JP7287018B2 - ビスフェノール組成物及びポリカーボネート樹脂の製造方法 - Google Patents
ビスフェノール組成物及びポリカーボネート樹脂の製造方法 Download PDFInfo
- Publication number
- JP7287018B2 JP7287018B2 JP2019047451A JP2019047451A JP7287018B2 JP 7287018 B2 JP7287018 B2 JP 7287018B2 JP 2019047451 A JP2019047451 A JP 2019047451A JP 2019047451 A JP2019047451 A JP 2019047451A JP 7287018 B2 JP7287018 B2 JP 7287018B2
- Authority
- JP
- Japan
- Prior art keywords
- bisphenol
- composition
- group
- polycarbonate resin
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyesters Or Polycarbonates (AREA)
Description
本発明のビスフェノール組成物は、ポリカーボネート樹脂、エポキシ樹脂、芳香族ポリエステル樹脂などの樹脂原料や、硬化剤、顕色剤、退色防止剤、その他殺菌剤や防菌防カビ剤等の添加剤として有用である。
すなわち、本発明の要旨は、以下の[1]~[6]に存する。
なお、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いるものとする。
本発明のビスフェノール組成物は、ビスフェノールを95質量%以上有し、下記構造式(I)で表される2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)ジメチルメチル]-6-メチルフェノール(以下、「トリスC」と称する。)を100質量ppm以上含有するビスフェノール組成物である。
トリスCの検出及び定量は、粒径3μmの標準的な高速分析用逆相カラムを用いて、行うことが可能である。
本発明のビスフェノール組成物に含まれるビスフェノールは、通常、以下の一般式(1)で表される化合物である。
ビスフェノールの検出及び定量は、標準的な高速分析用逆相カラムを用いて行うことが可能である。
ビスフェノール組成物のメタノール溶解色は、常温におけるビスフェノール組成物の色調を評価することに用いられる。ビスフェノール組成物のメタノール溶解色のハーゼン色数が低いほど、ビスフェノール組成物の色調が良好(白色に近い)であることを示す。ビスフェノール組成物のメタノール溶解色を悪化させる原因としては、有機着色成分や金属の混入が挙げられる。
ビスフェノール組成物のメタノール溶解色は、ビスフェノール組成物をメタノールに溶解させて、均一溶液とした後、室温(約20℃)で測定する。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。ここで使用する溶媒メタノール、ビスフェノールと溶媒の質量比は、ビスフェノールの種類により適宜選択することが好ましい。
ビスフェノール組成物のメタノール溶解色のハーゼン色数は、好ましくは20以下であり、より好ましくは10以下であり、特に好ましくは5以下である。
ビスフェノール組成物の溶融色差は、ポリカーボネートの重合温度に近い温度でのビスフェノール組成物の色調を評価することに用いられる。溶融色差の測定温度は、ビスフェノールの融点+50℃である。ビスフェノール組成物の溶融色差はハーゼン色数が低いほど、ビスフェノール組成物の色調が良好(白色に近い)であることを示す。ビスフェノール組成物の溶融色差を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分が挙げられる。
ビスフェノール組成物の溶融色差は、重合温度に近い温度でビスフェノール組成物を溶融させ、予めその温度が安定した時間で測定する。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。
このハーゼン色数は、好ましくは40以下であり、より好ましきは30以下であり、特に好ましくは20以下である。
ビスフェノール組成物の熱色調安定性は、ビスフェノール組成物の溶融色差同様、ポリカーボネートの重合温度に近い温度で所定の時間保持させ、ビスフェノール組成物の色調の熱安定性を評価することに用いられる。ビスフェノール組成物の熱色調安定性の測定温度は、ビスフェノールの融点+50℃である。
ビスフェノール組成物の熱色調安定性はハーゼン色数が低いほど、ビスフェノール組成物の熱色調安定性が良好であることを示す。ビスフェノール組成物の熱色調安定性を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分やその濃度が数ppm程度の酸性物質や塩基性物質が挙げられる。
ビスフェノール組成物の熱色調安定性は、重合温度に近い温度でビスフェノール組成物を溶融させ、予めその温度が安定した時間で測定する。ビスフェノール組成物の熱色調安定性の保持時間は、4時間である。測定方法は、ハーゼン色数の標準液と目視で比較する方法、又は日本電色工業社製「SE6000」などの色差計を用い、そのハーゼン色数を測定する方法が挙げられる。
このハーゼン色数は、好ましくは50以下であり、より好ましくは45以下であり、特に好ましくは35以下である。
