WO2020189248A1 - 多層チューブ - Google Patents

多層チューブ Download PDF

Info

Publication number
WO2020189248A1
WO2020189248A1 PCT/JP2020/008786 JP2020008786W WO2020189248A1 WO 2020189248 A1 WO2020189248 A1 WO 2020189248A1 JP 2020008786 W JP2020008786 W JP 2020008786W WO 2020189248 A1 WO2020189248 A1 WO 2020189248A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
layer
multilayer tube
end portion
elastic layer
Prior art date
Application number
PCT/JP2020/008786
Other languages
English (en)
French (fr)
Inventor
依史 瀧本
幸治 水谷
佐藤 宗史
伊藤 誠
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to DE112020000112.1T priority Critical patent/DE112020000112T5/de
Priority to CN202080002598.1A priority patent/CN112074681B/zh
Publication of WO2020189248A1 publication Critical patent/WO2020189248A1/ja
Priority to US17/313,022 priority patent/US11919272B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket
    • F16L21/002Sleeves or nipples for pipes of the same diameter; Reduction pieces
    • F16L21/005Sleeves or nipples for pipes of the same diameter; Reduction pieces made of elastic material, e.g. partly or completely surrounded by clamping devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/133Rigid pipes of plastics with or without reinforcement the walls consisting of two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the present invention relates to a multilayer tube made of an organic material.
  • Metal or hard resin tubes are used in pipes (ducts and hoses) for fluid flow for automobiles.
  • the tube cannot be directly connected to the male mating member. Therefore, it was necessary to interpose a rubber hose. There is a fluid leakage problem at the connection between the metal or hard resin tube and the rubber hose.
  • the portion where the mating member is inserted is a multilayer structure portion composed of a single structure portion of a soft resin, a soft resin layer and a hard resin layer.
  • the portion where the mating member is exteriorized includes a single structure portion of a hard resin and a multilayer structure portion composed of a soft resin layer and a hard resin layer. Resin tubes having the above are described. Then, in the resin tube, the single structure portion and the multilayer structure portion are integrally blow-molded. Further, the molding of the multi-layer structure of the resin is described in JP-A-53-105563, Japanese Patent No. 3619239, Japanese Patent Publication No. 6-17056, and Japanese Patent No. 2782185.
  • the soft resin layer or the hard resin layer has continuity in the range extending to the end. Therefore, it functions more effectively against fluid leakage as compared with the case where a rubber hose or the like is interposed as in the conventional case.
  • the resin tube described in Japanese Patent Application Laid-Open No. 2001-141131 there is a single structural portion made of a soft resin or a hard resin. Therefore, either one of the hard resin layer and the soft resin layer does not have continuity in the length direction of the resin tube. Therefore, at the boundary between the single structure portion and the multi-layer structure portion, it may cause a deterioration in strength, pressure resistance, impact resistance, and the like.
  • An object of the present invention is to provide a multilayer tube capable of reducing the problem of fluid leakage and exhibiting desired performance in a range extending to the end portion.
  • the multilayer tube according to the present invention is formed of an organic material.
  • the first end portion of the multilayer tube is connected to the first mating member by interpolating or exteriorizing the first mating member.
  • the multi-layer tube is formed over the entire length of the multi-layer tube and has an elastic layer having a predetermined flexural modulus and an elastic layer which is formed over the entire length of the multi-layer tube and has a higher flexural modulus than the elastic layer. It is provided with a hard layer arranged on the outer layer side.
  • both the elastic layer and the hard layer are formed over the entire length of the multi-layer tube. That is, the elastic layer does not break in the middle, and the hard layer does not break in the middle. Therefore, in the length direction of the multilayer tube, the elastic layer also has continuity, and the hard layer also has continuity. As a result, the problem of fluid leakage can be solved with higher functionality.
  • the multilayer tube according to the present invention has a multilayer structure having at least an elastic layer and a hard layer over the entire length. Therefore, the multilayer tube according to the present invention does not have a boundary between the single structure portion and the multilayer structure portion like the multilayer tube described in Patent Document 1. As described above, the multilayer tube according to the present invention can exhibit stable and desired performance by not having a boundary.
  • the first end portion of the multilayer tube is formed so that the thickness of the elastic layer is thicker than the thickness of the hard layer.
  • the connection performance when connecting the first end portion to the first mating member is improved.
  • the thickness of the elastic layer and the thickness of the hard layer change in the length direction of the multilayer tube.
  • the multilayer tube can change the thickness of the elastic layer and the thickness of the hard layer according to the purpose of the portion. Therefore, it is possible to have the desired performance over the entire length of the multilayer tube.
  • hatching is attached to a portion where the elastic layer is thick.
  • hatching is attached to a portion where the elastic layer is thick.
  • hatching is attached to a portion where the elastic layer is thick.
  • Multilayer tubes are applied, for example, to automotive piping.
  • Multi-layer tubes can be applied Automotive piping includes turbo intake ducts, air blow ducts, water piping, and fuel piping.
  • Various fluids such as air, water, and fuel can be applied as the fluid to be circulated inside.
  • each of both ends of the multilayer tube is connected to the mating member.
  • the mating member both a member inserted into the end of the multilayer tube and a member exteriored at the end of the multilayer tube are applied.
  • the mating member may be inserted into both ends of the multilayer tube, or the mating member may be exteriorized.
  • the first mating member may be inserted into the first end of the multilayer tube, and the second mating member may be externalized at the second end of the multilayer tube.
  • the multilayer tube may be either a straight tube or a bent tube. Further, the multilayer tube may be formed in a non-bellows shape over the entire length, or may be formed in a bellows shape at least in a part in the length direction.
  • the multilayer tube 1 of the first example will be described with reference to FIGS. 1 and 2.
  • the multilayer tube 1 includes a first end portion 10 located on the right side of FIGS. 1 and 2, a second end portion 20 located on the left side of FIGS. 1 and 2, and a first end portion 10 and a second end portion 20. It is provided with an intermediate portion 30 located between and.
  • the multilayer tube 1 includes a first connection portion 40 forming a boundary portion between the first end portion 10 and the intermediate portion 30, and a second connection portion forming a boundary portion between the second end portion 20 and the intermediate portion 30.
  • the case where the part 50 is provided will be taken as an example.
  • the multilayer tube 1 may be configured so that the first connecting portion 40 and the second connecting portion 50 do not exist.
  • the first end portion 10 is formed in a non-bellows shape over the entire length. Further, in this example, the first end portion 10 is formed in a straight line.
  • the first end portion 10 is connected to the first mating member T1.
  • the case where the first mating member T1 is a male member is taken as an example. Therefore, the first end portion 10 of the multilayer tube 1 is connected to the first mating member T1 by inserting the first mating member T1 which is a male member.
  • a female member can also be applied to the first mating member T1.
  • the second end portion 20 is formed in a non-bellows shape over the entire length. Further, in this example, the second end portion 20 is formed in a straight line.
  • the second end portion 20 is connected to the second mating member T2.
  • the case where the second mating member T2 is a female member is taken as an example. Therefore, the second end portion 20 of the multilayer tube 1 is connected to the second mating member T2 by the exterior of the second mating member T2, which is a female member.
  • a male member can be applied to the second mating member T2 in the same manner as the first mating member T1.
  • the intermediate portion 30 is formed in a non-bellows shape over the entire length. Further, in this example, the intermediate portion 30 is composed of a straight portion (a portion formed in a straight line). However, the intermediate portion 30 may be composed not only of the straight portion but also of the straight portion and the bent portion (the portion where the bend is formed), or may be composed of only the bent portion. You may.
  • the multilayer tube 1 has a multilayer structure made of different kinds of organic materials.
  • the multi-layer tube 1 has a two-layer structure as an example, but may have three or more layers.
  • the multilayer tube 1 includes a tubular elastic layer 11,21,31,41,51 formed in the innermost layer and a tubular hard layer 12, 22, 32, 42, 52 formed on the outer layer side. ..
  • the elastic layers 11,21,31,41,51 are continuously formed over the entire length of the multilayer tube 1.
  • the elastic layers 11,21,31,41,51 have a predetermined flexural modulus.
  • the predetermined flexural modulus is an elastic modulus that has flexibility and elasticity. That is, the elastic layers 11,21,31,41,51 are formed of a soft organic material.
  • the elastic layers 11,21,31,41,51 are formed of resin or elastomer.
  • the elastic layers 11,21,31,41,51 may contain, for example, polyolefin resins (polyethylene, polypropylene), aliphatic polyamides (PA46, PA6, PA66, PA610, PA612, PA1010, PA1012, PA11, PA12).
  • PA4T Semi-aromatic polyamide
  • PA6T PA6T
  • PA9T PA10T
  • PA11T MXD6
  • polyester resin PET, PBT, PBN
  • PPS polyphenylene sulfide
  • EVOH ethylene-vinyl alcohol copolymer
  • EOM fluororesin
  • ETFE fluororesin
  • PVDF polymethylpentene resin
  • SPS syndiotactic polystyrene resin
  • non-crosslinked olefin-based thermoplastic elastomer TPO
  • cross-linked olefin-based thermoplastic elastomer TPV
  • polyester-based thermoplastic elastomer TPEE
  • polyamide-based thermoplastic elastomer TPAE
  • urethane-based thermoplastic elastomer TPU
  • vinyl chloride-based thermoplastic elastomer TPVC
  • fluorine-based thermoplastic elastomer fluorine-based thermoplastic elastomer
  • styrene-based thermoplastic elastomer TPS
  • the elastic layers 11, 21, 31, 41, 51 may have a one-layer structure made of one kind of elastic material, as shown in FIG.
  • the elastic layers 11,21,31,41,51 may have a multilayer structure made of different elastic materials.
  • the hard layers 12, 22, 32, 42, 52 are continuously formed over the entire length of the multilayer tube 1.
  • the hard layers 12, 22, 32, 42, 52 are arranged on the outer layer side of the elastic layers 11,21,31,41,51.
  • the hard layers 12, 22, 32, 42, 52 have a higher flexural modulus than the elastic layers 11,21,31,41,51.
  • the hard layers 12, 22, 32, 42, 52 are formed of resin or elastomer. As the hard layers 12, 22, 32, 42, 52, resins and elastomers applicable to the elastic layers 11,21,31,41,51 can be applied. However, the elastic layers 11, 21, 31, 41, 51 and the hard layers 12, 22, 32, 42, 52 need only have different flexural modulus, and the same kind of organic material can be applied.
  • the hard layers 12, 22, 32, 42, 52 may have a one-layer structure made of one kind of hard material, as shown in FIG.
  • the hard layers 12, 22, 32, 42, and 52 may have a multilayer structure made of different hard materials.
  • the thicknesses H11, H21, H31 of the elastic layers 11,21,31,41,51 and the thicknesses H12, H22, H32 of the hard layers 12, 22, 32, 42, 52 change, respectively. are doing.
  • the thickness of each part will be described in detail below.
  • a case where the total thicknesses H10, H20, and H30 of the multilayer tube 1 are the same over the entire length will be taken as an example.
  • the first end portion 10 is formed so that the thickness H11 of the elastic layer 11 is thicker than the thickness H12 of the hard layer 12. Further, in the length direction of the first end portion 10, the thickness H11 of the elastic layer 11 is the same, and the thickness H12 of the hard layer 12 is also the same. However, the thicknesses H11 and H12 may be changed.
  • the first mating member T1 which is a male member is interpolated.
  • the elastic layer 11 is in close contact with the outer peripheral surface of the first mating member T1, and the first end portion 10 is connected to the first mating member T1. Therefore, due to the action of the elastic layer 11, the first end portion 10 has a high holding force and a high sealing property with the first mating member T1.
  • the elastic layer 11 is in a state of being compressed in the radial direction by the inner peripheral surface of the hard layer 12 and the outer peripheral surface of the first mating member T1.
  • the hard layer 12 has a thickness H12 sufficient to exert a force to support the elastic layer 11 in a compressed state.
  • the first end portion 10 is connected to the first mating member T1. That is, by compressing the elastic layer 11, it has a higher holding force and a higher sealing property.
  • the first end portion 10 may have flexibility so that it can be bent.
  • the first end portion 10 can be made to have the property by making the thickness H12 such that the hard layer 12 has flexibility to be bent. Since the first end portion 10 has such a property, the first end portion 10 has a mode similar to that of a rubber hose, and the first end portion 10 is easily attached to the first mating member T1.
  • the second end portion 20 is formed so that the thickness H21 of the elastic layer 21 is thicker than the thickness H22 of the hard layer 22. Further, in the length direction of the second end portion 20, the thickness H21 of the elastic layer 21 is the same, and the thickness H22 of the hard layer 22 is also the same. However, the thicknesses H21 and H22 may be changed.
  • the second mating member T2 which is a female member, is exteriorized. Further, at the second end portion 20, the hard layer 22 is formed on the outermost layer. Then, at the second end portion 20, the hard layer 22 is welded or locked to the second mating member T2. Since the hard layer 22 is formed on the outermost layer at the second end portion 20, a high connecting force with the second mating member T2 can be exhibited.
  • the second end portion 20 can be made flexible.
  • the hard layer 22 having a thickness H22 such that it has flexibility to bend, the second end portion 20 can have such a property. Since the second end portion 20 has this property, the second end portion 20 has a mode similar to that of a rubber hose, and the second end portion 20 is easily attached to the second mating member T2.
  • the intermediate portion 30 is formed so that the thickness H31 of the elastic layer 31 is thinner than the thickness H32 of the hard layer 32 over the entire length. Further, in the length direction of the intermediate portion 30, the thickness H31 of the elastic layer 31 is the same, and the thickness H32 of the hard layer 32 is also the same. However, the thicknesses H31 and H32 may be changed.
  • the thickness H32 of the hard layer 32 in the intermediate portion 30 is formed to be sufficiently thicker than the thicknesses H12 and H22 of the hard layers 12 and 22 in the first end portion 10 and the second end portion 20. Therefore, the intermediate portion 30 can exhibit the same function as the pipe formed only by the hard layer or the pipe formed of metal. That is, the intermediate portion 30 can be configured to have a flexural rigidity equal to or higher than a predetermined value.
  • a thin elastic layer 31 is formed on the inner layer side.
  • the presence of the elastic layer 31 can enhance the durability of the intermediate portion 30.
  • the impact absorbing power is improved due to the presence of the thin elastic layer 31, and the durability can be improved as compared with the case where only the hard material is used.
  • the first connection portion 40 constitutes a boundary portion between the first end portion 10 and the intermediate portion 30.
  • the elastic layer 41 continuously connects the elastic layer 11 of the first end portion 10 and the elastic layer 31 of the intermediate portion 30. That is, the thickness of the elastic layer 41 is gradually changing.
  • the hard layer 42 continuously connects the hard layer 12 of the first end portion 10 and the hard layer 32 of the intermediate portion 30. That is, the thickness of the hard layer 42 gradually changes. Therefore, the adverse effect of abrupt changes in the layers 41 and 42 can be reduced.
  • the second connecting portion 50 constitutes a boundary portion between the second end portion 20 and the intermediate portion 30. Then, in the second connecting portion 50, the elastic layer 51 continuously connects the elastic layer 21 of the second end portion 20 and the elastic layer 31 of the intermediate portion 30. That is, the thickness of the elastic layer 51 is gradually changing. Further, in the second connecting portion 50, the hard layer 52 continuously connects the hard layer 22 of the second end portion 20 and the hard layer 32 of the intermediate portion 30. That is, the thickness of the hard layer 52 gradually changes. Therefore, the adverse effect of abrupt changes in the layers 51 and 52 can be reduced.
  • both the elastic layers 11,21,31,41,51 and the hard layers 12,22,32,42,52 are formed over the entire length of the multilayer tube. That is, the elastic layers 11, 21, 31, 41, 51 are not cut off in the middle, and the hard layers 12, 22, 32, 42, 52 are not cut off in the middle. Therefore, in the length direction of the multilayer tube 1, the elastic layers 11,21,31,41,51 also have continuity, and the hard layers 12, 22, 32, 42, 52 also have continuity. As a result, the problem of fluid leakage can be solved with higher functionality.
  • the multilayer tube 1 has a multilayer structure having at least elastic layers 11,21,31,41,51 and hard layers 12,22,32,42,52 over the entire length. Therefore, the multilayer tube 1 does not have a boundary between the single structure portion and the multilayer structure portion like the conventional resin tube. As described above, the multilayer tube 1 does not have a boundary, so that stable and desired performance can be exhibited.
  • the first end portion 10 of the multilayer tube 1 is formed so that the thickness H11 of the elastic layer 11 is thicker than the thickness H12 of the hard layer 12.
  • the connection performance when the first end portion 10 is connected to the first mating member T1 is improved.
  • the second end portion 20 of the multilayer tube 1 is formed so that the thickness H21 of the elastic layer 21 is thicker than the thickness H22 of the hard layer 22.
  • the connection performance when connecting the second end portion 20 to the second mating member T2 is improved.
  • the elastic layers 11,21,31,41,51 have thicknesses H11, H21, H31 and the hard layers 12, 22, 32, 42, 52 have thicknesses H12, H22, H32, respectively.
  • the multilayer tube 1 has the thicknesses H11, H21, H31 of the elastic layers 11,21,31,41,51 and the thicknesses H12, H22 of the hard layers 12,22,32,42,52, depending on the purpose of the site. , H32 can be changed. Therefore, it is possible to have the desired performance over the entire length of the multilayer tube 1.
  • the multilayer tube 2 of the second example will be described with reference to FIG.
  • the multilayer tube 2 has a different configuration of the first end portion 10 and the second end portion 20 from the multilayer tube 1 of the first example.
  • the total thickness H10 of the first end portion 10 is formed to be thicker than the total thickness H30 of the intermediate portion 30.
  • the total thickness H20 of the second end portion 20 is also formed to be thicker than the total thickness H30 of the intermediate portion 30.
  • the thickness H11 of the elastic layer 11 is thicker than the thickness H12 of the hard layer 12.
  • the thickness H21 of the elastic layer 21 is thicker than the thickness H22 of the hard layer 22.
  • the thickness H31 of the elastic layer 31 is thinner than the thickness H32 of the hard layer 32.
  • the thickness H12 of the hard layer 12 at the first end portion 10 is thinner than the thickness H32 of the hard layer 32 at the intermediate portion 30. Therefore, the ratio (H11 / H10) of the thickness H11 of the elastic layer 11 to the total thickness H10 of the first end portion 10 in the first end portion 10 is the thickness of the hard layer 32 to the total thickness H30 of the intermediate portion 30 in the intermediate portion 30. It is larger than the ratio of H32 (H32 / H30). On the contrary, the ratio (H12 / H10) of the thickness H12 of the hard layer 12 to the total thickness H10 of the first end portion 10 in the first end portion 10 is the ratio of the elastic layer 31 to the total thickness H30 of the intermediate portion 30 in the intermediate portion 30. It is smaller than the ratio of thickness H31 (H31 / H30).
  • the second end portion 20 is the same as the first end portion 10. That is, the thickness H22 of the hard layer 22 at the second end portion 20 is thinner than the thickness H32 of the hard layer 32 at the intermediate portion 30. Therefore, the ratio (H21 / H20) of the thickness H21 of the elastic layer 21 to the total thickness H20 of the second end 20 in the second end 20 is the thickness of the hard layer 32 to the total thickness H30 of the intermediate 30 in the intermediate 30. It is larger than the ratio of H32 (H32 / H30). On the contrary, the ratio (H22 / H20) of the thickness H22 of the hard layer 22 to the total thickness H20 of the second end 20 at the second end 20 is the ratio of the elastic layer 31 to the total thickness H30 of the intermediate 30 at the intermediate 30. It is smaller than the ratio of thickness H31 (H31 / H30).
  • the thicknesses H12 and H22 of the hard layers 12 and 22 at the first end portion 10 and the second end portion 20 are thinner than the thickness H32 of the hard layer 32 at the intermediate portion 30. Therefore, the strength of the first end portion 10 and the second end portion 20 may be significantly reduced as compared with the intermediate portion 30.
