WO2016121377A1 - 分離膜およびその製造方法 - Google Patents

分離膜およびその製造方法 Download PDF

Info

Publication number
WO2016121377A1
WO2016121377A1 PCT/JP2016/000375 JP2016000375W WO2016121377A1 WO 2016121377 A1 WO2016121377 A1 WO 2016121377A1 JP 2016000375 W JP2016000375 W JP 2016000375W WO 2016121377 A1 WO2016121377 A1 WO 2016121377A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
separation
porous
zeolite
hydrocarbon
Prior art date
Application number
PCT/JP2016/000375
Other languages
English (en)
French (fr)
Inventor
詩織 大森
鈴木 貴博
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP16742981.0A priority Critical patent/EP3251738A4/en
Priority to US15/544,256 priority patent/US20180200679A1/en
Priority to JP2016571864A priority patent/JPWO2016121377A1/ja
Priority to SG11201705824WA priority patent/SG11201705824WA/en
Publication of WO2016121377A1 publication Critical patent/WO2016121377A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/24Use of template or surface directing agents [SDA]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives

Definitions

  • the present invention relates to a separation membrane and a method for producing the same, and more particularly, to a separation membrane that can be suitably used for separating a part of hydrocarbons from a hydrocarbon mixture, and a method for producing the separation membrane.
  • a membrane separation method has been used as a method for separating branched hydrocarbons from a hydrocarbon mixture containing linear hydrocarbons and branched hydrocarbons having the same carbon number with low energy.
  • the separation membrane for example, a zeolite membrane formed by forming a zeolite on a support in the form of a membrane is used.
  • Patent Document 1 a composite membrane (zeolite membrane) having a porous substrate and a porous separation layer containing MFI-type zeolite is used as a separation membrane, and a mixture of 1-butene and isobutene is used. Isobutene is separated.
  • seed particles made of a silicate crystal having a diameter of 30 to 100 nm are attached to a porous substrate having a pore diameter of 1 to 5 nm, and then hydrothermally applied on the porous substrate to which the seed particles are attached.
  • a zeolite membrane used for separation of isobutene is prepared by synthesizing zeolite by synthesis to form a porous separation layer.
  • the above conventional zeolite membrane does not have sufficient separation efficiency when used for membrane separation of a hydrocarbon mixture of straight-chain hydrocarbons and branched hydrocarbons and / or cyclic hydrocarbons having the same carbon number. There was room for improvement in that it was not.
  • the present invention relates to a straight chain hydrocarbon and a branched chain when used for membrane separation of a hydrocarbon mixture of a straight chain hydrocarbon having the same number of carbon atoms and a branched hydrocarbon and / or a cyclic hydrocarbon. It is an object of the present invention to provide a separation membrane that can efficiently separate hydrocarbons and / or cyclic hydrocarbons.
  • the present inventors have intensively studied to achieve the above object. Then, the present inventors used a zeolite membrane having a predetermined property for membrane separation of a hydrocarbon mixture of linear hydrocarbons and branched hydrocarbons and / or cyclic hydrocarbons having the same carbon number. It was found that the separation efficiency was excellent.
  • the inventors of the present invention when forming a zeolite membrane by hydrothermally synthesizing a zeolite containing MFI type zeolite on a porous support to which a zeolite seed crystal is attached, have a zeolite seed having a predetermined average particle size.
  • a separation membrane used for membrane separation of a hydrocarbon mixture containing hydrogen comprising: a porous support; and a porous separation layer containing MFI-type zeolite provided on the porous support, X-ray diffraction patterns obtained by X-ray diffraction measurement of the porous separation layer are (001) plane, (002) plane, (004) plane, (101) plane, (102) plane, (103) of MFI type zeolite.
  • Plane, (104) plane, (105) plane, (202) plane, and (303) plane the sum of the diffraction peak intensities is (100) plane, (200) plane, (400) of MFI-type zeolite.
  • Plane, (301) plane and (501) plane More than three times the sum of the sum of the intensity of diffraction peaks derived from the sum of the intensity of diffraction peaks derived from the (010) plane, (020) plane, (040) plane and (051) plane of MFI-type zeolite
  • the sum of the intensity of diffraction peaks derived from the (101) plane, (102) plane, (103) plane, (104) plane and (105) plane of the MFI zeolite is (101) of the MFI zeolite.
  • the separation membrane in which the porous separation layer containing the MFI-type zeolite and the intensity of the specific diffraction peak in the X-ray diffraction pattern satisfying the predetermined relationship is provided on the porous support, It is possible to efficiently separate straight-chain hydrocarbons having the same number from branched hydrocarbons and / or cyclic hydrocarbons. In particular, according to the separation membrane, linear hydrocarbons and branched hydrocarbons having the same carbon number can be separated particularly efficiently.
  • the hydrocarbon mixture is a mixture containing a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon having 4 carbon atoms and / or a cyclic hydrocarbon having 4 carbon atoms as main components, or A mixture containing a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms as main components is preferable.
  • zeolite includes aluminosilicates such as ZSM-5 and silicalite.
  • “X-ray diffraction measurement” is performed using an X-ray diffractometer under the conditions of a tube voltage of 30 kV and a tube current of 15 mA.
  • the manufacturing method of the separation membrane of this invention is a manufacturing method of the separation membrane mentioned above, Comprising: The zeolite seed crystal was made to adhere. A step of immersing the porous support in an aqueous sol containing a silica source and a structure-directing agent, synthesizing a zeolite containing MFI-type zeolite by hydrothermal synthesis, and forming a porous separation layer on the porous support.
  • An average particle size of the zeolite seed crystal is 50 nm or more and 700 nm or less, and a ratio of the average particle size of the zeolite seed crystal to the average pore size of the porous support is 0.01 or more and 0.7 or less. It is characterized by that.
  • a zeolite seed crystal having an average particle diameter of 50 nm to 700 nm is used, and the ratio of the average particle diameter of the zeolite seed crystal to the average pore diameter of the porous support (average particle diameter / average pore diameter) is If the porosity is 0.01 or more and 0.7 or less, the porous support is provided with a porous separation layer containing MFI-type zeolite and satisfying the relationship described above in the intensity of the specific diffraction peak in the X-ray diffraction pattern.
  • the separation membrane provided above can be easily formed.
  • the “average particle diameter of zeolite seed crystals” is determined by calculating the number average of the particle diameters of 20 zeolite seed crystals measured using a scanning electron microscope (SEM). Can do.
  • the “average pore diameter of the porous support” can be determined by a mercury intrusion method using a mercury porosimeter.
  • the separation membrane of the present invention is used for membrane separation of a hydrocarbon mixture containing linear hydrocarbons having the same number of carbon atoms and branched and / or cyclic hydrocarbons.
  • the separation membrane of this invention can be manufactured, for example using the manufacturing method of the separation membrane of this invention.
  • the separation membrane of the present invention used for membrane separation of a hydrocarbon mixture is a so-called zeolite membrane.
  • the separation membrane of the present invention includes a porous support and a porous separation layer provided on the porous support, and the porous separation layer is MFI-type zeolite (aluminosilicate having an MFI structure). And / or silicalite).
  • MFI-type zeolite aluminosilicate having an MFI structure.
  • silicalite silicalite
  • the porous separation layer contains MFI-type zeolite and has an X-ray diffraction pattern satisfying the above (1) and (2).
  • the efficiency of linear hydrocarbons and branched and / or cyclic hydrocarbons is improved.
  • the separation membrane of the present invention can separate linear hydrocarbons and branched hydrocarbons particularly efficiently.
  • the hydrocarbon mixture subjected to membrane separation using the separation membrane of the present invention is a mixture containing linear hydrocarbons, branched hydrocarbons and / or cyclic hydrocarbons having the same carbon number, and preferably Is a mixture containing a straight-chain hydrocarbon having 4 carbon atoms, a branched hydrocarbon having 4 carbon atoms and / or a cyclic hydrocarbon having 4 carbon atoms as a main component, or a straight chain having 5 carbon atoms.
  • the main component is a linear hydrocarbon having 4 or 5 carbon atoms, and a branched hydrocarbon and / or a cyclic hydrocarbon having the same carbon number as the linear hydrocarbon.
  • the hydrocarbon mixture can be separated efficiently.
  • the hydrogen mixture can be separated efficiently.
  • “contains linear hydrocarbons and branched hydrocarbons and / or cyclic hydrocarbons as main components” means linear hydrocarbons and branched hydrocarbons in a hydrocarbon mixture. It refers to containing 50 mol% or more of hydrogen and / or cyclic hydrocarbons in total.
  • Examples of the mixture containing a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon and / or cyclic hydrocarbon having 4 carbon atoms as main components include n-butane, 1-butene, 2-butene. And a mixture containing a linear hydrocarbon having 4 carbon atoms such as butadiene and a branched hydrocarbon having 4 carbon atoms such as isobutane and isobutene and / or a cyclic hydrocarbon such as cyclobutane and cyclobutene.
  • a mixture containing as a main component a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon and / or cyclic hydrocarbon having 4 carbon atoms for example, naphtha is thermally decomposed.
  • a C4 fraction produced as a by-product when ethylene is produced and a fraction remaining after at least a part of butadiene is recovered from the C4 fraction.
  • a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon and / or cyclic hydrocarbon having 5 carbon atoms includes n-pentane, 1-pentene, 2-pentene. , Straight-chain hydrocarbons having 5 carbon atoms such as 1,3-pentadiene and carbons such as isopentane, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene and isoprene And a mixture containing a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms such as cyclopentane and cyclopentene.
  • a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon and / or cyclic hydrocarbon having 5 carbon atoms for example, naphtha is thermally decomposed.
  • the porous support is a porous body having a plurality of pores.
  • the porous body of arbitrary materials can be used if it is a porous body which can carry
  • porous ceramics such as porous ceramics such as alumina, mullite, zirconia, cordierite, and porous sintered metals such as stainless steel are preferable. This is because a porous body made of porous ceramics or porous sintered metal is excellent in mechanical strength.
  • the shape of the porous support is not particularly limited, and can be any shape such as a flat film shape, a flat plate shape, a tube shape, and a honeycomb shape.
  • the average pore diameter of the porous support is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.7 ⁇ m or more, and 1.0 ⁇ m or more. Is particularly preferably 10 ⁇ m or less, more preferably 5.0 ⁇ m or less, still more preferably 3.0 ⁇ m or less, and particularly preferably 2.0 ⁇ m or less.
  • the porous separation layer can be formed, for example, by synthesizing zeolite containing MFI type zeolite on a porous support to which zeolite seed crystals are attached.
  • the porous separation layer is MFI type from the viewpoint of sufficiently increasing the separation efficiency between linear hydrocarbons having the same carbon number and branched hydrocarbons and / or cyclic hydrocarbons. It is necessary to include an zeolite and to have an X-ray diffraction pattern that satisfies a predetermined condition.
  • the porous separation layer consists essentially of MFI-type zeolite.
  • the porous separation layer comprises (001) plane, (002) plane, (004) plane, (101) plane, (102) plane, (103) plane, (104) plane of MFI-type zeolite,
  • the sum of the intensities of diffraction peaks derived from the (105) plane, the (202) plane, and the (303) plane (hereinafter sometimes referred to as “peak intensity derived from the c-axis”) is (100 ) Plane, (200) plane, (400) plane, (301) plane, and the sum of the intensities of diffraction peaks derived from the (501) plane (hereinafter sometimes referred to as “peak intensity derived from the a-axis”).
  • peak intensity derived from the b-axis X-ray times more than 3 times the sum of Required to have a pattern.
  • the derived peak intensity is preferably at least 4 times the sum of the peak intensity derived from the a axis and the peak intensity derived from the b axis, more preferably 5 times or more, and 5.3 times or more. More preferably, it is 5.5 times or more, particularly preferably 7 times or less, more preferably 6.3 times or less, and further preferably 6 times or less.
  • the porous separation layer has a MFI-type zeolite in which the total intensity of diffraction peaks derived from the (101) plane, (102) plane, (103) plane, (104) plane, and (105) plane of the MFI-type zeolite It is necessary to have an X-ray diffraction pattern that is less than 3 times the intensity of the diffraction peak derived from the (101) plane.
  • MFI zeolite The sum of the diffraction peak intensities derived from the (101) plane, (102) plane, (103) plane, (104) plane, and (105) plane of the The strength is preferably more than 1 time, more preferably 1.1 times or more, still more preferably 1.2 times or more, particularly preferably 1.4 times or more, and 2.7. It is preferably 2 times or less, more preferably 2.5 times or less, still more preferably 2.3 times or less, and particularly preferably 2.0 times or less.
  • the intensity of each diffraction peak in the X-ray diffraction pattern of the porous separation layer is not particularly limited.
  • the properties of the porous support, the zeolite seed crystals attached to the porous support It can be adjusted by changing the production conditions of the separation membrane, such as the method of attaching the zeolite seed crystals to the properties and the porous support.
  • the layer thickness of the porous separation layer is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, particularly preferably 7 ⁇ m or more, and 50 ⁇ m or less. It is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and particularly preferably 15 ⁇ m or less. If the layer thickness of the porous separation layer is 1 ⁇ m or more, the generation of pinholes can be suppressed, the separation factor of the separation membrane can be increased, and straight chain hydrocarbons and branched hydrocarbons having the same number of carbon atoms. In addition, the separation efficiency from cyclic hydrocarbons can be further improved.
  • the thickness of the porous separation layer is 50 ⁇ m or less, the permeation flux of the separation membrane is suppressed from decreasing, and straight-chain hydrocarbons, branched hydrocarbons and / or cyclics having the same carbon number The separation efficiency from hydrocarbons can be further improved.
  • the “layer thickness of the porous separation layer” can be measured using a scanning electron microscope (SEM). Further, the layer thickness of the porous separation layer is controlled by adjusting, for example, the average particle diameter of the zeolite seed crystals used for forming the porous separation layer, the zeolite synthesis conditions (for example, temperature and time), and the like. Can do.
  • the separation membrane of the present invention having the above-described porous separation layer can be easily produced using, for example, the separation membrane production method of the present invention.
  • a porous support to which a zeolite seed crystal is attached is immersed in an aqueous sol containing a silica source and a structure-directing agent, and a zeolite containing MFI-type zeolite by hydrothermal synthesis.
  • a step of forming a porous separation layer on the porous support (separation layer formation step), and optionally preparing a zeolite seed crystal (seed crystal preparation step) and a seed crystal preparation step
  • a step of attaching the prepared zeolite seed crystal to the porous support seed crystal attaching step).
  • a zeolite seed crystal having an average particle diameter of 50 nm to 700 nm is used, and the ratio of the average particle diameter of the zeolite seed crystal to the average pore diameter of the porous support is 0. It is necessary to use a porous support and a zeolite seed crystal in a combination of 0.01 to 0.7. That is, in the method for producing a separation membrane of the present invention, it is necessary to use a zeolite seed crystal having a predetermined average particle size smaller than the average pore size of the porous support.
  • a zeolite seed crystal having an average particle diameter of 50 nm to 700 nm is used, and the ratio of the average particle diameter of the zeolite seed crystal to the average pore diameter of the porous support is 0.01 to 0.7.
  • the reason why a porous separation layer having the above-described properties can be easily formed by using a combination of such a porous support and a zeolite seed crystal is not clear, but is presumed to be as follows. Is done. That is, when the zeolite seed crystal having the average particle diameter described above and the porous support having the average pore diameter described above are used, the zeolite seed crystal enters the pores of the porous support and the direction in which the zeolite grows is increased. In order to be appropriately restricted, it is assumed that a porous separation layer having the above-described properties can be easily formed.
  • the average particle size of the zeolite seed crystals is preferably 100 nm or more, more preferably 150 nm or more. Preferably, it is 200 nm or more, more preferably 300 nm or more, particularly preferably 600 nm or less, more preferably 500 nm or less, still more preferably 400 nm or less, and 350 nm or less. It is particularly preferred.
  • the ratio of the average particle diameter of the zeolite seed crystal to the average pore diameter of the porous support is 0.05 or more Preferably 0.1 or more, more preferably 0.15 or more, particularly preferably 0.2 or more, and preferably 0.5 or less, 0 Is preferably 4 or less, and more preferably 0.3 or less.
  • a zeolite that becomes a seed crystal is synthesized on a porous support to which no zeolite seed crystal is attached as a porous support to which a zeolite seed crystal is attached.
  • a zeolite seed crystal prepared in advance is attached to the porous support. Is preferably used. That is, in the separation membrane manufacturing method of the present invention, it is preferable to perform the seed crystal preparation step and the seed crystal attachment step.
  • a zeolite seed crystal having an average particle diameter of 50 nm or more and 700 nm or less is prepared using a known zeolite seed crystal manufacturing method without any particular limitation.
  • the zeolite seed crystal preferably contains MFI-type zeolite, and more preferably substantially consists of MFI-type zeolite.
  • an aqueous sol for seed crystals obtained by mixing a silica source, a structure-directing agent and water is heated, and a crude zeolite zeolite is prepared by hydrothermal synthesis.
  • a zeolite seed crystal having an average particle size of 50 nm to 700 nm can be prepared by drying and pulverizing the obtained crude crystal.
  • the silica source used for the preparation of the zeolite seed crystal is not particularly limited.
  • tetraethoxysilane and colloidal silica are preferable, and tetraethoxysilane is more preferable.
  • the structure-directing agent is not particularly limited, and examples thereof include quaternary ammonium salts such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrapropylammonium bromide, and alcohol. Among these, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrapropylammonium bromide are preferable.
  • the mixing ratio of the structure-directing agent is not particularly limited, but is preferably in the range of 1: 0.01 to 1: 2.0, more preferably 1: 0, in terms of a molar ratio of “silica source: structure-directing agent”. The range is from 1 to 1: 1.0, more preferably from 1: 0.15 to 1: 0.8.
  • the mixing ratio of water in the aqueous sol for seed crystals is not particularly limited, but the molar ratio of “silica source: water” can be preferably in the range of 1: 3 to 1: 100, and more preferably. Can be in the range of 1: 5 to 1:50.
  • the heating temperature when the seed crystal aqueous sol is heated and a crude crystal is obtained by hydrothermal synthesis is preferably 100 ° C. or higher and 200 ° C. or lower, more preferably 130 ° C. or higher and 150 ° C. or lower.
  • the heating time is preferably 10 hours or more and 50 hours or less, more preferably 20 hours or more and 50 hours or less.
  • hydrothermal synthesis is usually performed by placing an aqueous sol for seed crystals in a pressure vessel and heating the pressure vessel under the above conditions.
  • a pressure vessel for example, the stainless steel pressure vessel with a fluororesin inner cylinder, the nickel metal pressure vessel, the fluorine resin pressure vessel, etc. can be used.
  • a method of heating a pressure vessel the method of putting a pressure vessel in a hot air dryer and heating, the method of attaching a heater directly to a pressure vessel, and heating are mentioned.
  • the crude crystals obtained by heating the aqueous sol for seed crystals can be recovered using a known solid-liquid separation method such as centrifugation.
  • the recovered crude crystals may be used as zeolite seed crystals as they are, or may be used as zeolite seed crystals after drying and pulverization.
  • the temperature for drying the recovered crude crystals is not particularly limited, but is preferably 70 ° C or higher and 100 ° C or lower. Also, the pulverization method and conditions for pulverizing the crude crystals are not particularly limited, and a method and conditions that give a desired average particle diameter may be adopted.
  • the zeolite seed crystal can be attached (supported) to the porous support using a known method such as coating or rubbing. Specifically, in the seed crystal attaching step, a dispersion obtained by dispersing zeolite seed crystals having an average particle size of 50 nm to 700 nm in water is applied to a porous support, and the applied dispersion is dried. Thus, the zeolite seed crystal can be attached to the porous support.
  • the seed crystal attaching step by rubbing a zeolite seed crystal having an average particle diameter of 50 nm or more and 700 nm or less onto a porous support previously dampened by being immersed in ultrapure water for 1 to 60 minutes, Zeolite seed crystals can be attached to the porous support.
  • the zeolite seed crystals are made porous by rubbing the zeolite seed crystals on the wet porous support. It is preferable to adhere to a conductive support.
  • the porous support to which the zeolite seed crystals are attached is any porous material in which the ratio of the average particle diameter of the zeolite seed crystals to the average pore diameter of the porous support is 0.01 or more and 0.7 or less.
  • a support can be used.
  • the porous support the porous support described in the above section ⁇ Porous support> can be used.
  • the attached zeolite seed crystals can be fixed to the porous support by removing moisture contained in the porous support by drying.
  • the drying temperature in this case is not specifically limited, Preferably it is 70 degreeC or more and 100 degrees C or less.
  • ⁇ Separation layer forming step> the porous support with the zeolite seed crystals attached is immersed in an aqueous sol containing a silica source and a structure-directing agent, and the zeolite containing MFI-type zeolite is synthesized by hydrothermal synthesis to form a porous support.
  • a porous separation layer is formed on the body.
  • the separation membrane obtained by forming the porous separation layer on the porous support in the separation layer forming step may optionally be subjected to boiling washing or baking treatment.
  • the aqueous sol used for forming the porous separation layer can be prepared by mixing a silica source, a structure-directing agent and water.
  • the silica source is not particularly limited, and colloidal silica, wet silica, amorphous silica, fumed silica, sodium silicate, silica sol, silica gel, kaolinite, diatomaceous earth, aluminum silicate, white carbon, tetrabutoxy Silane, tetrabutyl orthosilicate, tetraethoxysilane and the like can be mentioned. Among these, tetraethoxysilane and colloidal silica are preferable, and tetraethoxysilane is more preferable.
  • the structure directing agent is not particularly limited, and examples thereof include quaternary ammonium salts such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrapropylammonium bromide, crown ethers, alcohols, and the like.
  • quaternary ammonium salts such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrapropylammonium bromide, crown ethers, alcohols, and the like.
  • tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrapropylammonium bromide are preferable, and it is more preferable to use tetrapropylammonium hydroxide and tetrapropylammonium bromide in combination.
  • the mixing ratio of the structure directing agent in the aqueous sol is not particularly limited, but is preferably in the range of 1: 0.01 to 1: 2.0 in terms of the molar ratio of “silica source: structure directing agent”
  • the range is more preferably 1: 0.1 to 1: 1.0, and still more preferably 1: 0.15 to 1: 0.8.
  • the mixing ratio of water in the aqueous sol is not particularly limited, but the molar ratio of “silica source: water” is preferably in the range of 1: 100 to 1: 1000, more preferably 1: It can be in the range of 200 to 1: 800.
  • the method of immersing the porous support to which the zeolite seed crystals are attached in the aqueous sol is not particularly limited.
  • the method of putting the aqueous sol in a pressure vessel containing the porous support to which the zeolite seed crystals are attached Etc. Or you may employ
  • a pressure vessel used at this time the thing similar to what can be used when manufacturing a zeolite seed crystal can be used.
  • a zeolite containing MFI-type zeolite is synthesized by hydrothermal synthesis to form a porous separation layer on the porous support.
  • the heating temperature is preferably 100 ° C. or higher and 250 ° C. or lower, more preferably 150 ° C. or higher and 200 ° C. or lower.
  • the heating time is preferably 1 hour or more and 50 hours or less, more preferably 2 hours or more and 20 hours or less. Examples of the method for heating the aqueous sol and the porous support in the pressure vessel include a method in which the pressure vessel is heated in a hot air dryer, a method in which a heater is directly attached to the pressure vessel, and the like.
  • distilled water can be used as a cleaning liquid for boiling and cleaning a separation membrane obtained by forming a porous separation layer on a porous support.
  • the boiling washing time is preferably 10 minutes to 2 hours, more preferably 30 minutes to 1.5 hours.
  • the boiling cleaning may be performed a plurality of times (for example, 2 to 3 times), and the boiling cleaning conditions when the boiling cleaning is performed a plurality of times may be the same or different from each other.
  • you may perform a drying process as needed, and the drying temperature of the separation membrane after boiling washing is preferably 70 ° C. or higher and 100 ° C. or lower.
  • the separation membrane obtained by forming the porous separation layer on the porous support is preferably subjected to a firing treatment in order to remove the structure-directing agent.
  • the rate of temperature increase during the baking treatment is preferably 0.1 ° C./min to 1 ° C./min, more preferably 0.1 ° C./min to 0.5 ° C./min.
  • the firing temperature is preferably 400 ° C. or higher and 800 ° C. or lower, and more preferably 400 ° C. or higher and 600 ° C. or lower.
  • the temperature lowering rate is preferably 0.1 ° C./min or more and 1 ° C./min or less, more preferably 0.1 ° C./min or more and 0.4 ° C./min or less.
  • baking time becomes like this. Preferably they are 1 hour or more and 30 hours or less, More preferably, they are 5 hours or more and 30 hours or less.
  • the membrane separation is preferably performed under conditions of 20 ° C. or higher and 300 ° C. or lower, more preferably 25 ° C. or higher and 250 ° C. or lower, and further preferably 50 ° C. or higher and 200 ° C. or lower.
  • the pressure condition for performing the membrane separation is not particularly limited, but it is preferable that the differential pressure between the non-permeable side and the permeable side (pressure on the non-permeable side ⁇ pressure on the permeable side) is 10 kPa or more and 600 kPa or less, More preferably, it is 50 kPa or more and 300 kPa or less.
  • ⁇ Average particle diameter of zeolite seed crystals The particle diameter of 20 zeolite seed crystals was measured using a scanning electron microscope (SEM). And the average value of the obtained measured value was computed, and it was set as the average particle diameter of a zeolite seed crystal.
  • ⁇ Average pore diameter of porous support The average pore diameter of the porous support was determined by mercury porosimetry using a mercury porosimeter (manufactured by Quantachrome, PoleMaster 60GT).
  • ⁇ X-ray diffraction pattern of porous separation layer An X-ray diffraction pattern of the porous separation layer was obtained using an X-ray diffractometer (manufactured by Bruker AXS, Discover D8). The measurement conditions were: X-ray source: Cu—K ⁇ ray, wavelength ⁇ : 1.54 mm, tube voltage: 30 kV, tube current: 15 mA, output: 0.9 kW, incident slit: 1.0 mm length ⁇ 1.0 mm width, Light receiving slit: solar slit (angular resolution 0.35 deg), detector: scintillation counter, measurement speed: 0.01 deg / sec.
  • the permeation flux F was calculated using the following formula (I). Further, the separation coefficient ⁇ was calculated using the following formula (II-1) or (II-2). Specifically, when a hydrocarbon mixture composed of a mixture of n-pentane and isopentane is used as a raw material, the following formula (II-1) is used, and a mixture of n-pentane and cyclopentane is used. When a hydrocarbon mixture was used as a raw material, the separation coefficient ⁇ was calculated using the following formula (II-2). And Fx (alpha) was computed and the separation efficiency was evaluated.
  • W is the mass [kg] of the component that has passed through the separation membrane
  • A is the effective area [m 2 ] of the separation membrane
  • t is the treatment time [hour]. .
  • X n is the content ratio [mol%] of n-pentane in the raw material
  • X iso is the content ratio [mol%] of isopentane in the raw material
  • Y n Is the content ratio [mol%] of n-pentane in the permeation side sample
  • Y iso is the content ratio [mol%] of isopentane in the permeation side sample.
  • X n is the content ratio [mol%] of n-pentane in the raw material
  • X cy is the content ratio [mol%] of cyclopentane in the raw material
  • Y n is the content ratio [mol%] of n-pentane in the permeation side sample
  • Y cy is the content ratio [mol%] of cyclopentane in the permeation side sample.
  • Example 1 ⁇ Preparation of aqueous sol A for seed crystals> 152.15 g of a tetrapropylammonium hydroxide aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd.) having a concentration of 22.5% by mass (34.23 g in terms of tetrapropylammonium hydroxide as a structure directing agent) and 48.44 g of ultrapure water Mix with a magnetic stirrer.
  • a tetrapropylammonium hydroxide aqueous solution manufactured by Tokyo Chemical Industry Co., Ltd.
  • a concentration of 22.5% by mass 34.23 g in terms of tetrapropylammonium hydroxide as a structure directing agent
  • ultrapure water Mix with a magnetic stirrer.
  • recovered solid content was dried in a 80 degreeC thermostat for 12 hours, and the zeolite seed crystal A was obtained by grind
  • the obtained zeolite seed crystal A was confirmed to be MFI-type zeolite by X-ray diffraction measurement.
  • the average particle size of the zeolite seed crystal A was 130 nm.
  • a cylindrical mullite porous support (trade name “PM tube”, manufactured by Nikkato Corporation, outer diameter 12 mm, inner diameter 9 mm, length 100 mm, average pore diameter 1.4 ⁇ m, porosity 42.7%) was washed with acetone.
  • ⁇ Preparation of aqueous sol for porous separation layer 4.99 g of tetrapropylammonium hydroxide aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd.) having a concentration of 22.5% by mass (1.12 g in terms of tetrapropylammonium hydroxide as a structure-directing agent) and tetrapropylammonium as a structure-directing agent Bromide (manufactured by Wako Pure Chemical Industries, Ltd.) 0.74 g and ultrapure water 238.79 g were mixed with a magnetic stirrer at room temperature for 10 minutes.
  • tetraethoxysilane manufactured by SIGMA-ALDLICH
  • a magnetic stirrer at room temperature for 60 minutes to prepare an aqueous sol for forming a porous separation layer.
  • ⁇ Formation of porous separation layer> The aqueous separation sol for a porous separation layer obtained above was placed in a stainless steel pressure vessel.
  • the porous support to which the zeolite seed crystal A is adhered is immersed in an aqueous sol for a porous separation layer and reacted (hydrothermal synthesis) in a hot air dryer at 185 ° C. for 14 hours to obtain a porous support.
  • a porous separation layer was formed thereon.
  • the porous support on which the porous separation layer was formed was subjected to boiling washing for 1 hour twice using distilled water as a washing liquid. Thereafter, the porous support on which the porous separation layer was formed was dried for 12 hours in a constant temperature dryer at 80 ° C.
  • firing was performed to remove the structure-directing agent (tetrapropylammonium hydroxide, tetrapropylammonium bromide) contained in the porous separation layer, and a separation membrane was obtained.
  • the firing conditions were a temperature rising rate: 0.25 ° C./minute, a firing temperature: 500 ° C., a firing time (holding time): 20 hours, and a temperature lowering rate of 0.38 ° C./minute.
  • the layer thickness of the porous separation layer was measured.
  • X-ray diffraction measurement of the porous separation layer was performed to obtain an X-ray diffraction pattern.
  • the porous separation layer was MFI-type zeolite. Further, from the obtained X-ray diffraction pattern, the intensity of the diffraction peak derived from each crystal face of the MFI-type zeolite is obtained, and the c-axis with respect to the sum of the peak intensity derived from the a axis and the peak intensity derived from the b axis.
  • the test apparatus 1 includes a raw material tank 2, a liquid feed pump 3, a first heat exchanger 4, a separation device 5, and a second heat exchanger 7.
  • the separation device 5 is configured by assembling the separation membrane obtained above to a cylindrical tube.
  • the test apparatus 1 shown in FIG. 1 includes a cold trap 6 and a sampling cold trap 13 connected to the separation device 5 via a three-way valve 10, and a cold trap 6 and a cold trap 13 downstream via a three-way valve 14. And a decompression pump 11 connected to the side.
  • the test apparatus 1 includes a sampling valve 12 between the raw material tank 2 and the liquid feed pump 3, and includes a back pressure valve 8 and a pressure gauge 9 on the downstream side of the separation apparatus 5. .
  • the raw material filled in the raw material tank 2 is sent to the first heat exchanger 4 by the liquid feed pump 3 and heated to a temperature equal to or higher than the temperature at which the raw material is vaporized. Is done.
  • the vaporized raw material is sent to the separation device 5 in a gas phase, and components are separated (membrane separation) by the separation device 5 including a separation membrane.
  • the permeation side of the separation membrane is decompressed by the decompression pump 11, and the component that has permeated the separation membrane is the cold trap 6 connected via the three-way valve 10 or the sampling cold. It is sent to the trap 13.
  • the non-permeate component that has not permeated through the separation membrane provided in the separation device 5 is condensed by being cooled by the second heat exchanger 7 and is returned to the raw material tank 2.
  • the back pressure is adjusted by a back pressure valve 8 and a pressure gauge 9 provided on the downstream side of the separation device 5.
  • transmitted the separation membrane with which the separation apparatus 5 was equipped can be extracted as a sample on the permeation
  • FIG. [Membrane separation] The membrane separation test using the test apparatus 1 shown in FIG. 1 was performed as follows.
  • a raw material tank 2 is filled with a hydrocarbon mixture of 5 carbon atoms composed of a mixed liquid of n-pentane and isopentane (a mixed liquid of n-pentane: 50 mol% and isopentane: 50 mol%).
  • the deaeration operation was performed three times.
  • the hydrocarbon mixture is supplied to the separation device 5 in the gas phase via the first heat exchanger 4 heated to 70 ° C. by the liquid feed pump 3, and then the second heat exchanger 7.
  • the raw material circulation process which condensed by this and returned to the raw material tank 2 was started. Then, after starting the material circulation treatment, the system is operated until the temperature in the system reaches a steady state.
  • the back pressure valve 8 pressurizes the non-permeate side to 50 kPa, and a decompression pump 11 was started, and the permeation side (cold trap 6 and cold trap 13) was depressurized to ⁇ 100 kPa. Then, after confirming that the temperature and pressure in the system were stable, the membrane separation test was started by opening the three-way valve 10 on the permeation side. That is, the membrane separation test was conducted under the conditions of a temperature of 70 ° C. and a differential pressure of 150 kPa between the non-permeable side and the permeable side. And extraction of the permeation
  • the flow path on the permeation side is switched from the cold trap 6 side to the sampling cold trap 13 side using the three-way valves 10 and 14, and the permeation side sample is used as a condensate in the sampling cold trap 13. Extracted by collecting. The sampling time at this time was 10 minutes. The sample on the permeate side (condensate) was weighed and the molar ratio of n-pentane to isopentane was measured by gas chromatography. And the performance of the separation membrane was evaluated using these measurement results. The results are shown in Table 1.
  • Example 2 A separation membrane was prepared and evaluated in the same manner as in Example 1 except that zeolite seed crystal B prepared as follows was used instead of zeolite seed crystal A. The results are shown in Table 1. As a result of X-ray diffraction measurement of the porous separation layer of the separation membrane, it was confirmed that the porous separation layer was MFI-type zeolite.
  • aqueous solution of tetrapropylammonium hydroxide having a concentration of 22.5% by mass (manufactured by Tokyo Chemical Industry Co., Ltd.) 69.23 g (15.58 g in terms of tetrapropylammonium hydroxide as a structure-directing agent) and 165.64 g of ultrapure water Mix with a magnetic stirrer.
  • 65.13 g of tetraethoxysilane (manufactured by SIGMA-ALDLICH) as a silica source was added and mixed with a magnetic stirrer at room temperature for 70 minutes to prepare an aqueous sol B for seed crystal production.
  • ⁇ Preparation of zeolite seed crystal B> Aqueous sol B for seed crystals was placed in a stainless steel pressure-resistant container with a fluororesin inner cylinder and reacted (hydrothermal synthesis) for 48 hours in a 130 ° C. hot air dryer. Next, the obtained reaction liquid was subjected to solid-liquid separation by centrifuging for 5 minutes with a centrifuge (4000 rpm), and the solid content was recovered. And the collect
  • Example 3 A separation membrane was prepared and evaluated in the same manner as in Example 1 except that zeolite seed crystal C prepared as follows was used instead of zeolite seed crystal A. The results are shown in Table 1. As a result of X-ray diffraction measurement of the porous separation layer of the separation membrane, it was confirmed that the porous separation layer was MFI-type zeolite.
  • ⁇ Preparation of zeolite seed crystal C> In the same manner as in Example 2, an aqueous sol B for seed crystal was prepared. Then, the aqueous sol B for seed crystal was placed in a stainless steel pressure resistant vessel with a fluororesin inner cylinder, and reacted (hydrothermal synthesis) for 72 hours in a hot air dryer at 140 ° C.
  • the obtained reaction liquid was subjected to solid-liquid separation by centrifuging for 5 minutes with a centrifuge (4000 rpm), and the solid content was recovered. And the collect
  • the obtained zeolite seed crystal C was confirmed to be MFI-type zeolite by X-ray diffraction measurement. The average particle size of the zeolite seed crystal C was 470 nm.
  • Example 4 In the membrane separation test, a mixed solution of n-pentane and cyclopentane (mixed solution of n-pentane: 50 mol%, cyclopentane: 50 mol%) was used instead of the mixed solution of n-pentane and isopentane.
  • a separation membrane was prepared and evaluated in the same manner as in Example 2 except that the molar ratio of n-pentane and cyclopentane was measured by gas chromatography. The results are shown in Table 1.
  • Example 1 A separation membrane was prepared and evaluated in the same manner as in Example 1 except that the zeolite seed crystal D prepared as follows was used instead of the zeolite seed crystal A. The results are shown in Table 1. As a result of X-ray diffraction measurement of the porous separation layer of the separation membrane, it was confirmed that the porous separation layer was MFI-type zeolite. ⁇ Preparation of aqueous sol C for seed crystal> 25.35 g of tetrapropylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) as a structure directing agent and 223.55 g of ultrapure water were mixed with a magnetic stirrer.
  • aqueous sol C for seed crystal 25.35 g of tetrapropylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) as a structure directing agent and 223.55 g of ultrapure water were mixed with a magnetic stirrer.
  • ⁇ Preparation of zeolite seed crystal D> Aqueous sol C for seed crystals was placed in a stainless steel pressure-resistant container with a fluororesin inner cylinder and reacted (hydrothermal synthesis) in a hot air dryer at 140 ° C. for 30 hours. Next, the obtained reaction liquid was subjected to solid-liquid separation by centrifuging for 5 minutes with a centrifuge (4000 rpm), and the solid content was recovered. And the collect
  • n-pentane when using the separation membrane of the example, compared with the case of using the separation membrane of the comparative example, n-pentane can be efficiently separated from the mixed solution containing n-pentane and isopentane. It can also be seen that n-pentane can be efficiently separated from a mixed solution containing n-pentane and cyclohexane.
  • a separation membrane capable of efficiently separating cyclic hydrocarbons can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 本発明は、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との混合物の膜分離に使用した際に、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを効率的に分離することができる分離膜を提供することを目的とする。本発明の分離膜は、多孔性支持体と、多孔性支持体上に設けられた、MFI型ゼオライトを含む多孔性分離層とを備え、多孔性分離層をX線回折測定して得られるX線回折パターンにおいて、MFI型ゼオライトの所定の結晶面に由来する回折ピークの強度が所定の関係を満たす。

Description

分離膜およびその製造方法
 本発明は、分離膜およびその製造方法に関し、特には、炭化水素混合物から一部の炭化水素を分離する際に好適に使用し得る分離膜、および当該分離膜の製造方法に関するものである。
 従来、炭素数が等しい直鎖状炭化水素と分岐状炭化水素とを含む炭化水素混合物から分岐状炭化水素を低エネルギーで分離する方法として、膜分離法が用いられている。そして、分離膜としては、例えば、支持体上にゼオライトを膜状に形成してなるゼオライト膜が用いられている。
 具体的には、例えば特許文献1では、多孔性基板と、MFI型ゼオライトを含む多孔性分離層とを有する複合膜(ゼオライト膜)を分離膜として使用し、1-ブテンとイソブテンとの混合物からイソブテンを分離している。そして、特許文献1では、孔径が1~5nmの多孔性基板に対して直径が30~100nmのシリケート結晶よりなるシード粒子を付着させた後、シード粒子を付着させた多孔性基板上で水熱合成によりゼオライトを合成して多孔性分離層を形成することにより、イソブテンの分離に使用するゼオライト膜を調製している。
特表2007-517648号公報
 しかし、上記従来のゼオライト膜には、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との炭化水素混合物の膜分離に使用した際の分離効率が十分ではないという点において改善の余地があった。
 そこで、本発明は、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との炭化水素混合物の膜分離に使用した際に直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを効率的に分離することができる分離膜を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、所定の性状を有するゼオライト膜が、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との炭化水素混合物の膜分離に使用した際の分離効率に優れていることを見出した。また、本発明者らは、ゼオライト種結晶を付着させた多孔性支持体上でMFI型ゼオライトを含むゼオライトを水熱合成してゼオライト膜を形成する際に、所定の平均粒子径を有するゼオライト種結晶と所定の平均細孔径を有する多孔性支持体とを組み合わせて使用することにより、上記所定の性状を有するゼオライト膜を容易に形成し得ることを見出した。そして、本発明者らは、上述した新たな知見に基づき、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の分離膜は、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む炭化水素混合物の膜分離に用いられる分離膜であって、多孔性支持体と、前記多孔性支持体上に設けられた、MFI型ゼオライトを含む多孔性分離層とを備え、前記多孔性分離層をX線回折測定して得られるX線回折パターンは、MFI型ゼオライトの(001)面、(002)面、(004)面、(101)面、(102)面、(103)面、(104)面、(105)面、(202)面および(303)面に由来する回折ピークの強度の合計が、MFI型ゼオライトの(100)面、(200)面、(400)面、(301)面および(501)面に由来する回折ピークの強度の合計と、MFI型ゼオライトの(010)面、(020)面、(040)面および(051)面に由来する回折ピークの強度の合計との和の3倍以上であり、且つ、MFI型ゼオライトの(101)面、(102)面、(103)面、(104)面および(105)面に由来する回折ピークの強度の合計が、MFI型ゼオライトの(101)面に由来する回折ピークの強度の3倍未満であることを特徴とする。このように、MFI型ゼオライトを含み、且つ、X線回折パターン中の特定の回折ピークの強度が所定の関係を満たす多孔性分離層を多孔性支持体上に設けた分離膜によれば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを効率的に分離することができる。特に、当該分離膜によれば、炭素数が等しい、直鎖状炭化水素と分岐状炭化水素とを特に効率的に分離することができる。
 ここで、前記炭化水素混合物は、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または炭素数が4の環状炭化水素とを主成分として含む混合物、或いは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物であることが好ましい。
 なお、本発明において、「ゼオライト」には、ZSM-5等のアルミノケイ酸塩と、シリカライトとが含まれる。また、本発明において、「X線回折測定」は、X線回折装置を使用して、管電圧が30kV、管電流が15mAの条件下において行う。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の分離膜の製造方法は、上述した分離膜の製造方法であって、ゼオライト種結晶を付着させた多孔性支持体を、シリカ源および構造規定剤を含む水性ゾルに浸漬し、水熱合成によりMFI型ゼオライトを含むゼオライトを合成して前記多孔性支持体上に多孔性分離層を形成する工程を含み、前記ゼオライト種結晶の平均粒子径が、50nm以上700nm以下であり、前記多孔性支持体の平均細孔径に対する前記ゼオライト種結晶の平均粒子径の比が0.01以上0.7以下であることを特徴とする。このように、平均粒子径が50nm以上700nm以下のゼオライト種結晶を使用し、且つ、多孔性支持体の平均細孔径に対するゼオライト種結晶の平均粒子径の比(平均粒子径/平均細孔径)が0.01以上0.7以下となるようにすれば、MFI型ゼオライトを含み、且つ、X線回折パターン中の特定の回折ピークの強度が上述した関係を満たす多孔性分離層を多孔性支持体上に設けた分離膜を容易に形成することができる。
 なお、本発明において、「ゼオライト種結晶の平均粒子径」は、走査型電子顕微鏡(SEM)を使用して測定した20個のゼオライト種結晶の粒子径の個数平均を算出することにより、求めることができる。また、本発明において、「多孔性支持体の平均細孔径」は、水銀ポロシメータを使用した水銀圧入法により求めることができる。
 本発明によれば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との炭化水素混合物の膜分離に使用した際に、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを効率的に分離することができる分離膜を提供することができる。
実施例で用いた試験装置の概略構成を示す図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の分離膜は、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む炭化水素混合物の膜分離に用いられる。そして、本発明の分離膜は、例えば本発明の分離膜の製造方法を用いて製造することができる。
(分離膜)
 炭化水素混合物の膜分離に用いられる本発明の分離膜は、所謂ゼオライト膜である。そして、本発明の分離膜は、多孔性支持体と、多孔性支持体上に設けられた多孔性分離層とを備え、且つ、多孔性分離層がMFI型ゼオライト(MFI構造を有するアルミノケイ酸塩および/またはシリカライト)を含んでいる。また、本発明の分離膜は、多孔性分離層をX線回折測定して得られるX線回折パターンが、下記の(1)および(2)を満たす。
(1)MFI型ゼオライトの(001)面、(002)面、(004)面、(101)面、(102)面、(103)面、(104)面、(105)面、(202)面および(303)面に由来する回折ピークの強度の合計が、MFI型ゼオライトの(100)面、(200)面、(400)面、(301)面および(501)面に由来する回折ピークの強度の合計と、MFI型ゼオライトの(010)面、(020)面、(040)面および(051)面に由来する回折ピークの強度の合計との和の3倍以上。
(2)MFI型ゼオライトの(101)面、(102)面、(103)面、(104)面および(105)面に由来する回折ピークの強度の合計が、MFI型ゼオライトの(101)面に由来する回折ピークの強度の3倍未満。
 そして、本発明の分離膜は、多孔性分離層が、MFI型ゼオライトを含み、且つ、上記(1)および(2)を満たすX線回折パターンを有しているので、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との炭化水素混合物の膜分離に使用した際に、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを効率的に分離することができる。特に、本発明の分離膜は、直鎖状炭化水素と分岐状炭化水素とを特に効率的に分離することができる。
<炭化水素混合物>
 ここで、本発明の分離膜を用いて膜分離される炭化水素混合物は、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む混合物であり、好ましくは、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または炭素数が4の環状炭化水素とを主成分として含む混合物、或いは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物であり、より好ましくは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物である。本発明の分離膜によれば、炭素数が4または5の直鎖状炭化水素と、当該直鎖状炭化水素と炭素数が等しい分岐状炭化水素および/または環状炭化水素とを主成分として含む炭化水素混合物を効率的に分離することができる。特に、本発明の分離膜によれば、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む炭化水素混合物を効率的に分離することができる。
 なお、本発明において、「直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを主成分として含む」とは、炭化水素混合物中に、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを合計で50モル%以上含有することを指す。
 そして、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物としては、n-ブタン、1-ブテン、2-ブテン、ブタジエンなどの炭素数が4の直鎖状炭化水素と、イソブタン、イソブテンなどの炭素数が4の分岐状炭化水素および/またはシクロブタン、シクロブテンなどの環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC4留分や、C4留分から少なくともブタジエンの一部を回収した後に残る留分などが挙げられる。
 また、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物としては、n-ペンタン、1-ペンテン、2-ペンテン、1,3-ペンタジエンなどの炭素数が5の直鎖状炭化水素と、イソペンタン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン、イソプレンなどの炭素数が5の分岐状炭化水素および/またはシクロペンタン、シクロペンテンなどの炭素数が5の環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC5留分や、C5留分から少なくともイソプレンの一部を回収した後に残る留分などが挙げられる。
<多孔性支持体>
 多孔性支持体は、複数の細孔を有する多孔質体である。そして、多孔性支持体としては、多孔性分離層を担持することが可能な多孔質体であれば任意の材質の多孔質体を用いることができる。中でも、アルミナ、ムライト、ジルコニア、コージライト等の多孔質セラミックスや、ステンレス鋼等の多孔質焼結金属からなる多孔質体が好ましい。多孔質セラミックスや多孔質焼結金属からなる多孔質体は、機械的強度に優れているからである。
 なお、多孔性支持体の形状は、特に限定されることなく、例えば、平膜状、平板状、チューブ状、ハニカム状などの任意の形状とすることができる。
 そして、多孔性支持体の平均細孔径は、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、0.7μm以上であることが更に好ましく、1.0μm以上であることが特に好ましく、10μm以下であることが好ましく、5.0μm以下であることがより好ましく、3.0μm以下であることが更に好ましく、2.0μm以下であることが特に好ましい。
<多孔性分離層>
 多孔性分離層は、例えばゼオライト種結晶を付着させた多孔性支持体上でMFI型ゼオライトを含むゼオライトを合成することにより形成することができる。そして、本発明の分離膜では、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との分離効率を十分に高める観点から、多孔性分離層は、MFI型ゼオライトを含み、且つ、所定の条件を満たすX線回折パターンを有することを必要とする。特に、本発明の分離膜では、多孔性分離層が、実質的にMFI型ゼオライトからなることが好ましい。
[X線回折パターン]
 具体的には、多孔性分離層は、MFI型ゼオライトの(001)面、(002)面、(004)面、(101)面、(102)面、(103)面、(104)面、(105)面、(202)面および(303)面に由来する回折ピークの強度の合計(以下、「c軸に由来するピーク強度」と称することがある。)が、MFI型ゼオライトの(100)面、(200)面、(400)面、(301)面および(501)面に由来する回折ピークの強度の合計(以下、「a軸に由来するピーク強度」と称することがある。)と、MFI型ゼオライトの(010)面、(020)面、(040)面および(051)面に由来する回折ピークの強度の合計(以下、「b軸に由来するピーク強度」と称することがある。)との和の3倍以上となるX線回折パターンを有することを必要とする。
 なお、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との分離効率を更に向上させる観点からは、多孔性分離層のX線回折パターンにおいて、c軸に由来するピーク強度は、a軸に由来するピーク強度とb軸に由来するピーク強度との和の4倍以上であることが好ましく、5倍以上であることがより好ましく、5.3倍以上であることが更に好ましく、5.5倍以上であることが特に好ましく、7倍以下であることが好ましく、6.3倍以下であることがより好ましく、6倍以下であることが更に好ましい。
 また、多孔性分離層は、MFI型ゼオライトの(101)面、(102)面、(103)面、(104)面および(105)面に由来する回折ピークの強度の合計が、MFI型ゼオライトの(101)面に由来する回折ピークの強度の3倍未満となるX線回折パターンを有することを必要とする。
 なお、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との分離効率を更に向上させる観点からは、多孔性分離層のX線回折パターンにおいて、MFI型ゼオライトの(101)面、(102)面、(103)面、(104)面および(105)面に由来する回折ピークの強度の合計は、MFI型ゼオライトの(101)面に由来する回折ピークの強度の1倍超であることが好ましく、1.1倍以上であることがより好ましく、1.2倍以上であることが更に好ましく、1.4倍以上であることが特に好ましく、2.7倍以下であることが好ましく、2.5倍以下であることがより好ましく、2.3倍以下であることが更に好ましく、2.0倍以下であることが特に好ましい。
 なお、多孔性分離層のX線回折パターン中の各回折ピークの強度の大きさは、特に限定されることなく、例えば、多孔性支持体の性状、多孔性支持体に付着させるゼオライト種結晶の性状および多孔性支持体にゼオライト種結晶を付着させる方法などの分離膜の製造条件を変更することにより調整することができる。
[層厚]
 そして、多孔性分離層の層厚は、1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることが更に好ましく、7μm以上であることが特に好ましく、50μm以下であることが好ましく、40μm以下であることがより好ましく、30μm以下であることが更に好ましく、15μm以下であることが特に好ましい。多孔性分離層の層厚を1μm以上とすれば、ピンホールの発生を抑制することができると共に、分離膜の分離係数を高め、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との分離効率を更に向上させることができる。また、多孔性分離層の層厚を50μm以下とすれば、分離膜の透過流束が低下するのを抑制し、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との分離効率を更に向上させることができる。
 ここで、「多孔性分離層の層厚」は、走査型電子顕微鏡(SEM)を用いて測定することができる。また、多孔性分離層の層厚は、例えば、多孔性分離層の形成に用いるゼオライト種結晶の平均粒子径や、ゼオライトの合成条件(例えば、温度および時間)等を調整することにより制御することができる。
(分離膜の製造方法)
 上述した性状の多孔性分離層を有する本発明の分離膜は、例えば本発明の分離膜の製造方法を用いて容易に作製することができる。
 ここで、本発明の分離膜の製造方法は、ゼオライト種結晶を付着させた多孔性支持体を、シリカ源および構造規定剤を含む水性ゾルに浸漬し、水熱合成によりMFI型ゼオライトを含むゼオライトを合成して多孔性支持体上に多孔性分離層を形成する工程(分離層形成工程)を含み、任意に、ゼオライト種結晶を準備する工程(種結晶準備工程)と、種結晶準備工程において準備したゼオライト種結晶を多孔性支持体に付着させる工程(種結晶付着工程)とを更に含む。
 そして、本発明の分離膜の製造方法では、平均粒子径が50nm以上700nm以下のゼオライト種結晶を使用し、且つ、多孔性支持体の平均細孔径に対するゼオライト種結晶の平均粒子径の比が0.01以上0.7以下となるような多孔性支持体とゼオライト種結晶とを組み合わせて使用することを必要とする。即ち、本発明の分離膜の製造方法では、多孔性支持体の平均細孔径よりも小さい、所定の平均粒子径を有するゼオライト種結晶を使用することを必要とする。
 ここで、平均粒子径が50nm以上700nm以下のゼオライト種結晶を使用し、且つ、多孔性支持体の平均細孔径に対するゼオライト種結晶の平均粒子径の比が0.01以上0.7以下となるような多孔性支持体とゼオライト種結晶とを組み合わせて使用することで上述した性状を有する多孔性分離層を容易に形成することができる理由は、明らかではないが、以下の通りであると推察される。即ち、上述した平均粒子径を有するゼオライト種結晶および上述した平均細孔径を有する多孔性支持体を使用した場合、多孔性支持体の細孔中にゼオライト種結晶が入り込み、ゼオライトが成長する方向が適切に制限されるために、上述した性状を有する多孔性分離層を容易に形成することができると推察される。
 なお、良好な性状の多孔性分離層を形成し、分離効率に優れる分離膜を得る観点からは、ゼオライト種結晶の平均粒子径は、100nm以上であることが好ましく、150nm以上であることがより好ましく、200nm以上であることが更に好ましく、300nm以上であることが特に好ましく、600nm以下であることが好ましく、500nm以下であることがより好ましく、400nm以下であることが更に好ましく、350nm以下であることが特に好ましい。
 また、良好な性状の多孔性分離層を形成し、分離効率に優れる分離膜を得る観点からは、多孔性支持体の平均細孔径に対するゼオライト種結晶の平均粒子径の比は、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.15以上であることが更に好ましく、0.2以上であることが特に好ましく、0.5以下であることが好ましく、0.4以下であることがより好ましく、0.3以下であることが更に好ましい。
 更に、本発明の分離膜の製造方法では、ゼオライト種結晶を付着させた多孔性支持体として、ゼオライト種結晶が付着していない多孔性支持体上で種結晶となるゼオライトを合成してなるものを用いてもよいが、良好な性状の多孔性分離層を形成し、分離効率に優れる分離膜を得る観点からは、予め準備しておいたゼオライト種結晶を多孔性支持体に付着させたものを用いることが好ましい。即ち、本発明の分離膜の製造方法では、種結晶準備工程および種結晶付着工程を実施することが好ましい。
<種結晶準備工程>
 ここで、種結晶準備工程では、特に限定されることなく、既知のゼオライト種結晶の製造方法を用いて、平均粒子径が50nm以上700nm以下のゼオライト種結晶を調製する。なお、ゼオライト種結晶は、MFI型ゼオライトを含むことが好ましく、実質的にMFI型ゼオライトからなることがより好ましい。
 具体的には、種結晶準備工程では、例えば、シリカ源、構造規定剤および水を混合して得た種結晶用水性ゾルを加熱し、水熱合成によりゼオライトの粗結晶を調製した後、任意に得られた粗結晶を乾燥および粉砕することにより、平均粒子径が50nm以上700nm以下のゼオライト種結晶を調製することができる。
[種結晶用水性ゾル]
 ここで、ゼオライト種結晶の調製に用いるシリカ源としては、特に限定されることなく、例えば、コロイダルシリカ、湿式シリカ、無定形シリカ、ヒュームドシリカ、ケイ酸ナトリウム、シリカゾル、シリカゲル、カオリナイト、珪藻土、ケイ酸アルミニウム、ホワイトカーボン、テトラブトキシシラン、テトラブチルオルソシリケート、テトラエトキシシラン等が挙げられる。これらの中でも、テトラエトキシシラン、コロイダルシリカが好ましく、テトラエトキシシランがより好ましい。
 また、構造規定剤としては、特に限定されることなく、例えば、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドなどの4級アンモニウム塩や、アルコール等が挙げられる。これらのなかでも、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドが好ましい。構造規定剤の配合比率は、特に限定されないが、「シリカ源:構造規定剤」のモル比で、好ましくは1:0.01~1:2.0の範囲であり、より好ましくは1:0.1~1:1.0の範囲であり、更に好ましくは1:0.15~1:0.8の範囲である。
 そして、種結晶用水性ゾル中の水の配合比率は、特に限定されないが、「シリカ源:水」のモル比で、好ましくは1:3~1:100の範囲とすることができ、より好ましくは1:5~1:50の範囲とすることができる。
[粗結晶の水熱合成]
 種結晶用水性ゾルを加熱し、水熱合成により粗結晶を得る際の加熱温度は、好ましくは100℃以上200℃以下、より好ましくは130℃以上150℃以下である。また、加熱時間は、好ましくは10時間以上50時間以下、より好ましくは20時間以上50時間以下である。
 なお、水熱合成は、通常、耐圧容器中に種結晶用水性ゾルを入れ、耐圧容器を上記条件にて加熱することにより行う。耐圧容器としては、特に限定されないが、例えば、フッ素樹脂製内筒付のステンレス製耐圧容器、ニッケル金属製耐圧容器、フッ素樹脂製耐圧容器等を使用することができる。また、耐圧容器を加熱する方法としては、耐圧容器を熱風乾燥器に入れて加熱する方法や、耐圧容器にヒーターを直接取り付けて加熱する方法などが挙げられる。
 そして、種結晶用水性ゾルを加熱して得られた粗結晶は、遠心分離等の既知の固液分離法を用いて回収することができる。なお、回収した粗結晶は、そのままゼオライト種結晶として用いてもよいし、乾燥および粉砕してからゼオライト種結晶として用いてもよい。
[粗結晶の乾燥および粉砕]
 回収した粗結晶を乾燥する温度は、特に限定されないが、好ましくは70℃以上100℃以下である。また、粗結晶を粉砕する際の粉砕方法および条件も、特に限定されず、所望の平均粒子径となるような方法および条件を採用すればよい。
<種結晶付着工程>
 種結晶付着工程では、塗布または擦り込み等の既知の手法を用いてゼオライト種結晶を多孔性支持体に付着(担持)させることができる。具体的には、種結晶付着工程では、平均粒子径が50nm以上700nm以下のゼオライト種結晶を水中に分散させて得た分散液を多孔性支持体に塗布し、塗布した分散液を乾燥することにより、ゼオライト種結晶を多孔性支持体に付着させることができる。或いは、種結晶付着工程では、超純水に1~60分間浸漬することにより予め湿らせておいた多孔性支持体上に平均粒子径が50nm以上700nm以下のゼオライト種結晶を擦り込むことにより、ゼオライト種結晶を多孔性支持体に付着させることができる。中でも、ゼオライト種結晶を高い密度で多孔性支持体に付着させる観点からは、種結晶付着工程では、湿らせておいた多孔性支持体上にゼオライト種結晶を擦り込むことによりゼオライト種結晶を多孔性支持体に付着させることが好ましい。
 なお、ゼオライト種結晶を付着させる多孔性支持体としては、多孔性支持体の平均細孔径に対するゼオライト種結晶の平均粒子径の比が0.01以上0.7以下となるような任意の多孔性支持体を用いることができる。具体的には、多孔性支持体としては、上記<多孔性支持体>の項に記載した多孔性支持体を用いることができる。
 そして、付着させたゼオライト種結晶は、多孔性支持体に含まれる水分を乾燥により除去することで多孔性支持体に固定できる。この際の乾燥温度は、特に限定されないが、好ましくは70℃以上100℃以下である。
<分離層形成工程>
 分離層形成工程では、ゼオライト種結晶を付着させた多孔性支持体を、シリカ源および構造規定剤を含む水性ゾルに浸漬し、水熱合成によりMFI型ゼオライトを含むゼオライトを合成して多孔性支持体上に多孔性分離層を形成する。なお、分離層形成工程において多孔性支持体上に多孔性分離層を形成して得られた分離膜には、任意に、煮沸洗浄や焼成処理を施してもよい。
[水性ゾル]
 ここで、多孔性分離層の形成に用いられる水性ゾルは、シリカ源、構造規定剤および水を混合することにより調製することができる。
 なお、シリカ源としては、特に限定されることなく、コロイダルシリカ、湿式シリカ、無定形シリカ、ヒュームドシリカ、ケイ酸ナトリウム、シリカゾル、シリカゲル、カオリナイト、珪藻土、ケイ酸アルミニウム、ホワイトカーボン、テトラブトキシシラン、テトラブチルオルソシリケート、テトラエトキシシラン等が挙げられる。これらの中でも、テトラエトキシシラン、コロイダルシリカが好ましく、テトラエトキシシランがより好ましい。
 また、構造規定剤としては、特に限定されることなく、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドなどの4級アンモニウム塩やクラウンエーテル、アルコール等が挙げられる。これらの中でも、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドが好ましく、テトラプロピルアンモニウムヒドロキシドと、テトラプロピルアンモニウムブロミドとを併用することがより好ましい。
 なお、水性ゾル中の構造規定剤の配合比率は、特に限定されないが、「シリカ源:構造規定剤」のモル比で、好ましくは1:0.01~1:2.0の範囲であり、より好ましくは1:0.1~1:1.0の範囲であり、更に好ましくは1:0.15~1:0.8の範囲である。
 また、水性ゾル中の水の配合比率は、特に限定されないが、「シリカ源:水」のモル比で、好ましくは1:100~1:1000の範囲とすることができ、より好ましくは1:200~1:800の範囲とすることができる。
[ゼオライトの水熱合成]
 ゼオライト種結晶を付着させた多孔性支持体を水性ゾルに浸漬させる方法としては、特に限定されないが、例えば、ゼオライト種結晶を付着させた多孔性支持体を収容した耐圧容器に水性ゾルを入れる方法などが挙げられる。或いは、水性ゾルを収容した耐圧容器にゼオライト種結晶を付着させた多孔性支持体を入れる方法を採用してもよい。なお、この際に用いる耐圧容器としては、ゼオライト種結晶を製造する際に使用し得るものと同様のものを用いることができる。
 ゼオライト種結晶を付着させた多孔性支持体が浸漬された水性ゾルを加熱し、水熱合成によりMFI型ゼオライトを含むゼオライトを合成して多孔性支持体上に多孔性分離層を形成する際の加熱温度は、好ましくは100℃以上250℃以下、より好ましくは150℃以上200℃以下である。また、加熱時間は、好ましくは1時間以上50時間以下、より好ましくは2時間以上20時間以下である。なお、耐圧容器中の水性ゾルおよび多孔性支持体を加熱する方法としては、耐圧容器を熱風乾燥器に入れて加熱する方法や、耐圧容器にヒーターを直接取り付けて加熱する方法などが挙げられる。
[煮沸洗浄]
 多孔性支持体上に多孔性分離層を形成して得られた分離膜を煮沸洗浄する際の洗浄液としては、たとえば、蒸留水を用いることができる。また、煮沸洗浄時間は、好ましくは10分以上2時間以下であり、より好ましくは30分以上1.5時間以下である。また、煮沸洗浄は、複数回(例えば、2~3回)行ってもよく、煮沸洗浄を複数回実施する場合における煮沸洗浄条件は、互いに同一としてもよいし、それぞれ異なるものとしてもよい。更に、煮沸洗浄を行った後、必要に応じて乾燥処理を行ってもよく、煮沸洗浄後の分離膜の乾燥温度は、好ましくは70℃以上100℃以下である。
[焼成処理]
 また、多孔性支持体上に多孔性分離層を形成して得られた分離膜は、構造規定剤を除去するために、焼成処理することが好ましい。焼成処理を行う際の昇温速度は、好ましくは0.1℃/分以上1℃/分以下であり、より好ましくは0.1℃/分以上0.5℃/分以下である。また、焼成温度は、好ましくは400℃以上800℃以下であり、より好ましくは400℃以上600℃以下である。更に、降温速度は、好ましくは0.1℃/分以上1℃/分以下であり、より好ましくは0.1℃/分以上0.4℃/分以下である。そして、焼成時間(保持時間)は、好ましくは1時間以上30時間以下であり、より好ましくは5時間以上30時間以下である。
(炭化水素混合物の膜分離方法)
 上記本発明の分離膜の製造方法を使用して製造し得る本発明の分離膜を用いた炭化水素混合物の膜分離では、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む炭化水素混合物から例えば直鎖状炭化水素を効率的に分離除去し、これにより、炭化水素混合物中における分岐状炭化水素および/または環状炭化水素の含有割合を高めることができる。具体的には、本発明の分離膜を用いた炭化水素混合物の膜分離では、炭化水素混合物を分離膜に通すことで、一部の成分(例えば、直鎖状炭化水素)を炭化水素混合物から分離除去することができる。
 なお、膜分離は、加温条件下で行うことが好ましい。具体的には、膜分離は、好ましくは20℃以上300℃以下、より好ましくは25℃以上250℃以下、さらに好ましくは50℃以上200℃以下の条件下で行ことが好ましい。また、膜分離を行う際の圧力条件は、特に限定されないが、非透過側と透過側との差圧(非透過側の圧力-透過側の圧力)を10kPa以上600kPa以下とすることが好ましく、50kPa以上300kPa以下とすることがより好ましい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」等は、特に断らない限り、質量基準である。
 実施例および比較例において、ゼオライト種結晶の平均粒子径、多孔性支持体の平均細孔径、多孔性分離層の層厚、多孔性分離層のX線回折パターンおよび分離膜の性能は、下記の方法で測定および評価した。
<ゼオライト種結晶の平均粒子径>
 走査型電子顕微鏡(SEM)を使用し、ゼオライト種結晶20個の粒子径を測定した。そして、得られた測定値の平均値を算出し、ゼオライト種結晶の平均粒子径とした。
<多孔性支持体の平均細孔径>
 水銀ポロシメータ(Quantachrome社製、PoreMaster 60GT)を使用して、水銀圧入法により、多孔性支持体の平均細孔径を求めた。なお、水銀ポロシメータを使用した水銀圧入法による測定では、細孔径は、細孔を円筒形にモデル化して、Washburnの式(-4σcosθ=PD[式中、σは水銀の表面張力(N/m)を表し、θは接触角(deg)を表し、Dは細孔の直径(m)を表し、Pは圧力(Pa)を表す。])により求められる。
<多孔性分離層の層厚>
 走査型電子顕微鏡(SEM)を使用し、多孔性支持体上に形成された多孔性分離層の層厚を測定した。
<多孔性分離層のX線回折パターン>
 X線回折装置(Bruker AXS製、Discover D8)を使用して多孔性分離層のX線回折パターンを得た。測定条件は、X線源:Cu-Kα線、波長λ:1.54Å、管電圧:30kV、管電流:15mA、出力:0.9kW、入光スリット:縦1.0mm×横1.0mm、受光スリット:ソラースリット(角度分解能0.35deg)、検出器:シンチレーションカウンター、測定速度:0.01deg/秒、である。
<分離膜の性能>
 膜分離試験の結果から、下記式(I)を用いて透過流束Fを算出した。また、下記式(II-1)または(II-2)を用いて分離係数αを算出した。具体的には、n-ペンタンとイソペンタンとの混合液からなる炭化水素混合物を原料として用いた場合には下記式(II-1)を使用し、n-ペンタンとシクロペンタンとの混合液からなる炭化水素混合物を原料として用いた場合には下記式(II-2)を使用して、分離係数αを算出した。そして、F×αを算出し、分離効率を評価した。F×αの値が大きいほど、分離効率に優れていることを示す。
 F=W/(A×t)  ・・・(I)
 α=(Y/Yiso)/(X/Xiso) ・・・(II-1)
 α=(Y/Ycy)/(X/Xcy) ・・・(II-2)
 なお、式(I)中、Wは、分離膜を透過した成分の質量[kg]であり、Aは、分離膜の有効面積[m]であり、tは、処理時間[時間]である。また、式(II-1)中、Xは、原料中のn-ペンタンの含有割合[モル%]であり、Xisoは、原料中のイソペンタンの含有割合[モル%]であり、Yは、透過側サンプル中のn-ペンタンの含有割合[モル%]であり、Yisoは、透過側サンプル中のイソペンタンの含有割合[モル%]である。更に、式(II-2)中、Xは、原料中のn-ペンタンの含有割合[モル%]であり、Xcyは、原料中のシクロペンタンの含有割合[モル%]であり、Yは、透過側サンプル中のn-ペンタンの含有割合[モル%]であり、Ycyは、透過側サンプル中のシクロペンタンの含有割合[モル%]である。
(実施例1)
<種結晶用水性ゾルAの調製>
 濃度22.5質量%のテトラプロピルアンモニウムヒドロキシド水溶液(東京化成工業社製)152.15g(構造規定剤としてのテトラプロピルアンモニウムヒドロキシド換算で34.23g)と、超純水48.44gとをマグネチックスターラーで混合した。更に、シリカ源としてのテトラエトキシシラン(SIGMA-ALDLICH社製)99.41gを加えて、室温にて70分間マグネチックスターラーで混合することで、種結晶作製用の水性ゾルAを調製した。
<ゼオライト種結晶Aの作製>
 種結晶用水性ゾルAをフッ素樹脂製内筒付ステンレス製耐圧容器内に入れ、130℃の熱風乾燥器中で48時間反応(水熱合成)させた。次に、得られた反応液を遠心分離機(4000rpm)で5分間遠心分離することにより固液分離し、固形分を回収した。そして、回収した固形分を80℃の恒温乾燥器中で12時間乾燥し、次いで、得られた乾燥固体を乳鉢にて粉砕することにより、ゼオライト種結晶Aを得た。得られたゼオライト種結晶Aは、X線回折測定によりMFI型ゼオライトであることが確認された。なお、ゼオライト種結晶Aの平均粒子径は、130nmであった。
<多孔性支持体へのゼオライト種結晶の付着>
 円筒状のムライト製多孔性支持体(商品名「PMチューブ」、ニッカトー社製、外径12mm、内径9mm、長さ100mm、平均細孔径1.4μm、気孔率42.7%)をアセトンで洗浄した後に乾燥させ、更に超純水に10分間浸漬した。そして、超純水に浸漬した後の湿った多孔性支持体の外表面上に、上記にて得られたゼオライト種結晶A0.05gを擦り付け、80℃の乾燥器中で12時間乾燥させることで、多孔性支持体の表面にゼオライト種結晶Aを付着させた。
<多孔性分離層用水性ゾルの調製>
 濃度22.5質量%のテトラプロピルアンモニウムヒドロキシド水溶液(東京化成工業社製)4.99g(構造規定剤としてのテトラプロピルアンモニウムヒドロキシド換算で1.12g)と、構造規定剤としてのテトラプロピルアンモニウムブロミド(和光純薬社製)0.74gと、超純水238.79gとを、室温にて10分マグネチックスターラーで混合した。更に、シリカ源としてのテトラエトキシシラン(SIGMA-ALDLICH社製)6.71gを加えて、室温にて60分間マグネチックスターラーで混合することで、多孔性分離層形成用の水性ゾルを調製した。なお、水性ゾルの組成は、モル比で、テトラエトキシシラン:テトラプロピルアンモニウムヒドロキシド:テトラプロピルアンモニウムブロミド:水=1:0.2:0.1:419であった。
<多孔性分離層の形成>
 上記にて得られた多孔性分離層用水性ゾルをステンレス製耐圧容器内に入れた。次に、ゼオライト種結晶Aを付着させた多孔性支持体を多孔性分離層用水性ゾルに浸漬し、185℃の熱風乾燥器中で14時間反応(水熱合成)させて、多孔性支持体上に多孔性分離層を形成した。そして、多孔性分離層を形成した多孔性支持体に対し、洗浄液として蒸留水を使用して、1時間の煮沸洗浄を2回行った。その後、多孔性分離層を形成した多孔性支持体を80℃の恒温乾燥器で12時間乾燥させた。次いで、多孔性分離層中に含まれている構造規定剤(テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミド)を除去するために焼成を行い、分離膜を得た。なお、焼成条件は、昇温速度:0.25℃/分、焼成温度:500℃、焼成時間(保持時間):20時間、降温速度0.38℃/分とした。
 そして、得られた分離膜について、多孔性分離層の層厚を測定した。また、多孔性分離層のX線回折測定を行い、X線回折パターンを得た。その結果、得られたX線回折パターンより、多孔性分離層はMFI型ゼオライトであることが確認された。また、得られたX線回折パターンから、MFI型ゼオライトの各結晶面に由来する回折ピークの強度を求め、a軸に由来するピーク強度とb軸に由来するピーク強度との和に対するc軸に由来するピーク強度の大きさ(以下、「c軸/(a軸+b軸)」と称する。)、並びに、(101)面に由来する回折ピークの強度に対する(101)面、(102)面、(103)面、(104)面および(105)面に由来する回折ピークの強度の大きさ(以下、「Σ(10x)/(101)」と称する。)を算出した。結果を表1に示す。
<膜分離試験>
 また、上記にて得られた分離膜を使用し、図1に示すような試験装置1を用いて、膜分離試験を行った。
[試験装置]
 図1に示す試験装置1は、原料タンク2と、送液ポンプ3と、第1熱交換器4と、分離装置5と、第2熱交換器7とを備えている。なお、分離装置5は、円筒管に、上記にて得られた分離膜を組み付けることにより構成されている。また、図1に示す試験装置1は、三方弁10を介して分離装置5に接続されたコールドトラップ6およびサンプリング用コールドトラップ13と、三方弁14を介してコールドトラップ6およびコールドトラップ13の下流側に接続された減圧ポンプ11とを備えている。更に、試験装置1は、原料タンク2と送液ポンプ3との間に、サンプリング用弁12を備えており、また、分離装置5の下流側に、背圧弁8および圧力計9を備えている。
 ここで、図1に示す試験装置1では、原料タンク2に充填された原料が、送液ポンプ3にて第1熱交換器4へと送られ、原料が気化する温度以上の温度に加温される。そして、気化した原料は、気相にて分離装置5へと送られ、分離膜を備える分離装置5により成分の分離(膜分離)が行われる。ここで、試験装置1においては、減圧ポンプ11により分離膜の透過側は減圧状態とされており、分離膜を透過した成分は、三方弁10を介して接続されたコールドトラップ6またはサンプリング用コールドトラップ13へと送られる。一方、分離装置5に備えられた分離膜を透過しなかった非透過成分は、第2熱交換器7で冷却することにより凝縮され、原料タンク2に還流される。なお、試験装置1では、分離装置5の下流側に設けた背圧弁8および圧力計9により、背圧を調整している。そして、試験装置1では、三方弁10,14を切り替えることで、分離装置5に備えられた分離膜を透過した透過成分を、透過側のサンプルとして抽出することができる。
[膜分離]
 図1に示す試験装置1を用いた膜分離試験は、以下のようにして実施した。
 具体的には、まず、n-ペンタンとイソペンタンとの混合液(n-ペンタン:50モル%、イソペンタン:50モル%の混合液)からなる炭素数5の炭化水素混合物を原料タンク2に充填し、脱気操作を3回行った。その後、送液ポンプ3にて、炭化水素混合物を、70℃に加温された第1熱交換器4を介して、気相にて分離装置5に供給し、次いで、第2熱交換器7により凝縮し、原料タンク2に戻す原料循環処理を開始した。そして、原料循環処理開始後、系内の温度が定常状態に達するまで運転を行い、系内の温度が定常状態に達した後、背圧弁8により非透過側を50kPaに加圧するとともに、減圧ポンプ11を起動することで透過側(コールドトラップ6およびコールドトラップ13)を-100kPaに減圧した。そして、系内の温度、圧力が安定したことを確認した後、透過側の三方弁10を開くことで、膜分離試験を開始した。即ち、温度70℃、非透過側と透過側の差圧150kPaの条件で膜分離試験を行った。
 そして、膜分離試験を開始した後、5分経過した時点において、透過側のサンプルの抽出を開始した。具体的には、三方弁10,14を用いて、透過側の流路をコールドトラップ6側からサンプリング用コールドトラップ13側に切替えて、サンプリング用コールドトラップ13にて透過側のサンプルを凝縮液として捕集することにより抽出した。なお、この際におけるサンプリング時間は10分間とした。そして、透過側のサンプル(凝縮液)について、重量を秤量するとともに、ガスクロマトグラフにて、n-ペンタンとイソペンタンとのモル比率を測定した。そして、これらの測定結果を用いて分離膜の性能を評価した。結果を表1に示す。
(実施例2)
 ゼオライト種結晶Aに替えて、以下のようにして調製したゼオライト種結晶Bを用いた以外は実施例1と同様にして、分離膜の作製および評価を行った。結果を表1に示す。なお、分離膜の多孔性分離層のX線回折測定の結果、多孔性分離層はMFI型ゼオライトであることが確認された。
<種結晶用水性ゾルBの調製>
 濃度22.5質量%のテトラプロピルアンモニウムヒドロキシド水溶液(東京化成工業社製)69.23g(構造規定剤としてのテトラプロピルアンモニウムヒドロキシド換算で15.58g)と、超純水165.64gとをマグネチックスターラーで混合した。更に、シリカ源としてのテトラエトキシシラン(SIGMA-ALDLICH社製)65.13gを加えて、室温にて70分間マグネチックスターラーで混合することで、種結晶作製用の水性ゾルBを調製した。
<ゼオライト種結晶Bの作製>
 種結晶用水性ゾルBをフッ素樹脂製内筒付ステンレス製耐圧容器内に入れ、130℃の熱風乾燥器中で48時間反応(水熱合成)させた。次に、得られた反応液を遠心分離機(4000rpm)で5分間遠心分離することにより固液分離し、固形分を回収した。そして、回収した固形分を80℃の恒温乾燥器中で12時間乾燥し、次いで、得られた乾燥固体を乳鉢にて粉砕することにより、ゼオライト種結晶Bを得た。得られたゼオライト種結晶Bは、X線回折測定によりMFI型ゼオライトであることが確認された。なお、ゼオライト種結晶Bの平均粒子径は、330nmであった。
(実施例3)
 ゼオライト種結晶Aに替えて、以下のようにして調製したゼオライト種結晶Cを用いた以外は実施例1と同様にして、分離膜の作製および評価を行った。結果を表1に示す。なお、分離膜の多孔性分離層のX線回折測定の結果、多孔性分離層はMFI型ゼオライトであることが確認された。
<ゼオライト種結晶Cの作製>
 実施例2と同様にして種結晶用水性ゾルBを調製した。
 そして、種結晶用水性ゾルBをフッ素樹脂製内筒付ステンレス製耐圧容器内に入れ、140℃の熱風乾燥器中で72時間反応(水熱合成)させた。次に、得られた反応液を遠心分離機(4000rpm)で5分間遠心分離することにより固液分離し、固形分を回収した。そして、回収した固形分を80℃の恒温乾燥器中で12時間乾燥し、次いで、得られた乾燥固体を乳鉢にて粉砕することにより、ゼオライト種結晶Cを得た。得られたゼオライト種結晶Cは、X線回折測定によりMFI型ゼオライトであることが確認された。なお、ゼオライト種結晶Cの平均粒子径は、470nmであった。
(実施例4)
 膜分離試験の際に、n-ペンタンとイソペンタンとの混合液に替えてn-ペンタンとシクロペンタンとの混合液(n-ペンタン:50モル%、シクロペンタン:50モル%の混合液)を使用し、サンプル(凝縮液)について、ガスクロマトグラフにてn-ペンタンとシクロペンタンとのモル比率を測定した以外は実施例2と同様にして、分離膜の作製および評価を行った。結果を表1に示す。
(比較例1)
 ゼオライト種結晶Aに替えて、以下のようにして調製したゼオライト種結晶Dを用いた以外は実施例1と同様にして、分離膜の作製および評価を行った。結果を表1に示す。なお、分離膜の多孔性分離層のX線回折測定の結果、多孔性分離層はMFI型ゼオライトであることが確認された。
<種結晶用水性ゾルCの調製>
 構造規定剤としてのテトラプロピルアンモニウムブロミド(和光純薬社製)25.35gと、超純水223.55gとをマグネチックスターラーで混合した。更に、水酸化ナトリウム(和光純薬社製)3.21gと、濃度40質量%のコロイダルシリカ(SIGMA-ALDLICH社製、AS-40)分散液46.70g(シリカ源としてのシリカ換算で18.68g)とを加えた。そして、室温にて23時間マグネチックスターラーで混合し、均一に混合できていることを確認した後、フッ化アンモニウム(和光純薬社製)1.19gを加えて室温にて1時間混合することで、種結晶作製用の水性ゾルCを調製した。
<ゼオライト種結晶Dの作製>
 種結晶用水性ゾルCをフッ素樹脂製内筒付ステンレス製耐圧容器内に入れ、140℃の熱風乾燥器中で30時間反応(水熱合成)させた。次に、得られた反応液を遠心分離機(4000rpm)で5分間遠心分離することにより固液分離し、固形分を回収した。そして、回収した固形分を80℃の恒温乾燥器中で12時間乾燥し、次いで、得られた乾燥固体を乳鉢にて粉砕することにより、ゼオライト種結晶Dを得た。得られたゼオライト種結晶Dは、X線回折測定によりMFI型ゼオライトであることが確認された。なお、ゼオライト種結晶Dの平均粒子径は、1140nmであった。
(比較例2)
 膜分離試験の際に、n-ペンタンとイソペンタンとの混合液に替えてn-ペンタンとシクロペンタンとの混合液(n-ペンタン:50モル%、シクロペンタン:50モル%の混合液)を使用し、サンプル(凝縮液)について、ガスクロマトグラフにてn-ペンタンとシクロペンタンとのモル比率を測定した以外は比較例1と同様にして、分離膜の作製および評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例の分離膜を用いた場合には、比較例の分離膜を用いた場合と比べて、n-ペンタンとイソペンタンとを含む混合液からn-ペンタンを効率的に分離でき、また、n-ペンタンとシクロヘキサンとを含む混合液からn-ペンタンを効率的に分離できることが分かる。
 本発明によれば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素との膜分離に使用した際に直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを効率的に分離することができる分離膜を提供することができる。
1 試験装置
2 原料タンク
3 送液ポンプ
4 第1熱交換器
5 分離装置
6 コールドトラップ
7 第2熱交換器
8 背圧弁
9 圧力計
10,14 三方弁
11 減圧ポンプ
12 サンプリング用弁
13 サンプリング用コールドトラップ

Claims (3)

  1.  炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む炭化水素混合物の膜分離に用いられる分離膜であって、
     多孔性支持体と、前記多孔性支持体上に設けられた、MFI型ゼオライトを含む多孔性分離層とを備え、
     前記多孔性分離層をX線回折測定して得られるX線回折パターンは、MFI型ゼオライトの(001)面、(002)面、(004)面、(101)面、(102)面、(103)面、(104)面、(105)面、(202)面および(303)面に由来する回折ピークの強度の合計が、MFI型ゼオライトの(100)面、(200)面、(400)面、(301)面および(501)面に由来する回折ピークの強度の合計と、MFI型ゼオライトの(010)面、(020)面、(040)面および(051)面に由来する回折ピークの強度の合計との和の3倍以上であり、且つ、MFI型ゼオライトの(101)面、(102)面、(103)面、(104)面および(105)面に由来する回折ピークの強度の合計が、MFI型ゼオライトの(101)面に由来する回折ピークの強度の3倍未満である、分離膜。
  2.  前記炭化水素混合物が、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または炭素数が4の環状炭化水素とを主成分として含む混合物、或いは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物である、請求項1に記載の分離膜。
  3.  請求項1または2に記載の分離膜の製造方法であって、
     ゼオライト種結晶を付着させた多孔性支持体を、シリカ源および構造規定剤を含む水性ゾルに浸漬し、水熱合成によりMFI型ゼオライトを含むゼオライトを合成して前記多孔性支持体上に多孔性分離層を形成する工程を含み、
     前記ゼオライト種結晶の平均粒子径が、50nm以上700nm以下であり、
     前記多孔性支持体の平均細孔径に対する前記ゼオライト種結晶の平均粒子径の比が0.01以上0.7以下である、分離膜の製造方法。
PCT/JP2016/000375 2015-01-27 2016-01-26 分離膜およびその製造方法 WO2016121377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16742981.0A EP3251738A4 (en) 2015-01-27 2016-01-26 Separation membrane and method for producing same
US15/544,256 US20180200679A1 (en) 2015-01-27 2016-01-26 Separation membrane and method of producing same
JP2016571864A JPWO2016121377A1 (ja) 2015-01-27 2016-01-26 分離膜およびその製造方法
SG11201705824WA SG11201705824WA (en) 2015-01-27 2016-01-26 Separation membrane and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-013666 2015-01-27
JP2015013666 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016121377A1 true WO2016121377A1 (ja) 2016-08-04

Family

ID=56542999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000375 WO2016121377A1 (ja) 2015-01-27 2016-01-26 分離膜およびその製造方法

Country Status (5)

Country Link
US (1) US20180200679A1 (ja)
EP (1) EP3251738A4 (ja)
JP (1) JPWO2016121377A1 (ja)
SG (1) SG11201705824WA (ja)
WO (1) WO2016121377A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169195A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 膜分離方法および膜分離装置
WO2018181349A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 分離膜及び分離膜の製造方法
WO2020050137A1 (ja) 2018-09-05 2020-03-12 日本ゼオン株式会社 ピペリレンの製造方法
JP2020100520A (ja) * 2018-12-20 2020-07-02 東ソー株式会社 酸化亜鉛修飾mfi型ゼオライト及びそれを用いた芳香族化合物の製造方法
JPWO2020175247A1 (ja) * 2019-02-28 2020-09-03
JP2021023863A (ja) * 2019-08-02 2021-02-22 三菱ケミカル株式会社 気体の濃縮方法
WO2022202454A1 (ja) * 2021-03-26 2022-09-29 日本ゼオン株式会社 分離膜及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225297B1 (en) * 2014-11-25 2023-06-28 Mitsubishi Chemical Corporation Use of a porous support-cha zeolite membrane composite for separation of a gas mixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058388A1 (ja) * 2005-11-17 2007-05-24 Ngk Insulators, Ltd. ゼオライト配向膜配設体
JP2007517648A (ja) * 2004-01-13 2007-07-05 ビーエーエスエフ アクチェンゲゼルシャフト 複合膜
JP2010247150A (ja) * 2009-03-24 2010-11-04 Mitsubishi Chemicals Corp ゼオライト膜、分離膜、および成分分離方法
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348579A (ja) * 2001-05-23 2002-12-04 Nard Inst Ltd ゼオライト系分離膜を用いた炭化水素混合物の分離方法、および分離して炭化水素を得る方法
WO2013125660A1 (ja) * 2012-02-24 2013-08-29 三菱化学株式会社 ゼオライト膜複合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517648A (ja) * 2004-01-13 2007-07-05 ビーエーエスエフ アクチェンゲゼルシャフト 複合膜
WO2007058388A1 (ja) * 2005-11-17 2007-05-24 Ngk Insulators, Ltd. ゼオライト配向膜配設体
JP2010247150A (ja) * 2009-03-24 2010-11-04 Mitsubishi Chemicals Corp ゼオライト膜、分離膜、および成分分離方法
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169195A1 (ja) * 2016-03-31 2017-10-05 日本ゼオン株式会社 膜分離方法および膜分離装置
WO2018181349A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 分離膜及び分離膜の製造方法
CN110382096A (zh) * 2017-03-28 2019-10-25 日本瑞翁株式会社 分离膜以及分离膜的制造方法
JPWO2018181349A1 (ja) * 2017-03-28 2020-02-06 日本ゼオン株式会社 分離膜及び分離膜の製造方法
JP7111094B2 (ja) 2017-03-28 2022-08-02 日本ゼオン株式会社 分離膜及び分離膜の製造方法
CN110382096B (zh) * 2017-03-28 2021-08-17 日本瑞翁株式会社 分离膜以及分离膜的制造方法
WO2020050137A1 (ja) 2018-09-05 2020-03-12 日本ゼオン株式会社 ピペリレンの製造方法
JPWO2020050137A1 (ja) * 2018-09-05 2021-08-26 日本ゼオン株式会社 ピペリレンの製造方法
US11905242B2 (en) 2018-09-05 2024-02-20 Zeon Corporation Method of producing piperylene
JP7367684B2 (ja) 2018-09-05 2023-10-24 日本ゼオン株式会社 ピペリレンの製造方法
JP2020100520A (ja) * 2018-12-20 2020-07-02 東ソー株式会社 酸化亜鉛修飾mfi型ゼオライト及びそれを用いた芳香族化合物の製造方法
JP7181785B2 (ja) 2018-12-20 2022-12-01 東ソー株式会社 酸化亜鉛修飾mfi型ゼオライト及びそれを用いた芳香族化合物の製造方法
WO2020175247A1 (ja) 2019-02-28 2020-09-03 日本ゼオン株式会社 分離膜製造方法
JPWO2020175247A1 (ja) * 2019-02-28 2020-09-03
US11969692B2 (en) 2019-02-28 2024-04-30 Zeon Corporation Method of producing separation membrane
JP7464037B2 (ja) 2019-02-28 2024-04-09 日本ゼオン株式会社 分離膜製造方法
JP2021023863A (ja) * 2019-08-02 2021-02-22 三菱ケミカル株式会社 気体の濃縮方法
JP7306145B2 (ja) 2019-08-02 2023-07-11 三菱ケミカル株式会社 気体の濃縮方法
WO2022202454A1 (ja) * 2021-03-26 2022-09-29 日本ゼオン株式会社 分離膜及びその製造方法

Also Published As

Publication number Publication date
SG11201705824WA (en) 2017-08-30
JPWO2016121377A1 (ja) 2017-11-02
US20180200679A1 (en) 2018-07-19
EP3251738A4 (en) 2018-07-25
EP3251738A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
WO2016121377A1 (ja) 分離膜およびその製造方法
JP6252249B2 (ja) 膜分離方法
EP3225297B1 (en) Use of a porous support-cha zeolite membrane composite for separation of a gas mixture
JP7111094B2 (ja) 分離膜及び分離膜の製造方法
CN108697997B (zh) 沸石分离膜及其制造方法
JP5087644B2 (ja) Zsm−5型ゼオライト膜の製造方法
JP5734577B2 (ja) ゼオライト分離膜、および成分分離方法
JP4751996B2 (ja) Zsm−5型ゼオライト膜の製造方法
JP2016174996A (ja) ゼオライト分離膜および分離モジュール
JP7321260B2 (ja) ゼオライト膜複合体およびその製造方法、並びに流体分離方法
JP5884349B2 (ja) 含水有機化合物の脱水濃縮方法及びそれに用いる脱水濃縮装置
WO2022202454A1 (ja) 分離膜及びその製造方法
Li et al. Mild ultraviolet detemplation of SAPO-34 zeolite membranes toward pore structure control and highly selective gas separation
Li et al. Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol
JP7464037B2 (ja) 分離膜製造方法
JP7468510B2 (ja) ゼオライト膜複合体、並びにそれを用いた分岐鎖状ジオレフィンの分離方法及び製造方法
CN113474077B (zh) 支链二烯烃的分离方法和制造方法
JP2018030130A (ja) 気体の分離または濃縮方法、および高酸素濃度混合気体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571864

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544256

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016742981

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201705824W

Country of ref document: SG