WO2017169195A1 - 膜分離方法および膜分離装置 - Google Patents

膜分離方法および膜分離装置 Download PDF

Info

Publication number
WO2017169195A1
WO2017169195A1 PCT/JP2017/005179 JP2017005179W WO2017169195A1 WO 2017169195 A1 WO2017169195 A1 WO 2017169195A1 JP 2017005179 W JP2017005179 W JP 2017005179W WO 2017169195 A1 WO2017169195 A1 WO 2017169195A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
membrane separation
gas
atmosphere
separation
Prior art date
Application number
PCT/JP2017/005179
Other languages
English (en)
French (fr)
Inventor
詩織 大森
鈴木 貴博
貴 笹沼
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020187026250A priority Critical patent/KR20180123497A/ko
Priority to EP17773743.4A priority patent/EP3437726A4/en
Priority to JP2018508531A priority patent/JPWO2017169195A1/ja
Priority to CN201780016683.1A priority patent/CN109070016A/zh
Priority to US16/082,024 priority patent/US20190247783A1/en
Publication of WO2017169195A1 publication Critical patent/WO2017169195A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/144Purification; Separation; Use of additives using membranes, e.g. selective permeation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • C07C9/16Branched-chain hydrocarbons
    • C07C9/18Branched-chain hydrocarbons with five carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/02Specific process operations before starting the membrane separation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves

Definitions

  • the present invention relates to a membrane separation method and a membrane separation device, and more particularly to a membrane separation method and a membrane separation device that can be suitably used for separating a part of hydrocarbons from a hydrocarbon mixture.
  • a membrane separation method has been used as a method for separating a specific component from a multi-component mixture with low energy.
  • the separation membrane for example, a zeolite membrane formed by forming a zeolite on a support in the form of a membrane is used.
  • the performance of the zeolite membrane used for membrane separation is expressed by the permeation flux F of the permeate and the separation factor ⁇ . Further, the zeolite membrane used for membrane separation is required to increase the permeation flux F and the separation factor ⁇ .
  • Patent Document 1 for example, a zeolite membrane exposed to water is heated in an atmospheric furnace under a predetermined temperature condition, and then used for membrane separation of a mixed gas, thereby suppressing a decrease in separation factor and high permeation. Techniques have been proposed that allow membrane separation of mixed gas at the flux.
  • a membrane separation method using a zeolite membrane has attracted attention as a method for separating branched hydrocarbons from a hydrocarbon mixture containing linear hydrocarbons and branched hydrocarbons having the same carbon number with low energy. Yes.
  • it is required to improve both the permeation flux F and the separation coefficient ⁇ to improve the separation efficiency (for example, see Patent Document 2).
  • an object of the present invention is to provide a membrane separation method and a membrane separation apparatus capable of membrane-separating a hydrocarbon mixture with high separation efficiency.
  • the present inventors have intensively studied to achieve the above object.
  • the membrane separation of the hydrocarbon mixture is performed using a zeolite membrane exposed to an atmosphere having a dew point of ⁇ 20 ° C. or less
  • the present inventors increase both the permeation flux F and the separation coefficient ⁇ , and increase the separation efficiency.
  • the present invention has been completed by finding out that it can be improved.
  • the present invention aims to advantageously solve the above problems, and the membrane separation method of the present invention comprises the step (A) of exposing the zeolite membrane to an atmosphere having a dew point of -20 ° C. or lower, And (B) performing membrane separation of the hydrocarbon mixture using the zeolite membrane after the step (A).
  • the hydrocarbon mixture can be membrane-separated with high separation efficiency.
  • dew point refers to a dew point under atmospheric pressure determined from the amount of water measured using Fourier transform infrared spectroscopy (FT-IR).
  • the membrane separation method of the present invention it is preferable to raise the temperature of the atmosphere during the step (A). If the atmosphere to which the zeolite membrane is exposed is raised, the separation efficiency of the hydrocarbon mixture can be further improved.
  • the maximum temperature of the atmosphere in the step (A) is preferably 100 ° C. or higher and 580 ° C. or lower. If the maximum temperature of the atmosphere to which the zeolite membrane is exposed is 100 ° C. or higher and 580 ° C. or lower, the separation efficiency of the hydrocarbon mixture can be further improved while suppressing the loss of the zeolite membrane due to heat.
  • the atmosphere is preferably an inert gas atmosphere. If the atmosphere to which the zeolite membrane is exposed is an inert gas atmosphere, the reaction between the zeolite membrane and the atmosphere to which the zeolite membrane has been exposed can be suppressed to further improve the separation efficiency of the hydrocarbon mixture. .
  • the membrane separation method of the present invention it is preferable to expose the zeolite membrane to the atmosphere for 5 hours or more in the step (A). If the time for exposing the zeolite membrane to an atmosphere having a dew point of ⁇ 20 ° C. or lower is 5 hours or longer, the separation efficiency of the hydrocarbon mixture can be sufficiently improved.
  • the membrane separation apparatus of this invention is a housing and the zeolite membrane which is accommodated in the said housing and membrane-separates a hydrocarbon mixture.
  • a gas separation module comprising: a raw material supply mechanism that supplies the hydrocarbon mixture to the membrane separation module; and a gas that supplies a gas having a dew point of ⁇ 20 ° C. or less to the space containing the zeolite membrane of the membrane separation module And a supply mechanism.
  • the membrane separation apparatus of the present invention further includes a heater for heating the gas. If a heater is provided, it is possible to raise the temperature of a gas having a dew point of ⁇ 20 ° C. or lower that comes into contact with the zeolite membrane. Therefore, when the hydrocarbon mixture is subjected to membrane separation after contacting a gas having a dew point of ⁇ 20 ° C. or lower with the zeolite membrane, the temperature of the gas having a dew point of ⁇ 20 ° C. or lower is raised to further increase the separation efficiency of the hydrocarbon mixture. Can be improved.
  • the gas supply mechanism has the heater. If the gas supply mechanism has a heater, a preheated gas can be supplied to the membrane separation module. Therefore, compared with the case of heating the gas in a membrane separation module, etc., when the hydrocarbon mixture is subjected to membrane separation after contacting the heated gas with the zeolite membrane, the The separation efficiency of the mixture can be further improved.
  • the gas is preferably an inert gas.
  • an inert gas when used, when the hydrocarbon mixture is subjected to membrane separation after contacting a gas having a dew point of ⁇ 20 ° C. or lower with the zeolite membrane, the reaction between the zeolite membrane and the gas is suppressed and carbonization is performed. The separation efficiency of the hydrogen mixture can be further improved.
  • the membrane separation method of the present invention can be used for membrane separation of a hydrocarbon mixture.
  • the membrane separation apparatus of the present invention can be suitably used when the hydrocarbon mixture is subjected to membrane separation using the membrane separation method of the present invention.
  • the membrane separation method of the present invention is a method for membrane separation of a hydrocarbon mixture using a zeolite membrane, the step (A) of exposing the zeolite membrane to an atmosphere having a dew point of ⁇ 20 ° C. or lower, and the zeolite after the step (A). And (B) performing membrane separation of the hydrocarbon mixture using the membrane.
  • membrane separation method of the present invention since the zeolite membrane exposed to an atmosphere having a dew point of ⁇ 20 ° C. or lower is used, membrane separation of the hydrocarbon mixture can be performed with a high permeation flux and a high separation factor. Therefore, the hydrocarbon compound contained in the hydrocarbon mixture can be separated with high separation efficiency.
  • the hydrophilic compound molecules adsorbed on the zeolite membrane are sufficiently desorbed to remove the hydrocarbon mixture into the membrane. It is possible to increase both the permeation flux F and the separation factor ⁇ when separated.
  • the hydrocarbon mixture membrane-separated using the membrane separation method of the present invention is a mixture of a plurality of hydrocarbon compounds capable of separating a part of hydrocarbon compounds using a zeolite membrane, It is not particularly limited.
  • the hydrocarbon mixture include a mixture containing a straight-chain hydrocarbon having the same number of carbon atoms, a branched hydrocarbon and / or a cyclic hydrocarbon.
  • the hydrocarbon mixture is preferably a mixture containing as a main component a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon having 4 carbon atoms and / or a cyclic hydrocarbon having 4 carbon atoms, Alternatively, it is a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms, and more preferably a carbon number Is a mixture containing as a main component a linear hydrocarbon having 5 and a branched hydrocarbon having 5 carbon atoms and / or a cyclic hydrocarbon having 5 carbon atoms.
  • linear hydrocarbons and branched hydrocarbons and / or cyclic hydrocarbons as main components means linear hydrocarbons and branched hydrocarbons in a hydrocarbon mixture. It refers to containing 50 mol% or more of hydrogen and / or cyclic hydrocarbons in total.
  • a mixture containing a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon and / or a cyclic hydrocarbon having 4 carbon atoms as main components (hereinafter referred to as “a hydrocarbon mixture having 4 carbon atoms”)
  • a hydrocarbon mixture having 4 carbon atoms As a straight chain hydrocarbon having 4 carbon atoms such as n-butane, 1-butene, 2-butene and butadiene, and a branched hydrocarbon having 4 carbon atoms such as isobutane and isobutene.
  • a mixture containing a cyclic hydrocarbon having 4 carbon atoms such as cyclobutane and cyclobutene.
  • the hydrocarbon mixture having 4 carbon atoms includes, for example, a C4 fraction produced as a by-product when pyrolyzing naphtha to produce ethylene, or after recovering at least a part of butadiene from the C4 fraction. Examples include remaining fractions.
  • a mixture containing as a main component a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon and / or cyclic hydrocarbon having 5 carbon atoms (hereinafter referred to as “a hydrocarbon mixture having 5 carbon atoms”) And a linear hydrocarbon having 5 carbon atoms such as n-pentane, 1-pentene, 2-pentene, 1,3-pentadiene, isopentane, 2-methyl-1-butene, A mixture containing a branched hydrocarbon having 5 carbon atoms such as 2-methyl-2-butene, 3-methyl-1-butene and isoprene and / or a cyclic hydrocarbon having 5 carbon atoms such as cyclopentane and cyclopentene.
  • the hydrocarbon mixture having 5 carbon atoms includes, for example, a C5 fraction produced as a by-product when pyrolyzing naphtha to produce ethylene, or after recovering at least a portion of isoprene from the C5 fraction. Examples include remaining fractions.
  • any zeolite membrane capable of separating a desired hydrocarbon compound from a hydrocarbon mixture can be used.
  • the zeolite membrane includes a porous support and a porous separation layer provided on the porous support, and a porous separation layer is desired.
  • a separation membrane containing a zeolite (aluminosilicate and / or silicalite) capable of separating the hydrocarbon compound can be used.
  • a zeolite membrane is provided on a porous support and a porous support. It is preferable to use a separation membrane comprising a porous separation layer, wherein the porous separation layer contains MFI-type zeolite (aluminosilicate having a MFI structure and / or silicalite), It is more preferable to use a separation membrane provided with a porous separation layer and the porous separation layer substantially consisting of MFI-type zeolite.
  • MFI-type zeolite aluminosilicate having a MFI structure and / or silicalite
  • porous support a porous body made of any material can be used as long as it is a porous body capable of supporting the porous separation layer.
  • porous ceramics such as porous ceramics such as alumina, mullite, zirconia, cordierite, and porous sintered metals such as stainless steel are preferable. This is because a porous body made of porous ceramics or porous sintered metal is excellent in mechanical strength.
  • the shape of the porous support is not particularly limited, and can be any shape such as a flat film shape, a flat plate shape, a tube shape, and a honeycomb shape.
  • the porous separation layer can be formed, for example, by synthesizing zeolite having a desired structure such as MFI-type zeolite on a porous support or a porous support to which a zeolite seed crystal is attached.
  • the porous separation layer is obtained by immersing a porous support optionally attached with a zeolite seed crystal in an aqueous sol containing a silica source and a structure-directing agent, and synthesizing the zeolite by hydrothermal synthesis.
  • the zeolite membrane when a zeolite membrane obtained by forming a porous separation layer on a porous support is used, the zeolite membrane is subjected to a calcination treatment for removing the structure-directing agent. It is preferable that the material has been subjected to boiling treatment and more preferably subjected to a baking treatment in an oxygen-containing atmosphere such as an air atmosphere after performing boiling cleaning.
  • the above-mentioned zeolite membrane is exposed to an atmosphere having a dew point of ⁇ 20 ° C. or lower. This is because if the zeolite membrane is not exposed to an atmosphere having a dew point of ⁇ 20 ° C. or lower, the separation efficiency when the hydrocarbon mixture is subjected to membrane separation in the step (B) decreases.
  • step (A) it is preferable to perform an operation of raising the temperature of the atmosphere to which the zeolite membrane is exposed. If the temperature of the atmosphere in which the zeolite membrane is exposed and the dew point is ⁇ 20 ° C. or lower is raised, the permeation flux F and the separation factor ⁇ when the hydrocarbon mixture is separated in the step (B) are further increased. This is because the efficiency can be further improved.
  • the temperature of the atmosphere may be lowered during the implementation of the step (A) or may not be lowered. .
  • the atmosphere to which the zeolite membrane is exposed is the step (A).
  • the temperature is preferably lowered during the implementation, and when the temperature of the atmosphere to which the zeolite membrane is exposed during the step (A) is 350 ° C. or higher, the temperature is particularly preferably lowered during the implementation of the step (A).
  • the atmosphere to which the zeolite membrane is exposed in the step (A) can be any atmosphere as long as the dew point is ⁇ 20 ° C. or lower.
  • the atmosphere to which the zeolite membrane is exposed is not particularly limited, and examples thereof include an atmosphere made of a gas that can permeate the zeolite membrane, such as a dry air atmosphere, a carbon dioxide atmosphere, a nitrogen atmosphere, an argon atmosphere, and a helium atmosphere. It is done.
  • the atmosphere to which the zeolite membrane is exposed is preferably an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a helium atmosphere.
  • the atmosphere to which the zeolite membrane is exposed is an inert gas atmosphere, for example, when using a zeolite membrane containing a reactive acid component, such as when using a zeolite membrane having a solid acid point, This is because it is possible to suppress the formation of oxides and the like due to the reaction between the atmospheric gas and the zeolite membrane, and to prevent the permeation flux F and the separation factor ⁇ from being lowered.
  • the dew point of the atmosphere to which the zeolite membrane is exposed is not particularly limited as long as it is ⁇ 20 ° C. or lower. However, from the viewpoint of further improving the separation efficiency when the hydrocarbon mixture is subjected to membrane separation, ⁇ 40 It is preferably not higher than ° C, more preferably not higher than -50 ° C. Note that the dew point of the atmosphere to which the zeolite membrane is exposed is usually ⁇ 80 ° C. or higher.
  • the temperature of the atmosphere to which the zeolite membrane is exposed during the step (A) is not particularly limited as long as it is higher than the dew point of the atmosphere, but it is in the range of 10 ° C. or higher and 580 ° C. or lower. It is preferable that the temperature be in the range of 20 ° C. or higher and 580 ° C. or lower.
  • the maximum temperature of the atmosphere to which the zeolite membrane is exposed during the step (A) is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, and preferably 580 ° C. or lower, 500 ° C. The following is more preferable.
  • the maximum temperature of the atmosphere to which the zeolite membrane is exposed is usually equal to the temperature of the atmosphere at the start of the step (A) when the temperature raising operation is not performed.
  • the pressure (gauge pressure) of the atmosphere to which the zeolite membrane is exposed is preferably, for example, 1 MPa or less. This is because if the pressure is too high, the zeolite membrane may be destroyed.
  • the time during which the zeolite membrane is exposed to an atmosphere having a dew point of ⁇ 20 ° C. or lower in the step (A) is not particularly limited and is preferably 5 hours or more, more preferably 10 hours or more, More preferably, it is 15 hours or longer, and usually 500 hours or shorter. This is because the separation efficiency can be further improved if the time during which the zeolite membrane is exposed to an atmosphere having a dew point of ⁇ 20 ° C. or lower is not less than the above lower limit.
  • the time for exposing the zeolite membrane to the maximum temperature atmosphere in the step (A) is not particularly limited, but is preferably 5 hours or more, and more preferably 10 hours or more, More preferably, it is 15 hours or longer, preferably 50 hours or shorter, more preferably 30 hours or shorter. If the time during which the atmosphere to which the zeolite membrane is exposed is kept at the above maximum temperature is set to the above lower limit value or more, the permeation flux F and the separation factor ⁇ when the hydrocarbon mixture is subjected to membrane separation are sufficiently increased, and the separation efficiency is sufficiently increased. This is because it can be improved.
  • the time during which the atmosphere to which the zeolite membrane is exposed is kept at the above maximum temperature is not more than the above upper limit value, it is possible to suppress the loss of the separation factor ⁇ due to the loss of the zeolite membrane due to heat, and the hydrocarbon mixture to the membrane This is because the separation efficiency at the time of separation can be sufficiently improved.
  • any method for exposing the zeolite membrane to an atmosphere having a dew point of ⁇ 20 ° C. or lower any method can be used as long as the atmosphere around the zeolite membrane can be an atmosphere having a dew point of ⁇ 20 ° C. or lower.
  • the dew point is set to ⁇ 20 ° C. or less.
  • the atmosphere in which the zeolite membrane is accommodated may be exposed to an atmosphere, or the atmosphere in which the dew point is -20 ° C.
  • the place where the zeolite membrane is exposed to an atmosphere having a dew point of ⁇ 20 ° C. or lower is the membrane separation of the hydrocarbon mixture in the step (B), for example, in a membrane separation module in which the zeolite membrane is accommodated in the housing. It may be a place or in a storage container for storing the zeolite membrane outside the membrane separation module.
  • the zeolite membrane has a dew point at a place where the hydrocarbon mixture is subjected to membrane separation in the step (B) such as in the housing of the membrane separation module. Is preferably exposed to an atmosphere of ⁇ 20 ° C. or lower.
  • the temperature rising may start from the beginning of the step (A) or in the middle of the step (A). May be.
  • the temperature of the atmosphere is preferably raised to 100 ° C. or higher, more preferably raised to 130 ° C. or higher, preferably raised to 580 ° C. or lower, preferably raised to 500 ° C. or lower. More preferred. If the temperature of the atmosphere after the temperature rise (temperature after the temperature rise) is equal to or higher than the lower limit, the permeation flux F and the separation factor ⁇ when separating the hydrocarbon mixture into the membrane are sufficiently increased, and the separation efficiency is sufficiently improved. It is because it can be made.
  • the temperature of the atmosphere after the temperature rise is not more than the above upper limit value, it is possible to suppress the loss of the separation factor ⁇ due to heat loss of the zeolite membrane and membrane separation of the hydrocarbon mixture. This is because the separation efficiency can be sufficiently improved.
  • the time for maintaining the temperature of the atmosphere at the temperature after the temperature rise after the temperature rise is not particularly limited, but is preferably 5 hours or more, more preferably 10 hours or more, and 15 hours, for example. More preferably, the time is 50 hours or less, and more preferably 30 hours or less. If the time for maintaining the temperature at the temperature after raising the temperature is set to the above lower limit or more, the permeation flux F and the separation factor ⁇ when the hydrocarbon mixture is subjected to membrane separation can be sufficiently increased, and the separation efficiency can be sufficiently improved. Because it can.
  • the zeolite membrane is lost due to heat and the separation factor ⁇ is prevented from being lowered, and separation when the hydrocarbon mixture is subjected to membrane separation. This is because the efficiency can be sufficiently improved.
  • the temperature of the heated atmosphere can be arbitrarily lowered to, for example, 30 ° C. or lower, preferably 25 ° C. or lower. If the temperature of the atmosphere to which the zeolite membrane is exposed is lowered to the upper limit value or less, the destruction of the zeolite membrane due to a rapid temperature drop is suppressed when the hydrocarbon mixture is subjected to membrane separation in the step (B). Because you can. Note that when the temperature of the atmosphere is lowered, the timing of completing the step (A) may be the same as the end of the temperature decrease, or may be after an arbitrary time has elapsed since the temperature decrease is completed.
  • ⁇ Process (B)> membrane separation of the hydrocarbon mixture is performed using the zeolite membrane exposed to the atmosphere having a dew point of ⁇ 20 ° C. or lower in the step (A).
  • the step (B) is usually performed following the step (A) (that is, immediately after the step (A)).
  • the step (B) is preferably carried out after the step (A) without exposing the zeolite membrane to an atmosphere having a dew point exceeding ⁇ 20 ° C.
  • any other step may be included between the step (A) and the step (B) as long as the desired effect is obtained.
  • the zeolite membrane is provided between the step (A) and the step (B) as long as the desired effect is obtained. May be included in the housing in an atmosphere having a dew point exceeding ⁇ 20 ° C., such as in an air atmosphere.
  • step (B) a part of the hydrocarbon compound contained in the hydrocarbon mixture is separated.
  • a hydrocarbon mixture containing, for example, a straight-chain hydrocarbon and a branched hydrocarbon and / or a cyclic hydrocarbon having the same number of carbon atoms.
  • the linear hydrocarbon can be efficiently separated and removed, whereby the content of branched hydrocarbons and / or cyclic hydrocarbons in the hydrocarbon mixture can be increased.
  • a part of the components for example, linear hydrocarbons
  • the membrane separation using a zeolite membrane can be performed under arbitrary conditions, but is preferably performed under heating conditions. Specifically, the membrane separation is preferably performed under conditions of 20 ° C. or higher and 300 ° C. or lower, more preferably 25 ° C. or higher and 250 ° C. or lower, and further preferably 50 ° C. or higher and 200 ° C. or lower. Further, the pressure condition for performing the membrane separation is not particularly limited, but it is preferable that the differential pressure between the non-permeable side and the permeable side (pressure on the non-permeable side ⁇ pressure on the permeable side) is 10 kPa or more and 600 kPa or less, More preferably, it is 50 kPa or more and 300 kPa or less.
  • the hydrocarbon mixture can be subjected to membrane separation with a high permeation flux F and a high separation factor ⁇ . Therefore, the hydrocarbon mixture can be membrane-separated with high separation efficiency.
  • the membrane separation apparatus of the present invention includes a housing, a membrane separation module including a zeolite membrane that is contained in the housing and membrane-separates the hydrocarbon mixture, a raw material supply mechanism that supplies the hydrocarbon mixture to the membrane separation module, and a dew point of ⁇ A gas supply mechanism for supplying a gas of 20 ° C. or lower to the space in which the zeolite membrane of the membrane separation module is accommodated.
  • the hydrocarbon mixture is supplied to the membrane separation module using the raw material supply mechanism.
  • the hydrocarbon mixture can be membrane-separated with high separation efficiency using the membrane separation method of the present invention described above.
  • the membrane separation device of the present invention preferably further includes a heater for heating a gas having a dew point of ⁇ 20 ° C. or less.
  • a membrane separation device 100 of the present invention for example, a housing 31, a non-permeate side region 33 and a permeate side accommodated in the housing 31.
  • a membrane separation module 30 comprising a zeolite membrane 32 that defines a region 34 may be mentioned.
  • the housing 31 of the membrane separation module 30 a known housing capable of airtightly fixing the zeolite membrane 32 can be used.
  • the zeolite membrane 32 a zeolite membrane similar to the membrane separation method of the present invention described above can be used.
  • a non-permeate component outflow mechanism 60 for allowing non-permeate components to flow out is provided on the downstream side of the non-permeate side region 33 of the membrane separation module 30.
  • the non-permeable component outflow mechanism 60 includes a non-permeable component line 61, a back pressure valve 62, and a non-permeable component line valve 63.
  • the non-permeable component line 61 is connected to a non-permeable component recovery device (not shown). Or may be connected to a hydrocarbon mixture reservoir 10 to form a circulation channel.
  • a gas outflow line 71 for branching out the gas supplied from the gas supply mechanism branches and extends from the non-permeating component line 61, and a gas outflow line valve 72 is provided in the gas outflow line 71.
  • the gas outflow line 71 and the gas outflow line valve 72 constitute a gas outflow mechanism 70 for outflowing the gas supplied from the gas supply mechanism 40 and in contact with the zeolite membrane.
  • a permeate component outflow mechanism 50 including a permeate component line for allowing a permeate component to flow out is provided on the downstream side of the permeate side region 34 of the membrane separation module 30.
  • the transmission component line is provided with a transmission component line valve (not shown).
  • the permeation component line is connected to a permeation component recovery device (not shown) such as a cold trap.
  • the raw material supply mechanism is not particularly limited, and for example, as shown in FIG. 1, the raw material supply having a configuration capable of supplying the hydrocarbon mixture from the hydrocarbon mixture storage tank 10 to the membrane separation module 30.
  • a mechanism 20 can be used. More specifically, the raw material supply mechanism 20 includes a raw material line 21 that connects the hydrocarbon mixture storage tank 10 and the non-permeate side region 33 of the membrane separation module 30, and the raw material line 21 provided in the raw material line 21. It is possible to use a mechanism including a transfer device 22 for sending the hydrocarbon mixture in the non-permeate side region 33, a heater 23 provided in the raw material line 21 for heating the hydrocarbon mixture, and a raw material line valve 24. it can.
  • the hydrocarbon mixture stored in the storage tank 10 is not particularly limited, and examples thereof include the same hydrocarbon mixture as in the membrane separation method of the present invention.
  • a pump etc. can be used, for example.
  • a heater 23, a heat exchanger, a heater, etc. can be used, for example.
  • the hydrocarbon mixture fed through the transfer device 22 is heated by the heater 23 by operating the transfer device 22 and the heater 23 with the raw material line valve 24 opened. Then, it can be vaporized and supplied to the non-permeate side region 33 of the membrane separation module 30. Further, according to the raw material supply mechanism 20, the supply of the hydrocarbon mixture to the non-permeate side region 33 of the membrane separation module 30 can be stopped by closing the raw material line valve 24.
  • the gas supply mechanism is not particularly limited.
  • a gas having a dew point of ⁇ 20 ° C. or less nitrogen gas in the illustrated example
  • the gas supply mechanism 40 having a configuration that can be used can be used. More specifically, the gas supply mechanism 40 includes a gas supply source (not shown) having a dew point of ⁇ 20 ° C. or less connected to the material line 21 between the material line valve 24 and the membrane separation module 30.
  • a mechanism comprising a gas line 41 that connects the non-permeate side region 33 of the membrane separation module 30, a gas line valve 42, and a heater 43 that is provided in the gas line 41 and heats a gas having a dew point of ⁇ 20 ° C. or less. Can be used.
  • the gas having a dew point of ⁇ 20 ° C. or lower is not particularly limited, and examples thereof include gases that can permeate the zeolite membrane such as dry air, carbon dioxide gas, nitrogen gas, argon gas, and helium gas.
  • gases that can permeate the zeolite membrane such as dry air, carbon dioxide gas, nitrogen gas, argon gas, and helium gas.
  • inert gas such as nitrogen gas, argon gas, and helium gas, is preferable.
  • the gas in contact with the zeolite membrane is an inert gas, even if a zeolite membrane containing a reactive component such as a zeolite membrane having a solid acid point is used, the gas and the zeolite membrane This is because it is possible to suppress the formation of oxides and the like due to the reaction, and to prevent the permeation flux F and the separation factor ⁇ from being lowered.
  • gas can be supplied using a compressor etc. from the supply source which is not illustrated.
  • a heat exchanger, a heater, etc. can be used, for example.
  • the gas supply mechanism 40 by operating the heater 43 with the gas line valve 42 open, the gas is heated by the heater 43 and supplied to the non-permeate side region 33 of the membrane separation module 30. can do. Further, according to the gas supply mechanism 40, the gas supply to the non-permeate side region 33 of the membrane separation module 30 can be stopped by closing the gas line valve 42.
  • the raw material line valve 24, the non-permeate component line valve 63 and the permeate component line valve (not shown) are closed, and the gas line valve 42 and the gas outflow line valve 72 are opened.
  • a gas having a dew point of ⁇ 20 ° C. or lower nitrogen gas in the illustrated example
  • a gas having a dew point of ⁇ 20 ° C. or less heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30, and the heated gas having a dew point of ⁇ 20 ° C. or less, the zeolite membrane 32, Can be contacted.
  • the gas after coming into contact with the zeolite membrane 32 can be discharged to an arbitrary processing apparatus via the gas outflow line 71.
  • the raw material line valve 24, the non-permeate component line valve 63, and the permeate component are brought into contact as described above, the raw material line valve 24, the non-permeate component line valve 63, and the permeate component.
  • a line valve (not shown) is opened, the gas line valve 42 and the gas outflow line valve 72 are closed, and the hydrocarbon mixture is allowed to flow from the raw material supply mechanism 20 to the membrane separation module 30 to membrane-separate the hydrocarbon mixture.
  • the vaporized hydrocarbon mixture is sent to the non-permeate side region 33 of the membrane separation module 30 through the transfer device 22 and the heater 23, and the permeated component permeated through the zeolite membrane 32 is transmitted to the permeated component outflow mechanism 50.
  • the non-permeate component that has not permeated the zeolite membrane 32 can be recovered or circulated through the non-permeate component outflow mechanism 60.
  • the hydrocarbon mixture can be membrane-separated with high separation efficiency by using the membrane separation method of the present invention described above.
  • the membrane separator of this invention is not limited to the structure shown in FIG. Specifically, the heater 43 that heats the gas having a dew point of ⁇ 20 ° C. or less may be provided on the outer peripheral side of the housing 31 of the membrane separation module 30 or in the housing 31 without being provided in the gas supply mechanism 40. However, from the viewpoint of further improving the separation efficiency when the preheated gas is brought into contact with the zeolite membrane 32 to uniformly heat the zeolite membrane to perform membrane separation of the hydrocarbon mixture, the heater 43 is provided with the gas supply mechanism 40. It is preferable to provide in.
  • the gas line 41 may be directly connected to the non-transmission side region 33 without being connected to the raw material line 21, may be connected to the transmission side region 34, or may be connected to the non-transmission side region 33 and the transmission side region. 34 may be connected to both sides.
  • the gas outflow mechanism 70 including the gas outflow line 71 and the gas outflow line valve 72 may be provided on the permeate component outflow mechanism 50 side without being provided on the non-permeate component outflow mechanism 60 side, or on the permeate component outflow mechanism 50 side. It may also be provided on both the non-permeate component outflow mechanism 60 side.
  • W is the mass [kg] of the component that has passed through the zeolite membrane
  • A is the effective area of the zeolite membrane [m 2 ]
  • t is the treatment time [hour].
  • X n is the content ratio [mol%] of n-pentane in the raw material
  • X iso is the content ratio [mol%] of isopentane in the raw material
  • Y n is It is the content ratio [mol%] of n-pentane in the transmission side sample
  • Y iso is the content ratio [mol%] of isopentane in the transmission side sample.
  • W is the mass [kg] of the component that has passed through the zeolite membrane
  • A is the effective area of the zeolite membrane [m 2 ]
  • t is the treatment time [hour].
  • Xn is the content ratio [mol%] of the linear hydrocarbon having 5 carbon atoms in the raw material
  • Xiso + cyclo is the carbon number in the raw material having 5 carbon atoms.
  • Y n is the content of the linear hydrocarbon having 5 carbon atoms in the permeate side sample
  • mol Yiso + cyclo is the total content [mol%] of the branched hydrocarbon having 5 carbon atoms and the cyclic hydrocarbon having 5 carbon atoms in the permeate side sample.
  • Example 1 ⁇ Membrane separation test> A structure separating agent is formed by forming a porous separation layer made of MFI-type zeolite on the outer surface of a cylindrical mullite porous support, followed by firing in an air atmosphere having a dew point of 2 ° C. at a temperature of 500 ° C. for 20 hours.
  • a membrane separation test was conducted using a membrane separation apparatus 100 as shown in FIG.
  • the permeation component line of the membrane separation apparatus 100 was connected to a sampling cold trap, and the non-permeation component line 61 was connected to the storage tank 10 via a heat exchanger as a cooler.
  • [Membrane separation] The membrane separation test using the membrane separation apparatus 100 shown in FIG. 1 was performed as follows.
  • the storage tank 10 is filled with a hydrocarbon mixture of 5 carbon atoms composed of a mixed liquid of n-pentane and isopentane (a mixed liquid of n-pentane: 50 mol% and isopentane: 50 mol%).
  • the deaeration operation was performed three times.
  • the raw material line valve 24, the non-permeate component line valve 63, and the permeate component line valve (not shown) are closed, and the gas line valve 42 and the gas outflow line valve 72 are opened. Nitrogen gas (dew point: ⁇ 50 ° C.) was passed through 30 to bring the nitrogen gas into contact with the zeolite membrane 32.
  • nitrogen gas heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30 and the temperature in the housing 31 is raised to 500 ° C. (maximum temperature), and then the maximum temperature 500 is reached.
  • Nitrogen gas and the zeolite membrane 32 were contacted at 15 ° C. for 15 hours. Thereafter, the temperature in the housing 31 was lowered to 20 ° C., and the nitrogen gas and the zeolite membrane 32 were contacted at a temperature of 20 ° C. for 19 hours. Thereafter, the raw material line valve 24 and the non-permeate component line valve 63 were opened, and the gas line valve 42 and the gas outflow line valve 72 were closed. Then, the hydrocarbon mixture was heated to 70 ° C.
  • the system is operated until the temperature in the system reaches a steady state.
  • the back pressure valve 62 pressurizes the non-permeate side to 150 kPa (gauge pressure).
  • the permeation side cold trap
  • the permeation component line valve (not shown) was opened, and the membrane separation test was started.
  • the membrane separation test was performed under the conditions of a temperature of 70 ° C. and a differential pressure of 250 kPa between the non-permeation side and the permeation side. And extraction of the permeation
  • transmission side sample was started when 5 minutes passed after starting the membrane separation test.
  • the sample on the permeate side (condensate) was weighed and the molar ratio of n-pentane to isopentane was measured by gas chromatography. And separation efficiency was evaluated using these measurement results. The results are shown in Table 1.
  • Example 2 A membrane separation test was conducted in the same manner as in Example 1 except that the maximum temperature was changed to 150 ° C. The results are shown in Table 1.
  • Example 3 A membrane separation test was conducted in the same manner as in Example 1 except that the maximum temperature was changed to 200 ° C. The results are shown in Table 1.
  • Example 1 The membrane separation test was conducted in the same manner as in Example 1 except that the hydrocarbon mixture was subjected to membrane separation without flowing nitrogen gas during the membrane separation test. The results are shown in Table 1.
  • Table 1 shows that the separation efficiency is improved in Examples 1 to 3 as compared with Comparative Example 1.
  • Example 4 ⁇ Membrane separation test> A structure separating agent is formed by forming a porous separation layer made of MFI-type zeolite on the outer surface of a cylindrical mullite porous support, followed by firing in an air atmosphere having a dew point of 2 ° C. at a temperature of 500 ° C. for 20 hours.
  • a membrane separation test was conducted using a membrane separation apparatus 100 as shown in FIG.
  • the permeation component line of the membrane separation apparatus 100 was connected to a sampling cold trap, and the non-permeation component line 61 was connected to the storage tank 10 via a heat exchanger as a cooler.
  • [Membrane separation] The membrane separation test using the membrane separation apparatus 100 shown in FIG. 1 was performed as follows.
  • a fraction remaining after recovering a part of isoprene from a C5 fraction produced as a by-product when pyrolyzing naphtha to produce ethylene (a linear hydrocarbon having 5 carbon atoms and carbon
  • a hydrocarbon mixture consisting of a branched hydrocarbon having 5 carbon atoms and a cyclic hydrocarbon having 5 carbon atoms as a main component) is filled in the storage tank 10, and the deaeration operation is performed three times. It was.
  • the raw material line valve 24, the non-permeate component line valve 63, and the permeate component line valve (not shown) are closed, and the gas line valve 42 and the gas outflow line valve 72 are opened.
  • Nitrogen gas (dew point: ⁇ 50 ° C.) was passed through 30 to bring the nitrogen gas into contact with the zeolite membrane 32. Specifically, nitrogen gas heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30 and the temperature in the housing 31 is raised to 500 ° C. (maximum temperature), and then the maximum temperature 500 is reached. Nitrogen gas and the zeolite membrane 32 were contacted at 15 ° C. for 15 hours. Thereafter, the temperature in the housing 31 was lowered to 20 ° C., and the nitrogen gas and the zeolite membrane 32 were contacted at a temperature of 20 ° C. for 19 hours.
  • nitrogen gas heated by the heater 43 is caused to flow into the housing 31 of the membrane separation module 30 and the temperature in the housing 31 is raised to 500 ° C. (maximum temperature), and then the maximum temperature 500 is reached. Nitrogen gas and the zeolite membrane 32 were contacted at 15 ° C. for 15 hours. Thereafter, the temperature in the housing 31 was lowered to 20
  • the raw material line valve 24 and the non-permeate component line valve 63 were opened, and the gas line valve 42 and the gas outflow line valve 72 were closed.
  • the hydrocarbon mixture was heated to 70 ° C. by the heater 23, supplied to the membrane separation module 30 in the gas phase, then condensed by the cooler, and the raw material circulation process to return to the storage tank 10 was started. .
  • the system is operated until the temperature in the system reaches a steady state. After the temperature in the system reaches a steady state, the back pressure valve 62 pressurizes the non-permeate side to 150 kPa (gauge pressure).
  • the permeation side (cold trap) was reduced to -100 kPa (gauge pressure). And after confirming that the temperature and pressure in the system were stable, the permeation component line valve (not shown) was opened, and the membrane separation test was started. That is, the membrane separation test was performed under the conditions of a temperature of 70 ° C. and a differential pressure of 250 kPa between the non-permeation side and the permeation side. And extraction of the permeation
  • the sample on the permeate side (condensate) is weighed, and in a gas chromatograph, a straight-chain hydrocarbon having 5 carbon atoms, a branched hydrocarbon having 5 carbon atoms, and a ring having 5 carbon atoms. The molar ratio of hydrocarbons was measured. And separation efficiency was evaluated using these measurement results. The results are shown in Table 2.
  • Example 5 A membrane separation test was conducted in the same manner as in Example 4 except that the maximum temperature was changed to 150 ° C. The results are shown in Table 2.
  • Example 6 A membrane separation test was conducted in the same manner as in Example 4 except that the maximum temperature was changed to 200 ° C. The results are shown in Table 2.
  • Example 2 A membrane separation test was conducted in the same manner as in Example 4 except that the hydrocarbon mixture was subjected to membrane separation without flowing nitrogen gas during the membrane separation test. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、高い分離効率で炭化水素混合物を膜分離することが可能な膜分離方法および膜分離装置を提供する。本発明の膜分離方法は、露点が-20℃以下の雰囲気にゼオライト膜を曝す工程(A)と、工程(A)の後にゼオライト膜を用いて炭化水素混合物の膜分離を行う工程(B)とを含む。また、本発明の膜分離装置は、ハウジングと、ハウジング内に収容されて炭化水素混合物を膜分離するゼオライト膜とを備える膜分離モジュールと、膜分離モジュールに炭化水素混合物を供給する原料供給機構と、露点が-20℃以下の気体を膜分離モジュールのゼオライト膜が収容された空間に供給する気体供給機構とを備える。

Description

膜分離方法および膜分離装置
 本発明は、膜分離方法および膜分離装置に関し、特には、炭化水素混合物から一部の炭化水素を分離する際に好適に使用し得る膜分離方法および膜分離装置に関するものである。
 従来、多成分の混合物から特定の成分を低エネルギーで分離する方法として、膜分離法が用いられている。そして、分離膜としては、例えば、支持体上にゼオライトを膜状に形成してなるゼオライト膜が用いられている。
 ここで、一般に、膜分離に使用されるゼオライト膜の性能は、透過物質の透過流束Fと、分離係数αとにより表される。そして、膜分離に使用されるゼオライト膜には、透過流束Fや分離係数αを高めることが求められている。
 そこで、例えば特許文献1では、水に曝露したゼオライト膜を所定の温度条件下において大気炉内で加熱処理してから混合ガスの膜分離に用いることにより、分離係数の低下を抑制しつつ高い透過流束での混合ガスの膜分離を可能にする技術が提案されている。
 また、近年、炭素数が等しい直鎖状炭化水素と分岐状炭化水素とを含む炭化水素混合物から分岐状炭化水素を低エネルギーで分離する方法として、ゼオライト膜を用いた膜分離法が注目されている。そして、ゼオライト膜を用いた炭化水素混合物の膜分離においては、透過流束Fおよび分離係数αの双方を高め、分離効率を向上させることが求められている(例えば、特許文献2参照)。
国際公開第2014/069630号 特開2015-160186号公報
 しかし、ゼオライト膜を用いた上記従来の膜分離方法では、炭化水素混合物を膜分離する際の分離効率を十分に向上させることはできなかった。
 そこで、本発明は、高い分離効率で炭化水素混合物を膜分離することが可能な膜分離方法および膜分離装置を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、露点が-20℃以下の雰囲気に曝したゼオライト膜を用いて炭化水素混合物の膜分離を行えば、透過流束Fおよび分離係数αの双方を高め、分離効率を向上させ得ることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の膜分離方法は、露点が-20℃以下の雰囲気にゼオライト膜を曝す工程(A)と、前記工程(A)の後に前記ゼオライト膜を用いて炭化水素混合物の膜分離を行う工程(B)とを含むことを特徴とする。このように、露点が-20℃以下の雰囲気に曝したゼオライト膜を使用すれば、炭化水素混合物を高い分離効率で膜分離することができる。
 なお、本発明において、「露点」とは、フーリエ変換赤外分光法(FT-IR)を用いて測定した水分量から求めた大気圧下露点を指す。
 ここで、本発明の膜分離方法では、前記工程(A)中に前記雰囲気を昇温させることが好ましい。ゼオライト膜が曝される雰囲気を昇温させれば、炭化水素混合物の分離効率を更に向上させることができる。
 なお、本発明の膜分離方法では、前記工程(A)中の前記雰囲気の最高温度が100℃以上580℃以下であることが好ましい。ゼオライト膜が曝される雰囲気の最高温度を100℃以上580℃以下とすれば、熱によるゼオライト膜の欠損を抑制しつつ、炭化水素混合物の分離効率を更に向上させることができる。
 また、本発明の膜分離方法では、前記雰囲気が不活性ガス雰囲気であることが好ましい。ゼオライト膜が曝される雰囲気が不活性ガス雰囲気であれば、ゼオライト膜と、ゼオライト膜が曝された雰囲気とが反応するのを抑制して、炭化水素混合物の分離効率を更に向上させることができる。
 そして、本発明の膜分離方法では、前記工程(A)において前記ゼオライト膜を前記雰囲気に5時間以上曝すことが好ましい。露点が-20℃以下の雰囲気にゼオライト膜を曝す時間を5時間以上とすれば、炭化水素混合物の分離効率を十分に向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の膜分離装置は、ハウジングと、前記ハウジング内に収容されて炭化水素混合物を膜分離するゼオライト膜とを備える膜分離モジュールと、前記膜分離モジュールに前記炭化水素混合物を供給する原料供給機構と、露点が-20℃以下の気体を前記膜分離モジュールの前記ゼオライト膜が収容された空間に供給する気体供給機構とを備えることを特徴とする。このように、気体供給機構を設ければ、露点が-20℃以下の気体をゼオライト膜に接触させてから炭化水素混合物の膜分離を行うことができる。従って、炭化水素混合物を高い分離効率で膜分離することができる。
 ここで、本発明の膜分離装置は、前記気体を加熱する加熱器を更に備えることが好ましい。加熱器を設ければ、ゼオライト膜と接触する露点が-20℃以下の気体を昇温させることができる。従って、露点が-20℃以下の気体をゼオライト膜に接触させてから炭化水素混合物の膜分離を行う際に、露点が-20℃以下の気体を昇温させ、炭化水素混合物の分離効率を更に向上させることができる。
 なお、本発明の膜分離装置は、前記気体供給機構が前記加熱器を有していることが好ましい。気体供給機構が加熱器を有していれば、予め加熱した気体を膜分離モジュールに供給することができる。従って、膜分離モジュール内などで気体を加熱する場合と比較し、加熱した気体をゼオライト膜に接触させてから炭化水素混合物の膜分離を行う際に、ゼオライト膜を均一に加熱して、炭化水素混合物の分離効率を更に向上させることができる。
 そして、本発明の膜分離装置は、前記気体が不活性ガスであることが好ましい。不活性ガスを使用すれば、露点が-20℃以下の気体をゼオライト膜に接触させてから炭化水素混合物の膜分離を行う際に、ゼオライト膜と気体とが反応するのを抑制して、炭化水素混合物の分離効率を更に向上させることができる。
 本発明によれば、高い分離効率で炭化水素混合物を膜分離することが可能な膜分離方法および膜分離装置を提供することができる。
膜分離装置の一例の概略構成を示す図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の膜分離方法は、炭化水素混合物を膜分離する際に用いることができる。また、本発明の膜分離装置は、本発明の膜分離方法を用いて炭化水素混合物を膜分離する際に好適に用いることができる。
(膜分離方法)
 本発明の膜分離方法は、ゼオライト膜を用いて炭化水素混合物を膜分離する方法であり、露点が-20℃以下の雰囲気にゼオライト膜を曝す工程(A)と、工程(A)の後にゼオライト膜を用いて炭化水素混合物の膜分離を行う工程(B)とを含む。そして、本発明の膜分離方法では、露点が-20℃以下の雰囲気に曝したゼオライト膜を用いているので、高い透過流束および高い分離係数で炭化水素混合物の膜分離を行うことができる。従って、炭化水素混合物中に含まれている炭化水素化合物を高い分離効率で分離することができる。
 ここで、露点が-20℃以下の雰囲気に曝したゼオライト膜を使用することで透過流束および分離係数の双方が向上する理由は、明らかではないが、以下の通りであると推察される。即ち、通常、ゼオライト膜には水などの親水性の化合物の分子が吸着している。そして、ゼオライト膜に吸着した親水性の化合物の分子は、大気中などの露点が高い雰囲気下では、水分の再吸着などが起こるために十分に脱離させることは困難である。ここで、炭化水素混合物中に含まれている炭化水素化合物は、疎水性の物質であるため、親水性の化合物の分子が吸着したゼオライト膜では、透過流束Fのみならず分離係数αも低下してしまう。しかし、本発明の膜分離方法では、露点が-20℃以下の雰囲気にゼオライト膜を曝しているので、ゼオライト膜に吸着した親水性の化合物の分子を十分に脱離させ、炭化水素混合物を膜分離した際の透過流束Fおよび分離係数αの双方を高めることができる。
<炭化水素混合物>
 ここで、本発明の膜分離方法を用いて膜分離される炭化水素混合物は、ゼオライト膜を用いて一部の炭化水素化合物を分離することが可能な複数種の炭化水素化合物の混合物であれば特に限定されるものではない。具体的には、炭化水素混合物としては、例えば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む混合物が挙げられる。中でも、炭化水素混合物は、好ましくは、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または炭素数が4の環状炭化水素とを主成分として含む混合物、或いは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物であり、より好ましくは、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または炭素数が5の環状炭化水素とを主成分として含む混合物である。
 なお、本発明において、「直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを主成分として含む」とは、炭化水素混合物中に、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを合計で50モル%以上含有することを指す。
 そして、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物(以下、「炭素数が4の炭化水素混合物」と称することがある。)としては、n-ブタン、1-ブテン、2-ブテン、ブタジエンなどの炭素数が4の直鎖状炭化水素と、イソブタン、イソブテンなどの炭素数が4の分岐状炭化水素および/またはシクロブタン、シクロブテンなどの炭素数が4の環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が4の炭化水素混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC4留分や、C4留分から少なくともブタジエンの一部を回収した後に残る留分などが挙げられる。
 また、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素および/または環状炭化水素とを主成分として含む混合物(以下、「炭素数が5の炭化水素混合物」と称することがある。)としては、n-ペンタン、1-ペンテン、2-ペンテン、1,3-ペンタジエンなどの炭素数が5の直鎖状炭化水素と、イソペンタン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン、イソプレンなどの炭素数が5の分岐状炭化水素および/またはシクロペンタン、シクロペンテンなどの炭素数が5の環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が5の炭化水素混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC5留分や、C5留分から少なくともイソプレンの一部を回収した後に残る留分などが挙げられる。
<ゼオライト膜>
 また、本発明の膜分離方法で用いられるゼオライト膜としては、炭化水素混合物から所望の炭化水素化合物を分離可能な任意のゼオライト膜を用いることができる。具体的には、特に限定されるものではないが、ゼオライト膜としては、多孔性支持体と、多孔性支持体上に設けられた多孔性分離層とを備え、且つ、多孔性分離層が所望の炭化水素化合物を分離可能なゼオライト(アルミノケイ酸塩および/またはシリカライト)を含んでいる分離膜を用いることができる。より具体的には、例えば、炭素数が4の炭化水素混合物または炭素数が5の炭化水素混合物の膜分離には、ゼオライト膜としては、多孔性支持体と、多孔性支持体上に設けられた多孔性分離層とを備え、且つ、多孔性分離層がMFI型ゼオライト(MFI構造を有するアルミノケイ酸塩および/またはシリカライト)を含んでいる分離膜を用いることが好ましく、多孔性支持体および多孔性分離層を備え、且つ、多孔性分離層が実質的にMFI型ゼオライトからなる分離膜を用いることがより好ましい。
 ここで、多孔性支持体としては、多孔性分離層を担持することが可能な多孔質体であれば任意の材質の多孔質体を用いることができる。中でも、アルミナ、ムライト、ジルコニア、コージライト等の多孔質セラミックスや、ステンレス鋼等の多孔質焼結金属からなる多孔質体が好ましい。多孔質セラミックスや多孔質焼結金属からなる多孔質体は、機械的強度に優れているからである。
 なお、多孔性支持体の形状は、特に限定されることなく、例えば、平膜状、平板状、チューブ状、ハニカム状などの任意の形状とすることができる。
 また、多孔性分離層は、例えば多孔性支持体上またはゼオライト種結晶を付着させた多孔性支持体上でMFI型ゼオライト等の所望の構造を有するゼオライトを合成することにより形成することができる。具体的には、多孔性分離層は、任意にゼオライト種結晶を付着させた多孔性支持体を、シリカ源および構造規定剤を含む水性ゾルに浸漬し、水熱合成によりゼオライトを合成することにより、多孔性支持体上に形成することができる。
 なお、本発明の膜分離方法において、多孔性支持体上に多孔性分離層を形成して得られたゼオライト膜を用いる場合には、当該ゼオライト膜は、構造規定剤を除去するための焼成処理を施したものであることが好ましく、煮沸洗浄を施した後に大気雰囲気下などの酸素含有雰囲気下で焼成処理を施したものであることがより好ましい。
<工程(A)>
 ここで、工程(A)では、露点が-20℃以下の雰囲気に上述したゼオライト膜を曝す。ゼオライト膜を露点が-20℃以下の雰囲気に曝さなかった場合、工程(B)において炭化水素混合物を膜分離する際の分離効率が低下するからである。
 なお、工程(A)では、ゼオライト膜が曝されている雰囲気を昇温させる操作を行うことが好ましい。ゼオライト膜が曝されている、露点が-20℃以下の雰囲気を昇温させれば、工程(B)において炭化水素混合物を膜分離する際の透過流束Fおよび分離係数αを更に高め、分離効率を更に向上させることができるからである。ここで、工程(A)においてゼオライト膜が曝されている雰囲気を昇温させた場合、当該雰囲気の温度は、工程(A)の実施中に降温させてもよいし、降温させなくてもよい。中でも、工程(B)において炭化水素混合物を膜分離する際に急激な温度降下によってゼオライト膜の破壊が起こるのを抑制する観点からは、ゼオライト膜が曝されている雰囲気は、工程(A)の実施中に降温させることが好ましく、工程(A)中にゼオライト膜が曝されている雰囲気の温度を350℃以上にした場合には工程(A)の実施中に降温させることが特に好ましい。
[露点が-20℃以下の雰囲気]
 ここで、工程(A)においてゼオライト膜が曝される雰囲気は、露点が-20℃以下であれば任意の雰囲気とすることができる。具体的には、ゼオライト膜を曝す雰囲気としては、特に限定されることなく、乾燥空気雰囲気、二酸化炭素雰囲気、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気などのゼオライト膜を透過可能な気体からなる雰囲気が挙げられる。中でも、ゼオライト膜を曝す雰囲気としては、窒素雰囲気、アルゴン雰囲気、ヘリウム雰囲気などの不活性ガス雰囲気が好ましい。ゼオライト膜が曝される雰囲気を不活性ガス雰囲気とすれば、例えば固体酸点を有するゼオライト膜を使用した場合など、反応性を有する成分が含まれているゼオライト膜を使用した場合であっても、雰囲気ガスとゼオライト膜とが反応して酸化物等が形成されるのを抑制し、透過流束Fおよび分離係数αが低下するのを防止することができるからである。
 また、ゼオライト膜が曝される雰囲気の露点は、-20℃以下であれば特に限定されるものではないが、炭化水素混合物を膜分離する際の分離効率を更に向上させる観点からは、-40℃以下であることが好ましく、-50℃以下であることがより好ましい。なお、ゼオライト膜が曝される雰囲気の露点は、通常、-80℃以上である。
 更に、工程(A)中にゼオライト膜が曝される雰囲気の温度は、当該雰囲気の露点よりも高い温度であれば特に限定されるものではないが、10℃以上580℃以下の範囲内とすることが好ましく、20℃以上580℃以下の範囲内とすることがより好ましい。また、工程(A)中にゼオライト膜が曝される雰囲気の最高温度は、100℃以上であることが好ましく、130℃以上であることがより好ましく、580℃以下であることが好ましく、500℃以下であることがより好ましい。ゼオライト膜が曝される雰囲気の最高温度が低すぎる場合には、炭化水素混合物を膜分離する際の分離効率を十分に向上させることができない虞があるからである。また、ゼオライト膜が曝される雰囲気の最高温度が高すぎる場合には、ゼオライト膜に欠損が生じ、炭化水素混合物を膜分離する際の分離係数αが低下する虞があるからである。なお、工程(A)中の雰囲気の最高温度は、通常、昇温操作を実施しない場合には工程(A)の開始時の雰囲気の温度と等しい。
 また、ゼオライト膜が曝される雰囲気の圧力(ゲージ圧)は、例えば1MPa以下とすることが好ましい。圧力が高すぎる場合にはゼオライト膜の破壊が起こる虞があるからである。
[曝露条件]
 ここで、工程(A)において露点が-20℃以下の雰囲気にゼオライト膜を曝す時間は、特に限定されることなく、5時間以上とすることが好ましく、10時間以上とすることがより好ましく、15時間以上とすることが更に好ましく、通常、500時間以下とする。露点が-20℃以下の雰囲気にゼオライト膜を曝す時間が上記下限値以上であれば、分離効率を更に向上させることができるからである。
 なお、工程(A)中に上記最高温度の雰囲気にゼオライト膜を曝す時間は、特に限定されるものではないが、例えば5時間以上とすることが好ましく、10時間以上とすることがより好ましく、15時間以上とすることが更に好ましく、50時間以下とすることが好ましく、30時間以下とすることがより好ましい。ゼオライト膜が曝される雰囲気を上記最高温度で保持する時間を上記下限値以上とすれば、炭化水素混合物を膜分離する際の透過流束Fおよび分離係数αを十分に高め、分離効率を十分に向上させることができるからである。また、ゼオライト膜が曝される雰囲気を上記最高温度で保持する時間を上記上限値以下とすれば、熱によりゼオライト膜が欠損して分離係数αが低下するのを抑制し、炭化水素混合物を膜分離する際の分離効率を十分に向上させることができるからである。
 また、露点が-20℃以下の雰囲気にゼオライト膜を曝す方法としては、ゼオライト膜の周囲の雰囲気を露点が-20℃以下の雰囲気にすることができれば、任意の方法を用いることができる。具体的には、工程(A)では、例えば、ゼオライト膜が収容された空間内に露点が-20℃以下の気体を連続的または断続的に流すことによりゼオライト膜を露点が-20℃以下の雰囲気に曝してもよいし、ゼオライト膜が収容された空間内を露点が-20℃以下の気体で置換した後、当該空間を気密に保持することによりゼオライト膜を露点が-20℃以下の雰囲気に曝してもよい。
 なお、ゼオライト膜を露点が-20℃以下の雰囲気に曝す場所は、例えば、ハウジング内にゼオライト膜を収容してなる膜分離モジュール内などの、工程(B)において炭化水素混合物の膜分離を行う場所であってもよいし、膜分離モジュール外でゼオライト膜を保管しておくための保管容器内であってもよい。中でも、工程(A)の終了後に速やかに工程(B)を実施する観点からは、ゼオライト膜は、膜分離モジュールのハウジング内などの工程(B)において炭化水素混合物の膜分離を行う場所で露点が-20℃以下の雰囲気に曝すことが好ましい。
[昇温操作]
 なお、工程(A)中にゼオライト膜が曝されている雰囲気を昇温させる操作を行う場合、昇温は工程(A)の最初から開始してもよいし、工程(A)の途中で開始してもよい。
 また、雰囲気の温度は、100℃以上まで昇温させることが好ましく、130℃以上まで昇温させることがより好ましく、580℃以下まで昇温させることが好ましく、500℃以下まで昇温させることがより好ましい。昇温後の雰囲気の温度(昇温後温度)を上記下限値以上とすれば、炭化水素混合物を膜分離する際の透過流束Fおよび分離係数αを十分に高め、分離効率を十分に向上させることができるからである。また、昇温後の雰囲気の温度(昇温後温度)を上記上限値以下とすれば、熱によりゼオライト膜が欠損して分離係数αが低下するのを抑制し、炭化水素混合物を膜分離する際の分離効率を十分に向上させることができるからである。
 なお、昇温後に雰囲気の温度を昇温後温度で保持する時間は、特に限定されるものではないが、例えば5時間以上とすることが好ましく、10時間以上とすることがより好ましく、15時間以上とすることが更に好ましく、50時間以下とすることが好ましく、30時間以下とすることがより好ましい。雰囲気を昇温後温度で保持する時間を上記下限値以上とすれば、炭化水素混合物を膜分離する際の透過流束Fおよび分離係数αを十分に高め、分離効率を十分に向上させることができるからである。また、雰囲気を昇温後温度で保持する時間を上記上限値以下とすれば、熱によりゼオライト膜が欠損して分離係数αが低下するのを抑制し、炭化水素混合物を膜分離する際の分離効率を十分に向上させることができるからである。
[降温操作]
 そして、工程(A)では、任意に、昇温させた雰囲気の温度を例えば30℃以下、好ましくは25℃以下まで降温させることができる。ゼオライト膜が曝される雰囲気の温度を上記上限値以下まで降温させれば、工程(B)において炭化水素混合物を膜分離する際に急激な温度降下によってゼオライト膜の破壊が起こるのを抑制することができるからである。
 なお、雰囲気の温度を降温させる場合、工程(A)を終了させるタイミングは、降温の終了と同時であってもよいし、降温が終了してから任意の時間が経過した後でもよい。
<工程(B)>
 工程(B)では、上記工程(A)において露点が-20℃以下の雰囲気に曝したゼオライト膜を用いて炭化水素混合物の膜分離を行う。
 ここで、工程(B)は、通常、工程(A)に続けて(即ち、工程(A)の直後に)実施する。換言すれば、本発明の膜分離方法では、工程(A)の後にゼオライト膜を露点が-20℃超の雰囲気に曝すことなく、工程(B)を実施することが好ましい。但し、本発明の膜分離方法では、所期の効果が得られる範囲内であれば、工程(A)と工程(B)との間に任意のその他の工程を含んでいてもよい。具体的には、例えば工程(A)を膜分離モジュール外で実施した場合には、所期の効果が得られる範囲内であれば、工程(A)と工程(B)との間にゼオライト膜を大気雰囲気下などの露点が-20℃超の雰囲気下でハウジングに組み付ける工程などを含んでいてもよい。
[膜分離]
 そして、工程(B)では、炭化水素混合物に含まれている炭化水素化合物の一部を分離する。具体的には、特に限定されることなく、工程(B)では、例えば、炭素数が等しい、直鎖状炭化水素と、分岐状炭化水素および/または環状炭化水素とを含む炭化水素混合物から例えば直鎖状炭化水素を効率的に分離除去し、これにより、炭化水素混合物中における分岐状炭化水素および/または環状炭化水素の含有割合を高めることができる。より具体的には、工程(B)では、炭化水素混合物をゼオライト膜に通すことで、一部の成分(例えば、直鎖状炭化水素)を炭化水素混合物から分離除去することができる。
 なお、ゼオライト膜を用いた膜分離は、任意の条件下で行うことができるが、加温条件下で行うことが好ましい。具体的には、膜分離は、好ましくは20℃以上300℃以下、より好ましくは25℃以上250℃以下、さらに好ましくは50℃以上200℃以下の条件下で行うことが好ましい。また、膜分離を行う際の圧力条件は、特に限定されないが、非透過側と透過側との差圧(非透過側の圧力-透過側の圧力)を10kPa以上600kPa以下とすることが好ましく、50kPa以上300kPa以下とすることがより好ましい。
 そして、工程(B)では、露点が-20℃以下の雰囲気に曝したゼオライト膜を用いているので、高い透過流束Fおよび高い分離係数αで炭化水素混合物を膜分離することができる。従って、高い分離効率で炭化水素混合物を膜分離することができる。
(膜分離装置)
 本発明の膜分離装置は、ハウジングおよびハウジング内に収容されて炭化水素混合物を膜分離するゼオライト膜を備える膜分離モジュールと、膜分離モジュールに炭化水素混合物を供給する原料供給機構と、露点が-20℃以下の気体を膜分離モジュールのゼオライト膜が収容された空間に供給する気体供給機構とを備えている。そして、本発明の膜分離装置では、気体供給機構を用いて露点が-20℃以下の気体をゼオライト膜に接触させた後、原料供給機構を用いて炭化水素混合物を膜分離モジュールに供給することにより、上述した本発明の膜分離方法を用いて炭化水素混合物を高い分離効率で膜分離することができる。
 なお、炭化水素混合物の分離効率を更に向上させる観点からは、本発明の膜分離装置は、露点が-20℃以下の気体を加熱する加熱器を更に備えることが好ましい。
<膜分離モジュール>
 ここで、膜分離モジュールとしては、図1に本発明の一例の膜分離装置100を示すように、例えば、ハウジング31と、ハウジング31内に収容されてハウジング内に非透過側領域33および透過側領域34を画成するゼオライト膜32とを備える膜分離モジュール30が挙げられる。
 そして、膜分離モジュール30のハウジング31としては、ゼオライト膜32を気密に固定可能な既知のハウジングを用いることができる。
 また、ゼオライト膜32としては、上述した本発明の膜分離方法と同様のゼオライト膜を用いることができる。
 なお、膜分離モジュール30の非透過側領域33の下流側には、非透過成分を流出させる非透過成分流出機構60が設けられている。そして、非透過成分流出機構60は、非透過成分ライン61と、背圧弁62と、非透過成分ライン弁63とを備えており、非透過成分ライン61は、図示しない非透過成分回収装置に接続されていてもよいし、炭化水素混合物の貯留槽10に接続されて循環流路を形成していてもよい。
 更に、非透過成分ライン61からは、気体供給機構から供給された気体を流出させる気体流出ライン71が分岐して延びており、気体流出ライン71には、気体流出ライン弁72が設けられている。そして、気体流出ライン71および気体流出ライン弁72は、気体供給機構40から供給されてゼオライト膜と接触した気体を流出させる気体流出機構70を構成している。
 また、膜分離モジュール30の透過側領域34の下流側には、透過成分を流出させる透過成分ラインよりなる透過成分流出機構50が設けられている。そして、透過成分ラインには、図示しない透過成分ライン弁が設けられている。また、透過成分ラインは、コールドトラップ等の図示しない透過成分回収装置に接続されている。
<原料供給機構>
 原料供給機構としては、特に限定されることなく、例えば図1に示すような、炭化水素混合物の貯留槽10から膜分離モジュール30へと炭化水素混合物を供給することが可能な構成を有する原料供給機構20を用いることができる。より具体的には、原料供給機構20としては、炭化水素混合物の貯留槽10と膜分離モジュール30の非透過側領域33とを接続する原料ライン21と、原料ライン21に設けられて貯留槽10内の炭化水素混合物を非透過側領域33へと送出する移送器22と、原料ライン21に設けられて炭化水素混合物を加熱する加熱器23と、原料ライン弁24とを備える機構を用いることができる。
 ここで、貯留槽10に貯留する炭化水素混合物としては、特に限定されることなく、本発明の膜分離方法と同様の炭化水素混合物などが挙げられる。
 また、移送器22としては、例えばポンプなどを用いることができる。
 更に、加熱器23としては、例えば熱交換器やヒーター等を用いることができる。
 そして、原料供給機構20によれば、原料ライン弁24を開いた状態で移送器22および加熱器23を運転することにより、移送器22を介して送出された炭化水素混合物を加熱器23で加熱して気化させ、膜分離モジュール30の非透過側領域33へと供給することができる。また、原料供給機構20によれば、原料ライン弁24を閉じることにより、膜分離モジュール30の非透過側領域33への炭化水素混合物の供給を停止することができる。
<気体供給機構>
 また、気体供給機構としては、特に限定されることなく、例えば図1に示すような、気体供給源から膜分離モジュール30へと露点が-20℃以下の気体(図示例では窒素ガス)を供給することが可能な構成を有する気体供給機構40を用いることができる。より具体的には、気体供給機構40としては、原料ライン弁24と膜分離モジュール30との間で原料ライン21に連結して露点が-20℃以下の気体の供給源(図示せず)と膜分離モジュール30の非透過側領域33とを接続する気体ライン41と、気体ライン弁42と、気体ライン41に設けられて露点が-20℃以下の気体を加熱する加熱器43とを備える機構を用いることができる。
 ここで、露点が-20℃以下の気体としては、特に限定されることなく、乾燥空気、二酸化炭素ガス、窒素ガス、アルゴンガス、ヘリウムガスなどのゼオライト膜を透過可能な気体が挙げられる。中でも、気体としては、窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガスが好ましい。ゼオライト膜に接触する気体を不活性ガスにすれば、例えば固体酸点を有するゼオライト膜などの反応性を有する成分が含まれているゼオライト膜を使用した場合であっても、気体とゼオライト膜とが反応して酸化物等が形成されるのを抑制し、透過流束Fおよび分離係数αが低下するのを防止することができるからである。そして、気体は、図示しない供給源からコンプレッサ等を用いて供給することができる。
 また、加熱器43としては、例えば熱交換器やヒーター等を用いることができる。
 そして、気体供給機構40によれば、気体ライン弁42を開いた状態で加熱器43を運転することにより、気体を加熱器43で加熱し、膜分離モジュール30の非透過側領域33へと供給することができる。また、気体供給機構40によれば、気体ライン弁42を閉じることにより、膜分離モジュール30の非透過側領域33への気体の供給を停止することができる。
 そして、上述した膜分離装置100によれば、原料ライン弁24、非透過成分ライン弁63および透過成分ライン弁(図示せず)を閉じ、気体ライン弁42および気体流出ライン弁72を開いた状態で気体供給機構40から膜分離モジュール30へと露点が-20℃以下の気体(図示例では窒素ガス)を流すことができる。具体的には、加熱器43で加熱された露点が-20℃以下の気体を膜分離モジュール30のハウジング31内へと流入させ、加熱された露点が-20℃以下の気体とゼオライト膜32とを接触させることができる。また、ゼオライト膜32と接触した後の気体は、気体流出ライン71を介して任意の処理装置へと排出することができる。
 また、上述した膜分離装置100によれば、上述したようにして露点が-20℃以下の気体とゼオライト膜32とを接触させた後、原料ライン弁24、非透過成分ライン弁63および透過成分ライン弁(図示せず)を開き、気体ライン弁42および気体流出ライン弁72を閉じて原料供給機構20から膜分離モジュール30へと炭化水素混合物を流し、炭化水素混合物を膜分離することができる。具体的には、移送器22および加熱器23を介して膜分離モジュール30の非透過側領域33へと気化させた炭化水素混合物を送り、ゼオライト膜32を透過した透過成分を透過成分流出機構50を介して回収すると共に、ゼオライト膜32を透過しなかった非透過成分を非透過成分流出機構60を介して回収または循環させることができる。
 従って、膜分離装置100によれば、上述した本発明の膜分離方法を用いて炭化水素混合物を高い分離効率で膜分離することができる。
