WO2020149046A1 - キャビティを有するシリコン基板及び該シリコン基板を用いたキャビティsoi基板 - Google Patents

キャビティを有するシリコン基板及び該シリコン基板を用いたキャビティsoi基板 Download PDF

Info

Publication number
WO2020149046A1
WO2020149046A1 PCT/JP2019/047841 JP2019047841W WO2020149046A1 WO 2020149046 A1 WO2020149046 A1 WO 2020149046A1 JP 2019047841 W JP2019047841 W JP 2019047841W WO 2020149046 A1 WO2020149046 A1 WO 2020149046A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
cavity
silicon substrate
silicon oxide
thickness
Prior art date
Application number
PCT/JP2019/047841
Other languages
English (en)
French (fr)
Inventor
諭卓 岸本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201990001279.1U priority Critical patent/CN220502678U/zh
Priority to DE212019000447.4U priority patent/DE212019000447U1/de
Publication of WO2020149046A1 publication Critical patent/WO2020149046A1/ja
Priority to US17/332,167 priority patent/US11738993B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/002Holes characterised by their shape, in either longitudinal or sectional plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • B81C1/0065Mechanical properties
    • B81C1/00666Treatments for controlling internal stress or strain in MEMS structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00047Cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/036Fusion bonding

Definitions

  • the present invention relates to a silicon substrate having a cavity used for a MEMS (Micro Electro Mechanical Systems) device and the like, and a cavity SOI (Silicon On Insulator) substrate using the silicon substrate.
  • the present invention relates to a cavity SOI substrate (C-SOI substrate) in which a first silicon substrate having a cavity and a second silicon substrate are bonded by a silicon oxide film.
  • a MEMS device including a piezoelectric element on a silicon substrate is known.
  • this MEMS device there is a cavity SOI substrate in which a first silicon substrate having a cavity and a second silicon substrate are bonded.
  • a cavity is provided in a first silicon substrate, which is one of two silicon substrates forming a cavity SOI substrate, and a silicon oxide film (a silicon oxide film is formed at a joint portion between the first silicon substrate and the second silicon substrate).
  • a structure provided with (SiO 2 ) is disclosed (for example, refer to Patent Document 1).
  • the thickness of the silicon oxide film formed on the back surface of the silicon substrate is a handle wafer of the SOI substrate (SiO 2)
  • silicon oxide film formed on the surface of the silicon substrate is a handle wafer (SiO 2) It is disclosed that the warp of the SOI substrate is suppressed by making the thicknesses the same or reducing the difference in thickness (for example, see Patent Document 2).
  • the thickness of the oxide film provided on the two silicon substrates that make up the SOI substrate is made different, and the oxide film of the silicon substrate that becomes the active layer is made thicker than the oxide film of the other silicon substrate.
  • Suppressing the warp of the SOI substrate is disclosed (for example, refer to Patent Document 3).
  • the present inventor has found that the cavity SOI substrate described in Patent Document 1 has a problem in that a silicon substrate having a cavity is warped.
  • Patent Document 2 and Patent Document 3 relate to an SOI substrate having no cavity, and can suppress the warp of the SOI substrate, but suppress the warp of the cavity SOI substrate. difficult.
  • an object of the present invention is to provide a silicon substrate having a cavity in which warpage is suppressed.
  • a silicon substrate having a cavity is a silicon substrate having a first surface having a cavity and a second surface facing the first surface, A first silicon oxide film having a thickness d1 provided on the first surface; A second silicon oxide film having a thickness d2 provided on the bottom surface of the cavity; A third silicon oxide film having a thickness d3 provided on the second surface, Have For the thicknesses d1, d2, d3, either the first relational expression of d1 ⁇ d3 and d1 ⁇ d2 or the second relational expression of d3 ⁇ d1 and d2 ⁇ d1 is satisfied.
  • a cavity SOI substrate is a first silicon substrate having a first surface having a cavity and a second surface facing the first surface, and is provided on the first surface.
  • the silicon substrate having the cavity and the cavity SOI substrate using the same according to the present invention it is possible to reduce the warpage in the cavity SOI substrate.
  • FIG. 3 is a schematic cross-sectional view showing a cross-sectional structure of the silicon substrate having the cavity according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a cross-sectional structure of the cavity SOI substrate according to the first embodiment. It is a figure which shows the distribution result of the compressive stress value which simulated the curvature at the time of thermal oxidation about a flat silicon substrate. It is a figure which shows the distribution result of the compressive stress value which simulated the curvature at the time of thermal oxidation about the silicon substrate which has a cavity.
  • the thickness d3 of the silicon oxide film provided on the second surface is greater than or equal to the thickness d1 of the silicon oxide film provided on the first surface, and the thickness of the silicon oxide film provided on the bottom of the cavity.
  • FIG. 6 is a diagram showing a distribution result of compressive stress values simulating warpage during thermal oxidation when the thickness d2 and the thickness d1 of the silicon oxide film provided on the first surface are the same.
  • the thickness d3 of the silicon oxide film provided on the second surface is greater than or equal to the thickness d1 of the silicon oxide film provided on the first surface, and the thickness of the silicon oxide film provided on the bottom of the cavity.
  • the thickness d3 of the silicon oxide film provided on the second surface is smaller than the thickness d1 of the silicon oxide film provided on the first surface, and the thickness of the silicon oxide film provided on the bottom of the cavity. It is a figure which shows the distribution result of the compressive stress value which simulated the curvature at the time of thermal oxidation when d2 is thinner than thickness d1 of the silicon oxide film provided in the 1st surface.
  • 5 is a schematic cross-sectional view showing each step of the method for manufacturing the cavity SOI substrate according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view showing each step of the method for manufacturing the cavity SOI substrate according to the first embodiment.
  • FIG. FIG. 9 is a schematic cross-sectional view showing each step of the method for manufacturing the cavity SOI substrate according to the second embodiment.
  • FIG. 9 is a schematic cross-sectional view showing each step of the method for manufacturing the cavity SOI substrate according to the second embodiment.
  • a silicon substrate having a cavity according to a first aspect is a silicon substrate having a first surface and a second surface facing the first surface, A first silicon oxide film having a thickness d1 provided on the first surface; A second silicon oxide film having a thickness d2 provided on the bottom surface of the cavity; A third silicon oxide film having a thickness d3 provided on the second surface, Have For the thicknesses d1, d2, d3, either the first relational expression of d1 ⁇ d3 and d1 ⁇ d2 or the second relational expression of d3 ⁇ d1 and d2 ⁇ d1 is satisfied.
  • a cavity SOI substrate according to a second aspect is a silicon substrate having a cavity according to the first aspect, A silicon substrate bonded to the first surface of the silicon substrate having the cavity; Equipped with.
  • a cavity SOI substrate is a first silicon substrate having a first surface having a cavity and a second surface facing the first surface, A first silicon oxide film having a thickness d1 provided, a second silicon oxide film having a thickness d2 provided on the bottom surface of the cavity, and a third silicon oxide film having a thickness d3 provided on the second surface.
  • Silicon oxide film, A first silicon substrate having: A second silicon substrate bonded to the first surface of the first silicon substrate; Equipped with For the thicknesses d1, d2, and d3, either the first relational expression of d1 ⁇ d3 and d1 ⁇ d2 or the second relational expression of d3 ⁇ d1 and d2 ⁇ d1 is satisfied.
  • the present inventor has a problem that in a cavity SOI substrate (C-SOI substrate) in which a first silicon substrate having a cavity and a second silicon substrate are bonded, warpage occurs in the first silicon substrate having a cavity. Found.
  • the first silicon substrate and the second silicon substrate are bonded by, for example, direct bonding called FUSION BONDING.
  • FUSION BONDING direct bonding
  • the C-SOI substrate is warped (developed) when a thermal oxide film is formed before FUSION BONDING and when heat treatment (annealing) is performed after FUSION BONDING.
  • the thermal oxide film is formed, for example, in an atmosphere containing oxygen at 1000° C.
  • no warpage occurs in the atmosphere containing oxygen at 1000° C., and when the temperature returns to room temperature after the formation of the thermal oxide film. It is considered that the warp appears due to the difference in thermal expansion coefficient between Si of the silicon substrate and SiO 2 of the thermal oxide film.
  • FIG. 2A is a diagram showing a distribution result of compressive stress values simulating warpage during thermal oxidation for a flat silicon substrate.
  • FIG. 2B is a diagram showing a distribution result of compressive stress values simulating warpage during thermal oxidation for a silicon substrate having a cavity.
  • This thermal oxidation is a step for forming a thermal oxide film before FUSION BONDING.
  • the simulation conditions are as follows. In the figure, the warp is shown with the left end fixed.
  • the compressive stress works on the lower surface side and the tensile stress works on the upper surface side, but it can be seen that the stress value is small and no warpage occurs.
  • the cavity 5 exists in the silicon substrate having the cavity.
  • a silicon substrate having a cavity has a first surface and a second surface.
  • the first surface has a cavity 5 and serves as a bonding portion when the second silicon substrate in the C-SOI substrate is bonded.
  • the second surface is a surface facing the first surface.
  • a silicon oxide film is provided on each of the first surface, the bottom portion of the cavity 5 and the second surface, and it is considered that the stress of these silicon oxide films influences the warp.
  • the thickness d1 of the silicon oxide film provided on the first surface the thickness d2 of the silicon oxide film provided on the bottom of the cavity 5, the thickness of the silicon oxide film provided on the second surface.
  • the thickness d1 of the silicon oxide film provided on the first surface affects the bonding strength between the first silicon substrate and the second silicon substrate in the C-SOI substrate, so the thickness is changed. Is not desirable. Therefore, the thickness d2 of the silicon oxide film provided on the bottom of the cavity 5 and the thickness d3 of the silicon oxide film provided on the second surface were examined.
  • the thickness d3 of the silicon oxide film provided on the second surface is not less than the thickness d1 of the silicon oxide film provided on the first surface, and the thickness d3 is provided at the bottom of the cavity 5.
  • the thickness d3 of the silicon oxide film provided on the second surface is not less than the thickness d1 of the silicon oxide film provided on the first surface, and the thickness d3 is provided at the bottom of the cavity 5.
  • the thickness d3 of the silicon oxide film provided on the second surface is smaller than the thickness d1 of the silicon oxide film provided on the first surface, and the thickness of the silicon provided on the bottom of the cavity 5 is small. It is a figure which shows the distribution result of the compressive stress value which simulated the curvature at the time of thermal oxidation in case thickness d2 of an oxide film and thickness d1 of the silicon oxide film provided in the 1st surface are the same.
  • the thickness d3 of the silicon oxide film provided on the second surface is smaller than the thickness d1 of the silicon oxide film provided on the first surface, and the silicon provided on the bottom of the cavity 5 is shown.
  • the compressive stress value which simulated the curvature at the time of thermal oxidation when the thickness d2 of an oxide film is thinner than the thickness d1 of the silicon oxide film provided in the 1st surface.
  • the thickness d1 of the silicon oxide film provided on the first surface the thickness d2 of the silicon oxide film provided on the bottom portion of the cavity 5, and the thickness d2 of the silicon oxide film provided on the second surface.
  • the warp of the silicon substrate having the cavity is small in the relationship of d1 ⁇ d2.
  • the warp of the silicon substrate having the cavity is small in the relationship of d1>d2. It is considered that this is because the stress generated between Si of the silicon substrate and SiO 2 of the silicon oxide film is relaxed by changing d2.
  • the size of the warpage of the silicon substrate is determined by the relationship between the thickness of the SiO 2 thermal oxide film formed on the thickness and the second surface of the SiO 2 thermal oxide film provided on the first surface. It is considered that when the relationship between d1 and d2 is changed, the relationship with respect to d3 changes, and under the conditions of FIGS.
  • the stress tends to be relaxed.
  • the warpage of the silicon substrate having the cavity can be alleviated. Therefore, the present inventor has found that the thickness d1 of the silicon oxide film and the cavity 5 provided on the first surface of the silicon substrate having the cavity are When the thickness d2 of the silicon oxide film provided on the bottom and the thickness d3 of the silicon oxide film provided on the second surface satisfy a certain relational expression, the warp of the silicon substrate having the cavity can be suppressed.
  • the present invention has been achieved.
  • a silicon substrate having a cavity and a cavity SOI substrate according to the embodiments will be described below with reference to the accompanying drawings.
  • substantially the same members are designated by the same reference numerals.
  • FIG. 1A is a schematic sectional view showing a sectional configuration of a silicon substrate 10 having a cavity 5 according to the first embodiment.
  • Silicon substrate 10 has a first surface having cavity 5 and a second surface opposite to the first surface.
  • the silicon substrate 10 includes a first silicon oxide film 11 provided on the first surface excluding the cavity 5, a second silicon oxide film 12 provided on the bottom surface of the cavity 5, and a second surface provided on the second surface. And a third silicon oxide film 13 provided.
  • the thickness d1 of the first silicon oxide film 11, the thickness d2 of the second silicon oxide film 12, and the thickness d3 of the third silicon oxide film 13 are d1 ⁇ d3 and d1 ⁇ Either the first relational expression of d2 or the second relational expression of d3 ⁇ d1 and d2 ⁇ d1 is satisfied.
  • the thickness d1 of the first silicon oxide film 11 provided on the first surface the thickness d2 of the second silicon oxide film 12 provided on the bottom of the cavity 5, and the thickness d2 provided on the second surface.
  • FIG. 1B is a schematic cross-sectional view showing the cross-sectional structure of the cavity SOI substrate 20 according to the first embodiment.
  • the cavity SOI substrate 20 includes a first silicon substrate 1 and a second silicon substrate 8.
  • the first silicon substrate 1 has a first surface having a cavity 5 and a second surface facing the first surface. Further, the first silicon substrate 1 includes a first silicon oxide film 11 provided on the first surface excluding the cavity 5, a second silicon oxide film 12 provided on the bottom surface of the cavity 5, and a second silicon oxide film 12. And a third silicon oxide film 13 provided on the surface.
  • the second silicon substrate 8 is bonded to the first surface of the first silicon substrate 1.
  • the thickness d1 of the first silicon oxide film 11, the thickness d2 of the second silicon oxide film 12, and the thickness d3 of the third silicon oxide film 13 are d1 ⁇ d3.
  • the first relational expression of d1 ⁇ d2 or the second relational expression of d3 ⁇ d1 and d2 ⁇ d1 is satisfied. That is, the thickness d1 of the first silicon oxide film 11 provided on the first surface of the first silicon substrate 1 and the thickness d2 of the second silicon oxide film 12 provided at the bottom of the cavity 5.
  • the thickness d3 of the third silicon oxide film 13 provided on the second surface is satisfied by suppressing the occurrence of warpage of the cavity SOI substrate 20 by satisfying the first relational expression or the second relational expression. it can.
  • the members constituting the cavity SOI substrate 20 will be described below.
  • First silicon substrate As the first silicon substrate 1, the silicon substrate 10 having the cavity 5 can be used.
  • the second silicon substrate 8 is different from the first silicon substrate 1 in that it has no cavity.
  • the second silicon substrate 8 is bonded to the first silicon substrate 10.
  • the first silicon substrate 1 may be directly bonded by using, for example, a process called FUSION BONDING described later.
  • the joining method is not limited to this.
  • 5A and 5B are schematic cross-sectional views showing each step of the method for manufacturing the cavity SOI substrate using the silicon substrate having the cavity according to the first embodiment.
  • the first silicon substrate 1 is prepared (FIG. 5A(a)).
  • the first silicon substrate 1 is thermally oxidized (FIG. 5A(b)).
  • silicon oxide films 2a and 2b which are thermal oxide films, are formed on the first surface and the second surface of the first silicon substrate 1, respectively.
  • a resist pattern 3 is formed on the silicon oxide film 2a by using the photolithography technique (FIG. 5A(c)).
  • the resist pattern 3 is provided so as to cover the portion of the silicon oxide film 2a excluding the opening 4 which is the location where the cavity 5 is formed.
  • a resist such as a photo-cured film
  • the resist located in the opening 4 where the cavity 5 is formed is removed by patterning by selectively irradiating light.
  • the resist pattern 3 can be obtained.
  • the portion of the silicon oxide film 2a not covered with the resist pattern 3 and the silicon oxide film 2b are removed by wet etching (FIG. 5A(d)).
  • wet etching hydrofluoric acid or BHF (buffered hydrofluoric acid) may be used, or dry etching may be used.
  • the resist pattern 3 is removed by using ashing or a resist stripping solution (FIG. 5A(e)).
  • the cavity 5 is formed on the first surface of the first silicon substrate 1 by DRIE (Deep Reactive-Ion Etching) (FIG. 5A(f)).
  • the silicon oxide film 2a remaining on the first surface acts as a mask, and the cavity 5 is formed in the opening 4.
  • the silicon oxide film 2a is removed by wet etching using hydrofluoric acid or BHF (FIG. 5A(g)).
  • the first silicon substrate 1 is thermally oxidized. As a result, the silicon oxide film 6 for performing FUSION BONDING is formed on the first silicon substrate 1 (FIG. 5A(h)).
  • the thickness of the silicon oxide film 6 formed on the first silicon substrate 1 is d. That is, at this point, the silicon oxide film 6 provided on the first surface, the silicon oxide film 6 provided on the bottom of the cavity 5, and the silicon oxide film 6 provided on the second surface are Both have substantially the same film thickness d.
  • a resist pattern 7 is formed in the cavity 5 (FIG. 5B(a)). In this case, the resist pattern 7 is not provided except for the cavity 5. That is, the resist pattern 7 is not formed on the first surface and the second surface of the first silicon substrate 1.
  • Part of the silicon oxide film 6 provided on the first surface and the second surface of the first silicon substrate 1 is removed by appropriate etching.
  • the thickness of the silicon oxide film 6a provided on the first surface of the first silicon substrate 1 is d1
  • the thickness of the silicon oxide film 6c provided on the second surface is d3.
  • the silicon oxide film 6a corresponds to the first silicon oxide film 11
  • the silicon oxide film 6c corresponds to the third silicon oxide film 13.
  • the resist pattern 7 is peeled off (FIG. 5B(c)). By this step, the first silicon substrate 1 having the cavity 5 is obtained.
  • a silicon oxide film 6b is formed on the bottom of the cavity 5.
  • the silicon oxide film 6b corresponds to the second silicon oxide film 12. Therefore, in order to obtain the silicon substrate 10 having the cavity 5, the thickness d1 of the first silicon oxide film 11 provided on the first surface of the first silicon substrate 1 and the bottom portion of the cavity 5 are provided.
  • the thickness d2 of the second silicon oxide film 12 and the thickness d3 of the third silicon oxide film 13 provided on the second surface the first d1 ⁇ d3 and d1 ⁇ d2 are satisfied. It is necessary to make adjustments so as to satisfy the relational expression.
  • the thickness d3 of the silicon oxide film 6c provided on the second surface is increased by the annealing process performed after the first silicon substrate 1 and the second silicon substrate 8 are bonded. I am adjusting.
  • the present invention is not limited to this.
  • the first surface is covered with the resist pattern and then an annealing treatment is performed to form the silicon oxide film 6c on the second surface. May be increased, or the thickness d3 of the silicon oxide film 6c provided on the second surface may be decreased by polishing the silicon oxide film 6c provided on the second surface. You may let me.
  • the first silicon substrate 1 having the cavities 5 obtained in the above step is appropriately washed together with the second silicon substrate 8 and subjected to activation treatment to obtain the first silicon substrate 1 having the cavities 5.
  • FUSION BONDING is performed on the second silicon substrate 8.
  • the FUSION BONDING can be realized, for example, by the following steps. a) At least one surface of the first surface of the first silicon substrate 1 and the bonding surface of the second silicon substrate 8 is hydrophilized to form a water film. b) The first surface of the first silicon substrate 1 and the bonding surface of the second silicon substrate 8 are temporarily bonded together by the force of water existing on the surfaces. c) The first silicon substrate 1 and the second silicon substrate 8 are heated in a temporarily bonded state.
  • annealing treatment is performed in an atmosphere containing oxygen at 1000° C. to increase the bonding strength between the first surface of the first silicon substrate 1 and the bonding surface of the second silicon substrate 8, and the cavity SOI substrate 20. Is obtained (FIG. 5B(d)).
  • the thicknesses d1, d2 and d3 have a relationship of satisfying d3 ⁇ d1 and d1 ⁇ d2. That is, when the thickness d3 of the silicon oxide film 6c provided on the second surface of the first silicon substrate 1 is thicker than the thickness d1 of the silicon oxide film 6a provided on the first surface (d3 ⁇ d1 ), the first silicon substrate 1 warps upward.
  • the thickness d2 of the silicon oxide film 6b provided on the bottom of the cavity 5 of the first silicon substrate 1 is provided on the first surface.
  • the silicon oxide film 6a is made thicker than the thickness d1 to satisfy the relational expression d1 ⁇ d2. This makes it possible to suppress warpage of the silicon substrate 10 having a cavity and the cavity SOI substrate 20 using the same.
  • the method for manufacturing the cavity SOI substrate 20a according to the second embodiment is different from the method for manufacturing the cavity SOI substrate 20 according to the first embodiment in that the silicon oxide provided on the second surface of the first silicon substrate 1 is The difference is that the thickness d3 of the film 6c is smaller than the thickness d1 of the silicon oxide film 6a provided on the first surface (d3 ⁇ d1).
  • the thickness d1 of the silicon oxide film 6a provided on the first surface and the silicon oxide film provided on the bottom of the cavity 5 are set.
  • the thickness d2 of 6b and the relationship of d1>d2 are established. Thereby, the warp of the cavity SOI substrate 20a can be suppressed.
  • FIG. 6A and 6B are schematic cross-sectional views showing each step of the method for manufacturing the cavity SOI substrate 20a using the silicon substrate having the cavity according to the second embodiment.
  • (1) Prepare the first silicon substrate 1 (FIG. 6A(a)).
  • the first silicon substrate 1 is thermally oxidized (FIG. 6A(b)).
  • silicon oxide films 2a and 2b which are thermal oxide films, are formed on the first surface and the second surface of the first silicon substrate 1, respectively.
  • a resist pattern 3 is formed on the silicon oxide film 2a (FIG. 6A(c)).
  • the resist pattern 3 is provided so as to cover the portion of the silicon oxide film 2a excluding the opening 4 which is the location where the cavity 5 is formed.
  • the resist located in the opening 4 where the cavity 5 is formed is removed by patterning by selectively irradiating light.
  • the resist pattern 3 can be obtained.
  • the portion of the silicon oxide film 2a not covered with the resist pattern 3 and the silicon oxide film 2b are removed by wet etching (FIG. 6A(d)).
  • wet etching hydrofluoric acid or BHF (buffered hydrofluoric acid) may be used, or dry etching may be used.
  • the resist pattern 3 is removed by using ashing, resist stripping liquid, etc. (FIG. 6A(e)).
  • the cavity 5 is formed on the first surface of the first silicon substrate 1 by DRIE (Deep Reactive-Ion Etching) (FIG. 6A(f)).
  • the silicon oxide film 2a remaining on the first surface acts as a mask, and the cavity 5 is formed in the opening 4.
  • the silicon oxide film 2a is removed by wet etching using hydrofluoric acid or BHF (FIG. 6A (g)).
  • the first silicon substrate 1 is thermally oxidized. As a result, the silicon oxide film 6 for performing FUSION BONDING is formed on the first silicon substrate 1 (FIG. 6A(h).
  • the silicon oxide films 6 having the same thickness have substantially the same film thickness d.
  • a resist pattern 7 is formed on the first surface of the first silicon substrate 1 (FIG. 6B(a)). In this case, unlike the first embodiment, the resist pattern 7 is not provided on the cavity 5 and the second surface of the first silicon substrate 1.
  • the silicon oxide film 6a corresponds to the first silicon oxide film 11. Therefore, in the same manner as in the first embodiment, the thickness d3 of the silicon oxide film 6c provided on the second surface is adjusted, and the first surface provided on the first surface of the first silicon substrate 1 is adjusted.
  • the height d3 is adjusted so as to satisfy the second relational expression of d3 ⁇ d1 and d2 ⁇ d1.
  • the first silicon substrate 1 having the cavities 5 obtained in the above step is appropriately washed together with the second silicon substrate 8 and subjected to activation treatment to obtain the first silicon substrate 1 having the cavities 5.
  • FUSION BONDING is performed on the second silicon substrate 8.
  • annealing treatment is performed in an atmosphere containing oxygen at 1000° C. to increase the bonding strength between the first surface of the first silicon substrate 1 and the bonding surface of the second silicon substrate 8, and the cavity SOI substrate 20a. Is obtained (FIG. 6B(d)).
  • the film thickness d1 of the thermal oxide film 11 on the first surface the film thickness d2 of the thermal oxide film 6b of the cavity 5, and the film thickness d3 of the thermal oxide film 6c on the second surface, d3 ⁇
  • the atmosphere for the annealing treatment may be selected so as to satisfy the relational expression of d1 and d2 ⁇ d1. After that, the cavity SOI substrate 20a with reduced warpage can be obtained. At this time, the thicknesses d1, d2, and d3 have a relationship that satisfies d3 ⁇ d1, d1>d2.
  • the thickness d3 of the silicon oxide film 6c provided on the second surface of the first silicon substrate 1 is smaller than the thickness d1 of the silicon oxide film 6a provided on the first surface (d3 ⁇ d1 ), the first silicon substrate 1 warps downward.
  • the thickness d2 of the silicon oxide film 6b provided on the bottom of the cavity 5 of the first silicon substrate 1 is provided on the first surface.
  • the thickness is made thinner than the thickness d1 of the silicon oxide film 6a so as to satisfy the relational expression d1>d2. This makes it possible to suppress the warpage of the silicon substrate having the cavity and the cavity SOI substrate 20a using the same.
  • the first relational expression of d1 ⁇ d3 and d1 ⁇ d2, or d3 ⁇ is satisfied.
  • the occurrence of warpage can be suppressed in the silicon substrate having the cavity and the cavity SOI substrate using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Element Separation (AREA)
  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

反りの発生を抑制したキャビティを有するシリコン基板を提供する。 キャビティを有するシリコン基板は、キャビティを有する第1の面と、前記第1の面と対向する第2の面とを有するシリコン基板であって、第1の面に設けられた厚さd1の第1のシリコン酸化膜と、キャビティの底面に設けられた厚さd2の第2のシリコン酸化膜と、第2の面に設けられた厚さd3の第3のシリコン酸化膜と、を有し、厚さd1,d2、d3について、d1≦d3、且つ、d1<d2の第1の関係式、若しくは、d3<d1、且つ、d2<d1の第2の関係式のいずれかを満たす。

Description

キャビティを有するシリコン基板及び該シリコン基板を用いたキャビティSOI基板
 本発明は、MEMS(MicroElectro Mechanical Systems)デバイスなどに用いられるキャビティを有するシリコン基板及び該シリコン基板を用いたキャビティSOI(Silicon On Insulator)基板に関する。特に、キャビティを有する第1のシリコン基板と、第2のシリコン基板とがシリコン酸化膜により接合されている、キャビティSOI基板(C-SOI基板)に関する。
 従来、シリコン基板に圧電素子を含むMEMSデバイスが知られている。このMEMSデバイスとして、キャビティを有する第1のシリコン基板と、第2のシリコン基板とが接合されたキャビティSOI基板がある。例えば、キャビティSOI基板を構成する2枚のシリコン基板の一方である第1のシリコン基板にキャビティが設けられており、第1のシリコン基板と第2のシリコン基板との接合部にシリコン酸化膜(SiO)が設けられている構成が開示されている(例えば、特許文献1参照。)。
 また、SOI基板のハンドルウエハであるシリコン基板の裏面に形成されているシリコン酸化膜(SiO)の厚さと、ハンドルウエハであるシリコン基板の表面に形成されているシリコン酸化膜(SiO)の厚さを同じにする、または厚さの差を少なくすることで、SOI基板の反りを抑制することが開示されている(例えば、特許文献2参照。)。
 さらに、SOI基板を構成する2枚のシリコン基板に設けられている酸化膜の厚さを異なったものとし、活性層となるシリコン基板の酸化膜を他方のシリコン基板の酸化膜より厚くすることで、SOI基板の反りを抑制することが開示されている(例えば、特許文献3参照。)。
特開2015-123547号公報 特開2011-176097号公報 特開平9-45882号公報
 後述するように、本発明者は、特許文献1に記載のキャビティSOI基板ではキャビティを有するシリコン基板において反りが発生するという問題を見出している。
 特許文献2と特許文献3に開示されている発明は、キャビティを有しないSOI基板に関するものであり、SOI基板の反りの抑制を実現することが出来るが、キャビティSOI基板の反りを抑制することは難しい。
 そこで、本発明の目的は、反りの発生を抑制したキャビティを有するシリコン基板を提供することである。
 本発明に係るキャビティを有するシリコン基板は、キャビティを有する第1の面と、前記第1の面と対向する第2の面とを有するシリコン基板であって、
 前記第1の面に設けられた厚さd1の第1のシリコン酸化膜と、
 前記キャビティの底面に設けられた厚さd2の第2のシリコン酸化膜と、
 前記第2の面に設けられた厚さd3の第3のシリコン酸化膜と、
を有し、
 厚さd1,d2、d3について、d1≦d3、且つ、d1<d2の第1の関係式、若しくは、d3<d1、且つ、d2<d1の第2の関係式のいずれかを満たす。
 本発明に係るキャビティSOI基板は、キャビティを有する第1の面と、前記第1の面と対向する第2の面とを有する第1のシリコン基板であって、前記第1の面に設けられた厚さd1の第1のシリコン酸化膜と、前記キャビティの底面に設けられた厚さd2の第2のシリコン酸化膜と、前記第2の面に設けられた厚さd3の第3のシリコン酸化膜と、
を有する、第1のシリコン基板と、
 前記第1のシリコン基板の前記第1の面に接合された第2のシリコン基板と、
を備え、
 厚さd1,d2、d3について、d1≦d3且つd1<d2の第1の関係式、若しくは、d3<d1且つd2<d1の第2の関係式のいずれかを満たす。
 本発明に係るキャビティを有するシリコン基板及びこれを用いたキャビティSOI基板によれば、キャビティSOI基板における反りを低減することができる。
実施の形態1に係るキャビティを有するシリコン基板の断面構成を示す概略断面図である。 実施の形態1に係るキャビティSOI基板の断面構成を示す概略断面図である。 平板状のシリコン基板について、熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。 キャビティを有するシリコン基板について、熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。 第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1以上であり、キャビティの底部に設けられているシリコン酸化膜の厚さd2と第1の面に設けられているシリコン酸化膜の厚さd1とが同じ場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。 第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1以上であり、キャビティの底部に設けられているシリコン酸化膜の厚さd2が第1の面に設けられているシリコン酸化膜の厚さd1より厚い場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。 第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1より薄く、キャビティの底部に設けられているシリコン酸化膜の厚さd2が第1の面に設けられているシリコン酸化膜の厚さd1より厚い場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。 第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1より薄く、キャビティの底部に設けられているシリコン酸化膜の厚さd2が第1の面に設けられているシリコン酸化膜の厚さd1より薄い場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。 実施の形態1に係るキャビティSOI基板の製造方法の各工程を示す概略断面図である。 実施の形態1に係るキャビティSOI基板の製造方法の各工程を示す概略断面図である。 実施の形態2に係るキャビティSOI基板の製造方法の各工程を示す概略断面図である。 実施の形態2に係るキャビティSOI基板の製造方法の各工程を示す概略断面図である。
 第1の態様に係るキャビティを有するシリコン基板は、第1の面と、前記第1の面と対向する第2の面とを有するシリコン基板であって、
 前記第1の面に設けられた厚さd1の第1のシリコン酸化膜と、
 前記キャビティの底面に設けられた厚さd2の第2のシリコン酸化膜と、
 前記第2の面に設けられた厚さd3の第3のシリコン酸化膜と、
を有し、
 厚さd1,d2、d3について、d1≦d3、且つ、d1<d2の第1の関係式、若しくは、d3<d1、且つ、d2<d1の第2の関係式のいずれかを満たす。
 第2の態様に係るキャビティSOI基板は、上記第1の態様に係るキャビティを有するシリコン基板と、
 前記キャビティを有するシリコン基板の前記第1の面に接合されたシリコン基板と、
を備える。
 第3の態様に係るキャビティSOI基板は、キャビティを有する第1の面と、前記第1の面と対向する第2の面とを有する第1のシリコン基板であって、前記第1の面に設けられた厚さd1の第1のシリコン酸化膜と、前記キャビティの底面に設けられた厚さd2の第2のシリコン酸化膜と、前記第2の面に設けられた厚さd3の第3のシリコン酸化膜と、
を有する、第1のシリコン基板と、
 前記第1のシリコン基板の前記第1の面に接合された第2のシリコン基板と、
を備え、
 厚さd1,d2、d3について、d1≦d3且つd1<d2の第1の関係式、若しくは、d3<d1且つd2<d1の第2の関係式のいずれかを満たす。
<本発明に至る経緯について>
 本発明者は、キャビティを有する第1のシリコン基板と、第2のシリコン基板とを接合したキャビティSOI基板(C-SOI基板)において、キャビティを有する第1のシリコン基板において反りが発生するという問題を見出した。
 C-SOI基板において、第1のシリコン基板と第2のシリコン基板とは、例えば、FUSION BONDINGと呼ばれる直接接合によって接合されている。FUSION BONDING前に熱酸化膜を形成する時と、FUSION BONDING後に熱処理(アニール)する時に、C-SOI基板に反りが発生(発現)すると考えられる。なお、前者の場合、例えば1000℃の酸素を含む雰囲気で熱酸化膜が形成されるが、1000℃の酸素を含む雰囲気で反りは発生せず、熱酸化膜の形成後に室温に戻った際にシリコン基板のSiと熱酸化膜のSiOとの熱膨張係数差によって反りが現れると考えられる。
 図2Aは、平板状のシリコン基板について、熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。図2Bは、キャビティを有するシリコン基板について、熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。この熱酸化は、FUSION BONDING前に熱酸化膜を形成するための工程である。シミュレーションの条件は以下の通りである。なお、図では、左端部を固定した状態での反りを表している。
・有限要素法(Finite Element Method:FEM)
・軸対称モデル(回転モデル)
・1000℃(熱酸化条件)で無応力を仮定し、室温(25℃)に戻したときの反りを計算
・シリコン基板の直径150mm
・シリコン基板の厚さ600μm
・キャビティの深さ300μm
・熱酸化膜の標準厚さ2μm(d1)
 図2Aに示すように、平板状のシリコン基板では、下面側で圧縮応力が働き、上面側で引張応力が働くものの、いずれも応力値は小さく反りは発生しないことがわかる。一方、図2Bに示すように、キャビティを有するシリコン基板では、キャビティ5が存在する。キャビティを有するシリコン基板は、第1の面と第2の面とを有する。第1の面は、キャビティ5を有し、C-SOI基板における第2のシリコン基板が接合される際に接合部となる。第2の面は、第1の面と対向する面である。キャビティを有するシリコン基板では、第1の面、キャビティ5の底部、第2の面にそれぞれシリコン酸化膜が設けられており、これらのシリコン酸化膜の応力が反りに影響していると考えられる。例えば、第1の面に設けられているシリコン酸化膜の厚さd1、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2、第2の面に設けられているシリコン酸化膜の厚さd3について、これらの厚さがいずれも同じ(d1=d2=d3)という条件下であれば、図2Bに示すようにキャビティを有するシリコン基板の反りが大きくなってしまうことがわかる。そこで、キャビティを有するシリコン基板において、これらのシリコン酸化膜の厚さd1,d2,d3と反りの関係を検証した。
 なお、第1の面に設けられているシリコン酸化膜の厚さd1は、C-SOI基板における第1のシリコン基板と第2のシリコン基板との接合強度に影響するため、厚さを変更することは望ましくない。このため、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2と、第2の面に設けられているシリコン酸化膜の厚さd3とについて検討した。
 図3Aは、第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1以上であり、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2と第1の面に設けられているシリコン酸化膜の厚さd1とが同じ場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。図3Bは、第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1以上であり、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2が第1の面に設けられているシリコン酸化膜の厚さd1より厚い場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。
 図3A及び図3Bは、いずれもd1=2μm、d3=2μmとして、d3≧d1の関係が成立している場合である。図3Aは、d2=2μmとしてd1=d2の関係の場合の圧縮応力値の分布結果を示している。この場合にはキャビティを有するシリコン基板は上向きに反ることがわかる。一方、図3Bは、d2=3μmとしてd1<d2の関係の場合の圧縮応力値の分布結果を示している。この場合には図3Aと対比してキャビティを有するシリコン基板の反りが小さくなっていることがわかる。
 図4Aは、第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1より薄く、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2と第1の面に設けられているシリコン酸化膜の厚さd1とが同じ場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。図4Bは、第2の面に設けられているシリコン酸化膜の厚さd3が第1の面に設けられているシリコン酸化膜の厚さd1より薄く、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2が第1の面に設けられているシリコン酸化膜の厚さd1より薄い場合の熱酸化時の反りをシミュレートした圧縮応力値の分布結果を示す図である。
 図4A及び図4Bは、いずれもd1=3μm、d3=2μmとして、d3<d1の関係が成立している場合である。図4Aは、d2=2μmとしてd1=d2の関係の場合の圧縮応力値の分布結果を示している。この場合にはキャビティを有するシリコン基板は下向きに反ることがわかる。一方、図4Bは、d2=1μmとしてd1>d2の関係の場合の圧縮応力値の分布結果を示している。この場合には図4Aと対比してキャビティを有するシリコン基板の反りが小さくなっていることがわかる。
 ここで、第1の面に設けられているシリコン酸化膜の厚さd1、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2、第2の面に設けられているシリコン酸化膜の厚さd3について、d3≧d1の関係が成立している場合、d1=d2の関係でキャビティを有するシリコン基板は上向きに反る。また、d3<d1の関係が成立している場合、d1=d2の関係でキャビティを有するシリコン基板は下向きに反る。これは、基本的にd1=d3であれば同じ反りであるが、d1とd3とが異なるとその分反りが出ることによると考えられる。つまり、d3>d1の関係ではd3が厚いため、第2の面に設けられているシリコン酸化膜の圧縮応力量が第1の面に設けられているシリコン酸化膜の圧縮応力量よりも大きくなり、上向きに反る。
 一方、d3≧d1の関係が成立している場合にd1<d2の関係ではキャビティを有するシリコン基板の反りが小さくなっている。また、d3<d1の関係が成立している場合にd1>d2の関係ではキャビティを有するシリコン基板の反りが小さくなっている。これは、d2を変更することによりシリコン基板のSiとシリコン酸化膜のSiOとの間に生じた応力が緩和されるためであると考えられる。シリコン基板の反りの大きさは、第1の面に設けられたSiO熱酸化膜の厚さと第2の面に設けられたSiO熱酸化膜の厚さとの関係で決まる。d1とd2との関係を変えると、d3に対する関係が変化し、図3A乃至図4Bの条件下では、応力が緩和する方向となると考えられる。その結果、キャビティを有するシリコン基板の反りを緩和できると思われる
 以上によって、本発明者は、キャビティを有するシリコン基板の第1の面に設けられているシリコン酸化膜の厚さd1、キャビティ5の底部に設けられているシリコン酸化膜の厚さd2、第2の面に設けられているシリコン酸化膜の厚さd3が一定の関係式を満たすことでキャビティを有するシリコン基板の反りを抑制できるという本発明に至ったものである。
 以下、実施の形態に係るキャビティを有するシリコン基板及びキャビティSOI基板について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。
(実施の形態1)
<キャビティを有するシリコン基板>
 図1Aは、実施の形態1に係るキャビティ5を有するシリコン基板10の断面構成を示す概略断面図である。シリコン基板10は、キャビティ5を有する第1の面と、第1の面と対向する第2の面とを有する。また、シリコン基板10は、キャビティ5を除く第1の面に設けられた第1のシリコン酸化膜11と、キャビティ5の底面に設けられた第2のシリコン酸化膜12と、第2の面に設けられた第3のシリコン酸化膜13と、を有する。シリコン基板10は、第1のシリコン酸化膜11の厚さd1、第2のシリコン酸化膜12の厚さd2、第3のシリコン酸化膜13の厚さd3について、d1≦d3、且つ、d1<d2の第1の関係式、若しくは、d3<d1、且つ、d2<d1の第2の関係式のいずれかを満たす。
 すなわち、第1の面に設けられている第1のシリコン酸化膜11の厚さd1、キャビティ5の底部に設けられている第2のシリコン酸化膜12の厚さd2、第2の面に設けられている第3のシリコン酸化膜13の厚さd3について、上記第1の関係式又は第2の関係式を満たすことによって、キャビティ5を有するシリコン基板10の反りの発生を抑制できる。
<キャビティSOI基板>
 図1Bは、実施の形態1に係るキャビティSOI基板20の断面構成を示す概略断面図である。キャビティSOI基板20は、第1のシリコン基板1と、第2のシリコン基板8とを備える。第1のシリコン基板1は、キャビティ5を有する第1の面と、第1の面と対向する第2の面とを有する。また、第1のシリコン基板1は、キャビティ5を除く第1の面に設けられた第1のシリコン酸化膜11と、キャビティ5の底面に設けられた第2のシリコン酸化膜12と、第2の面に設けられた第3のシリコン酸化膜13と、を有する。第2のシリコン基板8は、第1のシリコン基板1の第1の面に接合されている。さらに、第1のシリコン基板1は、第1のシリコン酸化膜11の厚さd1、第2のシリコン酸化膜12の厚さd2、第3のシリコン酸化膜13の厚さd3について、d1≦d3、且つ、d1<d2の第1の関係式、若しくは、d3<d1、且つ、d2<d1の第2の関係式のいずれかを満たす。
 すなわち、第1のシリコン基板1における第1の面に設けられている第1のシリコン酸化膜11の厚さd1、キャビティ5の底部に設けられている第2のシリコン酸化膜12の厚さd2、第2の面に設けられている第3のシリコン酸化膜13の厚さd3について、上記第1の関係式又は第2の関係式を満たすことによって、キャビティSOI基板20の反りの発生を抑制できる。
 以下に、このキャビティSOI基板20を構成する部材について説明する。
 <第1のシリコン基板>
 第1のシリコン基板1は、上記キャビティ5を有するシリコン基板10を用いることができる。
 <第2のシリコン基板>
 第2のシリコン基板8は、キャビティを有しない点で第1のシリコン基板1と相違する。この第2のシリコン基板8は、第1のシリコン基板10と接合されている。第1のシリコン基板1との接合は、例えば、後述するFUSION BONDINGと呼ばれる工程を用いて直接接合を行ってもよい。なお、接合方法は、これに限られない。
<キャビティSOI基板の製造方法>
 図5A及び図5Bは、実施の形態1に係るキャビティを有するシリコン基板を用いたキャビティSOI基板の製造方法の各工程を示す概略断面図である。
(1)第1のシリコン基板1を準備する(図5A(a))。
(2)第1のシリコン基板1を熱酸化させる(図5A(b))。これによって第1のシリコン基板1の第1の面及び第2の面にそれぞれ熱酸化膜であるシリコン酸化膜2a、2bが形成される。
(3)フォトリソグラフィ技術を利用し、シリコン酸化膜2aの上にレジストパタン3を形成する(図5A(c))。このレジストパタン3は、キャビティ5を形成する箇所である開口部4を除くシリコン酸化膜2aの部分を覆うように設けられる。この場合、例えば、光硬化膜等のレジストをシリコン酸化膜2aの全面に設けた後、選択的に光照射するパターニングによりキャビティ5を形成する箇所である開口部4に位置するレジストを除去して、レジストパタン3を得ることができる。
(4)ウエットエッチングによりシリコン酸化膜2aにおけるレジストパタン3で覆われていない部分と、シリコン酸化膜2bとを除去する(図5A(d))。ウエットエッチングにはフッ酸やBHF(バッファードフッ酸)を用いても良いし、ドライエッチングを用いてもよい。これによって、シリコン酸化膜2aにおけるレジストパタン3で覆われている部分のみが残り、開口部4では第1のシリコン基板1が露出する。
(5)アッシングやレジスト剥離液などを使用し、レジストパタン3を除去する(図5A(e))。
(6)DRIE(Deep Reactive-Ion Etching)により、第1のシリコン基板1の第1の面にキャビティ5を形成する(図5A(f))。この場合、第1の面に残存するシリコン酸化膜2aがマスクとして働き、開口部4にキャビティ5が形成される。
(7)フッ酸やBHFを用いたウエットエッチングによりシリコン酸化膜2aを除去する(図5A(g))。
(8)第1のシリコン基板1を熱酸化させる。これによって、第1のシリコン基板1にFUSION BONDINGを行うためのシリコン酸化膜6が形成される(図5A(h))。この場合、第1のシリコン基板1に形成されたシリコン酸化膜6の厚さはdである。すなわち、この時点では、第1の面に設けられているシリコン酸化膜6、キャビティ5の底部に設けられているシリコン酸化膜6、及び、第2の面に設けられているシリコン酸化膜6はいずれも実質的に同じ膜厚dを有する。
(9)キャビティ5にレジストパタン7を形成する(図5B(a))。この場合、キャビティ5以外にはレジストパタン7を設けないようにする。つまり、第1のシリコン基板1の第1の面及び第2の面にはレジストパタン7は形成されない。
(10)適宜のエッチングにより第1のシリコン基板1の第1の面及び第2の面に設けられているシリコン酸化膜6の一部を除去する。これにより、第1のシリコン基板1における第1の面に設けられているシリコン酸化膜6aの厚さをd1とし、第2の面に設けられているシリコン酸化膜6cの厚さをd3とする(図5B(b))。シリコン酸化膜6aは第1のシリコン酸化膜11と対応し、シリコン酸化膜6cは第3のシリコン酸化膜13と対応する。
(11)レジストパタン7を剥離する(図5B(c))。この工程によって、キャビティ5を有する第1のシリコン基板1が得られる。なお、この時点では、シリコン酸化膜6cの厚さd3はシリコン酸化膜6aの厚さd1と実質的に同じである(d3=d1)。キャビティ5の底部にはシリコン酸化膜6bが形成されている。シリコン酸化膜6bは第2のシリコン酸化膜12と対応する。
 そこで、上記キャビティ5を有するシリコン基板10とするためには、第1のシリコン基板1における第1の面に設けられている第1のシリコン酸化膜11の厚さd1、キャビティ5の底部に設けられている第2のシリコン酸化膜12の厚さd2、第2の面に設けられている第3のシリコン酸化膜13の厚さd3について、d1≦d3、且つ、d1<d2の第1の関係式を満たすように調整する必要がある。このキャビティSOI基板の製造方法では、第1のシリコン基板1と第2のシリコン基板8との接合後に行うアニール処理によって、第2の面に設けられているシリコン酸化膜6cの厚さd3を増加させて調整している。本発明はこれに限られず、例えば、レジストパタン7を剥離する工程の後、第1の面をレジストパタンで覆った上でアニール処理を行って第2の面に設けられているシリコン酸化膜6cの厚さd3を増加させてもよく、あるいは、第2の面に設けられているシリコン酸化膜6cを研磨することによって第2の面に設けられているシリコン酸化膜6cの厚さd3を減少させてもよい。
(12)上記工程で得られたキャビティ5を有する第1のシリコン基板1を第2のシリコン基板8とともに適宜の洗浄を行い、活性化処理を経て、キャビティ5を有する第1のシリコン基板1と第2のシリコン基板8とについてFUSION BONDINGを行う。
 FUSION BONDINGは、例えば、以下の工程によって実現できる。
 a)第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との少なくとも一方の表面を親水化して、水の膜を形成する。
 b)第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面とを表面に存在する水の力で仮の貼り合わせを行う。
 c)第1のシリコン基板1と第2のシリコン基板8とを、仮の貼り合わせの状態で加熱する。
 d)200℃付近から第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との界面から水、酸素が抜けて界面の結合が水素結合に移行する。これによって、第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との接合強度が増す。
 e)600℃付近までは水、酸素が抜けることによって、第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との界面におけるボイドが増加する。
 f)およそ1000℃付近まで温度を上げることによって、第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との界面においてSi中に水、酸素が拡散してボイドがなくなる。これによって、第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との接合強度がさらに増加する。
 以上によって、第1のシリコン基板1と第2のシリコン基板8との直接接合が実現できる。なお、上記工程に限られず、直接接合ができればよい。