ビスフェノール組成物の熱分解安定性は、ビスフェノール組成物の熱色調安定性同様、ポリカーボネートの重合温度に近い温度で所定の時間保持させ、ビスフェノール組成物の熱安定性を評価することに用いられる。ビスフェノール組成物の熱分解安定性の好ましい測定温度は、ビスフェノールの融点+50℃である。ビスフェノール組成物の熱分解安定性は分解物の生成量が少ないほど、ビスフェノール組成物が安定であることを示す。ビスフェノール組成物の熱分解安定性における分解物は、ビスフェノールの種類にもよるが、該ビスフェノール組成物の原料である芳香族アルコール、又は、該芳香族アルコールと原料であるケトン又はアルデヒドの付加物が挙げられる。ビスフェノール組成物の熱分解安定性を悪化させる原因としては、有機着色成分や金属の混入の他に、加熱によって着色する成分やその濃度が数ppm程度の酸性物質や塩基性物質が挙げられる。
ビスフェノール組成物の分解物の検出及び定量は、標準的な高速分析用逆相カラムを用いて、行うことが可能である。
ビスフェノール組成物の分解物として後述の実施例で測定されるイソプロペニルクレゾールの生成量は200質量ppm以下であることが好ましい。
また、ポリカーボネート樹脂の製造方法の1つである溶融重合法においては、高温で重合反応を行うことから、溶融時のビスフェノール組成物の色調(ビスフェノール組成物の溶融色差)、溶融状態でのビスフェノール組成物の色調安定性(ビスフェノール組成物の熱色調安定性)が重要である。
更に、該溶融重合法において、高温でビスフェノール組成物を溶融させた状態で重合反応開始まで保持させる。該溶融重合方法において、ビスフェノール組成物が高温で分解する場合、炭酸ジフェニルとの物質量比が所定の物質量比から乖離し、重合反応活性や所定の分子量を持つポリカーボネート樹脂を得ることが困難となる。したがって、熱分解に対する耐性(ビスフェノール組成物の熱分解安定性)が重要である。
特に、所定の分子量を有し、色調の良いポリカーボネート樹脂を製造するためには、ビスフェノール組成物のメタノール溶解色、ビスフェノール組成物の溶融色差、ビスフェノール組成物の熱色調安定性、ビスフェノール組成物の熱分解安定性が重要となる。
ビスフェノールを95質量%以上含み、トリスCを所定の割合で含む本発明のビスフェノール組成物の製造方法としては特に制限はないが、例えば次のような方法が挙げられる。
(1) 固体のビスフェノールに所定量のトリスCを添加する方法
(2) 溶融したビスフェノールに所定量のトリスCを添加する方法
(3) ビスフェノールを製造する際にトリスCを副生させてトリスCを含有するビスフェノール生成物を得る方法
ビスフェノールの製造時に反応系内でビスフェノールと共にトリスCを生成させてトリスCを含むビスフェノール生成物を本発明のビスフェノール組成物として得る方法としては、ケトン又はアルデヒドと芳香族アルコールを酸触媒及びチオール助触媒の存在下で縮合させてビスフェノールを製造する方法が挙げられ、この方法によれば、トリスCを反応系内で生成させることができる。
以下、この方法について説明する。
このビスフェノールの生成反応は、以下に示す反応式(2)に従って行われる。
ビスフェノールの製造に用いる原料芳香族アルコールは、通常、以下の一般式(3)で表される化合物である。
ビスフェノールの製造に用いる原料ケトン又はアルデヒドは、通常、以下の一般式(4)で表される化合物である。
ビスフェノールの製造に用いられる酸触媒としては、硫酸、塩酸、塩化水素ガス、リン酸、p-トルエンスルホン酸などの芳香族スルホン酸、メタンスルホン酸などの脂肪族スルホン酸などが挙げられる。
反応に用いるケトン又はアルデヒドに対する塩化水素のモル比((塩化水素のモル数/ケトンのモル数)又は(塩化水素のモル数/アルデヒドのモル数))は、少ないと縮合反応時に副生する水によって塩化水素が希釈されて長い反応時間を要することになる。一方、多いとケトン又はアルデヒドの多量化が進行する場合がある。これらのことから、ケトン又はアルデヒドに対する塩化水素のモル比の下限は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上である。また、その上限は、好ましくは10以下、より好ましくは8以下、更に好ましくは5以下である。
用いる硫酸の濃度(硫酸水溶液の濃度)が低いと、水の量が多くなるため、ビスフェノールの生成反応が進行しにくくなり、ビスフェノールを製造する反応時間が長くなり、効率的にビスフェノールを製造することが難しい場合がある。そのため、用いる硫酸の濃度は、好ましくは70質量%以上、より好ましくは75質量%以上であり、更に好ましくは80質量%以上である。また、用いる硫酸の濃度の上限は、通常99.5質量%以下又は99質量%以下である。
ビスフェノールの製造においては、ケトン又はアルデヒドと芳香族アルコールとを縮合させる反応に、助触媒としてチオールを用いることができる。
助触媒としてチオールを用いることで、例えば2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンの製造において、24体の生成を抑え、44体の選択率を上げる効果と共に、ポリカーボネート樹脂製造時の重合活性を高め、得られるポリカーボネート樹脂の色調を良好なものとするという効果が得られる。このポリカーボネート樹脂製造時の重合活性の向上、得られるポリカーボネート樹脂の色調の改善効果が奏される理由の詳細は明らかではないが、チオールを用いることで、ポリカーボネート樹脂を製造する重合反応に対する阻害物の生成を抑制すると共に、色調悪化物の生成を抑制することができることによると推定される。
ビスフェノールの製造では、生成してくるビスフェノールを溶解ないし分散させるために通常有機溶媒を使用する。
有機溶媒としては、ビスフェノールの生成反応を阻害しない範囲で特に限定されず、芳香族炭化水素、脂肪族アルコール、脂肪族炭化水素などが挙げられる(ここで、基質となる芳香族アルコール、および、生成物であるビスフェノールは、有機溶媒から除かれる。)。これらの溶媒は単独で用いても、2種以上を併用して用いてもよい。
このように、硫酸と脂肪族アルコールを反応させ、硫酸モノアルキルを生成させることにより、酸触媒の酸強度を制御し、原料のケトン又はアルデヒドの縮合(多量化)及び着色を抑制することができる。このため、副生成物の生成が抑制され、かつ、着色が低減されたビスフェノールを簡便かつ効率よく製造することが可能となる。
反応液の調製方法は、特に限定されず、芳香族アルコール、有機溶媒、ケトン又はアルデヒドとを混合した混合液に、酸触媒を供給する方法や、酸触媒、芳香族アルコール、有機溶媒とを混合した混合液に、ケトン又はアルデヒドを供給する方法が挙げられる。
ビスフェノールの生成反応は縮合反応であるが、生成反応の反応温度が高すぎるとチオールの酸化分解が進行し、低すぎると反応に要する時間が長時間化することから、好ましくは0℃以上50℃以下である。
ビスフェノール生成反応によって得られたビスフェノール生成物の精製は、常法により行うことができる。例えば、晶析やカラムクロマトグラフィーなどの簡便な手段により精製することが可能である。具体的には、縮合反応後、反応液を分液して得られた有機相を水又は食塩水などで洗浄し、更に必要に応じて重曹水などで中和洗浄する。次いで、洗浄後の有機相を冷却し晶析させる。芳香族アルコールを多量に用いる場合は、該晶析前に蒸留による余剰の芳香族アルコールを留去してから晶析させる。
本発明に好適な精製工程の一例として、縮合反応によって得られたビスフェノール生成物を、洗浄工程で洗浄した後、晶析工程で析出させて精製する方法について、以下に説明する。
即ち、縮合反応後、反応液から得られたビスフェノールを含有する有機相を脱塩水で洗浄し、洗浄後の有機相を冷却して晶析させる。洗浄は以下の通り複数回行う。晶析についても複数回行ってもよい。
洗浄工程では、反応工程から得られたビスフェノールを含有する有機相(O1)と脱塩水を混合した後、ビスフェノールを含有する有機相(O2)と水相(W1)とに相分離させ、水相(W1)を除去し、ビスフェノールを含有する有機相(O2)を得る第1水洗工程と、第1水洗工程で得られたビスフェノールを含有する有機相(O2)と脱塩水を混合した後、ビスフェノールを含有する有機相(O3)と水相(W2)とに相分離させ、水相(W2)を除去し、ビスフェノールを含有する有機相(O3)を得る第2水洗工程とを少なくとも行い、水相(W1)のpHが8.5以上となるように第1水洗工程を行い、水相(W2)の電気伝導度が10μS/cmとなるように第2水洗工程を行うことが好ましい。
ここで、脱塩水とは、イオン交換処理した水、純水等の電気伝導度1.5μS/cm以下の水である。
また、水相(W1)の測定温度は、室温(20~30℃)が好ましく、例えば25℃が好ましい。
第2水洗工程における水相(W2)の電気伝導度は好ましくは10μS/cm以下となるように洗浄を行うが、第2水洗工程における水相(W2)の電気伝導度はより好ましくは9μS/cm以下であり、さらに好ましくは8μS/cm以下である。
晶析工程における冷却温度は、洗浄工程から得られる有機相(O3)の温度より10~120℃低く、40~-20℃、特に30~-10℃程度とすることが好ましい。洗浄後の有機相(O3)をこのような温度に冷却することでビスフェノール組成物を効率よく析出させることができる。
本発明のビスフェノール組成物は、光学材料、記録材料、絶縁材料、透明材料、電子材料、接着材料、耐熱材料など種々の用途に用いられるポリエーテル樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、アクリル樹脂など種々の熱可塑性樹脂や、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ポリベンゾオキサジン樹脂、シアネート樹脂など種々の熱硬化性樹脂などの構成成分、硬化剤、添加剤もしくはそれらの前駆体などとして用いることができる。また、感熱記録材料等の顕色剤や退色防止剤、殺菌剤、防菌防カビ剤等の添加剤としても有用である。
これらのうち、良好な機械物性を付与できることより、熱可塑性樹脂、熱硬化性樹脂の原料(モノマー)として用いることが好ましく、なかでもポリカーボネート樹脂、エポキシ樹脂の原料として用いることがより好ましい。また、顕色剤として用いることも好ましく、特にロイコ染料、変色温度調整剤と組み合わせて用いることがより好ましい。
本発明のビスフェノール組成物を用いてポリカーボネート樹脂を製造する方法としては、本発明のビスフェノール組成物と、炭酸ジフェニル等とを、アルカリ金属化合物および/またはアルカリ土類金属化合物の存在下でエステル交換反応させる方法が挙げられる。
なお、本発明のビスフェノール組成物にはビスフェノールの1種のみが含まれていてもよく、2種以上が含まれていてもよい。2種以上のビスフェノールを用いることで、共重合ポリカーボネート樹脂を製造することができる。また、本発明のビスフェノール組成物以外のジヒドロキシ化合物を併用して反応させることもできる。
