WO2021090666A1 - 電解液、リチウム硫黄二次電池及びモジュール - Google Patents
電解液、リチウム硫黄二次電池及びモジュール Download PDFInfo
- Publication number
- WO2021090666A1 WO2021090666A1 PCT/JP2020/039264 JP2020039264W WO2021090666A1 WO 2021090666 A1 WO2021090666 A1 WO 2021090666A1 JP 2020039264 W JP2020039264 W JP 2020039264W WO 2021090666 A1 WO2021090666 A1 WO 2021090666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- sulfur
- group
- electrolytic solution
- secondary battery
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to electrolytes, lithium-sulfur secondary batteries and modules.
- Lithium-ion secondary batteries are widely used as high-capacity secondary batteries, and lithium-sulfur secondary batteries are being studied as higher-capacity secondary batteries. In these various batteries, the performance of the electrolytic solution has a great influence on the performance of the battery.
- Patent Document 1 discloses a lithium-sulfur battery using a non-aqueous electrolyte containing vinylene carbonate as a comparative example.
- Patent Document 2 discloses vinylene carbonate as an example of a compound that can be blended in an electrolytic solution.
- An object of the present disclosure is to provide an electrolytic solution capable of obtaining a lithium-sulfur secondary battery having excellent durability.
- the present disclosure discloses a positive electrode, lithium, containing a sulfur-based electrode active material containing at least one selected from the group consisting of simple sulfur, lithium polysulfide (Li 2 Sn: 1 ⁇ n ⁇ 8), and organic sulfur compounds.
- the electrolytic solution contains a non-aqueous electrolyte and a solvent, and contains a non-aqueous electrolyte and a solvent.
- the solvent is an electrolytic solution containing vinylene carbonate in a proportion of 10 to 100% by weight.
- the solvent preferably further contains a fluorinated carbonate represented by the following general formula (1) and / or an ether represented by the general formula (2).
- R 1 is an alkyl group having 1 to 4 carbon atoms, which contains a fluorine group or a fluorine group and may have an ether bond and / or an unsaturated bond.
- R 2- (OCHR 3 CH 2 ) x- OR 3 (2) (In the formula, R 2 and R 3 are independently substituted with a fluorine-substituted alkyl group having 1 to 9 carbon atoms, a phenyl group optionally substituted with a halogen atom, and a halogen atom, respectively. It may be selected from the group consisting of cyclohexyl groups, which may form a ring together, where R 3 independently represents H or CH 3 and x represents 0-10).
- the fluorinated carbonate represented by the general formula (1) is preferably a fluoroethylene carbonate.
- the non-aqueous electrolyte preferably contains at least one compound selected from the group consisting of LiPF 6 , lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) and lithium bis (fluorosulfonyl) imide (LiFSI).
- the present disclosure discloses a positive electrode, lithium, containing a sulfur-based electrode active material containing at least one selected from the group consisting of simple sulfur, lithium polysulfide (Li 2 Sn: 1 ⁇ n ⁇ 8), and organic sulfur compounds.
- a single sulfur, lithium polysulfide (Li 2 Sn : 1 ⁇ n) which is a lithium sulfur secondary battery having a negative electrode containing a material that stores and releases ions and uses the above-mentioned electrolytic solution. It is also a lithium sulfur secondary battery having a positive electrode containing a sulfur-based electrode active material containing at least one selected from the group consisting of ⁇ 8) and an organic sulfur compound, and a negative electrode containing a material that absorbs and releases lithium ions.
- the present disclosure is also a module characterized by including the above-mentioned lithium-sulfur secondary battery.
- the lithium-sulfur secondary battery using the electrolytic solution of the present disclosure exhibits excellent performance in durability, more specifically, a capacity retention rate during long-term use.
- the present disclosure discloses a positive electrode, lithium, containing a sulfur-based electrode active material containing at least one selected from the group consisting of simple sulfur, lithium polysulfide (Li 2 Sn: 1 ⁇ n ⁇ 8), and organic sulfur compounds.
- the solvent in the electrolytic solution contains vinylene carbonate in a proportion of 10 to 100% by weight.
- the vinylene carbonate is a compound represented by the following general formula (3).
- Lithium - In sulfur secondary battery by lithium polysulfides (Li 2 S n) will eluted into the electrolytic solution generated by the electrode reaction during charge and discharge, the discharge capacity decreases by repetition of charge and discharge, the battery life was supposed to be shorter.
- the present disclosure has been completed by finding that such a problem can be solved by using an electrolytic solution containing vinylene carbonate in a specific ratio.
- vinylene carbonate is contained in a ratio of 10 to 100% by weight based on the total amount of the solvent in the electrolytic solution. That is, a small amount of less than 10% of the solvent is not preferable in that the effect of improving durability cannot be sufficiently obtained.
- Patent Document 2 discloses an electrolytic solution containing a very small amount of vinylene carbonate as a comparative example, and describes that this deteriorates battery performance.
- the "solvent” means a volatile compound among the liquid components contained in the electrolytic solution.
- the electrolyte of a lithium-sulfur battery contains a non-aqueous electrolyte. Such a non-aqueous electrolyte is a non-volatile component.
- the "solvent” in the present disclosure is used in combination with these non-aqueous electrolytes in an electrolytic solution, and means a volatile liquid compound such as various carbonate compounds, ether compounds, and ester compounds. Is. Further, two or more of these may be used in combination.
- vinylene carbonate is contained in a proportion of 10 to 100% by weight based on the total weight of the solvent. If the amount of vinylene carbonate is too large or too small compared to the above range, the capacity retention rate during long-term use cannot be improved.
- the lower limit of the amount of vinylene carbonate blended is more preferably 25% by weight.
- the upper limit of the amount of vinylene carbonate blended is more preferably 75% by weight.
- the electrolytic solution used in the lithium-sulfur secondary battery of the present disclosure may contain a solvent other than vinylene carbonate (hereinafter, this is referred to as “other solvent”).
- the other solvent is not particularly limited, and various solvents that can be used as a solvent in the electrolytic solution can be used in the battery field. Specific examples thereof include fluorinated saturated cyclic carbonates, fluorinated chain carbonates, ether compounds, fluorinated ethers, and fluorinated esters. Among these, it is preferable to use a fluorinated saturated cyclic carbonate, an ether compound, and a fluorinated ether in combination. These compounds are preferable in terms of improving the output of the battery.
- R 1 is an alkyl group having 1 to 4 carbon atoms, which contains a fluorine group or a fluorine group and may have an ether bond and / or an unsaturated bond.
- R 2- (OCHR 3 CH 2 ) x-OR 3 (2) (In the formula, R 2 and R 3 are independently substituted with a fluorine-substituted alkyl group having 1 to 9 carbon atoms, a phenyl group optionally substituted with a halogen atom, and a halogen atom, respectively. It may be selected from the group consisting of cyclohexyl groups, which may form a ring together, where R 3 independently represents H or CH 3 and x represents 0-10).
- these other solvents will be described in detail.
- the fluorinated saturated cyclic carbonate has the formula (4):
- R 21 to R 24 are the same or different, and may have -H, -CH 3 , -F, a fluorinated alkyl group which may have an ether bond, or an ether bond, respectively. Represents a fluorinated alkoxy group. However, at least one of R 21 to R 24 is ⁇ F, a fluorinated alkyl group which may have an ether bond, or a fluorinated alkoxy group which may have an ether bond. The one shown by) is preferable.
