WO2020184183A1 - ビスフェノール組成物及びポリカーボネート樹脂 - Google Patents

ビスフェノール組成物及びポリカーボネート樹脂 Download PDF

Info

Publication number
WO2020184183A1
WO2020184183A1 PCT/JP2020/007746 JP2020007746W WO2020184183A1 WO 2020184183 A1 WO2020184183 A1 WO 2020184183A1 JP 2020007746 W JP2020007746 W JP 2020007746W WO 2020184183 A1 WO2020184183 A1 WO 2020184183A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
composition
general formula
polycarbonate resin
group
Prior art date
Application number
PCT/JP2020/007746
Other languages
English (en)
French (fr)
Inventor
馨 内山
正志 横木
浩喜 柴田
空 冨田
裕一 矢山
鶴原 謙二
隆之 吉田
幸恵 中嶋
利恵 小西
和生 廣渡
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP20770715.9A priority Critical patent/EP3939957A4/en
Priority to CN202080020686.4A priority patent/CN113574042B/zh
Priority to JP2021504907A priority patent/JP7400804B2/ja
Priority to KR1020217029514A priority patent/KR20210141498A/ko
Publication of WO2020184183A1 publication Critical patent/WO2020184183A1/ja
Priority to US17/472,905 priority patent/US20210403641A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/685Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane

Definitions

  • the present invention relates to a bisphenol composition, a polycarbonate resin, and a method for producing the same.
  • the bisphenol composition of the present invention is useful as a resin raw material such as a polycarbonate resin, an epoxy resin, and an aromatic polyester resin, and as an additive for a curing agent, a color developer, a fading inhibitor, and other bactericidal agents and antibacterial and antifungal agents. Is.
  • Bisphenol is useful as a raw material for polymer materials such as polycarbonate resin, epoxy resin, and aromatic polyester resin.
  • polymer materials such as polycarbonate resin, epoxy resin, and aromatic polyester resin.
  • typical bisphenols for example, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane and the like are known (Patent Documents 1 and 2). ).
  • Polycarbonate resin which is a typical use of bisphenol, is required to be colorless and transparent.
  • the color tone of the polycarbonate resin is greatly affected by the color tone of the raw material. Therefore, the color tone of bisphenol, which is a raw material, is also required to be colorless. Since it is difficult to directly quantify the color of bisphenol, in the present invention, bisphenol is dissolved in methanol to quantify the color difference, and this color tone is referred to as "methanol-dissolved color".
  • thermal color tone stability In the production of the polycarbonate resin, since the polymerization reaction is carried out after the bisphenol is melted, thermal color stability before the start of the polymerization is also required. In the present invention, this color tone is referred to as "thermal color tone stability”.
  • the polycarbonate resin there is a demand for a polycarbonate resin having the molecular weight as designed and having a good color tone.
  • bisphenol as a raw material is required to have excellent methanol-dissolved color, melt color difference, and thermal color stability, and also have excellent thermal decomposition stability.
  • the present inventor has found that a bisphenol C composition containing a specific compound in a predetermined ratio is excellent in methanol dissolution color, melt color difference, thermal color tone stability, and thermal decomposition stability. Further, the present inventor has found that a polycarbonate resin containing a structural unit derived from this specific compound in a predetermined ratio is excellent in color tone. That is, the gist of the present invention lies in the following [1] to [14].
  • X is a single bond, -CR 11 R 12 -, - O -, - CO -, - S -, - SO-, or -SO 2 - shows a.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 11 and R 12 may be combined to form a ring.
  • X is a single bond, -CR 11 R 12 -, - O -, - CO -, - S -, - SO-, or -SO 2 - shows a.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 11 and R 12 may be combined to form a ring.
  • the bisphenol represented by the general formula (II) is 2- (4-hydroxy-3-methylphenyl) -2- (4-hydroxy-3,5-dimethylphenyl) propane, 1- (4- (4-). Hydroxy-3-methylphenyl) -1- (4-hydroxy-3,5-dimethylphenyl) cyclohexane, and 1- (4-hydroxy-3-methylphenyl) -1- (4-hydroxy-3,5-)
  • the bisphenol composition according to any one or more of [1] to [3] selected from the group consisting of dimethylphenyl) -3,3,5-trimethylcyclohexane.
  • the bisphenol represented by the general formula (I) is 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, and the like. And any one or more of [1] to [8] selected from the group consisting of 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane.
  • a polycarbonate resin having at least a repeating structural unit represented by the following general formula (A) and obtained by alkaline hydrolysis of the polycarbonate resin is represented by the following general formula (I).
  • R 1 to R 6 are independently hydrogen atoms, halogen atoms, alkyl groups, alkoxy groups, or aryl groups, and the alkyl groups, alkoxy groups, and aryl groups are substituted or absent. It may be any of the substitutions.
  • R 5 and R 6 may be bonded or crosslinked with each other between the two groups, or R 5 and R 6 may be bonded together with adjacent carbon atoms to contain a heteroatom.
  • An alkylidene group may be formed.
  • X is a single bond, -CR 11 R 12 -, - O -, - CO -, - S -, - SO-, or -SO 2 - shows a.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 11 and R 12 may be combined to form a ring.
  • X is a single bond, -CR 11 R 12 -, - O -, - CO -, - S -, - SO-, or -SO 2 - shows a.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 11 and R 12 may be combined to form a ring.
  • a bisphenol composition having good methanol dissolution color, melt color difference, thermal color tone stability, and thermal decomposition stability is provided.
  • a polycarbonate resin obtained by using this bisphenol composition that is, a polycarbonate resin obtained by obtaining the specific compound in a predetermined ratio by alkaline hydrolysis, provides a polycarbonate resin having an excellent color tone.
  • the bisphenol composition of the present invention is a bisphenol composition containing 95% by mass or more of bisphenol, and the bisphenol represented by the following general formula (II) in the bisphenol composition (hereinafter referred to as "bisphenol (II)").
  • the content of (may be referred to as) is 150 mass ppm or more, and the methanol-dissolved color (Hazen color number) of the bisphenol composition is 2 or less.
  • X is a single bond, -CR 11 R 12 -, - O -, - CO -, - S -, - SO-, or -SO 2 - shows a.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 11 and R 12 may be combined to form a ring.
  • the content of bisphenol (II) in the bisphenol composition of the present invention is preferably 200 mass ppm or more, more preferably 250 mass ppm or more, particularly preferably 300 mass ppm or more, preferably 20000 mass ppm or less, more preferably. Is 15,000 mass ppm or less, more preferably 1400 mass ppm or less, and particularly preferably 1300 mass ppm or less.
  • the content of bisphenol (II) in the bisphenol composition is less than the above lower limit, it is not possible to obtain a bisphenol composition having good methanol dissolution color, melt color difference, thermal color tone stability, and thermal decomposition stability.
  • the content of bisphenol (II) in the bisphenol composition exceeds the above upper limit, there is a tendency as follows. 1) When producing a polycarbonate resin, the molar ratio with diphenyl carbonate shifts, which affects the polymerization reaction. 2) The brittleness (izod) of the polycarbonate resin obtained by using this bisphenol composition is reduced, and the high surface hardness peculiar to the polycarbonate resin containing the structural unit derived from bisphenol (I) described later is reduced.
  • bisphenol (II) examples include 2- (4-hydroxy-3-methylphenyl) -2- (4-hydroxy-3,5-dimethylphenyl) propane and 1- (4-hydroxy-3-methyl). Phenyl) -1- (4-hydroxy-3,5-dimethylphenyl) cyclohexane, and 1- (4-hydroxy-3-methylphenyl) -1- (4-hydroxy-3,5-dimethylphenyl) -3 , 3,5-Trimethylcyclohexane, any one or more selected from the group. Of these, 2- (4-hydroxy-3-methylphenyl) -2- (4-hydroxy-3,5-dimethylphenyl) propane (hereinafter referred to as "trimethylbisphenol A”) is particularly preferable.
  • the detection and quantification of bisphenol (II) can be performed using a standard reverse phase column for high-speed analysis with a particle size of 3 ⁇ m.
  • the content of bisphenol (II) in the bisphenol composition can be adjusted by adding an appropriate amount of bisphenol (II) to bisphenol that does not contain or contains a low concentration of purified bisphenol (II). Further, as will be described later, a bisphenol product containing bisphenol (II) can be prepared as the bisphenol composition of the present invention by producing bisphenol (II) together with bisphenol in the reaction system during the production of bisphenol.
  • the bisphenol contained in the bisphenol composition of the present invention is usually a compound represented by the following general formula (1).
  • R 1 to R 6 in the general formula ( 1 ) are synonymous with R 1 to R in the general formulas (3) and (4) described later, and suitable examples and specific examples thereof are the general formula (3) described later. , (4).
  • bisphenol represented by the above general formula (1) examples include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and 2, 2-Bis (4-hydroxy-3,5-dimethylphenyl) propane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl)- 3,3,5-trimethylcyclohexane, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 3,3-bis (4-hydroxyphenyl) pentane, 3,3-bis (4-hydroxy-3) -Methylphenyl) pentane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxy-3-methylphenyl) pentane, 3,3-bis (4-hydroxyphenyl) heptane, 3 , 3-bis (4-hydroxy-3-methylphenyl) heptane, 2,2-bis (4-hydroxyphenyl) heptane
  • bisphenol contained in the bisphenol composition of the present invention bisphenol represented by the following general formula (I) (hereinafter, may be referred to as "bisphenol (I)”) is preferable.
  • bisphenol (I) include 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, and 1,1-bis (4). Any one or more selected from the group consisting of -hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane is preferable.
  • 2,2-bis (4-hydroxy-3-methylphenyl) propane (bisphenol C) is preferable.
  • X is a single bond, -CR 11 R 12 -, - O -, - CO -, - S -, - SO-, or -SO 2 - shows a.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 11 and R 12 may be combined to form a ring.
  • the bisphenol composition of the present invention contains such bisphenol in an amount of 95% by mass or more, preferably 99% by mass or more, and more preferably 99.5% by mass or more. If the content of bisphenol is less than the above lower limit, it is not preferable for use as bisphenol.
  • the upper limit of the content of bisphenol in the bisphenol composition of the present invention is to secure the content of bisphenol (II), from the viewpoint of production cost, etc., to adjust the ratio of the physical property to diphenyl carbonate in the production reaction of the polycarbonate resin, and the surface hardness. From the viewpoint of mechanical properties of the polycarbonate resin such as brittleness and brittleness, it is usually about 99.9% by mass.
  • the detection and quantification of bisphenol can be performed using a standard reverse phase column for high-speed analysis.
  • ⁇ Methanol-dissolved color of bisphenol composition The methanol-dissolved color of the bisphenol composition is used to evaluate the color tone of the bisphenol composition at room temperature. The lower the number of Hazen colors of the methanol-dissolved color of the bisphenol composition, the better the color tone of the bisphenol composition (closer to white). As a cause of deteriorating the dissolved color of methanol in the bisphenol composition, there is an inclusion of an organic coloring component or a metal.
  • the methanol-dissolved color of the bisphenol composition is measured at room temperature (about 20 ° C.) after the bisphenol composition is dissolved in methanol to make a homogeneous solution.
  • the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the solvent methanol and bisphenol used here and the mass ratio of the solvent are preferably selected as appropriate depending on the type of bisphenol.
  • the number of Hazen colors of the methanol-dissolved color of the bisphenol composition of the present invention is 2 or less, preferably 1 or less, and more preferably 0 or less.
  • melt color difference of the bisphenol composition is used to evaluate the color tone of the bisphenol composition at a temperature close to the polymerization temperature of polycarbonate.
  • the measurement temperature of the melt color difference is the melting point of bisphenol + 50 ° C.
  • the melt color difference of the bisphenol composition indicates that the lower the number of Hazen colors, the better the color tone of the bisphenol composition (closer to white).
  • the melt color difference of the bisphenol composition is measured in advance by melting the bisphenol composition at a temperature close to the polymerization temperature and measuring the time when the temperature is stable.
  • Examples of the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the bisphenol composition of the present invention is melted at 190 ° C. for 30 minutes, and the number of Hazen colors measured using "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd. is preferably 100 or less, more preferably 30 or less, and particularly. It is preferably 25 or less, and particularly preferably 20 or less.
  • the thermal color stability of the bisphenol composition is used to evaluate the thermal stability of the color tone of the bisphenol composition by holding it at a temperature close to the polymerization temperature of polycarbonate for a predetermined time, similar to the melt color difference of the bisphenol composition.
  • the measurement temperature of the thermal color stability of the bisphenol composition is the melting point of bisphenol + 50 ° C.
  • the thermal color stability of the bisphenol composition As for the thermal color stability of the bisphenol composition, the lower the number of Hazen colors, the better the thermal color stability of the bisphenol composition.
  • the causes of deteriorating the thermal color stability of the bisphenol composition include components that are colored by heating and acidic substances and basic substances having a concentration of about several ppm.
  • the thermal color stability of the bisphenol composition is measured in advance by melting the bisphenol composition at a temperature close to the polymerization temperature and measuring the time at which the temperature is stable.
  • the retention time for thermal color stability of the bisphenol composition is 4 hours. Examples of the measuring method include a method of visually comparing with a standard solution having a Hazen color number, or a method of measuring the Hazen color number using a color difference meter such as "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • the number of Hazen colors is preferably 50 or less, more preferably 45 or less, and particularly preferably 35 or less.
  • the thermal decomposition stability of the bisphenol composition is used to evaluate the thermal stability of the bisphenol composition by holding it at a temperature close to the polymerization temperature of polycarbonate for a predetermined time, similar to the thermal color stability of the bisphenol composition.
  • the preferred measurement temperature for the thermal decomposition stability of the bisphenol composition is the melting point of bisphenol + 50 ° C.
  • the thermal decomposition stability of the bisphenol composition indicates that the smaller the amount of the decomposed product produced, the more stable the bisphenol composition is.
  • the decomposition product in the thermal decomposition stability of the bisphenol composition depends on the type of bisphenol, but the aromatic alcohol which is the raw material of the bisphenol composition or the addition of the aromatic alcohol and the ketone or aldehyde which is the raw material is used. Can be mentioned.
  • causes of deteriorating the thermal decomposition stability of the bisphenol composition include, in addition to the mixing of organic coloring components and metals, components that are colored by heating and acidic substances and basic substances having a concentration of about several ppm.
  • Detection and quantification of decomposition products of bisphenol compositions can be performed using a standard reverse phase column for high-speed analysis.
  • the amount of isopropenyl cresol produced as a decomposition product of the bisphenol composition as measured in Examples described later is preferably 200 mass ppm or less.
  • the methanol-dissolved color of the bisphenol composition is a method for evaluating the color tone of the bisphenol composition itself.
  • the bisphenol composition having a good methanol-dissolved color is important. Since the polycarbonate resin inherits the color tone of the raw material, a bisphenol composition having a good color tone is important for the polycarbonate resin that is required to be colorless and transparent.
  • the melt polymerization method which is one of the methods for producing a polycarbonate resin
  • the bisphenol composition is held in a molten state at a high temperature until the start of the polymerization reaction.
  • the substance amount ratio with diphenyl carbonate deviates from the predetermined substance amount ratio, and it is difficult to obtain a polycarbonate resin having polymerization reaction activity and a predetermined molecular weight. Become. Therefore, resistance to thermal decomposition (thermal decomposition stability of the bisphenol composition) is important.
  • the methanol-dissolved color of the bisphenol composition is important.
  • the melt color difference of the bisphenol composition is important.
  • the thermal color stability of the bisphenol composition is important.
  • the sodium content in the bisphenol composition of the present invention is preferably less than 0.5 mass ppm, more preferably less than 0.4 mass ppm, and particularly preferably less than 0.3 mass ppm. Since sodium in the bisphenol composition exhibits a catalytic action, a large content thereof deteriorates thermal color stability and thermal decomposition stability. Therefore, the sodium content in the bisphenol composition of the present invention is preferably not more than the above upper limit.
  • the sodium content in the bisphenol composition is measured by the method described in the section of Examples below.
  • the iron content in the bisphenol composition of the present invention is preferably 0.5 mass ppm or less, more preferably 0.4 mass ppm or less, and particularly preferably 0.3 mass ppm or less.
  • Iron in the bisphenol composition has a structure in which bisphenol is coordinated, and therefore has absorption in the visible region. Therefore, the iron becomes a coloring factor of the bisphenol composition, and if the content thereof is large, the methanol-dissolved color and the molten color difference are deteriorated. Further, since the iron exhibits a catalytic action, if its content is large, the thermal color tone stability and the thermal decomposition stability are deteriorated. Therefore, the iron content in the bisphenol composition of the present invention is preferably not more than the above upper limit.
  • Examples of the origin of iron in the bisphenol composition of the present invention include iron dissolved in aromatic alcohol, which is a raw material of bisphenol, and iron mixed from the reaction tank and the equipment above the reaction tank during the reaction to produce bisphenol. Be done. Depending on the form of iron, these irons are appropriately removed by a purification method described later, such as repeated washing with water under acidic conditions or repeated washing with basic conditions.
  • the iron content in the bisphenol composition is measured by the method described in the section of Examples below.
  • the aluminum content in the bisphenol composition of the present invention is preferably 0.1 mass ppm or less, more preferably 0.09 mass ppm or less, and particularly preferably 0.08 mass ppm or less.
  • Aluminum in the bisphenol composition has a structure in which bisphenol is coordinated, and therefore has absorption in the visible region. Therefore, the aluminum becomes a coloring factor of the bisphenol composition, and if the content thereof is large, the methanol-dissolved color and the molten color difference are deteriorated. Further, since the aluminum exhibits a catalytic action, if the content thereof is large, the thermal color tone stability and the thermal decomposition stability are deteriorated. Therefore, the aluminum content in the bisphenol composition of the present invention is preferably not more than the above upper limit.
  • the origin of aluminum in the bisphenol composition of the present invention is that aluminum dissolved in aromatic alcohol, which is a raw material of bisphenol, was mixed from the outside when the solid bisphenol was obtained and then taken out or supplied to a dryer.
  • Examples include aluminum derived from aluminum oxide.
  • these aluminums are appropriately removed by a purification method described later, such as repeated washing with water under acidic conditions or repeated washing with basic conditions.
  • the aluminum content in the bisphenol composition is measured by the method described in the section of Examples below.
  • the method for producing the bisphenol composition of the present invention containing bisphenol, preferably bisphenol (I) in an amount of 95% by mass or more and containing bisphenol (II) in a predetermined ratio is not particularly limited, and examples thereof include the following methods. Be done. (1) Method of adding a predetermined amount of bisphenol (II) to solid bisphenol (I) (2) Method of adding a predetermined amount of bisphenol (II) to molten bisphenol (I) (3) Method of adding bisphenol (I) A method for obtaining a bisphenol (I) product containing bisphenol (II) by producing bisphenol (II) as a by-product during production or by producing bisphenol (II) together with bisphenol (I).
  • bisphenol (II) In the method of adding bisphenol (II) to the solid or melted bisphenol (I) of (1) and (2), it is necessary to prepare bisphenol (II) separately. Therefore, (3) bisphenol (II) is by-produced or bisphenol (II) is produced in the reaction system for producing bisphenol (I), and the bisphenol (I) product contains bisphenol (II) in a predetermined ratio. The method is preferred.
  • the obtained bisphenol (I) product is further purified by crystallization, suspension washing, sprinkling washing, etc. By removing a part of the bisphenol (II) contained in the bisphenol (I) product, it is possible to control so that the bisphenol (I) product containing the bisphenol (II) within the specified range of the present invention can be obtained. it can.
  • a method for producing trimethylbisphenol A together with bisphenol C in the reaction system during the production of bisphenol C to obtain a bisphenol C product containing trimethylbisphenol A as the bisphenol composition of the present invention a ketone or aldehyde and an aromatic alcohol are used as acids.
  • acids include a method of producing trimethylbisphenol A together with bisphenol C or bisphenol C by condensing in the presence of a catalyst and a thiol co-catalyst. According to this method, trimethylbisphenol A can be produced in the reaction system. This method will be described below.
  • bisphenol C is produced by condensing an aromatic alcohol with a ketone or aldehyde in the presence of an acid catalyst.
  • the reaction for producing bisphenol is carried out according to the reaction general formula (2) shown below.
  • the raw material aromatic alcohol and the raw material ketone or aldehyde are selected and used so that at least bisphenol C is produced in such a bisphenol production reaction.
  • R 1 to R 6 are synonymous with those in the general formula (1).
  • the raw material aromatic alcohol used for producing bisphenol is usually a compound represented by the following general formula (3).
  • examples of R 1 to R 4 include a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, and an aryl group, respectively.
  • the alkyl group, alkoxy group, aryl group and the like may be substituted or unsubstituted.
  • examples of R 1 to R 4 include hydrogen atom, fluoro group, chloro group, bromo group, iodo group, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group and i-butyl group.
  • R 2 and R 3 are preferably hydrogen atoms because the condensation reaction does not easily proceed if they are sterically bulky. It is more preferable that R 1 to R 4 are independently hydrogen atoms or alkyl groups, respectively. It is more preferable that R 1 and R 4 are independently hydrogen atoms or alkyl groups, and R 2 and R 3 are hydrogen atoms.
  • Specific examples of the compound represented by the general formula (3) include phenol, cresol, xylenol, ethylphenol, propylphenol, butylphenol, methoxyphenol, ethoxyphenol, propoxyphenol, butoxyphenol, benzylphenol, and phenylphenol. Can be mentioned.
  • bisphenol C is produced using orthocresol, or bisphenol C and trimethylbisphenol A are produced using xylenol together with orthocresol.
  • ketone or aldehyde The raw material ketone or aldehyde used for producing bisphenol is usually a compound represented by the following general formula (4).
  • examples of R 5 and R 6 include a hydrogen atom, an alkyl group, an alkoxy group, and an aryl group, respectively.
  • the alkyl group, alkoxy group, aryl group and the like may be substituted or unsubstituted.
  • examples of R 5 and R 6 include hydrogen atom, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group, and i.
  • -Pentyl group n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, methoxy group, ethoxy Group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, n-hexyloxy group, n-heptyloxy group , N-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohex
  • R 5 and R 6 may be bonded or crosslinked with each other between the two groups.
  • R 5 and R 6 may be bonded together with adjacent carbon atoms to form a cycloalkylidene group that may contain heteroatoms.
  • the cycloalkylidene group is a divalent group obtained by removing two hydrogen atoms from one carbon atom of cycloalkane.
  • Examples of the cycloalkylidene group formed by bonding R 5 and R 6 together with adjacent carbon atoms include cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, 3,3,5-trimethyl. Cyclohexylidene, cycloheptylidene, cyclooctylidene, cyclononylidene, cyclodecylidene, cycloundecylidene, cyclododecylidene, fluorenylidene, xantonilidene, thioxanthonidene and the like can be mentioned.
  • Specific examples of the compound represented by the general formula (4) include formaldehyde, acetaldehyde, propionaldehyde, butylaldehyde, pentylaldehyde, hexylaldehyde, heptylaldehyde, octylaldehyde, nonylaldehyde, decylaldehyde, undecylaldehyde, and dodecyl.
  • Ketones such as aldehydes; ketones such as acetone, butanone, pentanon, hexanone, heptanone, octanon, nonanone, decanone, undecanone, dodecanone; benzaldehyde, phenylmethylketone, phenylethylketone, phenylpropylketone, cresylmethylketone, cleres Arylalkyl Ketones such as Zyrethyl Ketone, Cresylpropyl Ketone, Xylyl Methyl Ketone, Xylyl Ethyl Ketone, Xylylpropyl Ketone, Cyclopropanone, Cyclobutanone, Cyclopentanone, Cyclohexanone, Cycloheptanone, Cyclooctanone, Cyclononanone , Cyclic alcan ketones such as cyclodecanone, cycloundecanone, cyclodo
  • At least acetone is used among these.
  • the molar ratio of the aromatic alcohol to the ketone or aldehyde is preferably 1.5 or more, more preferably 1.6 or more, still more preferably 1.7 or more, and preferably 15 or less, more preferably. Is 10 or less, more preferably 8 or less.
  • ketones and aldehydes As the method for supplying ketones and aldehydes, a method of supplying them all at once and a method of supplying them separately can be used. Since the reaction for producing bisphenol is an exothermic reaction, it is preferable to supply ketones and aldehydes in divided amounts, such as by dropping them little by little.
  • acid catalyst examples include aromatic sulfonic acids such as sulfuric acid, hydrochloric acid, hydrogen chloride gas, phosphoric acid and p-toluenesulfonic acid, and aliphatic sulfonic acids such as methanesulfonic acid.
  • aromatic sulfonic acids such as sulfuric acid, hydrochloric acid, hydrogen chloride gas, phosphoric acid and p-toluenesulfonic acid
  • aliphatic sulfonic acids such as methanesulfonic acid.
  • the molar ratio of the acid catalyst to the ketone or aldehyde used for condensation ((number of moles of acid catalyst / number of moles of ketone) or (number of moles of acid catalyst / number of moles of aldehyde)) is small, as the condensation reaction progresses.
  • the acid catalyst is diluted by the by-produced water and the reaction takes time. If this molar ratio is high, the amount of ketones or aldehydes may increase. From these facts, the molar ratio of the acid catalyst to the ketone or aldehyde used for condensation is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, preferably 10 or less, more preferably. Is 8 or less, more preferably 5 or less.
  • the acid catalyst shall be any one selected from the group consisting of aromatic sulfonic acids such as sulfuric acid, hydrochloric acid, hydrogen chloride gas, phosphoric acid and p-toluenesulfonic acid, and aliphatic sulfonic acids such as methanesulfonic acid. Is preferable.
  • the molar ratio of hydrogen chloride to the ketone or aldehyde used in the reaction ((number of moles of hydrogen chloride / number of moles of ketone) or (number of moles of hydrogen chloride / number of moles of aldehyde)) is small, water produced as a by-product during the condensation reaction Hydrogen chloride is diluted by this and a long reaction time is required. If this molar ratio is large, the amount of ketones or aldehydes may increase. From these facts, the molar ratio of hydrogen chloride to ketone or aldehyde is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, preferably 10 or less, more preferably 8 or less. , More preferably 5 or less.
  • Sulfuric acid is an acidic liquid represented by the chemical formula H 2 SO 4 .
  • sulfuric acid is used as an aqueous solution of sulfuric acid diluted with water, and is called concentrated sulfuric acid or dilute sulfuric acid depending on its concentration.
  • dilute sulfuric acid is an aqueous sulfuric acid solution having a mass concentration of less than 90% by mass.
  • the concentration of sulfuric acid used is preferably 70% by mass or more, more preferably 75% by mass or more, and further preferably 80% by mass or more.
  • the upper limit of the concentration of sulfuric acid used is usually 99.5% by mass or less or 99% by mass or less.
  • thiol In the production of bisphenol, thiol can be used as a cocatalyst in the reaction of condensing a ketone or aldehyde with an aromatic alcohol.
  • thiol as a cocatalyst, for example, in the production of 2,2-bis (4-hydroxy-3-methylphenyl) propane, the production of 24 bodies is suppressed, the selectivity of 44 bodies is increased, and the polycarbonate resin is produced. It is possible to obtain the effect of increasing the polymerization activity at the time and improving the color tone of the obtained polycarbonate resin. Although the details of the reason why the effect of improving the polymerization activity during the production of the polycarbonate resin and the effect of improving the color tone of the obtained polycarbonate resin are exhibited are not clear, the use of thiol produces an inhibitor for the polymerization reaction for producing the polycarbonate resin. It is presumed that this is due to the fact that it is possible to suppress the formation of deteriorating substances as well as
  • thiol used as a co-catalyst examples include mercaptocarboxylic acids such as mercaptoacetic acid, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid and 4-mercaptobutyric acid, methyl mercaptan, ethyl mercaptan, propyl mercaptan and butyl.
  • mercaptocarboxylic acids such as mercaptoacetic acid, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid and 4-mercaptobutyric acid, methyl mercaptan, ethyl mercaptan, propyl mercaptan and butyl.
  • Mercaptan Pentyl mercaptan, Hexyl mercaptan, Heptyl mercaptan, Octyl mercaptan, Nonyl mercaptan, Decyl mercaptan (decane thiol), Undecyl mercaptan (undecanthiolu), Dodecyl mercaptan (dodecane thiol), Tridecyl mercaptan, Tetradecyl mercaptan Examples thereof include alkyl thiols such as decyl mercaptan and aryl thiols such as mercaptophenol.
  • the thiol cocatalyst is used.
  • the effect of improving the reaction selectivity of bisphenol by using it cannot be obtained. If this molar ratio is high, it may be mixed with bisphenol and the quality may deteriorate.
  • the molar ratio of the thiol cocatalyst to the ketone and the aldehyde is preferably 0.001 or more, more preferably 0.005 or more, still more preferably 0.01 or more, preferably 1 or less, more preferably 0. It is 5.5 or less, more preferably 0.1 or less.
  • the thiol cocatalyst is preferably premixed with a ketone or aldehyde before being subjected to the reaction.
  • the method for mixing the thiol with the ketone or aldehyde may be a mixture of the thiol with the ketone or the aldehyde, or a ketone or the aldehyde with the thiol.
  • an acid catalyst may be mixed with a mixed solution of thiol and a ketone or aldehyde, or a mixed solution of thiol and a ketone or aldehyde in the acid catalyst.
  • a mixed solution of thiol and a ketone or aldehyde with an acid catalyst. Further, it is more preferable to supply the acid catalyst and the aromatic alcohol to the reaction vessel, and then supply the mixed solution of the thiol to the ketone or aldehyde to the reaction vessel for mixing.
  • organic solvent In the production of bisphenol, an organic solvent is usually used to dissolve or disperse the produced bisphenol.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction for producing bisphenol C, and examples thereof include aromatic hydrocarbons, aliphatic alcohols, and aliphatic hydrocarbons.