上記エステル交換反応は、公知の方法を適宜選択して行うことができるが、以下に本発明のビスフェノール組成物と炭酸ジフェニルを原料としたポリカーボネート樹脂の製造方法の一例を説明する。
触媒の使用量が上記範囲内であることにより、所望の分子量のポリカーボネート樹脂を製造するのに必要な重合活性を得やすく、且つ、ポリマー色相に優れ、また過度のポリマーの分岐化が進まず、成型時の流動性に優れたポリカーボネート樹脂を得やすい。
エステル交換法によるポリカーボネート樹脂の製造においては、通常、原料混合槽に供給された両原料は、均一に攪拌された後、エステル交換触媒が添加される重合槽に供給され、ポリマーが生産される。
以下の実施例および比較例において、オルトクレゾール、トルエン、水酸化ナトリウム、硫酸、ドデカンチオール、アセトン、炭酸水素ナトリウム、炭酸セシウム、アセトニトリル、塩化メチレン、酢酸、酢酸アンモニウムは、富士フィルム和光純薬株式会社製の試薬を使用した。
炭酸ジフェニルは、三菱ケミカル株式会社製の製品を使用した。
<ビスフェノールC生成反応液の組成、ビスフェノールC組成物中のトリスC分析>
ビスフェノールC生成反応液の組成分析、及びビスフェノールC組成物中のトリスC分析は、高速液体クロマトグラフィーにより、以下の手順と条件で行った。
・装置:島津製作所社製「LC-2010A」
Imtakt ScherzoSM-C18 3μm 250mm×3.0mmID
・低圧グラジェント法
・分析温度:40℃
・溶離液組成:
A液 酢酸アンモニウム:酢酸:脱塩水=3.000g:1mL:1Lの溶液
B液 酢酸アンモニウム:酢酸:アセトニトリル:脱塩水=1.500g:1mL:900mL:150mLの溶液
・分析時間0分では、溶離液組成はA液:B液=60:40(体積比、以下同様。)
分析時間0~41.67分はA液:B液=10:90へ徐々に変化させ、
分析時間41.67~50分はA液:B液=10:90に維持、
流速0.34mL/分にて分析した。
トリスCの分子量は、高速液体クロマトグラフ質量分析(LCMS)を用いて測定した。高速液体クロマトグラフ質量分析(LCMS)は、以下の手順と条件で行った。
・分離装置:アジレント・テクノロジー株式会社製「Agilent1200」
Imtakt ScherzoSM-C18 3μm 150mm×4.6mmID
・低圧グラジェント法
・分析温度:40℃
・溶離液組成:
A液 酢酸アンモニウム:酢酸:脱塩水=3.000g:1mL:1Lの溶液
B液 酢酸アンモニウム:酢酸:アセトニトリル=1.500g:1mL:1Lの溶液
・分析時間0分では溶離液組成はA液:B液=60:40(体積比、以下同様。)
分析時間0~25分はA液:B液=90:10へ徐々に変化させ、
分析時間25~30分はA液:B液=90:10に維持、
流速1.0mL/分にて分析した。
・検出波長:280nm
・質量分析装置:アジレント・テクノロジー株式会社製「Agilent LC/MS 6130」
・イオン源:ESI(Postive/Negative) AJSプローブ使用
ビスフェノールC組成物中のビスフェノールCの分析は、<ビスフェノールC生成反応液の組成、ビスフェノールC組成物中のトリスC分析>と同様に実施した。本発明で製造されるビスフェノールC組成物におけるビスフェノール中のビスフェノールC純度は通常99質量%以上であり、ビスフェノールC以外のビスフェノールの生成量はごく微量であることから、ビスフェノールC組成物中のビスフェノールC含有量をビスフェノール含有量とみなすことができる。
イソプロペニルクレゾールの同定は、ガスクロマト質量計を用いて、以下の手順と条件で行った。
・装置:アジレント・テクノロジー社製「Agilent6890」
・カラム:アジレント・テクノロジー社製「DB-1MS」(内径0.25mm×30m×0.25μm)
・キャリアーガス:ヘリウム
流量:毎分1cm3
・注入口温度:280℃
・トランスファー温度:250℃
・イオンソース温度:250℃
・カラムの昇温パターン:先ず50℃で3分間保持させた後に毎分10℃で320℃まで昇温させ、280℃で5分間保持
pHの測定は、株式会社堀場製作所製pH計「pH METER
ES-73」を用いて、フラスコから取り出した25℃の水相に対して実施した。
電気伝導度の測定は、株式会社堀場製作所製電気伝導度計「COND METER D-71」を用いて、フラスコから取り出した25℃の水相に対して実施した。
ビスフェノールC組成物のメタノール溶解色は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物10g及びメタノール10gを入れて、均一溶液とした後、室温(約20℃)で、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定した。
ビスフェノールC組成物の溶融色差は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物を20g入れて、190℃で30分間溶融させ、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定した。
ビスフェノールC組成物の熱色調安定性は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物を20g入れ、190℃で4時間溶融させ、日本電色工業社製「SE6000」を用い、そのハーゼン色数を測定した。
ビスフェノールC組成物の熱分解安定性は、日電理化硝子社製試験管「P-24」(24mmφ×200mm)にビスフェノールC組成物を20g入れ、190℃で2時間溶融させ、前記ビスフェノールC生成反応液の組成分析と同様に実施し、イソプロペニルクレゾールの生成量を測定した。
ポリカーボネート樹脂の粘度平均分子量(Mv)は、ポリカーボネート樹脂を塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管を用いて20℃における比粘度(ηsp)を測定し、下記の式により粘度平均分子量(Mv)を算出した。
ηsp/C=[η](1+0.28ηsp)
[η]=1.23×10-4Mv0.83
ペレットYI(ポリカーボネート樹脂の透明性)は、ASTM D1925に準拠して、ポリカーボネート樹脂ペレットの反射光におけるYI値(イエローネスインデックス値)を測定して評価した。装置はコニカミノルタ社製分光測色計「CM-5」を用い、測定条件は測定径30mm、SCEを選択した。
シャーレ測定用校正ガラス「CM-A212」を測定部にはめ込み、その上からゼロ校正ボックス「CM-A124」をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。次いで、白色校正板「CM-A210」を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が-0.43±0.01、YIが-0.58±0.01となることを確認した。
YIは、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。
撹拌子、温度計、蒸留装置を備えた500mLのナス型フラスコに、ビスフェノールC組成物85gと水酸化ナトリウム4.5gを入れ、195℃に加熱したオイルバスに浸漬した。ナス型フラスコ内のビスフェノールCが溶融したことを確認した後、真空ポンプを用いて徐々にフラスコ内を減圧していき、フル真空にした。しばらくすると蒸発が始まり、留出が収まるまで、減圧蒸留を実施した。得られた留分は、質量計検出器を備えたガスクロマトグラフィーにより、ビスフェノールCが熱分解して生成したクレゾールとイソプロペニルクレゾールの混合物であることが分かった。得られた留分を用いて、ビスフェノールC生成反応液の組成分析条件におけるイソプロペニルクレゾールの保持時間を確認した。
(1)第1の混合液の調製
温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下でトルエン320g、メタノール15g、オルトクレゾール230g(2.13モル)を入れ、内温を10℃以下とした。その後、撹拌しながら98重量%硫酸95gを0.3時間かけてゆっくり加えた後、5℃以下まで冷却した。
500mLの三角フラスコに、トルエン50g、アセトン65g(1.12モル)、ドデカンチオール5.4gを混合し、第2の混合液(滴下液)を調製した。
第1の混合液の内温を5℃以下にした後、前記滴下ロートを用いて第2の混合液を、内温が10℃以上にならないように、1時間かけて供給し、反応液を調製した。
内温10℃で、調製した反応液を2.5時間撹拌した。
反応終了後、25%水酸化ナトリウム水溶液190gを供給して80℃まで昇温した。80℃に到達後、静置して、下相の水相を抜き出した。得られた第1の有機相に脱塩水400gを入れ、30分混合して静置し、水相を除去した。得られた第2の有機相に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第3の有機相に更に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第4の有機相を抜出し、その質量を測定したところ、666gであった。
得られた第4の有機相に脱塩水200gを加え、30分混合して静置し、下相の水相(第1の水相)を除去し、第5の有機相を得た。なお、第1の水相のpHは、9.7であった。得られた第5の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第2の水相)を除去し、第6の有機相を得た。得られた第6の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第3の水相)を除去した。なお、第3の水相の電気伝導度は、2.7μS/cmであった。
また、したところ、得られたビスフェノールC組成物中のビスフェノールC含有量は99.8質量%であった。
(1)第1の混合液の調製
温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、空気雰囲気下でトルエン320g、メタノール15g、オルトクレゾール230g(2.13モル)を入れ、内温を10℃以下とした。その後、撹拌しながら98重量%硫酸95gを0.3時間かけてゆっくり加えた後、5℃以下まで冷却した。
500mLの三角フラスコに、トルエン50g、アセトン65g(1.12モル)、ドデカンチオール5.4gを混合し、第2の混合液(滴下液)を調製した。
第1の混合液の内温を5℃以下にした後、前記滴下ロートを用いて第2の混合液を、内温が10℃以上にならないように、1時間かけて供給し、反応液を調製した。
内温30℃で、調製した反応液を2.5時間撹拌した。
反応終了後、25%水酸化ナトリウム水溶液130gを供給して80℃まで昇温した。80℃に到達後、静置して、下相の水相を抜き出した。得られた第1の有機相に脱塩水400gを入れ、30分混合して静置し、水相を除去した。得られた第2の有機相に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第3の有機相に更に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第4の有機相を抜出し、その質量を測定したところ、666gであった。
得られた第4の有機相に脱塩水200gを加え、30分混合して静置し、下相の水相(第1の水相)を除去し、第5の有機相を得た。なお、第1の水相のpHは、9.7であった。得られた第5の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第2の水相)を除去し、第6の有機相を得た。得られた第6の有機相に、脱塩水200gを加え、30分混合して静置し、下相の水相(第3の水相)を除去した。なお、第3の水相の電気伝導度は、2.8μS/cmであった。
また、得られたビスフェノールC組成物のメタノール溶解色を測定したところ、ハーゼン色数は0であった。得られたビスフェノールC組成物の溶融色差を測定したところ、ハーゼン色数は5であった。また、得られたビスフェノールC組成物の熱色調安定性を測定したところ、ハーゼン色数は38であった。更に得られたビスフェノールCの組成物熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は240質量ppmであった。
(1)第1の混合液の調製
温度計、滴下ロート、ジャケット及びイカリ型撹拌翼を備えたセパラブルフラスコに、窒素雰囲気下でトルエン320g、メタノール15g、オルトクレゾール230g(2.13モル)を入れ、内温を10℃以下とした。その後、撹拌しながら98重量%硫酸95gを0.3時間かけてゆっくり加えた後、5℃以下まで冷却した。
500mLの三角フラスコに、トルエン50g、アセトン65g(1.12モル)、ドデカンチオール5.4gを混合し、第2の混合液(滴下液)を調製した。
第1の混合液の内温を5℃以下にした後、前記滴下ロートを用いて第2の混合液を、内温が10℃以上にならないように、1時間かけて供給し、反応液を調製した。
内温10℃で、調製した反応液を2時間撹拌した。
反応終了後、25%水酸化ナトリウム水溶液190gを供給して80℃まで昇温した。80℃に到達後、静置して、下相の水相を抜き出した。得られた第1の有機相に脱塩水400gを入れ、30分混合して静置し、水相を除去した。得られた第2の有機相に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第3の有機相に更に1.5質量%の炭酸水素ナトリウム溶液120gを加えて、30分混合して静置し、下相を抜き出した。得られた第4の有機相を抜出し、その質量を測定したところ、666gであった。
得られた第4の有機相を、80℃から20℃まで冷却して、20℃で維持し、ビスフェノールCを析出させた。その後、10℃まで冷却して10℃到達後、遠心分離機を用いて固液分離を行い、粗精製ウェットケーキを得た。
また、得られたビスフェノールC組成物のメタノール溶解色を測定したところ、ハーゼン色数は3であった。得られたビスフェノールC組成物の溶融色差を測定したところ、ハーゼン色数は48であった。また、得られたビスフェノールC組成物の熱色調安定性を測定したところ、ハーゼン色数は120であった。更に得られたビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は485質量ppmであった。
富士フィルム和光純薬株式会社製試薬のビスフェノールC中のトリスC含有量は97質量ppmであった。
該試薬のビスフェノールCのメタノール溶解色を測定したところ、ハーゼン色数は20であった。また、該試薬のビスフェノールCの溶融色差を測定したところ、ハーゼン色数は46であった。また、該試薬のビスフェノールCの熱色調安定性を測定したところ、ハーゼン色数は114であった。更に該試薬のビスフェノールCの熱分解安定性を測定したところ、イソプロペニルクレゾールの生成量は585質量ppmであった。
表1より、トリスCを100質量ppm以上、1200質量ppm以下含有することで、メタノール溶解色、溶融色差、熱色調安定性が改善されることが分かる。また、トリスCを100質量ppm以上、1200質量ppm以下含有することで、熱分解安定性も改善されることが分かる。
撹拌機及び留出管を備えた内容量150mLのガラス製反応槽に、実施例1で得られたビスフェノールC組成物100.00g(ビスフェノールC0.39モル)、炭酸ジフェニル86.49g(0.4モル)及び400質量ppmの炭酸セシウム水溶液479μLを入れた。該ガラス製反応槽を約100Paに減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応槽の内部を窒素に置換した。その後、該反応槽を200℃のオイルバスに浸漬させ、内容物を溶解した。
その後、回転式カッターを使用して、該ストランドをペレット化して、ペレット状のポリカーボネート樹脂を得た。
実施例3において、実施例1で得られたビスフェノールC組成物100.00g(ビスフェノールC0.39モル)の代わりに、比較例1で得られたビスフェノールC組成物を100.00g(ビスフェノールC0.39モル)用いた以外、実施例3と同様に実施した。
280℃に昇温してから重合を終了するまでの時間(後段重合時間)は230分であった。
得られたポリカーボネート樹脂の粘度平均分子量(Mv)は24800であり、ペレットYIは10.2であった。
表2より、トリスCを所定の割合で含むビスフェノールC組成物を用いることで、得られるポリカーボネート樹脂のペレットYIが改善することが分かる。
Claims (5)
- 2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンを95質量%以上有し、2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)ジメチルメチル]-6-メチルフェノールを100質量ppm以上含有するビスフェノール組成物。
- 2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)ジメチルメチル]-6-メチルフェノールを1500質量ppm以下含有する請求項1に記載のビスフェノール組成物。
- 2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンを製造する際に2,4-ビス[(4-ヒドロキシ-3-メチルフェニル)ジメチルメチル]-6-メチルフェノールを副生させる請求項1又は2に記載のビスフェノール組成物の製造方法。
- 請求項1又は2に記載のビスフェノール組成物を用いたポリカーボネート樹脂の製造方法。
- 粘度平均分子量が15000以上、35000以下のポリカーボネート樹脂を製造する請求項4に記載のポリカーボネート樹脂の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019047451A JP7287018B2 (ja) | 2019-03-14 | 2019-03-14 | ビスフェノール組成物及びポリカーボネート樹脂の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019047451A JP7287018B2 (ja) | 2019-03-14 | 2019-03-14 | ビスフェノール組成物及びポリカーボネート樹脂の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020147535A JP2020147535A (ja) | 2020-09-17 |
JP7287018B2 true JP7287018B2 (ja) | 2023-06-06 |
Family
ID=72431688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019047451A Active JP7287018B2 (ja) | 2019-03-14 | 2019-03-14 | ビスフェノール組成物及びポリカーボネート樹脂の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7287018B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4209554A4 (en) | 2020-09-02 | 2024-09-11 | Canon Kk | FIXING ELEMENT FOR ELECTROPHOTOGRAPHY, FIXING DEVICE, ELECTROPHOTOGRAPHIC IMAGE FORMING DEVICE AND ADDITION-CURING LIQUID SILICONE RUBBER COMPOUND |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214248A (ja) | 2007-03-02 | 2008-09-18 | Api Corporation | ビスフェノール化合物の製造方法 |
JP2010173949A (ja) | 2009-01-28 | 2010-08-12 | Mitsubishi Chemicals Corp | ビスフェノール類の製造方法 |
JP2018145178A (ja) | 2017-03-06 | 2018-09-20 | 三菱ケミカル株式会社 | 2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパンの製造方法およびポリカーボネート樹脂の製造方法 |
WO2019039520A1 (ja) | 2017-08-22 | 2019-02-28 | 三菱ケミカル株式会社 | 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2862800B2 (ja) * | 1994-10-05 | 1999-03-03 | 帝人株式会社 | 芳香族ポリカーボネートの製造方法 |
JPH08245465A (ja) * | 1995-03-16 | 1996-09-24 | Nippon Steel Chem Co Ltd | ポリマー原料用ビスフェノール類及びその製造方法 |
-
2019
- 2019-03-14 JP JP2019047451A patent/JP7287018B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008214248A (ja) | 2007-03-02 | 2008-09-18 | Api Corporation | ビスフェノール化合物の製造方法 |
JP2010173949A (ja) | 2009-01-28 | 2010-08-12 | Mitsubishi Chemicals Corp | ビスフェノール類の製造方法 |
JP2018145178A (ja) | 2017-03-06 | 2018-09-20 | 三菱ケミカル株式会社 | 2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパンの製造方法およびポリカーボネート樹脂の製造方法 |
WO2019039520A1 (ja) | 2017-08-22 | 2019-02-28 | 三菱ケミカル株式会社 | 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020147535A (ja) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023160883A (ja) | 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法 | |
WO2019039520A1 (ja) | 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法 | |
JP7287018B2 (ja) | ビスフェノール組成物及びポリカーボネート樹脂の製造方法 | |
JP7196438B2 (ja) | ビスフェノールの製造法およびポリカーボネート樹脂の製造法 | |
JP6859936B2 (ja) | ビスフェノール粉体の製造方法、及び、ポリカーボネート樹脂の製造方法 | |
JP7087848B2 (ja) | ビスフェノールの製造方法、及びポリカーボネート樹脂の製造方法 | |
JP2021152001A (ja) | ビスフェノール組成物及びその製造方法並びにポリカーボネート樹脂の製造方法 | |
JP7180344B2 (ja) | ビスフェノールの製造方法、及び、ポリカーボネート樹脂の製造方法 | |
JP7287019B2 (ja) | ビスフェノール組成物及びポリカーボネート樹脂の製造方法 | |
JP7167537B2 (ja) | ビスフェノール製造方法、及びポリカーボネート樹脂の製造方法 | |
JP2023006817A (ja) | ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法 | |
JP2020152650A (ja) | ビスフェノールの製造方法、及びポリカーボネート樹脂の製造方法 | |
JP7400804B2 (ja) | ビスフェノール組成物及びポリカーボネート樹脂 | |
JP7172308B2 (ja) | ビスフェノールの製造方法、及びポリカーボネート樹脂の製造方法 | |
JP2023005689A (ja) | ビスフェノール組成物及びポリカーボネート樹脂の製造方法 | |
JP2023006818A (ja) | ビスフェノールの製造方法並びにポリカーボネート樹脂の製造方法 | |
JP7167536B2 (ja) | ビスフェノール製造法、及びポリカーボネート樹脂の製造法 | |
JP7107044B2 (ja) | ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法 | |
JP2023006819A (ja) | ビスフェノールの製造方法並びにポリカーボネート樹脂の製造方法 | |
JP2022114119A (ja) | ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法 | |
JP2022152461A (ja) | ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法 | |
JP2022101856A (ja) | ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法 | |
JP2021123543A (ja) | ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法 | |
JP2023006820A (ja) | ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法 | |
JP2021123544A (ja) | ビスフェノールの製造法及びポリカーボネート樹脂の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220531 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230227 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230227 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230307 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230508 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7287018 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |