WO2020082443A1 - Fe掺杂的MoS 2纳米材料及其制备方法和应用 - Google Patents

Fe掺杂的MoS 2纳米材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020082443A1
WO2020082443A1 PCT/CN2018/115194 CN2018115194W WO2020082443A1 WO 2020082443 A1 WO2020082443 A1 WO 2020082443A1 CN 2018115194 W CN2018115194 W CN 2018115194W WO 2020082443 A1 WO2020082443 A1 WO 2020082443A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanomaterial
doped mos
doped
mos
supported
Prior art date
Application number
PCT/CN2018/115194
Other languages
English (en)
French (fr)
Inventor
郎建平
薛江燕
倪春燕
虞虹
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US16/970,355 priority Critical patent/US11795556B2/en
Publication of WO2020082443A1 publication Critical patent/WO2020082443A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of electrolyzed water catalytic materials, in particular to an Fe-doped MoS 2 nanomaterial, and a preparation method and application thereof.
  • This material uses bacterial cellulose (BCCF) to adsorb Mo and Co from a (NH 4 ) 6 Mo 7 O 24 and Co (NO 3 ) 2 mixture solution, and then heat-treated under N 2 atmosphere to obtain Co-Mo 2 C / BCCF, Then the gas phase hydrothermal (VPH) is performed to obtain the final product Co-MoS 2 / BCCF.
  • BCCF bacterial cellulose
  • VPH gas phase hydrothermal
  • the technical problem to be solved by the present invention is to provide a method for preparing Fe-doped MoS 2 nanomaterials.
  • the target product can be obtained through a solvothermal reaction in one step, and the operation is simple; there is no need to introduce surfactants for morphology control during the preparation process , The product surface is clean and easy to clean.
  • the present invention provides a method for preparing Fe-doped MoS 2 nanomaterials, including the following steps:
  • the trivalent Fe salt and ammonium tetrathiomolybdate are dissolved in DMF and reacted at 180-200 ° C for 6-24h to obtain the Fe-doped MoS 2 nanomaterial.
  • the ferric salt is ferric chloride hexahydrate.
  • the molar ratio of the ferric salt to ammonium tetrathiomolybdate is 1-5: 5. More preferably, the molar ratio of ferric iron salt to ammonium tetrathiomolybdate is 1: 1.
  • the reaction temperature is 200 ° C and the reaction time is 12h.
  • the steps of washing, centrifuging and drying the obtained product are also included.
  • the solvents used for the washing are deionized water and absolute ethanol.
  • the rotation speed of the centrifugal separation is 8000-12000rpm, the centrifugation time is not less than 3min; the drying temperature is 40-60 ° C, and the drying time is 2-12h. More preferably, the rotation speed of the centrifugal separation is 10000 rpm, the centrifugation time is 3 min; the drying temperature is 60 ° C., and the drying time is 12 h.
  • Another aspect of the present invention also provides Fe-doped MoS 2 nanomaterials prepared by the foregoing preparation method.
  • the synthesized Fe-doped MoS 2 nanomaterial has an umbrella-shaped microstructure and is named iron-doped molybdenum disulfide nano- "umbrella”.
  • the invention also provides a nickel foam-supported Fe-doped MoS 2 nanomaterial, which includes a nickel foam substrate and the aforementioned Fe-doped MoS 2 nanomaterial supported on the nickel foam substrate.
  • Another aspect of the present invention also provides a method for preparing Fe-doped MoS 2 nanomaterials supported on nickel foam, including the following steps:
  • the invention also provides the application of the Fe-doped MoS 2 nanomaterial or the foamed nickel-supported Fe-doped MoS 2 nanomaterial as an electrocatalyst to catalyze hydrogen evolution reaction, oxygen evolution reaction and total hydrolysis reaction.
  • the target product can be obtained through one-step solvothermal reaction, and the operation is simple.
  • the present invention adopts a "bottom-up" wet chemical synthesis method, and the obtained product has uniform morphology and high yield.
  • the iron-doped molybdenum disulfide nano "umbrella” of the present invention exhibits excellent catalytic performance when catalyzing the HER reaction in an acidic electrolyte.
  • the overpotential value is only At 173mV, the Tafel slope is as low as 40.1mV ⁇ dec -1 , which is significantly better than pure MoS 2 material.
  • the foamed nickel-supported iron-doped molybdenum disulfide nanomaterial of the present invention exhibits excellent catalytic performance when catalyzing the reaction of HER and OER in an alkaline electrolyte.
  • HER The overpotential value is only 153mV, and the Tafel slope is as low as 85.6mV ⁇ dec -1 .
  • the OER overpotential value is only 230 mV, and the Tafel slope is also as low as 78.7 mV ⁇ dec -1 .
  • Figure 1 is a scanning electron microscope (SEM) image of iron-doped molybdenum disulfide nano "umbrella cover";
  • Figure 2 is a transmission electron microscope (TEM) image of iron-doped molybdenum disulfide nano "umbrella cover";
  • Fig. 3 is an X-ray powder diffraction (PXRD) diagram of iron-doped molybdenum disulfide nano "umbrella cover";
  • Fig. 4 is an energy dispersive X-ray spectrum (EDX) diagram of iron-doped molybdenum disulfide nano "umbrella cover";
  • Fig. 5 is an element distribution diagram of iron-doped molybdenum disulfide nano "umbrella cover"
  • Figure 6 is an X-ray photoelectron spectroscopy (XPS) diagram of iron-doped molybdenum disulfide nano- "umbrella cover";
  • Fig. 7 is a linear scanning voltammetry curve (a), Tafel slope diagram (b), and double-layer capacitance diagram (c) of iron-doped molybdenum disulfide nano "umbrella” in 0.5M H 2 SO 4 ; Comparison chart of polarization curves of Fe 0.05 -MoS 2 before and after 1000 cycles (d);
  • SEM scanning electron microscope
  • Fig. 10 is the HER polarization curve (a), the corresponding Tafel slope diagram (b), and the OER polarization curve (c) of the nickel foam-supported iron-doped molybdenum disulfide in 1.0M KOH electrolyte. , OER's corresponding Tafel slope diagram (d), double-layer capacitance diagram (e) and chronopotential diagram (f) when the nickel-supported iron-supported iron-doped molybdenum disulfide catalyzed the OER reaction;
  • FIG. 11 is a diagram (a) and polarization curve (b) of fully hydrolyzed iron foam doped molybdenum disulfide supported in 1.0 M KOH.
  • Fe 0.05 -MoS 2 a black powdery iron-doped molybdenum disulfide nano-umbrella cover, named Fe 0.05 -MoS 2 , where Fe stands for iron ions and 0.05 stands for iron The molar amount of salt fed is 0.05 mmol, and MoS 2 represents molybdenum disulfide.
  • the iron-doped molybdenum disulfide nano-umbrella cover has a uniform morphology, high quality and high yield, its diameter is less than 200nm, and its thickness is about 30nm.
  • the powder diffraction pattern (PXRD) of the iron-doped molybdenum disulfide nano "umbrella cover” and the interlayer spacing reported in the literature are Molybdenum disulfide matches (see K. Ai, C. Ruan, M. Shen, L. Lu, Adv. Funct. Mater. 2016, 265542-5549.).
  • the iron-doped molybdenum disulfide nano "umbrella” is composed of Mo, Fe, S, O, and each element is evenly distributed.
  • the photoelectron spectroscopy (XPS) of iron-doped molybdenum disulfide nano "umbrella” shows that the valences of Mo, Fe, S and O are +4, +2, -2 and -2 .
  • the entire electrocatalytic test was conducted under a standard three-electrode system, where the working electrode was a glassy carbon electrode prepared in Example 2, the reference electrode was an Ag / AgCl (saturated chlorine KCl solution) electrode, and the auxiliary electrode was a platinum wire electrode.
  • the electrolyte solution used for the linear scanning voltammetry (LSV) test is a 0.5M H 2 SO 4 solution, the potential scanning range is -0.7 ⁇ 0V, the scanning speed is 5mV / s, and the test data have been compensated by iR.
  • the iron-doped molybdenum disulfide nano "umbrella” exhibits excellent HER electrocatalytic performance.
  • the overpotential value At only 173mV, the Tafel slope is as low as 41.1mV ⁇ dec -1 .
  • Fe 0.05 -MoS 2 / NF iron-doped molybdenum disulfide supported on nickel foam
  • nickel-supported iron-supported iron-doped molybdenum disulfide is dense, amorphous particles.
  • the powder diffraction pattern (PXRD) of nickel-supported iron-doped molybdenum disulfide coincides with metallic nickel and molybdenum disulfide.
  • the entire electrocatalytic test is carried out under a standard three-electrode system, in which the working electrode is nickel foam-supported iron-doped molybdenum disulfide (effective area is 0.5cm 2 ), and the reference electrode is Ag / AgCl (saturated chlorine KCl Solution) electrode, the auxiliary electrode is a platinum wire electrode.
  • the electrolyte solution used for the linear scanning voltammetry (LSV) test is a 1M KOH solution, the potential scanning range is -1.6 ⁇ -1V, the scanning speed is 2mV / s, and the test data have been compensated by iR.
  • FIG 10 (a) and (b) as compared to pure molybdenum disulfide and pure nickel foam, a nickel iron load doped molybdenum disulfide exhibits excellent HER electrocatalytic properties, at 10mA ⁇ cm - At a current density of 2 , the overpotential value is only 153mV, and the Tafel slope is as low as 85.6mV ⁇ dec -1 .
  • the entire electrocatalytic test is carried out under a standard three-electrode system, in which the working electrode is nickel foam-supported iron-doped molybdenum disulfide (effective area is 0.5cm 2 ), and the reference electrode is Ag / AgCl (saturated chlorine KCl Solution) electrode, the auxiliary electrode is a platinum wire electrode.
  • the electrolyte solution used for the linear scanning voltammetry (LSV) test is a 1M KOH solution, the potential scanning range is 0 to 0.8V, and the scanning speed is 2mV / s.
  • the test data are all compensated by iR.
  • nickel foam supported iron-doped molybdenum disulfide exhibits excellent OER electrocatalytic performance at a current density of 20 mA ⁇ cm -2
  • the value of the overpotential is only 230mV, and the Tafel slope is as low as 78.7mV ⁇ dec -1 .
  • Nickel foam supported iron-doped molybdenum disulfide also showed excellent stability. In the constant current chronopotentiometric test, after 140 h, the electrocatalytic performance did not decrease significantly.
  • the entire electrocatalytic test was carried out in a two-electrode system, in which both electrodes were iron-doped molybdenum disulfide (effective area 0.5 cm 2 ) supported on nickel foam.
  • the electrolyte solution used for the linear scanning voltammetry (LSV) test is a 1M KOH solution, the potential scanning range is 0.8 to 2V, and the scanning speed is 5mV / s.