- the fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the fluorinated alkyl group may be linear or branched chain.
- the fluorinated alkoxy group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the fluorinated alkoxy group may be linear or branched chain.
- R 21 to R 24 are the same or different, -H, -CH 3 , -F, -CF 3 , -C 4 F 9 , -CHF 2 , -CH 2 F, -CH 2 CF 2 CF 3 , -CH 2 -CF (CF 3) 2 , -CH 2 -O-CH 2 CHF 2 CF 2 H, -CH 2 CF 3, and, at least one selected from the group consisting of -CF 2 CF 3 are preferred .
- R 21 to R 24 is -F, -CF 3 , -C 4 F 9 , -CHF 2 , -CH 2 F, -CH 2 CF 2 CF 3 , -CH 2- CF ( CF 3 ) 2 , -CH 2- O-CH 2 CHF 2 F 2 H, -CH 2 CF 3 , and -CF 2 CF 3 is at least one selected from the group.
- fluorinated saturated cyclic carbonate at least one selected from the group consisting of the following compounds is preferable.
- R 1 is an alkyl group having 1 to 4 carbon atoms, which contains a fluorine group or a fluorine group and may have an ether bond and / or an unsaturated bond.
- the compound represented by the general formula of is more preferable.
- the above compound is particularly preferable in terms of improving the output of the battery. Moreover,
- the fluorinated chain carbonate has the following general formula:
- R 31 and R 32 represent alkyl groups that are the same or different and may have an ether bond or a fluorine atom, provided that either R 31 or R 32 is , Which has a fluorine atom.) Is preferable.
- the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the alkyl group may be linear or branched.
- R 31 and R 32 are the same or different, -CH 3 , -CF 3 , -CHF 2 , -CH 2 F, -C 2 H 5 , -CH 2 CF 3 , -CH 2 CHF 2 , and -At least one selected from the group consisting of CH 2 CF 2 CF 2 H is preferred.
- at least one of R 31 and R 32 consists of -CF 3 , -CHF 2 , -CH 2 F, -CH 2 CHF 2 , -CH 2 CF 3 , and -CH 2 CF 2 CF 2 H. At least one selected from the group.
- fluorinated chain carbonate at least one selected from the group consisting of the following compounds is preferable.
- the fluorinated ester has the following general formula:
- R 41 and R 42 are the same or different, and represent an alkyl group which may have an ether bond or a fluorine atom, and may be bonded to each other to form a ring. However, one of R 41 and R 42 preferably has a fluorine atom.).
- the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
- the alkyl group may be linear or branched.
- R 41 and R 42 are the same or different, -CH 3 , -C 2 H 5 , -CHF 2 , -CH 2 F, -CH (CF 3 ) 2 , -CHFCF 3 , -CF 3 , and. -At least one selected from the group consisting of CH 2 CF 3 is preferred. In this case, at least one of R 41 and R 42 is at least one selected from the group consisting of -CHF 2 , -CH (CF 3 ) 2 , -CHFCF 3 , -CF 3 , and -CH 2 CF 3. Is.
- R 41 and R 42 When R 41 and R 42 are bonded to each other to form a ring, it means that R 41 and R 42 form a ring together with a carbon atom and an oxygen atom to which R 41 and R 42 are bonded, respectively. Meaning, R 41 and R 42 form a part of the ring as a fluorinated alkylene group.
- R 41 and R 42 When R 41 and R 42 combine with each other to form a ring, R 41 and R 42 include -CH 2 CH 2 CH (CH 2 CF 3 )-, -CH (CF 3 ) CH 2 CH 2- , -CHFCH 2 CH 2- , -CH 2 CH 2 CHF-, and -CH 2 CH 2 CH (CF 3 )-are preferred at least one selected from the group.
- fluorinated ester at least one selected from the group consisting of the following compounds is preferable.
- R 2- (OCHR 3 CH 2 ) x-OR 3 (2) As the ether compound, a compound represented by the following general formula (2) can be preferably used.
- R 2- (OCHR 3 CH 2 ) x-OR 3 (2) (In the formula, R 2 and R 3 are independently substituted with a fluorine-substituted alkyl group having 1 to 9 carbon atoms, a phenyl group optionally substituted with a halogen atom, and a halogen atom, respectively. It may be selected from the group consisting of cyclohexyl groups, which may form a ring together, where R 3 independently represents H or CH 3 and x represents 0-10).
- the compound represented by the general formula (2) described above can be classified into a non-fluorinated ether compound and a fluorinated ether compound.
- a non-fluorinated ether compound and a fluorinated ether compound.
- the above ether compounds will be described in detail separately for non-fluorinated ether compounds and fluorinated ether compounds.
- Non-fluorinated ether compound a compound represented by the following general formula can be preferably used.
- R 54 - (OCHR 53 CH 2 ) x -OR 55 In the formula, R 54 and R 55 are independently substituted with a fluorine-free alkyl group having 1 to 9 carbon atoms, a phenyl group optionally substituted with a halogen atom, and a halogen atom. It may be selected from the group consisting of cyclohexyl groups, which may form a ring together, where R 53 independently represents H or CH 3 and x represents 0-10.
- alkyl group in the above formula examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, an isopentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and the like.
- the alkyl group preferably has a small number of carbon atoms, preferably a methyl group and an ethyl group, and most preferably a methyl group.
- the phenyl group which may be substituted with a halogen atom is not particularly limited, but is 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2,4-dichlorophenyl group, 2-bromophenyl group, 3-. Examples thereof include a bromophenyl group, a 4-bromophenyl group, a 2,4-dibromophenyl group, a 2-iodophenyl group, a 3-iodophenyl group, a 4-iodophenyl group, and a 2,4-iodophenyl group.
- the cyclohexyl group which may be substituted with a halogen atom is not particularly limited, but is 2-chlorocyclohexyl group, 3-chlorocyclohexyl group, 4-chlorocyclohexyl group, 2,4-dichlorocyclohexyl group, 2-bromocyclohexyl. Group, 3-bromocyclohexyl group, 4-bromocyclohexyl group, 2,4-dibromocyclohexyl group, 2-iodocyclohexyl group, 3-iodocyclohexyl group, 4-iodocyclohexyl group, 2,4-diiodocyclohexyl group, etc. Can be mentioned.
- R 3 represents H or CH 3, and when x is 2 or more, they are independent of each other.
- x represents 0 to 10 and represents the number of repetitions in ethylene oxide units.
- x is preferably 1 to 6, more preferably 2 to 5, and most preferably 3 or 4.
- ether compound examples include tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane or grime, or derivatives thereof.
- the ether compounds represented by the above general formula may form a ring together, and examples of the cyclic compound include tetrahydrofuran (THF) and its derivative 2-methyltetrahydrofuran when x is 0.
- THF tetrahydrofuran
- 2-methyltetrahydrofuran when x is 0.
- x 1, 1,3-dioxolane and 1,4-dioxane can be mentioned.
- Examples of the monogrime (G1) include methyl monoglime and ethyl monoglime
- examples of the jig grime (G2) include ethyl jig lime and butyl jig lime.
- the ether compound that may be used in the electrolytic solution may be used alone or in the form of a mixture of two or more kinds.
- Rf is an alkyl group having a fluorine atom and may form a branch or a ring having 1 to 5 carbon atoms.