  • the total thicknesses H10 and H20 of the first end portion 10 and the second end portion 20 are made thicker than the total thickness H30 of the intermediate portion 30. Then, the decrease in strength due to the hard layers 12 and 22 is reinforced by increasing the thicknesses H11 and H21 of the elastic layers 11 and 21. Therefore, the first end portion 10 as a whole can be made to have the same strength as the intermediate portion 30. The same applies to the second end portion 20.
  • the multilayer tube 3 of the third example will be described with reference to FIG.
  • the multilayer tube 3 further includes a tubular adhesive layer 13, 23, 33, 43, 53 with respect to the multilayer tube 1 of the first example.
  • the adhesive layers 13, 23, 33, 43, 53 are continuously formed over the entire length of the multilayer tube 3.
  • the adhesive layers 13, 23, 33, 43, 53 are formed between the elastic layers 11,21,31,41,51 and the hard layers 12,22,32,42,52 in the radial direction, and the elastic layers 11,21,11.
  • the 31, 41, 51 and the hard layers 12, 22, 32, 42, 52 are adhered to each other.
  • the adhesive layers 13, 23, 33, 43, 53 have a uniform thickness over the entire length.
  • the flexural modulus of the adhesive layers 13, 23, 33, 43, 53 may be the same as the flexural modulus of the elastic layers 11, 21, 31, 41, 51, or the rigid layers 12, 22, 32, 42, 52. It may be the same as the flexural modulus of the elastic layer 11,21,31,41,51, or may be intermediate between the flexural modulus of the elastic layers 12, 22, 32, 42, 52.
  • the multilayer tube 4 of the fourth example will be described with reference to FIG.
  • the multilayer tube 4 of the fourth example includes a tubular protective layer 14, 24, 34, 44, 54 with respect to the multilayer tube 1 of the first example.
  • the protective layers 14, 24, 34, 44, 54 are continuously formed over the entire length of the multilayer tube 4.
  • the protective layers 14, 24, 34, 44, 54 are on the outer layer side of the hard layers 12, 22, 32, 42, 52, and are arranged on the outermost layer of the multilayer tube 4.
  • the protective layers 14, 24, 34, 44, 54 have a uniform thickness over the entire length.
  • the flexural modulus of the protective layers 14, 24, 34, 44, 54 may be as low as the flexural modulus of the hard layers 12, 22, 32, 42, 52. Therefore, the protective layers 14, 24, 34, 44, 54 exert the protective function of the multilayer tube 4 over the entire length.
  • the multilayer tube 5 of the fifth example will be described with reference to FIG. As shown in FIG. 6, the multilayer tube 5 is formed in a straight line.
  • the elastic layer is thicker than the hard layer in the hatched portion, and the elastic layer is thinner than the hard layer in the non-hatched portion.
  • the meaning of the presence or absence of hatching is the same in FIGS. 7 to 10.
  • the multilayer tube 5 includes a first end portion 10, a second end portion 20, an intermediate portion 130, a first connection portion 40, and a second connection portion 50.
  • the first end portion 10 and the second end portion 20 in any one of the multilayer tubes 1 to 4 of the first to fourth examples can be applied. That is, the first end portion 10 and the second end portion 20 are formed so that the elastic layers 11 and 21 are thicker than the hard layers 12 and 22.
  • the intermediate portion 130 is composed of a non-bellows-shaped straight portion.
  • the intermediate portions 30 of the multilayer tubes 1 to 4 of the first to fourth examples are formed so that the elastic layer 31 is thinner than the hard layer 32 over the entire length.
  • the intermediate portion 130 of the multilayer tube 5 of the fifth example includes portions 130a and 130c in which the elastic layer is thinner than the hard layer, and portions 130b in which the elastic layer is thicker than the hard layer.
  • the meanings of the elastic layer and the hard layer are as described in the multilayer tubes 1 to 4 of the first to fourth examples.
  • the first connection portion 40 and the second connection portion 50 are configured in the same manner as the first connection portion 40 and the second connection portion 50 in the multilayer tubes 1 to 4 of the first to fourth examples.
  • the portion 130b with a thick elastic layer is located in a portion having a relatively high impact resistance, and can function as an impact resistant portion.
  • the portions 130a and 130c having a thin elastic layer are located, for example, in portions having relatively low impact resistance, and can function as normal portions.
  • the multilayer tube 6 of the sixth example will be described with reference to FIG. 7.
  • the multilayer tube 6 includes a first end portion 10, a second end portion 20, an intermediate portion 230, a first connection portion 40, and a second connection portion 50.
  • the first end portion 10, the second end portion 20, the first connection portion 40, and the second connection portion 50 are the first end portion 10 in any one of the multilayer tubes 1 to 4 of the first to fourth examples.
  • the second end 20, the first connection 40 and the second connection 50 can be applied.
  • the intermediate portion 30 of the multilayer tubes 1 to 4 of the first to fourth examples is composed of a non-bellows-shaped straight portion over the entire length.
  • the intermediate portion 230 of the multilayer tube 6 of the sixth example includes non-bellows-shaped bent portions 230b, 230d and non-bellows-shaped straight portions 230a, 230c, 230e.
  • the number of bent points can be changed as appropriate.
  • the bent portions 230b, 230d and the straight portions 230a, 230c, 230e are each formed so that the elastic layer is thinner than the hard layer over the entire length. That is, in the intermediate portion 230, the elastic layer is formed thinner than the hard layer over the entire length.
  • the bent portions 230b, 230d and the straight portions 230a, 230c, 230e have the same inner and outer diameters, while the bent portions 230b, 230d and the straight portions 230a, 230c, 230e both have the desired strength and bending. It can have an elastic modulus.
  • the multilayer tube 7 of the seventh example will be described with reference to FIG.
  • the multilayer tube 7 includes a first end portion 10, a second end portion 20, an intermediate portion 330, a first connection portion 40, and a second connection portion 50.
  • the first end portion 10, the second end portion 20, the first connection portion 40, and the second connection portion 50 are the first end portion 10 in any one of the multilayer tubes 1 to 4 of the first to fourth examples.
  • the second end 20, the first connection 40 and the second connection 50 can be applied.
  • the intermediate portion 330 of the multilayer tube 7 of the seventh example includes non-bellows-shaped bent portions 330b, 330d and non-bellows-shaped straight portions 330a, 330c, 330e.
  • the number of bent points can be changed as appropriate.
  • the linear portions 330a, 330c, and 330e are formed so that the elastic layer is thinner than the hard layer.
  • the bent portions 330b and 330d are formed so that the elastic layer is thicker than the hard layer. That is, the intermediate portion 330 changes the thickness of the elastic layer and the thickness of the hard layer. This facilitates the molding of the bent portions 330b and 330d.
  • the multilayer tube 8 of the eighth example will be described with reference to FIG.
  • the multilayer tube 8 includes a first end portion 10, a second end portion 20, an intermediate portion 430, a first connection portion 40, and a second connection portion 50.
  • the first end portion 10, the second end portion 20, the first connection portion 40, and the second connection portion 50 are the first end portion 10 in any one of the multilayer tubes 1 to 4 of the first to fourth examples.
  • the second end 20, the first connection 40 and the second connection 50 can be applied.
  • the intermediate portions 30 of the multilayer tubes 1 to 4 of the first to fourth examples are formed in a non-bellows shape over the entire length.
  • the multilayer tube 8 of the eighth example includes a bellows portion 430b and non-bellows portions 430a and 430c. The number of bellows portions can be changed as appropriate.
  • the bellows portion 430b and the non-bellows portions 430a and 430c are each formed so that the thickness of the elastic layer is thinner than the thickness of the hard layer over the entire length. That is, the intermediate portion 430 is formed so that the elastic layer is thinner than the hard layer over the entire length. Therefore, the multilayer tube 8 includes a bellows portion 430b and non-bellows portions 430a and 430c having a certain degree of hardness.
  • the multilayer tube 9 of the ninth example will be described with reference to FIG.
  • the multilayer tube 9 includes a first end portion 10, a second end portion 20, an intermediate portion 530, a first connection portion 40, and a second connection portion 50.
  • the first end portion 10, the second end portion 20, the first connection portion 40, and the second connection portion 50 are the first end portion 10 in any one of the multilayer tubes 1 to 4 of the first to fourth examples.
  • the second end 20, the first connection 40 and the second connection 50 can be applied.
  • the intermediate portion 530 of the multilayer tube 9 of the ninth example includes a bellows portion 530b and non-bellows portions 530a and 530c.
  • the number of bellows portions can be changed as appropriate.
  • the non-bellows portions 530a and 530c are formed so that the elastic layer is thinner than the hard layer.
  • the bellows portion 530b is formed so that the elastic layer is thicker than the hard layer. That is, the intermediate portion 530 changes the thickness of the elastic layer and the thickness of the hard layer. This facilitates the molding of the bellows portion 530b.
  • the thickness of the elastic layer of the intermediate portions 30, 130, 230, 330, 430, 530 in the length direction of the multilayer tube 1-9 is thinner than the thickness of the hard layer at least in a part thereof.
  • An example is given in the case of having a site formed in.
  • the present invention is not limited to this configuration, and the intermediate portions 30, 130, 230, 330, 430, 530 in the length direction of the multilayer tube 1-9 are formed so that the thickness of the elastic layer is thinner than the thickness of the hard layer. It may not have a site that has been damaged. That is, if the thickness of the elastic layer and the thickness of the hard layer change in the length direction of the multilayer tube 1-9, the thickness of the elastic layer is formed to be thicker than the thickness of the hard layer over the entire length. It may be done.
  • Multilayer tube 10: First end, 11,21,31,41,51: Elastic layer, 12,22,32,42,52: Hard layer, 13,23,33,43,53: Adhesive layer, 14, 24, 34, 44, 54: Protective layer, 20: Second end, 30, 130, 230, 330, 430, 530: Intermediate, 40: First connection, 50: Second connection Part, 130a, 130c: Normal part, 130b: Impact resistant part, 230a, 230c, 230e, 330a, 330c, 330e: Straight part, 230b, 230d, 330b, 330d: Bending part, 430a, 430c, 530a, 530c: Non Bellows, 430b, 530b: Bellows, T1: 1st mating member, T2: 2nd mating member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

流体の漏れの問題を低減すると共に、端部に至る範囲において所望の性能を発揮することができる有機材料により形成された多層チューブ(1)は、多層チューブ(1)の全長に亘って形成され、所定の曲げ弾性率を有する弾性層(11,21,31,41,51)と、多層チューブ(1)の全長に亘って形成され、弾性層(11,21,31,41,51)に比べて高い曲げ弾性率を有し、弾性層(11,21,31,41,51)よりも外層側に配置された硬質層(12,22,32,42,52)とを備える。多層チューブ(1)の第一端部(10)は、弾性層(11)の厚み(H11)が硬質層(12)の厚み(H12)より厚くなるように形成される。

Description

多層チューブ
 本発明は、有機材料により形成された多層チューブに関するものである。
 自動車用の流体流通用の配管(ダクトやホース)において、金属または硬質樹脂のチューブが用いられる。そして、金属または硬質樹脂のチューブをオス型相手部材に外装することにより連結する場合には、チューブをオス型相手部材に直接連結することはできない。そのため、ゴムホースを介在させる必要があった。金属または硬質樹脂のチューブとゴムホースの接続部分において、流体の漏れの問題が生じる。
 また、金属または硬質樹脂のチューブをコネクタなどのメス型相手部材に内挿することにより連結する場合には、ゴムホースを介在させることは必要ない。しかし、組み付け性の観点より、端部は柔軟性を有することが求められる。
 ここで、特開2001-141131号公報には、相手部材が内挿される場合において、相手部材が内挿される部分を軟質樹脂の単独構造部分と、軟質樹脂層および硬質樹脂層からなる多層構造部分とを有する樹脂チューブが記載されている。また、特開2001-141131号公報には、相手部材が外装される場合において、相手部材が外装される部分を硬質樹脂の単独構造部分と、軟質樹脂層および硬質樹脂層からなる多層構造部分とを有する樹脂チューブが記載されている。そして、当該樹脂チューブにおいて、単独構造部分と多層構造部分とが一体的にブロー成形されている。また、樹脂の多層構造の成形については、特開昭53-105563号公報、特許第3619239号公報、特公平6-17056号公報及び特許第2782185号公報に記載されている。
 特開2001-141131号公報に記載の樹脂チューブにおいては、軟質樹脂層または硬質樹脂層は、端部に至る範囲に連続性を有している。そのため、従来のようにゴムホースなどを介在させる場合に比べて、流体の漏れに対して効果的に機能する。しかし、特開2001-141131号公報に記載の樹脂チューブにおいては、軟質樹脂または硬質樹脂からなる単独構造部分が存在する。そのため、硬質樹脂層と軟質樹脂層の何れか一方は、樹脂チューブの長さ方向において連続性を有していない。従って、単独構造部分と多層構造部分との境界において、強度、耐圧性能、耐衝撃性能などについて性能低下の原因となり得る。
 本発明は、流体の漏れの問題を低減すると共に、端部に至る範囲において所望の性能を発揮することができる多層チューブを提供することを目的とする。
 本発明に係る多層チューブは、有機材料により形成される。当該多層チューブは、多層チューブの第一端部は、第一相手部材が内挿または外装されることにより、第一相手部材に連結される。多層チューブは、多層チューブの全長に亘って形成され、所定の曲げ弾性率を有する弾性層と、多層チューブの全長に亘って形成され、弾性層に比べて高い曲げ弾性率を有し、弾性層よりも外層側に配置された硬質層とを備える。
 多層チューブにおいては、弾性層および硬質層の両者が、多層チューブの全長に亘って形成されている。つまり、弾性層が途中で断絶することもなく、硬質層が途中で断絶することもない。従って、多層チューブの長さ方向において、弾性層も連続性を有すると共に、硬質層も連続性を有する。その結果、流体の漏れの問題について、より高い機能により解消できる。
 さらに、本発明に係る多層チューブは、全長に亘って、少なくとも弾性層および硬質層を有する多層構造となる。従って、本発明に係る多層チューブは、特許文献1に記載の多層チューブのような単独構造部分と多層構造部分との境界を有しない。このように、本発明に係る多層チューブは、境界を有しないことにより、安定した所望の性能を発揮することができる。
 さらに、多層チューブの第一端部は、弾性層の厚みが硬質層の厚みより厚くなるように形成されている。その結果、多層チューブの第一端部において、当該第一端部を第一相手部材に連結する際の連結性能が良好となる。また、多層チューブの長さ方向において、弾性層の厚みおよび硬質層の厚みのそれぞれが変化している。その結果、多層チューブは、部位の目的に応じて、弾性層の厚みと硬質層の厚みを変化させることができる。従って、多層チューブ全長に亘って、所望の性能を有するようにできる。
第一例の多層チューブの拡大断面図である。 第一例の多層チューブの正面図であって、弾性層が厚い部位にハッチングを付す。 第二例の多層チューブの拡大断面図である。 第三例の多層チューブの拡大断面図である。 第四例の多層チューブの拡大断面図である。 第五例の多層チューブの正面図であって、弾性層が厚い部位にハッチングを付す。 第六例の多層チューブの正面図であって、弾性層が厚い部位にハッチングを付す。 第七例の多層チューブの正面図であって、弾性層が厚い部位にハッチングを付す。 第八例の多層チューブの正面図であって、弾性層が厚い部位にハッチングを付す。 第九例の多層チューブの正面図であって、弾性層が厚い部位にハッチングを付す。
 (1.適用対象)
 多層チューブは、例えば、自動車用の配管に適用される。多層チューブを適用可能自動車用の配管には、ターボインテークダクト、エアーブローダクト、ウォーター配管、燃料配管などがある。内部を流通させる流体は、エア、水、燃料など種々のものを適用できる。
 また、多層チューブは、両端部のそれぞれを相手部材に連結される。相手部材としては、多層チューブの端部に内挿される部材、多層チューブの端部に外装される部材の何れも適用される。多層チューブの両端部に、相手部材が内挿されるようにしてもよいし、相手部材が外装されるようにしてもよい。また、多層チューブの第一端部に第一相手部材が内挿され、多層チューブの第二端部に第二相手部材が外装されるようにしてもよい。
 また、多層チューブは、直線状のチューブおよび曲がりチューブの何れでもよい。さらに、多層チューブは、全長に亘って非蛇腹状に形成されるようにしてもよいし、長さ方向の少なくとも一部に蛇腹状に形成されるようにしてもよい。
 (2.第一例の多層チューブ1)
 第一例の多層チューブ1について、図1および図2を参照して説明する。多層チューブ1は、図1および図2の右側に位置する第一端部10と、図1および図2の左側に位置する第二端部20と、第一端部10と第二端部20との間に位置する中間部30とを備える。さらに、多層チューブ1は、第一端部10と中間部30との境界部分を構成する第一接続部40、および、第二端部20と中間部30との境界部分を構成する第二接続部50を備える場合を例に挙げる。なお、多層チューブ1は、第一接続部40および第二接続部50が存在しない構成とすることもできる。
 図2に示すように、第一端部10は、全長に亘って非蛇腹状に形成されている。さらに、本例では、第一端部10は、直線状に形成されている。第一端部10は、第一相手部材T1に連結されている。本例では、第一相手部材T1は、オス部材である場合を例に挙げる。従って、多層チューブ1の第一端部10は、オス部材である第一相手部材T1が内挿されることにより、第一相手部材T1に連結される。ただし、第一相手部材T1は、メス部材を適用することもできる。
 図2に示すように、第二端部20は、全長に亘って非蛇腹状に形成されている。さらに、本例では、第二端部20は、直線状に形成されている。第二端部20は、第二相手部材T2に連結されている。本例では、第二相手部材T2は、メス部材である場合を例に挙げる。従って、多層チューブ1の第二端部20は、メス部材である第二相手部材T2が外装されることにより、第二相手部材T2に連結される。ただし、第二相手部材T2は、第一相手部材T1と同様に、オス部材を適用することもできる。
 図2に示すように、中間部30は、全長に亘って非蛇腹状に形成されている。さらに、本例では、中間部30は、直線部(直線状に形成された部位)により構成されている。ただし、中間部30は、直線部のみにより構成されるのではなく、直線部および屈曲部(屈曲形成された部位)により構成されるようにしてもよいし、屈曲部のみにより構成されるようにしてもよい。
 図1に示すように、多層チューブ1は、異なる種類の有機材料による多層構造を有する。本例では、多層チューブ1は、2層構造を有する場合を例に挙げるが、3層以上を有するようにしてもよい。多層チューブ1は、最内層に形成された筒状の弾性層11,21,31,41,51と、外層側に形成された筒状の硬質層12,22,32,42,52とを備える。
 弾性層11,21,31,41,51は、多層チューブ1の全長に亘って連続して形成されている。弾性層11,21,31,41,51は、所定の曲げ弾性率を有している。所定の曲げ弾性率とは、柔軟性、弾性を有する程度の弾性率である。つまり、弾性層11,21,31,41,51は、軟質の有機材料により形成されている。
 弾性層11,21,31,41,51は、樹脂またはエラストマーにより形成される。弾性層11,21,31,41,51には、樹脂として、例えば、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン)、脂肪族ポリアミド(PA46、PA6、PA66、PA610、PA612、PA1010、PA1012、PA11、PA12)、半芳香族ポリアミド(PA4T、PA6T、PA9T、PA10T、PA11T、MXD6)、ポリエステル樹脂(PET、PBT、PBN)、ポリフェニレンサルファイド(PPS)、エチレンービニルアルコール共重合体(EVOH)、フッ素樹脂(ETFE、PVDF、PFA)、ポリアセタール(POM)、塩化ビニル樹脂(PVC)、ポリメチルペンテン樹脂(TPX)、シンジオタクチックポリスチレン樹脂(SPS)を適用できる。
 また、弾性層11,21,31,41,51には、エラストマーとして、例えば、非架橋型オレフィン系熱可塑性エラストマー(TPO)、架橋型オレフィン系熱可塑性エラストマー(TPV)、ポリエステル系熱可塑性エラストマー(TPEE)、ポリアミド系熱可塑性エラストマー(TPAE)、ウレタン系熱可塑性エラストマー(TPU)、塩ビ系熱可塑性エラストマー(TPVC)、フッ素系熱可塑性エラストマー、スチレン系熱可塑性エラストマー(TPS)を適用できる。
 ここで、弾性層11,21,31,41,51は、図1に示すように、1種類の弾性材料による1層構造としてもよい。この他に、弾性層11,21,31,41,51は、異なる弾性材料による多層構造としてもよい。
 硬質層12,22,32,42,52は、多層チューブ1の全長に亘って連続して形成されている。硬質層12,22,32,42,52は、弾性層11,21,31,41,51よりも外層側に配置されている。硬質層12,22,32,42,52は、弾性層11,21,31,41,51に比べて高い曲げ弾性率を有する。
 硬質層12,22,32,42,52は、樹脂またはエラストマーにより形成される。硬質層12,22,32,42,52には、弾性層11,21,31,41,51に適用可能な樹脂、および、エラストマーを適用できる。ただし、弾性層11,21,31,41,51および硬質層12,22,32,42,52は、曲げ弾性率が異なればよく、同種の有機材料を適用することもできる。
 ここで、硬質層12,22,32,42,52は、図1に示すように、1種類の硬質材料による1層構造としてもよい。この他に、硬質層12,22,32,42,52は、異なる硬質材料による多層構造としてもよい。
 多層チューブ1の長さ方向において、弾性層11,21,31,41,51の厚みH11,H21,H31および硬質層12,22,32,42,52の厚みH12,H22,H32のそれぞれが変化している。以下に、各部位における厚みについて詳細に説明する。ここで、第一例においては、多層チューブ1の総厚みH10,H20,H30は、全長に亘って同一である場合を例に挙げる。
 図1に示すように、第一端部10は、弾性層11の厚みH11が硬質層12の厚みH12より厚くなるように形成されている。さらに、第一端部10の長さ方向において、弾性層11の厚みH11は同一であり、硬質層12の厚みH12も同一である。ただし、各厚みH11,H12は、変化させてもよい。
 第一端部10において、オス部材である第一相手部材T1は、内挿されている。弾性層11が、第一相手部材T1の外周面に密着した状態となり、第一端部10は第一相手部材T1に連結される。従って、弾性層11の作用によって、第一端部10は、第一相手部材T1との間で、高い保持力を有すると共に、高いシール性を有する。
 さらに、弾性層11は、硬質層12の内周面と第一相手部材T1の外周面とにより径方向に圧縮された状態となる。ここでは、第一端部10において、硬質層12は、弾性層11を圧縮した状態で支持する力を発揮できる程度の厚みH12を有する。そして、弾性層11が圧縮されることによって、第一端部10は第一相手部材T1に連結される。つまり、弾性層11の圧縮によって、より高い保持力を有すると共に、より高いシール性を有する。
 ここで、第一端部10は、屈曲可能な柔軟性を有するようにしてもよい。硬質層12を屈曲可能な柔軟性を有するような厚みH12とすることにより、第一端部10が当該性質を有するようにできる。第一端部10が当該性質を有することにより、第一端部10がゴムホースに類似した態様となり、第一端部10を第一相手部材T1への取付性が良好となる。
 第二端部20は、弾性層21の厚みH21が硬質層22の厚みH22より厚くなるように形成されている。さらに、第二端部20の長さ方向において、弾性層21の厚みH21は同一であり、硬質層22の厚みH22も同一である。ただし、各厚みH21,H22は、変化させてもよい。
 第二端部20において、メス部材である第二相手部材T2が、外装されている。また、第二端部20において、硬質層22が最外層に形成されている。そして、第二端部20において、硬質層22が第二相手部材T2に溶着または係止されている。第二端部20において最外層に硬質層22が形成されていることにより、第二相手部材T2との高い連結力を発揮できる。
 ただし、第二端部20においては、最内層に厚い弾性層21が形成されている。従って、第二端部20は、屈曲可能な柔軟性を有するようにできる。硬質層22を屈曲可能な柔軟性を有するような厚みH22とすることにより、第二端部20が当該性質を有するようにできる。第二端部20が当該性質を有することにより、第二端部20がゴムホースに類似した態様となり、第二端部20を第二相手部材T2への取付性が良好となる。
 中間部30は、全長に亘って、弾性層31の厚みH31が硬質層32の厚みH32より薄くなるように形成されている。さらに、中間部30の長さ方向において、弾性層31の厚みH31は同一であり、硬質層32の厚みH32も同一である。ただし、各厚みH31,H32は、変化させてもよい。
 また、中間部30における硬質層32の厚みH32は、第一端部10および第二端部20における硬質層12,22の厚みH12,H22よりも十分に厚く形成されている。従って、中間部30は、硬質層のみにより形成される配管や、金属により形成される配管と同等の機能を発揮することができる。すなわち、中間部30は、所定以上の曲げ剛性を有する構成とすることができる。
 また、中間部30において、内層側に薄い弾性層31が形成されている。弾性層31の存在によって、中間部30の耐久性を高めることができる。中間部30において、硬質材料のみの場合に比べると、薄い弾性層31の存在により衝撃吸収力が向上し、耐久性を高めることができる。
 第一接続部40は、第一端部10と中間部30との境界部分を構成する。そして、第一接続部40において、弾性層41は、第一端部10の弾性層11と中間部30の弾性層31とを連続的に接続する。つまり、弾性層41は、厚みが徐々に変化している。また、第一接続部40において、硬質層42は、第一端部10の硬質層12と中間部30の硬質層32とを連続的に接続する。つまり、硬質層42は、厚みが徐々に変化している。従って、各層41,42の急激な変化による悪影響を低減できる。
 第二接続部50は、第二端部20と中間部30との境界部分を構成する。そして、第二接続部50において、弾性層51は、第二端部20の弾性層21と中間部30の弾性層31とを連続的に接続する。つまり、弾性層51は、厚みが徐々に変化している。また、第二接続部50において、硬質層52は、第二端部20の硬質層22と中間部30の硬質層32とを連続的に接続する。つまり、硬質層52は、厚みが徐々に変化している。従って、各層51,52の急激な変化による悪影響を低減できる。
 上述したように、多層チューブ1においては、弾性層11,21,31,41,51および硬質層12,22,32,42,52の両者が、多層チューブの全長に亘って形成されている。つまり、弾性層11,21,31,41,51が途中で断絶することもなく、硬質層12,22,32,42,52が途中で断絶することもない。従って、多層チューブ1の長さ方向において、弾性層11,21,31,41,51も連続性を有すると共に、硬質層12,22,32,42,52も連続性を有する。その結果、流体の漏れの問題について、より高い機能により解消できる。
 さらに、多層チューブ1は、全長に亘って、少なくとも弾性層11,21,31,41,51および硬質層12,22,32,42,52を有する多層構造となる。従って、多層チューブ1は、従来の樹脂チューブのような単独構造部分と多層構造部分との境界を有しない。このように、多層チューブ1は、境界を有しないことにより、安定した所望の性能を発揮することができる。
 さらに、多層チューブ1の第一端部10は、弾性層11の厚みH11が硬質層12の厚みH12より厚くなるように形成される。その結果、多層チューブ1の第一端部10において、当該第一端部10を第一相手部材T1に連結する際の連結性能が良好となる。また、多層チューブ1の第二端部20は、弾性層21の厚みH21が硬質層22の厚みH22より厚くなるように形成される。その結果、多層チューブ1の第二端部20において、当該第二端部20を第二相手部材T2に連結する際の連結性能が良好となる。
 また、多層チューブ1の長さ方向において、弾性層11,21,31,41,51の厚みH11,H21,H31および硬質層12,22,32,42,52の厚みH12,H22,H32のそれぞれが変化している。その結果、多層チューブ1は、部位の目的に応じて、弾性層11,21,31,41,51の厚みH11,H21,H31と硬質層12,22,32,42,52の厚みH12,H22,H32を変化させることができる。従って、多層チューブ1の全長に亘って、所望の性能を有するようにできる。
 (3.第二例の多層チューブ2)
 第二例の多層チューブ2について、図3を参照して説明する。多層チューブ2は、第一例の多層チューブ1に対して、第一端部10および第二端部20の構成が異なる。
 第一端部10の総厚みH10は、中間部30の総厚みH30よりも厚く形成されている。第二端部20の総厚みH20も、中間部30の総厚みH30よりも厚く形成されている。第一端部10において、弾性層11の厚みH11は、硬質層12の厚みH12よりも厚い。第二端部20において、弾性層21の厚みH21は、硬質層22の厚みH22よりも厚い。中間部30において、弾性層31の厚みH31は、硬質層32の厚みH32よりも薄い。
 第一端部10における硬質層12の厚みH12は、中間部30における硬質層32の厚みH32より薄い。従って、第一端部10において第一端部10の総厚みH10に対する弾性層11の厚みH11の比率(H11/H10)は、中間部30において中間部30の総厚みH30に対する硬質層32の厚みH32の比率(H32/H30)よりも大きい。反対に、第一端部10において第一端部10の総厚みH10に対する硬質層12の厚みH12の比率(H12/H10)は、中間部30において中間部30の総厚みH30に対する弾性層31の厚みH31の比率(H31/H30)よりも小さい。
 第二端部20も、第一端部10と同様である。すなわち、第二端部20における硬質層22の厚みH22は、中間部30における硬質層32の厚みH32より薄い。従って、第二端部20において第二端部20の総厚みH20に対する弾性層21の厚みH21の比率(H21/H20)は、中間部30において中間部30の総厚みH30に対する硬質層32の厚みH32の比率(H32/H30)よりも大きい。反対に、第二端部20において第二端部20の総厚みH20に対する硬質層22の厚みH22の比率(H22/H20)は、中間部30において中間部30の総厚みH30に対する弾性層31の厚みH31の比率(H31/H30)よりも小さい。
