WO2020246578A1 - 電解液、リチウム-硫黄二次電池及びモジュール - Google Patents
電解液、リチウム-硫黄二次電池及びモジュール Download PDFInfo
- Publication number
- WO2020246578A1 WO2020246578A1 PCT/JP2020/022276 JP2020022276W WO2020246578A1 WO 2020246578 A1 WO2020246578 A1 WO 2020246578A1 JP 2020022276 W JP2020022276 W JP 2020022276W WO 2020246578 A1 WO2020246578 A1 WO 2020246578A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- electrolytic solution
- lithium
- sulfur
- och
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to electrolytes, lithium-sulfur secondary batteries and modules.
- Lithium-ion secondary batteries are widely used as high-capacity secondary batteries, and lithium-sulfur secondary batteries are being studied as higher-capacity secondary batteries. In these various batteries, the performance of the electrolytic solution has a great influence on the performance of the battery.
- Patent Document 1 uses an electrolytic solution containing a specific ether compound and an alkali metal salt in a lithium-sulfur secondary battery, in which at least a part of the ether compound and the alkali metal salt forms a complex. It discloses what to do.
- Patent Document 2 discloses an electrolytic solution containing an ether, an ionic liquid, and a fluorine solvent.
- Patent Document 3 discloses that an electrolytic solution containing tetraglime and an alkali metal salt is used in a lithium-sulfur secondary battery.
- Patent Document 4 describes lithium using a non-aqueous electrolyte solution containing a positive electrode containing simple sulfur, at least one of cyclic ether or chain ether, and at least one of fluorinated carbonate and fluorinated ester.
- the sulfur secondary battery is disclosed.
- Non-Patent Document 1 discloses that ethyl 1,1,2,2-tetrafluoroethyl ether is used as an electrolytic solution in a lithium / sulfur battery.
- Japanese Unexamined Patent Publication No. 2013-225496 Japanese Unexamined Patent Publication No. 2014-41811 Japanese Patent No. 5804557 Japanese Unexamined Patent Publication No. 2005-108724
- the present disclosure refers to positive or negative electrodes containing a sulfur-based electrode active material containing at least one selected from the group consisting of elemental sulfur, lithium polysulfide (Li 2 Sn: 1 ⁇ n ⁇ 8), and organic sulfur compounds.
- An electrolytic solution used for a battery that has Equation (1): Rf- (OR 1 ) n 1 -OR 2 (In the formula, Rf is an alkyl group having a fluorine atom, and may form a branch or a ring having 1 to 5 carbon atoms. R 1 is an alkyl group, R which may have a fluorine atom.
- Reference numeral 2 is an alkyl group having no fluorine and having 1 to 9 carbon atoms, which may form a branch or a ring.
- N 1 is 0, 1 or 2.
- the number of carbon atoms in one molecule is 5 or more.
- Fluorinated ether indicated by Equation (2): R 4 - ( OCHR 3 CH 2) x -OR 5 (In the formula, R 4 and R 5 are independently substituted with a fluorine-free alkyl group having 1 to 9 carbon atoms, a phenyl group optionally substituted with a halogen atom, and a halogen atom. It may be selected from the group consisting of cyclohexyl groups, which may form a ring together, where R 3 independently represents H or CH 3 and x represents 0-10).
- An electrolytic solution containing the represented ether compound and alkali metal salt.
- the above fluorinated ether HCF 2 CF 2 OCH 2 CH 2 CH 3 , HCF 2 CF 2 OCH 2 CH 2 CH 2 CH 3 , HCF 2 CF 2 CH 2 OCH 2 CH 3 , HCF 2 CF 2 CH 2 OCH 2 CH 2 CH 3 , HCF 2 It is preferably at least one selected from the group consisting of CF 2 CH 2 OCH 2 CH 2 CH 2 CH 3 , CF 3 CHFCF 2 OCH 2 CH 3 , CF 3 CHFCF 2 OCH 2 CH 2 CH 3 .
- the total amount of the fluorinated ether represented by the formula (1) and the ether compound represented by the formula (2) is preferably 60% by weight or more of the solvent in the electrolytic solution.
- the ether compound is at least one selected from the group consisting of tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane or grime or a derivative thereof.
- THF tetrahydrofuran
- 1,3-dioxolane 1,4-dioxane or grime or a derivative thereof.
- the alkali metal salt is represented by LiX and is represented by LiX.
- X is Cl, Br, I, BF 4 , PF 6 , CF 3 SO 3 , ClO 4 , CF 3 CO 2 , AsF 6 , SbF 6 , AlCl 4 , bistrifluoromethanesulfonylamide (TFSA), N (CF 3 ).
- the present disclosure is also a lithium-sulfur secondary battery including the above-mentioned electrolytic solution.
- the lithium-sulfur secondary battery preferably has a positive electrode containing a sulfur-based electrode active material.
- the present disclosure is also a module comprising the above-mentioned lithium-sulfur secondary battery.
- the lithium-sulfur secondary battery using the electrolytic solution of the present disclosure has a good battery output.
- the present disclosure relates to an electrolytic solution for use in various batteries such as a lithium-sulfur secondary battery.
- a lithium - in sulfur secondary battery by lithium polysulfides (Li 2 S n) will eluted into the electrolytic solution generated by the electrode reaction during charge and discharge, the discharge capacity decreases by repetition of charge and discharge, It was said that the battery life would be shortened. Therefore, the use of lithium polysulphides (Li 2 S n) compounds of the dissolving capacity is low fluorine have been investigated in the electrolytic solution.
- the electrolytic solution of the present disclosure has the following general formula (1): Rf- (OR 1 ) n -OR 2 (1)
- Rf is an alkyl group having a fluorine atom, and may form a branch or a ring having 1 to 5 carbon atoms.
- R 1 is an alkyl group, R which may have a fluorine atom.
- Reference numeral 2 is an alkyl group having no fluorine and having 1 to 9 carbon atoms, which may form a branch or a ring.
- N is 0, 1 or 2.
- the number of carbon atoms in one molecule is 5. That's it) It is characterized by containing the fluorinated ether represented by.
- the compound is a compound capable of lowering the viscosity of the electrolytic solution as compared with various fluorine-based solvents used in lithium-sulfur batteries, and improving the battery performance by the above-mentioned action. Further, by using a molecule having 5 or more carbon atoms, there is an advantage that a boiling point suitable for a practical operating temperature range is exhibited. Further, the upper limit of the number of carbon atoms is not particularly limited, but the upper limit is preferably 6 because the viscosity increases and the compatibility with the Li salt decreases as the molecular weight increases.
- HCF 2 CF 2 OCH 2 CH 2 CH 3 and HCF 2 CF 2 OCH 2 CH 2 CH 2 CH 3 are particularly preferable in terms of viscosity.
- the compound represented by the above formula (1) is not particularly limited, but for example, HCF 2 CF 2 OCH 2 CH 2 CH 3 and HCF 2 CF 2 OCH 2 CH 2 CH 2 CH 3 and HCF 2 CF.
- 2 CH 2 OCH 2 CH 3 , HCF 2 CF 2 CH 2 OCH 2 CH 2 CH 3 , HCF 2 CF 2 CH 2 OCH 2 CH 2 CH 2 CH 3 , CF 3 CHFCF 2 OCH 2 CH 3 , CF 3 CHFCF 2 OCH 2 CH 2 CH 3 and the like can be mentioned.
- two or more compounds may be mixed and used.
- the compound represented by the above (1) is limited to a compound having 5 or more carbon atoms, but the fluorinated ether represented by the above formula (1) and having 4 or less carbon atoms is not impaired the effect of the present disclosure. May be contained.
- the fluorinated ether having 4 or less carbon atoms include HCF 2 CF 2 OCH 2 CH 3 .
- the fluorinated ether used in the present disclosure is limited to the compound represented by (1) above, but as long as the effects of the present disclosure are not impaired.
- Rf1- (OR 1 ) n 1- O-Rf2 (1-1) (In the formula, Rf1 and Rf2 are the same or different alkyl groups having a fluorine atom.
- R 1 is an alkyl group which may have a fluorine atom, and n 1 is 0, 1 or 2.
- the number of carbon atoms in one molecule is 5 or more
- fluorinated ether such as (1-1) include HCF 2 CF 2 CH 2 OCF 2 CHFCF 3 , HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CHFCF 3 , CF 3 Examples thereof include CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 OC 2 H 5, HCF 2 CF 2 OC 2 H 5 OCF 2 CF 2 H, CF 3 OC 2 H 5 OCF 3 .
- the fluorinated ether is preferably contained in the electrolytic solution in a proportion of 0.1 to 90% by weight. When it is within the above range, it can be used as a good electrolytic solution.
- the lower limit is more preferably 5% by weight, further preferably 10% by weight.
- the upper limit is more preferably 80% by weight, further preferably 60% by weight.
- the electrolytic solution of the present disclosure contains a specific ether compound that does not correspond to the above-mentioned fluorinated ether. It has been disclosed in some prior arts that the ether compound forms a complex with an alkali metal salt to obtain electrochemical stability and, as a result, improve battery performance. Also in the present disclosure, such an effect can be obtained by blending an ether compound that does not correspond to the above-mentioned fluorinated ether.
- This ether compound is represented by the following general formula (2).
- R 4 - (OCHR 3 CH 2 ) x -OR 5 (2)
- R 4 and R 5 are independently substituted with a fluorine-free alkyl group having 1 to 9 carbon atoms, a phenyl group optionally substituted with a halogen atom, and a halogen atom. It may be selected from the group consisting of cyclohexyl groups, which may form a ring together, where R 3 independently represents H or CH 3 and x represents 0-10.
- the ether compound here is limited to those that do not correspond to the compound represented by the above formula (1).
- alkyl group in the above formula examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, an isopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and the like.
- the alkyl group preferably has a small number of carbon atoms, preferably a methyl group and an ethyl group, and most preferably a methyl group.
- the phenyl group which may be substituted with a halogen atom is not particularly limited, but is 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2,4-dichlorophenyl group, 2-bromophenyl group, 3-. Examples thereof include bromophenyl group, 4-bromophenyl group, 2,4-dibromophenyl group, 2-iodophenyl group, 3-iodophenyl group, 4-iodophenyl group, 2,4-iodophenyl group and the like.
- the cyclohexyl group which may be substituted with a halogen atom is not particularly limited, but is 2-chlorocyclohexyl group, 3-chlorocyclohexyl group, 4-chlorocyclohexyl group, 2,4-dichlorocyclohexyl group, 2-bromocyclohexyl. Group, 3-bromocyclohexyl group, 4-bromocyclohexyl group, 2,4-dibromocyclohexyl group, 2-iodocyclohexyl group, 3-iodocyclohexyl group, 4-iodocyclohexyl group, 2,4-diiodocyclohexyl group, etc. Can be mentioned.
- R 3 represents H or CH 3, and when x is 2 or more, they are independent of each other.
- x represents 0 to 10 and represents the number of repetitions in ethylene oxide units.
- x is preferably 1 to 6, more preferably 2 to 5, and most preferably 3 or 4.
- ether compound examples include tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane or grime, or derivatives thereof.
- the ether compounds represented by the above general formula may form a ring together, and examples of the cyclic compound include tetrahydrofuran (THF) and its derivative 2-methyltetrahydrofuran when x is 0.
- THF tetrahydrofuran
- 2-methyltetrahydrofuran when x is 0.
- x 1, 1,3-dioxolane and 1,4-dioxane can be mentioned.
- Examples of the monogrime (G1) include methyl monoglime and ethyl monoglime
- examples of the jig lime (G2) include ethyl jig lime and butyl jig lime.
- the thermal stability, ionic conductivity, and electrochemical stability of the electrolytic solution can be further improved, and the electrolytic solution can withstand a high voltage.
- the ether compound that may be used in the electrolytic solution may be used alone or in the form of a mixture of two or more.
- the ether compound is preferably contained in the electrolytic solution in a proportion of 5 to 90% by weight. When it is within the above range, it can be used as a good electrolytic solution.
- the lower limit is more preferably 10% by weight, further preferably 20% by weight.
- the upper limit is more preferably 80% by weight, further preferably 60% by weight.
- the total amount of the fluorinated ether represented by the formula (1) and the ether compound represented by the formula (2) is 80% by weight or more based on the total amount of the electrolytic solution.
- the amount of carbonate is less than 20% by weight based on the total amount of the electrolytic solution.
- the electrolytic solution of the present disclosure contains an alkali metal salt.
- the alkali metal salt can be represented by MX, where M is an alkali metal and X is a substance that becomes a pair of anions.
- M is an alkali metal
- X is a substance that becomes a pair of anions.
- the alkali metal salt one kind may be used alone, or two or more kinds may be used in the form of a mixture.
- the alkali metal salt is particularly preferably a lithium salt (that is, a compound represented by LiX).
- the alkali metal salt is preferably contained in the electrolytic solution in a proportion of 3.0 to 30% by weight. When it is within the above range, it can be used as a good electrolytic solution.
- the lower limit is more preferably 5.0% by weight, further preferably 8.0% by weight.
- the upper limit is more preferably 20% by weight, further preferably 15% by weight.
- the mixing ratio (fluorinated ether) / (alkali metal salt) of the fluorinated ether and the alkali metal salt shall be a lower limit of 0.1 and an upper limit of 5.0 (molar conversion). Is preferable. When it is within the above range, the coordination of the fluorinated ether to the alkali metal ion is good, which is preferable.
- the mixing ratio is more preferably 0.5 at the lower limit and 4.0 at the upper limit.
- the mixing ratio (alkali metal salt) / (ether compound) of the ether compound and the alkali metal salt is preferably a lower limit of 0.1 and an upper limit of 3.0 (molar conversion). .. When it is within the above range, it is preferable because the electrochemical stability is particularly good.
- the mixing ratio is more preferably 0.5 at the lower limit and 1.0 at the upper limit.
- the electrolytic solution of the present disclosure may be used in combination with other components, if necessary.
- the electrolytic solution is preferably contained at least one selected from the group consisting of fluorinated saturated cyclic carbonate, fluorinated chain carbonate and fluorinated ester because the cycle performance is further excellent and the overvoltage is further reduced. ..
- At least one selected from the group consisting of the fluorinated saturated cyclic carbonate, the fluorinated chain carbonate and the fluorinated ester is preferably contained in an amount of 0.01 to 10% by weight based on the electrolytic solution.
- the content is more preferably 0.5% by weight or more, and more preferably 3.0% by weight or less.
- the total amount is preferably within the above range.
- the fluorinated saturated cyclic carbonate has the formula (3):
- R 21 to R 24 are the same or different, and may have -H, -CH 3 , -F, a fluorinated alkyl group which may have an ether bond, or an ether bond, respectively.
- the fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the fluorinated alkyl group may be linear or branched chain.
- the fluorinated alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the fluorinated alkoxy group may be linear or branched chain.
- R 21 to R 24 are the same or different, -H, -CH 3 , -F, -CF 3 , -C 4 F 9 , -CHF 2 , -CH 2 F, -CH 2 CF 2 CF 3 , -CH 2 -CF (CF 3) 2 , -CH 2 -O-CH 2 CHF 2 CF 2 H, -CH 2 CF 3, and, at least one selected from the group consisting of -CF 2 CF 3 are preferred .
- R 21 to R 24 is -F, -CF 3 , -C 4 F 9 , -CHF 2 , -CH 2 F, -CH 2 CF 2 CF 3 , -CH 2- CF ( CF 3) 2, -CH 2 -O -CH 2 CHF 2 F 2 H, -CH 2 CF 3, and at least one selected from the group consisting of -CF 2 CF 3.
- fluorinated saturated cyclic carbonate at least one selected from the group consisting of the following compounds is preferable.
- the fluorinated chain carbonate has the formula (4):
- R 31 and R 32 represent alkyl groups that are the same or different and may have an ether bond or a fluorine atom, provided that either R 31 or R 32 is , Which has a fluorine atom.) Is preferable.
- the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the alkyl group may be linear or branched.
- R 31 and R 32 are the same or different, -CH 3 , -CF 3 , -CHF 2 , -CH 2 F, -C 2 H 5 , -CH 2 CF 3 , -CH 2 CHF 2 , and -At least one selected from the group consisting of CH 2 CF 2 CF 2 H is preferred.
- at least one of R 31 and R 32 consists of -CF 3 , -CHF 2 , -CH 2 F, -CH 2 CHF 2 , -CH 2 CF 3 , and -CH 2 CF 2 CF 2 H. At least one selected from the group.
- fluorinated chain carbonate at least one selected from the group consisting of the following compounds is preferable.
- the fluorinated ester includes the formula (5):
- R 41 and R 42 are the same or different, and represent an alkyl group which may have an ether bond or a fluorine atom, and may be bonded to each other to form a ring. However, one of R 41 and R 42 preferably has a fluorine atom.).
- the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the alkyl group may be linear or branched.
- R 41 and R 42 are the same or different, -CH 3 , -C 2 H 5 , -CHF 2 , -CH 2 F, -CH (CF 3 ) 2 , -CHFCF 3 , -CF 3 , and. -At least one selected from the group consisting of CH 2 CF 3 is preferred. In this case, at least one of R 41 and R 42 is at least one selected from the group consisting of -CHF 2 , -CH (CF 3 ) 2 , -CHFCF 3 , -CF 3 , and -CH 2 CF 3. Is.
- R 41 and R 42 When R 41 and R 42 are bonded to each other to form a ring, it means that R 41 and R 42 form a ring together with a carbon atom and an oxygen atom to which R 41 and R 42 are bonded, respectively. Meaning, R 41 and R 42 form a part of the ring as a fluorinated alkylene group.
- R 41 and R 42 When R 41 and R 42 combine with each other to form a ring, R 41 and R 42 include -CH 2 CH 2 CH (CH 2 CF 3 )-, -CH (CF 3 ) CH 2 CH 2- , -CHFCH 2 CH 2- , -CH 2 CH 2 CHF-, and -CH 2 CH 2 CH (CF 3 )-are preferred at least one selected from the group.
- fluorinated ester at least one selected from the group consisting of the following compounds is preferable.
- the electrolytic solution of the present disclosure may further contain a cyclic boric acid ester.
- a cyclic boric acid ester By including the cyclic boric acid ester, a better capacity retention rate can be obtained.
- the cyclic boric acid ester is not particularly limited, and for example, at least one selected from the group consisting of the following compounds is preferable.
- the electrolytic solution of the present disclosure preferably contains the above-mentioned cyclic boric acid ester in an amount of 0.01% by weight or more, more preferably 1.0% by weight or more.
- the upper limit is not particularly limited, but is preferably 1.0% by weight.
- the electrolytic solution may be a non-aqueous electrolytic solution. Further, the electrolytic solution of the present disclosure may be a gel-like gel electrolytic solution.
- the gel electrolytic solution has a structure in which the electrolytic solution is injected into a matrix polymer made of an ionic conductive polymer. As this electrolytic solution, the above-mentioned electrolytic solution of the present disclosure is used.
- the ionic conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), vinylidene fluoride-hexafluoropropylene (VDF-HEP). Examples thereof include poly (methyl methacrylate (PMMA)) and copolymers thereof.
- Polyalkylene oxide-based polymers can be well dissolved in electrolytic solution salts such as lithium salts.
- the electrolytic solution of the present disclosure can be used as an electrolytic solution in various batteries regardless of the type of battery, and in particular, simple sulfur, lithium polysulfide (Li 2 Sn: 1 ⁇ n ⁇ 8) and organic. It can be suitably used for a battery having a positive electrode or a negative electrode containing a sulfur-based electrode active material containing at least one selected from the group consisting of sulfur compounds. Such a battery corresponds to a battery generally called a lithium-sulfur secondary battery. Further, the above battery using the above-mentioned electrolytic solution as the electrolytic solution is also one of the present disclosure. Hereinafter, such a battery will be described in detail.
- the lithium-sulfur secondary battery of the present disclosure includes a positive electrode or a negative electrode having a sulfur-based electrode active material, the above-described electrolytic solution of the present disclosure, and a counter electrode of the positive electrode or the negative electrode.
- the above-mentioned positive electrode or negative electrode and the counter electrode are arranged apart from each other via a separator, and an electrolytic solution is contained in the separator to form a cell.
- a structure in which a plurality of cells are stacked or wound and housed in a case can be used.
- the current collectors of the positive electrode or the negative electrode and the counter electrode are each drawn out of the case and electrically connected to the tab (terminal).
- the electrolytic solution may be a gel electrolytic solution.
- the positive electrode or negative electrode has a sulfur-based electrode active material containing at least one selected from the group consisting of elemental sulfur, lithium polysulfide (Li 2 Sn: 1 ⁇ n ⁇ 8), and an organic sulfur compound.
- the organic sulfur compound include an organic disulfide compound and a carbon sulfide compound.
- the positive electrode or the negative electrode may contain a binder and a conductive agent in addition to the sulfur-based electrode active material described above. Then, the slurry (paste) of these electrode materials is applied to a conductive carrier (current collector) and dried, so that the electrode material can be supported on the carrier to produce a positive electrode or a negative electrode.
- a conductive carrier current collector
- the current collector include those formed by forming conductive metals such as aluminum, nickel, copper, and stainless steel on foil, mesh, expanded grid (expanded metal), punched metal, and the like. Further, a resin having conductivity or a resin containing a conductive filler may be used as a current collector.
- the thickness of the current collector is, for example, 5 to 30 ⁇ m, but is not limited to this range.
- the content of sulfur-based electrode active material is preferably 50 to 98% by weight, more preferably. It is 80 to 98% by weight. When the content of the active material is within the above range, the energy density can be increased, which is preferable.
- the thickness of the electrode material is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m, and even more preferably 20 to 150 ⁇ m.
- the binder is polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene butadiene rubber.
- SBR polyacrylonitrile
- PAN polymethylacrylate
- PMA polymethylmethacrylate
- PMMA polyvinylidene chloride
- PVDF polyvinylidene fluoride
- PVA polyvinyl alcohol
- PAA polyacrylic acid
- Polyalkylene oxide such as lithium polyacrylate (PAALi), ethylene oxide or a ring-opened polymer of monosubstituted epoxiside, or a mixture thereof.
- the above-mentioned conductive agent is an additive compounded to improve conductivity, and is carbon powder such as graphite, Ketjen black, reverse opal carbon, and acetylene black, vapor-grown carbon fiber (VGCF), and carbon nanotube (carbon nanotube). It can be made of various carbon fibers such as CNT). Further, the electrode material may contain a supporting salt (a component contained in the following electrolytic solution).
- the negative electrode as the opposite electrode is one or more selected from the group consisting of a composite of lithium, sodium, lithium alloy, sodium alloy, and lithium / inert sulfur. Contains the negative electrode active material of.
- the negative electrode active material contained in the negative electrode acts to occlude and desorb alkali metal ions.
- the negative electrode active material at least one selected from the group consisting of lithium, sodium, carbon, silicon, aluminum, tin, antimony and magnesium is preferable.
- metals such as lithium titanate, lithium metal, sodium metal, lithium aluminum alloy, sodium aluminum alloy, lithium tin alloy, sodium tin alloy, lithium silicon alloy, sodium silicon alloy, lithium antimon alloy, sodium antimon alloy, etc.
- Conventionally known negative electrode materials such as materials, natural graphite, artificial graphite, carbon black, acetylene black, graphite, activated carbon, carbon fiber, coke, soft carbon, hard carbon and other crystalline carbon materials and non-crystalline carbon materials and other carbon materials. Can be used. Of these, it is desirable to use a carbon material or a lithium or lithium transition metal composite oxide because a battery having excellent capacity and input / output characteristics can be constructed. In some cases, two or more kinds of negative electrode active materials may be used in combination.
- the positive electrode active material is preferably a lithium transition metal composite oxide, and examples thereof include a Li—Mn-based composite oxide such as LiMn 2 O 4 and a Li—Ni-based composite oxide such as LiNiO 2 . More specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFePO 4 , LiMnPO 4 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 are preferable. Can be mentioned.
- any substance that electrochemically inserts and desorbs alkali metal ions can be used without limitation, and examples thereof include sodium.
- Two or more kinds of positive electrode active materials may be used together.
- the counter electrode may also contain the above-mentioned active material, a binder, and a conductive agent. Then, these electrode materials can be supported on a conductive carrier (current collector) to produce a counter electrode.
- a conductive carrier current collector
- the same one as above can be used.
- a separator is usually arranged between the positive electrode and the negative electrode.
- the separator include a glass fiber separator that absorbs and holds an electrolytic solution described later, a porous sheet made of a polymer, and a non-woven fabric.
- the porous sheet is composed of, for example, a microporous polymer.
- the polymer constituting such a porous sheet include polyolefins such as polyethylene (PE) and polypropylene (PP); laminates having a three-layer structure of PP / PE / PP, polyimide, and aramid.
- polyolefin-based microporous separators and glass fiber separators are preferable because they have the property of being chemically stable with respect to organic solvents and can suppress the reactivity with the electrolytic solution to a low level.
- the thickness of the separator made of a porous sheet is not limited, but in the application of a secondary battery for driving a vehicle motor, it is preferably a single layer or a multilayer and the total thickness is 4 to 60 ⁇ m. Further, it is preferable that the fine pore diameter of the separator made of a porous sheet is 10 ⁇ m or less (usually about 10 to 100 nm) at the maximum, and the pore ratio is 20 to 80%.
- non-woven fabric conventionally known non-woven fabrics such as cotton, rayon, acetate, nylon (registered trademark), polyester; polyolefins such as PP and PE; polyimide and aramid are used alone or in combination.
- the porosity of the non-woven fabric separator is preferably 50 to 90%.
- the thickness of the non-woven fabric separator is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m. If the thickness is less than 5 ⁇ m, the retention of the electrolytic solution deteriorates, and if it exceeds 200 ⁇ m, the resistance may increase.
- a module including the above lithium-sulfur secondary battery is also one of the present disclosures.
- the following compounds (G-1) to (G-4) were used as the ether compound G.
- CH 3 -O-CH 2 -CH 2 -O-CH 3 (G-1) CH 3 -O-CH 2 -CH 2 -O-CH 2 -CH 2 -O-CH 3 (G-2) CH 3 -O-CH 2 -CH 2 -O-CH 2 -CH 2 -O-CH 3 (G-3) CH 3 -O-CH 2 -CH 2 -O-CH 2 -CH 2 -O-CH 2 -CH 2 -O-CH 2 -CH 2 -O-CH 3 (G-4)
- LiTFSA lithium bis (trifluoromethanesulfonyl) amide
- LiPF 6 lithium hexafluorophosphate
- a positive electrode mixture slurry mixed so as to have (% by weight ratio) was prepared.
- the obtained positive electrode mixture slurry was uniformly applied onto an aluminum foil current collector having a thickness of 20 ⁇ m, dried, and then compression-molded by a press to obtain a positive electrode.
- the positive electrode laminate was punched to a size of 1.6 cm in diameter with a punching machine to prepare a circular positive electrode.
- the positive electrode and the negative electrode are opposed to each other through a microporous polyethylene film (separator) having a thickness of 20 ⁇ m, the non-aqueous electrolytic solution obtained above is injected, and the electrolytic solution is sufficiently permeated into the separator or the like and then sealed. Pre-charging and aging were performed to produce a coin-shaped alkali metal-sulfur-based secondary battery.
- the battery using the electrolytic solution of the present disclosure can be used as various power sources such as a portable power source and an automobile power source.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
これらの各種電池においては、電解液の性能が電池の性能において大きな影響を与えるものである。
特許文献2は、エーテル、イオン液体、フッ素溶媒を含有する電解液を開示している。
特許文献4は、硫黄単体を含む正極と環状エーテルもしくは鎖状エーテルのうち少なくとも1種とフッ素化されたカーボネートおよびフッ素化されたエステルのうち少なくとも1種を含む非水系電解液を用いたリチウム-硫黄二次電池を開示している。
式(1):Rf-(OR1)n1-O-R2
(式中、Rfは、フッ素原子を有するアルキル基であり、炭素数1~5の分岐または環を形成していてもよい。R1は、フッ素原子を有していてもよいアルキル基、R2はフッ素を有していないアルキル基であり炭素数1~9であり、分岐または環を形成していてもよい。n1は0、1又は2である。1分子中の炭素数は、5以上である。)
で示されるフッ素化エーテル、
式(2):R4-(OCHR3CH2)x-OR5
(式中、R4及びR5は、それぞれ独立して、炭素数1~9のフッ素を有していないアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R3は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。)で表されるエーテル化合物及びアルカリ金属塩を含む電解液である。
HCF2CF2OCH2CH2CH3,HCF2CF2OCH2CH2CH2CH3,HCF2CF2CH2OCH2CH3,HCF2CF2CH2OCH2CH2CH3,HCF2CF2CH2OCH2CH2CH2CH3,CF3CHFCF2OCH2CH3,CF3CHFCF2OCH2CH2CH3からなる群より選択される少なくとも一種であることが好ましい。
Xは、Cl、Br、I、BF4、PF6、CF3SO3、ClO4、CF3CO2、AsF6、SbF6、AlCl4、ビストリフルオロメタンスルホニルアミド(TFSA)、N(CF3SO2)2、N(CF3CF2SO2)2、PF3(C2F5)3、N(FSO2)2、N(FSO2)(CF3SO2)、N(CF3CF2SO2)2、N(C2F4S2O4)、N(C3F6S2O4)、N(CN)2、N(CF3SO2)(CF3CO)、R6FBF3(但し、R6F=n-CmF2m+1、m=1~4の自然数)及びR7BF3(但し、R7=n-CpH2p+1、p=1~5の自然数)からなる群から選択される少なくとも一種であることが好ましい。
上記リチウム―硫黄二次電池は、硫黄系電極活物質を含有する正極を有することが好ましい。
本開示は、上述のリチウム―硫黄二次電池を備えることを特徴とするモジュールでもある。
本開示は、リチウム-硫黄二次電池等の各種の電池において使用するための電解液に関するものである。
特に、リチウム-硫黄二次電池においては、充放電における電極反応により発生するリチウムポリスルフィド(Li2Sn)が電解液に溶出してしまうことによって、充放電の繰り返しによって放電容量が低下して、電池寿命が短くなるとされていた。このため、電解液においてリチウムポリスルフィド(Li2Sn)の溶解能が低いフッ素系の化合物を使用することが検討されてきた。
本開示の電解液は、下記一般式(1):
Rf-(OR1)n-O-R2 (1)
(式中、Rfは、フッ素原子を有するアルキル基であり、炭素数1~5の分岐または環を形成していてもよい。R1は、フッ素原子を有していてもよいアルキル基、R2はフッ素を有していないアルキル基であり炭素数1~9であり、分岐または環を形成していてもよい。nは0、1又は2である。1分子中の炭素数は、5以上である)
で示されるフッ素化エーテルを含有することを特徴とするものである。当該化合物は、リチウム硫黄電池において使用されてきた各種のフッ素系溶媒に比べて、電解液を低粘度化することができ、上述した作用によって、電池性能を向上させることができる化合物である。また、一分子中の炭素数が5以上のものを使用することで、実用作動温度領域に適した沸点を示すという利点を有する。さらに、上記炭素数の上限は特に限定されないが、分子量向上とともに粘度の上昇、Li塩との相溶性が低下するため、上限が6であることが好ましい。
炭素数4以下のフッ素化エーテルとしては例えばHCF2CF2OCH2CH3が例示できる。
Rf1-(OR1)n1-O-Rf2 (1-1)
(式中、Rf1、Rf2は、同じか又は異なり、フッ素原子を有するアルキル基である。R1は、フッ素原子を有していてもよいアルキル基、n1は0、1又は2である。1分子中の炭素数は、5以上である)
で示されるフッ素化エーテルを含有するものであってよい。(1-1)のようなフッ素化エーテルとしては、HCF2CF2CH2OCF2CHFCF3、HCF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHFCF3、CF3CF2CH2OCF2CF2H、HCF2CF2OC2H5、HCF2CF2OC2H5OCF2CF2H、CF3OC2H5OCF3が例示できる。
本開示の電解液は、上述したフッ素化エーテルに該当しない特定のエーテル化合物を含有するものである。上記エーテル化合物がアルカリ金属塩と錯体を形成することで、電気化学的安定性が得られ、結果として電池性能を向上させることについては、幾つかの先行文献において開示されている。
本開示においても、上述したフッ素化エーテルに該当しないエーテル化合物を配合することで、このような効果が得られる。
R4-(OCHR3CH2)x-OR5 (2)
式中、R4及びR5は、それぞれ独立して、炭素数1~9のフッ素を有していないアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R3は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。なお、ここでのエーテル化合物は、上述した式(1)で表される化合物に該当しないものに限定される。
xは、0~10を表し、エチレンオキシド単位の繰り返し数を表わす。xは好ましくは1~6、より好ましくは2~5、最も好ましくは3又は4である。
上記一般式で表されるエーテル化合物は共に環を形成してもよく、この環状化合物としては、xが0の場合には、テトラヒドロフラン(THF)やその誘導体である2-メチルテトラヒドロフランが挙げられ、xが1の場合には、1,3-ジオキソランや1,4-ジオキサンが挙げられる。
グライムは、上記一般式(2)(但し、R3はHを表し、xは1以上を表し、直鎖化合物である。)で表され、モノグライム(G1、x=1)、ジグライム(G2、x=2)、トリグライム(G3、x=3)及びテトラグライム(G4、x=4)等が挙げられる。モノグライム(G1)としては、メチルモノグライム、エチルモノグライム等が挙げられ、ジグライム(G2)としては、エチルジグライム、ブチルジグライム等が挙げられる。
電解液に用いてもよいエーテル化合物は、一種が単独で使用されても、二種以上の混合物の形態で使用されてもよい。
また、電解液の全量に対して、カーボネートが20重量%未満であることが好ましい。
本開示の電解液は、アルカリ金属塩を含有するものである。
アルカリ金属塩はMXで表すことができ、Mはアルカリ金属、Xは対の陰イオンとなる物質である。上記アルカリ金属塩は、一種を単独で使用してもよいし、二種以上を混合物の形態で使用してもよい。
上記アルカリ金属塩としては、リチウム塩(すなわち、LiXで表される化合物)であることが特に好ましい。
本開示の電解液は、上述したフッ素化エーテル、エーテル化合物、及び、アルカリ金属塩の他に必要に応じてその他の成分を併用するものであってもよい。
上記電解液は、サイクル性能に一層優れ、過電圧が更に低下することから、フッ素化飽和環状カーボネート、フッ素化鎖状カーボネート及びフッ素化エステルからなる群より選択される少なくとも1種を含有することが好ましい。
上記フッ素化アルキル基は、直鎖状又は分岐鎖状であってよい。
上記フッ素化アルコキシ基としては、炭素数が1~10のものが好ましく、炭素数が1~6のものがより好ましく、炭素数が1~4のものが更に好ましい。
上記フッ素化アルコキシ基は、直鎖状又は分岐鎖状であってよい。
この場合、R21~R24の少なくとも1つは、-F、-CF3、-C4F9、-CHF2、-CH2F、-CH2CF2CF3、-CH2-CF(CF3)2、-CH2-O-CH2CHF2F2H、-CH2CF3、及び、-CF2CF3からなる群より選択される少なくとも1種である。
上記アルキル基は、直鎖状又は分岐鎖状であってよい。
この場合、R31及びR32の少なくとも一方は、-CF3、-CHF2、-CH2F、-CH2CHF2、-CH2CF3、及び、-CH2CF2CF2Hからなる群より選択される少なくとも1種である。
上記アルキル基は、直鎖状又は分岐鎖状であってよい。
この場合、R41及びR42の少なくとも一方は、-CHF2、-CH(CF3)2、-CHFCF3、-CF3、及び、-CH2CF3からなる群より選択される少なくとも1種である。
上記環状ホウ酸エステルとしては特に限定されず、例えば、次の化合物からなる群より選択される少なくとも1種が好ましい。
また、本開示の電解液は、ゲル状のゲル電解液であってもよい。ゲル電解液は、イオン伝導性ポリマーからなるマトリックスポリマーに、電解液が注入されてなる構成を有する。この電解液として、上記の本開示の電解液を使用する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、フッ化ビニリデン-ヘキサフルオロプロピレン(VDF-HEP)の共重合体、ポリ(メチルメタクリレート(PMMA)及びこれらの共重合体等が挙げられる。ポリアルキレンオキシド系高分子には、リチウム塩などの電解液塩がよく溶解しうる。
本開示の電解液は、電池の種類を問わず各種電池における電解液として使用することができるものであるが、特に、単体硫黄、多硫化リチウム(Li2Sn:1≦n≦8)及び有機硫黄化合物からなる群から選択される少なくとも一つを含む硫黄系電極活物質を含有する正極又は負極を有する電池に好適に使用することができる。このような電池は、一般にリチウム-硫黄二次電池と呼ばれる電池に該当する。更に、電解液として上述した電解液を使用する上記電池も本開示の一つである。以下、このような電池について詳述する。
上記正極又は負極は、単体硫黄、多硫化リチウム(Li2Sn:1≦n≦8)、及び有機硫黄化合物からなる群から選択される少なくとも一つを含む硫黄系電極活物質を有する。有機硫黄化合物としては、有機ジスルフィド化合物、カーボンスルフィド化合物が挙げられる。
電極材料の厚さ(塗布層の片面の厚さ)は、好ましくは、10~500μmであり、より好ましくは20~300μmであり、さらに好ましくは20~150μmである。
正極が上記した硫黄系電極活物質を有する場合、その対極となる負極としては、リチウム、ナトリウム、リチウム合金、ナトリウム合金、リチウム/ 不活性硫黄の複合物からなる群から選択される1又は2以上の負極活物質を含む。負極に含まれる負極活物質は、アルカリ金属イオンを吸蔵脱離するよう作用する。負極活物質としては、リチウム、ナトリウム、炭素、ケイ素、アルミニウム、スズ、アンチモン及びマグネシウムからなる群から選択される少なくとも一種が好ましい。
より具体的には、チタン酸リチウム、リチウム金属、ナトリウム金属、リチウムアルミ合金、ナトリウムアルミ合金、リチウムスズ合金、ナトリウムスズ合金、リチウムケイ素合金、ナトリウムケイ素合金、リチウムアンチモン合金、ナトリウムアンチモン合金等の金属材料、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、グラファイト、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボンなどの結晶性炭素材や非結晶性炭素材等の炭素材料といった従来公知の負極材料を用いることができる。このうち、容量、入出力特性に優れた電池を構成できることから、炭素材料もしくはリチウム、リチウム遷移金属複合酸化物を用いるのが望ましい。場合によっては、2種以上の負極活物質が併用されてもよい。
対極も、上記した活物質と結着剤と導電剤とを含んでもよい。そして、これら電極材料を、導電性の担体(集電体)に担持して対極を製造することができる。集電体としては上記と同様のものを使用できる。
上記リチウム―硫黄二次電池を備えるモジュールも本開示の一つである。
CH3-O-CH2-CH2-O-CH3(G-1)
CH3-O-CH2-CH2-O-CH2-CH2-O-CH3(G-2)
CH3-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH3(G-3)
CH3-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH3(G-4)
HCF2CF2OCH2CH3 (I-1)
HCF2CF2OCH2CH2CH3 (I-2)
HCF2CF2OCH2CH2CH2CH3(I-3)
HCF2CF2CH2OCF2CF2H(I-4)
正極活物質として40wt%硫黄を含有した炭素複合材料、導電材としてカーボンブラック、純水で分散させたカルボキシメチルセルロース(CMC)、及び、スチレン-ブタジエンゴムを固形分比で90/5/3/3(重量%比)になるよう混合した正極合剤スラリーを準備した。厚さ20μmのアルミ箔集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮成形して、正極とした。正極積層体を打ち抜き機で直径1.6cmの大きさに打ち抜き、円状の正極を作製した。
上記で製造した二次電池を、25℃において、あらかじめ、0.05Cに相当する電流で1.0Vまで定電流放電した後、0.05Cで3.0Vまで定電流充電し、その後、0.05Cの定電流で1.0Vまで放電し、これを1サイクルとして、1サイクル目の放電容量から初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表わし、例えば、0.05Cとはその1/20の電流値を表わす。再度サイクルを行い、100サイクル後の放電容量をサイクル後の容量とした。初期放電容量に対する100サイクル後の放電容量の割合を求め、これをサイクル容量維持率(%)とした。
サイクル容量維持率(%)=(100サイクル後の放電容量)/(初期放電容量)×100
上記の5サイクル後に0.05Cで3.0Vまで定電流充電した後、0.5Cの定電流で1.0Vまで放電した時の放電容量を算出し、1サイクル目での0.05Cでの放電容量に対しての比較を行った。そのときの比を出力特性(%)とした。
出力特性(%)=(0.5Cでの放電容量)/(0.05Cでの放電容量)×100
Claims (8)
- 単体硫黄、多硫化リチウム(Li2Sn:1≦n≦8)、及び有機硫黄化合物からなる群から選択される少なくとも一つを含む硫黄系電極活物質を含有する正極又は負極を有する電池に使用する電解液であって、
式(1):Rf-(OR1)n-O-R2
(式中、Rfは、フッ素原子を有するアルキル基であり、炭素数1~5の分岐または環を形成していてもよい。R1は、フッ素原子を有していてもよいアルキル基、R2はフッ素を有していないアルキル基であり炭素数1~9であり、分岐または環を形成していてもよい。nは0、1又は2である。1分子中の炭素数は、5以上である。)
で示されるフッ素化エーテル、
式(2):R4-(OCHR3CH2)x-OR5
(式中、R4及びR5は、それぞれ独立して、炭素数1~9のフッ素を有していないアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R3は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。)で表されるエーテル化合物及び
アルカリ金属塩を含む電解液。 - 前記フッ素化エーテルは、
HCF2CF2OCH2CH2CH3,HCF2CF2OCH2CH2CH2CH3,HCF2CF2CH2OCH2CH3,HCF2CF2CH2OCH2CH2CH3,HCF2CF2CH2OCH2CH2CH2CH3,CF3CHFCF2OCH2CH3,CF3CHFCF2OCH2CH2CH3からなる群より選択される少なくとも一種である請求項1に記載の電解液。 - 式(1)で示されるフッ素化エーテルと式(2)で示されるエーテル化合物の合計が、電解液中の溶媒の60重量%以上である請求項1又は2に記載の電解液。
- 前記エーテル化合物が、テトラヒドロフラン(THF)、1,3-ジオキソラン、1,4-ジオキサン若しくはグライム又はそれらの誘導体からなる群より選択される少なくとも1種である請求項1~3のいずれかに記載の電解液。
- 前記アルカリ金属塩がLiXで表され、
Xは、Cl、Br、I、BF4、PF6、CF3SO3、ClO4、CF3CO2、AsF6、SbF6、AlCl4、ビストリフルオロメタンスルホニルアミド(TFSA)、N(CF3SO2)2、N(CF3CF2SO2)2、PF3(C2F5)3、N(FSO2)2、N(FSO2)(CF3SO2)、N(CF3CF2SO2)2、N(C2F4S2O4)、N(C3F6S2O4)、N(CN)2、N(CF3SO2)(CF3CO)、R6FBF3(但し、R6F=n-CmF2m+1、m=1~4の自然数)及びR7BF3(但し、R7=n-CpH2p+1、p=1~5の自然数)からなる群から選択される少なくとも一種である請求項1~4のいずれかに記載の電解液。 - 請求項1~5のいずれか1に記載の電解液を備えるリチウム-硫黄二次電池。
- 硫黄系電極活物質を含有する正極を有する請求項6記載のリチウム―硫黄二次電池。
- 請求項6又は7記載のリチウム―硫黄二次電池を備えることを特徴とするモジュール。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217041411A KR20220008347A (ko) | 2019-06-05 | 2020-06-05 | 전해액, 리튬-황 이차 전지 및 모듈 |
EP20818122.2A EP3982442A4 (en) | 2019-06-05 | 2020-06-05 | Electrolyte solution, lithium-sulfur secondary battery, and module |
JP2021524923A JP7256423B2 (ja) | 2019-06-05 | 2020-06-05 | 電解液、リチウム-硫黄二次電池及びモジュール |
US17/596,113 US20220158248A1 (en) | 2019-06-05 | 2020-06-05 | Electrolytic solution, lithium-sulfur secondary battery, and module |
CN202080040336.4A CN113906589B (zh) | 2019-06-05 | 2020-06-05 | 电解液、锂-硫二次电池和组件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019105668 | 2019-06-05 | ||
JP2019-105668 | 2019-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246578A1 true WO2020246578A1 (ja) | 2020-12-10 |
Family
ID=73653317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022276 WO2020246578A1 (ja) | 2019-06-05 | 2020-06-05 | 電解液、リチウム-硫黄二次電池及びモジュール |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220158248A1 (ja) |
EP (1) | EP3982442A4 (ja) |
JP (1) | JP7256423B2 (ja) |
KR (1) | KR20220008347A (ja) |
CN (1) | CN113906589B (ja) |
TW (1) | TWI786410B (ja) |
WO (1) | WO2020246578A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022095777A1 (zh) * | 2020-11-06 | 2022-05-12 | 三明市海斯福化工有限责任公司 | 一种非水电解液及电池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230152934A (ko) * | 2022-04-28 | 2023-11-06 | 주식회사 엘지에너지솔루션 | 고 에너지 밀도를 갖는 리튬-황 전지 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS584557B2 (ja) | 1976-12-10 | 1983-01-26 | イ−ストマン コダツク カンパニイ | 乳酸またはラクテ−ト分析用組成物 |
JP2005108724A (ja) | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2011187163A (ja) * | 2010-03-04 | 2011-09-22 | Panasonic Corp | 非水電解液及びリチウムイオン二次電池 |
JP2013225496A (ja) | 2012-03-19 | 2013-10-31 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2014041811A (ja) | 2012-03-19 | 2014-03-06 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2018067501A (ja) * | 2016-10-21 | 2018-04-26 | 株式会社Gsユアサ | 非水電解質蓄電素子 |
JP2018106979A (ja) * | 2016-12-27 | 2018-07-05 | ダイキン工業株式会社 | 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール |
WO2018163778A1 (ja) * | 2017-03-08 | 2018-09-13 | 学校法人 関西大学 | アルカリ金属-硫黄系二次電池用電解液及びアルカリ金属-硫黄系二次電池 |
KR20180117868A (ko) * | 2017-04-20 | 2018-10-30 | 주식회사 엘지화학 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
JP2019507482A (ja) * | 2016-06-28 | 2019-03-14 | エルジー・ケム・リミテッド | リチウム−硫黄電池用電解液及びこれを含むリチウム−硫黄電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010146740A (ja) * | 2008-12-16 | 2010-07-01 | Daikin Ind Ltd | 電解液 |
KR101301082B1 (ko) * | 2011-07-18 | 2013-08-27 | 주식회사 엘지화학 | 비수 전해액 및 이를 이용한 리튬 이차전지 |
CN104221203B (zh) * | 2012-03-19 | 2017-04-12 | 国立大学法人横浜国立大学 | 碱金属‑硫系二次电池 |
JP6004468B2 (ja) * | 2012-07-09 | 2016-10-05 | 国立大学法人横浜国立大学 | アルカリ金属−硫黄系二次電池及び二次電池用電解液 |
US9257699B2 (en) * | 2013-03-07 | 2016-02-09 | Uchicago Argonne, Llc | Sulfur cathode hosted in porous organic polymeric matrices |
US10084204B2 (en) * | 2014-07-21 | 2018-09-25 | GM Global Technology Operations LLC | Electrolyte solution and sulfur-based or selenium-based batteries including the electrolyte solution |
US10347943B2 (en) * | 2016-09-14 | 2019-07-09 | Uchicago Argonne, Llc | Fluoro-substituted ethers and compositions |
CN110140245B (zh) * | 2017-01-06 | 2022-10-25 | 三井化学株式会社 | 非水电解质二次电池及其中使用的材料 |
-
2020
- 2020-06-05 KR KR1020217041411A patent/KR20220008347A/ko not_active Application Discontinuation
- 2020-06-05 TW TW109119054A patent/TWI786410B/zh active
- 2020-06-05 CN CN202080040336.4A patent/CN113906589B/zh active Active
- 2020-06-05 EP EP20818122.2A patent/EP3982442A4/en active Pending
- 2020-06-05 JP JP2021524923A patent/JP7256423B2/ja active Active
- 2020-06-05 WO PCT/JP2020/022276 patent/WO2020246578A1/ja unknown
- 2020-06-05 US US17/596,113 patent/US20220158248A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS584557B2 (ja) | 1976-12-10 | 1983-01-26 | イ−ストマン コダツク カンパニイ | 乳酸またはラクテ−ト分析用組成物 |
JP2005108724A (ja) | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2011187163A (ja) * | 2010-03-04 | 2011-09-22 | Panasonic Corp | 非水電解液及びリチウムイオン二次電池 |
JP2013225496A (ja) | 2012-03-19 | 2013-10-31 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2014041811A (ja) | 2012-03-19 | 2014-03-06 | Yokohama National Univ | アルカリ金属−硫黄系二次電池 |
JP2019507482A (ja) * | 2016-06-28 | 2019-03-14 | エルジー・ケム・リミテッド | リチウム−硫黄電池用電解液及びこれを含むリチウム−硫黄電池 |
JP2018067501A (ja) * | 2016-10-21 | 2018-04-26 | 株式会社Gsユアサ | 非水電解質蓄電素子 |
JP2018106979A (ja) * | 2016-12-27 | 2018-07-05 | ダイキン工業株式会社 | 電解液、電気化学デバイス、リチウムイオン二次電池及びモジュール |
WO2018163778A1 (ja) * | 2017-03-08 | 2018-09-13 | 学校法人 関西大学 | アルカリ金属-硫黄系二次電池用電解液及びアルカリ金属-硫黄系二次電池 |
KR20180117868A (ko) * | 2017-04-20 | 2018-10-30 | 주식회사 엘지화학 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
Non-Patent Citations (2)
Title |
---|
ELECTROCHIMICA ACTA, vol. 161, 2015, pages 55 - 62 |
See also references of EP3982442A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022095777A1 (zh) * | 2020-11-06 | 2022-05-12 | 三明市海斯福化工有限责任公司 | 一种非水电解液及电池 |
Also Published As
Publication number | Publication date |
---|---|
KR20220008347A (ko) | 2022-01-20 |
US20220158248A1 (en) | 2022-05-19 |
TWI786410B (zh) | 2022-12-11 |
CN113906589A (zh) | 2022-01-07 |
JP7256423B2 (ja) | 2023-04-12 |
EP3982442A4 (en) | 2023-06-28 |
JPWO2020246578A1 (ja) | 2021-12-16 |
TW202109959A (zh) | 2021-03-01 |
CN113906589B (zh) | 2024-05-03 |
EP3982442A1 (en) | 2022-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6004506B2 (ja) | アルカリ金属−硫黄系二次電池 | |
US9406975B2 (en) | Alkali metal-sulfur-based secondary battery | |
JP6004274B2 (ja) | アルカリ金属−硫黄系二次電池 | |
KR102224023B1 (ko) | 이차전지용 바인더, 이차전지용 바인더 수지 조성물, 이차전지용 전극, 및 이차전지 | |
JP2003151623A (ja) | 非水系二次電池 | |
JP6004275B2 (ja) | アルカリ金属−硫黄系二次電池 | |
JP5892490B2 (ja) | 硫黄系二次電池 | |
JP6004276B2 (ja) | アルカリ金属−硫黄系二次電池 | |
JP2016048624A (ja) | リチウム二次電池 | |
WO2021090666A1 (ja) | 電解液、リチウム硫黄二次電池及びモジュール | |
JP2021077439A (ja) | リチウムイオン二次電池 | |
JP6295975B2 (ja) | リチウムイオン二次電池 | |
CN113906589B (zh) | 电解液、锂-硫二次电池和组件 | |
JP5068449B2 (ja) | リチウム二次電池 | |
WO2022208978A1 (ja) | リチウムイオン二次電池 | |
JP2014017111A (ja) | アルカリ金属−硫黄系二次電池及び二次電池用電解液 | |
JP2012146399A (ja) | リチウムイオン電池 | |
WO2018173452A1 (ja) | 非水電解液及び非水電解液二次電池 | |
JP3258907B2 (ja) | 非水電解液二次電池 | |
WO2023007991A1 (ja) | リチウムイオン二次電池 | |
US20230093740A1 (en) | Lithium Secondary Battery | |
JP6324845B2 (ja) | 非水電解液及びこれを含むリチウムイオン二次電池 | |
KR20210040011A (ko) | 리튬 이차 전지 | |
CN114079085A (zh) | 锂二次电池用电解液及包括该电解液的锂二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20818122 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021524923 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217041411 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020818122 Country of ref document: EP Effective date: 20220105 |