CN114808010A - 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用 - Google Patents

一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用 Download PDF

Info

Publication number
CN114808010A
CN114808010A CN202210151630.3A CN202210151630A CN114808010A CN 114808010 A CN114808010 A CN 114808010A CN 202210151630 A CN202210151630 A CN 202210151630A CN 114808010 A CN114808010 A CN 114808010A
Authority
CN
China
Prior art keywords
catalyst
nickel
oxygen evolution
molybdenum carbide
cnm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210151630.3A
Other languages
English (en)
Inventor
孙伟
施璠
王宝丽
姚昱岑
罗书昌
张泽俊
徐士官
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN202210151630.3A priority Critical patent/CN114808010A/zh
Publication of CN114808010A publication Critical patent/CN114808010A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电解水催化剂技术领域,涉及一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用。该催化剂是一种具有碳纳米管微球结构的新型电解水析氧催化剂。该催化剂以三聚氰胺为碳源和氮源,表面活性剂三嵌段两亲共聚物F127为软模板,添加磷钼酸为钼源,硝酸镍为石墨化催化剂与镍源,通过溶剂蒸发诱导多元共组装和高温热解法制备镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂(Ni‑Mo2C/CNM)。本发明制备的催化剂兼具Ni、Mo、CNM协同作用提供的优秀的电解水析氧催化性能,在1 M KOH条件下OER反应中,电流密度为10 mA cm‑2时,过电位仅为294 mV,优于商业的RuO2(358 mV),且其催化性能较为稳定。

Description

一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用
技术领域
本发明属于电解水催化剂技术领域,涉及一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用。
背景技术
析氢反应(HER)和析氧反应(OER)是可再生能源转化和储存的关键。与阴极的 HER相比,阳极的OER过程动力学更加迟缓,因为涉及到质子耦合的四电子转移过程。迟缓的OER动力学使得OER的过电势远高于HER,大大增加了全电解反应的能量消耗。尽管贵金属氧化物如氧化钌(RuO2)和氧化铱(IrO2)表现出了非常高的OER活性,但是大规模的氢气生产仍然需要廉价的非贵金属基OER催化剂通常能使电解水的活化能大大降低,从而降低电解水的过电势。
多壁碳纳米管(MWCNTs)自1991年Iijima首先发现以来,已引发科学界的研究热潮。MWCNTs具有高度石墨化的管壁、纳米级的管腔以及由sp2-C构成的表面积,展现出异常高的机械强度和硬度、高的导电导热性能、中高等级可修饰的比表面积,导致其在众多研究领域潜在的应用价值,尤其是它对氢、氧等分子的吸附活化性能,使 MWCNTs很有希望成为新型催化剂的载体或促进剂。
过渡金属掺杂和结构改进是制备高活性析氧催化剂的简便可行的策略。另外非金属原子如N、S等掺杂的碳材料已被广泛用作独立的HER或OER工艺的有效电催化剂。在此,通过多元共组装和热解碳化制备了镍掺杂具有碳纳米管微球结构的 Ni-Mo2C/CNM。利用碳纳米管微球结构,充分展示了Mo基材料和掺杂的Ni纳米粒子对OER的优异性能。Ni-Mo2C/CNM只需294mV,即可在1.0M KOH中实现电流密度为10mA/cm2高效析氧,并且该催化剂具有优秀的稳定性。
发明内容
本发明的目的就是通过Ni、N、Mo2C在碳纳米管微球(CNM)表面的协同效应,制备出高效电解水析氧催化剂Ni-Mo2C/CNM。
本发明的目的可以通过以下技术方案来实现:
一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于,以三聚氰胺为碳源和氮源,表面活性剂三嵌段两亲共聚物F127为软模板,添加磷钼酸为钼源,镍金属盐为石墨化催化剂与镍源,通过溶剂蒸发诱导多元共组装和高温热解法制备镍掺杂碳化钼/碳纳米管微球电解水催化剂Ni-Mo2C/CNM。
根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于,制备方法包括如下步骤:
(1)将F127溶解在磷钼酸和硝酸镍的混合溶液中,加入1g三聚氰胺后90℃加热回流2h,蒸发水分后得到催化剂前驱体。
(2)将上述前驱体在60℃烘箱中放置12h得到绿色薄膜,管式炉中惰性气体气氛下高温碳化:碳化条件为:以5℃/min的升温速度加热到900℃,保温2h后自然降温得到黑色粉末,球磨机研磨后得到镍掺杂碳化钼/碳纳米管微球,即电解水析氧催化剂Ni-Mo2C/CNM。
本发明主要通过溶剂蒸发诱导多元共组装和高温煅烧法制备镍掺杂碳化钼/碳纳米管微球电解水催化剂,并将其应用到电解水析氧中。
与现有技术相比,本发明具有以下创新点:
(1)将表面活性剂三嵌段两亲共聚物F127作为软模板,通过结合碳源的基团在水中形成胶束,最后形成碳纳米管微球的形貌,利用大比表面积的碳纳米管微球结构在电解水过程中进行更好的吸附O2
(2)利用过渡金属Ni、Mo双活性位点催化机制催化电解水析氧。
本发明制备的催化剂具有较好的电解水析氧催化性能;其在10mA/cm2的电流密度下,连续工作约10小时后,电位变化约30mV,性能较为稳定。
附图说明
图1为实施例1制备的Ni-Mo2C/CNM的SEM图。
图2为实施例2制备的Ni-Mo2C/C的SEM图。
图3为实施例1制备的Ni-Mo2C/CNM的TEM图。
图4为实施例1制备的Ni-Mo2C/CNM的XRD图。
图5为实施例1制备的Ni-Mo2C/CNM的XPS图。
图6为实施例1制备的Ni-Mo2C/CNM与商业催化剂RuO2在1.0M KOH中催化 OER的LSV极化曲线对比图。
图7为不同催化剂在1.0M KOH中催化OER的LSV极化曲线对比图。
图8为不同催化剂在1.0M KOH中OER的tafel曲线。
图9为实施例1制备的Ni-Mo2C/CNM修饰电极在294mV电势下OER反应10h。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
(1)将F127溶解在磷钼酸和硝酸镍的混合溶液中,加入1g三聚氰胺后90℃加热回流2h,蒸发水分后得到催化剂前驱体。
(2)将上述前驱体在60℃烘箱中放置12h得到绿色薄膜,管式炉中惰性气体气氛下高温碳化:碳化条件为:以5℃/min的升温速度加热到900℃,保温2h后自然降温得到黑色粉末,球磨机研磨后得到镍掺杂碳化钼/碳纳米管微球,即电解水析氧催化剂Ni-Mo2C/CNM。
修饰电极的构建:取8mgNi-Mo2C/CNM加入60uL无水乙醇和136uL超纯水超声20min,然后加入40uL Nafion(5%乙醇溶液),继续超声40min得到质量密度为0.283mg/cm2的墨水。取5uL墨水滴在玻碳电极上。自然干燥后进行电化学测试。其中Ni-Mo2C/CNM修饰电极为工作电极,碳棒电极为对电极,饱和甘汞电极为参比电极,1.0mol/L KOH溶液为电解质溶液。
图1为实施例1制备的Ni-Mo2C/CNM的SEM图。由图中可以看出, Ni-Mo2C/CNM是由碳纳米管交缠组成的微米级的球状结构。
图2为实施例2制备的Ni-Mo2C/C的SEM图。由图中可以看出,制备过程中没有加表面活性剂F127得到的材料与实施例1的形貌完全不同。没有F127生成的 Ni-Mo2C/C是片状结构,在片层碳材料上负载着Mo2C和Ni纳米粒子。
图3为实施例1制备的Ni-Mo2C/CNM的TEM图。由图可知,Ni纳米粒子直径大概10nm,Mo2C粒子粒径为40-50nm。Ni纳米粒子和Mo2C纳米粒子均匀地锚定在碳载体上。
图4为实施例1制备的Ni-Mo2C/CNM的XRD图。由图可观察到Ni-Mo2C/CNM 中含有Ni单质,石墨碳和Mo2C特征衍射峰。
图5为实施例1制备的Ni-Mo2C/CNM的XPS谱图。由图可观察到Ni有Ni0和 Ni2+价态,Mo包含Mo2+,Mo4+和Mo6+价态。此外Ni-Mo2C/CNM复合材料还含有三种 N,分别为吡啶氮、吡咯氮和石墨氮。由C1s的能级谱图可以看出C-Mo键的存在与 XRD结果一致。
图6为实施例1制备的Ni-Mo2C/CNM与商业催化剂RuO2在1.0M KOH中催化 OER的LSV极化曲线对比图。在电流密度为10mA cm-2时,Ni-Mo2C/CNM所需过电位仅为294mV,优于商业的RuO2(358mV),表明本发明的催化剂具有更好的应用前景。
图7为实施例1制备的Ni-Mo2C/CNM与实施例2制备的对比催化剂Ni-Mo2C/C、 Mo2C/CNM和Ni/CNM在1.0M KOH中催化OER的LSV极化曲线对比图。在电流密度为10mA cm-2时,Ni-Mo2C/CNM所需过电位仅为294mV,优于实施例2制备的对比催化剂Ni-Mo2C/C(437mV)、Mo2C/CNM(513mV)和Ni/CNM(436mV),表明本发明的催化剂的优良催化性能是Ni、Mo、CNM三者的协同作用。
图8为实施例1制备的Ni-Mo2C/CNM与实施例2制备的对比催化剂Ni-Mo2C/C、 Mo2C/CNM和Ni/CNM修饰电极在1.0M KOH中OER的tafel曲线。Tafel斜率越小,说明电流密度增长越快,过电位(η)变化越小(即,反应速率常数较快),说明电催化性能越好。其中Ni-Mo2C/CNM和Ni-Mo2C/C修饰电极的Tafel斜率分别为109mV/dec和 150mV/dec,Ni-Mo2C/CNM的Tafel斜率与Ni-Mo2C/C相比显著降低,Ni-Mo2C/CNM 说明F127的加入改变了材料的形貌,碳纳米管大大提高了反应过程的动力学速率。 Ni-Mo2C/CNM的Tafel斜率优于实施例2制备的对比催化剂Ni-Mo2C/C(150mV/dec)、 Mo2C/CNM(295mV/dec)和Ni/CNM(135mV/dec),表明本发明的催化剂兼具Ni、 Mo、CNM三者的协同作用提供的较快速率。Ni-Mo2C/CNM的Tafel斜率与商业催化剂 RuO2(111mV/dec)相比略低,证明该催化剂Ni-Mo2C/CNM具有能与贵金属催化剂相媲美的催化活性。
图9为实施例1制备的Ni-Mo2C/CNM修饰电极在294mV电势下OER反应10h。在电流密度为10mA cm-2附近可以连续稳定的工作10h,证明其优秀的电化学稳定性。
实施例2、3、4:
与实施例1不同之处在于步骤(1)中分别为没有F127、没有硝酸镍和没有磷钼酸,其他与实施例1相同,得到的样品分别命名为Ni-Mo2C/C、Mo2C/CNM和Ni/CNM。
实施例5、6:
与实施例1不同之处在于步骤(2)所述高温加热分别为800℃和1000℃,其他与实施例1相同。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于,引入表面活性剂三嵌段两亲共聚物F127为软模板,制备出的催化剂Ni-Mo2C/CNM形貌为:碳纳米管构建的微球结构。
2.根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于,该催化剂掺杂了过渡金属Ni纳米粒子。
3.根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于,该催化剂掺杂了过渡金属Mo基材料。
4.根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于,该催化剂兼具Ni、Mo和CNM三者协同作用,缺一不可。
5.根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂的具体制备方法包括:
将F127溶解在磷钼酸和硝酸镍的混合溶液中,加入1 g三聚氰胺后90 ℃加热回流2 h,蒸发水分后得到催化剂前驱体。
6.将上述前驱体在60 ℃烘箱中放置12 h得到绿色薄膜,管式炉中惰性气体气氛下高温碳化:碳化条件为:以5 ℃/min的升温速度加热到900 ℃,保温2 h后自然降温得到黑色粉末,球磨机研磨后得到镍掺杂碳化钼/碳纳米管微球,即电解水析氧催化剂Ni-Mo2C/CNM。
7.根据权利要求1所述的F127软膜板还可以替换成P123等表面活性剂。
8.根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于,催化反应为碱性电解液。
9.根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于:还包括将制备得到的镍掺杂碳化钼/碳纳米管微球Ni-Mo2C/CNM应用作为电解水催化剂。
10.根据权利要求1所述的一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用,其特征在于:还包括将制备得到的镍掺杂碳化钼/碳纳米管微球Ni-Mo2C/CNM应用作为电解水催化剂为析氧催化剂。
CN202210151630.3A 2022-02-18 2022-02-18 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用 Pending CN114808010A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210151630.3A CN114808010A (zh) 2022-02-18 2022-02-18 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210151630.3A CN114808010A (zh) 2022-02-18 2022-02-18 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用

Publications (1)

Publication Number Publication Date
CN114808010A true CN114808010A (zh) 2022-07-29

Family

ID=82527855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210151630.3A Pending CN114808010A (zh) 2022-02-18 2022-02-18 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用

Country Status (1)

Country Link
CN (1) CN114808010A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747864A (zh) * 2022-10-19 2023-03-07 哈尔滨工业大学(深圳) 石墨烯封装非贵金属析氢电催化剂及其制备方法和应用
CN117802526A (zh) * 2024-02-29 2024-04-02 华电重工股份有限公司 一种pem电解水的非贵金属阴极析氢催化剂及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098432A2 (en) * 2006-02-17 2007-08-30 Monsanto Technology Llc Transition metal-containing catalysts and processes for their preparation and use as fuel cell catalysts
JP2012041623A (ja) * 2010-08-23 2012-03-01 Sharp Corp 水電解装置
CN105833871A (zh) * 2016-04-21 2016-08-10 长春吉大附中实验学校 一种富缺陷的钴镶嵌碳纳米管、制备方法及其应用
CN107352543A (zh) * 2017-07-13 2017-11-17 东莞理工学院 一种碳化钼微纳米粉体的制备方法
CN107999108A (zh) * 2017-12-13 2018-05-08 中国石油大学(华东) 一种氮磷共掺杂碳负载的碳化钼或碳化钨催化剂及其制备方法和应用
WO2020082443A1 (zh) * 2018-10-26 2020-04-30 苏州大学 Fe掺杂的MoS 2纳米材料及其制备方法和应用
CN111530492A (zh) * 2020-06-16 2020-08-14 浙江大学 氮掺杂碳纳米管包覆金属镍/碳化钼的复合电催化剂及其制法和应用
CN113652709A (zh) * 2021-07-07 2021-11-16 暨南大学 一种氮掺杂碳纳米管包裹镍铁/碳化钼及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098432A2 (en) * 2006-02-17 2007-08-30 Monsanto Technology Llc Transition metal-containing catalysts and processes for their preparation and use as fuel cell catalysts
JP2012041623A (ja) * 2010-08-23 2012-03-01 Sharp Corp 水電解装置
CN105833871A (zh) * 2016-04-21 2016-08-10 长春吉大附中实验学校 一种富缺陷的钴镶嵌碳纳米管、制备方法及其应用
CN107352543A (zh) * 2017-07-13 2017-11-17 东莞理工学院 一种碳化钼微纳米粉体的制备方法
CN107999108A (zh) * 2017-12-13 2018-05-08 中国石油大学(华东) 一种氮磷共掺杂碳负载的碳化钼或碳化钨催化剂及其制备方法和应用
WO2020082443A1 (zh) * 2018-10-26 2020-04-30 苏州大学 Fe掺杂的MoS 2纳米材料及其制备方法和应用
CN111530492A (zh) * 2020-06-16 2020-08-14 浙江大学 氮掺杂碳纳米管包覆金属镍/碳化钼的复合电催化剂及其制法和应用
CN113652709A (zh) * 2021-07-07 2021-11-16 暨南大学 一种氮掺杂碳纳米管包裹镍铁/碳化钼及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TING OUYANG等: "Heterostructures Composed of N-Doped Carbon Nanotubes Encapsulating Cobalt and b-Mo2C Nanoparticles as Bifunctional Electrodes for Water Splitting", ANGEW. CHEM. INT. ED., vol. 58, 31 December 2019 (2019-12-31), pages 4923 - 4928 *
YUCHUAN LIU等: "Surfactant-assisted hydrothermal synthesis of nitrogen doped Mo2C@C composites as highly efficient electrocatalysts for hydrogen evolution reaction", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 44, 8 January 2019 (2019-01-08), pages 3702 - 3710, XP085583502, DOI: 10.1016/j.ijhydene.2018.12.096 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747864A (zh) * 2022-10-19 2023-03-07 哈尔滨工业大学(深圳) 石墨烯封装非贵金属析氢电催化剂及其制备方法和应用
CN117802526A (zh) * 2024-02-29 2024-04-02 华电重工股份有限公司 一种pem电解水的非贵金属阴极析氢催化剂及其应用
CN117802526B (zh) * 2024-02-29 2024-05-31 华电重工股份有限公司 一种pem电解水的非贵金属阴极析氢催化剂及其应用

Similar Documents

Publication Publication Date Title
Liu et al. Surfactant-assisted hydrothermal synthesis of nitrogen doped Mo2C@ C composites as highly efficient electrocatalysts for hydrogen evolution reaction
CN110252335B (zh) 一种碳包覆镍钌纳米材料及其制备方法和应用
Gautam et al. Electrocatalyst materials for oxygen reduction reaction in microbial fuel cell
Feng et al. Cobalt-based hydroxide nanoparticles@ N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions
Oh et al. Metal-free N-doped carbon blacks as excellent electrocatalysts for oxygen reduction reactions
CN110479271B (zh) 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法
CN114808010A (zh) 一种镍掺杂碳化钼/碳纳米管微球电解水析氧催化剂及应用
Chang et al. Fabrication of bimetallic Co/Zn leaf blade structure template derived Co3O4-ZIF/Zn and its ORR catalytic performance for MFC
Yang et al. Cobalt oxides nanoparticles supported on nitrogen-doped carbon nanotubes as high-efficiency cathode catalysts for microbial fuel cells
CN113437314A (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN112652780A (zh) 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法
Chen et al. Enhanced electrochemical performance in microbial fuel cell with carbon nanotube/NiCoAl-layered double hydroxide nanosheets as air-cathode
Dong et al. Fe, N codoped porous carbon nanosheets for efficient oxygen reduction reaction in alkaline and acidic media
Wan et al. Building block nanoparticles engineering induces multi-element perovskite hollow nanofibers structure evolution to trigger enhanced oxygen evolution
Liu et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting
Xu et al. Trace N-doped manganese dioxide cooperated with Ping-pong chrysanthemum-like NiAl-layered double hydroxide on cathode for improving bioelectrochemical performance of microbial fuel cell
CN114196988B (zh) 一种用于电解水析氧的双金属硫化物/MXene复合体的制备方法
Yang et al. N-self-doped porous carbon derived from animal-heart as an electrocatalyst for efficient reduction of oxygen
CN113668008B (zh) 一种二硫化钼/钴碳纳米管电催化剂及其制备方法和应用
Song et al. Biochar-supported Fe3C nanoparticles with enhanced interfacial contact as high-performance binder-free anode material for microbial fuel cells
CN111068717A (zh) 一种钌单质修饰的硫掺杂石墨烯二维材料及其制备与应用
Wang et al. External and internal dual-controls: Tunable cavity and Ru–O–Co bond bridge synergistically accelerate the RuCoCu-MOF/CF nanorods for urea-assisted energy-saving hydrogen production
CN114164445A (zh) 基于掺杂和异质结策略构建的V-Ni3FeN/Ni@N-GTs全解水电催化剂
Qi et al. Improving bioelectrochemical performance by sulfur-doped titanium dioxide cooperated with Zirconium based metal–organic framework (S-TiO2@ MOF-808) as cathode in microbial fuel cells
CN111013619B (zh) 一种催化剂用碳化钼纳米棒及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination