硫物性および耐バイオディーゼル燃料油性は優れていたものの、圧縮永久歪みが31%であり、カーボンブラックを含むフッ素ゴム組成物を用いた実施例6~7に比べて圧縮永久歪みが大きく、圧縮永久歪み特性に劣っていた。
このように、シリカ複合球状硬化メラミン樹脂粒子とカーボンブラックの双方を含有するフッ素ゴム組成物を使用することにより、得られる加硫物に優れた圧縮永久歪み特性および耐バイオディーゼル燃料油性を付与できることがわかる。また、実施例1~7では、フッ素ゴム組成物中に、ハイドロタルサイト、酸化亜鉛等の金属化合物受酸剤を配合させなくても、良好な加硫物性を示す加硫物を得ることができた。
以上の結果から、(b)シリカ複合球状硬化メラミン樹脂粒子と(c)カーボンブラックの双方を含有するフッ素ゴム組成物を用いて加硫成形することにより得られる加硫物は、金属化合物受酸剤を用いなくても、良好な加硫物性を示すと共に、圧縮永久歪み特性および耐バイオディーゼル燃料油性の双方に優れることがわかる。
上記のように、本発明の実施形態によれば、圧縮永久歪み特性および耐バイオディーゼル燃料油性の双方に優れた加硫物を与えるフッ素ゴム組成物を実現できる。特に、フッ素ゴム組成物を加硫成形して得られた加硫物は、例えば、バイオディーゼル燃料油に接触する部材用のシール材に好適に使用することができる。
以上、本発明の実施形態について説明したが、本実施形態の内容により本発明が限定されるものではない。また、上述した構成要素には、当業者が適宜設計できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。
Claims (6)
- (a)パーオキサイド架橋可能なフッ素含有エラストマー、(b)シリカ複合球状硬化メラミン樹脂粒子、(c)カーボンブラック、(d)有機過酸化物架橋剤、および(e)共架橋剤を含有する、フッ素ゴム組成物。
- 金属化合物受酸剤を含有しない、請求項1記載のフッ素ゴム組成物。
- 前記(a)パーオキサイド架橋可能なフッ素含有エラストマー100重量部に対し、前記(b)シリカ複合球状硬化メラミン樹脂粒子を5重量部以上35重量部以下、および前記(c)カーボンブラックを1重量部以上30重量部以下含有する、請求項1または2記載のフッ素ゴム組成物。
- シール材の加硫成形材料として用いられる請求項1から3までのいずれか1項記載のフッ素ゴム組成物。
- 請求項1から4までのいずれか1項記載のフッ素ゴム組成物を加硫成形して得られた、シール材。
- 前記シール材は、バイオディーゼル燃料油に接触する部材用のシール材である、請求項5記載のシール材。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20872911.1A EP4039752A1 (en) | 2019-10-02 | 2020-08-06 | Fluororubber composition and seal material |
JP2021550387A JPWO2021065199A1 (ja) | 2019-10-02 | 2020-08-06 | |
US17/640,369 US20220411685A1 (en) | 2019-10-02 | 2020-08-06 | Fluororubber composition and sealing material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019182081 | 2019-10-02 | ||
JP2019-182081 | 2019-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065199A1 true WO2021065199A1 (ja) | 2021-04-08 |
Family
ID=75338135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030143 WO2021065199A1 (ja) | 2019-10-02 | 2020-08-06 | フッ素ゴム組成物およびシール材 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220411685A1 (ja) |
EP (1) | EP4039752A1 (ja) |
JP (1) | JPWO2021065199A1 (ja) |
WO (1) | WO2021065199A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006228805A (ja) * | 2005-02-15 | 2006-08-31 | Nippon Valqua Ind Ltd | 半導体製造装置用シール材 |
JP3903809B2 (ja) | 2001-03-02 | 2007-04-11 | 日産化学工業株式会社 | 球状複合硬化メラミン樹脂粒子の製造方法 |
JP4243848B2 (ja) | 2003-12-10 | 2009-03-25 | 日産化学工業株式会社 | 球状複合硬化メラミン樹脂粒子の製造方法 |
JP2009084301A (ja) * | 2007-09-27 | 2009-04-23 | Tokai Rubber Ind Ltd | ディーゼル用ホース |
WO2011030777A1 (ja) * | 2009-09-14 | 2011-03-17 | Nok株式会社 | フッ素ゴム組成物 |
JP2013064157A (ja) | 2006-05-19 | 2013-04-11 | Daikin Industries Ltd | 含フッ素エラストマー組成物および該組成物からなる成形品 |
JP2014118510A (ja) | 2012-12-18 | 2014-06-30 | Unimatec Co Ltd | フッ素ゴム組成物 |
JP2014525494A (ja) * | 2011-08-31 | 2014-09-29 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 耐酸性フルオロエラストマー組成物 |
JP2015512954A (ja) * | 2012-02-24 | 2015-04-30 | ダイキン工業株式会社 | フッ素ゴム組成物 |
WO2017150192A1 (ja) * | 2016-03-01 | 2017-09-08 | Nok株式会社 | フッ素ゴム組成物及びフッ素ゴム架橋体 |
JP2019094430A (ja) * | 2017-11-22 | 2019-06-20 | ダイキン工業株式会社 | フッ素ゴム成形体及び組成物 |
-
2020
- 2020-08-06 EP EP20872911.1A patent/EP4039752A1/en not_active Withdrawn
- 2020-08-06 JP JP2021550387A patent/JPWO2021065199A1/ja active Pending
- 2020-08-06 WO PCT/JP2020/030143 patent/WO2021065199A1/ja unknown
- 2020-08-06 US US17/640,369 patent/US20220411685A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3903809B2 (ja) | 2001-03-02 | 2007-04-11 | 日産化学工業株式会社 | 球状複合硬化メラミン樹脂粒子の製造方法 |
JP4243848B2 (ja) | 2003-12-10 | 2009-03-25 | 日産化学工業株式会社 | 球状複合硬化メラミン樹脂粒子の製造方法 |
JP2006228805A (ja) * | 2005-02-15 | 2006-08-31 | Nippon Valqua Ind Ltd | 半導体製造装置用シール材 |
JP2013064157A (ja) | 2006-05-19 | 2013-04-11 | Daikin Industries Ltd | 含フッ素エラストマー組成物および該組成物からなる成形品 |
JP2009084301A (ja) * | 2007-09-27 | 2009-04-23 | Tokai Rubber Ind Ltd | ディーゼル用ホース |
WO2011030777A1 (ja) * | 2009-09-14 | 2011-03-17 | Nok株式会社 | フッ素ゴム組成物 |
JP2014525494A (ja) * | 2011-08-31 | 2014-09-29 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 耐酸性フルオロエラストマー組成物 |
JP2015512954A (ja) * | 2012-02-24 | 2015-04-30 | ダイキン工業株式会社 | フッ素ゴム組成物 |
JP2014118510A (ja) | 2012-12-18 | 2014-06-30 | Unimatec Co Ltd | フッ素ゴム組成物 |
WO2017150192A1 (ja) * | 2016-03-01 | 2017-09-08 | Nok株式会社 | フッ素ゴム組成物及びフッ素ゴム架橋体 |
JP2019094430A (ja) * | 2017-11-22 | 2019-06-20 | ダイキン工業株式会社 | フッ素ゴム成形体及び組成物 |
Also Published As
Publication number | Publication date |
---|---|
US20220411685A1 (en) | 2022-12-29 |
EP4039752A1 (en) | 2022-08-10 |
JPWO2021065199A1 (ja) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5873026B2 (ja) | ペルオキシド硬化された部分的にフッ素化されたエラストマー | |
US7138470B2 (en) | Fluoroelastomers with improved low temperature property and method for making the same | |
JP5168918B2 (ja) | 含フッ素エラストマーおよびその組成物 | |
JP2509345B2 (ja) | 高い引張強度を有するフッ素ゴム加硫組成物 | |
JP6288398B2 (ja) | フッ素ゴム組成物 | |
KR102445981B1 (ko) | 불소 고무 조성물 및 불소 고무 가교 물품 | |
KR101022727B1 (ko) | 내투과성이 향상된 플루오로엘라스토머 및 이의 제조 방법 | |
KR20150073217A (ko) | 함불소 엘라스토머 블렌드물 | |
JP5725167B2 (ja) | 含フッ素エラストマーの製造方法 | |
JPH1135637A (ja) | 含フッ素エラストマーの製造法 | |
EP2214241A1 (en) | Fluororubber composition for cell seals of fuel cells | |
JP2010241900A (ja) | 含フッ素エラストマー組成物 | |
JP5998588B2 (ja) | 含フッ素エラストマーブレンド物およびその組成物 | |
EP3387054A1 (en) | Curing agents for fluorinated elastomers | |
WO2021065199A1 (ja) | フッ素ゴム組成物およびシール材 | |
JP6048114B2 (ja) | フッ素ゴム組成物 | |
JP2005344074A (ja) | フッ素ゴム組成物 | |
JP7488424B2 (ja) | フッ素ゴム組成物 | |
JP7403007B2 (ja) | フッ素ゴム組成物およびシール材 | |
JP7400805B2 (ja) | 含フッ素共重合体組成物、架橋ゴムおよびその製造方法 | |
JPH06271734A (ja) | 含フッ素エラストマー組成物 | |
JP2013014785A (ja) | パーオキサイド架橋可能なフッ素ゴム | |
JPH05186654A (ja) | 硬化容易な含フッ素エラストマー加硫組成物 | |
JP2007100109A (ja) | 含フッ素共重合体ブレンド物架橋成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20872911 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021550387 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020872911 Country of ref document: EP Effective date: 20220502 |