 第一端部10および第二端部20における硬質層12,22の厚みH12,H22が、中間部30の硬質層32の厚みH32に比べて薄い。そのため、第一端部10および第二端部20の強度が、中間部30に比べて大きく低下するおそれがある。
 しかし、第二例の多層チューブ2においては、第一端部10および第二端部20の総厚みH10,H20を、中間部30の総厚みH30より厚くしている。そして、硬質層12,22による強度低下の分を、弾性層11,21の厚みH11,H21を厚くすることにより補強している。従って、第一端部10全体として、中間部30と同程度の強度を有するようにできる。第二端部20も同様である。
 (4.第三例の多層チューブ3)
 第三例の多層チューブ3について、図4を参照して説明する。多層チューブ3は、第一例の多層チューブ1に対して、筒状の接着層13,23,33,43,53をさらに備える。
 接着層13,23,33,43,53は、多層チューブ3の全長に亘って連続して形成されている。接着層13,23,33,43,53は、弾性層11,21,31,41,51と硬質層12,22,32,42,52の径方向間に形成され、弾性層11,21,31,41,51と硬質層12,22,32,42,52とを接着する。接着層13,23,33,43,53は、全長に亘って均一の厚みを有する。
 接着層13,23,33,43,53の曲げ弾性率は、弾性層11,21,31,41,51の曲げ弾性率と同等としてもよいし、硬質層12,22,32,42,52の曲げ弾性率と同等としてもよいし、弾性層11,21,31,41,51の曲げ弾性率と硬質層12,22,32,42,52の曲げ弾性率の中間としてもよい。
 (5.第四例の多層チューブ4)
 第四例の多層チューブ4について、図5を参照して説明する。第四例の多層チューブ4は、第一例の多層チューブ1に対して、筒状の保護層14,24,34,44,54を備える。
 保護層14,24,34,44,54は、多層チューブ4の全長に亘って連続して形成されている。保護層14,24,34,44,54は、硬質層12,22,32,42,52の外層側であって、多層チューブ4の最外層に配置されている。保護層14,24,34,44,54は、全長に亘って均一の厚みを有する。保護層14,24,34,44,54の曲げ弾性率は、硬質層12,22,32,42,52の曲げ弾性率と低くするとよい。従って、保護層14,24,34,44,54は、多層チューブ4の保護機能を全長に亘って発揮する。
 (6.第五例の多層チューブ5)
 第五例の多層チューブ5について、図6を参照して説明する。図6に示すように、多層チューブ5は、直線状に形成されている。ここで、図6において、ハッチングを付した部位は、弾性層が硬質層よりも厚く、ハッチングを付していない部位は、弾性層が硬質層よりも薄い。ハッチングの有無の意味は、図7~図10においても同様である。
 詳細には、多層チューブ5は、第一端部10、第二端部20、中間部130、第一接続部40および第二接続部50を備える。第一端部10および第二端部20は、第一例から第四例の多層チューブ1~4の何れか1つにおける第一端部10および第二端部20を適用できる。つまり、第一端部10および第二端部20は、弾性層11,21が硬質層12,22より厚くなるように形成されている。
 中間部130は、非蛇腹状の直線部により構成されている。ここで、第一例から第四例の多層チューブ1~4の中間部30は、全長に亘って、弾性層31が硬質層32よりも薄くなるように形成されている。これに対して、第五例の多層チューブ5の中間部130は、弾性層が硬質層よりも薄い部位130a,130cと、弾性層が硬質層よりも厚い部位130bとを備える。弾性層および硬質層の意味は、第一例から第四例の多層チューブ1~4にて説明したとおりである。第一接続部40および第二接続部50は、第一例から第四例の多層チューブ1~4における第一接続部40および第二接続部,50と同様に構成される。
 弾性層の厚みが厚い部位130bは、例えば、相対的に耐衝撃性が高い部位に位置し、耐衝撃部として機能させることができる。一方、弾性層の厚みが薄い部位130a,130cは、例えば、相対的に耐衝撃性が低い部位に位置し、通常部として機能させることができる。
 (7.第六例の多層チューブ6)
 第六例の多層チューブ6について、図7を参照して説明する。多層チューブ6は、第一端部10、第二端部20、中間部230、第一接続部40および第二接続部50を備える。第一端部10、第二端部20、第一接続部40および第二接続部50は、第一例から第四例の多層チューブ1~4の何れか1つにおける第一端部10、第二端部20、第一接続部40および第二接続部50を適用できる。
 ここで、第一例から第四例の多層チューブ1~4の中間部30は、全長に亘って、非蛇腹状の直線部により構成されている。これに対して、第六例の多層チューブ6の中間部230は、非蛇腹状の屈曲部230b,230d、および、非蛇腹状の直線部230a,230c,230eを備える。なお、屈曲箇所の数は、適宜変更可能である。そして、屈曲部230b,230dおよび直線部230a,230c,230eは、それぞれ全長に亘って、弾性層が硬質層よりも薄くなるように形成されている。つまり、中間部230では、全長に亘って、弾性層が硬質層よりも薄く形成されている。
 本例では、屈曲部230b,230dおよび直線部230a,230c,230eが、内径および外径を同程度としつつ、屈曲部230b,230dも、直線部230a,230c,230eも、所望の強度および曲げ弾性率を有するようにできる。
 (8.第七例の多層チューブ7)
 第七例の多層チューブ7について、図8を参照して説明する。多層チューブ7は、第一端部10、第二端部20、中間部330、第一接続部40および第二接続部50を備える。第一端部10、第二端部20、第一接続部40および第二接続部50は、第一例から第四例の多層チューブ1~4の何れか1つにおける第一端部10、第二端部20、第一接続部40および第二接続部50を適用できる。
 第七例の多層チューブ7の中間部330は、非蛇腹状の屈曲部330b,330d、および、非蛇腹状の直線部330a,330c,330eを備える。なお、屈曲箇所の数は、適宜変更可能である。そして、直線部330a,330c,330eは、弾性層が硬質層よりも薄くなるように形成されている。一方、屈曲部330b,330dは、弾性層が硬質層よりも厚くなるように形成されている。つまり、中間部330は、弾性層の厚みおよび硬質層の厚みを変化させている。これにより、屈曲部330b,330dの成形が容易となる。
 (9.第八例の多層チューブ8)
 第八例の多層チューブ8について、図9を参照して説明する。多層チューブ8は、第一端部10、第二端部20、中間部430、第一接続部40および第二接続部50を備える。第一端部10、第二端部20、第一接続部40および第二接続部50は、第一例から第四例の多層チューブ1~4の何れか1つにおける第一端部10、第二端部20、第一接続部40および第二接続部50を適用できる。
 ここで、第一例から第四例の多層チューブ1~4の中間部30は、全長に亘って、非蛇腹状に形成されている。これに対して、第八例の多層チューブ8は、蛇腹部430bおよび非蛇腹部430a,430cを備える。なお、蛇腹部分の数は、適宜変更可能である。
 そして、蛇腹部430bおよび非蛇腹部430a,430cは、それぞれ全長に亘って、弾性層の厚みが硬質層の厚みより薄くなるように形成されている。つまり、中間部430は、全長に亘って、弾性層が硬質層よりも薄くなるように形成されている。従って、多層チューブ8は、ある程度の硬さを有する蛇腹部430bおよび非蛇腹部430a,430cを備える。
 (10.第九例の多層チューブ9)
 第九例の多層チューブ9について、図10を参照して説明する。多層チューブ9は、第一端部10、第二端部20、中間部530、第一接続部40および第二接続部50を備える。第一端部10、第二端部20、第一接続部40および第二接続部50は、第一例から第四例の多層チューブ1~4の何れか1つにおける第一端部10、第二端部20、第一接続部40および第二接続部50を適用できる。
 第九例の多層チューブ9の中間部530は、蛇腹部530b、および、非蛇腹部530a,530cを備える。なお、蛇腹部分の数は、適宜変更可能である。そして、非蛇腹部530a,530cは、弾性層が硬質層よりも薄くなるように形成されている。一方、蛇腹部530bは、弾性層が硬質層よりも厚くなるように形成されている。つまり、中間部530は、弾性層の厚みおよび硬質層の厚みを変化させている。これにより、蛇腹部530bの成形が容易となる。
 (11.その他)
 なお、上記例においては、多層チューブ1-9の長さ方向の中間部30,130,230,330,430,530は、少なくとも一部において、弾性層の厚みが硬質層の厚みより薄くなるように形成された部位を有する場合を例に挙げた。ただし、この構成に限られることなく、多層チューブ1-9の長さ方向の中間部30,130,230,330,430,530が、弾性層の厚みが硬質層の厚みより薄くなるように形成された部位を有しないようにしてもよい。すなわち、多層チューブ1-9の長さ方向において、弾性層の厚みおよび硬質層の厚みのそれぞれが変化していれば、全長に亘って弾性層の厚みが硬質層の厚みより厚くなるように形成されるようにしてもよい。
1-9:多層チューブ、 10:第一端部、 11,21,31,41,51:弾性層、 12,22,32,42,52:硬質層、 13,23,33,43,53:接着層、 14,24,34,44,54:保護層、 20:第二端部、 30,130,230,330,430,530:中間部、 40:第一接続部、 50:第二接続部、 130a,130c:通常部、 130b:耐衝撃部、 230a,230c,230e,330a,330c,330e:直線部、 230b,230d,330b,330d:屈曲部、 430a,430c,530a,530c:非蛇腹部、 430b,530b:蛇腹部、 T1:第一相手部材、 T2:第二相手部材

Claims (19)

  1.  有機材料により形成された多層チューブであって、
     前記多層チューブの第一端部は、第一相手部材が内挿または外装されることにより、前記第一相手部材に連結され、
     前記多層チューブは、
     前記多層チューブの全長に亘って形成され、所定の曲げ弾性率を有する弾性層と、
     前記多層チューブの全長に亘って形成され、前記弾性層に比べて高い曲げ弾性率を有し、前記弾性層よりも外層側に配置された硬質層と、
     を備え、
     前記多層チューブの長さ方向において、前記弾性層の厚みおよび前記硬質層の厚みのそれぞれが変化しており、
     前記多層チューブの前記第一端部は、前記弾性層の厚みが前記硬質層の厚みより厚くなるように形成される、多層チューブ。
  2.  前記多層チューブの長さ方向の中間部は、前記多層チューブの長さ方向の少なくとも一部において、前記弾性層の厚みが前記硬質層の厚みより薄くなるように形成された部位を有する、請求項1に記載の多層チューブ。
  3.  前記第一端部は、オス部材である前記第一相手部材が内挿されることにより、前記第一相手部材に連結され、
     前記第一端部は、前記弾性層が前記硬質層と前記第一相手部材の外周面とにより径方向に圧縮された状態で、前記第一相手部材に連結される、請求項1または2に記載の多層チューブ。
  4.  前記第一端部の総厚みは、前記中間部の総厚みより厚く形成され、
     前記第一端部における前記硬質層の厚みは、前記中間部における前記硬質層の厚みより薄く、
     前記第一端部において前記第一端部の総厚みに対する前記弾性層の厚みの比率は、前記中間部において前記中間部の総厚みに対する前記硬質層の厚みの比率よりも大きい、請求項1-3の何れか1項に記載の多層チューブ。
  5.  前記第一端部は、屈曲可能な柔軟性を有する、請求項1-3の何れか1項に記載の多層チューブ。
  6.  前記第一端部は、メス部材である前記第一相手部材が外装されることにより、前記第一相手部材に連結され、屈曲可能な柔軟性を有し、
     前記第一端部において、前記硬質層が前記第一相手部材に溶着または係止される、請求項1または2に記載の多層チューブ。
  7.  前記多層チューブの第二端部は、第二相手部材が内挿または外装されることにより、前記第二相手部材に連結され、
     前記第二端部は、前記弾性層の厚みが前記硬質層の厚みより厚くなるように形成されている、請求項1-6の何れか1項に記載の多層チューブ。
  8.  前記第二端部は、オス部材である前記第二相手部材が内挿されることにより、前記第二相手部材に連結され、
     前記第二端部は、前記弾性層が前記硬質層と前記第二相手部材の外周面とにより径方向に圧縮された状態で、前記第二相手部材に連結される、請求項7に記載の多層チューブ。
  9.  前記第二端部の総厚みは、前記中間部の総厚みより厚く形成され、
     前記第二端部における前記硬質層の厚みは、前記中間部における前記硬質層の厚みより薄く、
     前記第二端部において前記第二端部の総厚みに対する前記弾性層の厚みの比率は、前記中間部において前記中間部の総厚みに対する前記硬質層の厚みの比率よりも大きい、請求項7または8に記載の多層チューブ。
  10.  前記第二端部は、屈曲可能な柔軟性を有する、請求項7または8に記載の多層チューブ。
  11.  前記第二端部は、メス部材である前記第二相手部材が外装されることにより、前記第二相手部材に連結され、屈曲可能な柔軟性を有し、
     前記第二端部において、前記硬質層が前記第二相手部材に溶着または係止される、請求項7に記載の多層チューブ。
  12.  前記中間部は、全長に亘って非蛇腹状に形成され、全長に亘って前記弾性層の厚みが前記硬質層の厚みより薄く形成される、請求項1-11の何れか1項に記載の多層チューブ。
  13.  前記中間部は、非蛇腹状の屈曲部および非蛇腹状の直線部を備え、
     前記屈曲部および前記直線部は、全長に亘って前記弾性層の厚みが前記硬質層の厚みより薄く形成される、請求項12に記載の多層チューブ。
  14.  前記中間部は、蛇腹部および非蛇腹部を備え、
     前記蛇腹部および前記非蛇腹部は、全長に亘って前記弾性層の厚みが前記硬質層の厚みより薄く形成される、請求項12に記載の多層チューブ。
  15.  前記中間部は、
     非蛇腹状に形成され、前記弾性層の厚みが前記硬質層の厚みより厚くなるように形成される屈曲部と、
     非蛇腹状に形成され、前記弾性層の厚みが前記硬質層の厚みより薄く形成される直線部と、
     を備える、請求項1-11の何れか1項に記載の多層チューブ。
  16.  前記中間部は、
     前記弾性層の厚みが前記硬質層の厚みより厚くなるように形成される蛇腹部と、
     前記弾性層の厚みが前記硬質層の厚みより薄くなるように形成される非蛇腹部と、
     を備える、請求項1-11の何れか1項に記載の多層チューブ。
  17.  前記中間部は、
     耐衝撃性が高い部位に位置し、前記弾性層の厚みが前記硬質層の厚みより厚くなるように形成される耐衝撃部と、
     前記耐衝撃性が低い部位に位置し、前記弾性層の厚みが前記硬質層の厚みより薄くなるように形成される通常部と、
     を備える、請求項1-11の何れか1項に記載の多層チューブ。
  18.  前記多層チューブは、さらに、
     前記多層チューブの全長に亘って形成され、前記弾性層と前記硬質層の間に形成され、前記弾性層と前記硬質層とを接着する接着層を備える、請求項1-17の何れか1項に記載の多層チューブ。
  19.  前記多層チューブは、さらに、
     前記多層チューブの全長に亘って形成され、前記硬質層の外層側であって前記多層チューブの最外層に配置された保護層を備える、請求項1-18の何れか1項に記載の多層チューブ。
PCT/JP2020/008786 2019-03-19 2020-03-03 多層チューブ WO2020189248A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020000112.1T DE112020000112T5 (de) 2019-03-19 2020-03-03 Mehrschichtiges rohr
CN202080002598.1A CN112074681B (zh) 2019-03-19 2020-03-03 多层管
US17/313,022 US11919272B2 (en) 2019-03-19 2021-05-06 Multilayer tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-051693 2019-03-19
JP2019051693A JP7382149B2 (ja) 2019-03-19 2019-03-19 多層チューブ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/313,022 Continuation US11919272B2 (en) 2019-03-19 2021-05-06 Multilayer tube

Publications (1)

Publication Number Publication Date
WO2020189248A1 true WO2020189248A1 (ja) 2020-09-24

Family

ID=72520219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008786 WO2020189248A1 (ja) 2019-03-19 2020-03-03 多層チューブ

Country Status (5)

Country Link
US (1) US11919272B2 (ja)
JP (1) JP7382149B2 (ja)
CN (1) CN112074681B (ja)
DE (1) DE112020000112T5 (ja)
WO (1) WO2020189248A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159838A (ja) * 2013-02-20 2014-09-04 Fuji Heavy Ind Ltd 燃料用チューブ
JP2018118498A (ja) * 2017-01-27 2018-08-02 住友理工株式会社 フィラーチューブの製造方法およびフィラーチューブ

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346015U (ja) * 1976-09-25 1978-04-19
JPS5346015A (en) 1976-10-08 1978-04-25 Nippon Gakki Seizo Kk Glide effect device for electronic musical instrument
JPS53105563A (en) 1977-02-28 1978-09-13 Ondooru Shisutemu Kk Process and apparatus for production of multilayer straight plastic pipe having many wall thickness ratio
JPS5540148A (en) 1978-09-14 1980-03-21 Hitachi Ltd Container guide
JPH0723758B2 (ja) * 1983-11-22 1995-03-15 株式会社ブリヂストン ゴム管状物
JPH0631660B2 (ja) * 1986-12-18 1994-04-27 鬼怒川ゴム工業株式会社 エアダクト
JPH01212532A (ja) * 1988-02-18 1989-08-25 Olympus Optical Co Ltd 内視鏡用可撓管
JP3219407B2 (ja) * 1990-11-26 2001-10-15 エクセル株式会社 多層プラスチック管及びその製造方法
JPH05118475A (ja) * 1991-10-28 1993-05-14 Nippon Carbide Ind Co Inc 流体輸送用ホース及びその製造方法
US5469892A (en) * 1992-04-14 1995-11-28 Itt Automotive, Inc. Corrugated polymeric tubing having at least three layers with at least two respective layers composed of polymeric materials dissimilar to one another
DE69312040T2 (de) * 1992-06-29 1998-01-08 Tokai Rubber Ind Ltd Verbindungsstruktur für kunstharzschlauch
JPH0617056A (ja) 1992-07-03 1994-01-25 Sumitomo Metal Ind Ltd 高炉用コークス製造方法
DE69322826T2 (de) * 1992-09-30 1999-06-10 Tokai Rubber Ind Ltd Mehrschichtiger Schlauch
JP3161658B2 (ja) * 1992-09-30 2001-04-25 東海ゴム工業株式会社 複層ホース
JP3161661B2 (ja) * 1993-01-08 2001-04-25 東海ゴム工業株式会社 積層構造ホースの製造方法
DE9319880U1 (de) * 1993-12-23 1994-03-17 Ems-Inventa AG, Zürich Blasgeformte Kühlflüssigkeitsleitung
DE19508412C2 (de) * 1995-03-09 2003-04-10 Cooper Standard Automotive D Kunststoffrohr mit variierenden Schichtdicken
JP3261969B2 (ja) * 1996-02-29 2002-03-04 豊田合成株式会社 ホースとその製造方法
JP2782185B2 (ja) 1997-02-05 1998-07-30 株式会社プラコー 合成樹脂製自動車空調用ダクト管のブロー成形装置
US5918643A (en) * 1997-05-13 1999-07-06 Form Rite Plastic tube with varying layer thickness
US5960977A (en) * 1998-05-14 1999-10-05 Itt Manufacturing Enterprises, Inc. Corrugated polymeric filler neck tubing
JP2000274562A (ja) * 1999-03-24 2000-10-03 Tokai Rubber Ind Ltd 積層コルゲートチューブ
US6279615B1 (en) * 1999-09-03 2001-08-28 Tokai Rubber Industries, Ltd. Fuel hose
JP2001141131A (ja) * 1999-11-19 2001-05-25 Excel Kk 多層構造を持つ樹脂製ダクト
CN1226544C (zh) * 2000-03-03 2005-11-09 丰田合成株式会社 燃料用树脂软管及其制造方法
US6860849B2 (en) * 2000-05-08 2005-03-01 Pentax Corporation Flexible tube for an endoscope
US20030118766A1 (en) * 2001-12-26 2003-06-26 Masaki Koike Fuel tube
JP2003214564A (ja) * 2002-01-24 2003-07-30 Tokai Rubber Ind Ltd 燃料用ホース
DE50207999D1 (de) * 2002-05-07 2006-10-12 Ems Chemie Ag Gewellter Mehrschicht-Polymer-Schlauch- oder Rohrleitung mit reduzierter Längenänderung
JP4009519B2 (ja) * 2002-10-25 2007-11-14 オリンパス株式会社 内視鏡
US7192063B2 (en) * 2003-02-12 2007-03-20 Tokai Rubber Industries, Ltd. Metallic tubular hose having a rubber or resin hard material layer
US6983769B2 (en) * 2003-06-23 2006-01-10 Tokai Rubber Industries, Ltd. Vibration absorbing hose
JP3619239B1 (ja) 2003-08-27 2005-02-09 株式会社プラ技研 樹脂製多層チューブの押出成形装置
JP2005081663A (ja) * 2003-09-08 2005-03-31 Nissan Motor Co Ltd 樹脂製チューブ及び燃料系配管用チューブ
JP2005081100A (ja) * 2003-09-11 2005-03-31 Olympus Corp 内視鏡の可撓管
JP2006029449A (ja) * 2004-07-15 2006-02-02 Tokai Rubber Ind Ltd 高耐圧振動吸収ホース及びその製造方法
RU2279601C2 (ru) * 2004-08-30 2006-07-10 Закрытое акционерное общество "СОЮЗНЕФТЕГАЗ РД" Труба из композиционно-волокнистого материала
JP2006283843A (ja) * 2005-03-31 2006-10-19 Tokai Rubber Ind Ltd 高耐圧振動吸収ホース及びその製造方法
JP2006341559A (ja) * 2005-06-10 2006-12-21 Meiji Flow Systems Co Ltd 燃料ホース
JP2007046772A (ja) * 2005-07-13 2007-02-22 Toyoda Gosei Co Ltd 樹脂パイプおよび樹脂成形品
JP4922785B2 (ja) * 2006-03-24 2012-04-25 東海ゴム工業株式会社 燃料輸送ホース
JP5013912B2 (ja) * 2006-03-28 2012-08-29 東海ゴム工業株式会社 樹脂複合ホース及びその製造方法
JP4971348B2 (ja) * 2006-10-20 2012-07-11 キョーラク株式会社 多層チューブ
ES2408808T3 (es) * 2007-01-11 2013-06-21 Ems-Chemie Ag Herramienta de moldeo por soplado con succión para la producción de piezas moldeadas de materiales sintéticos, conformadas por soplado con succión y extrusión, procedimiento de producción y utilización
US7568505B2 (en) * 2007-03-23 2009-08-04 Tokai Rubber Industries, Ltd. Fuel hose
JP2009226023A (ja) * 2008-03-24 2009-10-08 Fujifilm Corp 内視鏡用可撓管の製造方法
US20090247826A1 (en) * 2008-03-28 2009-10-01 Olympus Corporation Tube for endoscope
JP5405862B2 (ja) * 2008-03-31 2014-02-05 ウィンテックポリマー株式会社 多層チューブ
JP2010075352A (ja) * 2008-09-25 2010-04-08 Fujinon Corp 内視鏡用可撓管及び内視鏡
JP2010179025A (ja) * 2009-02-09 2010-08-19 Fujifilm Corp 内視鏡用可撓管の製造方法
EP2270378A1 (de) * 2009-07-02 2011-01-05 LANXESS Deutschland GmbH Flexibles Rohr
DE202010012463U1 (de) * 2010-09-10 2011-12-12 Rehau Ag + Co. Kunststoffrohrformteil
JP5591043B2 (ja) * 2010-09-22 2014-09-17 富士フイルム株式会社 内視鏡及びその軟性部
JP2012176113A (ja) * 2011-02-25 2012-09-13 Fujifilm Corp 内視鏡
US8795158B2 (en) * 2011-04-26 2014-08-05 Fujifilm Corporation Endoscope insertion assisting device
EP2752607B1 (en) * 2011-08-29 2018-01-10 Sumitomo Riko Company Limited Resin fuel inlet pipe and production method therefor
CN104784811B (zh) * 2014-01-17 2020-03-24 富士胶片株式会社 挠性管、内窥镜型医疗设备及顶涂层用的树脂组合物
JP5968939B2 (ja) * 2014-03-26 2016-08-10 富士フイルム株式会社 内視鏡用可撓管及びその製造方法
KR101573614B1 (ko) * 2014-06-17 2015-12-01 현대자동차주식회사 인터쿨러 파이프
JP6368256B2 (ja) * 2015-02-05 2018-08-01 富士フイルム株式会社 内視鏡システム
DE202015104169U1 (de) * 2015-08-10 2016-11-14 Rehau Ag + Co Mehrschichtiger Schlauch
KR102105653B1 (ko) * 2018-12-20 2020-04-28 부산대학교 산학협력단 서로 다른 두께 편차를 갖는 테일러 레이어드 튜브 및 그 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159838A (ja) * 2013-02-20 2014-09-04 Fuji Heavy Ind Ltd 燃料用チューブ
JP2018118498A (ja) * 2017-01-27 2018-08-02 住友理工株式会社 フィラーチューブの製造方法およびフィラーチューブ

Also Published As

Publication number Publication date
US11919272B2 (en) 2024-03-05
CN112074681B (zh) 2023-01-03
DE112020000112T5 (de) 2021-06-17
JP2020153428A (ja) 2020-09-24
JP7382149B2 (ja) 2023-11-16
US20210252823A1 (en) 2021-08-19
CN112074681A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
JP5013912B2 (ja) 樹脂複合ホース及びその製造方法
US6213155B1 (en) Fluid-impermeable composite hose
JP2000274562A (ja) 積層コルゲートチューブ
JP5154118B2 (ja) 流体輸送蛇腹ホース及びその製造方法
US20100270753A1 (en) High strength composite pipe gasket
JP2007292303A (ja) 燃料輸送ホース
CN103492779B (zh) 模块化的配件
WO2020189248A1 (ja) 多層チューブ
CN112204288B (zh) 流体管道
JPH06316008A (ja) プラスチック材料をベースとする流体用管路
US7861746B2 (en) Motor vehicle hose
US7089965B2 (en) Pipe for transporting automobile fluids, comprising a smooth inner tube and an annellated outer tube
JP2007292302A (ja) 曲り形状の樹脂複合ホース及びその製造方法
JP2014173694A (ja) コルゲートチューブ
US11408381B2 (en) Pipe component
JP2746015B2 (ja) 燃料ホース
JP4217810B2 (ja) 可撓性二層管
JP6468097B2 (ja) 管体接続構造
US20100227099A1 (en) Fuel line
JP2004263866A (ja) 蛇腹金属管付ホース
JP2010159813A (ja) 継手付き樹脂管
JP4987600B2 (ja) 樹脂チューブ
JP2007051678A (ja) 管継手
JP2004003636A (ja) フレキシブルジョイント
JP2018003926A (ja) 合成樹脂製ホース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774133

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20774133

Country of ref document: EP

Kind code of ref document: A1