JP2006029449A - 高耐圧振動吸収ホース及びその製造方法 - Google Patents

高耐圧振動吸収ホース及びその製造方法 Download PDF

Info

Publication number
JP2006029449A
JP2006029449A JP2004209182A JP2004209182A JP2006029449A JP 2006029449 A JP2006029449 A JP 2006029449A JP 2004209182 A JP2004209182 A JP 2004209182A JP 2004209182 A JP2004209182 A JP 2004209182A JP 2006029449 A JP2006029449 A JP 2006029449A
Authority
JP
Japan
Prior art keywords
hose
layer
shaft end
diameter
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004209182A
Other languages
English (en)
Inventor
Tetsuya Arima
徹哉 有馬
Norihiko Furuta
則彦 古田
Ayumi Ikemoto
歩 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2004209182A priority Critical patent/JP2006029449A/ja
Priority to US11/180,199 priority patent/US20060011249A1/en
Priority to DE102005033271A priority patent/DE102005033271B4/de
Publication of JP2006029449A publication Critical patent/JP2006029449A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/085Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Joints That Cut Off Fluids, And Hose Joints (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】インジェクション成形の手法によらないでホース製造が可能であり、また軸端部のかしめ部の拡径変形が可能で且つその拡径部に対して継手具をかしめ付け固定する際に、かしめ切れを生ずることの無い高耐圧振動吸収ホースを提供する。
【解決手段】内面ゴム層16と、編組角度が50%以上の高密度の補強層18と、外面ゴム層20を有し、軸端部のかしめ部12Bに対して、インサートパイプとソケット金具とを有する継手金具をかしめ付け固定して成る破裂圧が5MPa以上の高耐圧振動吸収ホースにおいて、継手具のかしめ付け固定する前の形状において軸端部のかしめ部12Bが他の主部12Aに対して拡径形状に且つ内面ゴム層16におけるかしめ部16Bの肉厚が1mm以上とされており、更に補強層18における補強線材の編角θが静止角である54.7°以下且つ48°より大となしておく。
【選択図】 図5

Description

この発明は高耐圧振動吸収ホース、特に自動車のエンジンルーム内に配管用として配設されるものに適用して好適な高耐圧振動吸収ホース及びその製造方法に関する。
従来より、筒状のゴム層を主体として構成されたホースが産業用,自動車用のホースとして各種用途に広く使用されている。
このようなホースを用いる主たる目的は振動を吸収することにある。
例えば自動車のエンジンルーム内に配設される配管用ホースの場合、エンジン振動やエアコンのコンプレッサ振動(冷媒輸送用ホース即ちエアコンホースの場合),車両の走行に伴って発生する各種の振動をホース部分で吸収し、ホースを介して接続されている一方の部材から他方の部材へと振動が伝達されるのを抑制する役割を担っている。
ところで産業用,自動車用を問わずオイル系,燃料系,水系,冷媒系ホースの構造は、例えば下記特許文献1に開示されているように内面ゴム層(内面層)と外面ゴム層(外面ゴム層)との中間に補強糸(補強線材)を編組して成る補強層を有する構造をなしている。
図8(イ)は下記特許文献1に開示された冷媒輸送用ホース(エアコンホース)の構造を示したもので、図中200は筒状の内面ゴム層で内表面が樹脂内層202で被覆されている。
内面ゴム層200の外側には補強糸をスパイラル巻きして成る第1補強層204が、更にその外側に中間ゴム層206を介して補強糸を第1補強層204とは逆向きにスパイラル巻きして成る第2補強層208が積層され、そして最外層としてカバー層としての外面ゴム層210が積層された構造をなしている。
この例は補強糸をスパイラル編組して補強層を構成した例であるが、かかる補強層を、補強糸をブレード編組して構成することも行われている。
図8(ロ)はその例を示したもので、図中212は補強糸をブレード編組して成る補強層で、内面ゴム層200と外面ゴム層210との間に形成されている。
尚内面ゴム層200の内表面は樹脂内層202で被覆されている。
ところでこのような直筒状のホースの場合、良好な振動吸収性を確保するため従来所定の長さを必要としていた。
特に燃料系や水系等の低圧用のホースに比べてオイル系(例えばパワーステアリング用ホース)や冷媒系(冷媒輸送用ホース)等の耐高圧用のホースでは、ホース剛性が高い分、振動吸収,車室内への音,振動の伝播低減のための必要長さが長くなる。
例えば冷媒輸送用ホースの場合、接続しなければならない直線距離が200mmであったとしても、一般的に300〜600mmの長さのホースを用いて振動吸収,音,振動の伝播低減を行っていた。
しかしながらエンジンルーム内には各種の装置や部品が所狭しと組み込まれており、特に近年にあってはエンジンルームがますますコンパクト化されて来ており、そのような中でそこに配設されるホース長が長いと、他との干渉を避けるための配管設計やホース取付時の取回しが大変な作業となり、しかも車種ごとにそれら配管設計や取回しを工夫しなければならず、大きな負担となっていた。
このようなことから、ホース長が短尺で良好に振動吸収することのできるホースの開発が求められている。
ホースにおける振動吸収性を確保しながらこれを短尺化する手段として、ホースを蛇腹形状化することが考えられる。
しかしながらホースを蛇腹形状化すると可撓性は飛躍的に向上するものの、その内部に流体の高い圧力が作用するとホース全体が軸方向に大きく伸びてしまう。
この場合ホースの両端が固定状態にあると(普通はそうなっている)、ホース全体が大きく曲ってしまい、周辺の部品と干渉を起す問題が発生する。
即ち蛇腹形状化による対策は十分なものとは言えない。
ところでエアコンホース等の耐高圧ホースの場合、内部に流体が高い圧力で導かれた状態では、そのような圧力がかかっていない場合に比べてホースと流体とが一体化してより剛体に近い挙動を示すようになる。
その剛性化の程度はホース及び流体を含めた横断面の断面積が大きくなるほど大となる。
逆に言えばホース及び流体の断面積が小さくなれば剛性化の程度は小さくなり、振動吸収性能はそれだけ増すことになる。
従ってホースを蛇腹形状化しないで、なおかつ短尺で振動吸収性能を高めるためにはホース径を小さくすることが有効な手段である。
しかしながら単に軸端部を含むホース全体を細くし、また併せて継手具も細径とすると、継手具におけるインサートパイプの内径が小さいものとなって、流体の輸送時に同部分で圧損(圧力損失)を生じたり、また所要の流量を確保することができなくなってしまう。
一方で軸端部のかしめ部を細くした上で、内径の大きなインサートパイプを有する大径の継手具を用いると、その装着に際してインサートパイプを軸端部のかしめ部に挿入するときに、挿入抵抗が著しく大きくなってインサートパイプの挿入性が悪化し、継手金具を装着するといったことが実際上難しい。
従ってホース径を小さくするにしても軸端部のかしめ部はそのままとし、他の主部のみを細径化することが望ましい。
この場合、軸端部のかしめ部は主部に対して相対的に拡径形状となる。
このような軸端部が拡径形状のホースを製造する手段として、一旦未加硫ホースを直筒状に成形しておき、その後に軸端部のみを拡径変形させた上で加硫処理するといったことが考えられる。
例えば下記特許文献2,特許文献3には、ラジエータホース等の水系ホースにおいて、押出成形した未加硫ホースの端部にマンドレル型を挿入し、その状態で加硫成形することによってホースの軸端部を拡径形状とする点が開示されている。
しかしながら特許文献2,特許文献3に開示のホースは水系のホースであって破裂圧が小さく、補強層の編組密度も約15〜25%と低いものであって、この場合には拡径作業に際しての困難性はそれほど大きくない。
しかしながら破裂圧が5MPa以上で補強層の編組密度が50%以上もあるような高密度の高耐圧ホースとなると、マンドレル型挿入の際に補強層による抵抗が飛躍的に増大し、拡径作業が一挙に困難化する。
また直筒状に成形したホースの軸端部を後において拡径する場合、必然的にその拡径部即ち軸端部のかしめ部の肉厚が薄くなる問題も生ずる。
ホースにおける軸端部のかしめ部は、肉厚のばらつきや締結強度を考えると通常25〜50%程度の圧縮率を設定する必要があるが、拡径により軸端部のかしめ部の肉厚が薄くなってしまうと継手具のかしめ付け固定の際にかしめ部、特に内面層におけるかしめ部がかしめ切れを起してしまう問題を生ずる。(因みに特許文献2,特許文献3に開示のホースは継手具をかしめ付け固定する形態のものではなく、そうした問題は生じない。)
その解決手段として、内面層を単独でインジェクション成形するといったことも考えられるが、このインジェクション成形による方法では生産性が低く必然的に製造コストが高くなってしまう。
特開平7−68659号公報 特許第3244183号公報 特公平8−26955号公報
本発明は以上のような事情を背景とし、上記のようなインジェクション成形の手法によらないでホース製造が可能であり、また軸端部のかしめ部の拡径変形が可能で、且つその拡径部に対して継手具をかしめ付け固定する際に、かしめ切れを生ずることの無い高耐圧振動吸収ホース及びその製造方法を提供することを目的としてなされたものである。
而して請求項1は高耐圧振動吸収ホースに関するもので、内面層と、その外側の補強線材を編組密度50%以上の高密度で編組して成る補強層と、更に外側のカバー層としての外面層とを有し、軸端部のかしめ部に対して、剛性のインサートパイプ及びスリーブ状のソケット金具を有する継手具を、該インサートパイプを該かしめ部内部に挿入し且つ該ソケット金具を該かしめ部の外面に嵌挿した状態で該ソケット金具を縮径方向にかしめ付けることで固定して成る破裂圧が5MPa以上の高耐圧振動吸収ホースであって、前記継手具をかしめ付け固定する前の形状において前記軸端部のかしめ部が他の主部に対して拡径形状に且つ前記内面層におけるかしめ部の肉厚1mm以上となしてあり、更に前記補強層における補強線材の編角θが静止角である54.7°以下且つ48°より大となしてあることを特徴とする。
ここで編組密度とは補強層における補強線材の面積の割合で、補強線材間の隙間がゼロであるとき編組密度は100%となる。
請求項2は、請求項1の高耐圧振動吸収ホースの製造方法であって、(a)前記内面層としての内面ゴム層,補強層及び前記外面層としての外面ゴム層を積層した直筒状の未加硫ホースを製造する工程と、(b)その後において該未加硫ホースの軸端部の内部にマンドレル型を押し込んで該軸端部を拡径変形させる工程と、(c)その拡径状態を保持して加硫を行う工程とを含んでおり、且つ前記マンドレル型の押込みに際して前記主部の外面を保持型により拘束保持し、その状態で該マンドレル型を押し込んで前記軸端部と拡径変形させることを特徴とする。
請求項3の製造法は、請求項2において、前記マンドレル型の押込みを前記未加硫ホースに内圧をかけた状態で行うことを特徴とする。
発明の作用・効果
以上のように本発明は、補強線材を編組密度50%以上の高密度で編組して補強層を形成し、また軸端部のかしめ部に継手具をかしめ付け固定して成る、破裂圧が5MPa以上の高耐圧振動吸収ホースにおいて、その継手具をかしめ付け固定する前の形状において軸端部のかしめ部を他の主部に対し拡径形状に、且つ内面層におけるかしめ部の肉厚を1mm以上となし、更に補強層における補強線材の編角θを静止角である54.7°以下且つ48°より大となしたものである。
本発明のホースは補強層における補強線材の編組密度が50%以上の高密度であり、また破裂圧が5MPa以上の高耐圧ホースであるにも拘わらず、その補強層における補強線材の編角θが静止角である54.7°以下となしてあるため、一旦直筒状に成形したホースの軸端部を拡径変形するに際して大きな困難を伴うことなく、これを拡径変形させることができる。
補強層における補強線材の編角が静止角度より大であると、ホースの軸端部を拡径させることが実際上困難となるが、本発明では補強線材の編角が静止角以下となしてあるため、拡径変形を支障なく行うことができる。
この補強線材の編角は角度が小さくなるほど補強層による抵抗が小となって拡径変形が容易となる。
しかしながら一方で編角が小さくなればなるほど、内部に流体の高圧力が作用したとき主部における径方向の膨張量が大となり、繰返し加圧に対する耐久性が低下してしまう。
しかるに本発明ではその編角が48°より大となしてあるためそうした不具合を生じず、高圧流体の作用による主部の径方向の膨張を可及的に少なくし得て、繰返し加圧に対する耐久寿命を高寿命となすことができる。
本発明ではまた、内面層の軸端部におけるかしめ部が拡径後において肉厚1mm以上となしてあるため、そのかしめ部に対して継手具をかしめ付け固定したときに拡径部、即ちかしめ部がかしめ切れを起さず良好に継手具を装着できる利点を有している。
請求項2は上記高耐圧振動吸収ホースの製造方法に関するもので、内面層としての内面ゴム層,補強層及び外面層としての外面ゴム層を積層した直筒状の未加硫ホースを製造する工程と、その後において軸端部の内部にマンドレル型を押し込んで軸端部を拡径変形させる工程と、その拡径状態を保持して加硫を行う工程とを含んでホースを製造し、且つそのマンドレル型の押込みに際して上記主部の外面を保持型により拘束保持し、その状態でマンドレル型を軸端部に押し込んで拡径させるもので、本発明によれば、マンドレル型を軸端部且つ内部に押し込んで同軸端部を拡径させる際、主部の外面が保持型により拘束保持されているため、マンドレル型の軸方向の押込み力によって軸端部が挫屈を起すのを良好に防止し得て、軸端部を良好に拡径変形させることができる。
補強層における補強線材がホースに高耐圧性能を付与するために編組密度50%以上の高密度で編組されていると、その軸端部且つ内部にマンドレル型を押し込んで拡径させる際の抵抗が大きく、そのためにマンドレル型の押込みに伴って軸端部が軸方向に挫屈を起してしまう問題を生じ易いが、本発明によればこうした不具合を生じることなく、保持型による保持拘束作用によってマンドレル型を円滑に軸端部の内部に押し込むことができ、これにより同軸端部を良好に拡径変形させることができるのである。
次に請求項3は、マンドレル型を押し込むに際して未加硫ホースに内圧をかけて、径方向に膨張力を作用させ、その状態でマンドレル型を押し込むもので、このようにすることでマンドレル型の押込みによる軸端部の拡径変形をより容易に行うことができる。
次に本発明の実施形態を図面に基づいて詳しく説明する。
図1において、10は例えば冷媒輸送用ホース(エアコンホース)等として用いられる高耐圧振動吸収ホース(以下単にホースとする)で、ホース本体12と、軸端部のかしめ部12B(図2参照)にかしめ付固定された一対の継手金具14とを有している。
ホース本体12は、図2に示しているように内面ゴム層(内面層)16と、その外側の補強糸をブレード編組して成る補強層18と、最外層のカバー層としての外面ゴム層(外面層)20とを積層して構成してある。
ここで補強層18を構成する補強糸としてPET,PEN,アラミド,PA(ポリアミド),ビニロン,レーヨン,金属ワイヤ等を用いることができる。
また内面ゴム層16としてIIR,ハロゲン化−IIR(Cl−IIR,Br−IIR),NBR,CR,EPDM,EPM,FKM,ECO,シリコンゴム,ウレタンゴム等の単独材若しくはブレンド材を用いることができる。
但しHFC系冷媒輸送用ホースの場合には特にIIR,ハロゲン化−IIRの単独材又はブレンド材が好ましい。
また外面ゴム層20として、上記内面ゴム層16で列挙した各種ゴム材を用いることができるが、それ以外にも熱収縮チューブや熱可塑性エラストマー(TPE)を使用することも可能で、材質としてはアクリル系,スチレン系,オレフィン系,ジオレフィン系,塩化ビニル系,ウレタン系,エステル系,アミド系,フッ素系等を用いることができる。
図2に示しているように上記継手金具14は、金属製の剛性のインサートパイプ22と、スリーブ状のソケット金具24とを有しており、そのインサートパイプ22をホース本体12における軸端部のかしめ部12B内に挿入し、またソケット金具24をかしめ部12Bの外面に嵌挿してこれを縮径方向にかしめ付けることで、それらインサートパイプ22とソケット金具24とでかしめ部12Bを内外方向に挟圧する状態に、ホース本体12にかしめ付固定されている。
ここでソケット金具24には内向きの環状の係止部26が設けられていてその係止部26の内周端部が、インサートパイプ22の外周面の環状の係止溝28に係止させられている。
尚図1中15は、インサートパイプ22に回転可能に取り付けられた袋ナットである。
本実施形態ではまた、図2に示しているようにホース本体12における主部12Aの内径、具体的には内面ゴム層16における主部16Aの内径dと、インサートパイプ22の内径dとが同一内径とされている。
図5は継手金具14をかしめ付ける前のホース本体12の形状を表している。
同図において12Aはホース本体12における主部を、12Bは軸端部のかしめ部を表しており、図示のようにこの実施形態では主部12Aの外径dが、かしめ部12Bの外径dよりも細径をなしている。
即ち従来のこの種ホースにあっては、主部12Aの外径がかしめ部12Bの外径と同一外径であったのが、ここでは主部12Aのみが細径化されている。
その結果として、かしめ部12Bは主部12Aに対して拡径形状をなしている。
尚図5において、16Aは内面ゴム層16における主部を、16Bはかしめ部を表しており、また18Aは補強層18における主部を、18Bはかしめ部を表している。
更に20Aは外面ゴム層20における主部を、20Bはかしめ部を表している。
ホース本体12において、補強層18は主部18Aにおける補強糸の編角θが静止角である54.7°以下且つ48°より大とされている。
また内面ゴム層16は、図5(B)に示しているように主部16Aの肉厚tに対してかしめ部16Bの肉厚tが小さくなっている。但しtは1mm以上の厚みを有している。
図3及び図4は本実施形態のホース10の製造方法を表したもので、図3に示しているように本実施形態の製造方法では先ず内面ゴム層16,補強層18及び外面ゴム層20を積層した未加硫ホース12-1を直筒状に成形する。
ここで補強層18における補強糸の編角θは、図5における主部18Aの補強糸の編角θと同じである。
次に図4(I)に示しているように、先端部に小径部30を有するマンドレル型32を用いて、未加硫ホース12-1の軸端部を拡径変形させる。
このとき、円筒状の保持型34を用いて拡径を行う。詳しくは円筒状の保持型34を未加硫ホース12-1の主部12Aに嵌挿してその外面を保持拘束しておき、その状態で軸端部且つ内部にマンドレル型32を軸方向に押し込んで、軸端部をマンドレル型32の形状,外径に対応した形状に拡径変形させる(図4(II)参照)。
その際、主部12Aが保持型34にて保持拘束されているため、補強層18による拡径方向の抵抗に打ち勝ってマンドレル型32を押し込んだ場合であっても軸端部が挫屈を起こさず、マンドレル型32によって良好に拡径変形させられる。
また本実施形態では補強層18における補強糸の編角θが静止角以下とされているため、マンドレル型32を挿入する際に補強層による抵抗を少なくして、容易にマンドレル型32を挿入し、未加硫ホース12-1の軸端部を拡径変形させることができる。
このとき拡径変形後の内面ゴム層16におけるかしめ部16Bの肉厚はその拡径変形によって薄くなるが、上記のようにかしめ部16Bの肉厚tは拡径変形後において1mm以上が確保されている。
換言すれば、マンドレル型32の挿入によって所定の拡径率で軸端部を拡径させたとき、内面ゴム層16におけるかしめ部16Bの肉厚tが1mm以上となるように、内面ゴム層16の肉厚、具体的には主部16Aの肉厚tが定められている。
以上のようにしてマンドレル型32を挿入して軸端部を拡径変形させたところで、マンドレル型32を挿入した状態のまま未加硫ホース12-1を加硫処理する(図4(III))。
そして(III)の加硫処理が済んだらマンドレル型32を抜き取って、その拡径されたホース本体12のかしめ部12Bに対し継手金具14をかしめ付け固定する。
ここにおいて図1に示すホース10が得られる。
尚本実施形態において、内面ゴム層16における主部16Aの肉厚tは、ホース10に対して良好な振動吸収性を与え、また一方で内部流体の耐透過性,透水性を与えるのに必要な肉厚としておく。
尚、図4では単にマンドレル型32を未加硫ホース12-1の軸端部に押込み挿入するようにしているが、補強層18による抵抗によってマンドレル型32を挿入し辛い場合には、図6に示しているように管体36,マンドレル型32を貫通して設けた通路38を通じて未加硫ホース12-1の内部に加圧流体を導き、内圧をかけた状態でマンドレル型32を未加硫ホース12-1内に押込み挿入するようになしてもよい。
例えば拡径率10%まではマンドレル型32を挿入することは比較的可能であるが、拡径率がそれ以上になるとそのままではマンドレル型32を押込み挿入することが難しくなる場合があり、その場合には未加硫ホース12-1に内圧をかけた状態でマンドレル型32を挿入することができ、これにより更に円滑にマンドレル型32を挿入することができる。
以上のように本実施形態のホース10は補強層18における補強線材の編組密度が50%以上の高密度であり、また破裂圧が5MPa以上の高耐圧ホースであるにも拘わらず、一旦直筒状に成形した未加硫ホース12-1の軸端部を拡径変形するに際して大きな困難を伴うことなく、容易に拡径変形させることができる。
一方で本実施形態では補強糸の編角が48°より大となしてあるため、内部に流体の高圧力が作用したとき主部12Aにおける径方向の膨張量が大となり、繰返し加圧に対する耐久性が低下してしまうといったことがなく、高圧流体の作用による主部12Aの径方向の膨張を可及的に少なくし得て、繰返し加圧に対する耐久寿命を高寿命となすことができる。
また本実施形態では軸端部における内面ゴム層16のかしめ部16Bが拡径後において肉厚1mm以上となしてあるため、かしめ部16Bに対して継手金具14をかしめ付け固定したときにかしめ部16Bがかしめ切れを起さずに、良好に継手金具14を装着することができる。
また本実施形態におけるホースの製造方法によれば、マンドレル型32を軸端部且つ内部に押し込んで同軸端部を拡径させる際、主部12Aの外面を保持型34により拘束保持しておくことにより、軸端部に挫屈を生ぜしめず、軸端部を良好に拡径変形させることができる。
その際に未加硫ホース12-1に内圧をかけた状態でマンドレル型32を押し込むようにすれば、マンドレル型32の押込みによる軸端部の拡径変形をより容易に行うことができる。
表1に示す各種構成のホース10を製造し、マンドレル挿入性,かしめ部性能,室温(RT)破裂圧,高温繰返し加圧耐久性のそれぞれを測定し評価した。
尚表1において、各ホースにおける補強層の打込み本数3本揃え×48打,2本揃え×48打とあるのは、1000de(デニール)の補強糸を3本若しくは2本並べて48個のキャリアでブレード編組したことを表している。
また表1におけるかしめ部性能,RT破裂圧,高温繰返し加圧耐久性の各測定はそれぞれ以下の条件で行った。
<かしめ部性能(高温破裂時のゴム切れ)>
油温,槽温100℃でホース10を取り付けて30分放置し、そして0.98MPa毎に30秒保持しながら昇圧して破裂に到ったときのかしめ部のゴム切れの有無を調べた。
<RT破裂圧>
ホース10内部に室温で水圧をかけ、そして昇圧速度160MPa/分で昇圧し破裂に到ったときの圧力で表した。
<高温繰返し加圧耐久性>
図7に示しているようにホース中心R90を略L字状に曲げた状態に維持して片端に密栓39を施した上、両端を固定した状態でホース10内部に油圧を繰り返し供給し耐久性を評価した。
ここで油圧の供給は繰返し圧力3.5MPa,加圧速度35cpmの条件で行った。
これらの結果が表1に併せて示してある。
尚、マンドレル挿入性において1MPa加圧によりマンドレル挿入性の評価が△印となっているのは、加圧の圧力が一定以上に高くなると却ってマンドレル挿入に対する抵抗が大きくなることを示している。
Figure 2006029449
表1の結果に見られるように、補強層18における補強糸の編角θが45°と小さい比較例Aの場合、マンドレル挿入性は全体として良好であるものの、補強層18による耐圧の効果が低く、そのため繰返し加圧耐久性の結果が3万回と低いものとなっている。
また内面ゴム16層のかしめ部16Bの肉厚が1mmよりも薄い比較例Bの場合、高温繰返し加圧耐久試験の結果、かしめ部16Bでピンホールが発生し、耐久回数も0.2万回と低いものとなっている。即ち繰返し加圧耐久性の低いものとなっている。
これに対し各本実施例のものはマンドレル挿入性,かしめ部性能,破裂圧,高温繰返し加圧耐久性の何れの特性も良好なものとなっている。
以上本発明の実施形態を詳述したが、これはあくまで一例示であり、本発明は用途に応じてホース10の構成を様々に変更することも可能であるなど、本発明はその主旨を逸脱しない範囲において種々変更を加えた形態,態様で構成,実施可能である。
本発明の一実施形態のホースを示す図である。 同実施形態のホースの要部を拡大して示す断面図である。 図1のホース本体を未加硫且つ拡径前の状態で表した図である。 本発明の実施形態の製造方法の一工程を表した図である。 同ホース本体を拡径後且つ継手金具のかしめ付け前の状態で示した図である。 図4とは異なる製造方法の要部工程を表した説明図である。 本実施例の試験方法の説明図である。 従来公知のホースの一例を示す図である。
符号の説明
10 高耐圧振動吸収ホース
12 ホース本体
12-1 未加硫ホース
12A,16A,18A,20A 主部
12B,16B,18A,20A かしめ部
14 継手金具(継手具)
16 内面ゴム層(内面層)
18 補強層
20 外面ゴム層(外面層)
22 インサートパイプ
24 ソケット金具
32 マンドレル型
34 保持型

Claims (3)

  1. 内面層と、その外側の補強線材を編組密度50%以上の高密度で編組して成る補強層と、更に外側のカバー層としての外面層とを有し、軸端部のかしめ部に対して、剛性のインサートパイプ及びスリーブ状のソケット金具を有する継手具を、該インサートパイプを該かしめ部内部に挿入し且つ該ソケット金具を該かしめ部の外面に嵌挿した状態で該ソケット金具を縮径方向にかしめ付けることで固定して成る破裂圧が5MPa以上の高耐圧振動吸収ホースであって、
    前記継手具をかしめ付け固定する前の形状において前記軸端部のかしめ部が他の主部に対して拡径形状に且つ前記内面層におけるかしめ部の肉厚が1mm以上となしてあり、更に前記補強層における補強線材の編角θが静止角である54.7°以下且つ48°より大となしてあることを特徴とする高耐圧振動吸収ホース。
  2. 請求項1の高耐圧振動吸収ホースの製造方法であって、(a)前記内面層としての内面ゴム層,補強層及び前記外面層としての外面ゴム層を積層した直筒状の未加硫ホースを製造する工程と、(b)その後において該未加硫ホースの軸端部の内部にマンドレル型を押し込んで該軸端部を拡径変形させる工程と、(c)その拡径状態を保持して加硫を行う工程とを含んでおり、且つ前記マンドレル型の押込みに際して前記主部の外面を保持型により拘束保持し、その状態で該マンドレル型を押し込んで前記軸端部と拡径変形させることを特徴とする高耐圧振動吸収ホースの製造方法。
  3. 請求項2において、前記マンドレル型の押込みを前記未加硫ホースに内圧をかけた状態で行うことを特徴とする高耐圧振動吸収ホースの製造方法。
JP2004209182A 2004-07-15 2004-07-15 高耐圧振動吸収ホース及びその製造方法 Withdrawn JP2006029449A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004209182A JP2006029449A (ja) 2004-07-15 2004-07-15 高耐圧振動吸収ホース及びその製造方法
US11/180,199 US20060011249A1 (en) 2004-07-15 2005-07-13 High pressure resistant vibration absorbing hose and method of producing the same
DE102005033271A DE102005033271B4 (de) 2004-07-15 2005-07-15 Hochdruckbeständiger schwingungsdämpfender Schlauch und Verfahren zu seiner Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209182A JP2006029449A (ja) 2004-07-15 2004-07-15 高耐圧振動吸収ホース及びその製造方法

Publications (1)

Publication Number Publication Date
JP2006029449A true JP2006029449A (ja) 2006-02-02

Family

ID=35598175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209182A Withdrawn JP2006029449A (ja) 2004-07-15 2004-07-15 高耐圧振動吸収ホース及びその製造方法

Country Status (3)

Country Link
US (1) US20060011249A1 (ja)
JP (1) JP2006029449A (ja)
DE (1) DE102005033271B4 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844896B1 (ko) * 2006-09-28 2008-07-10 노승용 다중직경 내압호스의 제조방법
JP2008202784A (ja) * 2007-01-22 2008-09-04 Bridgestone Corp 差し込み容易でかつ抜け出しにくいホ−ス及びその接続構造
JP2008223935A (ja) * 2007-03-14 2008-09-25 Bridgestone Corp ホ−ス抜け防止口金具及びこれを用いたホ−ス抜け防止構造

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097716A (ja) * 2004-09-28 2006-04-13 Tokai Rubber Ind Ltd 高耐圧振動吸収ホース及びその製造方法
JP2006283843A (ja) * 2005-03-31 2006-10-19 Tokai Rubber Ind Ltd 高耐圧振動吸収ホース及びその製造方法
US7264021B1 (en) * 2006-03-22 2007-09-04 Tokai Rubber Industries, Ltd. High-pressure resistant hose
JP2008008486A (ja) 2006-05-31 2008-01-17 Tokai Rubber Ind Ltd 冷媒輸送用ホース
DE102008022663B4 (de) 2008-05-07 2012-10-31 Schauenburg Hose Technology Gmbh Stretch-Schlauch
US9505164B2 (en) 2009-12-30 2016-11-29 Schauenburg Technology Se Tapered helically reinforced hose and its manufacture
US9964238B2 (en) 2009-01-15 2018-05-08 Globalmed, Inc. Stretch hose and hose production method
KR101648236B1 (ko) 2009-02-25 2016-08-12 조지 마이어 컴퍼니, 아이엔씨. 고압용 강화 고무 호스를 위한 개선된 연결구
JP5556624B2 (ja) * 2010-11-29 2014-07-23 株式会社デンソー 配管継手
WO2013137968A1 (en) 2012-03-15 2013-09-19 George Myer Company, Inc. Labyrinth seal swage coupling for high temperature/pressure reinforced rubber hose and methods of attachment
PL2689915T3 (pl) * 2012-07-25 2017-07-31 Etimex Technical Components Gmbh Sposób wytwarzania węża ciśnieniowego oraz wytworzony w ten sposób wąż ciśnieniowy
EP2689916B1 (de) * 2012-07-25 2016-06-22 Etimex Technical Components GmbH Verfahren zum Herstellen eines Druckschlauchs, sowie danach hergestellter Druckschlauch
PL2689917T3 (pl) * 2012-07-25 2017-07-31 Etimex Technical Components Gmbh Sposób wytwarzania węża ciśnieniowego oraz wytworzony w ten sposób wąż ciśnieniowy
EP2746635B1 (en) * 2012-12-18 2016-02-24 GE Oil & Gas UK Limited Integrity testing of pipes
USD731033S1 (en) * 2014-02-13 2015-06-02 Neoperl Gmbh Flexible hose with hose connection or hose fittings
GB2550939A (en) 2016-06-01 2017-12-06 Ultra Electronics Ltd Flexible hose
US10792454B2 (en) 2017-01-30 2020-10-06 Globalmed, Inc. Heated respiratory hose assembly
JP7382149B2 (ja) * 2019-03-19 2023-11-16 住友理工株式会社 多層チューブ
CN110671552A (zh) * 2019-10-28 2020-01-10 清谱(上海)分析仪器有限公司 一种连接软硬小外径管的辅助对接头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491152A (en) * 1947-10-03 1949-12-13 Ben Kravitz Hose forming machine
DE7026855U (de) * 1970-07-16 1974-02-14 Kugelfischer G Schaefer & Co Hochdruckschlauch.
GB2147243B (en) * 1983-10-01 1986-10-15 Standard Telephones Cables Ltd Applying thermoplastics sleeve to crush resistant tubing
JPH02190692A (ja) * 1989-01-18 1990-07-26 Tokai Rubber Ind Ltd ゴムホース
JP2750459B2 (ja) * 1989-10-03 1998-05-13 臼井国際産業株式会社 蛇腹管
JPH07299882A (ja) * 1994-04-28 1995-11-14 Marugo Gomme Kogyo Kk ホースの端部構造
JP4304922B2 (ja) * 2002-06-14 2009-07-29 日立電線株式会社 車両用ブレーキホース
JP4082119B2 (ja) * 2002-07-24 2008-04-30 東海ゴム工業株式会社 蛇腹金属管付ホースの端部固定構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844896B1 (ko) * 2006-09-28 2008-07-10 노승용 다중직경 내압호스의 제조방법
JP2008202784A (ja) * 2007-01-22 2008-09-04 Bridgestone Corp 差し込み容易でかつ抜け出しにくいホ−ス及びその接続構造
JP2008223935A (ja) * 2007-03-14 2008-09-25 Bridgestone Corp ホ−ス抜け防止口金具及びこれを用いたホ−ス抜け防止構造

Also Published As

Publication number Publication date
DE102005033271B4 (de) 2009-05-28
DE102005033271A1 (de) 2006-02-09
US20060011249A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP2006029449A (ja) 高耐圧振動吸収ホース及びその製造方法
JP2006097716A (ja) 高耐圧振動吸収ホース及びその製造方法
JP4154370B2 (ja) 耐圧振動吸収ホースの製造方法
JP2006283843A (ja) 高耐圧振動吸収ホース及びその製造方法
US7264021B1 (en) High-pressure resistant hose
EP1974903A1 (en) Low gas-permeable hose
JP4010238B2 (ja) 蛇腹金属管付ホース
JP2004019752A (ja) 車両用ブレーキホース
US20050211326A1 (en) Composite hose with a corrugated metal tube and method for making the same
US20080245434A1 (en) Composite Hose with a Corrugated Metal Tube and Method for Making the Same
CN111954777A (zh) 制冷剂回路的冷却剂管路及其制造方法
JP2007255541A (ja) 高耐圧ホース
EP1975495A1 (en) Hose with joint fitting for conveying carbon dioxide refrigerant
JP2008248994A (ja) 低ガス透過性ホース
JP2005282702A (ja) 金属蛇腹管複合ホース
JP2008248995A (ja) 低ガス透過性ホース
JP5181925B2 (ja) ゴムホースの製造方法およびゴムホース
JP2009079746A (ja) ホースの締結構造体
JP2007255542A (ja) 高耐圧ホースの製造方法
JP2008224012A (ja) 端部拡径ホース及びその製造方法
JP2008224011A (ja) 端部拡径ホース及びその製造方法
JP2008019901A (ja) ホース構造体
JP4280280B2 (ja) 曲がりホース成型用マンドレル
JP2008137359A (ja) 樹脂−ゴム複合曲がりホース成型金型および成型方法
JP2001317681A (ja) 脈動吸収用ホースとその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090428