  • the nickel foam-supported iron-doped molybdenum disulfide exhibits excellent full hydrolysis catalytic performance, requiring only 1.52V to achieve a current density of 10 mA ⁇ cm -2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Fe掺杂的MoS 2纳米材料的制备方法,包括以下步骤:将三价Fe盐与四硫代钼酸铵溶于DMF中,于180-200℃下反应6-24h,得到所述Fe掺杂的MoS2 纳米材料。本发明还提供了一种泡沫镍负载的Fe掺杂的MoS 2纳米材料,其包括泡沫镍基底和负载于所述泡沫镍基底上的Fe掺杂的MoS 2纳米材料。此外,本发明还提供了上述材料的制备方法和应用。本发明的Fe掺杂的MoS 2纳米材料的制备方法,通过溶剂热反应一步即可得到目标产物,操作简单;在制备过程中无须引入表面活性剂进行形貌调控,产物表面洁净易清洗。

Description

Fe掺杂的MoS 2纳米材料及其制备方法和应用 技术领域
本发明涉及电解水催化材料技术领域,具体涉及一种Fe掺杂的MoS 2纳米材料及其制备方法和应用。
背景技术
化石能源的过度开采与使用给人类带来了全球变暖和环境污染等问题,因此发展一种可替代化石能源的清洁能源和开发高效的能源转化及储存体系成为了目前研究的热点,例如电化学领域中的燃料电池和电解水等。水的电解分解涉及氢气析出反应(HER)和氧气析出反应(OER)。目前最常用的HER和OER电催化剂分别是贵金属衍生的Pt/C和Ir/C电极。然而,这些贵金属价格高昂,总含量极低,这限制了它们在现实生活中的大规模应用。金属硫属化合物作为一种功能性纳米材料,一直是现代纳米材料中研究的热门,它们价格低廉,含量丰富,却能表现出与贵金属相当的电催化性能。其中被研究最广泛的是MoS 2的纳米材料,块状MoS 2晶体没有催化活性,但二维的MoS 2被发现与Pt有相似的电子结构(参见B.Hinnemann,P.G.Moses,J.Bonde,K.P.Jorgensen,J.H.Nielsen,S.Horch,I.Chorkendorff,J.Norskov,J.Am.Chem.Soc.2005,127,5308–5309.),拥有很好的析氢性能。许多文章已经报道了包括构建活性位点丰富的纳米片,制造多孔结构,掺杂其他杂原子和偶联导电基底等在内的方法来提高MoS 2的催化活性(参见X.X.Zou,Y.Zhang,Chem.Soc.Rev.2015,44,5148-5180.)。虽然二硫化钼在酸性介质中催化氢气析出反应已取得重大突破,但其在碱性介质中的催化性能却鲜有研究。Zhao Huijun课题组曾报道了一种共价掺杂方法,以实现MoS 2催化全分解(参见Q.Z.Xiong,Y.Wang,P.F.Liu,L.R. Zheng,G.Z.Wang,H.G.Yang,P.K.Wong,H.M.Zhang,H.J.Zhao,Adv.Mater.2018,30,1801450.)。该材料使用细菌纤维素(BCCF)从(NH 4) 6Mo 7O 24和Co(NO 3) 2混合物溶液中吸附Mo和Co,然后在N 2气氛下热处理得到Co-Mo 2C/BCCF,再进行气相水热(VPH)得到最终产物Co-MoS 2/BCCF。尽管该催化剂在碱性介质中表现出良好的HER,OER催化性能,但是其合成步骤冗长复杂。
因此,设计并合成一种简单有效,绿色且廉价的高质量,高催化活性的全解水催化剂,不仅对其在电化学方面的基础研究有着重要的意义,还能够有效地推动材料在能源相关领域的实际应用。
发明内容
本发明要解决的技术问题是提供一种Fe掺杂的MoS 2纳米材料的制备方法,通过溶剂热反应一步即可得到目标产物,操作简单;在制备过程中无须引入表面活性剂进行形貌调控,产物表面洁净易清洗。
为了解决上述技术问题,本发明提供了一种Fe掺杂的MoS 2纳米材料的制备方法,包括以下步骤:
将三价Fe盐与四硫代钼酸铵溶于DMF中,于180-200℃下反应6-24h,得到所述Fe掺杂的MoS 2纳米材料。
作为优选,所述三价铁盐为六水合三氯化铁。
作为优选,所述三价铁盐与四硫代钼酸铵的摩尔比为1-5:5。更优选的,三价铁盐与四硫代钼酸铵的摩尔比为1:1。
作为优选,反应的温度为200℃,反应时间为12h。
作为优选,还包括对得到的产物进行洗涤、离心分离和干燥的步骤。
作为优选,所述洗涤采用的溶剂为去离子水和无水乙醇。
作为优选,离心分离的转速为8000-12000rpm,离心时间不少于3min;干燥温度为40-60℃,干燥时间为2-12h。更优选的,离心分离的转速为10000rpm, 离心时间为3min;干燥温度为60℃,干燥时间为12h。
本发明另一方面还提供了由前述的制备方法制得的Fe掺杂的MoS 2纳米材料。合成的Fe掺杂的MoS 2纳米材料,其微观结构呈伞盖状,命名为铁掺杂的二硫化钼纳米“伞盖”。
此外,本发明还提供了一种泡沫镍负载的Fe掺杂的MoS 2纳米材料,其包括泡沫镍基底和负载于所述泡沫镍基底上的、前述的Fe掺杂的MoS 2纳米材料。
本发明另一方面还提供了泡沫镍负载的Fe掺杂的MoS 2纳米材料的制备方法,包括以下步骤:
将三价Fe盐与四硫代钼酸铵溶于DMF中,将泡沫镍浸于混合液中,于180-200℃下反应6-24h,得到所述泡沫镍负载的Fe掺杂的MoS 2纳米材料。
此外,本发明还提供了所述Fe掺杂的MoS 2纳米材料或所述泡沫镍负载的Fe掺杂的MoS 2纳米材料作为电催化剂催化氢气析出反应、氧气析出反应和全水解反应的应用。
本发明的有益效果:
1.本发明通过溶剂热反应一步即可得到目标产物,操作简单。
2.本发明采用“自下而上”的湿化学合成方法,得到的产物形貌均匀,产率高。
3.本发明在制备过程中无须引入表面活性剂进行形貌调控,因此产物表面洁净易清洗。
4.本发明的铁掺杂的二硫化钼纳米“伞盖”在酸性电解质中催化HER反应时,表现出优异的催化性能,在10mA·cm -2的电流密度下,过电势的值仅为173mV,塔菲尔斜率也低至40.1mV·dec -1,明显优于纯MoS 2材料。
5.本发明的泡沫镍负载的铁掺杂的二硫化钼纳米材料在碱性电解质中催化HER和OER的反应时,表现出优异的催化性能,在10mA·cm -2的电流密度下, HER过电势的值仅为153mV,塔菲尔斜率也低至85.6mV·dec -1。在20mA·cm -2的电流密度下,OER过电势的值仅为230mV,塔菲尔斜率也低至78.7mV·dec -1