  • aromatic hydrocarbons aliphatic alcohols
  • aliphatic hydrocarbons aliphatic hydrocarbons.
  • the aromatic alcohol as a substrate and the bisphenol as a product are removed from the organic solvent.
  • These solvents may be used alone or in combination of two or more.
  • aromatic hydrocarbons examples include benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, and mesitylene. These solvents may be used alone or in combination of two or more. After using the aromatic hydrocarbon for the production of bisphenol, it can be recovered and purified by distillation or the like and reused. When reusing aromatic hydrocarbons, those having a low boiling point are preferable. One of the preferred aromatic hydrocarbons is toluene.
  • the aliphatic alcohol is an alkyl alcohol in which an alkyl group and a hydroxyl group are bonded.
  • the fatty alcohol may be a monohydric aliphatic alcohol in which an alkyl group and one hydroxyl group are bonded, or may be a polyhydric aliphatic alcohol in which an alkyl group and two or more hydroxyl groups are bonded.
  • the alkyl group may be linear, branched, unsubstituted, or partially substituted with an oxygen atom in the carbon atom of the alkyl group.
  • the lipophilicity of the aliphatic alcohol increases as the number of carbon atoms increases, and it becomes difficult to mix with sulfuric acid and it becomes difficult to generate monoalkyl sulfate, which will be described later. More preferred.
  • the aliphatic alcohol is preferably an alcohol in which an alkyl group and one hydroxyl group are bonded, and more preferably an alcohol in which an alkyl group having 1 to 8 carbon atoms and one hydroxyl group are bonded. More preferably, it is an alcohol in which 1 to 5 alkyl groups and 1 hydroxyl group are bonded.
  • Specific aliphatic alcohols include, for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, t-butanol, n-pentanol, i-pentanol, n-hexanol, n. -Heptanol, n-octanol, n-nonanol, n-decanol, n-undecanol, n-dodecanol, ethylene glycol, diethylene glycol, triethylene glycol and the like can be mentioned.
  • One of the preferred aliphatic alcohols is methanol.
  • Aliphatic hydrocarbons include linear hydrocarbons having 5 to 18 carbon atoms such as n-pentane, n-hexane, n-heptane, and n-octane, and branched chain hydrocarbons having 5 to 18 carbon atoms such as isooctane. , Cyclohexane, cyclooctane, methylcyclohexane and other cyclic hydrocarbons having 5 to 18 carbon atoms.
  • the mass ratio of the organic solvent to the ketone or aldehyde used for condensation ((mass of ketone / mass of organic solvent) or (mass of aldehyde / mass of organic solvent)) is too large, the ketone or aldehyde and the aromatic alcohol Is difficult to react and it takes a long time to react. If this mass ratio is too small, the increase in the amount of ketones or aldehydes is promoted, and the bisphenol produced may solidify. From these facts, the mass ratio of the organic solvent to the ketone or aldehyde at the time of preparation is preferably 0.5 or more, more preferably 1 or more, while preferably 100 or less, and more preferably 50 or less.
  • Bisphenol is less likely to decompose if the generated bisphenol is dispersed without being completely dissolved in an organic solvent. It is preferable to use a solvent having a low solubility of bisphenol because the loss when recovering bisphenol from the reaction solution after the reaction is completed (for example, the loss to the filtrate during crystallization) can be reduced.
  • the solvent having low solubility of bisphenol include aromatic hydrocarbons. Therefore, the organic solvent preferably contains aromatic hydrocarbons as a main component, preferably contains 55% by mass or more of aromatic hydrocarbons in the organic solvent, more preferably 70% by mass or more, and more preferably 80% by mass. It is more preferable to contain% or more.
  • the organic solvent contains an aliphatic alcohol, so that the sulfuric acid reacts with the aliphatic alcohol to produce monoalkyl sulfate, and the effect that the catalytic action can also be obtained by this monoalkyl sulfate. Is obtained. Therefore, when the acid catalyst contains sulfuric acid, the organic solvent is preferably an organic solvent containing an aliphatic alcohol. As the aliphatic alcohol has a large number of carbon atoms, lipophilicity increases, it becomes difficult to mix with sulfuric acid, and it becomes difficult to generate monoalkyl sulfate. Therefore, an alkyl alcohol having 8 or less carbon atoms is preferable.
  • the molar ratio of the aliphatic alcohol to sulfuric acid is preferably 0.01 or more, more preferably 0.05 or more, still more preferably 0.1 or more, preferably 10 or less, more preferably 5 or less. More preferably, it is 3 or less.
  • the organic solvent can include, for example, aromatic hydrocarbons and aliphatic alcohols.
  • the organic solvent may contain 1 to 95% by mass of aromatic hydrocarbons and 0.1 to 10% by mass of an aliphatic alcohol.
  • the method for preparing the reaction solution is not particularly limited, and a method of supplying an acid catalyst to a mixed solution of a mixture of an aromatic alcohol, an organic solvent, a ketone or an aldehyde, or a method of mixing an acid catalyst, an aromatic alcohol and an organic solvent. Examples thereof include a method of supplying a ketone or an aldehyde to the mixed solution.
  • the solution containing the ketone or aldehyde may contain the ketone or aldehyde alone, or may contain a thiol or an organic solvent.
  • the solution containing a ketone or aldehyde preferably contains a thiol.
  • reaction condition The reaction for producing bisphenol C is a condensation reaction. If the reaction temperature of the production reaction is too high, oxidative decomposition of thiol proceeds, and if it is too low, the time required for the reaction becomes long. Therefore, the reaction temperature is preferably 0 ° C. or higher and 50 ° C. or lower.
  • the reaction time of the production reaction is preferably 30 hours or less, more preferably 25 hours or less, still more preferably 20 hours or less because the produced bisphenol is decomposed if it is too long.
  • the lower limit of the reaction time is usually 0.5 hours or more. It is possible to stop the reaction by adding water equal to or more than the amount of sulfuric acid used or an aqueous sodium hydroxide solution so that the sulfuric acid concentration is 45% by mass or less to reduce the sulfuric acid concentration.
  • Purification of the bisphenol C product obtained by the bisphenol C production reaction can be carried out by a conventional method. For example, it can be purified by a simple means such as crystallization or column chromatography. Specifically, after the condensation reaction, the organic phase obtained by separating the reaction solution is washed with water or saline, and if necessary, neutralized and washed with sodium bicarbonate water or the like. The washed organic phase is then cooled and crystallized. When a large amount of aromatic alcohol is used, excess aromatic alcohol by distillation is distilled off before crystallization and then crystallization is performed.
  • trimethylbisphenol A produced as a by-product in the bisphenol C production reaction system remains, and a bisphenol C product containing trimethylbisphenol A is obtained as the bisphenol composition of the present invention. Therefore, in the above method for purifying a bisphenol C product, for example, crystallization, suspension washing, sprinkling washing and the like are appropriately combined to leave a predetermined amount of trimethylbisphenol A in the purified bisphenol C product. It is preferable to adjust the purification conditions so as to.
  • Example of purification process As an example of a purification step suitable for the present invention, a method of purifying the bisphenol C product obtained by the condensation reaction after washing in the washing step and then precipitating in the crystallization step will be described below.
  • the organic phase containing bisphenol C obtained from the reaction solution is washed with desalted water, and the washed organic phase is cooled and crystallized. Wash multiple times as follows. Crystallization may also be performed a plurality of times.
  • First step After mixing the organic phase (O1) containing bisphenol C obtained from the reaction step and desalinated water, the organic phase (O2) containing bisphenol C and the aqueous phase (W1) are phase-separated. The aqueous phase (W1) is removed to obtain an organic phase (O2) containing bisphenol C.
  • Second step After mixing the bisphenol C-containing organic phase (O2) obtained in the first water washing step with desalted water, the phase is separated into the bisphenol C-containing organic phase (O3) and the aqueous phase (W2). The aqueous phase (W2) is removed to obtain an organic phase (O3) containing bisphenol C.
  • the first step is preferably performed so that the pH of the aqueous phase (W1) is 8.5 or higher.
  • the second step is preferably performed so that the electrical conductivity of the aqueous phase (W2) is 10 ⁇ S / cm.
  • the demineralized water is water that has undergone ion exchange treatment, pure water, or the like and has an electric conductivity of 1.5 ⁇ S / cm or less.
  • the measurement temperature of the aqueous phase (W1) is preferably room temperature (20 to 30 ° C.), for example 25 ° C.
  • the pH of the aqueous phase is lower than 7, it is possible to wash with a basic substance such as sodium hydroxide or sodium hydrogen carbonate, and then wash again with water.
  • the organic phase obtained after washing with a basic substance is washed again with water so that the pH of the aqueous phase becomes 8.5 or higher.
  • the pH is preferably 8.5 or higher, more preferably 9 or higher.
  • the upper limit of the pH of the aqueous phase (W1) is usually. It is 14 or less, preferably 13 or less, and more preferably 12 or less.
  • the measurement temperature of the electric conductivity of the aqueous phase (W2) in the second washing step is preferably room temperature (20 to 30 ° C.), for example 25 ° C.
  • the electrical conductivity of the aqueous phase (W2) in the second washing step is preferably 10 ⁇ S / cm or less, more preferably 9 ⁇ S / cm or less, still more preferably 8 ⁇ S / cm or less.
  • the organic phase containing bisphenol C was washed with water to make the pH of the obtained aqueous phase basic at pH 8.5 or higher, and then repeated washing with water as necessary to conduct electrical conduction of the obtained aqueous phase.
  • the degree is 10 ⁇ S / cm or less, it is preferable to perform the crystallization step.
  • acidic thionium is produced from the thiol, which is contained in the bisphenol composition and inhibits the polymerization reaction during the production of the polycarbonate resin.
  • the aqueous phase (W1) ) And the electrical conductivity of the aqueous phase (W2) are controlled, so that thionium can be efficiently removed and polymerization inhibition by thionium can be prevented.
  • the temperature in the washing step is 90 ° C. or lower, particularly 85 ° C. or lower, 50 ° C. or higher, particularly so that bisphenol can be efficiently precipitated by cooling in the crystallization step described later without evaporating the solvent. It is preferably 55 ° C. or higher.
  • One washing time time for adding desalted water to the organic phase and mixing is usually about 1 to 120 minutes.
  • the cooling temperature in the crystallization step should be 10 to 120 ° C. lower than the temperature of the organic phase (O3) obtained from the washing step, 40 ° C. or lower, particularly 30 ° C. or lower, -20 ° C. or higher, and particularly -10 ° C. or higher. Is preferable.
  • the bisphenol composition precipitated in the crystallization step can be recovered by solid-liquid separation by filtration, centrifugation, decantation, or the like.
  • the bisphenol composition of the present invention is a polyether resin, polyester resin, polyarylate resin, polycarbonate resin, polyurethane used for various purposes such as optical materials, recording materials, insulating materials, transparent materials, electronic materials, adhesive materials, and heat resistant materials.
  • Components, curing agents, additives or their components such as various thermoplastic resins such as resins and acrylic resins, and various thermosetting resins such as epoxy resins, unsaturated polyester resins, phenol resins, polybenzoxazine resins and cyanate resins. It can be used as a precursor or the like.
  • the bisphenol composition of the present invention is also useful as an additive such as a color developer such as a heat-sensitive recording material, a fading inhibitor, a bactericide, and an antibacterial and antifungal agent.
  • the bisphenol composition of the present invention is preferably used as a raw material (monomer) for a thermoplastic resin and a thermosetting resin because it can impart good mechanical properties, and more particularly as a raw material for a polycarbonate resin and an epoxy resin. preferable.
  • the bisphenol composition of the present invention is also preferably used as a color developer, and more preferably used in combination with a leuco dye and a discoloration temperature adjuster.
  • the polycarbonate resin of the present invention is a polycarbonate resin having at least a repeating structural unit represented by the following general formula (A), and is a compound obtained by alkaline hydrolysis of the polycarbonate resin (hereinafter, "alkaline water addition").
  • composition product is a polycarbonate containing bisphenol (I) and bisphenol (II), and the amount of bisphenol (II) obtained by alkaline hydrolysis is 160% by mass or more with respect to the polycarbonate resin.
  • Such a polycarbonate resin of the present invention can be produced by using the bisphenol composition of the present invention.
  • R 1 to R 6 are synonymous with those in the general formula (1).
  • the ratio of this bisphenol (II) to the polycarbonate resin is preferably 200 mass ppm or more, more preferably 300 mass ppm or more, preferably 20000 mass ppm or less, and more preferably 15000 mass ppm or less.
  • the bisphenol composition of the present invention and diphenyl carbonate or the like are used in the presence of an alkali metal compound and / or an alkaline earth metal compound. Examples thereof include a method of transesterifying.
  • the bisphenol composition of the present invention may contain only one type of bisphenol (I), and may contain two or more types of bisphenol (I), or one or more types of bisphenol (I) and other bisphenols. It may be included.
  • a copolymerized polycarbonate resin can be produced by using two or more kinds of bisphenols. Further, a dihydroxy compound other than the bisphenol composition of the present invention can be used in combination for reaction.
  • the transesterification reaction can be carried out by appropriately selecting a known method.
  • An example of a method for producing a polycarbonate resin using the bisphenol composition of the present invention and diphenyl carbonate as raw materials will be described below.
  • diphenyl carbonate in an excess amount with respect to the bisphenol in the bisphenol composition of the present invention.
  • the amount of diphenyl carbonate used for bisphenol is preferably large in that the produced polycarbonate resin has few terminal hydroxyl groups and is excellent in thermal stability of the polymer.
  • the amount of diphenyl carbonate used for bisphenol is preferably small in that the transesterification reaction rate is high and a polycarbonate resin having a desired molecular weight can be easily produced. From these facts, the amount of diphenyl carbonate used with respect to 1 mol of bisphenol is usually 1.001 mol or more, preferably 1.002 mol or more, and usually 1.3 mol or less, preferably 1.2 mol or less.
  • the bisphenol composition and diphenyl carbonate of the present invention can be supplied as a solid, but it is preferable to melt one or both of them and supply them in a liquid state.
  • a transesterification catalyst When producing a polycarbonate resin by transesterification reaction of diphenyl carbonate and bisphenol, a transesterification catalyst is usually used.
  • a transesterification catalyst In the above method for producing a polycarbonate resin, it is preferable to use an alkali metal compound and / or an alkaline earth metal compound as the transesterification catalyst. These may be used alone or in combination of two or more in any combination and ratio. Practically, it is desirable to use an alkali metal compound.
  • the amount of the catalyst used is usually 0.05 ⁇ mol or more, preferably 0.08 ⁇ mol or more, more preferably 0.10 ⁇ mol or more, and usually 100 ⁇ mol or less, preferably 50 ⁇ mol, based on 1 mol of bisphenol or diphenyl carbonate. Below, it is more preferably 20 ⁇ mol or less.
  • the amount of the catalyst used is within the above range, the polymerization activity required for producing a polycarbonate resin having a desired molecular weight can be easily obtained, the polymer hue is excellent, and excessive polymer branching does not proceed. It is easy to obtain a polycarbonate resin with excellent fluidity during molding.
  • both of the above raw materials are continuously supplied to the raw material mixing tank, and the obtained mixture and the transesterification catalyst are continuously supplied to the polymerization tank.
  • both raw materials supplied to the raw material mixing tank are usually stirred uniformly and then supplied to a polymerization tank to which a transesterification catalyst is added to produce a polymer.
  • the polymerization reaction temperature is preferably 80 ° C. or higher, particularly 150 ° C. or higher, 400 ° C. or lower, particularly 350 ° C. or lower.
  • the polymerization time is appropriately adjusted depending on the ratio of raw materials, the desired molecular weight of the polycarbonate resin, and the like. If the polymerization time is long, quality deterioration such as color tone deterioration becomes apparent. Therefore, it is preferably 10 hours or less, and more preferably 8 hours or less.
  • the lower limit of the polymerization time is usually 0.1 hours or more, or 0.3 hours or more.
  • a polycarbonate resin having a good hue and excellent transparency it is possible to produce a polycarbonate resin having a good hue and excellent transparency.
  • a polycarbonate resin having a viscosity average molecular weight (Mv) of 10,000 or more, preferably 15,000 or more, 100,000 or less, preferably 35,000 or less, and a pellet YI of 10 or less, which has a good hue and excellent transparency can be produced in a short time. ..
  • composition analysis of bisphenol C production reaction solution, trimethylbisphenol A analysis in bisphenol C composition, trimethylbisphenol A analysis in alkali hydrolysis product of polycarbonate resin is performed by high performance liquid chromatography under the following procedure and conditions. It was.
  • LCMS high performance liquid chromatography mass spectrometry
  • LCMS High Performance Liquid Chromatography Mass Spectrometry
  • ⁇ Analysis of bisphenol C in bisphenol C composition> The analysis of bisphenol C in the bisphenol C composition is the same as ⁇ composition of bisphenol C production reaction solution, trimethylbisphenol A analysis in bisphenol C composition, trimethylbisphenol A analysis in alkali hydrolysis product of polycarbonate resin>. Carried out.
  • the purity of bisphenol C in bisphenol in the bisphenol C composition produced in the present invention is usually 99% by mass or more, and the amount of bisphenol other than bisphenol C produced is very small. Therefore, bisphenol C in the bisphenol C composition
  • the content can be regarded as the bisphenol content.
  • ⁇ Methanol-dissolved color of bisphenol C composition The color of the bisphenol C composition dissolved in methanol is determined by adding 10 g of the bisphenol C composition and 10 g of methanol to a test tube "P-24" (24 mm ⁇ x 200 mm) manufactured by Niommen Rika Glass Co., Ltd. to make a homogeneous solution, and then at room temperature (about 20). The number of Hazen colors was measured and evaluated using "SE6000" manufactured by Nippon Denshoku Kogyo Co., Ltd. at (° C.).
  • the melt color difference of the bisphenol C composition is as follows: 20 g of the bisphenol C composition is placed in a test tube "P-24" (24 mm ⁇ x 200 mm) manufactured by Niommen Rika Glass Co., Ltd., melted at 190 ° C. for 30 minutes, and manufactured by Nippon Denshoku Kogyo Co., Ltd. Using "SE6000", the number of Hazen colors was measured and evaluated.
  • Thermal color stability of bisphenol C composition For the thermal color stability of the bisphenol C composition, 20 g of the bisphenol C composition was placed in a test tube "P-24" (24 mm ⁇ x 200 mm) manufactured by Niommen Rika Glass Co., Ltd. and melted at 190 ° C. for 4 hours. The number of Hazen colors was measured and evaluated using "SE6000" manufactured by Japan.
  • ⁇ Pyrolysis stability of bisphenol C composition For the thermal decomposition stability of the bisphenol C composition, 20 g of the bisphenol C composition was placed in a test tube "P-24" (24 mm ⁇ x 200 mm) manufactured by Niommen Rika Glass Co., Ltd. and melted at 190 ° C. for 2 hours to produce the bisphenol C formation reaction. It was carried out in the same manner as the composition analysis of the liquid, and the amount of isopropenyl cresol produced was measured and evaluated.
  • CM-A212 for petri dish measurement was fitted into the measuring section, and the zero calibration box “CM-A124" was placed over it to perform zero calibration, and then white calibration was performed using the built-in white calibration plate. ..
  • CM-A210 white calibration plate
  • L * was 99.40 ⁇ 0.05
  • a * was 0.03 ⁇ 0.01
  • b * was -0.43 ⁇ 0.01.
  • YI was confirmed to be ⁇ 0.58 ⁇ 0.01.
  • YI was measured by packing pellets to a depth of about 40 mm in a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm. The operation of taking out the pellets from the glass container and then performing the measurement again was repeated twice, and the average value of the measured values of a total of three times was used.
  • Example 1 (1) Preparation of the first mixed solution In a separable flask equipped with a thermometer, a dropping funnel, a jacket and an anchor-type stirring blade, 320 g of toluene, 15 g of methanol, and Fuji Film Wako Pure Chemical Industries, Ltd. (reagent) under a nitrogen atmosphere. ), 230 g (2.13 mol) of orthocresol was added, and the internal temperature was set to 10 ° C. or lower. Then, 95 g of 98 mass% sulfuric acid was slowly added over 0.3 hours with stirring, and then cooled to 5 ° C. or lower.
  • reaction solution After the internal temperature of the first mixed solution is lowered to 5 ° C. or lower, the second mixed solution is subjected to the second mixed solution using the dropping funnel over 1 hour so that the internal temperature does not reach 10 ° C. or higher. And supplied to prepare a reaction solution.
  • the obtained sixth organic phase was cooled from 80 ° C. to 20 ° C. and maintained at 20 ° C. to precipitate bisphenol C. Then, after cooling to 10 ° C. and reaching 10 ° C., solid-liquid separation was performed using a centrifuge to obtain a crudely purified wet cake. The obtained wet cake was washed by sprinkling 500 g of toluene, and solid-liquid separation was performed using a centrifuge to obtain a purified wet cake. The obtained refined wet cake was distilled off with a light boiling point at an oil bath temperature of 100 ° C. under reduced pressure using an evaporator equipped with an oil bath to obtain 190 g of a white bisphenol C composition.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C composition was measured, the number of Hazen colors was 3.
  • the thermal color stability of the obtained bisphenol C composition was measured, the number of Hazen colors was 26.
  • the thermal decomposition stability of the obtained bisphenol C composition was measured, the amount of isopropenyl cresol produced was 186 mass ppm.
  • the obtained bisphenol C composition contained 210 mass ppm of trimethylbisphenol A.
  • the bisphenol C content in the obtained bisphenol C composition was 99.9% by mass.
  • Example 2 (1) Preparation of the first mixed solution In a separable flask equipped with a thermometer, a dropping funnel, a jacket and an anchor-type stirring blade, 320 g of toluene, 15 g of methanol, and 5 g of 2,6-xylenol (0.04) under an air atmosphere. (Mol) and 225 g (2.08 mol) of orthocresol manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. (reagent) were added, and the internal temperature was set to 10 ° C. or lower. Then, 95 g of 98 mass% sulfuric acid was slowly added over 0.3 hours with stirring, and then cooled to 5 ° C. or lower.
  • reaction solution After the internal temperature of the first mixed solution is lowered to 5 ° C. or lower, the second mixed solution is subjected to the second mixed solution using the dropping funnel over 1 hour so that the internal temperature does not reach 10 ° C. or higher. And supplied to prepare a reaction solution.
  • the obtained sixth organic phase was cooled from 80 ° C. to 20 ° C. and maintained at 20 ° C. to precipitate bisphenol C. Then, after cooling to 10 ° C. and reaching 10 ° C., solid-liquid separation was performed using a centrifuge to obtain a crudely purified wet cake. The obtained wet cake was washed by sprinkling 500 g of toluene, and solid-liquid separation was performed using a centrifuge to obtain a purified wet cake. The obtained refined wet cake was distilled off with a light boiling point at an oil bath temperature of 100 ° C. under reduced pressure using an evaporator equipped with an oil bath to obtain 178 g of a white bisphenol C composition.
  • the bisphenol C content in the obtained bisphenol C composition was 99.7% by mass, and the trimethylbisphenol A content was 20000% by mass.
  • the number of Hazen colors was 0.
  • the melt color difference of the obtained bisphenol C composition was measured, the number of Hazen colors was 8.
  • the thermal color stability of the obtained bisphenol C composition was measured, the number of Hazen colors was 32.
  • the thermal decomposition stability of the obtained bisphenol C composition was measured, the amount of isopropenyl cresol produced was 166 mass ppm.
  • reaction solution After the internal temperature of the first mixed solution is lowered to 5 ° C. or lower, the second mixed solution is subjected to the second mixed solution using the dropping funnel over 1 hour so that the internal temperature does not reach 10 ° C. or higher. And supplied to prepare a reaction solution.
  • the obtained 7th organic phase was cooled from 80 ° C. to 20 ° C. and maintained at 20 ° C. to precipitate bisphenol C. Then, after cooling to 10 ° C. and reaching 10 ° C., solid-liquid separation was performed using a centrifuge to obtain a wet cake. The obtained wet cake was washed by sprinkling 200 g of toluene, and solid-liquid separation was performed using a centrifuge to obtain a purified wet cake. The obtained refined wet cake was distilled off with a light boiling point at an oil bath temperature of 100 ° C. under reduced pressure using an evaporator equipped with an oil bath to obtain 183 g of a white bisphenol C composition.
  • the bisphenol C content in the obtained bisphenol C composition was 99.9% by mass, and trimethylbisphenol A was not detected (quantification limit was less than 0.1% by mass).
  • the number of Hazen colors was 3.
  • the melt color difference of the obtained bisphenol C composition was measured, the number of Hazen colors was 48.
  • the thermal color stability of the obtained bisphenol C composition was measured, the number of Hazen colors was 120.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 485 mass ppm.
  • reaction solution After the internal temperature of the first mixed solution is lowered to 5 ° C. or lower, the second mixed solution is subjected to the second mixed solution using the dropping funnel over 1 hour so that the internal temperature does not reach 10 ° C. or higher. And supplied to prepare a reaction solution.
  • the obtained 7th organic phase was cooled from 80 ° C. to 20 ° C. and maintained at 20 ° C. to precipitate bisphenol C. Then, after cooling to 10 ° C. and reaching 10 ° C., solid-liquid separation was performed using a centrifuge to obtain a wet cake. The obtained wet cake was washed by sprinkling 200 g of toluene, and solid-liquid separation was performed using a centrifuge to obtain a purified wet cake. The obtained refined wet cake was distilled off with a light boiling point at an oil bath temperature of 100 ° C. under reduced pressure using an evaporator equipped with an oil bath to obtain 160 g of a white bisphenol C composition.
  • the bisphenol C content in the obtained bisphenol C composition was 99.9% by mass, and the trimethylbisphenol A content was 55% by mass.
  • the number of Hazen colors was 2.
  • the melt color difference of the obtained bisphenol C composition was measured, the number of Hazen colors was 39.
  • the thermal color stability of the obtained bisphenol C composition was measured, the number of Hazen colors was 105.
  • the thermal decomposition stability of the obtained bisphenol C was measured, the amount of isopropenyl cresol produced was 412 mass ppm.
  • Example 3 100.00 g (0.39 mol of bisphenol C) and 86.49 g (0.4) of diphenyl carbonate obtained in Example 1 in a glass reaction tank having an internal volume of 150 mL equipped with a stirrer and a distillate. Mol) and 479 ⁇ L of a 400 mass ppm cesium carbonate aqueous solution were added. The operation of reducing the pressure of the glass reaction vessel to about 100 Pa and then restoring the pressure to atmospheric pressure with nitrogen was repeated three times to replace the inside of the reaction vessel with nitrogen. Then, the reaction vessel was immersed in an oil bath at 200 ° C. to dissolve the contents.
  • the rotation speed of the stirrer is set to 100 times per minute, and the pressure in the reaction vessel is adjusted to absolute pressure over 40 minutes while distilling off the phenol produced by the oligomerization reaction of bisphenol C and diphenyl carbonate in the reaction vessel.
  • the pressure was reduced from 101.3 kPa to 13.3 kPa.
  • the transesterification reaction was carried out for 80 minutes while maintaining the pressure in the reaction vessel at 13.3 kPa and further distilling off phenol.
  • the temperature outside the reaction vessel was raised to 250 ° C., and the pressure inside the reaction vessel was reduced from 13.3 kPa to 399 Pa in absolute pressure over 40 minutes to remove the distilled phenol from the system.
  • the temperature outside the reaction vessel was raised to 280 ° C.
  • the absolute pressure in the reaction vessel was reduced to 30 Pa, and the polycondensation reaction was carried out.
  • the polycondensation reaction was terminated when the stirrer in the reaction tank became a predetermined stirring power.
  • the time from the temperature rise to 280 ° C. to the end of the polymerization was 210 minutes.
  • the reaction vessel was repressurized to 101.3 kPa with nitrogen at an absolute pressure, and then the pressure was increased to 0.2 MPa with a gauge pressure, and the polycarbonate resin was extracted from the bottom of the reaction vessel in a strand shape to obtain a strand-shaped polycarbonate resin. .. Then, the strands were pelletized using a rotary cutter to obtain a pellet-shaped polycarbonate resin.
  • the viscosity average molecular weight (Mv) of the obtained polycarbonate resin was 24,800, and the pellet YI was 6.9.
  • the amount of trimethylbisphenol A in the alkali hydrolysis product of the obtained polycarbonate resin was 160 mass ppm with respect to the polycarbonate resin.
  • Example 4 In Example 3, instead of 100.00 g (bisphenol C 0.39 mol) of the bisphenol C composition obtained in Example 1, 100.00 g (bisphenol C 0.39) of the bisphenol C composition obtained in Example 2 was used. It was carried out in the same manner as in Example 3 except that it was used. The time from the temperature rise to 280 ° C. to the end of the polymerization (post-stage polymerization time) was 220 minutes. The viscosity average molecular weight (Mv) of the obtained polycarbonate resin was 24,800, and the pellet YI was 6.5. The amount of trimethylbisphenol A in the alkali hydrolysis product of the obtained polycarbonate resin was 16200 mass ppm with respect to the polycarbonate resin.
  • Example 3 In Example 3, instead of 100.00 g (bisphenol C 0.39 mol) of the bisphenol C composition obtained in Example 1, 100.00 g (bisphenol C 0.39) of the bisphenol C composition obtained in Comparative Example 1 was used. It was carried out in the same manner as in Example 3 except that it was used. The time from the temperature rise to 280 ° C. to the end of the polymerization (post-stage polymerization time) was 230 minutes. The viscosity average molecular weight (Mv) of the obtained polycarbonate resin was 24,800, and the pellet YI was 10.2. The amount of trimethylbisphenol A in the alkali hydrolysis product of the obtained polycarbonate resin was 2 mass ppm with respect to the polycarbonate resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

ビスフェノールを95質量%以上含有し、該ビスフェノール組成物中の下記一般式(II)で表されるビスフェノールの含有量が、150質量ppm以上であり、該ビスフェノール組成物のメタノール溶解色(ハーゼン色数)が、2以下であるビスフェノール組成物。このビスフェノール組成物を用いたポリカーボネート樹脂の製造方法。 一般式(II)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基。R11とR12とは結合して環を形成していてもよい。

Description

ビスフェノール組成物及びポリカーボネート樹脂
 本発明はビスフェノール組成物と、ポリカーボネート樹脂及びその製造方法に関する。
 本発明のビスフェノール組成物は、ポリカーボネート樹脂、エポキシ樹脂、芳香族ポリエステル樹脂などの樹脂原料や、硬化剤、顕色剤、退色防止剤、その他殺菌剤や防菌防カビ剤等の添加剤として有用である。
 ビスフェノールは、ポリカーボネート樹脂、エポキシ樹脂、芳香族ポリエステル樹脂などの高分子材料の原料として有用である。代表的なビスフェノールとしては、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンなどが知られている(特許文献1,2)。
特開昭62-138443号公報 特開2014-40376号公報
 ビスフェノールの代表的な用途であるポリカーボネート樹脂は、無色であり、透明であることが求められる。ポリカーボネート樹脂の色調は、原料の色調の影響を大きく受ける。そのため、原料であるビスフェノールの色調も、無色であることが求められる。
 ビスフェノールの色を直接定量することは困難であることから、本発明では、ビスフェノールをメタノールに溶解させて色差を数値化し、この色調を「メタノール溶解色」と称する。
 ポリカーボネート樹脂の製造において、特に溶融法においては、ビスフェノールを溶融させてポリカーボネート樹脂を製造することから、高温にさらされる。そのため、ビスフェノールの熱的な色調の安定性も求められる。
 本発明では、この色調を「溶融色差」と称する。
 ポリカーボネート樹脂の製造において、ビスフェノールを溶融した後に、重合反応を実施することから、重合開始前までの熱的な色調安定性も求められる。
 本発明では、この色調を「熱色調安定性」と称する。
 ポリカーボネート樹脂の製造において、重合開始前までにビスフェノールが熱分解してしまうと、ビスフェノールの物質量が減少し、原料である炭酸ジフェニルとの物質量比が所定の物質量比と乖離してしまい、所望の分子量のポリカーボネート樹脂を得ることができなくなることから、ビスフェノールの熱的な安定性も求められる。
 本発明では、この安定性を「熱分解安定性」と称する。
 ポリカーボネート樹脂については、設計通りの分子量を有し、かつ色調が良好なポリカーボネート樹脂が求められている。このようなポリカーボネート樹脂を製造するために、原料であるビスフェノールとして、メタノール溶解色、溶融色差、及び熱色調安定性に優れ、また、熱分解安定性に優れたビスフェノールが求められている。
 本発明は、メタノール溶解色、溶融色差、熱色調安定性、及び熱分解安定性が良好なビスフェノール組成物を提供することを目的とする。本発明はまた、このビスフェノール組成物を用いて、色調に優れたポリカーボネート樹脂を提供することを目的とする。
 本発明者は、特定の化合物を所定の割合で含有するビスフェノールC組成物が、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性に優れることを見出した。また、本発明者は、この特定の化合物に由来する構造単位を所定の割合で含有するポリカーボネート樹脂が色調に優れることを見出した。
 すなわち、本発明の要旨は、以下の[1]~[14]に存する。
[1] ビスフェノールを95質量%以上含有するビスフェノール組成物であって、該ビスフェノール組成物中の下記一般式(II)で表されるビスフェノールの含有量が、150質量ppm以上であり、該ビスフェノール組成物のメタノール溶解色(ハーゼン色数)が、2以下であるビスフェノール組成物。
Figure JPOXMLDOC01-appb-C000006
 一般式(II)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
[2] 前記ビスフェノールが、下記一般式(I)で表されるビスフェノールである[1]に記載のビスフェノール組成物。
Figure JPOXMLDOC01-appb-C000007
 一般式(I)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
[3] 該ビスフェノール組成物中の前記一般式(II)で表されるビスフェノールの含有量が、20000質量ppm以下である[1]又は[2]に記載のビスフェノール組成物。
[4] 前記一般式(II)で表されるビスフェノールが、2-(4-ヒドロキシ-3-メチルフェニル)-2-(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、1-(4-ヒドロキシ-3-メチルフェニル)-1-(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、及び、1-(4-ヒドロキシ-3-メチルフェニル)-1-(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンからなる群から選ばれるいずれか1つ以上である[1]乃至[3]のいずれかに記載のビスフェノール組成物。
[5] 該ビスフェノール組成物を190℃で30分間溶融させ、日本電色工業社製「SE6000」を用いて測定したハーゼン色数が、100以下である[1]乃至[4]のいずれかに記載のビスフェノール組成物。
[6] 該ビスフェノール組成物中のナトリウム含有量が、0.5質量ppm未満である[1]乃至[5]のいずれかに記載のビスフェノール組成物。
[7] 該ビスフェノール組成物中の鉄含有量が、0.5質量ppm以下である[1]乃至[6]のいずれかに記載のビスフェノール組成物。
[8] 該ビスフェノール組成物中のアルミニウム含有量が、0.1質量ppm以下である[1]乃至[7]のいずれかに記載のビスフェノール組成物。
[9] 前記一般式(I)で表されるビスフェノールが、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、及び、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサンからなる群から選ばれるいずれか1つ以上である[1]乃至[8]のいずれかに記載のビスフェノール組成物。
[10] ビスフェノールを製造する際に前記一般式(II)で表されるビスフェノールを副生させる[1]乃至[9]のいずれかに記載のビスフェノール組成物の製造方法。
[11] [1]乃至[9]のいずれかに記載のビスフェノール組成物を用いたポリカーボネート樹脂の製造方法。
[12] 少なくとも下記一般式(A)で表される繰り返される構造単位を有するポリカーボネート樹脂であって、該ポリカーネート樹脂をアルカリ加水分解することにより得られる化合物は、下記一般式(I)で表されるビスフェノールおよび下記一般式(II)で表されるビスフェノールを含み、該ポリカーボネート樹脂に対して、アルカリ加水分解によって得られる下記一般式(II)で表されるビスフェノールが160質量ppm以上であるポリカーネート樹脂。
Figure JPOXMLDOC01-appb-C000008
 一般式(A)中、R~Rは、それぞれに独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、またはアリール基であり、該アルキル基、アルコキシ基、アリール基は、置換または無置換のいずれであってもよい。RとRは、2つの基の間で互いに結合又は架橋していてもよく、RとRとが隣接する炭素原子と一緒に結合して、ヘテロ原子を含んでいてもよいシクロアルキリデン基を形成してもよい。
Figure JPOXMLDOC01-appb-C000009
 一般式(I)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000010
 一般式(II)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
[13] 前記ポリカーボネート樹脂に対して、前記一般式(II)で表されるビスフェノールが20000質量ppm以下である[12]に記載のポリカーボネート樹脂。
[14] 粘度平均分子量が15000以上、35000以下である[12]又は[13]に記載のポリカーボネート樹脂。
 本発明によれば、特定の化合物を所定の割合で含有することで、メタノール溶解色、溶融色差、熱色調安定性、及び熱分解安定性が良好なビスフェノール組成物が提供される。
 本発明によれば、このビスフェノール組成物を用いて得られるポリカーボネート樹脂、即ち、アルカリ加水分解によって該特定の化合物が所定の割合で得られるポリカーボネート樹脂によって、色調に優れたポリカーボネート樹脂が提供される。
 以下に本発明の実施の形態を詳細に説明する。以下に記載する構成要件の説明は、本発明の実施の態様の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではない。
 本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
[ビスフェノール組成物]
 本発明のビスフェノール組成物は、ビスフェノールを95質量%以上含有するビスフェノール組成物であって、該ビスフェノール組成物中の下記一般式(II)で表されるビスフェノール(以下、「ビスフェノール(II)」と称す場合がある。)の含有量が、150質量ppm以上であり、該ビスフェノール組成物のメタノール溶解色(ハーゼン色数)が、2以下であることを特徴とする。
Figure JPOXMLDOC01-appb-C000011
 一般式(II)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
 本発明のビスフェノール組成物中のビスフェノール(II)の含有量は、好ましくは200質量ppm以上、より好ましくは250質量ppm以上、特に好ましくは300質量ppm以上で、好ましくは20000質量ppm以下、より好ましくは15000質量ppm以下で、さらに好ましくは1400質量ppm以下、特に好ましくは1300質量ppm以下である。
 ビスフェノール組成物中のビスフェノール(II)の含有量が上記下限未満であると、メタノール溶解色、溶融色差、熱色調安定性、及び熱分解安定性が良好なビスフェノール組成物を得ることができない。ビスフェノール組成物中のビスフェノール(II)の含有量が上記上限を超えると以下のような傾向がある。
1) ポリカーボネート樹脂を製造する時に炭酸ジフェニルとのモル比がずれて、重合反応に影響する。
2) このビスフェノール組成物を用いて得られるポリカーボネート樹脂の脆性(アイゾット)の低減や、後述のビスフェノール(I)に由来する構造単位を含むポリカーボネート樹脂特有の高表面硬度の低減を招く。
 ビスフェノール(II)としては具体的には、2-(4-ヒドロキシ-3-メチルフェニル)-2-(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、1-(4-ヒドロキシ-3-メチルフェニル)-1-(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、及び、1-(4-ヒドロキシ-3-メチルフェニル)-1-(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンからなる群から選ばれるいずれか1つ以上が挙げられる。これらのうち、特に2-(4-ヒドロキシ-3-メチルフェニル)-2-(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン(以下、「トリメチルビスフェノールA」と称する。)が好ましい。
 ビスフェノール(II)の検出及び定量は、粒径3μmの標準的な高速分析用逆相カラムを用いて、行うことが可能である。
 ビスフェノール組成物中のビスフェノール(II)の含有量は、精製されたビスフェノール(II)を含まない又は低濃度含むビスフェノールに、ビスフェノール(II)を適量添加することにより調整することができる。また、後述する通り、ビスフェノールの製造時に反応系内でビスフェノールと共にビスフェノール(II)を生成させてビスフェノール(II)を含むビスフェノール生成物を本発明のビスフェノール組成物として調製することができる。
<ビスフェノール>
 本発明のビスフェノール組成物に含まれるビスフェノールは、通常、以下の一般式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000012
 一般式(1)中のR~Rは、後述の一般式(3),(4)におけるR~Rと同義であり、その好適例、具体例は、後述の一般式(3),(4)における説明の通りである。
 上記一般式(1)で表されるビスフェノールとして、具体的には、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシ-3-メチルフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ヘプタン、3,3-ビス(4-ヒドロキシ-3-メチルフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシ-3-メチルフェニル)ヘプタンなどが挙げられるが、何らこれらに限定されるものではない。
 この中でも、本発明のビスフェノール組成物に含まれるビスフェノールとしては、下記一般式(I)で表されるビスフェノール(以下、「ビスフェノール(I)」と称す場合がある。)が好ましい。ビスフェノール(I)としては、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、及び、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサンからなる群から選ばれるいずれか1つ以上が好ましい。特に2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(ビスフェノールC)が好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(I)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
 本発明のビスフェノール組成物は、このようなビスフェノールを95質量%以上、好ましくは99質量%以上、より好ましくは99.5質量%以上含有する。ビスフェノールの含有量が上記下限よりも少ないと、ビスフェノールとしての用途において好ましくない。本発明のビスフェノール組成物中のビスフェノールの含有量の上限は、ビスフェノール(II)の含有量の確保、製造コスト等の観点、ポリカーボネート樹脂の製造反応における炭酸ジフェニルとの物質量比の調整、表面硬度や脆性などのポリカーボネート樹脂の機械物性等の観点から、通常99.9質量%程度である。
 ビスフェノールの検出及び定量は、標準的な高速分析用逆相カラムを用いて行うことが可能である。
<ビスフェノール組成物のメタノール溶解色>
 ビスフェノール組成物のメタノール溶解色は、常温におけるビスフェノール組成物の色調を評価することに用いられる。ビスフェノール組成物のメタノール溶解色のハーゼン色数が低いほど、ビスフェノール組成物の色調が良好(白色に近い)であることを示す。ビスフェノール組成物のメタノール溶解色を悪化させる原因としては、有機着色成分や金属の混入が挙げられる。
 ビスフェノール組成物のメタノール溶解色は、ビスフェノール組成物をメタノールに溶解させて、均一溶液とした後、室温(約20℃)で測定する。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。ここで使用する溶媒メタノール、ビスフェノールと溶媒の質量比は、ビスフェノールの種類により適宜選択することが好ましい。
 本発明のビスフェノール組成物のメタノール溶解色のハーゼン色数は、2以下であり、好ましくは1以下であり、より好ましくは0以下である。
<ビスフェノール組成物の溶融色差>
 ビスフェノール組成物の溶融色差は、ポリカーボネートの重合温度に近い温度でのビスフェノール組成物の色調を評価することに用いられる。溶融色差の測定温度は、ビスフェノールの融点+50℃である。ビスフェノール組成物の溶融色差はハーゼン色数が低いほど、ビスフェノール組成物の色調が良好(白色に近い)であることを示す。ビスフェノール組成物の溶融色差を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分が挙げられる。
 ビスフェノール組成物の溶融色差は、重合温度に近い温度でビスフェノール組成物を溶融させ、予めその温度が安定した時間で測定する。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。
 本発明のビスフェノール組成物を190℃で30分間溶融させ、日本電色工業社製「SE6000」を用いて測定したハーゼン色数は100以下であることが好ましく、より好ましくは30以下であり、特に好ましくは25以下であり、とりわけ好ましくは20以下である。
<ビスフェノール組成物の熱色調安定性>
 ビスフェノール組成物の熱色調安定性は、ビスフェノール組成物の溶融色差同様、ポリカーボネートの重合温度に近い温度で所定の時間保持させ、ビスフェノール組成物の色調の熱安定性を評価することに用いられる。ビスフェノール組成物の熱色調安定性の測定温度は、ビスフェノールの融点+50℃である。
 ビスフェノール組成物の熱色調安定性はハーゼン色数が低いほど、ビスフェノール組成物の熱色調安定性が良好であることを示す。ビスフェノール組成物の熱色調安定性を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分やその濃度が数ppm程度の酸性物質や塩基性物質が挙げられる。
 ビスフェノール組成物の熱色調安定性は、重合温度に近い温度でビスフェノール組成物を溶融させ、予めその温度が安定した時間で測定する。ビスフェノール組成物の熱色調安定性の保持時間は、4時間である。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。
 このハーゼン色数は、好ましくは50以下であり、より好ましくは45以下であり、特に好ましくは35以下である。
<ビスフェノール組成物の熱分解安定性>
 ビスフェノール組成物の熱分解安定性は、ビスフェノール組成物の熱色調安定性と同様、ポリカーボネートの重合温度に近い温度で所定の時間保持させ、ビスフェノール組成物の熱安定性を評価することに用いられる。ビスフェノール組成物の熱分解安定性の好ましい測定温度は、ビスフェノールの融点+50℃である。ビスフェノール組成物の熱分解安定性は分解物の生成量が少ないほど、ビスフェノール組成物が安定であることを示す。
 ビスフェノール組成物の熱分解安定性における分解物は、ビスフェノールの種類にもよるが、該ビスフェノール組成物の原料である芳香族アルコール、又は、該芳香族アルコールと原料であるケトン又はアルデヒドの付加物が挙げられる。ビスフェノール組成物の熱分解安定性を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分やその濃度が数ppm程度の酸性物質や塩基性物質が挙げられる。
 ビスフェノール組成物の分解物の検出及び定量は、標準的な高速分析用逆相カラムを用いて、行うことが可能である。
 ビスフェノール組成物の分解物として後述の実施例で測定されるイソプロペニルクレゾールの生成量は200質量ppm以下であることが好ましい。
 ビスフェノール組成物のメタノール溶解色は、ビスフェノール組成物そのものの色調を評価する方法である。ビスフェノール組成物が最終製品である場合は、メタノール溶解色が良好なビスフェノール組成物が重要である。ポリカーボネート樹脂は原料の色調を引き継ぐことから、無色透明性が求められるポリカーボネート樹脂では良好な色調のビスフェノール組成物が重要である。
 ポリカーボネート樹脂の製造方法の1つである溶融重合法においては、高温で重合反応を行うことから、溶融時のビスフェノール組成物の色調(ビスフェノール組成物の溶融色差)、溶融状態でのビスフェノール組成物の色調安定性(ビスフェノール組成物の熱色調安定性)が重要である。
 更に、該溶融重合法において、高温でビスフェノール組成物を溶融させた状態で重合反応開始まで保持させる。該溶融重合方法において、ビスフェノール組成物が高温で分解する場合、炭酸ジフェニルとの物質量比が所定の物質量比から乖離し、重合反応活性や所定の分子量を持つポリカーボネート樹脂を得ることが困難となる。したがって、熱分解に対する耐性(ビスフェノール組成物の熱分解安定性)が重要である。
 特に、所定の分子量を有し、色調の良いポリカーボネート樹脂を製造するためには、ビスフェノール組成物のメタノール溶解色、ビスフェノール組成物の溶融色差、ビスフェノール組成物の熱色調安定性、ビスフェノール組成物の熱分解安定性が重要となる。
<ビスフェノール組成物中のナトリウム含有量>
 本発明のビスフェノール組成物中のナトリウム含有量は、0.5質量ppm未満が好ましく、0.4質量ppm未満がより好ましく、0.3質量ppm未満が特に好ましい。ビスフェノール組成物中のナトリウムは触媒作用を示すため、その含有量が多いと熱色調安定性及び熱分解安定性を悪化させる。よって、本発明のビスフェノール組成物中のナトリウム含有量は上記上限以下であることが好ましい。
 ビスフェノール組成物中のナトリウム含有量は、後掲の実施例の項に記載の方法で測定される。
<ビスフェノール組成物中の鉄含有量>
 本発明のビスフェノール組成物中の鉄含有量は、0.5質量ppm以下が好ましく、0.4質量ppm以下がより好ましく、0.3質量ppm以下が特に好ましい。ビスフェノール組成物中の鉄は、ビスフェノールが配位した構造を有するため、可視領域に吸収を持つ。そのため、該鉄はビスフェノール組成物の着色要因となり、その含有量が多いとメタノール溶解色、溶融色差を悪化させる。また、該鉄は触媒作用を示すため、その含有量が多いと熱色調安定性及び熱分解安定性を悪化させる。よって、本発明のビスフェノール組成物中の鉄含有量は上記上限以下であることが好ましい。
 本発明のビスフェノール組成物中の鉄の由来としては、ビスフェノールの原料となる芳香族アルコールに溶解した鉄や、ビスフェノールを生成する反応時に反応槽や反応槽の上部の設備から混入した鉄等が挙げられる。これらの鉄は、鉄の形態によって、酸性条件で水洗を繰り返したり、塩基性条件で水洗を繰り返したりなど、後述の精製方法により適宜除去される。
 ビスフェノール組成物中の鉄含有量は、後掲の実施例の項に記載の方法で測定される。
<ビスフェノール組成物中のアルミニウム含有量>
 本発明のビスフェノール組成物中のアルミニウム含有量は、0.1質量ppm以下が好ましく、0.09質量ppm以下がより好ましく、0.08質量ppm以下が特に好ましい。ビスフェノール組成物中のアルミニウムは、ビスフェノールが配位した構造を有するため、可視領域に吸収を持つ。そのため、該アルミニウムはビスフェノール組成物の着色要因となり、その含有量が多いとメタノール溶解色、溶融色差を悪化させる。また、該アルミニウムは触媒作用を示すため、その含有量が多いと熱色調安定性及び熱分解安定性を悪化させる。よって、本発明のビスフェノール組成物中のアルミニウム含有量は上記上限以下であることが好ましい。
 本発明のビスフェノール組成物中のアルミニウムの由来としては、ビスフェノールの原料となる芳香族アルコールに溶解したアルミニウムや、ビスフェノールの固体を得た後の取り出し作業や乾燥機に供給する際に外部から混入した酸化アルミニウム由来のアルミニウム等が挙げられる。これらのアルミニウムは、アルミニウムの形態によって、酸性条件で水洗を繰り返したり、塩基性条件で水洗を繰り返したりなど、後述の精製方法により適宜除去される。
 ビスフェノール組成物中のアルミニウム含有量は、後掲の実施例の項に記載の方法で測定される。
<ビスフェノール組成物の製造方法>
 ビスフェノール、好ましくはビスフェノール(I)を95質量%以上含み、ビスフェノール(II)を所定の割合で含む本発明のビスフェノール組成物の製造方法としては特に制限はないが、例えば次のような方法が挙げられる。
 (1) 固体のビスフェノール(I)に所定量のビスフェノール(II)を添加する方法
 (2) 溶融したビスフェノール(I)に所定量のビスフェノール(II)を添加する方法
 (3) ビスフェノール(I)を製造する際にビスフェノール(II)を副生させて、或いはビスフェノール(I)と共にビスフェノール(II)を生成させてビスフェノール(II)を含有するビスフェノール(I)生成物を得る方法
 (1),(2)の固体又は溶融したビスフェノール(I)にビスフェノール(II)を添加する方法においては、ビスフェノール(II)を別途準備する必要がある。従って、(3)ビスフェノール(I)を製造する反応系においてビスフェノール(II)を副生させるかビスフェノール(II)を生成させてビスフェノール(I)生成物にビスフェノール(II)を所定の割合で含有させる方法が好ましい。
 ビスフェノール(I)の反応系で副生又は生成させたビスフェノール(II)が多過ぎる場合は、得られたビスフェノール(I)生成物を更に晶析、懸濁洗浄及び振りかけ洗浄等で精製して、ビスフェノール(I)生成物に含まれるビスフェノール(II)の一部を除去することにより、本発明の規定範囲内のビスフェノール(II)を含むビスフェノール(I)生成物が得られるように制御することができる。
<ビスフェノール(II)を含むビスフェノールC生成物を得る方法>
 以下、ビスフェノール(II)の代表例としてトリメチルビスフェノールAを、ビスフェノール(I)の代表例としてビスフェノールCを挙げて、所定量のビスフェノール(II)を含み、ビスフェノール(I)を主体とする本発明のビスフェノール組成物の製造方法を例示して説明する。
 ビスフェノールCの製造時に反応系内でビスフェノールCと共にトリメチルビスフェノールAを生成させてトリメチルビスフェノールAを含むビスフェノールC生成物を本発明のビスフェノール組成物として得る方法としては、ケトン又はアルデヒドと芳香族アルコールを酸触媒及びチオール助触媒の存在下で縮合させてビスフェノールC或いはビスフェノールCと共にトリメチルビスフェノールAを製造する方法が挙げられる。この方法によれば、トリメチルビスフェノールAを反応系内で生成させることができる。
 以下、この方法について説明する。
 この方法では、酸触媒の存在下、芳香族アルコールとケトン又はアルデヒドを縮合させることによりビスフェノールCを製造する。
 ビスフェノールの生成反応は、以下に示す反応一般式(2)に従って行われる。本発明においては、このようなビスフェノールの生成反応において、少なくともビスフェノールCが生成するように、原料芳香族アルコールと原料ケトン又はアルデヒドを選択して使用する。
Figure JPOXMLDOC01-appb-C000014
 式中、R~Rは、一般式(1)におけるものと同義である。
(芳香族アルコール)
 ビスフェノールの製造に用いる原料芳香族アルコールは、通常、以下の一般式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000015
 一般式(3)中、R~Rとしては、それぞれに独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基などが挙げられる。該アルキル基、アルコキシ基、アリール基などは、置換または無置換のいずれであってもよい。R~Rとしては、例えば、水素原子、フルオロ基、クロロ基、ブロモ基、ヨード基、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。
 これらのうちRとRは立体的に嵩高いと縮合反応が進行しにくいことから好ましくは水素原子である。R~Rは、それぞれ独立に水素原子またはアルキル基であることがより好ましい。R,Rはそれぞれ独立に水素原子またはアルキル基で、R,Rは水素原子であることがさらに好ましい。
 一般式(3)で表される化合物として、具体的には、フェノール、クレゾール、キシレノール、エチルフェノール、プロピルフェノール、ブチルフェノール、メトキシフェノール、エトキシフェノール、プロポキシフェノール、ブトキシフェノール、ベンジルフェノール、フェニルフェノールなどが挙げられる。
 本発明においては、これらのうち、少なくともオルトクレゾールを用いてビスフェノールCを生成させるか、或いはオルトクレゾールと共にキシレノールを用いてビスフェノールCとトリメチルビスフェノールAを生成させる。
(ケトン又はアルデヒド)
 ビスフェノールの製造に用いる原料ケトン又はアルデヒドは、通常、以下の一般式(4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000016
 一般式(4)中、RとRとしては、それぞれに独立に水素原子、アルキル基、アルコキシ基、アリール基などが挙げられる。該アルキル基、アルコキシ基、アリール基などは、置換または無置換のいずれであってもよい。R,Rとしては、例えば、水素原子、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルへキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、i-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、n-ドデシルオキシ基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロオクチル基、シクロドデシル基、ベンジル基、フェニル基、トリル基、2,6-ジメチルフェニル基などが挙げられる。
 RとRは、2つの基の間で互いに結合又は架橋していてもよい。RとRとが隣接する炭素原子と一緒に結合して、ヘテロ原子を含んでいてもよいシクロアルキリデン基を形成してもよい。シクロアルキリデン基とは、シクロアルカンの1つの炭素原子から2個の水素原子を除去した2価の基である。
 RとRとが隣接する炭素原子と一緒に結合し形成されるシクロアルキリデン基としては、例えば、シクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、3,3,5-トリメチルシクロヘキシリデン、シクロヘプチリデン、シクロオクチリデン、シクロノニリデン、シクロデシリデン、シクロウンデシリデン、シクロドデシリデン、フルオレニリデン、キサントニリデン、チオキサントニリデンなどが挙げられる。
 一般式(4)で表される化合物として、具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンチルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、オクチルアルデヒド、ノニルアルデヒド、デシルアルデヒド、ウンデシルアルデヒド、ドデシルアルデヒドなどのアルデヒド類;アセトン、ブタノン、ペンタノン、ヘキサノン、ヘプタノン、オクタノン、ノナノン、デカノン、ウンデカノン、ドデカノンなどのケトン類;ベンズアルデヒド、フェニルメチルケトン、フェニルエチルケトン、フェニルプロピルケトン、クレジルメチルケトン、クレジルエチルケトン、クレジルプロピルケトン、キシリルメチルケトン、キシリルエチルケトン、キシリルプロピルケトンなどのアリールアルキルケトン、シクロプロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロノナノン、シクロデカノン、シクロウンデカノン、シクロドデカノンなどの環状アルカンケトン類;等が挙げられる。
 本発明においては、これらのうち、少なくともアセトンを用いる。
 芳香族アルコールとケトン又はアルデヒドを縮合させる反応において、ケトン又はアルデヒドに対する芳香族アルコールのモル比は、少ないとケトン又はアルデヒドが多量化してしまうが、多いと芳香族アルコールを未反応のままロスする。これらのことから、ケトン又はアルデヒドに対する芳香族アルコールのモル比は、好ましくは1.5以上、より好ましくは1.6以上、更に好ましくはモル比1.7以上で、好ましくは15以下、より好ましくは10以下、更に好ましくは8以下である。
 ケトン及びアルデヒドの供給方法は、一括で供給する方法、及び分割して供給する方法を用いることができる。ビスフェノールを生成する反応が発熱反応であることから、ケトン及びアルデヒドは少しずつ滴下して供給するなど分割して供給する方法が好ましい。
(酸触媒)
 ビスフェノールの製造に用いられる酸触媒としては、硫酸、塩酸、塩化水素ガス、リン酸、p-トルエンスルホン酸などの芳香族スルホン酸、メタンスルホン酸などの脂肪族スルホン酸などが挙げられる。
 縮合に用いるケトン又はアルデヒドに対する酸触媒のモル比((酸触媒のモル数/ケトンのモル数)又は(酸触媒のモル数/アルデヒドのモル数))は、少ない場合は、縮合反応の進行とともに副生する水によって酸触媒が希釈されて反応に時間を要する。このモル比が多い場合は、ケトン又はアルデヒドの多量化が進行する場合ある。これらのことから、縮合に用いるケトン又はアルデヒドに対する酸触媒のモル比は、好ましくは0.01以上、より好ましくは0.05以上、さらに好ましくは0.1以上で、好ましくは10以下、より好ましくは8以下、さらに好ましくは5以下である。
 酸触媒は、硫酸、塩酸、塩化水素ガス、リン酸、p-トルエンスルホン酸などの芳香族スルホン酸、メタンスルホン酸などの脂肪族スルホン酸などからなる群より選ばれるいずれか1つであることが好ましい。
 反応に用いるケトン又はアルデヒドに対する塩化水素のモル比((塩化水素のモル数/ケトンのモル数)又は(塩化水素のモル数/アルデヒドのモル数))は、少ないと縮合反応時に副生する水によって塩化水素が希釈されて長い反応時間を要することになる。このモル比が多いとケトン又はアルデヒドの多量化が進行する場合がある。これらのことから、ケトン又はアルデヒドに対する塩化水素のモル比は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上で、好ましくは10以下、より好ましくは8以下、更に好ましくは5以下である。
 硫酸は、化学式HSOで表される酸性の液体である。一般的に、硫酸は水で希釈された硫酸水溶液として用いられ、その濃度に応じて、濃硫酸や希硫酸といわれる。例えば、希硫酸とは、質量濃度が90質量%未満の硫酸水溶液である。
 用いる硫酸の濃度(硫酸水溶液の濃度)が低いと、水の量が多くなるため、ビスフェノールCの生成反応が進行しにくくなり、ビスフェノールを製造する反応時間が長くなり、効率的にビスフェノールを製造することが難しい場合がある。そのため、用いる硫酸の濃度は、好ましくは70質量%以上、より好ましくは75質量%以上、更に好ましくは80質量%以上である。用いる硫酸の濃度の上限は、通常99.5質量%以下又は99質量%以下である。
(チオール)
 ビスフェノールの製造においては、ケトン又はアルデヒドと芳香族アルコールとを縮合させる反応に、助触媒としてチオールを用いることができる。
 助触媒としてチオールを用いることで、例えば2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンの製造において、24体の生成を抑え、44体の選択率を上げる効果と共に、ポリカーボネート樹脂製造時の重合活性を高め、得られるポリカーボネート樹脂の色調を良好なものとするという効果が得られる。
 ポリカーボネート樹脂製造時の重合活性の向上、得られるポリカーボネート樹脂の色調の改善効果が奏される理由の詳細は明らかではないが、チオールを用いることで、ポリカーボネート樹脂を製造する重合反応に対する阻害物の生成を抑制すると共に、色調悪化物の生成を抑制することができることによると推定される。
 助触媒として用いるチオールとしては、例えば、メルカプト酢酸、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、4-メルカプト酪酸などのメルカプトカルボン酸や、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、ブチルメルカプタン、ペンチルメルカプタン、へキシルメルカプタン、へプチルメルカプタン、オクチルメルカプタン、ノニルメルカプタン、デシルメルカプタン(デカンチオール)、ウンデシルメルカプタン(ウンデカンチオール)、ドデシルメルカプタン(ドデカンチオール)、トリデシルメルカプタン、テトラデシルメルカプタン、ペンタデシルメルカプタンなどのアルキルチオールやメルカプトフェノールなどのアリールチオールなどが挙げられる。
 縮合に用いるケトン又はアルデヒドに対するチオール助触媒のモル比((チオール助触媒のモル数/ケトンのモル数)又は(チオール助触媒のモル数/アルデヒドのモル数))は、少ないとチオール助触媒を用いることによるビスフェノールの反応選択性改善の効果が得られない。このモル比が、多いとビスフェノールに混入して品質が悪化する場合がある。これらのことから、ケトン及びアルデヒドに対するチオール助触媒のモル比は、好ましくは0.001以上、より好ましくは0.005以上、更に好ましくは0.01以上で、好ましくは1以下、より好ましくは0.5以下、更に好ましくは0.1以下である。
 チオール助触媒は、ケトン又はアルデヒドと予め混合してから反応に供することが好ましい。チオールとケトン又はアルデヒドとの混合方法は、チオールにケトン又はアルデヒドを混合してもよく、ケトン又はアルデヒドにチオールを混合してもよい。
 チオールとケトン又はアルデヒドとの混合液と、酸触媒との混合方法は、チオールとケトン又はアルデヒドとの混合液に酸触媒を混合してもよく、酸触媒にチオールとケトン又はアルデヒドとの混合液を混合してもよいが、酸触媒にチオールとケトン又はアルデヒドとの混合液を混合する方が好ましい。更に、反応槽に酸触媒と芳香族アルコールを供給した後に、チオールとケトン又はアルデヒドとの混合液を反応槽に供給して混合する方がより好ましい。
(有機溶媒)
 ビスフェノールの製造では、生成してくるビスフェノールを溶解ないし分散させるために通常有機溶媒を使用する。
 有機溶媒としては、ビスフェノールCの生成反応を阻害しない範囲で特に限定されず、芳香族炭化水素、脂肪族アルコール、脂肪族炭化水素などが挙げられる。ここで、基質となる芳香族アルコール、および、生成物であるビスフェノールは、有機溶媒から除かれる。これらの溶媒は単独で用いても、2種以上を併用して用いてもよい。
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、メシチレンなどが挙げられる。これらの溶媒を単独で用いても、2種以上を併用して用いてもよい。芳香族炭化水素は、ビスフェノールの製造に使用した後、蒸留などで回収及び精製して再使用することが可能である。芳香族炭化水素を再利用する場合は、沸点が低いものが好ましい。好ましい芳香族炭化水素のひとつは、トルエンである。
 脂肪族アルコールは、アルキル基とヒドロキシル基が結合したアルキルアルコールである。脂肪族アルコールは、アルキル基と1個のヒドロキシル基が結合した1価の脂肪族アルコールでもよく、アルキル基と2個以上のヒドロキシル基が結合した多価の脂肪族アルコールであってもよい。該アルキル基は、直鎖であっても、分岐していてもよく、無置換であっても、アルキル基の炭素原子の一部が酸素原子によって置換されていてもよい。
 脂肪族アルコールは、炭素数が多くなると親油性が増加し、硫酸と混ざりにくくなり後述の硫酸モノアルキルを生成させにくくなることから、炭素数12以下であることが好ましく、8以下であることがより好ましい。
 脂肪族アルコールは、アルキル基と1個のヒドロキシル基が結合したアルコールであることが好ましく、炭素数1~8のアルキル基と1個のヒドロキシル基が結合したアルコールであることがより好ましく、炭素数1~5のアルキル基と1個のヒドロキシル基が結合したアルコールであることが更に好ましい。
 具体的な脂肪族アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール、n-ウンデカノール、n-ドデカノール、エチレングリコール、ジエチレングルコール、トリエチレングリコールなどが挙げられる。好ましい脂肪族アルコールのひとつは、メタノールである。
 脂肪族炭化水素としては、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタンなどの炭素数5~18の直鎖状炭化水素、イソオクタンなどの炭素数5~18の分岐鎖状炭化水素、シクロヘキサン、シクロオクタン、メチルシクロヘキサンなどの炭素数5~18の環状炭化水素などが挙げられる。
 縮合に用いるケトン又はアルデヒドに対する有機溶媒の質量比((ケトンの質量/有機溶媒の質量)又は(アルデヒドの質量/有機溶媒の質量))は、多すぎると、ケトン又はアルデヒドと、芳香族アルコールとが反応しにくく、反応に長時間を要する。この質量比が少なすぎると、ケトン又はアルデヒドの多量化が促進され、生成してくるビスフェノールが固化する場合がある。これらのことから、仕込み時のケトン又はアルデヒドに対する有機溶媒の質量比は、0.5以上が好ましく、1以上がより好ましく、一方、100以下が好ましく、50以下がより好ましい。
 生成してくるビスフェノールを有機溶媒に完全に溶解させずに分散させた方が、ビスフェノールが分解しにくい。反応終了後、反応液からビスフェノールを回収する際の損失(例えば、晶析時の濾液への損失)を低減できることからも、ビスフェノールの溶解度が低い溶媒を用いることが好ましい。ビスフェノールの溶解度が低い溶媒としては、例えば、芳香族炭化水素が挙げられる。このため、有機溶媒は、芳香族炭化水素を主成分として含むことが好ましく、有機溶媒中に芳香族炭化水素を55質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、80質量%以上含むことが更に好ましい。
 酸触媒が硫酸を含む場合、有機溶媒が脂肪族アルコールを含むことで、硫酸と脂肪族アルコールが反応して硫酸モノアルキルが生成し、この硫酸モノアルキルによっても触媒作用を得ることができるという効果が得られる。このため、酸触媒が硫酸を含む場合、有機溶媒は、脂肪族アルコールを含む有機溶媒であることが好ましい。脂肪族アルコールは、炭素数が多くなると親油性が増加し、硫酸と混ざりにくくなり硫酸モノアルキルを生成させにくくなることから、炭素数が8以下のアルキルアルコールが好ましい。
 このように、硫酸と脂肪族アルコールを反応させ、硫酸モノアルキルを生成させることにより、酸触媒の酸強度を制御し、原料のケトン又はアルデヒドの縮合(多量化)及び着色を抑制することができる。このため、副生成物の生成が抑制され、かつ、着色が低減されたビスフェノールを簡便かつ効率よく製造することが可能となる。
 硫酸と脂肪族アルコールとを反応させ、硫酸モノアルキルを生成させ、その触媒作用も利用する場合、硫酸に対する脂肪族アルコールのモル比(脂肪族アルコールのモル数/硫酸のモル数)が少ないと原料のケトン又はアルデヒドの縮合(多量化)及び着色が顕著となる。このモル比が多いと硫酸濃度が低下し、反応が遅くなる。これらのことから、硫酸に対する脂肪族アルコールのモル比は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上で、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下である。
 以上のことから、有機溶媒は、例えば芳香族炭化水素及び脂肪族アルコールを含むものとすることができる。有機溶媒中に芳香族炭化水素を1~95質量%含み、脂肪族アルコールを0.1~10質量%含むものとすることができる。
(反応液の調製)
 反応液の調製方法は、特に限定されず、芳香族アルコール、有機溶媒、ケトン又はアルデヒドとを混合した混合液に、酸触媒を供給する方法や、酸触媒、芳香族アルコール、有機溶媒とを混合した混合液に、ケトン又はアルデヒドを供給する方法が挙げられる。
 ケトン又はアルデヒドの自己縮合による多量化を抑制するためには、芳香族アルコール、酸触媒および有機溶媒を含有する溶液とケトン又はアルデヒドを含有する溶液とを混合することが好ましい。この場合、ケトン又はアルデヒドを含有する溶液は、ケトン又はアルデヒド単独でもよいが、チオールや有機溶媒を含んでもよい。ケトン又はアルデヒドを含有する溶液は、チオールを含有することが好ましい。
(反応条件)
 ビスフェノールCの生成反応は縮合反応であるが、生成反応の反応温度が高すぎるとチオールの酸化分解が進行し、低すぎると反応に要する時間が長時間化する。よって、反応温度は好ましくは0℃以上50℃以下である。
 生成反応の反応時間は、長すぎると生成したビスフェノールが分解することから、好ましくは30時間以内、より好ましくは25時間以内、更に好ましくは20時間以内である。反応時間の下限は通常0.5時間以上である。
 用いる硫酸と同等量以上の水、又は硫酸濃度が45質量%以下となるように水酸化ナトリウム水溶液を加えて硫酸濃度を低下させ、反応を停止することが可能である。
(精製)
 ビスフェノールC生成反応によって得られたビスフェノールC生成物の精製は、常法により行うことができる。例えば、晶析やカラムクロマトグラフィーなどの簡便な手段により精製することが可能である。具体的には、縮合反応後、反応液を分液して得られた有機相を水又は食塩水などで洗浄し、更に必要に応じて重曹水などで中和洗浄する。次いで、洗浄後の有機相を冷却し晶析させる。芳香族アルコールを多量に用いる場合は、該晶析前に蒸留による余剰の芳香族アルコールを留去してから晶析させる。
 本実施形態では、ビスフェノールC生成反応系内で副生したトリメチルビスフェノールAを残存させて、トリメチルビスフェノールAを含むビスフェノールC生成物を本発明のビスフェノール組成物として得る。このため、上記のビスフェノールC生成物の精製方法において、例えば晶析、懸濁洗浄及び振りかけ洗浄等を適宜組み合わせて行うことにより、精製されたビスフェノールC生成物中に所定量のトリメチルビスフェノールAが残留するように精製条件を調整することが好ましい。
(精製工程の一例)
 本発明に好適な精製工程の一例として、縮合反応によって得られたビスフェノールC生成物を、洗浄工程で洗浄した後、晶析工程で析出させて精製する方法について、以下に説明する。
 この場合、縮合反応後、反応液から得られたビスフェノールCを含有する有機相を脱塩水で洗浄し、洗浄後の有機相を冷却して晶析させる。洗浄は以下の通り複数回行う。晶析についても複数回行ってもよい。
<洗浄工程>
 洗浄工程では少なくとも以下の第1工程と第2工程とを行う。
 第1工程:反応工程から得られたビスフェノールCを含有する有機相(O1)と脱塩水を混合した後、ビスフェノールCを含有する有機相(O2)と水相(W1)とに相分離させ、水相(W1)を除去し、ビスフェノールCを含有する有機相(O2)を得る。
 第2工程:第1水洗工程で得られたビスフェノールCを含有する有機相(O2)と脱塩水を混合した後、ビスフェノールCを含有する有機相(O3)と水相(W2)とに相分離させ、水相(W2)を除去し、ビスフェノールCを含有する有機相(O3)を得る。
 第1工程は、水相(W1)のpHが8.5以上となるように行うことが好ましい。第2工程は水相(W2)の電気伝導度が10μS/cmとなるように行うことが好ましい。
 脱塩水とは、イオン交換処理した水、純水等の電気伝導度1.5μS/cm以下の水である。
 水相(W1)の測定温度は、室温(20~30℃)が好ましく、例えば25℃が好ましい。
 水相のpHが7よりも低い場合、水酸化ナトリウムや炭酸水素ナトリウムなどの塩基物質を用いて洗浄を行い、再び水洗を行うことができる。塩基性物質を用いて洗浄を行った後に得られた有機相について、再び水洗を行い、その水相のpHが8.5以上となるようにする。ここで、水相(W1)の塩基性が弱い(pHが低い)と洗浄効果が低いことから、好ましくはpH8.5以上、より好ましくは9以上とする。一方で、水相(W1)の塩基性が強い(pHが高い)と、ビスフェノールCがビスフェノールC塩となり、水洗でのロス量が増加することから、水相(W1)のpHの上限は通常14以下であり、13以下が好ましく、12以下がより好ましい。
 第2水洗工程における水相(W2)の電気伝導度の測定温度は、室温(20~30℃)が好ましく、例えば25℃が好ましい。
 第2水洗工程における水相(W2)の電気伝導度は好ましくは10μS/cm以下、より好ましくは9μS/cm以下、さらに好ましくは8μS/cm以下である。
 洗浄工程ではビスフェノールCを含む有機相の水洗で、まず得られた水相のpHがpH8.5以上の塩基性となり、その後必要に応じて水洗を繰り返すことで、得られた水相の電気伝導度が10μS/cm以下となったところで、晶析工程に供することが好ましい。
 第1水洗工程の水相(W1)のpHが上記下限以上となり、第2水洗工程の水相(W2)の電気伝導度が上記上限以下となるように脱塩水による洗浄を行うことで、生成ビスフェノール中の副生成物や残留触媒、残留チオール等の不純物を高度に除去して、色相が良好であり、ポリカーボネート樹脂の原料ビスフェノールとして用いた場合、重合反応効率が高く、色相に優れたポリカーボネート樹脂を製造することができるビスフェノール組成物を得ることができる。特に、助触媒としてチオールを用いる縮合反応では、チオールから酸性のチオニウムが生成し、これがビスフェノール組成物に含まれて、ポリカーボネート樹脂製造時の重合反応を阻害するが、上記の通り、水相(W1)のpHと水相(W2)の電気伝導度を管理した洗浄工程を行うことで、チオニウムを効率的に除去し、チオニウムによる重合阻害を防止することができる。
 洗浄工程における温度は、溶媒を蒸発させることなく後述の晶析工程で冷却することでビスフェノールを効率的に析出させることができるように、90℃以下、特に85℃以下で、50℃以上、特に55℃以上であることが好ましい。1回の洗浄時間(有機相に脱塩水を加えて混合する時間)は通常1~120分程度である。
<晶析工程>
 晶析工程における冷却温度は、洗浄工程から得られる有機相(O3)の温度より10~120℃低く、40℃以下、特に30℃以下で、-20℃以上、特に-10℃以上とすることが好ましい。洗浄後の有機相(O3)をこのような温度に冷却することでビスフェノール組成物を効率よく析出させることができる。
 晶析工程で析出させたビスフェノール組成物は、濾過、遠心分離、デカンテーション等より固液分離することで回収することができる。
 上記の洗浄工程と晶析工程を行う場合であっても、精製後に得られるビスフェノール組成物中にビスフェノール(II)が所定の割合で残留するように精製条件を制御することが好ましい。
<ビスフェノールの用途>
 本発明のビスフェノール組成物は、光学材料、記録材料、絶縁材料、透明材料、電子材料、接着材料、耐熱材料など種々の用途に用いられるポリエーテル樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、アクリル樹脂など種々の熱可塑性樹脂や、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリベンゾオキサジン樹脂、シアネート樹脂など種々の熱硬化性樹脂などの構成成分、硬化剤、添加剤もしくはそれらの前駆体などとして用いることができる。本発明のビスフェノール組成物は、感熱記録材料等の顕色剤や退色防止剤、殺菌剤、防菌防カビ剤等の添加剤としても有用である。
 本発明のビスフェノール組成物は、良好な機械物性を付与できることより、熱可塑性樹脂、熱硬化性樹脂の原料(モノマー)として用いることが好ましく、なかでもポリカーボネート樹脂、エポキシ樹脂の原料として用いることがより好ましい。本発明のビスフェノール組成物は、顕色剤として用いることも好ましく、特にロイコ染料、変色温度調整剤と組み合わせて用いることがより好ましい。
[ポリカーボネート樹脂]
 本発明のポリカーボネート樹脂は、少なくとも下記一般式(A)で表される繰り返される構造単位を有するポリカーボネート樹脂であって、該ポリカーネート樹脂をアルカリ加水分解することにより得られる化合物(以下、「アルカリ加水分解生成物」と称す場合がある。)は、ビスフェノール(I)及びビスフェノール(II)を含み、該ポリカーボネート樹脂に対して、アルカリ加水分解によって得られるビスフェノール(II)が160質量ppm以上であるポリカーネート樹脂である。このような本発明のポリカーボネート樹脂は、本発明のビスフェノール組成物を用いて製造することができる。
Figure JPOXMLDOC01-appb-C000017
 一般式(A)中、R~Rは一般式(1)におけると同義である。
 ポリカーボネート樹脂のアルカリ加水分解生成物中のビスフェノール(II)の含有量が、ポリカーボネート樹脂に対して上記下限未満では色相の良好なポリカーボネート樹脂を得ることができない。
 ポリカーボネート樹脂に対するこのビスフェノール(II)の割合は、好ましくは200質量ppm以上、より好ましくは300質量ppm以上で、好ましくは20000質量ppm以下、より好ましくは15000質量ppm以下である。
 本発明のビスフェノール組成物を用いて本発明のポリカーボネート樹脂を製造する方法としては、本発明のビスフェノール組成物と、炭酸ジフェニル等とを、アルカリ金属化合物および/またはアルカリ土類金属化合物の存在下でエステル交換反応させる方法が挙げられる。
 本発明のビスフェノール組成物にはビスフェノール(I)の1種のみが含まれていてもよく、ビスフェノール(I)の2種以上、或いはビスフェノール(I)の1種又は2種以上とその他のビスフェノールが含まれていてもよい。2種以上のビスフェノールを用いることで、共重合ポリカーボネート樹脂を製造することができる。また、本発明のビスフェノール組成物以外のジヒドロキシ化合物を併用して反応させることもできる。
 上記エステル交換反応は、公知の方法を適宜選択して行うことができる。以下に本発明のビスフェノール組成物と炭酸ジフェニルを原料としたポリカーボネート樹脂の製造方法の一例を説明する。
 上記のポリカーボネート樹脂の製造方法において、炭酸ジフェニルは、本発明のビスフェノール組成物中のビスフェノールに対して過剰量用いることが好ましい。ビスフェノールに対して用いる炭酸ジフェニルの量は、製造されたポリカーボネート樹脂に末端水酸基が少なく、ポリマーの熱安定性に優れる点では多いことが好ましい。ビスフェノールに対して用いる炭酸ジフェニルの量は、エステル交換反応速度が速く、所望の分子量のポリカーボネート樹脂を製造し易い点では少ないことが好ましい。これらのことから、ビスフェノール1モルに対する使用する炭酸ジフェニルの量は、通常1.001モル以上、好ましくは1.002モル以上で、通常1.3モル以下、好ましくは1.2モル以下である。
 原料の供給方法としては、本発明のビスフェノール組成物及び炭酸ジフェニルを固体で供給することもできるが、一方又は両方を、溶融させて液体状態で供給することが好ましい。
 炭酸ジフェニルとビスフェノールとのエステル交換反応でポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。上記のポリカーボネート樹脂の製造方法においては、このエステル交換触媒として、アルカリ金属化合物及び/又はアルカリ土類金属化合物を使用するのが好ましい。これらは、1種類で使用してもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。実用的には、アルカリ金属化合物を用いることが望ましい。
 触媒の使用量は、ビスフェノールまたは炭酸ジフェニル1モルに対して、通常0.05μモル以上、好ましくは0.08μモル以上、さらに好ましくは0.10μモル以上で、通常100μモル以下、好ましくは50μモル以下、さらに好ましくは20μモル以下である。
 触媒の使用量が上記範囲内であることにより、所望の分子量のポリカーボネート樹脂を製造するのに必要な重合活性を得やすく、且つ、ポリマー色相に優れ、また過度のポリマーの分岐化が進まず、成型時の流動性に優れたポリカーボネート樹脂を得やすい。
 上記方法によりポリカーボネート樹脂を製造するには、上記の両原料を、原料混合槽に連続的に供給し、得られた混合物とエステル交換触媒を重合槽に連続的に供給することが好ましい。
 エステル交換法によるポリカーボネート樹脂の製造においては、通常、原料混合槽に供給された両原料は、均一に攪拌された後、エステル交換触媒が添加される重合槽に供給され、ポリマーが生産される。
 本発明のビスフェノール組成物を用いたポリカーボネート樹脂の製造において、重合反応温度は80℃以上、特に150℃以上で、400℃以下、特に350℃以下とすることが好ましい。重合時間は、原料の比率や、所望とするポリカーボネート樹脂の分子量等によって適宜調整される。重合時間が長いと色調悪化などの品質悪化が顕在化するため、10時間以下であることが好ましく、8時間以下であることがより好ましい。重合時間の下限は、通常0.1時間以上、或いは0.3時間以上である。
 本発明のビスフェノール組成物によれば、色相が良好で透明性に優れたポリカーボネート樹脂を製造することができる。例えば、粘度平均分子量(Mv)10000以上、好ましくは15000以上で、100000以下、好ましくは35000以下で、ペレットYI10以下の色相が良好で透明性に優れたポリカーボネート樹脂を短時間で製造することができる。
 以下、実施例および比較例によって、本発明をさらに具体的に説明する。本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。
[原料及び試薬]
 以下の実施例および比較例において、オルトクレゾール、トルエン、2,6-キシレノール、水酸化ナトリウム、硫酸、ドデカンチオール、アセトン、炭酸水素ナトリウム、炭酸セシウム、アセトニトリル、塩化メチレン、酢酸、酢酸アンモニウムは、富士フィルム和光純薬株式会社製の試薬を使用した。
 クレゾールは、富士フィルム和光純薬株式会社製の試薬、ランクセス社製、又はJFEケミカル社の製品を使用した。
 炭酸ジフェニルは、三菱ケミカル株式会社製の製品を使用した。
[分析]
<ビスフェノールC生成反応液の組成、ビスフェノールC組成物中のトリメチルビスフェノールA分析、ポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールA分析>
 ビスフェノールC生成反応液の組成分析、ビスフェノールC組成物中のトリメチルビスフェノールA分析、及びポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールA分析は、高速液体クロマトグラフィーにより、以下の手順と条件で行った。
・装置:島津製作所社製「LC-2010A」
  Imtakt ScherzoSM-C18 3μm 250mm×3.0mmID
・低圧グラジェント法
・分析温度:40℃
・溶離液組成:
 A液 酢酸アンモニウム:酢酸:脱塩水=3.000g:1mL:1Lの溶液
 B液 酢酸アンモニウム:酢酸:アセトニトリル:脱塩水=1.500g:1mL:900mL:150mLの溶液
・分析時間0分では、溶離液組成はA液:B液=60:40(体積比、以下同様。)
 分析時間0~41.67分はA液:B液=10:90へ徐々に変化させ、
 分析時間41.67~50分はA液:B液=10:90に維持、
 流速0.34mL/分にて分析した。
<ポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールAの分析溶液の調製>
 撹拌子を備えた100mLの三角フラスコに、ポリカーボネート樹脂のペレット0.5g、塩化メチレン5mLを入れ、均一溶液とした。そこへ、メタノール45mLを加えた後、25%水酸化ナトリウム水溶液5mLを加えた。この三角フラスコを、70~75℃の水バスに浸漬させ、30分間撹拌した。その後、水バスから三角フラスコを出し、塩酸で中和し、水とメタノールを加えて、均一溶液として分析溶液を調製し、高速液体クロマトグラフィーでの測定に供した。
<トリメチルビスフェノールAの分子量測定>
 トリメチルビスフェノールAの分子量は、高速液体クロマトグラフ質量分析(LCMS)を用いて測定した。高速液体クロマトグラフ質量分析(LCMS)は、以下の手順と条件で行った。
・分離装置:アジレント・テクノロジー株式会社製「Agilent1200」
  Imtakt ScherzoSM-C18 3μm 150mm×4.6mmID
・低圧グラジェント法
・分析温度:40℃
・溶離液組成:
 A液 酢酸アンモニウム:酢酸:脱塩水=3.000g:1mL:1Lの溶液
 B液 酢酸アンモニウム:酢酸:アセトニトリル=1.500g:1mL:1Lの溶液
・分析時間0分では溶離液組成はA液:B液=60:40(体積比、以下同様。)
 分析時間0~25分はA液:B液=90:10へ徐々に変化させ、
 分析時間25~30分はA液:B液=90:10に維持、
 流速1.0mL/分にて分析した。
・検出波長:280nm
・質量分析装置:アジレント・テクノロジー株式会社製「Agilent LC/MS 6130」
・イオン源:ESI(Postive/Negative) AJSプローブ使用
<ビスフェノールC組成物中のビスフェノールCの分析>
 ビスフェノールC組成物中のビスフェノールCの分析は、<ビスフェノールC生成反応液の組成、ビスフェノールC組成物中のトリメチルビスフェノールA分析、ポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールA分析>と同様に実施した。本発明で製造されるビスフェノールC組成物におけるビスフェノール中のビスフェノールC純度は通常99質量%以上であり、ビスフェノールC以外のビスフェノールの生成量はごく微量であることから、ビスフェノールC組成物中のビスフェノールC含有量をビスフェノール含有量とみなすことができる。
<イソプロペニルクレゾールの同定>
 イソプロペニルクレゾールの同定は、ガスクロマト質量計を用いて、以下の手順と条件で行った。
・装置:アジレント・テクノロジー社製「Agilent6890」
・カラム:アジレント・テクノロジー社製「DB-1MS」(内径0.25mm×30m×0.25μm)
・キャリアーガス:ヘリウム
         流量:毎分1cm
・注入口温度:280℃
・トランスファー温度:250℃
・イオンソース温度:250℃
・カラムの昇温パターン:先ず50℃で3分間保持させた後に毎分10℃で320℃まで昇温させ、280℃で5分間保持
<pHの測定>
 pHの測定は、株式会社堀場製作所製pH計「pH METERES-73」を用いて、フラスコから取り出した25℃の水相に対して実施した。
<電気伝導度>
 電気伝導度の測定は、株式会社堀場製作所製電気伝導度計「COND METER D-71」を用いて、フラスコから取り出した25℃の水相に対して実施した。
<ビスフェノールC組成物のメタノール溶解色>
 ビスフェノールC組成物のメタノール溶解色は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物10g及びメタノール10gを入れて、均一溶液とした後、室温(約20℃)で、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定して評価した。
<ビスフェノールC組成物の溶融色差>
 ビスフェノールC組成物の溶融色差は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物を20g入れて、190℃で30分間溶融させ、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定して評価した。
<ビスフェノールC組成物の熱色調安定性>
 ビスフェノールC組成物の熱色調安定性は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物を20g入れ、190℃で4時間溶融させ、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定して評価した。
<ビスフェノールC組成物の熱分解安定性>
 ビスフェノールC組成物の熱分解安定性は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物を20g入れ、190℃で2時間溶融させ、前記ビスフェノールC生成反応液の組成分析と同様に実施し、イソプロペニルクレゾールの生成量を測定して評価した。
<ビスフェノールC組成物中のナトリウム、鉄、及びアルミニウム分析>
 ビスフェノールC組成物約1gを採取し、硫酸添加後、乾式灰化した。次いで、得られたサンプルにフッ化水素酸を添加し、乾燥させた。その後、硝酸と純水を添加して溶解させた。得られたサンプルを定容後、適宜希釈してICP-MS(サーモフィッシャーサイエンティフィック社製「ELEMENT2」)を用いて、ビスフェノールC組成物中のナトリウム、鉄、及びアルミニウムを定量測定した。
<粘度平均分子量>
 ポリカーボネート樹脂を塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管を用いて20℃における比粘度(ηsp)を測定し、下記の式により粘度平均分子量(Mv)を算出した。
   ηsp/C=[η](1+0.28ηsp)
   [η]=1.23×10-4Mv0.83
<ペレットYI>
 ペレットYI(ポリカーボネート樹脂の透明性)は、ASTM D1925に準拠して、ポリカーボネート樹脂ペレットの反射光におけるYI値(イエローネスインデックス値)を測定して評価した。装置はコニカミノルタ社製分光測色計「CM-5」を用い、測定条件は測定径30mm、SCEを選択した。
 シャーレ測定用校正ガラス「CM-A212」を測定部にはめ込み、その上からゼロ校正ボックス「CM-A124」をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。次いで、白色校正板「CM-A210」を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が-0.43±0.01、YIが-0.58±0.01となることを確認した。
 YIは、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。
[参考例1]
 撹拌子、温度計、蒸留装置を備えた500mLのナス型フラスコに、ビスフェノールC組成物85gと水酸化ナトリウム4.5gを入れ、195℃に加熱したオイルバスに浸漬した。ナス型フラスコ内のビスフェノールCが溶融したことを確認した後、真空ポンプを用いて徐々にフラスコ内を減圧していき、フル真空にした。しばらくすると蒸発が始まり、留出が収まるまで、減圧蒸留を実施した。得られた留分は、質量計検出器を備えたガスクロマトグラフィーにより、ビスフェノールCが熱分解して生成したクレゾールとイソプロペニルクレゾールの混合物であることが分かった。得られた留分を用いて、ビスフェノールC生成反応液の組成分析条件におけるイソプロペニルクレゾールの保持時間を確認した。
[実施例1]
(1)第1の混合液の調製
 温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下でトルエン320g、メタノール15g、富士フィルム和光純薬株式会社製(試薬)のオルトクレゾール230g(2.13モル)を入れ、内温を10℃以下とした。その後、撹拌しながら98質量%硫酸95gを0.3時間かけてゆっくり加えた後、5℃以下まで冷却した。
(2)第2の混合液の調製
 500mLの三角フラスコに、トルエン50g、アセトン65g(1.12モル)、ドデカンチオール5.4gを混合し、第2の混合液(滴下液)を調製した。
(3)反応液の調製
 第1の混合液の内温を5℃以下にした後、前記滴下ロートを用いて第2の混合液を、内温が10℃以上にならないように、1時間かけて供給し、反応液を調製した。
(4)反応
 内温10℃で、調製した反応液を2.5時間撹拌した。
(5)精製(洗浄)
 反応終了後、25%水酸化ナトリウム水溶液190gを供給して80℃まで昇温した。80℃に到達後、静置して、下相の水相を抜き出した。得られた第1の有機相に脱塩水400gを入れ、30分混合して静置し、水相を除去した。得られた第2の有機相に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第3の有機相に更に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第4の有機相を抜出し、その質量を測定したところ、666gであった。
 第4の有機相の一部を取り出し、高速液体クロマトグラフィーで第4の有機相の組成を確認したところ、オルトクレゾールが5.3質量%(5.3質量%×有機相の質量666g÷オルトクレゾールの分子量108g/モル÷仕込んだオルトクレゾールの物質量2.1モル=15.3モル%)、ビスフェノールCが31.5質量%(31.5質量%×有機相の質量666g×2÷ビスフェノールCの分子量256g/モル÷仕込んだオルトクレゾールの物質量2.1モル=78.0モル%)生成していた。
(6)精製(水洗と晶析)
 得られた第4の有機相に脱塩水200gを加え、30分混合して静置し、下相の水相(第1の水相)を除去し、第5の有機相を得た。第1の水相のpHは、9.7であった。得られた第5の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第2の水相)を除去し、第6の有機相を得た。得られた第6の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第3の水相)を除去した。第3の水相の電気伝導度は、2.7μS/cmであった。
 得られた第6の有機相を、80℃から20℃まで冷却して、20℃で維持し、ビスフェノールCを析出させた。その後、10℃まで冷却して10℃到達後、遠心分離機を用いて固液分離を行い、粗精製ウェットケーキを得た。得られたウェットケーキにトルエン500gを振りかけて洗浄し、遠心分離機を用いて固液分離を行い、精製ウェットケーキを得た。得られた精製ウェットケーキを、オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度100℃で軽沸分を留去することで、白色のビスフェノールC組成物190gを得た。
 得られたビスフェノールC組成物のメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールC組成物の溶融色差を測定したところ、ハーゼン色数は3であった。得られたビスフェノールC組成物の熱色調安定性を測定したところ、ハーゼン色数は26であった。得られたビスフェノールC組成物の熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は186質量ppmであった。
 得られたビスフェノールC組成物の品質を確認したところ、高速液体クロマトグラフ上、保持時間24.12分に特徴的なピークが検出された。このピークの成分を同定するために、質量計を備えた高速液体クロマトグラフィーで測定したところ、分子量が270g/モルで、下記構造式(IIa)で示される構造を有するトリメチルビスフェノールAであることを確認した。
Figure JPOXMLDOC01-appb-C000018
 得られたビスフェノールC組成物は、トリメチルビスフェノールAを210質量ppm含有していた。
 得られたビスフェノールC組成物中のビスフェノールC含有量は99.9質量%であった。
 得られたビスフェノールC組成物のナトリウム、鉄、及びアルミニウムの含有量を測定したところ、各々0.04質量ppm、0.05質量ppm、0.05質量ppmであった。
[実施例2]
(1)第1の混合液の調製
 温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、空気雰囲気下でトルエン320g、メタノール15g、2,6-キシレノール5g(0.04モル)、富士フィルム和光純薬株式会社製(試薬)のオルトクレゾール225g(2.08モル)を入れ、内温を10℃以下とした。その後、撹拌しながら98質量%硫酸95gを0.3時間かけてゆっくり加えた後、5℃以下まで冷却した。
(2)第2の混合液の調製
 500mLの三角フラスコに、トルエン50g、アセトン65g(1.12モル)、ドデカンチオール5.4gを混合し、第2の混合液(滴下液)を調製した。
(3)反応液の調製
 第1の混合液の内温を5℃以下にした後、前記滴下ロートを用いて第2の混合液を、内温が10℃以上にならないように、1時間かけて供給し、反応液を調製した。
(4)反応
 内温10℃で、調製した反応液を2.5時間撹拌した。
(5)精製(洗浄)
 反応終了後、25%水酸化ナトリウム水溶液190gを供給して80℃まで昇温した。80℃に到達後、静置して、下相の水相を抜き出した。得られた第1の有機相に脱塩水400gを入れ、30分混合して静置し、水相を除去した。得られた第2の有機相に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第3の有機相に更に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第4の有機相を抜出し、その質量を測定したところ、666gであった。
 第4の有機相の一部を取り出し、高速液体クロマトグラフィーで第4の有機相の組成を確認したところ、オルトクレゾールが5.8質量%(5.8質量%×有機相の質量666g÷オルトクレゾールの分子量108g/モル÷仕込んだオルトクレゾールの物質量2.08モル=17.2モル%)、ビスフェノールCが29.4質量%(29.4質量%×有機相の質量666g×2÷ビスフェノールCの分子量256g/モル÷仕込んだオルトクレゾールの物質量2.08モル=73.5モル%)生成していた。
(6)精製(水洗と晶析)
 得られた第4の有機相に脱塩水200gを加え、30分混合して静置し、下相の水相(第1の水相)を除去し、第5の有機相を得た。第1の水相のpHは、9.7であった。得られた第5の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第2の水相)を除去し、第6の有機相を得た。得られた第6の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第3の水相)を除去した。第3の水相の電気伝導度は、2.7μS/cmであった。
 得られた第6の有機相を、80℃から20℃まで冷却して、20℃で維持し、ビスフェノールCを析出させた。その後、10℃まで冷却して10℃到達後、遠心分離機を用いて固液分離を行い、粗精製ウェットケーキを得た。得られたウェットケーキにトルエン500gを振りかけて洗浄し、遠心分離機を用いて固液分離を行い、精製ウェットケーキを得た。得られた精製ウェットケーキを、オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度100℃で軽沸分を留去することで、白色のビスフェノールC組成物178gを得た。
 得られたビスフェノールC組成物中のビスフェノールC含有量は99.7質量%、トリメチルビスフェノールA含有量は20000質量ppmであった。
 得られたビスフェノールC組成物のメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールC組成物の溶融色差を測定したところ、ハーゼン色数は8であった。得られたビスフェノールC組成物の熱色調安定性を測定したところ、ハーゼン色数は32であった。得られたビスフェノールCの組成物熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は166質量ppmであった。
 得られたビスフェノールC組成物のナトリウム、鉄、及びアルミニウムの含有量を測定したところ、各々0.02質量ppm、0.06質量ppm、0.04質量ppmであった。
[比較例1]
(1)第1の混合液の調製
 温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下でトルエン320g、メタノール15g、ランクセス社製のオルトクレゾール230g(2.13モル)を入れ、内温を10℃以下とした。その後、撹拌しながら98質量%硫酸95gを0.3時間かけてゆっくり加えた後、5℃以下まで冷却した。
(2)第2の混合液の調製
 500mLの三角フラスコに、トルエン50g、アセトン65g(1.12モル)、ドデカンチオール5.4gを混合し、第2の混合液(滴下液)を調製した。
(3)反応液の調製
 第1の混合液の内温を5℃以下にした後、前記滴下ロートを用いて第2の混合液を、内温が10℃以上にならないように、1時間かけて供給し、反応液を調製した。
(4)反応
 内温10℃で、調製した反応液を2時間撹拌した。
(5)精製(洗浄)
 反応終了後、25%水酸化ナトリウム水溶液190gを供給して80℃まで昇温した。80℃に到達後、静置して、下相の水相を抜き出した。得られた第1の有機相に脱塩水400gを入れ、30分混合して静置し、水相を除去した。得られた第2の有機相に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第3の有機相に更に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第4の有機相を抜出し、その質量を測定したところ、666gであった。
 第4の有機相の一部を取り出し、高速液体クロマトグラフィーで第4の有機相の組成を確認したところ、オルトクレゾールが5.3質量%(5.3質量%×有機相の質量666g÷オルトクレゾールの分子量108g/モル÷仕込んだオルトクレゾールの物質量2.1モル=15.3モル%)、ビスフェノールCが31.5質量%(31.5質量%×有機相の質量666g×2÷ビスフェノールCの分子量256g/モル÷仕込んだオルトクレゾールの物質量2.1モル=78.0モル%)生成していた。
(6)精製(水洗と晶析)
 得られた第4の有機相を、80℃から20℃まで冷却して、20℃で維持し、ビスフェノールCを析出させた。その後、10℃まで冷却して10℃到達後、遠心分離機を用いて固液分離を行い、粗精製ウェットケーキを得た。
 温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下で得られた粗精製ウェットケーキ全量とトルエン420gを入れ、80℃まで温度を上げて、均一溶液を得た。得られた均一溶液に脱塩水200gを加え、30分混合して静置し、下相の水相(第1の水相)を除去し、第5の有機相を得た。第1の水相のpHは、9.2であった。得られた第5の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第2の水相)を除去し、第6の有機相を得た。得られた第6の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第3の水相)を除去し、第7の有機相を得た。第3の水相の電気伝導度は、2.3μS/cmであった。
 得られた第7の有機相を80℃から20℃まで冷却して、20℃で維持し、ビスフェノールCを析出させた。その後、10℃まで冷却して10℃到達後、遠心分離機を用いて固液分離を行い、ウェットケーキを得た。得られたウェットケーキにトルエン200gを振りかけて洗浄し、遠心分離機を用いて固液分離を行い、精製ウェットケーキを得た。得られた精製ウェットケーキを、オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度100℃で軽沸分を留去することで、白色のビスフェノールC組成物183gを得た。
 得られたビスフェノールC組成物中のビスフェノールC含有量は99.9質量%で、トリメチルビスフェノールAは非検出(定量限界は0.1質量ppm未満)であった。
 得られたビスフェノールC組成物のメタノール溶解色を測定したところ、ハーゼン色数は3であった。得られたビスフェノールC組成物の溶融色差を測定したところ、ハーゼン色数は48であった。得られたビスフェノールC組成物の熱色調安定性を測定したところ、ハーゼン色数は120であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は485質量ppmであった。
 得られたビスフェノールC組成物のナトリウム、鉄、及びアルミニウムの含有量を測定したところ、各々0.22質量ppm、0.89質量ppm、0.12質量ppmであった。
[比較例2]
 富士フィルム和光純薬株式会社製試薬のビスフェノールC中のトリメチルビスフェノールA含有量は185質量ppmであった。
 該試薬のビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は20であった。また、該試薬のビスフェノールCの溶融色差を測定したところ、ハーゼン色数は46であった。また、該試薬のビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は114であった。更に該試薬のビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は585質量ppmであった。
 得られたビスフェノールC組成物のナトリウム、鉄、及びアルミニウムの含有量を測定したところ、各々0.81質量ppm、1.22質量ppm、0.23質量ppmであった。
[比較例3]
(1)第1の混合液の調製
 温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下でトルエン320g、メタノール15g、JFEケミカル社製のオルトクレゾール230g(2.13モル)を入れ、内温を10℃以下とした。その後、撹拌しながら98質量%硫酸95gを0.3時間かけてゆっくり加えた後、5℃以下まで冷却した。
(2)第2の混合液の調製
 500mLの三角フラスコに、トルエン50g、アセトン65g(1.12モル)、ドデカンチオール5.4gを混合し、第2の混合液(滴下液)を調製した。
(3)反応液の調製
 第1の混合液の内温を5℃以下にした後、前記滴下ロートを用いて第2の混合液を、内温が10℃以上にならないように、1時間かけて供給し、反応液を調製した。
(4)反応
 内温10℃で、調製した反応液を2時間撹拌した。
(5)精製(洗浄)
 反応終了後、25%水酸化ナトリウム水溶液190gを供給して80℃まで昇温した。80℃に到達後、静置して、下相の水相を抜き出した。得られた第1の有機相に脱塩水400gを入れ、30分混合して静置し、水相を除去した。得られた第2の有機相に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第3の有機相に更に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第4の有機相を抜出し、その質量を測定したところ、666gであった。
 第4の有機相の一部を取り出し、高速液体クロマトグラフィーで第4の有機相の組成を確認したところ、オルトクレゾールが6.3質量%(6.3質量%×有機相の質量666g÷オルトクレゾールの分子量108g/モル÷仕込んだオルトクレゾールの物質量2.1モル=18.5モル%)、ビスフェノールCが28.4質量%(28.4質量%×有機相の質量666g×2÷ビスフェノールCの分子量256g/モル÷仕込んだオルトクレゾールの物質量2.1モル=70.4モル%)生成していた。
(6)精製(水洗と晶析)
 得られた第4の有機相を、80℃から20℃まで冷却して、20℃で維持し、ビスフェノールCを析出させた。その後、10℃まで冷却して10℃到達後、遠心分離機を用いて固液分離を行い、粗精製ウェットケーキを得た。
 温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下で得られた粗精製ウェットケーキ全量とトルエン420gを入れ、80℃まで温度を上げて、均一溶液を得た。得られた均一溶液に脱塩水200gを加え、30分混合して静置し、下相の水相(第1の水相)を除去し、第5の有機相を得た。第1の水相のpHは、9.3であった。得られた第5の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第2の水相)を除去し、第6の有機相を得た。得られた第6の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第3の水相)を除去し、第7の有機相を得た。第3の水相の電気伝導度は、2.1μS/cmであった。
 得られた第7の有機相を80℃から20℃まで冷却して、20℃で維持し、ビスフェノールCを析出させた。その後、10℃まで冷却して10℃到達後、遠心分離機を用いて固液分離を行い、ウェットケーキを得た。得られたウェットケーキにトルエン200gを振りかけて洗浄し、遠心分離機を用いて固液分離を行い、精製ウェットケーキを得た。得られた精製ウェットケーキを、オイルバスを備えたエバポレータを用いて、減圧下オイルバス温度100℃で軽沸分を留去することで、白色のビスフェノールC組成物160gを得た。
 得られたビスフェノールC組成物中のビスフェノールC含有量は99.9質量%で、トリメチルビスフェノールA含有量は55質量ppmであった。
 得られたビスフェノールC組成物のメタノール溶解色を測定したところ、ハーゼン色数は2であった。得られたビスフェノールC組成物の溶融色差を測定したところ、ハーゼン色数は39であった。得られたビスフェノールC組成物の熱色調安定性を測定したところ、ハーゼン色数は105であった。得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は412質量ppmであった。
 得られたビスフェノールC組成物のナトリウム、鉄、及びアルミニウムの含有量を測定したところ、各々0.07質量ppm、0.09質量ppm、0.08質量ppmであった。
 実施例1及び2、比較例1~3について、ビスフェノールC組成物中のトリメチルビスフェノールAの含有量(ビスフェノール(II)の含有量)と、メタノール溶解色、溶融色差、熱色調安定性、熱分解安定性、金属(ナトリウム(Na)、鉄(Fe)及びアルミニウム(Al))含有量を、表1にまとめた。
 表1より、トリメチルビスフェノールAを150質量ppm以上、20000質量ppm以下含有することで、メタノール溶解色、溶融色差、熱色調安定性が改善されることが分かる。また、トリメチルビスフェノールAを150質量ppm以上、20000質量ppm以下含有することで、熱分解安定性も改善されることが分かる。
Figure JPOXMLDOC01-appb-T000019
[実施例3]
 撹拌機及び留出管を備えた内容量150mLのガラス製反応槽に、実施例1で得られたビスフェノールC組成物100.00g(ビスフェノールC0.39モル)、炭酸ジフェニル86.49g(0.4モル)及び400質量ppmの炭酸セシウム水溶液479μLを入れた。該ガラス製反応槽を約100Paに減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応槽の内部を窒素に置換した。その後、該反応槽を200℃のオイルバスに浸漬させ、内容物を溶解した。
 撹拌機の回転数を毎分100回とし、反応槽内のビスフェノールCと炭酸ジフェニルのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応槽内の圧力を、絶対圧力で101.3kPaから13.3kPaまで減圧した。続いて反応槽内の圧力を13.3kPaに保持し、フェノールを更に留去させながら、80分間、エステル交換反応を行った。その後、反応槽外部温度を250℃に昇温すると共に、40分間かけて反応槽内圧力を絶対圧力で13.3kPaから399Paまで減圧し、留出するフェノールを系外に除去した。
 その後、反応槽外部温度を280℃に昇温、反応槽の絶対圧力を30Paまで減圧し、重縮合反応を行った。反応槽の撹拌機が予め定めた所定の撹拌動力となったときに、重縮合反応を終了した。280℃に昇温してから重合を終了するまでの時間(後段重合時間)は210分であった。
 次いで、反応槽を窒素により絶対圧力で101.3kPaに復圧した後、ゲージ圧力で0.2MPaまで昇圧し、反応槽の底からポリカーボネート樹脂をストランド状で抜出し、ストランド状のポリカーボネート樹脂を得た。
 その後、回転式カッターを使用して、該ストランドをペレット化して、ペレット状のポリカーボネート樹脂を得た。
 得られたポリカーボネート樹脂の粘度平均分子量(Mv)は24800であり、ペレットYIは6.9であった。
 得られたポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールAはポリカーボネート樹脂に対して160質量ppmであった。
[実施例4]
 実施例3において、実施例1で得られたビスフェノールC組成物100.00g(ビスフェノールC0.39モル)の代わりに、実施例2で得られたビスフェノールC組成物を100.00g(ビスフェノールC0.39モル)用いた以外、実施例3と同様に実施した。
 280℃に昇温してから重合を終了するまでの時間(後段重合時間)は220分であった。
 得られたポリカーボネート樹脂の粘度平均分子量(Mv)は24800であり、ペレットYIは6.5であった。
 得られたポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールAはポリカーボネート樹脂に対して16200質量ppmであった。
[比較例3]
 実施例3において、実施例1で得られたビスフェノールC組成物100.00g(ビスフェノールC0.39モル)の代わりに、比較例1で得られたビスフェノールC組成物を100.00g(ビスフェノールC0.39モル)用いた以外、実施例3と同様に実施した。
 280℃に昇温してから重合を終了するまでの時間(後段重合時間)は230分であった。
 得られたポリカーボネート樹脂の粘度平均分子量(Mv)は24800であり、ペレットYIは10.2であった。
 得られたポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールAはポリカーボネート樹脂に対して2質量ppmであった。
 実施例3、4、及び比較例3について、ポリカーボネート樹脂に対するポリカーボネート樹脂のアルカリ加水分解生成物中のトリメチルビスフェノールA含有量の割合、得られたポリカーボネート樹脂のペレットYIを、表2にまとめた。
 表2より、ポリカーボネート樹脂中にトリメチルビスフェノールA成分を含有することで、ペレットYIが改善することが分かる。
Figure JPOXMLDOC01-appb-T000020
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2019年3月14日付で出願された日本特許出願2019-047450、2019年3月14日付で出願された日本特許出願2019-047453、2019年3月14日付で出願された日本特許出願2019-047454、2019年12月25日付で出願された日本特許出願2019-234571及び2019年12月25日付で出願された日本特許出願2019-234572に基づいており、その全体が引用により援用される。

Claims (14)

  1.  ビスフェノールを95質量%以上含有するビスフェノール組成物であって、
     該ビスフェノール組成物中の下記一般式(II)で表されるビスフェノールの含有量が、150質量ppm以上であり、
     該ビスフェノール組成物のメタノール溶解色(ハーゼン色数)が、2以下であるビスフェノール組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(II)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
  2.  前記ビスフェノールが、下記一般式(I)で表されるビスフェノールである請求項1に記載のビスフェノール組成物。
    Figure JPOXMLDOC01-appb-C000002
     一般式(I)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
  3.  該ビスフェノール組成物中の前記一般式(II)で表されるビスフェノールの含有量が、20000質量ppm以下である請求項1又は2に記載のビスフェノール組成物。
  4.  前記一般式(II)で表されるビスフェノールが、2-(4-ヒドロキシ-3-メチルフェニル)-2-(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、1-(4-ヒドロキシ-3-メチルフェニル)-1-(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、及び、1-(4-ヒドロキシ-3-メチルフェニル)-1-(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサンからなる群から選ばれるいずれか1つ以上である請求項1乃至3のいずれか1項に記載のビスフェノール組成物。
  5.  該ビスフェノール組成物を190℃で30分間溶融させ、日本電色工業社製「SE6000」を用いて測定したハーゼン色数が、100以下である請求項1乃至4のいずれか1項に記載のビスフェノール組成物。
  6.  該ビスフェノール組成物中のナトリウム含有量が、0.5質量ppm未満である請求項1乃至5のいずれか1項に記載のビスフェノール組成物。
  7.  該ビスフェノール組成物中の鉄含有量が、0.5質量ppm以下である請求項1乃至6のいずれか1項に記載のビスフェノール組成物。
  8.  該ビスフェノール組成物中のアルミニウム含有量が、0.1質量ppm以下である請求項1乃至7のいずれか1項に記載のビスフェノール組成物。
  9.  前記一般式(I)で表されるビスフェノールが、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、及び、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)-3,3,5-トリメチルシクロヘキサンからなる群から選ばれるいずれか1つ以上である請求項1乃至8のいずれか1項に記載のビスフェノール組成物。
  10.  ビスフェノールを製造する際に前記一般式(II)で表されるビスフェノールを副生させる請求項1乃至9のいずれか1項に記載のビスフェノール組成物の製造方法。
  11.  請求項1乃至9のいずれか1項に記載のビスフェノール組成物を用いたポリカーボネート樹脂の製造方法。
  12.  少なくとも下記一般式(A)で表される繰り返される構造単位を有するポリカーボネート樹脂であって、該ポリカーネート樹脂をアルカリ加水分解することにより得られる化合物は、下記一般式(I)で表されるビスフェノールおよび下記一般式(II)で表されるビスフェノールを含み、該ポリカーボネート樹脂に対して、アルカリ加水分解によって得られる下記一般式(II)で表されるビスフェノールが160質量ppm以上であるポリカーネート樹脂。
    Figure JPOXMLDOC01-appb-C000003
     一般式(A)中、R~Rは、それぞれに独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、またはアリール基であり、該アルキル基、アルコキシ基、アリール基は、置換または無置換のいずれであってもよい。RとRは、2つの基の間で互いに結合又は架橋していてもよく、RとRとが隣接する炭素原子と一緒に結合して、ヘテロ原子を含んでいてもよいシクロアルキリデン基を形成してもよい。
    Figure JPOXMLDOC01-appb-C000004
     一般式(I)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
    Figure JPOXMLDOC01-appb-C000005
     一般式(II)中、Xは、単結合、-CR1112-、-O-、-CO-、-S-、-SO-、又は-SO-を示す。R11、R12は各々独立に、水素原子、又は炭素数1~10のアルキル基を示す。R11とR12とは結合して環を形成していてもよい。
  13.  前記ポリカーボネート樹脂に対して、前記一般式(II)で表されるビスフェノールが20000質量ppm以下である請求項12に記載のポリカーボネート樹脂。
  14.  粘度平均分子量が15000以上、35000以下である請求項12又は13に記載のポリカーボネート樹脂。
PCT/JP2020/007746 2019-03-14 2020-02-26 ビスフェノール組成物及びポリカーボネート樹脂 WO2020184183A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20770715.9A EP3939957A4 (en) 2019-03-14 2020-02-26 BISPHENOL COMPOSITION AND POLYCARBONATE RESIN
CN202080020686.4A CN113574042B (zh) 2019-03-14 2020-02-26 双酚组合物和聚碳酸酯树脂
JP2021504907A JP7400804B2 (ja) 2019-03-14 2020-02-26 ビスフェノール組成物及びポリカーボネート樹脂
KR1020217029514A KR20210141498A (ko) 2019-03-14 2020-02-26 비스페놀 조성물 및 폴리카보네이트 수지
US17/472,905 US20210403641A1 (en) 2019-03-14 2021-09-13 Bisphenol composition and polycarbonate resin

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2019047450 2019-03-14
JP2019-047453 2019-03-14
JP2019047453 2019-03-14
JP2019-047450 2019-03-14
JP2019047454 2019-03-14
JP2019-047454 2019-03-14
JP2019234571 2019-12-25
JP2019-234572 2019-12-25
JP2019234572 2019-12-25
JP2019-234571 2019-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/472,905 Continuation US20210403641A1 (en) 2019-03-14 2021-09-13 Bisphenol composition and polycarbonate resin

Publications (1)

Publication Number Publication Date
WO2020184183A1 true WO2020184183A1 (ja) 2020-09-17

Family

ID=72425994

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/007745 WO2020184182A1 (ja) 2019-03-14 2020-02-26 ビスフェノール組成物及びポリカーボネート樹脂
PCT/JP2020/007746 WO2020184183A1 (ja) 2019-03-14 2020-02-26 ビスフェノール組成物及びポリカーボネート樹脂

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007745 WO2020184182A1 (ja) 2019-03-14 2020-02-26 ビスフェノール組成物及びポリカーボネート樹脂

Country Status (7)

Country Link
US (2) US20210403641A1 (ja)
EP (2) EP3939957A4 (ja)
JP (3) JP7400804B2 (ja)
KR (2) KR20210141498A (ja)
CN (2) CN113574090A (ja)
TW (2) TW202100500A (ja)
WO (2) WO2020184182A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512797A (ja) * 1974-05-31 1976-01-10 Gen Electric
JPS62138443A (ja) * 1985-12-11 1987-06-22 Mitsui Toatsu Chem Inc ビスクレゾ−ルの製造方法
JPH0632885A (ja) * 1992-06-22 1994-02-08 Idemitsu Petrochem Co Ltd ポリカーボネート及びその製造方法
JPH08183852A (ja) * 1994-12-28 1996-07-16 Nippon G Ii Plast Kk コポリカーボネート、コポリカーボネート組成物およびこれらの製造方法
JPH08225641A (ja) * 1994-12-19 1996-09-03 Asahi Chem Ind Co Ltd ガイドを有する芳香族ポリカーボネートの製法
JP2011105932A (ja) * 2009-10-22 2011-06-02 Mitsubishi Chemicals Corp ポリカーボネート樹脂及びその製造方法
WO2019039520A1 (ja) * 2017-08-22 2019-02-28 三菱ケミカル株式会社 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法
JP2019047453A (ja) 2017-09-07 2019-03-22 ブラザー工業株式会社 画像処理プログラムおよび情報処理装置
JP2019047454A (ja) 2017-09-07 2019-03-22 株式会社エニー 無線装置システム
JP2019047450A (ja) 2017-09-07 2019-03-22 東芝情報システム株式会社 圧縮処理装置、伸長処理装置、圧縮処理用プログラム、伸長処理用プログラム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE546409A (ja) * 1955-03-25
DE2645020A1 (de) * 1976-10-06 1978-04-13 Bayer Ag Verfahren zur herstellung von dihydroxyspirobisindanen
JPS61159420A (ja) * 1985-01-07 1986-07-19 Mitsui Toatsu Chem Inc 芳香族ポリエ−テル系共重合体
DE3743491A1 (de) * 1987-12-22 1989-07-13 Bayer Ag Verwendung von mischungen aus polycarbonaten und styrolpolymerisaten als substrate fuer optische speicher
DE3827643A1 (de) * 1988-08-16 1990-02-22 Bayer Ag Isomerisierung von bisphenolen
US6001953A (en) 1999-03-18 1999-12-14 General Electric Company Polycarbonates suitable for use in optical articles
JP2000344699A (ja) 1999-06-01 2000-12-12 Mitsui Chemicals Inc ビスフェノールaの製造方法
KR20010101957A (ko) * 1999-12-03 2001-11-15 사토 아키오 고품질 비스페놀 a 및 그 제조방법
JP2001343761A (ja) 2000-05-30 2001-12-14 Kyocera Mita Corp 電子写真感光体
US6482977B1 (en) * 2000-07-28 2002-11-19 General Electric Company Melt process for the synthesis of diaryl esters of aliphatic diacids
JP2010077315A (ja) 2008-09-26 2010-04-08 Mitsubishi Chemicals Corp ポリカーボネート樹脂及びその製造方法、並びに電子写真感光体
JP2011219636A (ja) 2010-04-09 2011-11-04 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法およびポリカーボネート樹脂
KR20150100963A (ko) 2011-02-07 2015-09-02 미쓰비시 가가꾸 가부시키가이샤 비스페놀 화합물의 제조 방법
US8431749B2 (en) 2011-06-06 2013-04-30 Badger Licensing Llc Recovery of phenol and acetone from bisphenol-A streams
JP5953691B2 (ja) * 2011-09-29 2016-07-20 三菱化学株式会社 ポリカーボネート樹脂の製造方法
US9102597B2 (en) * 2012-09-05 2015-08-11 Sabic Global Technologies B.V. Indane bisphenols, polymers derived therefrom, and methods of use thereof
JP7021561B2 (ja) * 2017-03-06 2022-02-17 三菱ケミカル株式会社 2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンの製造方法およびポリカーボネート樹脂の製造方法
JP7180344B2 (ja) * 2017-12-06 2022-11-30 三菱ケミカル株式会社 ビスフェノールの製造方法、及び、ポリカーボネート樹脂の製造方法
JP7196438B2 (ja) 2018-07-03 2022-12-27 三菱ケミカル株式会社 ビスフェノールの製造法およびポリカーボネート樹脂の製造法
JP2021152001A (ja) 2020-03-23 2021-09-30 三菱ケミカル株式会社 ビスフェノール組成物及びその製造方法並びにポリカーボネート樹脂の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512797A (ja) * 1974-05-31 1976-01-10 Gen Electric
JPS62138443A (ja) * 1985-12-11 1987-06-22 Mitsui Toatsu Chem Inc ビスクレゾ−ルの製造方法
JPH0632885A (ja) * 1992-06-22 1994-02-08 Idemitsu Petrochem Co Ltd ポリカーボネート及びその製造方法
JPH08225641A (ja) * 1994-12-19 1996-09-03 Asahi Chem Ind Co Ltd ガイドを有する芳香族ポリカーボネートの製法
JPH08183852A (ja) * 1994-12-28 1996-07-16 Nippon G Ii Plast Kk コポリカーボネート、コポリカーボネート組成物およびこれらの製造方法
JP2011105932A (ja) * 2009-10-22 2011-06-02 Mitsubishi Chemicals Corp ポリカーボネート樹脂及びその製造方法
WO2019039520A1 (ja) * 2017-08-22 2019-02-28 三菱ケミカル株式会社 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法
JP2019047453A (ja) 2017-09-07 2019-03-22 ブラザー工業株式会社 画像処理プログラムおよび情報処理装置
JP2019047454A (ja) 2017-09-07 2019-03-22 株式会社エニー 無線装置システム
JP2019047450A (ja) 2017-09-07 2019-03-22 東芝情報システム株式会社 圧縮処理装置、伸長処理装置、圧縮処理用プログラム、伸長処理用プログラム

Also Published As

Publication number Publication date
WO2020184182A1 (ja) 2020-09-17
JPWO2020184183A1 (ja) 2020-09-17
KR20210141497A (ko) 2021-11-23
EP3940015A4 (en) 2022-05-18
EP3939957A4 (en) 2022-05-18
JPWO2020184182A1 (ja) 2020-09-17
TW202100500A (zh) 2021-01-01
US20210403641A1 (en) 2021-12-30
CN113574042A (zh) 2021-10-29
TW202045465A (zh) 2020-12-16
JP7400804B2 (ja) 2023-12-19
JP7435588B2 (ja) 2024-02-21
US20220098135A1 (en) 2022-03-31
EP3939957A1 (en) 2022-01-19
CN113574090A (zh) 2021-10-29
CN113574042B (zh) 2023-10-13
JP2024056799A (ja) 2024-04-23
TWI825288B (zh) 2023-12-11
KR20210141498A (ko) 2021-11-23
EP3940015A1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP2023160883A (ja) 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法
WO2019039520A1 (ja) 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法
JP7196438B2 (ja) ビスフェノールの製造法およびポリカーボネート樹脂の製造法
JP7287018B2 (ja) ビスフェノール組成物及びポリカーボネート樹脂の製造方法
JP7087848B2 (ja) ビスフェノールの製造方法、及びポリカーボネート樹脂の製造方法
JP2021152001A (ja) ビスフェノール組成物及びその製造方法並びにポリカーボネート樹脂の製造方法
WO2020184182A1 (ja) ビスフェノール組成物及びポリカーボネート樹脂
JP2023006817A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
JP2020152650A (ja) ビスフェノールの製造方法、及びポリカーボネート樹脂の製造方法
JP2023005691A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
JP7287019B2 (ja) ビスフェノール組成物及びポリカーボネート樹脂の製造方法
JP7180344B2 (ja) ビスフェノールの製造方法、及び、ポリカーボネート樹脂の製造方法
JP7167537B2 (ja) ビスフェノール製造方法、及びポリカーボネート樹脂の製造方法
JP2023005689A (ja) ビスフェノール組成物及びポリカーボネート樹脂の製造方法
JP7172308B2 (ja) ビスフェノールの製造方法、及びポリカーボネート樹脂の製造方法
JP7107044B2 (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
JP2023006818A (ja) ビスフェノールの製造方法並びにポリカーボネート樹脂の製造方法
JP2023006819A (ja) ビスフェノールの製造方法並びにポリカーボネート樹脂の製造方法
JP2022114119A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
JP2021123543A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
JP2021123544A (ja) ビスフェノールの製造法及びポリカーボネート樹脂の製造法
JP2023006820A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
JP2022101856A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
JP2024130529A (ja) ビスフェノールの製造方法およびポリカーボネート樹脂の製造方法
JP2022152461A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020770715

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020770715

Country of ref document: EP

Effective date: 20211014