CN110479271B - 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法 - Google Patents

一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法 Download PDF

Info

Publication number
CN110479271B
CN110479271B CN201910788685.3A CN201910788685A CN110479271B CN 110479271 B CN110479271 B CN 110479271B CN 201910788685 A CN201910788685 A CN 201910788685A CN 110479271 B CN110479271 B CN 110479271B
Authority
CN
China
Prior art keywords
preparation
catalyst
carbon nanosheet
hydrogen production
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910788685.3A
Other languages
English (en)
Other versions
CN110479271A (zh
Inventor
王庆涛
杨荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201910788685.3A priority Critical patent/CN110479271B/zh
Publication of CN110479271A publication Critical patent/CN110479271A/zh
Application granted granted Critical
Publication of CN110479271B publication Critical patent/CN110479271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本公开了一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法,是将硝酸镍、2,6‑萘二甲酸、三乙烯二胺溶于有机溶剂中,超声分散均匀后在100~180℃下溶剂热反应10~48 h;反应结束后冷却至室温,过滤,产物用N,N‑二甲基甲酰胺及乙醇各洗涤,干燥,得到含Ni金属有机框架前驱体粉末Ni‑MOF;然后将Ni‑MOF在氮气保护下进行退火处理,得到二维镍碳纳米片催化剂Ni@C。电化学性能测试结果表明,本发明制备的Ni@C催化剂在碱性环境下具有稳定、高效催化析氢性能,且其制备成本远远低于Pt/C,在电解水产氢领域具有很好的前景。

Description

一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法
技术领域
本发明涉及一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法,属于电解水催化和复合材料技术领域。
背景技术
随着社会的快速发展,能源危机以及环境污染问题越来越严重。因此,风能、太阳能、地热能以及氢能等清洁能源有望用于替代传统的化石能源。而氢气被认为是不产生有害副产品的理想的可再生的清洁能源之一。目前商业生产氢气的路线主要以化石燃料为原料,该过程中所用化石燃料主要由碳、氢、氧、氮、硫和磷等元素组成,在转化过程中会释放出二氧化碳、氮氧化物以及磷氧化物等污染环境的物质,同时还会产生粉尘、烟雾等污染物质,这与绿色可持续发展的理念是相违背的。而通过电解水产氢是绿色、清洁的制备可再生能源氢气的关键步骤。目前商业所用电解水产氢气主要是Pt/C催化剂,但由于Pt在地壳中的丰度低、价格昂贵,不利于大规模、普遍性的使用。所以科研工作者志在寻找其它在地壳中丰度高、价格低廉的高效催化剂,如Fe、Co、Ni、Cu及Mo等过渡金属的氧化物、氢氧化物、硫化物、硒化物、氮化物、磷化物以及碳化物,来代替贵金属的Pt/C催化剂。由于上述材料具有低的导电率,且对酸、碱的敏感性,导致它们的催化稳定性差,并不是电解水催化剂的最优解。而纳米碳材料具有成本低廉、比表面积大、对酸、碱有相对较好的耐受性、导电性较好、有较高的稳定性,且材料表面易修饰等特点,有望用于电解水产氢催化剂。
金属有机框架(MOFs)是由金属离子或离子簇作为节点,通过配位键与有机配体桥连自组装形成的有机无机杂化晶体材料,它是一种具有多孔结构的新型晶体材料,是目前发现的具有超大比表面积之一的材料,且具有孔径大小可调节性、大孔隙率、拥有高密度且分布均匀的金属活性位点、有序性、可修饰性及良好的催化性等特点。因此,基于MOFs转化制备的金属与碳的纳米材料,由于具有均匀分布的催化活性位点,利于电子传输的碳材料,因此具有较高的电催化活性,因此,用于制备碳纳米催化剂具有成本良好的优势。
发明内容
本发明的目的是提供一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法。
一、二维镍碳纳米片催化剂的制备
本发明二维Ni@C纳米片的制备方法,是将硝酸镍、2,6-萘二甲酸、三乙烯二胺溶于有机溶剂中,超声分散均匀后在100~180℃下溶剂热反应10~48 h;反应结束后冷却至室温,过滤,产物用N,N-二甲基甲酰胺及乙醇各洗涤,干燥,得到含Ni金属有机框架前驱体粉末(Ni-MOF);然后将含Ni金属有机框架前驱体粉末在氮气保护下进行退火处理,得到二维镍碳纳米片催化剂,标记为Ni@C。
所述硝酸镍、2,6-萘二甲酸、三乙烯二胺的摩尔比为1:1:0.2~1:1:2。
所述有机溶剂为N,N-二甲基甲酰胺与甲醇的混合溶液,且N,N-二甲基甲酰胺与甲醇的体积比为1:1~3:1。
所述干燥在50~65℃下真空干燥10~12h。
所述退火处理温度为600~1000℃(升温速率为2~8℃/ min),退火时间为0.5~5 h。退火处理的目的是将金属离子和碳的热还原,让金属纳米粒子附着在碳纳米片上。
二、Ni@C纳米材料的结构表征
1、扫描电镜(SEM)图像分析
图1为含Ni金属有机框架前驱体Ni-MOF的SEM图像。从图1中可以看出,制备的Ni-MOF是花瓣状排列的二维纳米片层材料。
图2是Ni@C纳米材料的SEM图像。可以看出,Ni@C纳米材料也是花瓣状排列的二维纳米片层结构。二维纳米片结构有利于电子的转移,对提高HER性能非常有利。Ni@C纳米材料呈纳米片堆积成的多孔花瓣结构,比表面积大,可以暴露更多的活性位点,并提供更多的电子转移通路以促进电催化性能。通过对比图1和图2发现,碳化之后的Ni@C片层的厚度基本不发生变化,但片层与片层之间的间距变小,更有利于形成互联导电网络,且使得电荷传输通路缩短。
2、透射电镜(TEM)图像分析
图3、图4是Ni@C纳米材料的低倍率、高倍率的透射电镜图片。从图3中看出Ni@C材料是二维的碳纳米片和附着在碳纳米片上的Ni纳米颗粒。从图4可以看出Ni@C纳米材料主要是碳包覆金属Ni纳米颗粒,金属纳米颗粒边上存在少量石墨化的碳。即Ni 纳米颗粒表面包覆一层石墨碳并均匀地嵌入二维无定形碳基质中。碳纳米片能提升材料导电性,同时,Ni纳米颗粒表面包覆了一层石墨碳(石墨碳层的厚度为2~20 nm),能够避免Ni纳米颗粒的团聚,提升催化稳定性。
3、X射线衍射(XRD)分析
图5是Ni@C及Ni的标准卡片的XRD图。图中不同温度碳化的Ni@C纳米材料在44.8°、52.2°、76.8°处的特征峰对应于金属镍的(111)、(200)和(220)晶面。在20°~30°处没有出现对应于石墨化碳(002)晶面,说明形成的主要是非晶态的C,这与图4中的HR-TEM图的结果相符。
三、Ni@C纳米材料的电化学析氢性能测试
图6为本发明制备的Ni@C纳米材料、玻碳电极GCE和Pt/C在碱性条件下的析氢的线性扫描伏安曲线图。从图6中可以看到,GCE电极的电化学析氢性能几乎为零,Ni@C纳米材料、Pt/C滴在GCE上的电极在电流密度是10 mA cm-2时,Ni@C催化剂的过电位分别是190 mV、26 mV。说明Ni@C纳米材料在碱性环境下具有相对高效的催化析氢性能。
图7为本发明制备的Ni@C纳米材料以及Pt/C的塔菲尔斜率图。从图7中可以看到,Ni@C纳米材料、Pt/C的塔菲尔斜率分别为116.1 mV dec-1、55.85 mV dec-1。说明Ni@C纳米材料在电催化析氢过程中的决速步骤是Volmer步骤,Pt/C在电催化析氢过程中的决速步骤是Heyrovsky步骤。
从图6、7可以看出,当电流密度是10 mA cm-2时,Ni@C催化剂的过电位是190 mV,塔菲尔斜率是116.1 mV dec-1。而裸的玻碳电极没有析氢性能。虽然本发明制备的Ni@C催化剂性能较Pt/C的析氢性能差一点,但是制备Ni@C的成本远远低于Pt/C,因此电解水产氢领域具有很好的前景。
附图说明
图1是本发明制备的Ni-MOF纳米材料的SEM图。
图2是本发明制备的Ni@C纳米材料的SEM图。
图3是本发明制备的Ni@C纳米材料低倍率的透射电镜图片。
图4是本发明制备的Ni@C纳米材料高倍率的透射电镜图片。
图5是本发明制备的Ni@C纳米材料的X射线粉末衍射图谱。
图6是本发明制备的Ni@C纳米材料、GCE和Pt/C在碱性条件下的析氢的线性扫描伏安曲线图。
图7是本发明制备的Ni@C纳米材料、GCE和Pt/C在碱性条件下的Tafel斜率图。
具体实施方式
下面通过具体实施例对本发明Ni@C纳米材料的合成及性能作进一步说明。
实施例1
(1)Ni-MOF的制备:将硝酸镍、2,6-萘二甲酸及三乙烯二胺按1:1:0.2比例溶于溶剂(N, N-二甲基甲酰胺与甲醇的体积比1:1)中,超声10 min;将混合物转移到聚四氟乙烯内衬的反应釜中,在100 ℃温度下溶剂热反应10 h;反应结束后冷却到室温,将产物过滤,用N,N-二甲基甲酰胺及乙醇各洗涤三次,产物在真空60℃下干燥12h,得驱体粉末Ni-MOF;
(2)Ni@C的制备:将Ni-MOF置于管式炉中,在氮气保护下,升温至600℃(升温速率为8 ℃ min-1)退火处理5h,得到二维镍碳纳米片Ni@C;
(3)Ni@C的电化学析氢性能:在1 M KOH溶液中,当电流密度为10 mA cm-2时,过电位597 mV,塔菲尔斜率为232.4 mV dec-1
实施例2
(1)Ni-MOF的制备:将硝酸镍、2,6-萘二甲酸及三乙烯二胺按1:1:0.6比例溶于溶剂(N, N-二甲基甲酰胺与甲醇的体积比2:1)中,超声10 min;将混合物转移到聚四氟乙烯内衬的反应釜中,在120℃溶剂热反应15h;反应结束后冷却到室温,将产物过滤后用N,N-二甲基甲酰胺及乙醇各洗涤三次,产物在真空60 ℃下干燥12h,得驱体粉末Ni-MOF;
(2)Ni@C的制备:将Ni-MOF置于管式炉中,在氮气保护下,升温至700℃(升温速率为2℃ min-1)退火处理1h,得到二维镍碳纳米片Ni@C。
(3)Ni@C的电化学析氢性能:在1 M KOH溶液中,当电流密度是10 mA cm-2时,过电位437 mV,塔菲尔斜率为212.3 mV dec-1
实施例3
(1)Ni-MOF的制备:将硝酸镍、2,6-萘二甲酸及三乙烯二胺按1:1:1比例溶于溶剂(N, N-二甲基甲酰胺与甲醇的体积比3:1)中,超声10 min;将混合物转移到聚四氟乙烯内衬的反应釜中,在130 ℃溶剂热反应20 h;反应结束后冷却到室温,将产物过滤后用N,N-二甲基甲酰胺及乙醇各洗涤三次,产物在真空60 ℃下干燥12h,得驱体粉末Ni-MOF;
(2)Ni@C的制备:将Ni-MOF置于管式炉中,在氮气保护下,升温至800℃(升温速率为3℃ min-1)退火处理1h,得到二维镍碳纳米片Ni@C;
(3)Ni@C的电化学析氢性能:在1 M KOH溶液中,当电流密度是10 mA cm-2时,过电位589 mV,塔菲尔斜率为180.4 mV dec-1
实施例4
(1)Ni-MOF的制备::将硝酸镍、2,6-萘二甲酸及三乙烯二胺按1:1:0.6比例溶于溶剂(N, N-二甲基甲酰胺与甲醇的体积比1:1)中,超声10 min;将混合物转移到聚四氟乙烯内衬的反应釜中,在150 ℃溶剂热反应10 h;反应结束后冷却到室温,产物过滤后用N,N-二甲基甲酰胺及乙醇各洗涤三次,产物在真空60 ℃下干燥12h,得驱体粉末Ni-MOF;
(2)Ni@C的制备:将Ni-MOF置于管式炉中,在氮气保护下,升温至950℃(升温速率为2.5℃ min-1)退火处理0.5h,得到二维镍碳纳米片Ni@C;
(3)Ni@C的电化学析氢性能:在1 M KOH溶液中,当电流密度是10 mA cm-2时,过电位397 mV,塔菲尔斜率为162.4 mV dec-1
实施例5
(1)Ni-MOF的制备:将硝酸镍、2,6-萘二甲酸及三乙烯二胺按1:1:0.6比例溶于溶剂(N, N-二甲基甲酰胺与甲醇的体积比1:1)中,超声10 min;将混合物转移到聚四氟乙烯内衬的反应釜中,在180 ℃溶剂热反应10 h;反应结束后冷却到室温,将产物过滤后用N,N-二甲基甲酰胺及乙醇各洗涤三次,产物在真空60 ℃下干燥12h,得驱体粉末Ni-MOF;
(2)Ni@C的制备:将Ni-MOF置于管式炉中,在氮气保护下,升温至1000℃(升温速率为8 ℃ min-1)退火处理1.5h,得到二维镍碳纳米片Ni@C;
(3)Ni@C的电化学析氢性能:在1 M KOH溶液中,当电流密度是10 mA cm-2时,过电位479 mV,塔菲尔斜率为143.43 mV dec-1

Claims (3)

1.一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法,将硝酸镍、2,6-萘二甲酸、三乙烯二胺溶于有机溶剂中,超声分散均匀后在100~180℃下溶剂热反应10~48 h;反应结束后冷却至室温,过滤,产物用N,N-二甲基甲酰胺及乙醇各洗涤,干燥,得到含Ni金属有机框架前驱体粉末;然后将含Ni金属有机框架前驱体粉末在氮气保护下进行退火处理,得到二维镍碳纳米片催化剂;
所述硝酸镍、2,6-萘二甲酸、三乙烯二胺的摩尔比为1:1:0.2~1:1:2;
所述有机溶剂为N,N-二甲基甲酰胺与甲醇的混合溶液,且N,N-二甲基甲酰胺与甲醇的体积比为1:1~3:1。
2.如权利要求1所述一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法,其特征在于:所述退火处理温度为600~1000℃,退火时间为0.5~5 h。
3.如权利要求1所述一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法,其特征在于:所述干燥在50~65℃下真空干燥10~12h。
CN201910788685.3A 2019-08-26 2019-08-26 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法 Active CN110479271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910788685.3A CN110479271B (zh) 2019-08-26 2019-08-26 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910788685.3A CN110479271B (zh) 2019-08-26 2019-08-26 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110479271A CN110479271A (zh) 2019-11-22
CN110479271B true CN110479271B (zh) 2022-06-14

Family

ID=68553953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910788685.3A Active CN110479271B (zh) 2019-08-26 2019-08-26 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110479271B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813363B (zh) * 2019-12-04 2022-04-08 南京工程学院 一种氮硫掺杂多孔碳改性碳纳米管担载Pt-Ni合金催化剂及其制备方法
CN111744554A (zh) * 2020-07-31 2020-10-09 西南大学 一种钯掺杂有机金属框架催化材料制备方法及应用
CN112138701A (zh) * 2020-10-20 2020-12-29 中国石油大学(华东) Ni0.85Se@NC电催化材料的制备方法
CN112354549A (zh) * 2020-10-23 2021-02-12 福建师范大学 一种金属复合物多孔纳米片制备方法
CN113652715B (zh) * 2021-08-13 2022-09-20 中南林业科技大学 一种无粘结剂的自支撑电催化产氢材料的制备方法
CN115069252B (zh) * 2022-07-14 2023-08-15 齐鲁工业大学 一种三维纳米花状镍碳催化材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289614A (zh) * 2015-03-06 2016-02-03 深圳市国创新能源研究院 一种用于制氢的镍-碳基催化剂材料的制备方法
CN112473708A (zh) * 2020-11-27 2021-03-12 中国林业科学研究院林产化学工业研究所 一种催化油脂加氢生产生物航空燃油用催化剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289614A (zh) * 2015-03-06 2016-02-03 深圳市国创新能源研究院 一种用于制氢的镍-碳基催化剂材料的制备方法
CN112473708A (zh) * 2020-11-27 2021-03-12 中国林业科学研究院林产化学工业研究所 一种催化油脂加氢生产生物航空燃油用催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Monitoring adsorption-induced switching by 129Xe NMR spectroscopy in a new metal–organic framework Ni2(2,6-ndc)2(dabco);Nicole Klein,et.al.;《Physical Chemistry Chemical Physics》;20100809;第12卷;第11779页第2.1节 *

Also Published As

Publication number Publication date
CN110479271A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN110479271B (zh) 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法
CN108385124B (zh) 一种用于析氢反应的过渡族金属/碳管/石墨烯电催化剂的制备方法
Xu et al. Facile fabrication of molybdenum compounds (Mo2C, MoP and MoS2) nanoclusters supported on N-doped reduced graphene oxide for highly efficient hydrogen evolution reaction over broad pH range
Peng et al. N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting
Cao et al. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite microrod arrays
CN109046408B (zh) 一种复合析氢电催化材料及其制备方法和应用
CN109847778B (zh) 一种用于电解水析氧的二硫化钴/碳氮复合材料及其合成方法
Niu et al. Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery
Tang et al. Metal–organic frameworks-derived metal phosphides for electrochemistry application
CN110639534B (zh) 一种析氧电催化材料及其制备方法和应用
Qu et al. Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
Ye et al. Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution
Li et al. Te-doped NiFe2O4 stabilized by amorphous carbon layers derived from one-step topological transitions of NiFe LDHs with significantly enhanced oxygen evolution reaction
Ma et al. Selective sulfuration, phosphorization and selenylation: a universal strategy toward Co-Ni-M@ CeO2/NF (M= O, S, P and Se) interface engineering for efficient water splitting electrocatalysis
Loni et al. Cobalt-based electrocatalysts for water splitting: an overview
CN112481638A (zh) 生物基碳材料负载无机物复合电催化剂及其制备方法
Yang et al. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity
Ma et al. Doping-induced morphology modulation for boosting the capacity and stability of nanocrystals assembled Ni1-xCoxSe2
Zhao et al. Low-dimensional heteroatom-doped carbon nanomaterials prepared with thermally removable templates for the electrocatalytic reduction of oxygen
Nie et al. In-situ growing low-crystalline Co9S8Ni3S2 nanohybrid on carbon cloth as a highly active and ultrastable electrode for the oxygen evolution reaction
CN114196988B (zh) 一种用于电解水析氧的双金属硫化物/MXene复合体的制备方法
Xie et al. Ultrasmall Co-NiP embedded into lantern shaped composite achieved by coordination confinement phosphorization for overall water splitting
Li et al. Coordination confinement pyrolysis to Flower-like nanocomposites composed of ultrathin nanosheets with embedded ultrasmall CoP nanoparticles for overall water splitting
CN110876961B (zh) Co/Mo2C-MOF树叶状的纳米片、制备方法及其作为电催化全分解水催化剂的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant