WO2020050137A1 - ピペリレンの製造方法 - Google Patents

ピペリレンの製造方法 Download PDF

Info

Publication number
WO2020050137A1
WO2020050137A1 PCT/JP2019/033981 JP2019033981W WO2020050137A1 WO 2020050137 A1 WO2020050137 A1 WO 2020050137A1 JP 2019033981 W JP2019033981 W JP 2019033981W WO 2020050137 A1 WO2020050137 A1 WO 2020050137A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
piperylene
separation
mass
hydrocarbon mixture
Prior art date
Application number
PCT/JP2019/033981
Other languages
English (en)
French (fr)
Inventor
鈴木 貴博
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201980042262.5A priority Critical patent/CN112368253B/zh
Priority to SG11202101704VA priority patent/SG11202101704VA/en
Priority to JP2020541168A priority patent/JP7367684B2/ja
Priority to KR1020217005400A priority patent/KR102654733B1/ko
Priority to ES19857954T priority patent/ES2956818T3/es
Priority to US17/269,252 priority patent/US11905242B2/en
Priority to EP19857954.2A priority patent/EP3848344B1/en
Publication of WO2020050137A1 publication Critical patent/WO2020050137A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/145One step being separation by permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/10Alkenes with five carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2669Distillation

Definitions

  • the present invention relates to a method for producing piperylene, and more particularly to a method for producing piperylene from a hydrocarbon mixture derived from a petroleum fraction having 5 carbon atoms.
  • extractive distillation has been used as a method for separating and recovering useful components such as isoprene from a mixture of hydrocarbons having 5 carbon atoms, such as a petroleum fraction having 5 carbon atoms, which is obtained when cracking naphtha to produce ethylene.
  • the method used is known.
  • Patent Document 1 an extraction residue (raffinate) obtained after separating isoprene from a C5 fraction by extractive distillation is hydrogenated, and the obtained hydride is returned to an ethylene center to be used as a gasoline base material.
  • Techniques for using as a raw material for ethylene crackers have been proposed.
  • a hydrocarbon mixture having a predetermined composition in which a target component is recovered from a petroleum fraction having 5 carbon atoms and remains, may contain piperylene and cyclic hydrocarbon.
  • an object of the present invention is to provide a method for producing piperylene, which can produce piperylene with high purity from a hydrocarbon mixture having a predetermined composition.
  • an object of the present invention is to advantageously solve the above-mentioned problems, and a method for producing piperylene of the present invention produces piperylene from a hydrocarbon mixture derived from a petroleum fraction having 5 carbon atoms.
  • the method for producing piperylene wherein the hydrocarbon mixture has a piperylene content of 60% by mass or more and 80% by mass or less, and a cyclic hydrocarbon content of 20% by mass or more and 40% by mass or less.
  • the present invention is characterized by including a membrane separation step of separating a hydrocarbon mixture by a zeolite membrane to obtain a piperylene-enriched isolate. According to such a production method, high-purity piperylene can be produced from the hydrocarbon mixture having the predetermined composition.
  • the membrane separation step is preferably performed according to a pervaporation method.
  • the zeolite membrane is a silylated zeolite membrane that is silylated in a liquid phase.
  • the membrane separation step according to the pervaporation method by using a silylated zeolite membrane that has been silylated in a liquid phase, piperylene with higher durability and higher purity can be produced.
  • the zeolite membrane is a separation membrane having a porous separation layer on a porous support, and the porous support is made of shirasu porous glass or silicon carbide. Is preferred. When the porous support is made of shirasu porous glass or silicon carbide, it becomes possible to produce piperylene with higher durability and higher purity.
  • the method for producing piperylene of the present invention is a method for producing piperylene from a hydrocarbon mixture derived from a petroleum fraction having 5 carbon atoms.
  • the method for producing piperylene of the present invention uses a hydrocarbon mixture having a piperylene content of 60% by mass or more and 80% by mass or less and a cyclic hydrocarbon content of 20% by mass or more and 40% by mass or less as a raw material. And a membrane separation step of separating a hydrocarbon mixture with a zeolite membrane to obtain a piperylene-enriched isolate.
  • the hydrocarbon mixture which is a raw material used in the method for producing piperylene of the present invention, and each step that can be included in the method for producing piperylene of the present invention will be sequentially described.
  • a hydrocarbon mixture derived from a petroleum fraction having 5 carbon atoms as a raw material (hereinafter, also referred to as a “hydrocarbon mixture as a raw material”) has a piperylene content of 60% by mass or more and 80% by mass or less, The content ratio of the cyclic hydrocarbon is 20% by mass or more and 40% by mass or less.
  • the hydrocarbon mixture as a raw material may optionally contain other components.
  • the content ratio of other components is 20% by mass or less, preferably 5% by mass or less, and may be 0% by mass.
  • the cyclic hydrocarbon is not particularly limited, and includes cyclopentane, 1-methylcyclobutane, cyclopentene, 1-methylcyclobutene, cyclopentadiene, and the like.
  • Other components include isopentane, isoamylene, n-pentane, pentene, and the like.
  • the hydrocarbon mixture as a raw material can be produced according to any method as long as the above composition is satisfied.
  • a hydrocarbon mixture as a raw material can be obtained using a hydrocarbon production apparatus according to the schematic configuration shown in FIG.
  • the production apparatus 100 shown in FIG. 1 is a production apparatus mainly used for producing dicyclopentadiene, isoprene and the like from a petroleum fraction having 5 carbon atoms.
  • the hydrocarbon mixture (ie, petroleum distillate having 5 carbon atoms) as a primary feed introduced into such a production apparatus is composed of isoprene and piperylene, dicyclopentadiene and cyclopentadiene, 5 carbon atoms and carbon-carbon distillate.
  • the manufacturing apparatus 100 includes the dimerizer 11 and the pre-distillation tower 12. Further, the production apparatus 100 includes a first extractive distillation column 21 for extracting and distilling the extract to be extracted including the pretreated mixture flowing out of the predistillation column 12, and a fraction flowing out from the bottom of the first extractive distillation column 21. It further includes a stripping tower 22 for separating the extraction solvent from (A), and a first distillation tower 31 for distilling a fraction obtained by separating the extraction solvent from the fraction (A) in the stripping tower 22.
  • the production apparatus 100 serves as an isoprene purification unit for purifying the fraction (C) flowing out from the top of the first distillation column 31 to obtain high-purity isoprene, and the second extractive distillation into which the fraction (C) flows.
  • a column 41, a stripping column 42 for separating a fraction flowing from the bottom of the second extractive distillation column 41 into a residue and an extraction solvent, and a fraction flowing out from the top of the second extractive distillation column 41 is distilled.
  • a second distillation column 43 and a purification column 44 for purifying a fraction flowing out of the top of the second distillation column 43 are provided.
  • the production apparatus 100 includes a distillation column 51 as a dicyclopentadiene purification unit for purifying a fraction (E) flowing out from the bottom of the pre-distillation column 12 to obtain high-purity dicyclopentadiene.
  • the petroleum fraction having 5 carbon atoms is firstly dimerized by the dimerizer 11 to dimerize cyclopentadiene in the petroleum fraction having 5 carbon atoms to obtain dicyclopentadiene. To obtain a mixture. Then, the obtained mixture containing dicyclopentadiene is distilled in the pre-distillation tower 12 to obtain a pre-treated mixture from the top and a dicyclopentadiene-enriched fraction from the bottom. (E) is obtained.
  • the pretreated mixture is subjected to extractive distillation in the first extractive distillation column 21, and the fraction (A) enriched in isoprene and piperylene is more soluble in the extraction solvent used for extractive distillation than isoprene and piperylene. And a fraction (B) enriched in low linear and branched hydrocarbons.
  • An extraction solvent is separated from the obtained fraction (A) in the stripping tower 22. Then, in the first distillation column 31, the fraction (A) from which the extraction solvent has been removed is distilled, and a fraction (C) enriched in isoprene and a fraction (D) enriched in piperylene.
  • the fraction (C) can be separated into isoprene, 2-butyne and the like via the second extraction distillation column 41, the second distillation column 43, the purification column 44 and the like.
  • the fraction (D) obtained in the first distillation column 31 has a piperylene content of 60% by mass or more and 80% by mass or less, and a cyclic hydrocarbon content of 20% by mass or more and 40% by mass. It may correspond to the following hydrocarbon mixtures:
  • a hydrocarbon mixture derived from a petroleum fraction having 5 carbon atoms, which satisfies the above-described composition is subjected to membrane separation using a zeolite membrane to obtain a piperylene-enriched isolate.
  • a plurality of membrane separations can be performed without any particular limitation as long as one or more membrane separations are performed in one membrane separation step.
  • the concentration of the obtained piperylene can be further increased.
  • the upper limit of the number of times of membrane separation in one membrane separation step is preferably three times, and more preferably two times.
  • the membrane separation step can be performed according to a gas permeation method, a pervaporation method, or the like without any particular limitation. Especially, it is preferable to perform a membrane separation process according to a pervaporation method.
  • the "pervaporation method” refers to a method in which a liquid hydrocarbon mixture is supplied to a zeolite membrane having a reduced pressure on the permeation side, and a part of the liquid hydrocarbon mixture is contained in the zeolite membrane. By diffusion and permeation to reach the permeate side of the zeolite membrane to obtain a vaporized separated product.
  • the membrane separation step in accordance with the pervaporation method, it is possible to suppress clogging of the zeolite membrane and to prevent deposits from remaining on the zeolite membrane surface. More specifically, due to the flow of the liquid hydrocarbon mixture on the supply side surface of the zeolite membrane where the liquid hydrocarbon mixture comes into contact, the non-permeable components remain in the pores of the zeolite membrane and become clogged. And the non-permeation component remaining on the film surface can be effectively suppressed. Therefore, by employing the pervaporation method, it is possible to prolong the usable period without replacing, cleaning, or regenerating the zeolite membrane, and to produce piperylene with high durability and high purity. Will be able to
  • the pressure applied to the liquid hydrocarbon mixture on the supply side, and the temperature at which the liquid hydrocarbon mixture is heated on the supply side can be appropriately controlled so that the hydrocarbon mixture does not evaporate.
  • the heating temperature of the hydrocarbon mixture on the supply side is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and particularly preferably 75 ° C. or lower.
  • the pressure can be appropriately controlled based on the temperature conditions so that the hydrocarbon mixture does not vaporize, but the pressure difference between the supply side and the permeation side is preferably 200 kPa or more and 1.1 MPa or less.
  • the membrane separation can be efficiently performed without applying an excessively high pressure to the hydrocarbon mixture on the supply side.
  • the heating temperature of the hydrocarbon mixture on the supply side is preferably 10 ° C. or higher, more preferably 15 ° C. or higher.
  • the permeation flux in the membrane separation step can be increased, and piperylene can be efficiently produced.
  • the zeolite membrane used in the membrane separation step may be a porous support having a plurality of pores, such as glass such as shirasu porous glass; silicon dioxide (silica), silicon carbide (silicon carbide), or titania. It can be manufactured according to a known method as disclosed in WO 2016/121377 using a ceramic such as ceramics and a porous body made of a metal such as stainless steel. Among the porous bodies, a porous body made of shirasu porous glass or silicon carbide is preferable. When the porous support is made of shirasu porous glass or silicon carbide, it becomes possible to produce piperylene with higher durability and higher purity.
  • porous supports according to the above enumeration hardly cause a solid acid reaction even when they are brought into contact with piperylene which is a diolefin, and thus can be suitably used in the production of piperylene.
  • zeolite membrane a separation membrane having a porous separation layer containing an MFI-type zeolite on such a porous support is preferable.
  • the zeolite membrane used in the membrane separation step is preferably a zeolite membrane that has been subjected to a silylation treatment using a silylating agent.
  • a silylating agent examples include hexamethyldisilazane, trimethylchlorosilane, dimethyldichlorosilane and the like.
  • the silylating agent preferably does not contain a halogen atom, and among the silylating agents listed above, hexamethyldisilazane is particularly preferable. If the silylating agent does not contain a halogen atom, it is possible to suppress the zeolite membrane from being deteriorated by the silylation treatment.
  • the method of the silylation treatment is not particularly limited, and includes a gas-phase silylation method including contacting a zeolite membrane with a silylating agent in a vapor state, and a silylation agent in a liquid state.
  • Liquid silylation method comprising contacting a zeolite membrane with a liquid.
  • a zeolite membrane is contacted with a vaporization step of vaporizing the silylation agent according to a known vaporization method such as bubbling, and vapor of the silylation agent obtained in the vaporization step. And a steam contacting step.
  • the contact time in the gas-phase silylation method can be, for example, 12 hours or more and 24 hours or less.
  • an immersion step of immersing the zeolite membrane in a liquid containing a silylating agent is performed.
  • the liquid containing the silylating agent may be a liquid containing only the liquid silylating agent, or may be a solution containing the silylating agent and a solvent.
  • the solvent is not particularly limited, and a known solvent can be used.
  • the immersion time in the liquid-phase silylation method can be, for example, 12 hours or more and 24 hours or less.
  • the silylation treatment of the zeolite membrane it is preferable to employ a liquid silylation method as a silylation treatment method.
  • a liquid silylation method By performing the membrane separation step using the silylated zeolite membrane that has been silylated in the liquid phase, the usable period can be extended without replacing the zeolite membrane, cleaning, or regenerating, etc. Sustainable, high-purity piperylene can be produced.
  • the separated material separated in the membrane separation step and present on the permeate side of the zeolite membrane can be recovered by a known method such as cooling.
  • a known method such as cooling.
  • the separated material present on the permeate side of the zeolite membrane exists in a gaseous state, and is condensed by cooling. It can be recovered in liquid form.
  • the concentration of piperylene in the separated product recovered in the recovery step is preferably 90% by mass or more, and more preferably 94% by mass or more.
  • the concentration of the cyclic hydrocarbon in the separated product is preferably 10% by mass or less, more preferably 6% by mass or less, and further preferably 1% by mass or less.
  • the pressure is a gauge pressure unless otherwise specified.
  • Example 1 Liquid-phase silylated zeolite membrane obtained as follows for a hydrocarbon mixture (a) having a piperylene content of 62% by mass to 65% by mass and a cyclic hydrocarbon content of 35% by mass to 38% by mass. was used to perform a membrane separation step according to a pervaporation method.
  • Preparation of zeolite membrane> ⁇ Preparation of aqueous sol for seed crystal >> 152.15 g of a 22.5% by mass aqueous solution of tetrapropylammonium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd.) (34.23 g in terms of tetrapropylammonium hydroxide as a structure-directing agent) and 48.44 g of ultrapure water The mixture was mixed with a magnetic stirrer.
  • zeolite seed crystal The aqueous sol for seed crystals was placed in a stainless steel pressure vessel with an inner tube made of a fluororesin and reacted (hydrothermal synthesis) in a 130 ° C. hot air dryer for 48 hours. Next, the obtained reaction solution was subjected to centrifugal separation with a centrifuge (4000 rpm) for 30 minutes to perform solid-liquid separation, and a solid content was recovered. Then, the collected solid was dried in a constant temperature dryer at 80 ° C. for 12 hours, and then the obtained dried solid was crushed in a mortar to obtain a zeolite seed crystal. X-ray diffraction measurement confirmed that the obtained zeolite seed crystal had an MFI type structure. The average particle size of the zeolite seed crystal was 400 nm.
  • Adhesion of zeolite seed crystal to porous support >> Shirasu porous glass (manufactured by SP G Techno Co., Ltd., pore diameter: 1.4 ⁇ m, outer diameter ⁇ : 10 mm, length L: 100 mm) as a cylindrical porous support, and is denoted by “SPG” in the table. )
  • SPG Shirasu porous glass
  • ⁇ Preparation of aqueous sol for porous separation layer >> 4.99 g of a tetrapropylammonium hydroxide aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd.) having a concentration of 22.5% by mass (1.12 g in terms of tetrapropylammonium hydroxide as a structure-directing agent) and tetrapropylammonium as a structure-directing agent 0.74 g of bromide (manufactured by Wako Pure Chemical Industries, Ltd.) and 238.79 g of ultrapure water were mixed with a magnetic stirrer at room temperature for 10 minutes.
  • a tetrapropylammonium hydroxide aqueous solution manufactured by Tokyo Chemical Industry Co., Ltd.
  • bromide manufactured by Wako Pure Chemical Industries, Ltd.
  • 238.79 g of ultrapure water were mixed with a magnetic stirrer at room temperature for 10 minutes.
  • tetraethoxysilane manufactured by SIGMA-ALDLIC
  • a magnetic stirrer at room temperature for 60 minutes to prepare an aqueous sol for forming a porous separation layer.
  • porous separation layer ⁇ formation of porous separation layer
  • the aqueous sol for a porous separation layer obtained above was placed in a stainless steel pressure vessel.
  • the porous support to which the zeolite seed crystal is attached is immersed in the aqueous sol for a porous separation layer, and reacted (hydrothermal synthesis) in a hot air dryer at 185 ° C. for 24 hours (hydrothermal synthesis).
  • the porous support having the porous separation layer formed thereon was subjected to boiling washing twice for one hour using distilled water as a washing liquid. Thereafter, the porous support having the porous separation layer formed thereon was dried in a constant temperature drier at 80 ° C. for 12 hours.
  • baking was performed to remove the structure directing agents (tetrapropylammonium hydroxide, tetrapropylammonium bromide) contained in the porous separation layer, and a separation membrane was obtained.
  • the firing conditions were as follows: heating rate: 0.25 ° C./min, firing temperature: 500 ° C., firing time (holding time): 20 hours, and cooling rate: 0.38 ° C./min.
  • the layer thickness of the porous separation layer was measured.
  • X-ray diffraction measurement of the porous separation layer was performed to obtain an X-ray diffraction pattern. As a result, the obtained X-ray diffraction pattern confirmed that the porous separation layer contained MFI-type zeolite.
  • ⁇ silylation step Hexamethyldisilazane was used as a silylating agent.
  • the separation membrane obtained above is immersed in normal temperature liquid hexamethyldisilazane for 24 hours at room temperature (JIS Z 8703: 1983), pulled up, dried at 150 ° C. for 4 hours, and dried in a liquid phase.
  • a silylated zeolite membrane silylated in the inside was obtained.
  • membrane separation was performed using a test apparatus 200 having a schematic configuration as shown in FIG. In the membrane separation step, membrane separation was performed twice.
  • the first membrane separation is referred to as a first membrane separation
  • the second membrane separation is referred to as a second membrane separation.
  • the test apparatus 200 shown in FIG. 2 includes a raw material tank 102, a liquid sending pump 103, a first heat exchanger 104, a separation device 105, and a second heat exchanger 107.
  • the separation device 105 is configured by assembling the silylated zeolite membrane obtained above in a cylindrical tube.
  • the test apparatus 200 shown in FIG. 2 includes a cold trap 106 and a sampling cold trap 113 connected to the separation device 105 via a three-way valve 110, and a downstream of the cold trap 106 and the cold trap 113 via a three-way valve 114. And a decompression pump 111 connected to the side.
  • the test apparatus 200 includes a sampling valve 112 between the raw material tank 102 and the liquid sending pump 103, and includes a back pressure valve 108 and a pressure gauge 109 downstream of the separation device 5. .
  • the raw material filled in the raw material tank 102 is sent to the first heat exchanger 104 by the liquid sending pump 103.
  • a pervaporation method abbreviated as “PV” in the table; PV means “pervaporation”
  • PV pervaporation method
  • the raw material is subjected to pressure under the non-permeate side. Can be heated to a temperature that does not evaporate.
  • the first heat exchanger 104 heat exchange is not performed in the first heat exchanger 104, that is, the raw material need not be heated.
  • the membrane separation step is performed not according to the pervaporation method but according to the gas permeation method (abbreviated as “VP” in the table; VP means “vapor permeation”)
  • the first heat exchange is performed.
  • the vessel 104 the raw material can be heated to such a temperature as to vaporize under non-permeate pressure conditions.
  • the raw material is sent to the separation device 105 in a liquid phase, and components are separated (membrane separation) by the separation device 105 having the silylated zeolite membrane.
  • the permeation side of the silylated zeolite membrane is set in a reduced pressure state by the decompression pump 111, and the component permeated through the silylated zeolite membrane is supplied to the cold trap 106 connected via the three-way valve 110. Alternatively, it is sent to the cold trap 113 for sampling.
  • the non-permeated components that have not passed through the silylated zeolite membrane provided in the separation device 105 are cooled in the second heat exchanger 107 and returned to the raw material tank 102.
  • the back pressure is adjusted by a back pressure valve 108 and a pressure gauge 109 provided on the downstream side of the separation device 105.
  • the permeated component that has passed through the silylated zeolite membrane provided in the separation apparatus 105 can be extracted as a permeate-side sample.
  • the first membrane separation using the test apparatus 200 shown in FIG. 2 was performed as follows. Specifically, first, the hydrocarbon mixture (a) satisfying the above-mentioned predetermined composition is filled in the raw material tank 102, and the deaeration operation is performed three times. Is supplied to the separation device 5 in a liquid phase through the first heat exchanger 104 heated to 70 ° C., and then condensed by the second heat exchanger 7 and returned to the raw material tank 102. Started.
  • the system is operated until the temperature in the system reaches a steady state.
  • the non-permeate side is pressurized to 180 kPa by the back pressure valve 108, and By starting 111, the pressure on the permeate side (the area on the permeate side of the silylated zeolite membrane in the separation device 105, the cold trap 106 and the cold trap 113) was reduced to -100 kPa, and the temperature and pressure in the system were stabilized.
  • the first membrane separation was started by opening the three-way valve 110 on the permeation side. That is, the first membrane separation was performed under the conditions of a temperature of 70 ° C.
  • the three-way valves 10 and 14 are used to switch the permeate-side flow path from the cold trap 106 side to the sampling cold trap 113 side, and use the sampling cold trap 113 to convert the permeate-side sample into condensate. Extracted by collecting. The sampling time at this time was 10 minutes.
  • a second membrane separation was performed. In carrying out the second membrane separation, first, the sample on the permeate side (condensate) obtained in the first membrane separation was filled in the raw material tank 102 of the test apparatus 200.
  • a second membrane separation was performed to obtain a sample on the permeation side.
  • the weight was weighed, and the piperylene concentration was measured by gas chromatography.
  • the piperylene concentration in the sample obtained by the first membrane separation was 95% by mass
  • the piperylene concentration in the sample obtained by the second membrane separation was 98% by mass.
  • the cyclic hydrocarbon concentration in the sample obtained by the second membrane separation was 0.5% by mass.
  • the measurement conditions of the measurement using a gas chromatograph when measuring the piperylene concentration were as follows.
  • Comparing Example 1 and Comparative Example 1 reveals the following. As is clear from Example 1, it can be seen that the separated product obtained by subjecting a hydrocarbon mixture satisfying a predetermined composition to membrane separation has a significantly high piperylene concentration. On the other hand, from Comparative Example 1, when piperylene is to be separated from a hydrocarbon mixture satisfying a predetermined composition by extractive distillation instead of membrane separation, a separated product having a sufficiently high piperylene concentration can be obtained. It is considered impossible.
  • Example 2 For the sample obtained by the first membrane separation of Example 1, the separation coefficient and the separation performance retention were calculated as follows. Table 1 shows the results. ⁇ Calculation method of separation coefficient and separation performance maintenance ratio> First, the permeation flux F was calculated using the following equation (I). Further, the separation coefficient ⁇ was calculated using the following equation (II). Then, the product (F ⁇ ⁇ ) of the separation coefficient ⁇ and the permeation flux F was calculated, and the separation performance was evaluated based on the calculated value. The larger the value of F ⁇ ⁇ , the better the separation performance.
  • the ratio of the value of F ⁇ ⁇ at the time of the subsequent sampling was calculated, with the value of F ⁇ ⁇ at the time of 10 minutes after the start of the test as 100%, and was defined as the separation performance retention rate.
  • X p is a content ratio of piperylene in the raw material [mol%]
  • X c is a content ratio of a cyclic hydrocarbon in the raw material [mol%]
  • Y p is a content of piperylene in the permeate side sample [mol%]
  • Y c is the content of cyclic hydrocarbons in the permeate side sample [mol%].
  • Example 3 This is an example in which a membrane separation step is performed using a silylated film obtained by performing silylation in a gas phase. Specifically, the same operation as in Example 1 up to the first membrane separation except that the silylation was performed in the gas phase instead of the liquid phase in the ⁇ silylation step >> in the ⁇ Preparation of zeolite membrane> was done. The same measurement and evaluation as in Example 2 were performed on the sample obtained by the first membrane separation. Table 1 shows the results. In addition, as a result of the X-ray diffraction measurement of the porous separation layer of the separation membrane, it was confirmed that the porous separation layer contained MFI-type zeolite.
  • ⁇ Gas phase silylation step> During the silylation in the gas phase, hexamethyldisilazane vapor vaporized by nitrogen bubbling was applied to the separation membrane obtained through the same step as the ⁇ Formation of Porous Separation Layer >> step in Example 1. The contact was for 24 hours. Thereafter, drying was performed at 150 ° C. for 4 hours to obtain a silylated zeolite membrane which was silylated in a gas phase.
  • Example 4 This is an example in which the membrane separation step is performed according to a gas permeation method (VP method). Specifically, the ⁇ silylation step> in ⁇ Preparation of zeolite membrane> was not performed, and the pressure on the non-permeate side in [membrane separation] in ⁇ membrane separation step> was set to 140 kPa, The same operation as in Example 1 was performed until the first membrane separation, except that the gaseous hydrocarbon mixture (a) was brought into contact with the non-permeate side surface. The same measurement and evaluation as in Example 2 were performed on the sample obtained by the first membrane separation. Table 1 shows the results.
  • VP method gas permeation method
  • the membrane separation step was performed on a hydrocarbon mixture (a-1) having a piperylene content of 60% by mass to 80% by mass and a cyclic hydrocarbon content of 20% by mass to 40% by mass.
  • a separation membrane formed by changing the porous support to which the zeolite seed crystal was attached to a porous support different from shirasu porous glass was used.
  • ⁇ Preparation of Zeolite Membrane> in ⁇ Adhesion of Zeolite Seed Crystal to Porous Support >>, silicon carbide (pore diameter: 1.4 ⁇ m, pore diameter: 1.4 ⁇ m, Outer diameter ⁇ : 12 mm, length L: 100 mm.
  • the membrane separation step was performed on a hydrocarbon mixture (a-1) having a piperylene content of 60% by mass to 80% by mass and a cyclic hydrocarbon content of 20% by mass to 40% by mass.
  • a-1 hydrocarbon mixture having a piperylene content of 60% by mass to 80% by mass and a cyclic hydrocarbon content of 20% by mass to 40% by mass.
  • the separation membrane used in the membrane separation step the porous support to which zeolite seed crystals are attached is changed to a porous support different from shirasu porous glass, and the zeolite membrane is formed without silylation.
  • a separation membrane was used.
  • the membrane separation step employs a silylated zeolite membrane as the separation membrane and employs a pervaporation method in the membrane separation step. It can be seen that the decrease in the separation performance maintenance rate in Example 2 could be moderated.
  • the zirite membrane that has not been silylated and the gas phase have It can be seen that the lowering of the separation performance retention rate could be made more gradual as compared with the case where the zeolite membrane which had been silylated was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

炭素数が5の石油留分に由来する炭化水素混合物からピペリレンを製造するピペリレンの製造方法である。ここで、炭化水素混合物は、ピペリレンの含有割合が60質量%以上80質量%以下であるとともに、環状炭化水素の含有割合が20質量%以上40質量%以下である。また、ピペリレンの製造方法は、炭化水素混合物を、ゼオライト膜により膜分離して、ピペリレンが富化された分離物を得る膜分離工程を含む。

Description

ピペリレンの製造方法
 本発明は、ピペリレンの製造方法に関し、特には、炭素数が5の石油留分に由来する炭化水素混合物を原料としたピペリレンの製造方法に関するものである。
 従来、ナフサをクラッキングしてエチレンを生産する際に得られる炭素数が5の石油留分などの、炭素数5の炭化水素の混合物からイソプレンなどの有用成分を分離回収する方法として、抽出蒸留を用いた方法が知られている。
 また、抽出蒸留を用いて炭素数が5の石油留分からイソプレンなどの炭化水素を分離回収するプロセスにおいては、残留分を有効活用することにより原料の利用効率を高めることが試みられている。
 具体的には、例えば特許文献1では、抽出蒸留によりC5留分からイソプレンを分離した後に得られる抽出残油(ラフィネート)を水素化し、得られた水素化物をエチレンセンターに返送してガソリン基材やエチレンクラッカーの原料として利用する技術が提案されている。
国際公開第2012/133732号
 近年、炭素数が5の石油留分から得られる成分の中で、イソプレン以外に、ピペリレン(1,3-ペンタジエン)についても、化学合成に用いるモノマーとしての有用性が着目されつつある。炭素数が5の石油留分から目的の成分が回収されて残留した、所定の組成を有する炭化水素混合物が、ピペリレン及び環状炭化水素を含有することがある。
 しかし、特許文献1に記載されたような抽出蒸留によっては、かかる所定の組成の炭化水素混合物から高純度でピペリレンを分離することが難しかった。
 そこで、本発明は、所定の組成を有する炭化水素混合物から、高純度のピペリレンを製造することができる、ピペリレンの製造方法を提供することを目的とする。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のピペリレンの製造方法は、炭素数が5の石油留分に由来する炭化水素混合物からピペリレンを製造するピペリレンの製造方法であって、前記炭化水素混合物は、ピペリレンの含有割合が60質量%以上80質量%以下であるとともに、環状炭化水素の含有割合が20質量%以上40質量%以下であり、前記炭化水素混合物を、ゼオライト膜により膜分離して、ピペリレンが富化された分離物を得る膜分離工程を含むことを特徴とする。かかる製造方法によれば、上記所定の組成を有する炭化水素混合物から、高純度のピペリレンを製造することができる。
 ここで、本発明のピペリレンの製造方法は、前記膜分離工程を、浸透気化法に従って行うことが好ましい。膜分離工程を、浸透気化法に従って行うことで、高い持続性で、高純度のピペリレンを製造することができる。
 また、本発明のピペリレンの製造方法において、前記ゼオライト膜が、液相中にてシリル化したシリル化ゼオライト膜であることが好ましい。膜分離工程を浸透気化法に従って行うにあたり、液相中にてシリル化したシリル化ゼオライト膜を用いることで、より高い持続性で、高純度のピペリレンを製造することができる。
 さらにまた、本発明のピペリレンの製造方法において、前記ゼオライト膜が、多孔性支持体上に多孔性分離層を有する分離膜であって、前記多孔性支持体が、シラスポーラスガラス又はシリコンカーバイドからなることが好ましい。多孔性支持体がシラスポーラスガラス又はシリコンカーバイドからなるものであれば、より高い持続性で、高純度のピペリレンを製造することが可能となる。
 本発明によれば、所定の組成を有する炭化水素混合物から、高純度のピペリレンを製造することができる、ピペリレンの製造方法を提供することができる。
本発明に従う炭化水素の製造方法にて用いる原料としての炭化水素混合物を製造可能な炭化水素製造装置の一例の概略構成を示す説明図である。 本発明に従う炭化水素の製造方法の試験に用いた試験装置の一例の概略構成を示す説明図である。
 以下、本発明の実施形態について詳細に説明する。
(ピペリレンの製造方法)
 本発明のピペリレンの製造方法は、炭素数が5の石油留分に由来する炭化水素混合物からピペリレンを製造する方法である。そして、本発明のピペリレンの製造方法は、ピペリレンの含有割合が60質量%以上80質量%以下であるとともに、環状炭化水素の含有割合が20質量%以上40質量%以下である炭化水素混合物を原料とすること、及び、炭化水素混合物を、ゼオライト膜により膜分離して、ピペリレンが富化された分離物を得る膜分離工程を実施することを特徴とする。以下、本発明のピペリレンの製造方法にて用いる原料である炭化水素混合物、及び、本発明のピペリレンの製造方法に含まれうる各工程について順次説明する。
<炭素数が5の石油留分に由来する炭化水素混合物>
 原料となる炭素数が5の石油留分に由来する炭化水素混合物(以下、「原料となる炭化水素混合物」とも称する)は、ピペリレンの含有割合が60質量%以上80質量%以下であるとともに、環状炭化水素の含有割合が20質量%以上40質量%以下であることを特徴とする。なお、原料となる炭化水素混合物は、任意で、他の成分を含有していても良い。他の成分の含有割合は、20質量%以下であり、5質量%以下であることが好ましく、0質量%であっても良い。環状炭化水素としては、特に限定されることなく、シクロペンタン、1-メチルシクロブタン、シクロペンテン、1-メチルシクロブテン、及びシクロペンタジエン等が挙げられる。また、他の成分としては、イソペンタン、イソアミレン、n-ペンタン、及びペンテン等が挙げられる。
 原料となる炭化水素混合物は、上記組成を満たす限りにおいて、あらゆる方法に従って製造することができる。例えば、原料となる炭化水素混合物は、図1に示す概略構成に従う炭化水素製造装置を用いて得ることができる。図1に示す製造装置100は、炭素数が5の石油留分から、主としてジシクロペンタジエン及びイソプレン等を製造するために用いる製造装置である。かかる製造装置に導入される一次原料としての炭化水素混合物(即ち、炭素数が5の石油留分)は、イソプレン及びピペリレンと、ジシクロペンタジエン及びシクロペンタジエンと、炭素数が5で炭素-炭素二重結合の数が1つ以下の直鎖状炭化水素と、炭素数が5で炭素-炭素二重結合の数が1つ以下の分岐鎖状炭化水素と、炭素数が5で炭素-炭素二重結合の数が1つ以下の環状炭化水素とを含む。
 製造装置100は、二量化器11と、前蒸留塔12とを備えている。また、製造装置100は、前蒸留塔12から流出した前処理済混合物を含む被抽出蒸留物を抽出蒸留する第一抽出蒸留塔21と、第一抽出蒸留塔21の塔底から流出する留分(A)から抽出溶剤を分離する放散塔22と、放散塔22で留分(A)から抽出溶剤を分離して得た留分を蒸留する第一蒸留塔31とを更に備えている。
 更に、製造装置100は、第一蒸留塔31の塔頂から流出する留分(C)を精製して高純度のイソプレンを得るイソプレン精製部として、留分(C)が流入する第二抽出蒸留塔41と、第二抽出蒸留塔41の塔底から流出した留分を残留分と抽出溶剤とに分離する放散塔42と、第二抽出蒸留塔41の塔頂から流出した留分を蒸留する第二蒸留塔43と、第二蒸留塔43の塔頂から流出する留分を精製する精製塔44とを備えている。
 更に、製造装置100は、前蒸留塔12の塔底から流出する留分(E)を精製して高純度のジシクロペンタジエンを得るジシクロペンタジエン精製部として、蒸留塔51を備えている。
 上記のような構成を有する製造装置では、炭素数が5の石油留分を、まず、二量化器11にて炭素数が5の石油留分中のシクロペンタジエンを二量化してジシクロペンタジエンを含む混合物を得る。そして、得られたジシクロペンタジエンを含む混合物を、前蒸留塔12にて蒸留して、塔頂からは、前処理済混合物を得て、塔底からはジシクロペンタジエンが富化された留分(E)を得る。さらに、前処理済混合物を、第一抽出蒸留塔21で抽出蒸留して、イソプレンおよびピペリレンが富化された留分(A)と、抽出蒸留に用いた抽出溶剤に対する溶解性がイソプレンおよびピペリレンよりも低い直鎖状炭化水素および分岐鎖状炭化水素が富化された留分(B)とを得る。得られた留分(A)からは、放散塔22にて抽出溶剤が分離される。その後、第一蒸留塔31にて、抽出溶剤が除去された留分(A)を蒸留して、イソプレンが富化された留分(C)と、ピペリレンが富化された留分(D)とを得る。なお、留分(C)は、第二抽出蒸留塔41、第二蒸留塔43、精製塔44等を経て、イソプレン及び2-ブチン等に分離されうる。そして、第一蒸留塔31にて得られた留分(D)が、ピペリレンの含有割合が60質量%以上80質量%以下であるとともに、環状炭化水素の含有割合が20質量%以上40質量%以下である炭化水素混合物に相当しうる。
<膜分離工程>
 膜分離工程では、上述した組成を満たす炭素数が5の石油留分に由来する炭化水素混合物をゼオライト膜により膜分離して、ピペリレンが富化された分離物を得る。ゼオライト膜により所定の組成の炭化水素混合物を膜分離することで、得られる分離物中におけるピペリレン濃度を飛躍的に高めることができる。
 膜分離工程では、一度の膜分離工程の中で、一回以上の膜分離を実施する限りにおいて特に限定されることなく、複数回の膜分離を実施することができる。一度の膜分離工程の中で複数回の膜分離を実施することで、得られるピペリレンの濃度を一層高めることができる。なお、製造効率の観点から、一度の膜分離工程における膜分離回数の上限は、3回であることが好ましく、2回であることがより好ましい。
 さらに、膜分離工程は、特に限定されることなく、ガス透過法及び浸透気化法等に従って実施することができる。中でも、膜分離工程を浸透気化法に従って行うことが好ましい。なお、本明細書における「浸透気化法」とは、透過側を減圧条件としたゼオライト膜に対して、液状の炭化水素混合物を供給して、液状の炭化水素混合物の一部をゼオライト膜中にて拡散浸透させることで、ゼオライト膜の透過側に到達し、蒸発して気体となった分離物を得る方法を意味する。膜分離工程を浸透気化法に従って行うことで、ゼオライト膜に詰まりが生じることや、ゼオライト膜表面に付着物が残留することを抑制することができる。より具体的には、液状の炭化水素混合物が接触するゼオライト膜の供給側表面にて、液状の炭化水素混合物の流れがあることにより、非透過成分がゼオライト膜の細孔内に留まって目詰まりを生じることや、非透過成分等が膜表面に残留することを効果的に抑制することができる。このため、浸透気化法を採用することにより、ゼオライト膜を交換、清浄、又は再生等することなく使用可能な期間を長期化することができ、高い持続性で、高純度のピペリレンを製造することができるようになる。
 膜分離工程を浸透気化法に従って実施する場合において、供給側にて液状の炭化水素混合物に対して印加する圧力、及び、供給側にて液状の炭化水素混合物を昇温する温度は、供給側にて炭化水素混合物が気化しないように、適宜制御することができる。中でも、供給側における炭化水素混合物の加熱温度は、100℃以下であることが好ましく、80℃以下であることがより好ましく、75℃以下であることが特に好ましい。このとき、圧力は、温度条件に基づいて、炭化水素混合物が気化しないように、適宜制御することができるが、供給側と透過側の圧力差は、200kPa以上1.1MPa以下であることが好ましく、200kPa以上600kPa以下であることがより好ましい。加熱温度が上記上限値以下であれば、供給側にて炭化水素混合物に過度に高い圧力を印加する必要無く、効率的に膜分離を実施することができる。また、供給側における炭化水素混合物の加熱温度は、10℃以上であることが好ましく、15℃以上であることがより好ましい。加熱温度が上記下限値以上であれば、膜分離工程における透過流束を高めることができ、効率的にピペリレンを製造することができる。
 また、膜分離工程で使用するゼオライト膜は、複数の細孔を有する多孔質体である多孔性支持体として、シラスポーラスガラス等のガラス;二酸化ケイ素(シリカ)、シリコンカーバイド(炭化ケイ素)、チタニア等のセラミックス;及びステンレス鋼等の金属からなる多孔質体を用いて、国際公開第2016/121377号に開示されたような既知の方途に従って製造することができる。前記多孔質体の中でも、シラスポーラスガラス又はシリコンカーバイドからなる多孔質体が、好ましい。多孔性支持体がシラスポーラスガラス又はシリコンカーバイドからなるものであれば、より高い持続性で、高純度のピペリレンを製造することが可能となる。上記列挙に係る多孔性支持体は、ジオレフィンであるピペリレンを接触させた場合であっても、固体酸反応を起こし難いため、ピペリレンの製造に際して好適に用いることができる。ゼオライト膜としては、かかる多孔性支持体上に、MFI型ゼオライトを含む多孔性分離層を有する分離膜が好ましい。
 また、膜分離工程で使用するゼオライト膜は、シリル化剤を用いたシリル化処理を施されたゼオライト膜であることが好ましい。シリル化剤としては、ヘキサメチルジシラザン、トリメチルクロロシラン、ジメチルジクロロシラン等が挙げられる。また、シリル化剤は、ハロゲン原子を非含有であることが好ましく、上記列挙にかかるシリル化剤の中でも、ヘキサメチルジシラザンが特に好ましい。シリル化剤がハロゲン原子を非含有であれば、ゼオライト膜がシリル化処理によって劣化することを抑制することができるからである。そして、シリル化処理の方法としては、特に限定されることなく、蒸気状態としたシリル化剤に対してゼオライト膜を接触させることを含む気相シリル化法、及び液体状態のシリル化剤に対してゼオライト膜を接触させることを含む液相シリル化法が挙げられる。
 より具体的には、気相シリル化法では、シリル化剤をバブリング等の既知の気化方法に従って気化する気化工程と、気化工程で得られたシリル化剤の蒸気に対して、ゼオライト膜を接触させる蒸気接触工程とを実施する。そして、気相シリル化法における接触時間は、例えば、12時間以上24時間以下であり得る。
 また、液相シリル化法では、シリル化剤を含む液体に対してゼオライト膜を浸漬させる浸漬工程を実施する。シリル化剤を含む液体は、液状のシリル化剤のみからなる液体であっても良いし、シリル化剤と、溶媒とを含む溶液であっても良い。溶媒としては、特に限定されることなく、既知の溶媒を用いることができる。液相シリル化法における浸漬時間は、例えば、12時間以上24時間以下であり得る。
 ゼオライト膜をシリル化処理するにあたり、シリル化処理の方法として、液相シリル化法を採用することが好ましい。液相中にてシリル化したシリル化ゼオライト膜を用いて膜分離工程を実施することで、ゼオライト膜を交換、清浄、又は再生等することなく使用可能な期間を長期化することができ、高い持続性で、高純度のピペリレンを製造することができるようになる。
<回収工程>
 そして、膜分離工程にて分離されて、ゼオライト膜の透過側に存在する分離物は、冷却等の既知の方途により、回収することができる。なお、膜分離工程において、上述した、浸透気化法及びガス透過法の何れを採用した場合であっても、ゼオライト膜の透過側に存在する分離物は気体状態で存在し、冷却により凝縮して液状となって回収されうる。なお、回収工程にて回収された分離物における、ピペリレンの濃度は、90質量%以上であることが好ましく、94質量%以上であることがより好ましい。また、分離物における、環状炭化水素の濃度は、10質量%以下であることが好ましく、6質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、特に断らない限り、圧力はゲージ圧である。
(実施例1)
 ピペリレンの含有割合が62質量%以上65質量%以下、環状炭化水素の含有割合が35質量%以上38質量%以下である炭化水素混合物(a)について、下記に従って得た液相シリル化済ゼオライト膜を用いて、浸透気化法に従う膜分離工程を実施した。
<ゼオライト膜の準備>
<<種結晶用水性ゾルの調製>>
 濃度22.5質量%のテトラプロピルアンモニウムヒドロキシド水溶液(東京化成工業社製)152.15g(構造規定剤としてのテトラプロピルアンモニウムヒドロキシド換算で34.23g)と、超純水48.44gとをマグネチックスターラーで混合した。更に、シリカ源としてのテトラエトキシシラン(SIGMA-ALDLICH社製)99.41gを加えて、室温にて70分間マグネチックスターラーで混合することで、種結晶作製用の水性ゾルを調製した。
<<ゼオライト種結晶の作製>>
 種結晶用水性ゾルをフッ素樹脂製内筒付ステンレス鋼製耐圧容器内に入れ、130℃の熱風乾燥器中で48時間反応(水熱合成)させた。次に、得られた反応液を遠心分離機(4000rpm)で30分間遠心分離することにより固液分離し、固形分を回収した。そして、回収した固形分を80℃の恒温乾燥器中で12時間乾燥し、次いで、得られた乾燥固体を乳鉢にて粉砕することにより、ゼオライト種結晶を得た。得られたゼオライト種結晶は、X線回折測定により、MFI型構造を有していることが確認された。なお、ゼオライト種結晶の平均粒子径は、400nmであった。
<<多孔性支持体へのゼオライト種結晶の付着>>
 円筒状の多孔質支持体であるシラスポーラスガラス(エス・ピー・ジーテクノ社製、細孔径:1.4μm、外径φ:10mm、長さL:100mm。表中、「SPG」と表記する。)をアセトンで洗浄後乾燥させ、更に超純水に10分間浸漬した。そして、超純水に浸漬した後の湿った多孔性支持体の外表面上に、上記にて得られたゼオライト種結晶0.05gを擦り付け、80℃の乾燥器中で12時間乾燥させることで、多孔性支持体の表面にゼオライト種結晶を付着させた。
<<多孔性分離層用水性ゾルの調製>>
 濃度22.5質量%のテトラプロピルアンモニウムヒドロキシド水溶液(東京化成工業社製)4.99g(構造規定剤としてのテトラプロピルアンモニウムヒドロキシド換算で1.12g)と、構造規定剤としてのテトラプロピルアンモニウムブロミド(和光純薬社製)0.74gと、超純水238.79gとを、室温にて10分マグネチックスターラーで混合した。更に、シリカ源としてのテトラエトキシシラン(SIGMA-ALDLICH社製)6.71gを加えて、室温にて60分間マグネチックスターラーで混合することで、多孔性分離層形成用の水性ゾルを調製した。なお、水性ゾルの組成は、モル比で、テトラエトキシシラン:テトラプロピルアンモニウムヒドロキシド:テトラプロピルアンモニウムブロミド:水=1:0.2:0.1:419であった。
<<多孔性分離層の形成>>
 上記にて得られた多孔性分離層用水性ゾルをステンレス鋼製耐圧容器内に入れた。次に、ゼオライト種結晶を付着させた多孔性支持体を多孔性分離層用水性ゾルに浸漬し、185℃の熱風乾燥器中で24時間反応(水熱合成)させて、多孔性支持体上に多孔性分離層を形成した。そして、多孔性分離層を形成した多孔性支持体に対し、洗浄液として蒸留水を使用して、1時間の煮沸洗浄を2回行った。その後、多孔性分離層を形成した多孔性支持体を80℃の恒温乾燥器で12時間乾燥させた。次いで、多孔性分離層中に含まれている構造規定剤(テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミド)を除去するために焼成を行い、分離膜を得た。なお、焼成条件は、昇温速度:0.25℃/分、焼成温度:500℃、焼成時間(保持時間):20時間、降温速度0.38℃/分とした。
 そして、得られた分離膜について、多孔性分離層の層厚を測定した。また、多孔性分離層のX線回折測定を行い、X線回折パターンを得た。その結果、得られたX線回折パターンより、多孔性分離層はMFI型ゼオライトを含んでいることが確認された。
<<シリル化工程>>
 シリル化剤として、ヘキサメチルジシラザンを用いた。上記で得られた分離膜を、常温(JIS Z 8703:1983)下で、常温液体であるヘキサメチルジシラザンに対して24時間浸漬させてから引き上げ、150℃で4時間乾燥させて、液相中にてシリル化したシリル化ゼオライト膜を得た。
<膜分離工程>
 上記に従って得られたシリル化ゼオライト膜を使用し、図2に示すような概略構成を有する試験装置200を用いて、膜分離を行った。膜分離工程では、膜分離を2度実施した。以下、最初の膜分離を第1の膜分離と称し、2度目の膜分離を第2の膜分離と称する。
[試験装置]
 図2に示す試験装置200は、原料タンク102と、送液ポンプ103と、第1熱交換器104と、分離装置105と、第2熱交換器107とを備えている。なお、分離装置105は、円筒管に、上記にて得られたシリル化ゼオライト膜を組み付けることにより構成されている。また、図2に示す試験装置200は、三方弁110を介して分離装置105に接続されたコールドトラップ106及びサンプリング用コールドトラップ113と、三方弁114を介してコールドトラップ106及びコールドトラップ113の下流側に接続された減圧ポンプ111とを備えている。更に、試験装置200は、原料タンク102と送液ポンプ103との間に、サンプリング用弁112を備えており、また、分離装置5の下流側に、背圧弁108及び圧力計109を備えている。
 ここで、図2に示す試験装置200では、原料タンク102に充填された原料が、送液ポンプ103にて第1熱交換器104へと送られる。この際、膜分離工程で浸透気化法(表中、「PV」と略記した。なお、PVは「pervaporation」の意味である。)を実施する場合には、非透過側の圧力条件下で原料が気化しない範囲の温度に加温されうる。なお、第1熱交換器104にて熱交換を行わない、即ち、原料を加温しなくても良い。また、膜分離工程を浸透気化法ではなくガス透過法(表中、「VP」と略記した。なお、VPは「vapor permeation」の意味である。)に従って実施する場合には、第1熱交換器104により、原料が、非透過側の圧力条件下にて気化するような温度に加温されうる。そして、原料は、液相にて分離装置105へと送られ、シリル化ゼオライト膜を備える分離装置105により成分の分離(膜分離)が行われる。ここで、試験装置200においては、減圧ポンプ111によりシリル化ゼオライト膜の透過側は減圧状態とされており、シリル化ゼオライト膜を透過した成分は、三方弁110を介して接続されたコールドトラップ106又はサンプリング用コールドトラップ113へと送られる。一方、分離装置105に備えられたシリル化ゼオライト膜を透過しなかった非透過成分は、第2熱交換器107で冷却され、原料タンク102に還流される。なお、試験装置200では、分離装置105の下流側に設けた背圧弁108及び圧力計109により、背圧を調整している。そして、試験装置200では、三方弁110,114を切り替えることで、分離装置105に備えられたシリル化ゼオライト膜を透過した透過成分を、透過側のサンプルとして抽出することができる。
[膜分離]
 図2に示す試験装置200を用いた第1の膜分離は、以下のようにして実施した。
 具体的には、まず、上記所定の組成を満たす炭化水素混合物(a)を原料タンク102に充填し、脱気操作を3回行った後、送液ポンプ103にて、炭化水素混合物(a)を、70℃に加温された第1熱交換器104を介して、液相にて分離装置5に供給し、次いで、第2熱交換器7により凝縮し、原料タンク102に戻す原料循環処理を開始した。そして、原料循環処理開始後、系内の温度が定常状態に達するまで運転を行い、系内の温度が定常状態に達した後、背圧弁108により非透過側を180kPaに加圧するとともに、減圧ポンプ111を起動することで透過側(分離装置105内におけるシリル化ゼオライト膜の透過側の領域、コールドトラップ106、及びコールドトラップ113)を-100kPaに減圧し、系内の温度、圧力が安定したことを確認した後、透過側の三方弁110を開くことで、第1の膜分離を開始した。即ち、温度70℃、非透過側と透過側の差圧280kPaの条件で第1の膜分離を行った。
 そして、第1の膜分離を開始した後、5分経過した時点において、透過側のサンプルの抽出を開始した。具体的には、三方弁10,14を用いて、透過側の流路をコールドトラップ106側からサンプリング用コールドトラップ113側に切替えて、サンプリング用コールドトラップ113にて透過側のサンプルを凝縮液として捕集することにより抽出した。なお、この際におけるサンプリング時間は10分間とした。
 次いで、第2の膜分離を実施した。第2の膜分離の実施にあたり、まず、第1の膜分離にて得られた透過側のサンプル(凝縮液)を、試験装置200の原料タンク102に充填した。第1熱交換器104を加温しなかった点、サンプリングの開始を55分経過時点とした点、及びサンプリング時間を20分間とした点以外は、第1の膜分離の場合と同様にして、第2の膜分離を実施し、透過側のサンプルを得た。
 第1及び第2の膜分離で得られた、透過側のサンプルのそれぞれについて、重量を秤量するとともに、ガスクロマトグラフにて、ピペリレン濃度を測定した。その結果、第1の膜分離で得られたサンプルにおけるピペリレン濃度は95質量%であり、第2の膜分離で得られたサンプルにおけるピペリレン濃度は98質量%であった。また、第2の膜分離で得られたサンプルにおける環状炭化水素の濃度は0.5質量%であった。
 なお、ピペリレン濃度を測定した際のガスクロマトグラフを用いた測定の測定条件は以下の通りであった。
・装置: 島津製作所社製GC-2025
・カラム: アジレント社製 Inertcap 60m
・カラム温度:40℃~250℃
・インジェクション温度:250℃
・キャリヤーガス:窒素
・検出器:水素炎イオン化型検出器
(比較例1)
 実施例1と同じ、炭化水素混合物(a)を、膜分離によらず、抽出蒸留法に従って分離して、ピペリレンを製造する場合をシミュレーションソフトウエア(アスペンテック社製、「Aspen plus」)を用いてシミュレーションした。シミュレーション条件は以下の通りとした。
 還流比:5
 段数:100段
 feed段:20段
 D/F:0.1
 feed量:1kg/hr
 温度:70℃
 圧力:130kPaG
 シミュレーション結果は以下の通りであった。
(1)留出液側
 留出液量:0.1kg/hr
 温度:41℃
 圧力:0kPaG
 留出液におけるピペリレン濃度:76質量%
(2)缶出液側
 缶出液量:0.9kg/hr
 温度:56℃
 圧力:55kPaG
 缶出液におけるピペリレン濃度:64質量%
 実施例1と比較例1との比較により、以下のことが分かる。実施例1より明らかなように、所定の組成を満たす炭化水素混合物を、膜分離することにより得た分離物は、ピペリレンの濃度が顕著に高かったことが分かる。一方、比較例1より、膜分離に代えて、抽出蒸留法により、所定の組成を満たす炭化水素混合物からピペリレンを分離しようとした場合には、ピペリレンの濃度が充分に高い分離物を得ることができないと考えられる。
(実施例2)
 実施例1の第1の膜分離で得られたサンプルについて、下記に従って分離係数及び分離性能維持率を算出した。結果を表1に示す。
<分離係数及び分離性能維持率の算出方法>
 まず、下記式(I)を用いて透過流束Fを算出した。また、下記式(II)を用いて分離係数αを算出した。そして、分離係数αと透過流束Fとの積(F×α)を算出し、その値に基づいて分離性能を評価した。F×αの値が大きいほど、分離性能に優れていることを示す。さらに、試験開始後10分の時点におけるF×αの値を100%とした、以降のサンプリング時点におけるF×αの値の割合を算出し、分離性能維持率とした。分離性能維持率の値が高い程、高い持続性で、高純度のピペリレンを製造することができることを意味する。
 F[Kg/(m2・h)]=W/(A×t)  ・・・(I)
 α=(Y/Y)/(X/X) ・・・(II)
 なお、式(I)中、Wは、分離膜を透過した成分の質量[kg]であり、Aは、分離膜の有効面積[m]であり、tは、処理時間[時間]である。また、式(II)中、Xは、原料中のピペリレンの含有割合[モル%]であり、Xは、原料中の環状炭化水素の含有割合[モル%]であり、Yは、透過側サンプル中のピペリレンの含有割合[モル%]であり、Yは、透過側サンプル中の環状炭化水素の含有割合[モル%]である。
 また、透過側サンプルの取得にあたり、後述のように、サンプリング時間は10分間とした。試験開始後10分、1時間後、2時間後、3時間後、4時間後、及び5時間後の各時点における上記各値はそれぞれ、かかる時点が、10分間のサンプリング時間の中間時点となるように取得した各サンプルを用いて算出した。
(実施例3)
 気相でシリル化を行って得たシリル化膜を用いて膜分離工程を行った例である。具体的には、<ゼオライト膜の準備>における<<シリル化工程>>において、液相ではなく気相でシリル化を行った以外は、第1の膜分離まで、実施例1と同様の操作を行った。第1の膜分離により得られたサンプルについて、実施例2と同様の測定及び評価を実施した。結果を表1に示す。なお、分離膜の多孔性分離層のX線回折測定の結果、多孔性分離層はMFI型ゼオライトを含んでいることが確認された。
<気相シリル化工程>
 気相でのシリル化に際して、実施例1における<<多孔性分離層の形成>>工程と同様の工程を経て得られた分離膜に対して、窒素バブリングにより気化したヘキサメチルジシラザンの蒸気を24時間にわたって接触させた。その後、150℃で4時間乾燥させて、気相中にてシリル化したシリル化ゼオライト膜を得た。
(実施例4)
 膜分離工程をガス透過法(VP法)に従って実施した例である。具体的には、<ゼオライト膜の準備>における<<シリル化工程>>を実施しなかったこと、及び<膜分離工程>の[膜分離]における非透過側の圧力を140kPaとして、ゼオライト膜の非透過側表面に気体状の炭化水素混合物(a)が接触するようにした以外は、第1の膜分離まで、実施例1と同様の操作を行った。第1の膜分離により得られたサンプルについて、実施例2と同様の測定及び評価を実施した。結果を表1に示す。
(実施例5)
 ピペリレンの含有割合が60質量%以上80質量%以下、環状炭化水素の含有割合が20質量%以上40質量%以下である炭化水素混合物(a-1)を対象として、膜分離工程を行った。膜分離工程にて用いる分離膜としては、ゼオライト種結晶を付着させる多孔性支持体を、シラスポーラスガラスとは別の多孔性支持体に変更して形成した分離膜を採用した。具体的には、<ゼオライト膜の準備>における<<多孔性支持体へのゼオライト種結晶の付着>>において、多孔質支持体をシラスポーラスガラスに代えてシリコンカーバイド(細孔径:1.4μm、外径φ:12mm、長さL:100mm。表中、「SiC」と表記する。)を用いたこと、及び<<多孔性分離層の形成>>において、熱風乾燥機の温度を185℃に代えて125℃としたこと以外は、実施例1と同様の操作を行った。第1の膜分離により得られたサンプルについて、実施例2と同様の測定及び評価を実施した。結果を表1に示す。
 なお、分離膜の多孔性分離層のX線回折測定の結果、多孔性分離層はMFI型ゼオライトを含んでいることが確認された。
(実施例6)
 ピペリレンの含有割合が60質量%以上80質量%以下、環状炭化水素の含有割合が20質量%以上40質量%以下である炭化水素混合物(a-1)を対象として、膜分離工程を行った。膜分離工程にて用いる分離膜としては、ゼオライト種結晶を付着させる多孔性支持体を、シラスポーラスガラスとは別の多孔性支持体に変更し、さらに、ゼオライト膜についてシリル化を行わずに形成した分離膜を採用した。具体的には、<ゼオライト膜の準備>における<<多孔性支持体へのゼオライト種結晶の付着>>において、シラスポーラスガラスに代えてシリコンカーバイドを用いたこと、及び<<多孔性分離層の形成>>において、熱風乾燥機の温度を185℃に代えて125℃とし、<<シリル化工程>>を実施しなかったこと以外は、実施例1と同様の操作を行った。第1の膜分離により得られたサンプルについて、実施例2と同様の測定及び評価を実施した。結果を表1に示す。
 なお、分離膜の多孔性分離層のX線回折測定の結果、多孔性分離層はMFI型ゼオライトを含んでいることが確認された。
Figure JPOXMLDOC01-appb-T000001
 実施例2~3と、実施例4との比較により明らかなように、膜分離工程にて、分離膜としてシリル化ゼオライト膜を採用し、且つ、浸透気化法を採用することで、膜分離工程における分離性能維持率の低下を緩やかにすることができたことが分かる。また、実施例2~実施例6の比較により明らかなように、特に、液相中にてシリル化したシリル化ゼオライト膜を用いた場合に、シリル化をしていないゼオライト膜及び気相中にてシリル化したゼオライト膜を用いた場合と比較して、分離性能維持率の低下を一層緩やかにすることができたことが分かる。
 本発明によれば、所定の組成を有する炭化水素混合物から、高純度のピペリレンを製造することができる、ピペリレンの製造方法を提供することができる。
11 二量化器
12 前蒸留塔
21 第一抽出蒸留塔
22 放散塔
31 第一蒸留塔
41 第二抽出蒸留塔
42 放散塔
43 第二蒸留塔
44 精製塔
51 蒸留塔
100 製造装置
102 原料タンク
103 送液ポンプ
104 第1熱交換器
105 分離装置
106 コールドトラップ
107 第2熱交換器
108 背圧弁
109 圧力計
110,114 三方弁
111 減圧ポンプ
112 サンプリング用弁
113 サンプリング用コールドトラップ
200 試験装置

Claims (4)

  1.  炭素数が5の石油留分に由来する炭化水素混合物からピペリレンを製造するピペリレンの製造方法であって、
     前記炭化水素混合物は、ピペリレンの含有割合が60質量%以上80質量%以下であるとともに、環状炭化水素の含有割合が20質量%以上40質量%以下であり、
     前記炭化水素混合物を、ゼオライト膜により膜分離して、ピペリレンが富化された分離物を得る膜分離工程を含む、
    ピペリレンの製造方法。
  2.  前記膜分離工程を、浸透気化法に従って行う、請求項1に記載のピペリレンの製造方法。
  3.  前記ゼオライト膜が、液相中にてシリル化したシリル化ゼオライト膜である、請求項2に記載のピペリレンの製造方法。
  4.  前記ゼオライト膜が、多孔性支持体上に多孔性分離層を有する分離膜であって、前記多孔性支持体が、シラスポーラスガラス又はシリコンカーバイドからなるものである、請求項1から3のいずれか1項に記載のピペリレンの製造方法。
PCT/JP2019/033981 2018-09-05 2019-08-29 ピペリレンの製造方法 WO2020050137A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980042262.5A CN112368253B (zh) 2018-09-05 2019-08-29 间戊二烯的制造方法
SG11202101704VA SG11202101704VA (en) 2018-09-05 2019-08-29 Method of producing piperylene
JP2020541168A JP7367684B2 (ja) 2018-09-05 2019-08-29 ピペリレンの製造方法
KR1020217005400A KR102654733B1 (ko) 2018-09-05 2019-08-29 피페릴렌의 제조 방법
ES19857954T ES2956818T3 (es) 2018-09-05 2019-08-29 Procedimiento de producción de piperileno
US17/269,252 US11905242B2 (en) 2018-09-05 2019-08-29 Method of producing piperylene
EP19857954.2A EP3848344B1 (en) 2018-09-05 2019-08-29 Method for producing piperylene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-166100 2018-09-05
JP2018166100 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020050137A1 true WO2020050137A1 (ja) 2020-03-12

Family

ID=69721644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033981 WO2020050137A1 (ja) 2018-09-05 2019-08-29 ピペリレンの製造方法

Country Status (8)

Country Link
US (1) US11905242B2 (ja)
EP (1) EP3848344B1 (ja)
JP (1) JP7367684B2 (ja)
KR (1) KR102654733B1 (ja)
CN (1) CN112368253B (ja)
ES (1) ES2956818T3 (ja)
SG (1) SG11202101704VA (ja)
WO (1) WO2020050137A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202454A1 (ja) * 2021-03-26 2022-09-29 日本ゼオン株式会社 分離膜及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7111094B2 (ja) * 2017-03-28 2022-08-02 日本ゼオン株式会社 分離膜及び分離膜の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876840A (ja) * 1972-01-14 1973-10-16
JPS4886846A (ja) * 1972-02-28 1973-11-15
JP2002348579A (ja) * 2001-05-23 2002-12-04 Nard Inst Ltd ゼオライト系分離膜を用いた炭化水素混合物の分離方法、および分離して炭化水素を得る方法
JP2007517648A (ja) * 2004-01-13 2007-07-05 ビーエーエスエフ アクチェンゲゼルシャフト 複合膜
WO2012133732A1 (ja) 2011-03-31 2012-10-04 日本ゼオン株式会社 炭化水素原料の製造方法
JP2013139401A (ja) * 2011-12-28 2013-07-18 Kao Corp 精製有機溶媒の製造方法
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法
WO2016121377A1 (ja) 2015-01-27 2016-08-04 日本ゼオン株式会社 分離膜およびその製造方法
WO2017169195A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 膜分離方法および膜分離装置
WO2018163828A1 (ja) * 2017-03-08 2018-09-13 日本ゼオン株式会社 炭化水素の製造方法および製造装置
WO2018181349A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 分離膜及び分離膜の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2112632A5 (ja) * 1970-11-03 1972-06-23 Anvar
EP1151061B1 (en) * 1999-01-11 2003-11-26 Texaco Development Corporation Integration of solvent deasphalting, gasification, and hydrotreating
BRPI0707115B1 (pt) * 2006-01-16 2017-03-28 Asahi Kasei Chemical Corp processo para produzir propileno e hidrocarbonetos aromáticos
DE102006044635B4 (de) * 2006-09-19 2008-11-06 Gkss-Forschungszentrum Geesthacht Gmbh Gastrenn-Membran
CN100593530C (zh) * 2007-07-19 2010-03-10 中国石油化工集团公司 石油裂解碳五馏分中双烯烃的分离方法
JPWO2010106881A1 (ja) * 2009-03-16 2012-09-20 日本碍子株式会社 ゼオライト分離膜配設体、その製造方法、混合流体の分離方法、及び混合流体分離装置
EP2957622A1 (en) * 2010-03-26 2015-12-23 JX Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
JP2012025668A (ja) * 2010-07-20 2012-02-09 Shin-Etsu Chemical Co Ltd アルコキシシリル化鎖状炭化水素の製造方法及びアルコキシシリル化鎖状炭化水素
JP5683342B2 (ja) * 2011-03-25 2015-03-11 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法
KR102088147B1 (ko) * 2012-02-24 2020-03-12 미쯔비시 케미컬 주식회사 제올라이트막 복합체
EP2818231B1 (en) 2012-02-24 2020-12-23 Mitsubishi Chemical Corporation Porous support-zeolite membrane composite
FR3006608B1 (fr) * 2013-06-10 2021-01-01 Ifp Energies Now Adsorbant a base d'une zeolithe et d'une argile riche en silice et procede de purification de charges d'hydrocarbures contenant des molecules insaturees
WO2015012069A1 (ja) * 2013-07-26 2015-01-29 昭和電工株式会社 1,3-ブタジエン分離材および該分離材を用いた分離方法
JP6614138B2 (ja) * 2014-04-18 2019-12-04 三菱ケミカル株式会社 多孔質支持体−ゼオライト膜複合体の製造方法
CN105481631B (zh) 2014-09-19 2017-08-25 中国石油化工股份有限公司 一种间戊二烯的精制方法
US9944576B2 (en) * 2014-12-19 2018-04-17 Waseda University Method for separating straight-chain conjugated diene
WO2018198072A1 (en) * 2017-04-27 2018-11-01 Sabic Global Technologies B.V. Removal of alkyne impurities from diolefin containing mixtures through cracking over cuo/al2o3 based materials

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4876840A (ja) * 1972-01-14 1973-10-16
JPS4886846A (ja) * 1972-02-28 1973-11-15
JP2002348579A (ja) * 2001-05-23 2002-12-04 Nard Inst Ltd ゼオライト系分離膜を用いた炭化水素混合物の分離方法、および分離して炭化水素を得る方法
JP2007517648A (ja) * 2004-01-13 2007-07-05 ビーエーエスエフ アクチェンゲゼルシャフト 複合膜
WO2012133732A1 (ja) 2011-03-31 2012-10-04 日本ゼオン株式会社 炭化水素原料の製造方法
JP2013139401A (ja) * 2011-12-28 2013-07-18 Kao Corp 精製有機溶媒の製造方法
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法
WO2016121377A1 (ja) 2015-01-27 2016-08-04 日本ゼオン株式会社 分離膜およびその製造方法
WO2017169195A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 膜分離方法および膜分離装置
WO2018163828A1 (ja) * 2017-03-08 2018-09-13 日本ゼオン株式会社 炭化水素の製造方法および製造装置
WO2018181349A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 分離膜及び分離膜の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202454A1 (ja) * 2021-03-26 2022-09-29 日本ゼオン株式会社 分離膜及びその製造方法

Also Published As

Publication number Publication date
KR102654733B1 (ko) 2024-04-03
SG11202101704VA (en) 2021-03-30
JPWO2020050137A1 (ja) 2021-08-26
EP3848344B1 (en) 2023-06-21
US20210163380A1 (en) 2021-06-03
JP7367684B2 (ja) 2023-10-24
EP3848344A1 (en) 2021-07-14
CN112368253A (zh) 2021-02-12
CN112368253B (zh) 2023-06-06
ES2956818T3 (es) 2023-12-28
US11905242B2 (en) 2024-02-20
EP3848344A4 (en) 2022-06-22
KR20210057017A (ko) 2021-05-20

Similar Documents

Publication Publication Date Title
Lin et al. Recent progress in polycrystalline zeolite membrane research
Li et al. Properties and separation performance of Ge-ZSM-5 membranes
Chen et al. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties
Xu et al. Synthesis, characterization and single gas permeation properties of NaA zeolite membrane
JP6252249B2 (ja) 膜分離方法
WO2020050137A1 (ja) ピペリレンの製造方法
JP7111094B2 (ja) 分離膜及び分離膜の製造方法
Shahrestani et al. High performance dehydration of ethyl acetate/water mixture by pervaporation using NaA zeolite membrane synthesized by vacuum seeding method
Zhang et al. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures
JP2008188564A (ja) 有機混合溶液の分離膜及びその製造方法
WO2017169195A1 (ja) 膜分離方法および膜分離装置
JP2016041419A (ja) 分離方法及び分離装置
JP6837363B2 (ja) 炭化水素化合物の分離方法
JP2002348579A (ja) ゼオライト系分離膜を用いた炭化水素混合物の分離方法、および分離して炭化水素を得る方法
JP2012081463A (ja) 含水有機化合物の脱水濃縮方法及びそれに用いる脱水濃縮装置
WO2022202454A1 (ja) 分離膜及びその製造方法
US9199199B2 (en) Separation membrane
JP2020131184A (ja) ゼオライト膜付多孔質支持体、その製造方法、及びそれを用いた窒素の分離方法
CN113474077B (zh) 支链二烯烃的分离方法和制造方法
JP6271405B2 (ja) ゼオライト膜を用いた脱水方法
JP2022135683A (ja) 複合化ゼオライト膜およびガス分離膜
JP2022169625A (ja) 硫化水素分離用ゼオライト膜の再生方法
JP2002069012A (ja) p−キシレンの分離方法
WO2020175247A1 (ja) 分離膜製造方法
JP2019052121A (ja) 炭化水素化合物の分離方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541168

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101000960

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019857954

Country of ref document: EP

Effective date: 20210406