- R 51 is an alkyl group which may have a fluorine atom, R.
- Reference numeral 52 is an alkyl group having no fluorine, having 1 to 9 carbon atoms, and may form a branch or a ring .
- N 1 is 0, 1 or 2). It may be a fluorinated ether compound represented by.
- the compound represented by the above formula (5) is not particularly limited, but for example, HCF 2 CF 2 OCH 2 CH 2 CH 3 , HCF 2 CF 2 OCH 2 CH 2 CH 2 CH 3 , HCF 2 CF. 2 CH 2 OCH 2 CH 3 , HCF 2 CF 2 CH 2 OCH 2 CH 2 CH 3 , HCF 2 CF 2 CH 2 OCH 2 CH 2 CH 2 CH 3 , CF 3 CHFCF 2 OCH 2 CH 3 , CF 3 CHFCF 2 OCH 2 CH 2 CH 3 and HCF 2 CF 2 OCH 2 CH 3 can be mentioned.
- two or more compounds may be mixed and used.
- the fluorinated ether compound is Rf1- (OR 51 ) n 1- O-Rf2 (5-1) (In the formula, Rf1 and Rf2 are the same or different alkyl groups having a fluorine atom.
- R 51 is an alkyl group which may have a fluorine atom, and n 1 is 0, 1 or 2. The number of carbon atoms in one molecule is 5 or more) It may contain the fluorinated ether shown by.
- fluorinated ether such as (5-1) include HCF 2 CF 2 CH 2 OCF 2 CHFCF 3 , HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CHFCF 3 , CF 3 Examples thereof include CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 OC 2 H 5, HCF 2 CF 2 OC 2 H 5 OCF 2 CF 2 H, CF 3 OC 2 H 5 OCF 3.
- the above-mentioned “other solvent” may be a combination of two or more kinds.
- the content of the above “other solvent” is preferably 20 to 90% by weight based on the total amount of the electrolytic solution. By keeping it within the above range, it is preferable in terms of improving the output of the battery.
- fluoroethylene carbonate is used as the other solvent
- the content of the above “other solvent” is preferably 20 to 90% by weight based on the total amount of the electrolytic solution.
- the ether compound the content of the "other solvent” is preferably 30 to 70% by weight based on the total amount of the electrolytic solution.
- Non-aqueous electrolyte containing lithium ion contains a non-aqueous electrolyte containing lithium ions.
- the non-aqueous electrolyte containing lithium ions is preferably a lithium salt.
- Lithium salts can be represented by LiX, where X is a pair of anion substances. The above lithium salts may be used alone or in the form of a mixture of two or more.
- N (FSO 2 ) 2 , N (CF 3 SO 2 ) 2 , N (CF 3 CF 2 SO 2 ) 2 , PF 6 are more preferable. , ClO 4 . The most preferable are PF 6 and N (CF 3 SO 2 ) 2 .
- the non-aqueous electrolyte is preferably contained in the electrolytic solution in a proportion of 3.0 to 30% by weight. When it is within the above range, it can be used as a good electrolytic solution.
- the lower limit is more preferably 5.0% by weight, further preferably 8.0% by weight.
- the upper limit is more preferably 20% by weight, further preferably 15% by weight.
- the mixing ratio (solvent) / (non-aqueous electrolyte) of the solvent and the non-aqueous electrolyte is preferably a lower limit of 0.1 and an upper limit of 5.0 (molar conversion).
- the coordination of the fluorinated ether to the alkali metal ion is good, which is preferable.
- the mixing ratio is more preferably 0.5 at the lower limit and 4.0 at the upper limit.
- a lithium salt compound represented by the following general formula (hereinafter, this is referred to as “second lithium salt compound”) may be used in combination.
- the second lithium salt compound may be used in combination of two or more.
- the second lithium salt compound is preferably contained in a proportion of 0.001 to 10% by weight based on the total amount of the electrolytic solution.
- the lower limit of the second lithium salt content is more preferably 0.01% by weight, further preferably 0.1% by weight.
- the upper limit of the second lithium salt content is more preferably 5% by weight, further preferably 3% by weight.
- the electrolytic solution used in the lithium-sulfur secondary battery of the present disclosure may further contain a cyclic boric acid ester.
- a better capacity retention rate can be obtained.
- the cyclic boric acid ester is not particularly limited, and for example, at least one selected from the group consisting of the following compounds is preferable.
- the electrolytic solution preferably contains the above-mentioned cyclic boric acid ester in an amount of 0.01% by weight or more, more preferably 1.0% by weight or more.
- the upper limit is not particularly limited, but is preferably 1.0% by weight.
- the electrolytic solution of the present disclosure may contain a phosphoric acid ester.
- the inclusion of the phosphoric acid ester is preferable in terms of extending the life of the battery and improving the output of the battery.
- the content of the phosphoric acid ester is preferably 0.001 to 10% by weight based on the total amount of the electrolytic solution.
- the lower limit of the phosphate ester content is more preferably 0.01% by weight, further preferably 0.1% by weight.
- the upper limit of the phosphate ester content is more preferably 5% by weight, further preferably 3% by weight.
- phosphoric acid ester examples include the following compounds. Phosphoric acid (methyl) (2-propenyl) (2-propynyl), phosphoric acid (ethyl) (2-propenyl) (2-propynyl), phosphoric acid (2-butenyl) (methyl) (2-propynyl), phosphoric acid (2-Butenyl) (ethyl) (2-propynyl), phosphoric acid (1,1-dimethyl-2-propynyl) (methyl) (2-propenyl), phosphoric acid (1,1-dimethyl-2-propynyl) ( Ethyl) (2-propenyl), phosphoric acid (2-butenyl) (1,1-dimethyl-2-propynyl) (methyl), and phosphoric acid (2-butenyl) (ethyl) (1,1-dimethyl-2- Phosphate esters such as propynyl); Trimethyl phosphate, triethyl phos,
- the compounds disclosed as D-1 to D-5 in the following examples are particularly preferable as the above-mentioned phosphoric acid ester.
- the above-mentioned effects are particularly preferably exhibited.
- the electrolytic solution used in the lithium-sulfur secondary battery of the present disclosure may be a gel-like gel electrolytic solution.
- the gel electrolytic solution has a structure in which the electrolytic solution is injected into a matrix polymer made of an ionic conductive polymer.
- the ionic conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), vinylidene fluoride-hexafluoropropylene (VDF-HEP). Examples thereof include copolymers of poly (methyl methacrylate (PMMA) and copolymers thereof, etc.).
- Electrolyte liquid salts such as lithium salts can be well dissolved in polyalkylene oxide-based polymers.
- the electrolytic solution of the present disclosure contains a sulfur-based electrode active material containing at least one selected from the group consisting of simple sulfur, lithium polysulfide (Li 2 Sn: 1 ⁇ n ⁇ 8), and an organic sulfur compound. It is used for a lithium sulfur secondary battery having a positive electrode and a negative electrode containing a material that occludes and releases lithium ions. That is, when the electrolytic solution is used in such a lithium-sulfur secondary battery, various effects as described above can be obtained particularly preferably.
- the positive electrode and the negative electrode will be described in detail below.
- the present disclosure is also a lithium-sulfur secondary battery containing the above electrolytic solution as an essential component. Hereinafter, the lithium-sulfur secondary battery of the present disclosure will also be described in detail.
- the above-mentioned positive electrode or negative electrode and the counter electrode are arranged apart from each other via a separator, and an electrolytic solution is contained in the separator to form a cell.
- a structure in which a plurality of cells are stacked or wound and housed in a case can be used.
- the current collectors of the positive electrode or the negative electrode and the counter electrode are each drawn out of the case and electrically connected to the tab (terminal).
- the electrolytic solution may be a gel electrolytic solution.
- the positive electrode contains at least one sulfur-based electrode active material selected from the group consisting of simple sulfur, lithium polysulfide (Li 2 Sn : 1 ⁇ n ⁇ 8), and an organic sulfur compound, and is more specific. It contains at least one selected from the group consisting of simple sulfur, lithium polysulfide (Li 2 Sn : 1 ⁇ n ⁇ 8), and organic sulfur compounds.
- the organic sulfur compound include an organic disulfide compound and a carbon sulfide compound. Further, it is preferable to use a composite material of these sulfur-based electrode active materials and a carbon material.
- the sulfur-based electrode active material is present in the pores, which is preferable in that the resistance can be reduced.
- the content of the sulfur-based electrode active material contained in the positive electrode active material in the composite material is 40 to 99% by mass with respect to the composite material because the cycle performance is further excellent and the overvoltage is further reduced.
- 50% by mass or more is more preferable, 60% by mass or more is further preferable, 90% by mass or less is more preferable, and 85% by mass or less is further preferable.
- the positive electrode active material is the elemental sulfur
- the content of sulfur contained in the positive electrode active material is equal to the content of the elemental sulfur.
- the sulfur content can be obtained by measuring the weight change when heating from room temperature to 600 ° C. at a heating rate of 10 ° C./m in a helium atmosphere.
- the content of the carbon material in the composite material is preferably 1 to 60% by mass, more preferably 10% by mass or more, based on the positive electrode active material, because the cycle performance is further excellent and the overvoltage is further reduced. , 15% by mass or more, more preferably 45% by mass or less, still more preferably 40% by mass or less.
- the carbon material used in the above-mentioned composite material of sulfur and carbon material preferably has pores.
- the "pores" include micropores, mesopores and macropores.
- the micropores mean pores having a diameter of 0.1 nm or more and less than 2 nm.
- the mesopore means a hole having a diameter of more than 2 nm and 50 nm or less.
- the macropore means a pore having a diameter of more than 50 nm.
- the pore volume ratio is more preferably 2.0 or more.
- the upper limit of the pore volume ratio is not particularly limited, but may be 3.0 or less. If the carbon material has pores, it is presumed that the elution of the positive electrode active material can be considerably suppressed.
- the macropore volume is not added to the pore volume.
- the BET specific surface area, the average diameter of the pores, and the pore volume in the present invention are determined by using a nitrogen adsorption isotherm obtained by adsorbing nitrogen gas on the sample (carbon material, composite material) at a liquid nitrogen temperature. , Can be sought.
- the BET specific surface area of the sample can be determined by the Brenauer-Emmet-Telle (BET) method using the nitrogen adsorption isotherm, and the QSDFT method (quenching) using the nitrogen adsorption isotherm.
- the average diameter and pore volume of the pores of the sample can be obtained by the fixed density functional theory).
- a specific surface area / pore distribution measuring device Autosorb manufactured by Cantachrome Instruments Co., Ltd. may be used as a measuring device for measurement.
- the cycle performance is further excellent and the overvoltage is further reduced. Therefore, it is preferable that the positive electrode active material is contained in the pores of the carbon material.
- the positive electrode active material is contained in the pores, it is presumed that the elution of the positive electrode active material can be considerably suppressed.
- the BET specific surface area of the composite material It can be confirmed by measuring the BET specific surface area of the composite material that the positive electrode active material is contained in the pores. When the positive electrode active material is contained in the pores, the BET specific surface area of the composite material becomes smaller than the BET specific surface area of the carbon material alone.
- porous carbon having macropores and mesopores is preferable.
- the carbon material has a BET specific surface area of 500 to 2500 m 2 / g because the cycle performance is further excellent and the overvoltage is further reduced.
- the BET specific surface area is more preferably 700 m 2 / g or more, and more preferably 2000 m 2 / g or less.
- the carbon material has an average particle size of 1 to 50 nm because the cycle performance is further excellent and the overvoltage is further reduced.
- the average particle size is more preferably 2 nm or more, and more preferably 30 nm or less.
- the method for producing the carbon material is not particularly limited, but for example, a composite of a easily decomposable polymer and a persistent (thermosetting) organic component is formed, and the easily decomposable is highly decomposed from the composite.
- Examples include methods for removing molecules.
- it can be produced by preparing a regular nanostructure polymer by utilizing the organic-organic interaction between a phenol resin and a pyrolytic polymer and carbonizing it.
- the method for producing the composite material is not particularly limited, and examples thereof include a method of vaporizing the positive electrode active material and precipitating it on the carbon material. After the precipitation, the excess positive electrode active material may be removed by heating at about 150 ° C.
- the positive electrode may contain a thickener, a binder and a conductive agent in addition to the sulfur-based electrode active material described above. Then, by applying the slurry (paste) of these electrode materials to a conductive carrier (current collector) and drying it, the electrode material can be supported on the carrier to produce a positive electrode.
- the current collector include those formed by forming conductive metals such as aluminum, nickel, copper, and stainless steel on foil, mesh, expanded grid (expanded metal), punched metal, and the like. Further, a resin having conductivity or a resin containing a conductive filler may be used as a current collector.
- the thickness of the current collector is, for example, 5 to 30 ⁇ m, but is not limited to this range.
- the content of sulfur-based electrode active material is preferably 50 to 98% by weight, more preferably. It is 65 to 75% by weight. When the content of the active material is within the above range, the energy density can be increased, which is preferable.
- the thickness of the electrode material is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m, and even more preferably 20 to 150 ⁇ m.
- the binder is polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene butadiene rubber.
- SBR polyacrylonitrile
- PAN polymethylacrylate
- PMA polymethylmethacrylate
- PMMA polyvinylidene chloride
- PVDF polyvinylidene fluoride
- PVA polyvinyl alcohol
- PAA polyacrylic acid
- Polyalkylene oxide such as lithium polyacrylate (PAALi), ethylene oxide or a ring-opened polymer of monosubstituted epoxiside, or a mixture thereof.
- thickener examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof.
- One type may be used alone, or two or more types may be used in any combination and ratio.
- the above-mentioned conductive agent is an additive compounded to improve conductivity, and is carbon powder such as graphite, Ketjen black, reverse opal carbon, and acetylene black, vapor-grown carbon fiber (VGCF), and carbon nanotube (carbon nanotube). It can be made of various carbon fibers such as CNT). Further, the electrode material may contain a supporting salt (a component contained in the following electrolytic solution).
- the negative electrode in the lithium-sulfur secondary battery of the present disclosure contains a material that occludes and releases lithium ions.
- the negative electrode active material contained in the negative electrode acts to occlude and desorb alkali metal ions.
- As the negative electrode active material at least one selected from the group consisting of lithium, sodium, carbon, silicon, aluminum, tin, antimony and magnesium is preferable. More specifically, metals such as lithium titanate, lithium metal, sodium metal, lithium aluminum alloy, sodium aluminum alloy, lithium tin alloy, sodium tin alloy, lithium silicon alloy, sodium silicon alloy, lithium antimon alloy, sodium antimon alloy, etc.
- negative electrode materials such as materials, natural graphite, artificial graphite, carbon black, acetylene black, graphite, activated carbon, carbon fiber, coke, soft carbon, hard carbon and other crystalline carbon materials and non-crystalline carbon materials and other carbon materials. Can be used. Of these, it is desirable to use a carbon material or a lithium or lithium transition metal composite oxide because a battery having excellent capacity and input / output characteristics can be constructed. In some cases, two or more kinds of negative electrode active materials may be used in combination.
- the negative electrode may also contain the above-mentioned active material, a binder, and a conductive agent. Then, these electrode materials can be supported on a conductive carrier (current collector) to manufacture a negative electrode. As the current collector, the same one as above can be used.
- a separator is usually arranged between the positive electrode and the negative electrode.
- the separator include a glass fiber separator that absorbs and retains an electrolytic solution, which will be described later, a porous sheet made of a polymer, and a non-woven fabric.
- the porous sheet is composed of, for example, a microporous polymer.
- the polymer constituting such a porous sheet include polyolefins such as polyethylene (PE) and polypropylene (PP); laminates having a three-layer structure of PP / PE / PP, polyimide, and aramid.
- polyolefin-based microporous separators and glass fiber separators are preferable because they have the property of being chemically stable with respect to organic solvents and can suppress the reactivity with the electrolytic solution to a low level.
- the thickness of the separator made of a porous sheet is not limited, but in the application of a secondary battery for driving a motor of a vehicle, it is preferable that the total thickness is 4 to 60 ⁇ m in a single layer or a multilayer.
- the fine pore size of the separator made of a porous sheet is preferably 10 ⁇ m or less (usually about 10 to 100 nm), and the porosity is preferably 20 to 80%.
- non-woven fabric conventionally known non-woven fabrics such as cotton, rayon, acetate, nylon (registered trademark), polyester; polyolefins such as PP and PE; polyimide and aramid are used alone or in combination.
- the porosity of the non-woven fabric separator is preferably 50 to 90%.
- the thickness of the non-woven fabric separator is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m. If the thickness is less than 5 ⁇ m, the retention of the electrolytic solution deteriorates, and if it exceeds 200 ⁇ m, the resistance may increase.
- a module including the above-mentioned lithium-sulfur secondary battery is also one of the present disclosures.
- CMC carboxymethyl cellulose
- a positive electrode mixture slurry was prepared.
- the obtained positive electrode mixture slurry was uniformly applied onto an aluminum foil current collector having a thickness of 25 ⁇ m, dried, and then compressed and formed by a press to obtain a positive electrode.
- the positive electrode laminate was punched to a size of 1.6 cm in diameter with a punching machine to prepare a circular positive electrode.
- the positive electrode and the negative electrode are opposed to each other through a microporous polypropylene film (separator) having a thickness of 25 ⁇ m, the non-aqueous electrolytic solution obtained above is injected, and the electrolytic solution is sufficiently permeated into the separator or the like and then sealed.
- a coin-shaped alkali metal-sulfur-based secondary battery was produced by pre-discharging, pre-charging, and aging. The obtained coin-type alkali metal-sulfur-based secondary battery was evaluated based on the following criteria.
- the secondary battery manufactured above was constantly charged to 3.0 V at 25 ° C. with a current corresponding to 0.2 C, and then discharged to 1.0 V at a constant current of 0.2 C, which was repeated for 3 cycles. Then, after a constant current charge of 3.0 V with a current corresponding to 0.2 C, a constant current of 10 C was discharged to 1.0 V.
- the table shows the discharge capacity value at that time.
- VC vinylene carbonate.
- FEC fluoroethylene carbonate.
- DOL 1,3-dioxolane.
- the lithium-sulfur secondary battery using the electrolytic solution of the present disclosure can be used as various power sources such as a portable power source and an automobile power source.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
Description
特許文献2には、電解液に配合できる化合物の例として、ビニレンカーボネートが開示されている。
上記電解液は、非水電解質及び溶媒を含有するものであり、
上記溶媒は、10~100重量%の割合でビニレンカーボネートを含有するものであることを特徴とする電解液である。
R2-(OCHR3CH2)x-OR3 (2)
(式中、R2及びR3は、それぞれ独立して、炭素数1~9のフッ素置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R3は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。)
上記非水電解質は、LiPF6、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)及びはリチウムビス(フルオロスルホニル)イミド (LiFSI)からなる群より選択される少なくとも1の化合物を含むことが好ましい。
本開示は、上述したリチウム硫黄二次電池を備えることを特徴とするモジュールでもある。
本開示は、単体硫黄、多硫化リチウム(Li2Sn:1<n<8)、及び有機硫黄化合物からなる群から選択される少なくとも一つを含む硫黄系電極活物質を含有する正極、リチウムイオンを吸蔵放出する材料を含む負極を有するリチウム硫黄二次電池に使用する電解液である。すなわち、近年研究開発が進められているリチウム硫黄二次電池の性能を向上させることができる電解液を提供するものである。
具体的には電解液における溶媒が、10~100重量%の割合でビニレンカーボネートを含有することを特徴とするものである。
なお、ビニレンカーボネートは、下記一般式(3)で表される化合物である。
なお、上記電解液は、非水電解液である。
上記その他の溶媒としては、特に限定されるものではなく、電池分野において、電解液中の溶媒として使用することができる各種溶媒を使用することができる。具体的には、フッ素化飽和環状カーボネート、フッ素化鎖状カーボネート、エーテル化合物、フッ素化エーテル、フッ素化エステル等を挙げることができる。これらのなかでも、フッ素化飽和環状カーボネート、エーテル化合物、フッ素化エーテルを併用することが好ましい。これらの化合物は、電池の出力向上という点で好ましいものである。
R2-(OCHR3CH2)x-OR3 (2)
(式中、R2及びR3は、それぞれ独立して、炭素数1~9のフッ素置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R3は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。)
以下、これらのその他の溶媒について詳述する。
上記フッ素化飽和環状カーボネートとしては、式(4):
上記フッ素化アルキル基は、直鎖状又は分岐鎖状であってよい。
上記フッ素化アルコキシ基としては、炭素数が1~10のものが好ましく、炭素数が1~6のものがより好ましく、炭素数が1~4のものが更に好ましい。
上記フッ素化アルコキシ基は、直鎖状又は分岐鎖状であってよい。
この場合、R21~R24の少なくとも1つは、-F、-CF3、-C4F9、-CHF2、-CH2F、-CH2CF2CF3、-CH2-CF(CF3)2、-CH2-O-CH2CHF2F2H、-CH2CF3、及び、-CF2CF3からなる群より選択される少なくとも1種である。
(式中、R1は、フッ素基又はフッ素基を含み、エーテル結合及び/又は不飽和結合を有していてもよい炭素数1~4のアルキル基。)
の一般式で表される化合物がより好ましい。上記化合物は、電池の出力向上という点で特に好ましいものである。さらには、
上記フッ素化鎖状カーボネートとしては、下記一般式:
上記アルキル基は、直鎖状又は分岐鎖状であってよい。
この場合、R31及びR32の少なくとも一方は、-CF3、-CHF2、-CH2F、-CH2CHF2、-CH2CF3、及び、-CH2CF2CF2Hからなる群より選択される少なくとも1種である。
上記フッ素化エステルとしては、下記一般式:
上記アルキル基は、直鎖状又は分岐鎖状であってよい。
この場合、R41及びR42の少なくとも一方は、-CHF2、-CH(CF3)2、-CHFCF3、-CF3、及び、-CH2CF3からなる群より選択される少なくとも1種である。
エーテル化合物としては、下記一般式(2)で表される化合物を好適に使用することができる。
R2-(OCHR3CH2)x-OR3 (2)
(式中、R2及びR3は、それぞれ独立して、炭素数1~9のフッ素置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R3は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。)
非フッ素化エーテル化合物としては下記一般式で表される化合物を好適に使用することができる。
R54-(OCHR53CH2)x-OR55
式中、R54及びR55は、それぞれ独立して、炭素数1~9のフッ素を有していないアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R53は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。
上記一般式で表されるエーテル化合物は共に環を形成してもよく、この環状化合物としては、xが0の場合には、テトラヒドロフラン(THF)やその誘導体である2-メチルテトラヒドロフランが挙げられ、xが1の場合には、1,3-ジオキソランや1,4-ジオキサンが挙げられる。
グライムは、上記一般式(2)(但し、R3はHを表し、xは1以上を表し、直鎖化合物である。)で表され、モノグライム(G1、x=1)、ジグライム(G2、x=2)、トリグライム(G3、x=3)及びテトラグライム(G4、x=4)等が挙げられる。モノグライム(G1)としては、メチルモノグライム、エチルモノグライム等が挙げられ、ジグライム(G2)としては、エチルジグライム、ブチルジグライム等が挙げられる。
上記その他の溶媒は、下記一般式(5):
Rf-(OR51)n1-O-R52 (5)
(式中、Rfは、フッ素原子を有するアルキル基であり、炭素数1~5の分岐または環を形成していてもよい。R51は、フッ素原子を有していてもよいアルキル基、R52はフッ素を有していないアルキル基であり炭素数1~9であり、分岐または環を形成していてもよい。n1は0、1又は2である。)
で示されるフッ素化エーテル化合物であってもよい。
Rf1-(OR51)n1-O-Rf2 (5-1)
(式中、Rf1、Rf2は、同じか又は異なり、フッ素原子を有するアルキル基である。R51は、フッ素原子を有していてもよいアルキル基、n1は0、1又は2である。1分子中の炭素数は、5以上である)
で示されるフッ素化エーテルを含有するものであってよい。(5-1)のようなフッ素化エーテルとしては、HCF2CF2CH2OCF2CHFCF3、HCF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHFCF3、CF3CF2CH2OCF2CF2H、HCF2CF2OC2H5、HCF2CF2OC2H5OCF2CF2H、CF3OC2H5OCF3が例示できる。
上記「その他の溶媒」としては、フルオロエチレンカーボネート、エーテル化合物を使用することが特に好ましい。その他の溶媒としてフルオロエチレンカーボネートを使用する場合、上記「その他の溶媒」の含有量は、電解液全量に対して20~90重量%であることが好ましい。上記エーテル化合物を使用する場合、上記「その他の溶媒」の含有量は、電解液全量に対して30~70重量%であることが好ましい。
本開示の電解液は、リチウムイオンを含む非水電解質を含有するものである。
リチウムイオンを含む非水電解質は、リチウム塩であることが好ましい。リチウム塩はLiXで表すことができ、Xは対の陰イオンとなる物質である。上記リチウム塩は、一種を単独で使用してもよいし、二種以上を混合物の形態で使用してもよい。
という効果が得られる点で好ましい。
上記第二のリチウム塩含有量の下限は、0.01重量%であることがより好ましく、0.1重量%であることがさらに好ましい。上記第二のリチウム塩含有量の上限は、5重量%であることがより好ましく、3重量%であることがさらに好ましい。
上記環状ホウ酸エステルとしては特に限定されず、例えば、次の化合物からなる群より選択される少なくとも1種が好ましい。
リン酸エステルの含有量は、電解液全量に対して、0.001~10重量%であることが好ましい。
上記リン酸エステル含有量の下限は、0.01重量%であることがより好ましく、0.1重量%であることがさらに好ましい。上記リン酸エステル含有量の上限は、5重量%であることがより好ましく、3重量%であることがさらに好ましい。
リン酸(メチル)(2-プロペニル)(2-プロピニル)、リン酸(エチル)(2-プロペニル)(2-プロピニル)、リン酸(2-ブテニル)(メチル)(2-プロピニル)、リン酸(2-ブテニル)(エチル)(2-プロピニル)、リン酸(1,1-ジメチル-2-プロピニル)(メチル)(2-プロペニル)、リン酸(1,1-ジメチル-2-プロピニル)(エチル)(2-プロペニル)、リン酸(2-ブテニル)(1,1-ジメチル-2-プロピニル)(メチル)、及びリン酸(2-ブテニル)(エチル)(1,1-ジメチル-2-プロピニル)等のリン酸エステル;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、メチルホスホン酸ジメチル、エチルホスホン酸ジエチル、ビニルホスホン酸ジメチル、ビニルホスホン酸ジエチル、ジエチルホスホノ酢酸エチル、ジメチルホスフィン酸メチル、ジエチルホスフィン酸エチル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチルリン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸トリブチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、リン酸トリオクチル、リン酸2-フェニルフェニルジメチル、リン酸2-フェニルフェニルジエチル、リン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、メチル2-(ジメトキシホスホリル)アセテート、メチル2-(ジメチルホスホリル)アセテート、メチル2-(ジエトキシホスホリル)アセテート、メチル2-(ジエチルホスホリル)アセテート、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、酢酸2-プロピニル2-(ジメトキシホスホリル)、酢酸2-プロピニル2-(ジメチルホスホリル)、酢酸2-プロピニル2-(ジエトキシホスホリル)、酢酸2-プロピニル2-(ジエチルホスホリル)、リン酸トリス(トリメチルシリル)、リン酸トリス(トリエチルシリル)、リン酸トリス(トリメトキシシリル)、亜リン酸トリス(トリメチルシリル)、亜リン酸トリス(トリエチルシリル)、亜リン酸トリス(トリメトキシシリル)、ポリリン酸トリメチルシリル等の含燐化合物
また、本開示は、上記電解液を必須成分とするリチウム硫黄二次電池でもある。以下、本開示のリチウム硫黄二次電池についても詳述する。
本開示に係るアルカリ金属-硫黄系二次電池は、例えば、上記した正極又は負極と対極とをセパレータを介して離間して配置し、セパレータ内に電解液を含ませてセルを構成し、このセルを複数個積層又は巻回してケースに収容した構造とすることができる。正極又は負極と、対極との集電体は、それぞれケース外部に引き出され、タブ(端子)に電気的に接続される。なお、電解液をゲル電解液としてもよい。
上記正極は、単体硫黄、多硫化リチウム(Li2Sn:1<n<8)、及び有機硫黄化合物からなる群から選択される少なくとも一つの硫黄系電極活物質を含むものであり、より具体的には、単体硫黄、多硫化リチウム(Li2Sn:1≦n≦8)、及び有機硫黄化合物からなる群から選択される少なくとも一つを含むものである。有機硫黄化合物としては、有機ジスルフィド化合物、カーボンスルフィド化合物が挙げられる。また、これらの硫黄系電極活物質と炭素材料の複合材料を使用することが好ましい。
集電体としては、アルミニウム、ニッケル、銅、ステンレス鋼などの導電性の金属を、箔、メッシュ、エキスパンドグリッド(エキスパンドメタル)、パンチドメタルなどに形成したものが挙げられる。また、導電性を有する樹脂又は導電性フィラーを含有させた樹脂を集電体として使用してもよい。集電体の厚さは、例えば5~30μmであるが、この範囲に限定されない。
電極材料の厚さ(塗布層の片面の厚さ)は、好ましくは、10~500μmであり、より好ましくは20~300μmであり、さらに好ましくは20~150μmである。
本開示のリチウム硫黄二次電池における負極は、リチウムイオンを吸蔵放出する材料を含むものである。負極に含まれる負極活物質は、アルカリ金属イオンを吸蔵脱離するよう作用する。負極活物質としては、リチウム、ナトリウム、炭素、ケイ素、アルミニウム、スズ、アンチモン及びマグネシウムからなる群から選択される少なくとも一種が好ましい。より具体的には、チタン酸リチウム、リチウム金属、ナトリウム金属、リチウムアルミ合金、ナトリウムアルミ合金、リチウムスズ合金、ナトリウムスズ合金、リチウムケイ素合金、ナトリウムケイ素合金、リチウムアンチモン合金、ナトリウムアンチモン合金等の金属材料、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、グラファイト、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボンなどの結晶性炭素材や非結晶性炭素材等の炭素材料といった従来公知の負極材料を用いることができる。このうち、容量、入出力特性に優れた電池を構成できることから、炭素材料もしくはリチウム、リチウム遷移金属複合酸化物を用いるのが望ましい。場合によっては、2種以上の負極活物質が併用されてもよい。
上記リチウム―硫黄二次電池を備えるモジュールも本開示の一つである。
(電解液の調製)
表5に記載の組成になるように各成分を混合し、非水電解液を得た。
炭素材料及び正極活物質として所定の硫黄を含有した複合材料(硫黄の含有量は70質量%)、導電材としてカーボンブラック、純水で分散させたカルボキシメチルセルロース(CMC)、及び、スチレンーブタジエンゴムを固形分比で92/3/2.5/2.5(質量%比)になるよう混合した正極合剤スラリーを準備した。厚さ25μmのアルミ箔集電体上に得られた正極合剤スラリーを均一に塗布し、乾燥した後、プレス機により圧縮形成して正極とした。正極積層体を打ち抜き機で直径1.6cmの大きさに打ち抜き、円状の正極を作製した。
厚さ25μmの微孔性ポリプロピレンフィルム(セパレータ)を介して正極と負極を対向させ、上記で得られた非水電解液を注入し、電解液がセパレータ等に充分に浸透した後、封止し予備放電、予備充電、エージングを行い、コイン型のアルカリ金属―硫黄系二次電池を作製した。
得られたコイン型のアルカリ金属―硫黄系二次電池について、以下の基準に基づいて評価を行った。
上記で製造した二次電池を25℃でサイクル試験を行った。サイクル試験は0.2Cに相当する電流で3.0Vまで定電流充電した後、0.2Cの定電流で1.0Vまで放電するのを50サイクル繰り返し行った。ここで1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。表には50サイクル後の放電容量値を記載する。
上記で製造した二次電池を25℃で0.2Cに相当する電流で3.0Vまで定電流充電した後、0.2Cの定電流で1.0Vまで放電するのを3サイクル繰り返った。その後、0.2Cに相当する電流で3.0Vまで定電流充電した後、10Cの定電流で1.0Vまで放電を行った。表にはその際の放電容量値を記載する。
FECは、フルオロエチレンカーボネートを表す。
DOLは、1,3-ジオキソランを表す。
Claims (6)
- 単体硫黄、多硫化リチウム(Li2Sn:1<n<8)、及び有機硫黄化合物からなる群から選択される少なくとも一つを含む硫黄系電極活物質を含有する正極、リチウムイオンを吸蔵放出する材料を含む負極を有するリチウム硫黄二次電池に使用する電解液であって、
前記電解液は、非水電解質及び溶媒を含有するものであり、
前記溶媒は、10~100重量%の割合でビニレンカーボネートを含有するものであることを特徴とする電解液。 - 前記溶媒は、さらに、下記一般式(1)で表されるフッ素化カーボネート及び/又は一般式(2)で表されるエーテルを含有する請求項1記載の電解液。
R2-(OCHR3CH2)x-OR3 (2)
(式中、R2及びR3は、それぞれ独立して、炭素数1~9のフッ素置換されていてもよいアルキル基、ハロゲン原子で置換されていてもよいフェニル基、及びハロゲン原子で置換されていてもよいシクロヘキシル基から成る群から選択され、但しこれらは共に環を形成してもよく、R3は、それぞれ独立して、H又はCH3を表し、xは0~10を表す。) - 上記一般式(1)で表されるフッ素化カーボネートは、フルオロエチレンカーボネートである請求項2記載の電解液。
- 非水電解質は、LiPF6、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)及びリチウムビス(フルオロスルホニル)イミド (LiFSI)からなる群より選択される少なくとも1の化合物を含む請求項1,2又は3記載の電解液。
- 単体硫黄、多硫化リチウム(Li2Sn:1<n<8)、及び有機硫黄化合物からなる群から選択される少なくとも一つを含む硫黄系電極活物質を含有する正極、リチウムイオンを吸蔵放出する材料を含む負極を有するリチウム硫黄二次電池であって、請求項1,2,3又は4に記載した電解液を使用するものであることを特徴とする単体硫黄、多硫化リチウム(Li2Sn:1<n<8)、及び有機硫黄化合物からなる群から選択される少なくとも一つを含む硫黄系電極活物質を含有する正極、リチウムイオンを吸蔵放出する材料を含む負極を有するリチウム硫黄二次電池。
- 請求項5記載のリチウム硫黄二次電池を備えることを特徴とするモジュール。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080076825.5A CN114730871A (zh) | 2019-11-05 | 2020-10-19 | 电解液、锂硫二次电池和组件 |
US17/774,277 US20220416302A1 (en) | 2019-11-05 | 2020-10-19 | Electrolytic solution, lithium sulfur secondary battery and module |
JP2021554863A JP7169604B2 (ja) | 2019-11-05 | 2020-10-19 | 電解液、リチウム硫黄二次電池及びモジュール |
KR1020227018882A KR20220107202A (ko) | 2019-11-05 | 2020-10-19 | 전해액, 리튬황 이차 전지 및 모듈 |
EP20884418.3A EP4057389A1 (en) | 2019-11-05 | 2020-10-19 | Electrolyte solution, lithium sulfur secondary battery and module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019200473 | 2019-11-05 | ||
JP2019-200473 | 2019-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021090666A1 true WO2021090666A1 (ja) | 2021-05-14 |
Family
ID=75849750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/039264 WO2021090666A1 (ja) | 2019-11-05 | 2020-10-19 | 電解液、リチウム硫黄二次電池及びモジュール |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220416302A1 (ja) |
EP (1) | EP4057389A1 (ja) |
JP (1) | JP7169604B2 (ja) |
KR (1) | KR20220107202A (ja) |
CN (1) | CN114730871A (ja) |
WO (1) | WO2021090666A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023090445A1 (ja) * | 2021-11-22 | 2023-05-25 | 学校法人 関西大学 | 非水電解質蓄電素子、機器及び非水電解質蓄電素子の製造方法 |
WO2024095796A1 (ja) | 2022-11-04 | 2024-05-10 | 学校法人 関西大学 | 電解液、リチウム硫黄二次電池及びモジュール |
WO2024154740A1 (ja) * | 2023-01-16 | 2024-07-25 | 株式会社Abri | リチウム硫黄電池用電解液及びリチウム硫黄電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116111190B (zh) * | 2023-03-01 | 2024-06-11 | 惠州亿纬锂能股份有限公司 | 一种硫电极电解液和锂硫电池 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002075447A (ja) * | 2000-07-25 | 2002-03-15 | Samsung Sdi Co Ltd | リチウムサルファ電池用電解液及びこれを含むリチウムサルファ電池 |
JP2002270233A (ja) * | 2001-03-14 | 2002-09-20 | Sony Corp | 電 池 |
JP2005108724A (ja) | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2012238448A (ja) | 2011-05-11 | 2012-12-06 | Sony Corp | 二次電池、二次電池の製造方法、二次電池用正極、二次電池用正極の製造方法、電池パック、電子機器、電動車両、電力システムおよび電力貯蔵用電源 |
JP2014503964A (ja) * | 2010-12-15 | 2014-02-13 | ダウ グローバル テクノロジーズ エルエルシー | 所定のエステルベースの溶媒を含有する電解質溶液および当該電解質溶液を含有する電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3621141A1 (en) * | 2006-04-27 | 2020-03-11 | Mitsubishi Chemical Corporation | Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery |
JP5184846B2 (ja) * | 2007-08-28 | 2013-04-17 | 株式会社東芝 | 非水電解液電池および電池パック |
CN104221203B (zh) * | 2012-03-19 | 2017-04-12 | 国立大学法人横浜国立大学 | 碱金属‑硫系二次电池 |
JP2017152262A (ja) * | 2016-02-25 | 2017-08-31 | 富山薬品工業株式会社 | リチウムイオン二次電池 |
CN105977534A (zh) | 2016-06-21 | 2016-09-28 | 上海交通大学 | 一种二次锂硫电池用功能电解液及其制备方法 |
EP3609013A4 (en) * | 2017-03-08 | 2021-03-10 | The School Corporation Kansai University | ELECTROLYTE SOLUTION FOR ALKALIMETAL-SULFUR-BASED SECONDARY BATTERY AND ALKALIMETAL-SULFUR-BASED SECONDARY BATTERY |
CN108281700A (zh) * | 2018-01-19 | 2018-07-13 | 合肥国轩高科动力能源有限公司 | 一种电解液及制备方法与使用该电解液的二次锂硫电池 |
CN110212235B (zh) * | 2019-06-12 | 2022-04-08 | 广州天赐高新材料股份有限公司 | 一种降低电池阻抗的锂二次电池电解液及其锂二次电池 |
-
2020
- 2020-10-19 JP JP2021554863A patent/JP7169604B2/ja active Active
- 2020-10-19 EP EP20884418.3A patent/EP4057389A1/en active Pending
- 2020-10-19 KR KR1020227018882A patent/KR20220107202A/ko unknown
- 2020-10-19 US US17/774,277 patent/US20220416302A1/en active Pending
- 2020-10-19 WO PCT/JP2020/039264 patent/WO2021090666A1/ja unknown
- 2020-10-19 CN CN202080076825.5A patent/CN114730871A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002075447A (ja) * | 2000-07-25 | 2002-03-15 | Samsung Sdi Co Ltd | リチウムサルファ電池用電解液及びこれを含むリチウムサルファ電池 |
JP2002270233A (ja) * | 2001-03-14 | 2002-09-20 | Sony Corp | 電 池 |
JP2005108724A (ja) | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2014503964A (ja) * | 2010-12-15 | 2014-02-13 | ダウ グローバル テクノロジーズ エルエルシー | 所定のエステルベースの溶媒を含有する電解質溶液および当該電解質溶液を含有する電池 |
JP2012238448A (ja) | 2011-05-11 | 2012-12-06 | Sony Corp | 二次電池、二次電池の製造方法、二次電池用正極、二次電池用正極の製造方法、電池パック、電子機器、電動車両、電力システムおよび電力貯蔵用電源 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023090445A1 (ja) * | 2021-11-22 | 2023-05-25 | 学校法人 関西大学 | 非水電解質蓄電素子、機器及び非水電解質蓄電素子の製造方法 |
WO2024095796A1 (ja) | 2022-11-04 | 2024-05-10 | 学校法人 関西大学 | 電解液、リチウム硫黄二次電池及びモジュール |
WO2024154740A1 (ja) * | 2023-01-16 | 2024-07-25 | 株式会社Abri | リチウム硫黄電池用電解液及びリチウム硫黄電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021090666A1 (ja) | 2021-05-14 |
EP4057389A1 (en) | 2022-09-14 |
US20220416302A1 (en) | 2022-12-29 |
KR20220107202A (ko) | 2022-08-02 |
JP7169604B2 (ja) | 2022-11-11 |
CN114730871A (zh) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101699140B1 (ko) | 알칼리 금속-황계 이차 전지 | |
JP7169604B2 (ja) | 電解液、リチウム硫黄二次電池及びモジュール | |
JP6004274B2 (ja) | アルカリ金属−硫黄系二次電池 | |
JP6281808B2 (ja) | 二次電池 | |
JP6004275B2 (ja) | アルカリ金属−硫黄系二次電池 | |
JP5892490B2 (ja) | 硫黄系二次電池 | |
WO2015183597A1 (en) | Lithium battery electrolyte solution containing ethyl (2,2,3,3-tetrafluoropropyl) carbonate | |
JP6004276B2 (ja) | アルカリ金属−硫黄系二次電池 | |
JP2016541092A (ja) | バッテリ用の電解質用の難燃剤 | |
WO2015183598A1 (en) | Lithium battery electrolyte solution containing (2,2-difluoroethyl) ethyl carbonate | |
JP2021077439A (ja) | リチウムイオン二次電池 | |
CN104659417B (zh) | 锂离子电池用高电压电解液 | |
CN113906589B (zh) | 电解液、锂-硫二次电池和组件 | |
WO2022270561A1 (ja) | 非水電解液、非水ナトリウムイオン電池、非水カリウムイオン電池、非水ナトリウムイオン電池の製造方法、及び非水カリウムイオン電池の製造方法 | |
JP2015043298A (ja) | 非水電解液及び当該非水電解液を用いたリチウムイオン二次電池 | |
JP7492714B2 (ja) | 電解液、リチウム硫黄二次電池及びモジュール | |
JP2023504467A (ja) | フッ素化非環状カーボネートとフッ素化環状カーボネートとを有する電解質組成物 | |
TW202435484A (zh) | 電解液、鋰硫二次電池及模組 | |
JP2024139011A (ja) | 非水電解質二次電池用負極および非水電解質二次電池 | |
KR20240086328A (ko) | 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지 | |
WO2015183599A1 (en) | Lithium battery electrolyte solution containing methyl (2,2,3,3,-tetrafluoropropyl) carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20884418 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021554863 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227018882 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020884418 Country of ref document: EP Effective date: 20220607 |