6.本发明中的泡沫镍负载的铁掺杂的二硫化钼纳米材料在碱性电解质中催化全水解时,仅需1.52V就能实现全水解。
附图说明
图1为铁掺杂的二硫化钼纳米“伞盖”的扫描电镜(SEM)图;
图2为铁掺杂的二硫化钼纳米“伞盖”的透射电镜(TEM)图;
图3为铁掺杂的二硫化钼纳米“伞盖”的X-射线粉末衍射(PXRD)图;
图4为铁掺杂的二硫化钼纳米“伞盖”的能量色散X射线光谱(EDX)图;
图5为铁掺杂的二硫化钼纳米“伞盖”的元素分布图;
图6为铁掺杂的二硫化钼纳米“伞盖”的X射线光电子能谱(XPS)图;
图7为铁掺杂的二硫化钼纳米“伞盖”在0.5M H 2SO 4中的线性扫描伏安曲线图(a),塔菲尔斜率图(b),双层电容图(c),循环1000次前后的Fe 0.05-MoS 2的极化曲线对比图(d);
图8为泡沫镍负载的铁掺杂的二硫化钼的扫描电镜(SEM)图;
图9为泡沫镍负载的铁掺杂的二硫化钼的X-射线粉末衍射(PXRD)图;
图10为泡沫镍负载的铁掺杂的二硫化钼在1.0M KOH电解质中的HER极化曲线图(a),HER相应的塔菲尔斜率图(b),OER极化曲线图(c),OER相应的塔菲尔斜率图(d),双层电容图(e)和泡沫镍负载的铁掺杂的二硫化钼催化OER反应时的计时电势图(f);
图11为泡沫镍负载的铁掺杂的二硫化钼在1.0M KOH中用于全水解的装置图(a)和全水解的极化曲线(b)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:铁掺杂的二硫化钼纳米“伞盖”的制备
分别称取13mg(0.05mmol)的四硫代钼酸铵和13.5mg(0.05mmol)的六水合氯化铁固体,溶于12mL N,N-二甲基甲酰胺(DMF)中配成溶液,然后将溶液转入含有聚四氟乙烯内衬的不锈钢反应釜中,密封后置于烘箱中,在200℃下反应12h,反应结束后自然冷却至室温。经去离子水和乙醇洗涤,离心分离和烘干后得到黑色粉末状的铁掺杂的二硫化钼纳米“伞盖”,命名为Fe 0.05-MoS 2,其中,Fe代表铁离子,0.05代表铁盐的投料摩尔量为0.05mmol,MoS 2代表二硫化钼。
如图1和图2所示,铁掺杂的二硫化钼的纳米“伞盖”形貌均一,且质量和产率较高,其直径小于200nm,厚度约为30nm。
如图3所示,铁掺杂的二硫化钼纳米“伞盖”的粉末衍射图谱(PXRD)和文献报道的层间距为
Figure PCTCN2018115194-appb-000001
的二硫化钼吻合(参见K.Ai,C.Ruan,M.Shen,L.Lu,Adv.Funct.Mater.2016,265542-5549.)。
如图4和图5所示,铁掺杂的二硫化钼纳米“伞盖”是由Mo,Fe,S,O组成的,且每种元素分布均匀。
如图6所示,铁掺杂的二硫化钼纳米“伞盖”的光电子能谱(XPS)显示,Mo,Fe,S和O的化合价分别为+4,+2,-2和-2价。
实施例2:铁掺杂的二硫化钼纳米“伞盖”电催化剂的制备
称量2.5mg铁掺杂的二硫化钼的纳米“伞盖”固体粉末和2.5mg的商业炭黑进行混合,加入970μL的异丙醇和30μL 5wt.%的Nafion溶液,超声1h使其分散均匀形成油墨状溶液。取20μL上述溶液分批滴加到打磨好的玻碳 电极表面,自然晾干后待用。
作为对比,称量2.5mg的二硫化钼固体粉末和2.5mg的商业炭黑进行混合,加入970μL的异丙醇和30μL 5wt.%的Nafion溶液,超声1h使其分散均匀形成油墨状溶液。取20μL上述溶液分批滴加到打磨好的玻碳电极表面,自然晾干后待用。
作为对比,称量5.0mg的商业Pt/C(5wt.%Pt),加入970μL的异丙醇和30μL 5wt.%的Nafion溶液,超声1h使其分散均匀形成油墨状溶液。取20μ L上述溶液分批滴加到打磨好的玻碳电极表面,自然晾干后待用。
实施例3:酸性电解质中HER性能测试
整个电催化测试都是在标准的三电极体系下进行,其中工作电极为实施例2制备的玻碳电极,参比电极为Ag/AgCl(饱和氯KCl溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为0.5M H 2SO 4溶液,电势的扫描范围为-0.7~0V,扫描速度为5mV/s,测试的数据都经过了iR的补偿。
如图7所示,相比于纯二硫化钼,铁掺杂的二硫化钼纳米“伞盖”表现出优异的HER电催化性能,在10mA·cm -2的电流密度下,过电势的值仅为173mV,塔菲尔斜率也低至41.1mV·dec -1。双层电容值为39.8mF cm -2,高于二硫化钼,表明Fe 0.05-MoS 2比纯MoS 2具有更多的HER活性位点。循环1000次后,性能也没有明显的降低。
实施例4:泡沫镍负载的铁掺杂的二硫化钼的制备
分别称取13mg(0.05mmol)的四硫代钼酸铵和13.5mg(0.05mmol)的六水合氯化铁固体溶于12mL N,N-二甲基甲酰胺(DMF)中配成溶液,然后将溶液转入含有聚四氟乙烯内衬的不锈钢反应釜中,浸入一片泡沫镍(1cm*2cm),密封后置于烘箱中,在200℃下反应12h,反应结束后自然冷却至室温,经去离子水和乙醇洗涤,于鼓风干燥箱中60℃干燥后得到泡沫镍负载的铁掺杂的二 硫化钼,命名为Fe 0.05-MoS 2/NF,其中,Fe代表铁离子,0.05代表铁盐的投料摩尔量为0.05mmol,MoS 2代表二硫化钼,NF代表泡沫镍(nickle foam)。
如图8所示,泡沫镍负载的铁掺杂的二硫化钼是致密的无定型颗粒物。
如图9所示,泡沫镍负载的铁掺杂的二硫化钼的粉末衍射图谱(PXRD)和金属镍以及二硫化钼吻合。
实施例5:碱性电解质中HER性能测试
整个电催化测试都是在标准的三电极体系下进行,其中工作电极为泡沫镍负载的铁掺杂的二硫化钼(有效面积为0.5cm 2),参比电极为Ag/AgCl(饱和氯KCl溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为1M KOH溶液,电势的扫描范围为-1.6~-1V,扫描速度为2mV/s,测试的数据都经过了iR的补偿。
如图10(a)和(b)所示,相比于纯二硫化钼和纯泡沫镍,泡沫镍负载的铁掺杂的二硫化钼表现出优异的HER电催化性能,在10mA·cm -2的电流密度下,过电势的值仅为153mV,塔菲尔斜率也低至85.6mV·dec -1
实施例6:碱性电解质中OER性能测试
整个电催化测试都是在标准的三电极体系下进行,其中工作电极为泡沫镍负载的铁掺杂的二硫化钼(有效面积为0.5cm 2),参比电极为Ag/AgCl(饱和氯KCl溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为1M KOH溶液,电势的扫描范围为0~0.8V,扫描速度为2mV/s,测试的数据都经过了iR的补偿。
如图10(c)、(d)、(e)和(f)所示,泡沫镍负载的铁掺杂的二硫化钼表现出优异的OER电催化性能,在20mA·cm -2的电流密度下,过电势的值仅为230mV,塔菲尔斜率也低至78.7mV·dec -1。泡沫镍负载的铁掺杂的二硫化钼也表现出优异的稳定性,在恒电流计时电位测试时,经过140h后,电催化性能没有明显的下降。
实施例7:碱性电解质中全水解测试
整个电催化测试都是在双电极体系下进行,其中两个电极均为泡沫镍负载的铁掺杂的二硫化钼(有效面积为0.5cm 2)。用于线性扫描伏安法(LSV)测试的电解质溶液为1M KOH溶液,电势的扫描范围为0.8~2V,扫描速度为5mV/s。
如图11所示,泡沫镍负载的铁掺杂的二硫化钼表现出优异的全水解催化性能,仅需1.52V就可达到10mA·cm -2的电流密度。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种Fe掺杂的MoS 2纳米材料的制备方法,其特征在于,包括以下步骤:
    将三价Fe盐与四硫代钼酸铵溶于DMF中,于180-200℃下反应6-24h,得到所述Fe掺杂的MoS 2纳米材料。
  2. 如权利要求1所述的Fe掺杂的MoS 2纳米材料的制备方法,其特征在于,所述三价铁盐为六水合三氯化铁。
  3. 如权利要求1所述的Fe掺杂的MoS 2纳米材料的制备方法,其特征在于,所述三价铁盐与四硫代钼酸铵的摩尔比为1-5:5。
  4. 如权利要求1所述的Fe掺杂的MoS 2纳米材料的制备方法,其特征在于,还包括对得到的产物进行洗涤、离心分离和干燥的步骤。
  5. 如权利要求4所述的Fe掺杂的MoS 2纳米材料的制备方法,其特征在于,所述洗涤采用的溶剂为去离子水和无水乙醇。
  6. 如权利要求4所述的Fe掺杂的MoS 2纳米材料的制备方法,其特征在于,离心分离的转速为8000-12000rpm,离心时间不少于3min;干燥温度为40-60℃,干燥时间为2-12h。
  7. 一种Fe掺杂的MoS 2纳米材料,其特征在于,是由权利要求1-6任一项所述的制备方法制备得到的。
  8. 一种泡沫镍负载的Fe掺杂的MoS 2纳米材料,其特征在于,包括泡沫镍基底和负载于所述泡沫镍基底上的如权利要求7所述的Fe掺杂的MoS 2纳米材料。
  9. 如权利要求8所述的泡沫镍负载的Fe掺杂的MoS 2纳米材料的制备方法,其特征在于,包括以下步骤:
    将三价Fe盐与四硫代钼酸铵溶于DMF中,将泡沫镍浸于得到的混合液中,于180-200℃下反应6-24h,得到所述泡沫镍负载的Fe掺杂的MoS 2纳米材料。
  10. 根据权利要求7所述的Fe掺杂的MoS 2纳米材料或权利要求8所述的泡沫镍负载的Fe掺杂的MoS 2纳米材料作为电催化剂催化氢气析出反应、氧气析出反应和全水解反应的应用。
PCT/CN2018/115194 2018-10-26 2018-11-13 Fe掺杂的MoS 2纳米材料及其制备方法和应用 WO2020082443A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/970,355 US11795556B2 (en) 2018-10-26 2018-11-13 Fe-doped MoS2 nano-material, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811258080.5 2018-10-26
CN201811258080.5A CN109225274B (zh) 2018-10-26 2018-10-26 Fe掺杂的MoS2纳米材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020082443A1 true WO2020082443A1 (zh) 2020-04-30

Family

ID=65082422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115194 WO2020082443A1 (zh) 2018-10-26 2018-11-13 Fe掺杂的MoS 2纳米材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US11795556B2 (zh)
CN (1) CN109225274B (zh)
WO (1) WO2020082443A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715233A (zh) * 2020-06-11 2020-09-29 江苏大学 一种铁掺杂的氧化钼纳米材料的制备方法及其应用于双功能电催化分解水
CN111871421A (zh) * 2020-08-06 2020-11-03 青岛科技大学 镍铁钼类水滑石纳米线双功能电催化剂及其制备方法
CN111994955A (zh) * 2020-10-09 2020-11-27 重庆文理学院 一种二硫化钼基杂化材料及其制备方法和应用
CN112647094A (zh) * 2020-12-21 2021-04-13 陕西科技大学 全pH电催化析氢的二硫化钼改性硫、钼共掺杂石墨相氮化碳异质结构材料及其制备方法
CN112877729A (zh) * 2021-01-14 2021-06-01 辽宁大学 一种泡沫镍上负载的NiMn-LDH纳米片及其制备方法和在电催化氧化苄胺中的应用
CN113430560A (zh) * 2021-07-09 2021-09-24 北京化工大学 一种双金属单原子负载MoS2碳纸基材料及其制备方法和应用
CN113526622A (zh) * 2021-07-12 2021-10-22 上海纳米技术及应用国家工程研究中心有限公司 一种泡沫镍负载多孔碳包覆镍锡-铁镍合金电极材料及其制备方法和应用
CN113604835A (zh) * 2021-07-21 2021-11-05 北京化工大学 用于enrr的电催化材料b-vs2的制备方法
CN113774403A (zh) * 2021-09-22 2021-12-10 辽宁师范大学 一种水分解电催化剂Ag8W4O16/CoWO4的制备方法
CN114351165A (zh) * 2022-01-10 2022-04-15 青岛科技大学 三维核壳结构双功能电解海水催化剂的制备方法和应用
CN114808010A (zh) * 2022-02-18 2022-07-29 海南师范大学 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用
CN115161685A (zh) * 2022-06-29 2022-10-11 安徽师范大学 一种Bi掺杂硫化亚铜介孔纳米带阵列结构材料、制备方法及其应用
CN117512676A (zh) * 2024-01-02 2024-02-06 洛阳理工学院 一种分级铁掺杂镍-碳结构纳米管及其制备方法和应用

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110252348A (zh) * 2019-07-01 2019-09-20 青岛科技大学 一种超亲水超疏气的过渡金属钼硫凝胶电催化剂的制备方法
CN111003741B (zh) * 2019-11-14 2021-11-02 湖北大学 一种二硫化铁掺杂三硫化二钼多孔系统及其制备方法和应用
FR3104464B1 (fr) * 2019-12-17 2022-03-25 Ifp Energies Now Procédé de préparation par imprégnation en milieu fondu d’une couche active d’électrode pour des réactions de réduction électrochimique
CN111111719A (zh) * 2020-01-03 2020-05-08 南京航空航天大学 一种FePS3/MoS2复合电催化剂及其制备方法、应用
CN111377480B (zh) * 2020-03-20 2023-08-18 苏州科技大学 铁(ii)掺杂硫化钼材料于自供能压电增强制氢中的应用
CN113957474B (zh) * 2020-07-03 2023-03-28 中国科学院大连化学物理研究所 一种异质结结构的电解水材料及其制备方法与应用
CN112551586A (zh) * 2020-12-25 2021-03-26 齐鲁工业大学 一种由双金属离子掺杂多孔空心纳米棒材料的制备和应用
CN113264574B (zh) * 2021-04-22 2023-04-25 东莞理工学院 一种Ni-Fe/MoS2电极的制备方法及其降解氟苯尼考污染物中的应用
CN113667993B (zh) * 2021-07-06 2022-10-11 浙江工业大学 一种富含氧空位的一氧化钴/铁酸钴纳米片阵列结构催化剂及其制备与应用
CN113549931B (zh) * 2021-07-16 2022-06-28 山东省环境保护科学研究设计院有限公司 一种Fe@CuMoO4NWA/Cu催化剂的制备方法及应用
CN114016050B (zh) * 2021-10-31 2024-04-05 盐城工学院 一种铁钼掺杂硫化镍/泡沫镍电极及其制备方法与应用
CN114457426B (zh) * 2021-11-22 2022-11-22 天津理工大学 Ti掺杂单层二硫化钼单晶及其制备方法和应用
CN114045527B (zh) * 2021-12-15 2023-05-16 中国科学院大连化学物理研究所 一种电解水析氢催化剂及其制备与应用
CN114507874B (zh) * 2022-01-12 2023-07-21 西南科技大学 一种铀负载二硫化钼纳米片在电催化碱性析氢反应中的应用
CN114369848B (zh) * 2022-02-11 2023-05-09 苏州阳池科技有限公司 一种杂原子掺杂二硫化钼纳米复合材料的制备及其应用
CN114709379A (zh) * 2022-03-09 2022-07-05 宁波锋成先进能源材料研究院有限公司 一种三维褶皱结构Ti3C2 Mxene及其制备方法和应用
CN114836766B (zh) * 2022-04-12 2024-04-02 西安交通大学 一种MoS2/NiPS3复合异质结构纳米片电催化剂及其制备方法和应用
CN114808027B (zh) * 2022-04-27 2024-07-02 哈尔滨理工大学 一种具有高效电催化析氢性能N-MoS2/COF-C4N复合催化剂及其制备方法
CN114808015B (zh) * 2022-05-06 2023-08-29 青岛科技大学 一种Fe7S8-CoS-Co3S4异质结的制备方法
CN114808017B (zh) * 2022-05-20 2024-01-26 青岛科技大学 一种多元素掺杂Fe2P/CoS2龟甲状复合电极材料的制备方法
CN115094472A (zh) * 2022-06-21 2022-09-23 上海嘉氢源科技有限公司 一种铁掺杂Ni3S2纳米材料、制备方法及应用
CN115029726A (zh) * 2022-06-21 2022-09-09 上海嘉氢源科技有限公司 一种双金属FeMoS纳米材料、制备方法及应用
CN115770591A (zh) * 2022-10-31 2023-03-10 复旦大学 过渡金属掺杂二硫化钼/碳复合材料及其制备方法和应用
CN116789254A (zh) * 2023-07-26 2023-09-22 中国环境科学研究院 一种水体修复方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608652A (zh) * 2015-10-21 2017-05-03 中国科学院大连化学物理研究所 金属阳离子掺杂二硫化钼材料的制备方法及材料和应用
CN107102039A (zh) * 2017-04-24 2017-08-29 太原理工大学 一种银掺杂二硫化钼复合材料混合液的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000816A (en) * 1959-06-24 1961-09-19 Exxon Research Engineering Co Desulfurization with a modified molybdenum disulfide catalyst
US4632747A (en) * 1984-12-28 1986-12-30 Exxon Research And Engineering Company Hydrotreating process employing catalysts comprising a supported, mixed metal sulfide iron promoted Mo and W
CN106608847B (zh) * 2015-10-21 2019-09-06 中国科学院大连化学物理研究所 一种制备亚胺的方法
CN107262117B (zh) * 2017-07-25 2020-06-19 华中师范大学 单原子金属掺杂少层二硫化钼电催化材料、合成及其电催化固氮的方法
CN109467958B (zh) * 2017-09-07 2021-04-16 中国科学院上海硅酸盐研究所 一种铁掺杂二硫化钼涂层材料及其制备方法和应用
CN108023080B (zh) * 2017-12-01 2020-12-11 盐城工学院 一种过渡金属掺杂二硫化钼钠电池负极材料的制备方法及其所得材料和应用
CN108118362B (zh) * 2018-01-09 2020-03-10 国家纳米科学中心 一种二硫化钼电催化产氢电极及其制备方法和用途
CN108910953B (zh) * 2018-07-13 2020-07-21 电子科技大学 一种Fe掺杂单层MoS2化学气相沉积制备方法
CN109267093B (zh) * 2018-10-09 2020-04-10 苏州大学 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN111847513A (zh) * 2019-04-28 2020-10-30 中国科学院大连化学物理研究所 一种多原子共掺杂二硫化钼及其制备方法与应用
CN111377480B (zh) * 2020-03-20 2023-08-18 苏州科技大学 铁(ii)掺杂硫化钼材料于自供能压电增强制氢中的应用
KR102325823B1 (ko) * 2020-04-14 2021-11-12 고려대학교 세종산학협력단 수전해 촉매용 전이금속 포함 몰리브덴 설파이드 나노 시트 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608652A (zh) * 2015-10-21 2017-05-03 中国科学院大连化学物理研究所 金属阳离子掺杂二硫化钼材料的制备方法及材料和应用
CN107102039A (zh) * 2017-04-24 2017-08-29 太原理工大学 一种银掺杂二硫化钼复合材料混合液的制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111715233A (zh) * 2020-06-11 2020-09-29 江苏大学 一种铁掺杂的氧化钼纳米材料的制备方法及其应用于双功能电催化分解水
CN111871421A (zh) * 2020-08-06 2020-11-03 青岛科技大学 镍铁钼类水滑石纳米线双功能电催化剂及其制备方法
CN111994955A (zh) * 2020-10-09 2020-11-27 重庆文理学院 一种二硫化钼基杂化材料及其制备方法和应用
CN112647094A (zh) * 2020-12-21 2021-04-13 陕西科技大学 全pH电催化析氢的二硫化钼改性硫、钼共掺杂石墨相氮化碳异质结构材料及其制备方法
CN112647094B (zh) * 2020-12-21 2023-03-10 陕西科技大学 全pH电催化析氢的二硫化钼改性硫、钼共掺杂石墨相氮化碳异质结构材料及其制备方法
CN112877729A (zh) * 2021-01-14 2021-06-01 辽宁大学 一种泡沫镍上负载的NiMn-LDH纳米片及其制备方法和在电催化氧化苄胺中的应用
CN112877729B (zh) * 2021-01-14 2023-11-10 辽宁大学 一种泡沫镍上负载的NiMn-LDH纳米片及其制备方法和在电催化氧化苄胺中的应用
CN113430560A (zh) * 2021-07-09 2021-09-24 北京化工大学 一种双金属单原子负载MoS2碳纸基材料及其制备方法和应用
CN113526622B (zh) * 2021-07-12 2022-12-27 上海纳米技术及应用国家工程研究中心有限公司 一种泡沫镍负载多孔碳包覆镍锡-铁镍合金电极材料及其制备方法和应用
CN113526622A (zh) * 2021-07-12 2021-10-22 上海纳米技术及应用国家工程研究中心有限公司 一种泡沫镍负载多孔碳包覆镍锡-铁镍合金电极材料及其制备方法和应用
CN113604835A (zh) * 2021-07-21 2021-11-05 北京化工大学 用于enrr的电催化材料b-vs2的制备方法
CN113604835B (zh) * 2021-07-21 2023-10-20 北京化工大学 用于enrr的电催化材料b-vs2的制备方法
CN113774403A (zh) * 2021-09-22 2021-12-10 辽宁师范大学 一种水分解电催化剂Ag8W4O16/CoWO4的制备方法
CN114351165A (zh) * 2022-01-10 2022-04-15 青岛科技大学 三维核壳结构双功能电解海水催化剂的制备方法和应用
CN114351165B (zh) * 2022-01-10 2023-12-26 青岛科技大学 三维核壳结构双功能电解海水催化剂的制备方法和应用
CN114808010A (zh) * 2022-02-18 2022-07-29 海南师范大学 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用
CN115161685A (zh) * 2022-06-29 2022-10-11 安徽师范大学 一种Bi掺杂硫化亚铜介孔纳米带阵列结构材料、制备方法及其应用
CN117512676A (zh) * 2024-01-02 2024-02-06 洛阳理工学院 一种分级铁掺杂镍-碳结构纳米管及其制备方法和应用
CN117512676B (zh) * 2024-01-02 2024-03-15 洛阳理工学院 一种分级铁掺杂镍-碳结构纳米管及其制备方法和应用

Also Published As

Publication number Publication date
US20210062350A1 (en) 2021-03-04
CN109225274B (zh) 2020-08-14
US11795556B2 (en) 2023-10-24
CN109225274A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020082443A1 (zh) Fe掺杂的MoS 2纳米材料及其制备方法和应用
US11396521B2 (en) Ultra-thin Ni—Fe-MOF nanosheet, preparation method and use thereof
Hu et al. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries
Cao et al. An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction
She et al. Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms
CN109847778B (zh) 一种用于电解水析氧的二硫化钴/碳氮复合材料及其合成方法
CN108754531B (zh) 一种含Co和Ru双金属碳纳米复合电催化材料的制备方法
Guan et al. Identifying the roles of Ru single atoms and nanoclusters for energy-efficient hydrogen production assisted by electrocatalytic hydrazine oxidation
Shi et al. MOF-derived M-OOH with rich oxygen defects by in situ electro-oxidation reconstitution for a highly efficient oxygen evolution reaction
Guan et al. Two dimensional ZIF-derived ultra-thin Cu–N/C nanosheets as high performance oxygen reduction electrocatalysts for high-performance Zn–air batteries
Yao et al. Dual-phase engineering of MoN/Co4N with tailored electronic structure for enhanced hydrogen evolution
Li et al. Ruthenium nanoparticles anchored on graphene hollow nanospheres superior to platinum for the hydrogen evolution reaction in alkaline media
Al-Mamun et al. Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions
Jia et al. A novel synthesis of Prussian blue nanocubes/biomass-derived nitrogen-doped porous carbon composite as a high-efficiency oxygen reduction reaction catalyst
Gu et al. MXene boosted metal-organic framework-derived Fe–N–C as an efficient electrocatalyst for oxygen reduction reactions
Li et al. CoP-anchored high N-doped carbon@ graphene sheet as bifunctional electrocatalyst for efficient overall water splitting
Dileepkumar et al. Nanostructured NaFeS2 as a cost-effective and robust electrocatalyst for hydrogen and oxygen evolution with reduced overpotentials
CN110732331A (zh) 一种非晶态铁-镍-磷化合物复合碳电催化材料的制备方法
Wang et al. In situ construction of N-doped amorphous CoFe selenites toward efficient electrocatalytic water oxidation
Sun et al. In-situ phosphating Co@ Nitrogen-doping graphene boosts overall water splitting under alkaline condition
Liu et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting
Yang et al. Amorphous urchin-like copper@ nanosilica hybrid for efficient CO2 electroreduction to C2+ products
Li et al. Interfacial engineering of FeWO 4/Fe 2 O 3 homometallic heterojunctions for synergistic electrocatalytic water splitting
Yang et al. MOF-derived hollow spherical Co2P@ C composite with micro-nanostructure for highly efficient oxygen evolution reaction in alkaline solution
Zhong et al. N-doped bimetallic sulfides hollow spheres derived from metal-organic frameworks toward cost-efficient and high performance oxygen evolution reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937904

Country of ref document: EP

Kind code of ref document: A1