(13)次いで、1000℃の酸素を含む雰囲気でアニール処理を行って第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との接合強度を増し、キャビティSOI基板20を得る(図5B(d))。
 この時、第1のシリコン基板1の第2の面に設けられているシリコン酸化膜6cの厚さd3は増加し、d3>d1の関係となる。なお、例えば、N雰囲気でアニール処理を行った場合は厚さd3は増加しないため、d3=d1の関係となる。しかる後に、反りが低減されたキャビティSOI基板20を得ることができる。このとき、厚さd1、d2,d3は、d3≧d1、d1<d2を満たす関係となる。
 すなわち第1のシリコン基板1の第2の面に設けられているシリコン酸化膜6cの厚さd3が第1の面に設けられているシリコン酸化膜6aの厚さd1より厚い場合(d3≧d1)には、第1のシリコン基板1が上に反る。この場合において、実施の形態1に係るキャビティSOI基板20では、第1のシリコン基板1のキャビティ5の底部に設けられているシリコン酸化膜6bの厚さd2を第1の面に設けられているシリコン酸化膜6aの厚さd1より厚くしてd1<d2の関係式を満たすようにしている。これによって、キャビティを有するシリコン基板10及びこれを用いたキャビティSOI基板20の反りを抑制することが可能となる。
(実施の形態2)
<キャビティSOI基板の製造方法>
 実施の形態2に係るキャビティSOI基板20aの製造方法は、実施の形態1に係るキャビティSOI基板20の製造方法と対比すると、第1のシリコン基板1の第2の面に設けられているシリコン酸化膜6cの厚さd3が第1の面に設けられているシリコン酸化膜6aの厚さd1より薄い(d3<d1)で相違する。
 この場合において、実施の形態2に係るキャビティSOI基板20aの製造方法では、第1の面に設けられているシリコン酸化膜6aの厚さd1と、キャビティ5の底部に設けられているシリコン酸化膜6bの厚さd2と、について、d1>d2の関係が成立していることを特徴とする。これによって、キャビティSOI基板20aの反りを抑制することができる。
 図6A及び図6Bは、実施の形態2に係るキャビティを有するシリコン基板を用いたキャビティSOI基板20aの製造方法の各工程を示す概略断面図である。
(1)第1のシリコン基板1を準備する(図6A(a))。
(2)第1のシリコン基板1を熱酸化させる(図6A(b))。これによって第1のシリコン基板1の第1の面及び第2の面にそれぞれ熱酸化膜であるシリコン酸化膜2a、2bが形成される。
(3)フォトリソグラフィ技術を利用し、シリコン酸化膜2aの上にレジストパタン3を形成する(図6A(c))。このレジストパタン3は、キャビティ5を形成する箇所である開口部4を除くシリコン酸化膜2aの部分を覆うように設けられる。この場合、例えば、光硬化膜等のレジストをシリコン酸化膜2aの全面に設けた後、選択的に光照射するパターニングによりキャビティ5を形成する箇所である開口部4に位置するレジストを除去して、レジストパタン3を得ることができる。
(4)ウエットエッチングによりシリコン酸化膜2aにおけるレジストパタン3で覆われていない部分と、シリコン酸化膜2bとを除去する(図6A(d))。ウエットエッチングにはフッ酸やBHF(バッファードフッ酸)を用いても良いし、ドライエッチングを用いてもよい。これによって、シリコン酸化膜2aにおけるレジストパタン3で覆われている部分のみが残り、キャビティ5を形成する箇所である開口部4では第1のシリコン基板1が露出する。
(5)アッシングやレジスト剥離液などを使用し、レジストパタン3を除去する(図6A(e)。
(6)DRIE(Deep Reactive-Ion Etching)により、第1のシリコン基板1の第1の面にキャビティ5を形成する(図6A(f))。この場合、第1の面に残存するシリコン酸化膜2aがマスクとして働き、開口部4にキャビティ5が形成される。
(7)フッ酸やBHFを用いたウエットエッチングによりシリコン酸化膜2aを除去する(図6A(g))。
(8)第1のシリコン基板1を熱酸化させる。これによって、第1のシリコン基板1にFUSION BONDINGを行うためのシリコン酸化膜6が形成される(図6A(h)。この場合、第1のシリコン基板1に形成されたシリコン酸化膜6の厚さはdである。すなわち、この時点では、第1の面に設けられているシリコン酸化膜6、キャビティ5の底部に設けられているシリコン酸化膜6、及び、第2の面に設けられているシリコン酸化膜6はいずれも実質的に同じ膜厚dを有する。
(9)第1のシリコン基板1の第1の面にレジストパタン7を形成する(図6B(a))。この場合、実施の形態1とは異なり、キャビティ5及び第1のシリコン基板1の第2の面にはレジストパタン7を設けないようにする。
(10)適宜のエッチングによりキャビティ5の底部及び第2の面に設けられているシリコン酸化膜6の一部を除去する。これにより、第1のシリコン基板1におけるキャビティ5の底部に設けられているシリコン酸化膜6bの厚さをd2とし、第2の面に設けられているシリコン酸化膜6cの厚さをd3とする(図6B(b))。シリコン酸化膜6bは第2のシリコン酸化膜12と対応し、シリコン酸化膜6cは第3のシリコン酸化膜13と対応する。
(11)レジストパタン7を剥離する(図6B(c))。この工程によって、キャビティ5を有する第1のシリコン基板1が得られる。なお、この時点では、シリコン酸化膜6cの厚さd3はキャビティ5の底部に設けられているシリコン酸化膜6bの厚さd2と実質的に同じである(d3=d2)。なお、シリコン酸化膜6aは第1のシリコン酸化膜11と対応する。
 そこで、実施の形態1と同様にして、第2の面に設けられているシリコン酸化膜6cの厚さd3を調整して、第1のシリコン基板1における第1の面に設けられている第1のシリコン酸化膜11の厚さd1、キャビティ5の底部に設けられている第2のシリコン酸化膜12の厚さd2、第2の面に設けられている第3のシリコン酸化膜13の厚さd3について、d3<d1、且つ、d2<d1の第2の関係式を満たすように調整する。
(12)上記工程で得られたキャビティ5を有する第1のシリコン基板1を第2のシリコン基板8とともに適宜の洗浄を行い、活性化処理を経て、キャビティ5を有する第1のシリコン基板1と第2のシリコン基板8とについてFUSION BONDINGを行う。
(13)次いで、1000℃の酸素を含む雰囲気でアニール処理を行って第1のシリコン基板1の第1の面と第2のシリコン基板8の接合面との接合強度を増し、キャビティSOI基板20aを得る(図6B(d))。
 この時、第1のシリコン基板1の第2の面に設けられているシリコン酸化膜6cの厚さd3は増加し、d3>d2の関係となる。なお、例えば、N2雰囲気でアニール処理を行った場合は厚みd3は増加しないため、d3=d2の関係となる。
 ここでは、第1の面の熱酸化膜11の膜厚d1と、キャビティ5の熱酸化膜6bの膜厚d2と、第2の面の熱酸化膜6cの膜厚d3と、について、d3<d1、且つ、d2<d1の関係式を満たすようにアニール処理の雰囲気を選択すればよい。しかる後に、反りが低減されたキャビティSOI基板20aを得ることができる。このとき、厚みd1、d2,d3は、d3<d1、d1>d2を満たす関係となる。
 すなわち第1のシリコン基板1の第2の面に設けられているシリコン酸化膜6cの厚さd3が第1の面に設けられているシリコン酸化膜6aの厚さd1より薄い場合(d3<d1)には、第1のシリコン基板1が下に反る。この場合において、実施の形態2に係るキャビティSOI基板20aでは、第1のシリコン基板1のキャビティ5の底部に設けられているシリコン酸化膜6bの厚さd2を第1の面に設けられているシリコン酸化膜6aの厚さd1より薄くしてd1>d2の関係式を満たすようにしている。これによって、キャビティを有するシリコン基板及びこれを用いたキャビティSOI基板20aの反りを抑制することが可能となる。
 なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。
 本発明に係るキャビティを有するシリコン基板及びこれを用いたキャビティSOI基板によれば、厚さd1,d2、d3について、d1≦d3、且つ、d1<d2の第1の関係式、若しくは、d3<d1、且つ、d2<d1の第2の関係式のいずれかを満たす。これによって、キャビティを有するシリコン基板及びこれを用いたキャビティSOI基板において、反りの発生を抑制できる。
1 第1のシリコン基板
2a シリコン酸化膜
2b シリコン酸化膜
3 レジストパタン
4 開口部
5 キャビティ
6 熱酸化膜
6a シリコン酸化膜
6b シリコン酸化膜
6c シリコン酸化膜
7 レジストパタン
8 第2のシリコン基板
10 キャビティを有するシリコン基板(第1のシリコン基板)
11 第1のシリコン酸化膜
12 第2のシリコン酸化膜
13 第3のシリコン酸化膜
16 第2のシリコン基板
20 キャビティSOI基板

Claims (3)

  1.  キャビティを有する第1の面と、前記第1の面と対向する第2の面とを有するシリコン基板であって、
     前記第1の面に設けられた厚さd1の第1のシリコン酸化膜と、
     前記キャビティの底面に設けられた厚さd2の第2のシリコン酸化膜と、
     前記第2の面に設けられた厚さd3の第3のシリコン酸化膜と、
    を有し、
     厚さd1,d2、d3について、d1≦d3、且つ、d1<d2の第1の関係式、若しくは、d3<d1、且つ、d2<d1の第2の関係式のいずれかを満たす、キャビティを有するシリコン基板。
  2.  請求項1に記載のキャビティを有するシリコン基板と、
     前記キャビティを有するシリコン基板の前記第1の面に接合されたシリコン基板と、
    を備えた、キャビティSOI基板。
  3.  キャビティを有する第1の面と、前記第1の面と対向する第2の面とを有する第1のシリコン基板であって、前記第1の面に設けられた厚さd1の第1のシリコン酸化膜と、前記キャビティの底面に設けられた厚さd2の第2のシリコン酸化膜と、前記第2の面に設けられた厚さd3の第3のシリコン酸化膜と、
    を有する、第1のシリコン基板と、
     前記第1のシリコン基板の前記第1の面に接合された第2のシリコン基板と、
    を備え、
     厚さd1,d2、d3について、d1≦d3且つd1<d2の第1の関係式、若しくは、d3<d1且つd2<d1の第2の関係式のいずれかを満たす、キャビティSOI基板。
PCT/JP2019/047841 2019-01-16 2019-12-06 キャビティを有するシリコン基板及び該シリコン基板を用いたキャビティsoi基板 WO2020149046A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201990001279.1U CN220502678U (zh) 2019-01-16 2019-12-06 具有腔体的硅基板以及使用了该硅基板的腔体soi基板
DE212019000447.4U DE212019000447U1 (de) 2019-01-16 2019-12-06 Siliziumsubstrat mit einen Hohlraum sowie Hohlraum-SOI-Substrat, welches das Siliziumsubstrat umfasst
US17/332,167 US11738993B2 (en) 2019-01-16 2021-05-27 Silicon substrate having cavity and cavity SOI substrate including the silicon substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019005521 2019-01-16
JP2019-005521 2019-01-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/332,167 Continuation US11738993B2 (en) 2019-01-16 2021-05-27 Silicon substrate having cavity and cavity SOI substrate including the silicon substrate

Publications (1)

Publication Number Publication Date
WO2020149046A1 true WO2020149046A1 (ja) 2020-07-23

Family

ID=71613809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047841 WO2020149046A1 (ja) 2019-01-16 2019-12-06 キャビティを有するシリコン基板及び該シリコン基板を用いたキャビティsoi基板

Country Status (4)

Country Link
US (1) US11738993B2 (ja)
CN (1) CN220502678U (ja)
DE (1) DE212019000447U1 (ja)
WO (1) WO2020149046A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465271B1 (en) * 1998-07-07 2002-10-15 Wen H. Ko Method of fabricating silicon capacitive sensor
JP2011176097A (ja) * 2010-02-24 2011-09-08 Sumco Corp 貼り合わせsoiウェーハ及びその製造方法
JP2013160556A (ja) * 2012-02-02 2013-08-19 Seiko Epson Corp 多層構造体、電子機器および多層構造体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685819B2 (ja) 1988-03-31 1997-12-03 株式会社東芝 誘電体分離半導体基板とその製造方法
JPH05160090A (ja) 1991-12-11 1993-06-25 Fujitsu Ltd 半導体基板の製造方法
DE69332407T2 (de) * 1992-06-17 2003-06-18 Harris Corp Herstellung von Halbleiteranordnungen auf SOI substraten
JPH0917984A (ja) 1995-06-29 1997-01-17 Sumitomo Sitix Corp 貼り合わせsoi基板の製造方法
JPH0945882A (ja) 1995-07-28 1997-02-14 Toshiba Corp 半導体基板及びその製造方法
JP3957038B2 (ja) 2000-11-28 2007-08-08 シャープ株式会社 半導体基板及びその作製方法
JP2004071939A (ja) 2002-08-08 2004-03-04 Toshiba Corp 半導体装置及びその製造方法
JP5183969B2 (ja) * 2007-05-29 2013-04-17 信越半導体株式会社 Soiウェーハのシリコン酸化膜形成方法
JP2010153488A (ja) 2008-12-24 2010-07-08 Rohm Co Ltd Soiウエハの製造方法およびsoiウエハ
JP2011071193A (ja) 2009-09-24 2011-04-07 Sumco Corp 貼合せsoiウェーハ及びその製造方法
EP2871455B1 (en) * 2013-11-06 2020-03-04 Invensense, Inc. Pressure sensor
JP2015123547A (ja) 2013-12-26 2015-07-06 株式会社村田製作所 ウエハ、電子部品、ウエハの製造方法及び電子部品の製造方法
JP2016201454A (ja) 2015-04-09 2016-12-01 信越半導体株式会社 Soiウェーハの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465271B1 (en) * 1998-07-07 2002-10-15 Wen H. Ko Method of fabricating silicon capacitive sensor
JP2011176097A (ja) * 2010-02-24 2011-09-08 Sumco Corp 貼り合わせsoiウェーハ及びその製造方法
JP2013160556A (ja) * 2012-02-02 2013-08-19 Seiko Epson Corp 多層構造体、電子機器および多層構造体の製造方法

Also Published As

Publication number Publication date
DE212019000447U1 (de) 2021-10-12
US20210284524A1 (en) 2021-09-16
US11738993B2 (en) 2023-08-29
CN220502678U (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
JP4889154B2 (ja) 多層構造体の製造方法
JP3183864U (ja) 補強シリコン製マイクロメカニカル部品の製造方法
JP2024022682A (ja) ハイブリッド構造
WO2020149046A1 (ja) キャビティを有するシリコン基板及び該シリコン基板を用いたキャビティsoi基板
JP4758603B2 (ja) 素子貼り換え方法
JP2012054388A (ja) 薄膜化合物太陽電池の製造方法
JP5277999B2 (ja) 複合基板の製造方法
US20220002142A1 (en) Cavity soi substrate
JP5118546B2 (ja) 電気式微小機械スイッチ
WO2020158188A1 (ja) キャビティsoi基板
US9082716B2 (en) Method of manufacturing semiconductor device
JP3622308B2 (ja) 荷電ビーム一括露光用透過マスク
JP6180162B2 (ja) 基板の貼り合わせ方法および貼り合わせ基板
JPH03188648A (ja) 半導体装置の製造方法
JPS61119056A (ja) 半導体装置の製造方法
JP2004186662A (ja) マスク、マスクブランクスおよびそれらの製造方法
JP3627496B2 (ja) 微小構造体の製造方法
JP2010122350A (ja) 光導波路の作製方法
JP6085757B2 (ja) 微小構造体の作製方法
KR101699249B1 (ko) 접합 기판 및 그 제조 방법
JP2022118356A (ja) 微細構造およびその作製方法
JPS6020529A (ja) 半導体装置の製造方法
JP5659769B2 (ja) 電子デバイスとその製造方法
JPH02132830A (ja) 選択酸化方法
JP2008020715A (ja) 光導波路およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201990001279.1

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 19910761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP