WO2020217816A1 - コンタクトプローブ - Google Patents

コンタクトプローブ Download PDF

Info

Publication number
WO2020217816A1
WO2020217816A1 PCT/JP2020/012953 JP2020012953W WO2020217816A1 WO 2020217816 A1 WO2020217816 A1 WO 2020217816A1 JP 2020012953 W JP2020012953 W JP 2020012953W WO 2020217816 A1 WO2020217816 A1 WO 2020217816A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
contact
contact probe
protruding
dimple
Prior art date
Application number
PCT/JP2020/012953
Other languages
English (en)
French (fr)
Inventor
佐藤 賢一
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Priority to CN202080030449.6A priority Critical patent/CN113728238A/zh
Priority to JP2021515886A priority patent/JP7482115B2/ja
Priority to US17/604,492 priority patent/US11959940B2/en
Publication of WO2020217816A1 publication Critical patent/WO2020217816A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion

Definitions

  • the present invention relates to a contact probe.
  • a contact probe and a socket that supports it are used for electrical contact between the semiconductor package to be inspected and the inspection device.
  • a plurality of contact probes corresponding to terminals provided in the semiconductor package are supported in the socket. When the socket is brought close to the semiconductor package to be inspected, the tip of the contact probe comes into contact with the terminal on the semiconductor package side and is electrically connected.
  • Patent Document 1 discloses a technique relating to a socket capable of narrowing the support interval of a contact probe.
  • Patent Document 2 discloses a contact probe capable of suppressing the risk of reducing the strength of the plunger and the difficulty of tube processing.
  • Some of the terminals of the semiconductor package to be inspected have a recess as an indicator for image inspection in the mounting process.
  • the shape of the recess can be variously set by the manufacturer of the semiconductor package.
  • One of the terminals of the semiconductor package is a terminal portion 81 with dimples as shown in FIG.
  • the terminal portion 81 with dimples has a quadrilateral concave portion called a dimple 82 at the protruding corner of the terminal.
  • Such a terminal portion 81 with dimples is used in, for example, a QFN (Quad Flat Non-leaded package) for in-vehicle devices.
  • QFN Quad Flat Non-leaded package
  • the inspection is carried out so that the tip is brought into contact with the flat portion (flat portion around the dimple 82) of the terminal portion 81 with dimples.
  • the tip of the tip portion 11J may enter the dimple 82 due to an error or variation in the positional relationship with the semiconductor package transported / installed for inspection. ..
  • the inside of the dimple 82 is in a dust-free and clean state, even if the tip of the tip 11J comes into contact with the inner surface of the dimple 82, or the inclined portion of the tip 11J comes into contact with the periphery of the dimple 82.
  • the continuity between the tip portion 11J and the dimple-equipped terminal portion 81 can be ensured.
  • the inside of the dimple 82 is not always in a dust-free and clean state.
  • An example of an object of the present invention is to provide a contact probe technique suitable for inspecting a semiconductor package having a recess formed in a terminal portion.
  • One aspect of the present invention is a contact probe that can be used for inspecting a semiconductor package having a recess formed in a terminal portion, and includes a plunger having a tip portion that contacts the terminal portion, and the tip portion is the tip portion.
  • a contact probe having a protruding portion protruding toward a terminal portion and a shoulder portion having a protruding height toward the terminal portion lower than that of the protruding portion.
  • the protruding portion enters the recess, while the shoulder portion contacts the outer peripheral portion of the recess of the terminal portion (the flat surface around the recess of the terminal portion). .. Therefore, even if foreign matter such as dust or cutting powder remains in the concave portion and the foreign matter intervenes between the protruding portion and the inside of the concave portion, the shoulder portion comes into contact with the terminal portion to make contact. The continuity (electrical connection) between the probe and the terminal is ensured, and accurate inspection is possible. Further, according to this aspect, since the shoulder portion is less likely to come into contact with the molding material around the terminal portion, the life of the contact probe can be extended. It is possible to realize a contact probe suitable for inspection of a semiconductor package having a recess formed in a terminal portion.
  • the protruding portion contacts to ensure the continuity between the contact probe and the terminal portion, so that the contact probe is still accurate. Can be inspected.
  • FIG. 1 is a diagram showing a state in which the tip portion of the first embodiment is in contact with the terminal portion with dimples in a positional relationship in which the protruding portion enters the recess (No. 1).
  • FIG. 2 is a diagram showing a state in which the tip portion of the first embodiment is in contact with the terminal portion with dimples in a positional relationship in which the protruding portion enters the recess (No. 2).
  • FIG. 1 is a diagram showing a state in which the tip portion of the first embodiment is in contact with the terminal portion with dimples in a positional relationship in which the protruding portion enters the recess (No. 2).
  • FIG. 1 is a diagram showing a state in which the tip portion of the first embodiment is in contact with the terminal portion with dimples in a positional relationship in which the protruding portion is detached from the recess (No. 1).
  • FIG. 2 is a diagram showing a state in which the tip portion of the first embodiment is in contact with the terminal portion with dimples in a positional relationship in which the protruding portion is detached from the recess (No. 2).
  • the perspective view which shows the state of the Kelvin measurement using the contact probe which has the tip part of 1st Embodiment.
  • An enlarged perspective view of the tip of the contact probe of the second embodiment An enlarged perspective view of the tip of the contact probe of the second embodiment.
  • FIG. 1 It is a figure which shows the state which brought in contact with the terminal part with dimples of 2nd Embodiment by the positional relationship that the tip part enters into a recess.
  • FIG. 2 is an enlarged perspective view of the tip of a conventional contact probe.
  • the enlarged drawing of the tip of the contact probe shows three orthogonal axes to indicate common directions in each drawing.
  • the Z-axis of the three orthogonal axes indicates a direction parallel to the axis (longitudinal direction) of the contact probe, and the positive direction of the Z-axis is the direction from the contact probe to the semiconductor package.
  • the X-axis positive direction will be described as the forward direction, the X-axis negative direction as the rear direction, the Y-axis positive direction as the right direction, and the Y-axis negative direction as the left direction.
  • FIG. 1 is a perspective view showing a state of inspection of the contact probe and the semiconductor package of the first embodiment.
  • the contact probe 10 is designed to be used for inspection of the semiconductor package 80.
  • the semiconductor package 80 is a non-lead type semiconductor package having a terminal portion 81 with dimples as a connection terminal soldered to a mounting board.
  • the shaded portion around the dimple-attached terminal portion 81 is a molding material.
  • FIG. 2 is an enlarged perspective view of the tip portion 11A of the contact probe 10 (corresponding to the lower end portion of the contact probe 10 drawn in FIG. 1). More specifically, the tip portion 11A corresponds to the tip portion of the plunger 10a (see FIG. 1) included in the contact probe 10.
  • FIG. 3 is a front view (plane facing the X-axis positive direction) of the tip portion 11A of the contact probe 10 viewed from a direction (X-axis positive direction) orthogonal to the probe axis Sp (longitudinal axis of the contact probe 10). It is a figure which shows.
  • the tip 11A of the contact probe 10 has 1) a protrusion 12 that protrudes in the tip direction (normal direction of the Z axis) and is located away from the center of the probe in front view of the tip, and 2) a protrusion height in the tip direction. It has a shoulder portion 13 lower than the portion 12.
  • the “tip front view” here means the line-of-sight direction when the tip portion 11A is viewed from the axial direction (Z-axis positive direction) of the probe shaft Sp.
  • a part of the side surface of the cylinder, which is the basic shape of the plunger 10a, is left as it is on the front surface 14F (the surface facing the X-axis positive direction) and the back surface 14B (the surface facing the X-axis negative direction) of the tip portion 11A. It is composed of. Planes 14R and 14L are formed on the left and right side surfaces of the tip portion 11A (planes facing the Y-axis positive direction and the Y-axis negative direction), respectively.
  • the tip portion 11A is formed with an inclined surface 15 from the back surface 14B to the front surface 14F of the tip portion so that the cross-sectional area of the probe cross section S (cross section whose normal line faces the Z-axis direction) decreases toward the tip end. ing.
  • the protruding portion 12 and the shoulder portion 13 are formed on the inclined upper portion of the inclined surface 15, and the positions thereof are located closer to the X-axis positive direction from the probe center (the position of the probe axis Sp) in the front view of the tip.
  • the tip of the protrusion 12 has a flat shape whose normal line is parallel to the probe shaft Sp.
  • the tip of the shoulder portion 13 also has a flat shape in which the normal line is parallel to the probe shaft Sp, similarly to the protruding portion 12.
  • the shoulder portions 13 are on both sides of the protruding portion 12 in the circumferential direction. It can be said that the tip portion 11A has a convex stepped shape in which shoulder portions 13 are formed on both sides of one protruding portion 12. There are a plurality of shoulder portions 13, and they are located around the protruding portions 12. Further, when the tip portion 11A is viewed from the left (Y-axis negative direction) or right (Y-axis positive direction) side surface, it has a one-sided wedge shape.
  • FIG. 4 and 5 are views showing a state in which the tip portion 11A is in contact with the dimple-attached terminal portion 81 in a positional relationship in which the protruding portion 12 enters the dimple 82 (recess) of the dimple-attached terminal portion 81.
  • FIG. 4 is a view seen from diagonally behind the tip portion 11A
  • FIG. 5 is a view seen from the package outer peripheral direction (back side of the tip portion 11A) of the terminal portion 81 with dimples.
  • the tip portion 11A When the protruding portion 12 is moved toward the dimple 82 of the terminal portion 81 with dimples, the tip portion 11A has a shoulder portion 13 with a dimple terminal portion before the tip of the protruding portion 12 reaches the bottom of the dimple 82. It is configured to be in contact with the periphery of the dimple 82 of the 81 (the flat portion of the terminal portion 81 with dimples and the flat portion around the dimple 82).
  • the left-right width (width in the Y-axis direction) of the protruding portion 12 is the left-right width of the dimple 82 of the terminal portion 81 with dimples of the semiconductor package 80 to be inspected (assuming that the dimple 82 is a quadrangular concave portion). It is set smaller than the diameter of).
  • the convex dimension of the protruding portion 12 (height in the Z-axis direction from the shoulder portion 13: height of the step) is the maximum depth (dimple) from the flat surface around the dimple 82 of the terminal portion 81 with the dimple to the bottom surface of the dimple 82. If 82 is a quadrilateral recess, it is set smaller than the radius of the sphere). That is, the difference between the protruding height of the protruding end of the protruding portion 12 and the protruding height of the shoulder portion 13 is set to be smaller than the maximum depth of the dimples 82.
  • the contact probe 10 approaches the terminal portion 81 with dimples in a positional relationship in which the protruding portion 12 enters the dimple 82, the protruding portion 12 enters the dimple 82 and the shoulder portion 13 is flat around the dimple 82. It will come into contact with the surface. Therefore, even if foreign matter remains in the dimple 82, the shoulder portion 13 comes into direct contact with the flat surface of the terminal portion 81 with dimples around the dimple 82 to ensure conduction, regardless of the presence or absence of foreign matter in the dimple 82.
  • the semiconductor package 80 can be inspected accurately.
  • the shape of the dimple 82 of the present embodiment is a substantially quarter sphere (approximately 1/4 sphere) opened in two directions, the side where the contact probe 10 contacts and the outer peripheral side of the four sides of the package. Therefore, when the projecting portion 12 enters the dimple 82, the foreign matter remaining in the dimple 82 can be pushed out from the dimple 82.
  • FIG. 6 and 7 are views showing a state in which the tip portion 11A is in contact with the dimple-attached terminal portion 81 in a positional relationship in which the protruding portion 12 is detached from the dimple 82.
  • FIG. 6 is a view seen from diagonally behind the tip portion 11A
  • FIG. 7 is a view seen from the package outer peripheral direction (back side of the tip portion 11A) of the terminal portion 81 with dimples.
  • the tip portion 11A when the protruding portion 12 is moved toward the dimple 82, the tip portion 11A has the shoulder portion 13 dimples of the terminal portion 11A before the tip of the protruding portion 12 reaches the bottom of the dimple 82. It is configured to be in contact with the periphery of 82. If the protruding portion 12 is displaced from the dimple 82, the protruding portion 12 comes into direct contact with the flat surface around the dimple 82 to conduct conduction.
  • the semiconductor package 80 that is transported / installed for inspection is not always installed at the exact same position, and errors and variations occur in the installation position.
  • the tip portion 11A comes into contact with the dimple-attached terminal portion 81 to perform the test because the protruding portion 12 is displaced from the dimple 82.
  • the protruding portion 12 comes into direct contact with the flat surface around the dimple 82 to ensure reliable conduction.
  • the left or right shoulder portion 13 protrudes from the terminal portion 81 with dimples, but the protruding height of the shoulder portion 13 is lower than the protruding height of the protruding portion 12, so that the molded portion (terminal with dimples)
  • the portion of the molding material around the portion 81) is not touched.
  • the material forming the mold portion often includes a glass fiber material.
  • the contact surface with the contact probe may be cut together with the mold portion and the terminal portion 81 with dimples to form a flat surface.
  • the shoulder portion 13 when the shoulder portion 13 comes into contact with the surface of the mold portion, the shoulder portion 13 wears as if it were in contact with sandpaper, and the shoulder portion 13 comes into contact with the flat portion (flat surface) of the terminal portion 81 with dimples. More wear will occur than at times. However, in the present embodiment, since the shoulder portion 13 is maintained in a state separated from the mold portion, such wear does not occur.
  • FIG. 8 is a perspective view showing a state of Kelvin measurement using a contact probe having a tip portion 11A.
  • the first contact probe 10a and the second contact probe 10b are brought into contact with one dimple-equipped terminal portion 81.
  • the protruding portion 12 and the shoulder portion 13 are formed at positions offset from the center of the probe in front view of the tip. Therefore, if the first contact probe 10a and the second contact probe 10b are in a relative posture in which the protruding portions 12 are brought close to each other (in other words, a relative posture in which the front surfaces 14F of each other are opposed to each other back to back) is extremely small.
  • the Kelvin measurement can be performed by simultaneously contacting the terminal portion 81 with dimples with two probes.
  • FIG. 9 is an enlarged perspective view of the tip portion 11B of the contact probe 10 of the second embodiment.
  • FIG. 10 is a front view (X-axis positive direction) of the tip portion 11B of the contact probe 10 of the second embodiment as viewed from a direction (X-axis positive direction) orthogonal to the probe axis Sp (longitudinal axis of the contact probe 10). It is a figure which shows the surface facing a direction.
  • the tip portion 11B also has a shoulder portion 13B with a dimple terminal before the tip of the protrusion portion 12 reaches the bottom of the dimple 82 when the protrusion portion 12 is moved toward the dimple 82. It is configured to be in contact with the periphery of the dimple 82 of the portion 81.
  • the tip portion 11B has a shape in which the cross-sectional area of the probe cross section S decreases toward the tip.
  • the tip of the protrusion 12 has a flat shape whose normal line is parallel to the probe shaft Sp.
  • the tip of the shoulder portion 13B of the tip portion 11B has an inclined shape.
  • the shoulder portion 13B has an inclination direction and an inclination angle parallel to the inclined surface 15, and the intersection with the front surface 14F, that is, the tip thereof has an inclined shape.
  • the maximum value of the difference between the protruding height of the protruding end of the protruding portion 12 and the protruding height of the shoulder portion 13B is set to be smaller than the maximum depth of the dimples 82.
  • the shoulder portion 13B may be inclined in a direction opposite to the inclination direction of the inclined surface 15.
  • FIG. 11 is a view showing a state in which the tip portion 11B is in contact with the dimple-attached terminal portion 81 in a positional relationship in which the protrusion portion 12 enters the dimple 82, and is a package outer peripheral direction (tip portion) of the dimple-attached terminal portion 81. It is a view seen from the back side of 11B).
  • the protruding portion 12 is inside the dimple 82 and is not in contact with the inner surface of the dimple 82, but the shoulder portion 13B is in point contact with the outer edge portion of the dimple 82 to ensure continuity. Therefore, the same effect as that of the first embodiment can be obtained in the second embodiment.
  • the shoulder portion 13 makes surface contact or line contact with the terminal portion 81 with dimples, whereas in the second embodiment, the shoulder portion 13B makes point contact, so that it is possible to pinch a foreign substance as compared with the first embodiment. Low sex. Therefore, in the second embodiment, there is a possibility that more accurate test results can be obtained than in the first embodiment. Similar to the first embodiment, the second embodiment can carry out the Kelvin measurement.
  • FIG. 12 is an enlarged perspective view of the tip portion 11C of the contact probe 10 of the third embodiment.
  • FIG. 13 is a front view (plane facing the X-axis positive direction) of the tip portion 11C of the contact probe 10 as viewed from a direction (X-axis positive direction) orthogonal to the probe axis Sp (longitudinal axis of the contact probe 10). It is a figure which shows.
  • the tip portion 11C also has a shoulder portion 13C before the tip of the protrusion portion 12C reaches the bottom of the dimple 82 when the protrusion portion 12C is moved toward the dimple 82. Is configured to be in contact with the periphery of the dimple 82 of the terminal portion 81 with dimples. That is, the maximum value of the difference between the protruding height of the protruding end of the protruding portion 12C and the protruding height of the shoulder portion 13C is set to be smaller than the maximum depth of the dimples 82.
  • the tip portion 11C has a shape in which the cross-sectional area of the cross section of the probe decreases toward the tip.
  • the protruding portion 12C has a chevron-shaped tip when viewed from the front in the positive direction of the X-axis, and the tip thereof forms one ridge line in the front-rear direction (direction along the X-axis direction).
  • the shoulder portion 13C also has a chevron-shaped tip when viewed from the front, and the tip thereof forms a single ridgeline in the front-rear direction.
  • FIG. 14 is a view showing a state in which the tip portion 11C is in contact with the dimple-attached terminal portion 81 in a positional relationship in which the protrusion portion 12C enters the dimple 82, and is a package outer peripheral direction (tip portion) of the dimple-attached terminal portion 81. It is a view seen from the back side of 11C).
  • the protruding portion 12C enters the dimple 82 and is not in contact with the inner surface of the dimple 82, but the shoulder portion 13C makes point contact with the outer edge portion (flat surface around the dimple 82) of the dimple 82 to ensure continuity. ing. Therefore, the same effect as that of the first embodiment can be obtained in the third embodiment. Further, also in the third embodiment, since the shoulder portion 13C makes point contact with the dimple-attached terminal portion 81 as in the second embodiment, the possibility of pinching foreign matter is lower than in the first embodiment. Therefore, in the third embodiment, there is a possibility that a correct test result can be obtained as compared with the first embodiment. Further, the Kelvin measurement can be carried out in the third embodiment as well as in the first embodiment and the second embodiment.
  • the area of the protruding portion 12D may be further smaller than that of the protruding portion 12 of the first embodiment, as in the tip portion 11D shown in FIG.
  • the flat surface may be made smaller so as to disappear, and the tip of the protruding portion 12D may have an inclined shape.
  • the protrusion portion 12E is located in the center portion in the left-right direction (center portion in the Y-axis direction) in the front-rear direction (X-axis direction).
  • a V-shaped notch 125 may be provided along the line.
  • the left and right protruding end faces 121 sandwiching the cutout portion 125 are end faces obtained by removing the notch portion 125 from the protruding portion 12 of the first embodiment. Since the tip area when the protrusion 12E enters the dimple 82 (recess) is the area of the protruding end surface 121, it is smaller than the end surface of the protrusion 12 of the first embodiment.
  • the volume of the protruding portion 12E is smaller than that of the protruding portion 12 of the first embodiment by the amount of the cutout portion 125. Therefore, when the foreign matter remains in the dimple 82, the protruding portion 12E may not interfere even if the protruding portion 12 of the first embodiment interferes depending on the size and amount of the foreign matter.
  • the protruding portion 12E is less susceptible to foreign matter than the protruding portion 12 of the first embodiment.
  • the contact area becomes the area of the tip surface 121. Therefore, even in this case, the protrusion portion 12E is first implemented. Compared to the protruding portion 12 of the form, the possibility of pinching foreign matter is low.
  • the tip portion 11B of the second embodiment in the left-right direction central portion (Y-axis direction central portion) of the protruding portion 12F, in the front-rear direction (X).
  • a V-shaped notch 125 along the axial direction may be provided.
  • the left and right protruding end faces 121 sandwiching the cutout portion 125 are end faces obtained by removing the notch portion 125 from the protruding portion 12 of the second embodiment.
  • the shape of the notch portion 125 is not limited to the V shape, but may be an arc shape in cross section.
  • the shape of the notch portion 125 is suitable as long as it is provided in a groove shape over the length of the protrusions 12E and 12F in the front-rear direction (X-axis direction).
  • the tip surface 121 may be a flat surface, and the width in the Y-axis direction is extremely increased according to the size of the notch portion 125. It may have a small ridge-like shape.
  • the notch portion 125 may be provided in the protruding portion 12D of FIG.
  • the ridgeline of the tip of the protrusion 12H is shortened to a point, and the protrusion 12H is formed into a cone shape. You may.
  • the lengths of the two tip surfaces 121 (ridge line portions) of the protrusions of the protrusions 12E in the X-axis direction are shortened, and the respective tip surfaces 121 are shown in FIG. It may have a cone shape like the protruding portion 12H of the tip portion 11H shown in 18. A point is obtained when the width of the tip surface 121 in the Y-axis direction and the length in the X-axis direction are reduced to the utmost limit.
  • the lengths of the two tip surfaces 121 (ridge line portions) of the protrusions of the protrusion 12F in the X-axis direction are shortened, and the respective tip surfaces 121 are shown in FIG. It may have a conical shape like the protruding portion 12H of the tip portion 11H shown.
  • a point is obtained when the width of the tip surface 121 in the Y-axis direction and the length in the X-axis direction are reduced to the utmost limit.
  • the protruding portion 12 may be provided on the extension line of the probe shaft Sp as in the tip portion 11L in FIG. 19 and the tip portion 11M in FIG.
  • the protruding portion 12 has a conical shape such that the apex is located on the extension line of the probe shaft Sp.
  • the protruding portion 12 has a truncated cone shape in which an extension line of the probe shaft Sp is a rotation axis.
  • the aspect of the present disclosure is a contact probe that can be used for inspecting a semiconductor package having a recess formed in a terminal portion, and includes a plunger having a tip portion that contacts the terminal portion, and the tip portion is the terminal portion.
  • a contact probe having a protruding portion protruding toward a portion and a shoulder portion having a protruding height toward the terminal portion lower than that of the protruding portion.
  • the protruding portion enters the recess, while the shoulder portion contacts the outer peripheral portion of the recess of the terminal portion (the flat surface around the recess of the terminal portion). .. Therefore, even if foreign matter such as dust or cutting powder remains in the concave portion and the foreign matter intervenes between the protruding portion and the inside of the concave portion, the shoulder portion comes into contact with the terminal portion to conduct electricity. (Electrical connection) is secured and accurate inspection is possible. Further, according to this aspect, since the shoulder portion is less likely to come into contact with the molding material around the terminal portion, the life of the contact probe can be extended. It is possible to realize a contact probe suitable for inspection of a semiconductor package having a recess formed in a terminal portion.
  • the contact probe of this embodiment is diverted to the inspection of a semiconductor package having a flat terminal portion having no recess, the protruding portion contacts to ensure continuity, so that an accurate inspection can still be performed.
  • the difference between the protruding height of the protruding end of the protruding portion and the protruding height of the shoulder portion may be smaller than the depth of the recess.
  • the tip portion may have a shape in which the cross-sectional area of the cross section of the probe decreases toward the tip.
  • the tip of the contact probe can be shaped so that the cross-sectional area becomes smaller toward the tip. If the number of protruding portions at the tip is one, the shape is tapered as a whole. Since the area in which the contact probe contacts the terminal portion is small, the contact pressure per unit area can be increased to ensure reliable contact. Further, by providing the protruding portion offset from the center of the probe in the front view of the tip, it becomes easy to carry out so-called Kelvin measurement in which the protruding portions of the two contact probes are brought into contact with one terminal portion for measurement.
  • the shoulders may be located around the protruding portion.
  • the protruding portion may have a flat tip.
  • the protruding portion easily makes surface contact or line contact with the terminal portion, and it becomes easy to secure continuity.
  • the protruding portion may have a chevron-shaped tip.
  • the protruding portion may have a cone-shaped tip.
  • the protruding portion may have a notch portion.
  • the tip of the shoulder may be flat.
  • the contact between the shoulder portion and the outer peripheral portion of the concave portion of the terminal portion tends to be a surface contact or a line contact, and it becomes easy to secure continuity.
  • the tip of the shoulder may be inclined.
  • the tip of the shoulder may have a chevron shape.
  • the contact between the shoulder portion and the outer peripheral portion of the concave portion of the terminal portion is likely to be a point contact, and the possibility of foreign matter intervening at the contact position can be reduced as compared with the case of surface contact or line contact.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

端子部(81)に凹部が形成された半導体パッケージ(80)の検査に利用可能なコンタクトプローブ(10)は、前記端子部(81)に接触する先端部(11A)を有するプランジャー(10a)を備える。前記先端部(11A)は、前記端子部(81)に向かって突出する突出部(12)と、前記端子部(81)への突出高さが前記突出部(12)より低い肩部(13)と、を有する。

Description

コンタクトプローブ
 本発明は、コンタクトプローブに関する。
 検査対象とされる半導体パッケージと検査装置との電気的接触には、コンタクトプローブとそれを支持するソケットとが用いられる。ソケットには、半導体パッケージに設けられた端子に対応する複数のコンタクトプローブが支持されている。ソケットを検査対象の半導体パッケージに近づけると、コンタクトプローブの先端が、半導体パッケージ側の端子に接触し、電気的に接続される。
 例えば、特許文献1には、コンタクトプローブの支持間隔を狭くすることができるソケットに関する技術が開示されている。特許文献2には、プランジャーの強度低下リスクやチューブ加工の困難性を抑制することが可能なコンタクトプローブについて開示されている。
特開2018-071991号公報 特開2018-194411号公報
 検査対象となる半導体パッケージの端子の中には、実装工程における画像検査用のインジケータとして凹部を有するものがある。凹部の形状は、半導体パッケージのメーカーにより様々に設定され得る。半導体パッケージの端子の1つに、図21に示すようなディンプル付端子部81がある。ディンプル付端子部81は、端子の出隅部にディンプル82と呼ばれる四半球形の凹部を有する。こうしたディンプル付端子部81は、例えば、車載器向けのQFN(Quad Flat Non-leaded package)などで用いられている。
 従来、ディンプル付端子部81を有する半導体パッケージの検査では、図22に示すような楔形の先端部11J(或いは先端が錐型)のプランジャーを有するコンタクトプローブ、が用いられてきた。
 楔形の先端部11Jを有するコンタクトプローブを使用して検査する場合、先端をディンプル付端子部81の平坦部(ディンプル82の周囲のフラットな部分)をピンポイントに狙って接触させるように検査を実施する必要がある。しかし、検査のために搬送/設置される半導体パッケージとの位置関係の誤差やバラツキ等に起因して、図23に示すように、先端部11Jの突端がディンプル82の中に入る可能性がある。この場合でも、ディンプル82の内部が無塵の清潔な状態であれば、ディンプル82の内面に先端部11Jの突端が接触しても、或いは先端部11Jの傾斜部がディンプル82の周囲と接触しても、先端部11Jとディンプル付端子部81との導通を確保できる。
 しかし、ディンプル82の内部は、必ずしも無塵である清潔な状態とは限らない。半導体パッケージの生産工程には、端子が露出する面をモールド材ごとカットして面を揃える工程がある。カット後に洗浄が行われるが、ディンプル82のサイズが極小のため、ときにディンプル82内にカット時の切削粉が残っていることがある。ディンプル82内部に切削紛が残った状態で、先端部11Jの突端がディンプル82内に入ると、切削粉で正常な導通が阻害され、正確な検査結果が得られないことがある。
 そこで、図24に示すように、側面視すると楔型であるがその突端がディンプル82を跨ぐほどの幅を有するフラット面のみで形成された先端部11Kを有するプランジャーを用いることが考えられる。この場合、先端部11Kの突端がディンプル82の内部に入らず、ディンプル82を跨ぐようになるから、ディンプル82内の状態にかかわらず先端部11Kとディンプル付端子部81との導通が得られて検査ができるかのように考えられる。ところが、この場合には問題がある。
 先端部11Kと検査のために搬送/設置される半導体パッケージとの位置関係には、誤差やバラツキが生じる。先端部11Kとディンプル付端子部81との接触位置にズレが生じると、先端部11Kのフラット面の一部が、ディンプル付端子部81の外に外れてディンプル付端子部81の周囲のモールド材と接触することがある。モールド材には、ガラス繊維が含まれていることが多い。先端部11Kがモールド材に接触する場合、プランジャーの先端部11Kがディンプル付端子部81に接する場合よりも摩耗が多く、コンタクトプローブの寿命を短くしてしまう。また、モールド材へ接触していることにより正確な検査結果が得られないことがある。
 本発明の目的の一例は、端子部に凹部が形成された半導体パッケージの検査に適したコンタクトプローブの技術を提供することである。
 本発明の一態様は、端子部に凹部が形成された半導体パッケージの検査に利用可能なコンタクトプローブであって、前記端子部に接触する先端部を有するプランジャーを備え、前記先端部は、前記端子部に向かって突出する突出部と、前記端子部への突出高さが前記突出部より低い肩部と、を有する、コンタクトプローブである。
 本態様によれば、コンタクトプローブが端子部に接触しようとする場合、突出部が凹部内に入る一方で、肩部が端子部の凹部外周部(端子部の凹部周辺のフラット面)と接触する。よって、凹部内に仮に塵や切削紛などの異物が残っており、突出部と凹部内との間に異物が介在するような状況であっても、肩部が端子部に接触することによりコンタクトプローブと端子部との導通(電気的な接続)が確保され、正確な検査ができる。さらに、本態様によれば、肩部が端子部の周囲のモールド材と接触しにくくなるため、コンタクトプローブの寿命を長くできる。端子部に凹部が形成された半導体パッケージの検査に適したコンタクトプローブを実現することができる。
 また、本態様のコンタクトプローブは、凹部が無い平坦な端子部を有する半導体パッケージの検査に流用しても、突出部が接触してコンタクトプローブと端子部との導通を確保するので、やはり正確な検査ができる。
第1実施形態のコンタクトプローブと半導体パッケージとの検査の様子を示す斜視図。 第1実施形態のコンタクトプローブの先端部を拡大した斜視図。 第1実施形態のコンタクトプローブの先端部をプローブ軸と直交する方向から見た前面図。 突出部が凹部内に入る位置関係で、第1実施形態の先端部をディンプル付端子部に接触させた状態を示す図(その1)。 突出部が凹部内に入る位置関係で、第1実施形態の先端部をディンプル付端子部に接触させた状態を示す図(その2)。 突出部が凹部から外れる位置関係で、第1実施形態の先端部をディンプル付端子部に接触させた状態を示す図(その1)。 突出部が凹部から外れる位置関係で、第1実施形態の先端部をディンプル付端子部に接触させた状態を示す図(その2)。 第1実施形態の先端部を有するコンタクトプローブを用いたケルビン測定の様子を示す斜視図。 第2実施形態のコンタクトプローブの先端部を拡大した斜視図。 第2実施形態のコンタクトプローブの先端部を、プローブ軸と直交する方向から見た前面図。 突端部が凹部内に入る位置関係で、第2実施形態の先端部をディンプル付端子部に接触させた状態を示す図。 第3実施形態のコンタクトプローブの先端部を拡大した斜視図。 第3実施形態のコンタクトプローブの先端部を、プローブ軸と直交する方向から見た前面図。 突出部が凹部内に入る位置関係で、第3実施形態の先端部をディンプル付端子部に接触させた状態を示す図。 第1実施形態のコンタクトプローブの先端部の変形例を示す図。 第1実施形態のコンタクトプローブの先端部の変形例を示す図。 第2実施形態のコンタクトプローブの先端部の変形例を示す図。 第3実施形態のコンタクトプローブの先端部の変形例を示す図。 コンタクトプローブの先端部の変形例を示す図。 コンタクトプローブの先端部の変形例を示す図。 ディンプル付端子部の例を示す斜視図。 従来のコンタクトプローブの先端部を拡大した斜視図(その1)。 従来のコンタクトプローブを、ディンプル付端子部に接触させた状態を示す図。 従来のコンタクトプローブの先端部を拡大した斜視図(その2)。
 以下、本発明の好適な実施形態の例を説明するが、本発明を適用可能な形態は以下の実施形態に限定されない。コンタクトプローブの先端部を拡大した図面には、各図において共通する方向を示すための直交三軸を示す。直交三軸のZ軸がコンタクトプローブの軸(長手方向)と平行な方向を示しており、Z軸正方向がコンタクトプローブから半導体パッケージに向かう方向である。X軸正方向を前方方向、X軸負方向を後方方向、Y軸正方向を右方向、Y軸負方向を左方向として説明する。
 〔第1実施形態〕
 図1は、第1実施形態のコンタクトプローブと半導体パッケージとの検査の様子を示す斜視図である。
 コンタクトプローブ10は、半導体パッケージ80の検査に利用可能にデザインされている。
 半導体パッケージ80は、実装基板に半田付けされる接続端子として、ディンプル付端子部81を有するノンリードタイプの半導体パッケージである。図1において、ディンプル付端子部81の周りの網掛け表示がなされた部分はモールド材である。
 図2は、コンタクトプローブ10の先端部11A(図1で描かれているコンタクトプローブ10ではその下端部が該当。)を拡大した斜視図である。より詳細には、先端部11Aは、コンタクトプローブ10が備えるプランジャー10a(図1参照)の先端部分に当たる。
 図3は、コンタクトプローブ10の先端部11Aを、プローブ軸Sp(コンタクトプローブ10の長手方向の軸)と直交する方向(X軸正方向)から見た前面図(X軸正方向を向いた面を示す図)である。
 コンタクトプローブ10の先端部11Aは、1)先端方向(Z軸正方向)に突出し、先端正面視においてプローブ中心から離れた位置にある突出部12と、2)先端方向への突出高さが突出部12より低い肩部13と、を有する。ここで言う「先端正面視」とは、図2に示す通り、先端部11Aをプローブ軸Spの軸方向(Z軸正方向)から見た視線方向という意味である。
 先端部11Aの前面14F(X軸正方向を向いた面)と、背面14B(X軸負方向を向いた面)は、プランジャー10aの基本形状である円柱の側面の一部がそのまま残されて構成されている。先端部11Aの左右側面(Y軸正方向およびY軸負方向を向いた面)には、それぞれに平面14R,平面14Lが形成されている。先端部11Aは、先端に向かってプローブ横断面S(法線がZ軸方向を向く断面)の断面積が減少するように、先端部の背面14Bから前面14Fへ向けて傾斜面15が形成されている。
 突出部12と肩部13は、傾斜面15の傾斜上部に形成されており、その位置は先端正面視においてプローブ中心(プローブ軸Spの位置)からX軸正方向に寄った位置にある。
 突出部12の突端は、法線がプローブ軸Spと平行となるフラット形状である。
 肩部13の先端も、突出部12と同様に、法線がプローブ軸Spと平行となるフラット形状である。
 先端部11Aを先端正面視すると、肩部13が突出部12を周方向に挟んだ両側にあることになる。先端部11Aは、1つの突出部12の両側に肩部13が形成された凸状の有段形状を成しているとも言える。肩部13は、複数あり、突出部12の周囲に位置している。また、先端部11Aを左(Y軸負方向)または右(Y軸正方向)の側面から見ると、片流れの楔形をしている。
 図4と図5は、突出部12がディンプル付端子部81のディンプル82(凹部)内に入る位置関係で、先端部11Aをディンプル付端子部81に接触させた状態を示す図である。具体的には、図4は、先端部11Aの斜め後ろから見た図であり、図5は、ディンプル付端子部81のパッケージ外周方向(先端部11Aの背面側)から見た図である。
 先端部11Aは、突出部12をディンプル付端子部81のディンプル82に向けて移動させた際に、突出部12の突端がディンプル82の底に到達する前に、肩部13がディンプル付端子部81のディンプル82の周囲(ディンプル付端子部81の平坦部、ディンプル82の周囲のフラットな部分)に接触する形状に構成されている。
 具体的には、突出部12の左右幅(Y軸方向の幅)は、検査対象とする半導体パッケージ80のディンプル付端子部81のディンプル82の左右幅(ディンプル82を四半球形の凹部とすると球の直径)よりも小さく設定されている。突出部12の凸寸(肩部13からのZ軸方向の高さ:段差の高さ)は、ディンプル付端子部81のディンプル82周辺のフラット面からディンプル82の底面までの最大深さ(ディンプル82を四半球形の凹部とすると球の半径)よりも小さく設定されている。すなわち、突出部12の突端の突出高さと肩部13の突出高さとの差は、ディンプル82の最大深さより小さく設定されている。
 従って、突出部12がディンプル82の中に入る位置関係で、コンタクトプローブ10がディンプル付端子部81に接近すると、突出部12がディンプル82の中に入って、肩部13がディンプル82周辺のフラット面と当接することになる。よって、ディンプル82内に異物が残っていたとしても、肩部13がディンプル82の周辺のディンプル付端子部81のフラット面と直接接触して確実に導通し、ディンプル82内の異物の有無に関わらず半導体パッケージ80の検査を正確に行うことができる。
 本実施形態のディンプル82の形状は、コンタクトプローブ10が接触する側とパッケージの四辺の外周側との2方向に開口した略四半球(略1/4球)の形状である。よって、突出部12が、ディンプル82内に進入することでディンプル82内に残っていた異物をディンプル82から押し出すことができる。
 図6と図7は、突出部12がディンプル82から外れる位置関係で、先端部11Aをディンプル付端子部81に接触させた状態を示す図である。図6は先端部11Aの斜め後ろから見た図であり、図7は、ディンプル付端子部81のパッケージ外周方向(先端部11Aの背面側)から見た図である。
 本実施形態において、先端部11Aは、突出部12をディンプル82に向けて移動させた際に、突出部12の突端がディンプル82の底に到達する前に、肩部13が端子部11Aのディンプル82の周囲に接触する形状に構成されている。もしも突出部12がディンプル82から外れる位置関係となった場合には、突出部12がディンプル82の周辺のフラット面と直接接触して導通する。検査のために搬送/設置される半導体パッケージ80は、常に正確な同じ位置に設置されるとは限らず、設置位置に誤差やバラツキが生じる。そのため、突出部12がディンプル82から外れる位置関係で、先端部11Aがディンプル付端子部81に接触して試験を行う場合が生じ得る。しかし、その場合であっても、突出部12がディンプル82周辺のフラット面と直接接触して確実な導通が図れる。
 肩部13について着目すると、左右何れかの肩部13は、ディンプル付端子部81からはみ出すが、肩部13の突出高さは、突出部12の突出高さよりも低いのでモールド部(ディンプル付端子部81の周囲のモールド材の部分)に触れることはない。モールド部を形成する材料は、ガラス繊維素材を含むことが多い。半導体パッケージ80の製造過程では、コンタクトプローブとの接触面をモールド部とディンプル付端子部81とを纏めてカットして平面を形成することがある。この場合、肩部13がモールド部の表面に接触すると、まるでサンドペーパーに接触させたかのように肩部13が摩耗し、肩部13がディンプル付端子部81の平坦部(フラット面)と接触した時よりも多く損耗が生じることになる。しかし、本実施形態では、肩部13は、モールド部から離れた状態が維持されるので、そうした損耗は生じない。
 図8は、先端部11Aを有するコンタクトプローブを用いたケルビン測定の様子を示す斜視図である。1つのディンプル付端子部81に対して、第1のコンタクトプローブ10aと、第2のコンタクトプローブ10bとを接触させる。
 前述のように、突出部12および肩部13は、先端正面視においてプローブ中心からオフセットした位置に形成されている。このため、第1のコンタクトプローブ10aと、第2のコンタクトプローブ10bとを互いの突出部12を寄せ合う相対姿勢(言い換えると互いの前面14Fを背中合わせに対向させる相対姿勢)とすれば、極小のディンプル付端子部81に、2本のプローブを同時に接触させてケルビン測定を実施できる。
 〔第2実施形態〕
 次に、第2実施形態について説明する。第1実施形態と同様の要素については、第1実施形態と同じ符号を付与し、重複する説明は省略する。
 図9は、第2実施形態のコンタクトプローブ10の先端部11Bを拡大した斜視図である。
 図10は、第2実施形態のコンタクトプローブ10の先端部11Bを、プローブ軸Sp(コンタクトプローブ10の長手方向の軸)と直交する方向(X軸正方向)から見た前面図(X軸正方向を向いた面を示す図)である。
 先端部11Bも、先端部11Aと同様に、突出部12をディンプル82に向けて移動させた際に、突出部12の突端がディンプル82の底に到達する前に、肩部13Bがディンプル付端子部81のディンプル82の周囲に接触する形状に構成されている。
 具体的には、先端部11Bは、先端に向かってプローブ横断面Sの断面積が減少する形状である。突出部12の突端は、法線がプローブ軸Spと平行となるフラット形状である。但し、先端部11Bの肩部13Bは、先端が傾斜形状である。肩部13Bは、傾斜面15と平行な傾斜方向と傾斜角を有しており、前面14Fとの交差部すなわち先端が傾斜形状となっている。突出部12の突端の突出高さと肩部13Bの突出高さとの差の最大値は、ディンプル82の最大深さより小さく設定されている。肩部13Bは、傾斜面15の傾斜方向と逆方向に傾斜していてもよい。
 図11は、突出部12がディンプル82内に入る位置関係で、先端部11Bをディンプル付端子部81に接触させた状態を示す図であって、ディンプル付端子部81のパッケージ外周方向(先端部11Bの背面側)から見た図である。
 突出部12は、ディンプル82内に入って、ディンプル82の内面とは接触していないが、肩部13Bがディンプル82の外縁部と点接触して導通を確保している。よって、第2実施形態でも、第1実施形態と同様の効果が得られる。第1実施形態では肩部13がディンプル付端子部81と面接触または線接触するのに対して、第2実施形態では肩部13Bが点接触するので、第1実施形態よりも異物を挟み込む可能性が低い。このため、第2実施形態では第1実施形態よりも正確な検査結果を得られる可能性がある。第2実施形態も第1実施形態と同様に、ケルビン測定を実施することができる。
 〔第3実施形態〕
 次に、第3実施形態について説明する。第1実施形態または第2実施形態と同様の要素については、同じ符号を付与して重複する説明は省略する。
 図12は、第3実施形態のコンタクトプローブ10の先端部11Cを拡大した斜視図である。
 図13は、コンタクトプローブ10の先端部11Cを、プローブ軸Sp(コンタクトプローブ10の長手方向の軸)と直交する方向(X軸正方向)から見た前面図(X軸正方向を向いた面を示す図)である。
 先端部11Cも、先端部11Aや先端部11Bと同様に、突出部12Cをディンプル82に向けて移動させた際に、突出部12Cの突端がディンプル82の底に到達する前に、肩部13Cがディンプル付端子部81のディンプル82の周囲に接触する形状に構成されている。すなわち、突出部12Cの突端の突出高さと肩部13Cの突出高さとの差の最大値は、ディンプル82の最大深さより小さく設定されている。
 先端部11Cは、先端に向かってプローブ横断面の断面積が減少する形状である。突出部12Cは、X軸正方向から見た前面視をすると突端が山形形状であり、その先端は前後方向(X軸方向に沿った方向)の1本の稜線を形成している。肩部13Cもまた、前面視をすると突端が山形形状であり、その先端は前後方向の1本の稜線を形成している。
 図14は、突出部12Cがディンプル82内に入る位置関係で、先端部11Cをディンプル付端子部81に接触させた状態を示す図であって、ディンプル付端子部81のパッケージ外周方向(先端部11Cの背面側)から見た図である。
 突出部12Cは、ディンプル82内に入って、ディンプル82の内面とは接触していないが、肩部13Cがディンプル82の外縁部(ディンプル82周辺のフラット面)と点接触して導通を確保している。よって、第3実施形態でも、第1実施形態と同様の効果が得られる。また、第3実施形態でも、第2実施形態と同様に肩部13Cがディンプル付端子部81と点接触するので、第1実施形態よりも異物を挟み込む可能性が低い。このため、第3実施形態では第1実施形態よりも正しい検査結果を得られる可能性がある。また、第3実施形態も第1実施形態や第2実施形態と同様に、ケルビン測定を実施することができる。
 以上、幾つかの実施形態について説明したが、本発明を適用可能な形態は上記形態に限定されるものではなく適宜構成要素の追加・省略・変更を施すことができる。
 例えば、第1実施形態の先端部11Aをベースとして、図15に示す先端部11Dのように、突出部12Dの面積を第1実施形態の突出部12よりも更に小さくしてもよい。更に言えば、フラット面が無くなるほど小さくして、突出部12Dの先端を傾斜形状としてもよい。
 また例えば、第1実施形態の先端部11Aをベースとして、図16に示す先端部11Eのように、突出部12Eの左右方向中央部(Y軸方向中央部)に、前後方向(X軸方向)に沿ったV字状の切り欠き部125を設けてもよい。切り欠き部125を挟んだ左右の突端面121は、第1実施形態の突出部12から切り欠き部125を除いた端面である。ディンプル82(凹部)内に突出部12Eが入る際の先端面積は、突端面121の面積となるため、第1実施形態の突出部12の端面に比べて小さい。また、突出部12Eの体積は、切り欠き部125の分だけ、第1実施形態の突出部12より小さい。このため、ディンプル82内に異物が残っていた場合に、異物の大きさや量によっては第1実施形態の突出部12が干渉する場合であっても、突出部12Eが干渉しない場合がある。第1実施形態の突出部12に比べて、突出部12Eの方が異物に対する影響を受けにくい。
 突出部12Eがディンプル82から外れる位置関係で先端部11Eがディンプル付端子部81に接触した場合、接触面積が突端面121の面積となるため、この場合においても、突出部12Eは、第1実施形態の突出部12に比べて異物を挟み込む可能性が低い。
 同様にして、例えば、第2実施形態の先端部11Bをベースとして、図17に示す先端部11Fのように、突出部12Fの左右方向中央部(Y軸方向中央部)に、前後方向(X軸方向)に沿ったV字状の切り欠き部125を設けてもよい。切り欠き部125を挟んだ左右の突端面121は、第2実施形態の突出部12から切り欠き部125を除いた端面である。
 切り欠き部125の形状は、V字状に限らず、断面円弧状であってもよい。切り欠き部125の形状は、突出部12E,12Fの前後方向(X軸方向)の長さに亘って溝状に設けた形状であれば好適である。
 なお、図16に示す先端部11Eや図17に示す先端部11Fにおいて、突端面121は平面であってもよいし、Y軸方向の幅を、切り欠き部125の大きさに応じて極端に小さくした稜線状の形状としてもよい。
 同様にして、図15の突出部12Dにも、切り欠き部125を設けることとしてもよい。
 また例えば、第3実施形態の先端部11Cをベースとして、図18に示す先端部11Hのように、突出部12Hの突端の稜線を点になるまで短くして、突出部12Hを錐形形状にしてもよい。
 同様にして、図16に示す先端部11Eをベースとして、突出部12Eの突端の2つの突端面121(稜線部分)のX軸方向の長さを短くして、それぞれの突端面121を、図18に示す先端部11Hの突出部12Hのように錐形形状にしてもよい。突端面121のY軸方向の幅およびX軸方向の長さを極限まで小さくすると点になる。
 同じく、図17に示す先端部11Fをベースとして、突出部12Fの突端の2つの突端面121(稜線部分)のX軸方向の長さを短くして、それぞれの突端面121を、図18に示す先端部11Hの突出部12Hのように錐形形状にしてもよい。突端面121のY軸方向の幅およびX軸方向の長さを極限まで小さくすると点になる。
 また、図19の先端部11Lや、図20の先端部11Mのように、突出部12をプローブ軸Spの延長線上に設けても良い。図19の先端部11Lでは、突出部12は、頂点がプローブ軸Spの延長線上に位置するような円錐形状となっている。図20の先端部11Mでは、突出部12は、プローブ軸Spの延長線が回転軸となる円錐台形状となっている。
 また、本明細書の開示内容は、次のように概括することができる。
 本開示の態様は、端子部に凹部が形成された半導体パッケージの検査に利用可能なコンタクトプローブであって、前記端子部に接触する先端部を有するプランジャーを備え、前記先端部は、前記端子部に向かって突出する突出部と、前記端子部への突出高さが前記突出部より低い肩部と、を有する、コンタクトプローブである。
 本態様によれば、コンタクトプローブが端子部に接触しようとする場合、突出部が凹部内に入る一方で、肩部が端子部の凹部外周部(端子部の凹部周辺のフラット面)と接触する。よって、凹部内に仮に塵や切削紛などの異物が残っており、突出部と凹部内との間に異物が介在するような状況であっても、肩部が端子部に接触することにより導通(電気的な接続)が確保され、正確な検査ができる。さらに、本態様によれば、肩部が端子部の周囲のモールド材と接触しにくくなるため、コンタクトプローブの寿命を長くできる。端子部に凹部が形成された半導体パッケージの検査に適したコンタクトプローブを実現することができる。
 また、本態様のコンタクトプローブは、凹部が無い平坦な端子部を有する半導体パッケージの検査に流用しても、突出部が接触して導通を確保するので、やはり正確な検査ができる。
 前記突出部の突端の突出高さと前記肩部の突出高さとの差は、前記凹部の深さより小さくてもよい。
 これにより、凹部内に異物があっても、肩部による導通を確保できる。
 前記先端部は、先端に向かってプローブ横断面の断面積が減少する形状であってもよい。
 これにより、コンタクトプローブの先端を、先端に向かって断面積が小さくなっていく形状とすることができる。先端の突出部の数が1つであれば、全体として先細りの形状となる。コンタクトプローブが端子部と接触する面積が小さくなるため、単位面積当たりの接触圧力を高くして確実な接触を図ることができる。また、先端正面視において突出部をプローブ中心からオフセットして設けることにより、1つの端子部に2つのコンタクトプローブの突出部を接触させて測定する、いわゆるケルビン測定を実施し易くなる。
 前記肩部は、複数あり、前記突出部の周囲に位置していてもよい。
 これにより、突出部が凹部に対してどのような方向にずれても肩部による導通は確保しやすくなる。
 前記突出部は、突端がフラット形状であってもよい。
 これにより、当該コンタクトプローブを、凹部が無い平坦な端子部を有する半導体パッケージの検査に利用しても、突出部が端子部と面接触或いは線接触し易くなり、導通を確保しやすくなる。
 前記突出部は、突端が山形形状であってもよい。
 前記突出部は、突端が錐形形状であってもよい。
 前記突出部は、切り欠き部を有してもよい。
 前記肩部は、先端がフラット形状であってもよい。
 これにより、肩部と端子部の凹部外周部との接触が、面接触或いは線接触になりやすくなり、導通を確保しやすくなる。
 前記肩部は、先端が傾斜形状であってもよい。
 前記肩部は、先端が山形形状であってもよい。
 これにより、肩部と端子部の凹部外周部との接触が、点接触となりやすくなり、面接触や線接触の場合に比べて接触位置に異物が介在してしまう可能性を低減できる。
  10…コンタクトプローブ
  11A、11B、11C、11D、11E、11J、11K、11L、11M…先端部
  12、12C、12D、12E…突出部
  13、13B、13C…肩部
  14B…背面
  14F…前面
  14L…平面
  14R…平面
  15…傾斜面
  80…半導体パッケージ
  81…ディンプル付端子部
  82…ディンプル(凹部)
  S…プローブ横断面
  Sp…プローブ軸

Claims (11)

  1.  端子部に凹部が形成された半導体パッケージの検査に利用可能なコンタクトプローブであって、
     前記端子部に接触する先端部を有するプランジャーを備え、
     前記先端部は、
     前記端子部に向かって突出する突出部と、
     前記端子部への突出高さが前記突出部より低い肩部と、
     を有する、
     コンタクトプローブ。
  2.  前記突出部の突出高さと前記肩部の突出高さとの差は、前記凹部の深さより小さい、
     請求項1に記載のコンタクトプローブ。
  3.  前記先端部は、先端に向かってプローブ横断面の断面積が減少する形状である、
     請求項1又は2に記載のコンタクトプローブ。
  4.  前記肩部は、複数あり、前記突出部の周囲に位置する、
     請求項1~3の何れか一項に記載のコンタクトプローブ。
  5.  前記突出部は、突端がフラット形状である、
     請求項1~4の何れか一項に記載のコンタクトプローブ。
  6.  前記突出部は、突端が山形形状である、
     請求項1~4の何れか一項に記載のコンタクトプローブ。
  7.  前記突出部は、突端が錐形形状である、
     請求項1~4の何れか一項に記載のコンタクトプローブ。
  8.  前記突出部は、切り欠き部を有する、
     請求項1~4の何れか一項に記載のコンタクトプローブ。
  9.  前記肩部は、先端がフラット形状である、
     請求項1~8の何れか一項に記載のコンタクトプローブ。
  10.  前記肩部は、先端が傾斜形状である、
     請求項1~8の何れか一項に記載のコンタクトプローブ。
  11.  前記肩部は、先端が山形形状である、
     請求項1~8の何れか一項に記載のコンタクトプローブ。
PCT/JP2020/012953 2019-04-23 2020-03-24 コンタクトプローブ WO2020217816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080030449.6A CN113728238A (zh) 2019-04-23 2020-03-24 接触探针
JP2021515886A JP7482115B2 (ja) 2019-04-23 2020-03-24 コンタクトプローブ
US17/604,492 US11959940B2 (en) 2019-04-23 2020-03-24 Contact probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081956 2019-04-23
JP2019-081956 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020217816A1 true WO2020217816A1 (ja) 2020-10-29

Family

ID=72942232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012953 WO2020217816A1 (ja) 2019-04-23 2020-03-24 コンタクトプローブ

Country Status (5)

Country Link
US (1) US11959940B2 (ja)
JP (1) JP7482115B2 (ja)
CN (1) CN113728238A (ja)
TW (1) TW202040140A (ja)
WO (1) WO2020217816A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311746A (ja) * 2000-04-28 2001-11-09 Mitsubishi Materials Corp コンタクトプローブ及びプローブ装置
JP2002134573A (ja) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd Lsi検査用プローブおよびioパッド
JP2003043104A (ja) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd 半導体装置の検査装置
JP2003161743A (ja) * 2001-11-26 2003-06-06 Mitsubishi Materials Corp コンタクトプローブ及びその製造方法
JP2008002852A (ja) * 2006-06-20 2008-01-10 Japan Electronic Materials Corp プローブカードの接続パッド及びこれを用いたプローブカード
JP2012052943A (ja) * 2010-09-02 2012-03-15 Toyota Motor Corp 電気計測用プローブピン
JP2012522976A (ja) * 2009-04-03 2012-09-27 デーテーゲー・インターナショナル・ゲーエムベーハー プリント配線板を検査する検査装置用の接触ユニット
KR20130004165A (ko) * 2011-06-30 2013-01-09 리노공업주식회사 반도체 검사용 프루브

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417206A (en) * 1981-03-09 1983-11-22 Virginia Panel Corporation Electrical contact probe and method of manufacturing
NL1027450C2 (nl) 2004-11-09 2006-05-10 Shin Etsu Polymer Europ B V Doorverbindingsconnector, frame omvattende een dergelijke connector, elektrische meet- en testinrichting en contacteringswerkwijze met behulp van een dergelijke connector.
KR100640626B1 (ko) * 2005-01-05 2006-10-31 삼성전자주식회사 포고 핀 및 이를 포함하는 테스트 소켓
JP4905872B2 (ja) 2005-02-18 2012-03-28 日本発條株式会社 導電性接触子ユニット
KR101012712B1 (ko) 2005-06-10 2011-02-09 델라웨어 캐피탈 포메이션, 인코포레이티드 컴플라이언트 전기적 상호접속체 및 전기적 접촉 프로브
EP2141503A1 (en) 2008-06-30 2010-01-06 Capres A/S A multi-point probe for testing electrical properties and a method of producing a multi-point probe
WO2013154738A1 (en) 2012-04-13 2013-10-17 Delaware Capital Formation, Inc. Test probe assembly and related methods
JP6266209B2 (ja) 2012-12-25 2018-01-24 株式会社エンプラス 電気接触子及び電気部品用ソケット
JP2016217910A (ja) 2015-05-21 2016-12-22 山一電機株式会社 コンタクトプローブ及びそれを備えた電気接続装置
TWI598594B (zh) * 2016-09-20 2017-09-11 中華精測科技股份有限公司 插銷式探針
JP6850583B2 (ja) 2016-10-24 2021-03-31 株式会社ヨコオ ソケット
JP2018194411A (ja) 2017-05-17 2018-12-06 株式会社ヨコオ コンタクトプローブ及び検査用治具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311746A (ja) * 2000-04-28 2001-11-09 Mitsubishi Materials Corp コンタクトプローブ及びプローブ装置
JP2002134573A (ja) * 2000-10-30 2002-05-10 Matsushita Electric Ind Co Ltd Lsi検査用プローブおよびioパッド
JP2003043104A (ja) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd 半導体装置の検査装置
JP2003161743A (ja) * 2001-11-26 2003-06-06 Mitsubishi Materials Corp コンタクトプローブ及びその製造方法
JP2008002852A (ja) * 2006-06-20 2008-01-10 Japan Electronic Materials Corp プローブカードの接続パッド及びこれを用いたプローブカード
JP2012522976A (ja) * 2009-04-03 2012-09-27 デーテーゲー・インターナショナル・ゲーエムベーハー プリント配線板を検査する検査装置用の接触ユニット
JP2012052943A (ja) * 2010-09-02 2012-03-15 Toyota Motor Corp 電気計測用プローブピン
KR20130004165A (ko) * 2011-06-30 2013-01-09 리노공업주식회사 반도체 검사용 프루브

Also Published As

Publication number Publication date
TW202040140A (zh) 2020-11-01
JPWO2020217816A1 (ja) 2020-10-29
CN113728238A (zh) 2021-11-30
US20220214376A1 (en) 2022-07-07
US11959940B2 (en) 2024-04-16
JP7482115B2 (ja) 2024-05-13

Similar Documents

Publication Publication Date Title
JP6385520B2 (ja) 電気プローブ
JP2016075709A (ja) コンタクトプローブおよびそれを備えた検査ソケット
WO2020217816A1 (ja) コンタクトプローブ
TW201920969A (zh) 電性連接裝置
JP2009180549A (ja) コンタクトピン
US20200395333A1 (en) Wedge tool, bonding device, and bonding inspection method
JP2008256362A (ja) 検査治具
US9225123B2 (en) USB receptacle
JP2008292337A (ja) 球状外部電極を有する半導体装置の検査方法
KR102253399B1 (ko) 프로브 핀, 검사 지그 및 검사 유닛
KR101524471B1 (ko) 포고핀용 탐침부재의 플런저 고정 방법 및 이러한 방법으로 제조된 포고핀 구조체
TW202342996A (zh) 懸臂式探針卡裝置及其對焦型探針
JP2020150069A (ja) 電子制御装置
JP7473812B2 (ja) 検査装置
JP6987006B2 (ja) 電子制御装置のコネクタ端子形状
TW201346268A (zh) 凱文接觸探針及具備此之凱文檢查治具
KR100894170B1 (ko) 리드 프레임, 이를 이용한 자기센서 패키지 및 그 자기센서패키지의 제조방법
TW202124975A (zh) Ic插座
JP2008256361A (ja) プローブ及び基板検査装置
KR20230118263A (ko) 고전류 핀 및 그 제조방법
JPH0220034A (ja) 半導体装置
CN106163079B (zh) 线路板
TW202041866A (zh) 探針、檢查治具以及檢查單元
KR20140106833A (ko) 프로브 카드를 이용한 반도체 소자의 테스트 방법
TW202342997A (zh) 懸臂式探針卡裝置及其彈臂型探針

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795226

Country of ref document: EP

Kind code of ref document: A1