 以上、一例を用いて本発明の膜分離装置について説明したが、本発明の膜分離装置は図1に示す構成に限定されるものではない。具体的には、露点が-20℃以下の気体を加熱する加熱器43は、気体供給機構40に設けることなく、膜分離モジュール30のハウジング31の外周側またはハウジング31内に設けてもよい。但し、予め加熱した気体をゼオライト膜32に接触させてゼオライト膜を均一に加熱し、炭化水素混合物の膜分離を行う際の分離効率を更に向上させる観点からは、加熱器43は気体供給機構40に設けることが好ましい。また、気体ライン41は、原料ライン21に接続させることなく非透過側領域33に直接接続させてもよいし、透過側領域34に接続させてもよいし、非透過側領域33および透過側領域34の双方に接続させてもよい。更に、気体流出ライン71および気体流出ライン弁72よりなる気体流出機構70は、非透過成分流出機構60側に設けることなく透過成分流出機構50側に設けてもよいし、透過成分流出機構50側および非透過成分流出機構60側の双方に設けてもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」等は、特に断らない限り、質量基準である。
 実施例および比較例において、炭化水素混合物の分離効率は、下記の方法で測定および評価した。
<分離効率>
〔実施例1~3および比較例1〕
 膜分離試験の結果から、下記式(I)を用いて透過流束Fを算出した。また、下記式(II)を用いて分離係数αを算出した。そして、F×αを算出し、分離効率を評価した。F、αおよびF×αの値が大きいほど、分離効率に優れていることを示す。
 F=W/(A×t)  ・・・(I)
 α=(Y/Yiso)/(X/Xiso) ・・・(II)
 なお、式(I)中、Wは、ゼオライト膜を透過した成分の質量[kg]であり、Aは、ゼオライト膜の有効面積[m]であり、tは、処理時間[時間]である。また、式(II)中、Xは、原料中のn-ペンタンの含有割合[モル%]であり、Xisoは、原料中のイソペンタンの含有割合[モル%]であり、Yは、透過側サンプル中のn-ペンタンの含有割合[モル%]であり、Yisoは、透過側サンプル中のイソペンタンの含有割合[モル%]である。
〔実施例4~6および比較例2〕
 膜分離試験の結果から、下記式(I)を用いて透過流束Fを算出した。また、下記式(II’)を用いて分離係数αを算出した。そして、F×αを算出し、分離効率を評価した。F、αおよびF×αの値が大きいほど、分離効率に優れていることを示す。
 F=W/(A×t)  ・・・(I)
 α=(Y/Yiso+cyclo)/(X/Xiso+cyclo) ・・・(II’)
 なお、式(I)中、Wは、ゼオライト膜を透過した成分の質量[kg]であり、Aは、ゼオライト膜の有効面積[m]であり、tは、処理時間[時間]である。また、式(II’)中、Xは、原料中の炭素数が5の直鎖状炭化水素の含有割合[モル%]であり、Xiso+cycloは、原料中の炭素数が5の分岐状炭化水素と炭素数が5の環状炭化水素との合計の含有割合[モル%]であり、Yは、透過側サンプル中の炭素数が5の直鎖状炭化水素の含有割合[モル%]であり、Yiso+cycloは、透過側サンプル中の炭素数が5の分岐状炭化水素と炭素数が5の環状炭化水素との合計の含有割合[モル%]である。
(実施例1)
<膜分離試験>
 円筒状のムライト製多孔性支持体の外表面上にMFI型ゼオライトよりなる多孔性分離層を形成し、その後、露点2℃の大気雰囲気下において温度500℃で20時間焼成することにより構造規定剤を除去して得たMFI型ゼオライト膜を使用し、図1に示すような膜分離装置100を用いて、膜分離試験を行った。なお、膜分離装置100の透過成分ラインは、サンプリング用のコールドトラップに接続し、非透過成分ライン61は冷却器としての熱交換器を介して貯留槽10に接続した。
[膜分離]
 図1に示す膜分離装置100を用いた膜分離試験は、以下のようにして実施した。
 具体的には、まず、n-ペンタンとイソペンタンとの混合液(n-ペンタン:50モル%、イソペンタン:50モル%の混合液)からなる炭素数5の炭化水素混合物を貯留槽10に充填し、脱気操作を3回行った。
 次に、原料ライン弁24、非透過成分ライン弁63および透過成分ライン弁(図示せず)を閉じ、気体ライン弁42および気体流出ライン弁72を開いた状態で気体供給機構40から膜分離モジュール30へと窒素ガス(露点:-50℃)を流し、窒素ガスとゼオライト膜32とを接触させた。具体的には、加熱器43で加熱された窒素ガスを膜分離モジュール30のハウジング31内へと流入させ、ハウジング31内の温度が500℃(最高温度)まで昇温した後、当該最高温度500℃で窒素ガスとゼオライト膜32とを15時間接触させた。その後、ハウジング31内の温度を20℃まで降温させ、温度20℃で窒素ガスとゼオライト膜32とを19時間接触させた。
 その後、原料ライン弁24および非透過成分ライン弁63を開き、気体ライン弁42および気体流出ライン弁72を閉じた。そして、炭化水素混合物を、加熱器23で70℃に加温して、気相にて膜分離モジュール30に供給し、次いで、冷却器により凝縮し、貯留槽10に戻す原料循環処理を開始した。そして、原料循環処理開始後、系内の温度が定常状態に達するまで運転を行い、系内の温度が定常状態に達した後、背圧弁62により非透過側を150kPa(ゲージ圧)に加圧するとともに、透過側(コールドトラップ)を-100kPa(ゲージ圧)に減圧した。そして、系内の温度、圧力が安定したことを確認した後、透過成分ライン弁(図示せず)を開き、膜分離試験を開始した。即ち、温度70℃、非透過側と透過側の差圧250kPaの条件で膜分離試験を行った。
 そして、膜分離試験を開始した後、5分経過した時点において、透過側のサンプルの抽出を開始した。そして、透過側のサンプル(凝縮液)について、重量を秤量するとともに、ガスクロマトグラフにて、n-ペンタンとイソペンタンとのモル比率を測定した。そして、これらの測定結果を用いて分離効率を評価した。結果を表1に示す。
(実施例2)
 最高温度を150℃に変更した以外は実施例1と同様にして膜分離試験を行った。結果を表1に示す。
(実施例3)
 最高温度を200℃に変更した以外は実施例1と同様にして膜分離試験を行った。結果を表1に示す。
(比較例1)
 膜分離試験の際に窒素ガスを流すことなく炭化水素混合物の膜分離を行った以外は実施例1と同様にして膜分離試験を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~3では比較例1よりも分離効率が向上していることが分かる。
(実施例4)
<膜分離試験>
 円筒状のムライト製多孔性支持体の外表面上にMFI型ゼオライトよりなる多孔性分離層を形成し、その後、露点2℃の大気雰囲気下において温度500℃で20時間焼成することにより構造規定剤を除去して得たMFI型ゼオライト膜を使用し、図1に示すような膜分離装置100を用いて、膜分離試験を行った。なお、膜分離装置100の透過成分ラインは、サンプリング用のコールドトラップに接続し、非透過成分ライン61は冷却器としての熱交換器を介して貯留槽10に接続した。
[膜分離]
 図1に示す膜分離装置100を用いた膜分離試験は、以下のようにして実施した。
 具体的には、まず、ナフサを熱分解してエチレンを生産する際に副生するC5留分からイソプレンの一部を回収した後に残る留分(炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素と、炭素数が5の環状炭化水素とを主成分として含む混合物)からなる炭素数5の炭化水素混合物を貯留槽10に充填し、脱気操作を3回行った。
 次に、原料ライン弁24、非透過成分ライン弁63および透過成分ライン弁(図示せず)を閉じ、気体ライン弁42および気体流出ライン弁72を開いた状態で気体供給機構40から膜分離モジュール30へと窒素ガス(露点:-50℃)を流し、窒素ガスとゼオライト膜32とを接触させた。具体的には、加熱器43で加熱された窒素ガスを膜分離モジュール30のハウジング31内へと流入させ、ハウジング31内の温度が500℃(最高温度)まで昇温した後、当該最高温度500℃で窒素ガスとゼオライト膜32とを15時間接触させた。その後、ハウジング31内の温度を20℃まで降温させ、温度20℃で窒素ガスとゼオライト膜32とを19時間接触させた。
 その後、原料ライン弁24および非透過成分ライン弁63を開き、気体ライン弁42および気体流出ライン弁72を閉じた。そして、炭化水素混合物を、加熱器23で70℃に加温して、気相にて膜分離モジュール30に供給し、次いで、冷却器により凝縮し、貯留槽10に戻す原料循環処理を開始した。そして、原料循環処理開始後、系内の温度が定常状態に達するまで運転を行い、系内の温度が定常状態に達した後、背圧弁62により非透過側を150kPa(ゲージ圧)に加圧するとともに、透過側(コールドトラップ)を-100kPa(ゲージ圧)に減圧した。そして、系内の温度、圧力が安定したことを確認した後、透過成分ライン弁(図示せず)を開き、膜分離試験を開始した。即ち、温度70℃、非透過側と透過側の差圧250kPaの条件で膜分離試験を行った。
 そして、膜分離試験を開始した後、55分経過した時点において、透過側のサンプルの抽出を開始した。そして、透過側のサンプル(凝縮液)について、重量を秤量するとともに、ガスクロマトグラフにて、炭素数が5の直鎖状炭化水素、炭素数が5の分岐状炭化水素および炭素数が5の環状炭化水素のモル比率を測定した。そして、これらの測定結果を用いて分離効率を評価した。結果を表2に示す。
(実施例5)
 最高温度を150℃に変更した以外は実施例4と同様にして膜分離試験を行った。結果を表2に示す。
(実施例6)
 最高温度を200℃に変更した以外は実施例4と同様にして膜分離試験を行った。結果を表2に示す。
(比較例2)
 膜分離試験の際に窒素ガスを流すことなく炭化水素混合物の膜分離を行った以外は実施例4と同様にして膜分離試験を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、C5留分からイソプレンの一部を回収した後に残る留分を用いた場合であっても、実施例4~6では比較例2よりも分離効率が向上していることが分かる。
 本発明によれば、高い分離効率で炭化水素混合物を膜分離することが可能な膜分離方法および膜分離装置を提供することができる。
10 貯留槽
20 原料供給機構
21 原料ライン
22 移送器
23 加熱器
24 原料ライン弁
30 膜分離モジュール
31 ハウジング
32 ゼオライト膜
33 非透過側領域
34 透過側領域
40 気体供給機構
41 気体ライン
42 気体ライン弁
43 加熱器
50 透過成分流出機構
60 非透過成分流出機構
61 非透過成分ライン
62 背圧弁
63 非透過成分ライン弁
70 気体流出機構
71 気体流出ライン
72 気体流出ライン弁
100 膜分離装置

Claims (9)

  1.  露点が-20℃以下の雰囲気にゼオライト膜を曝す工程(A)と、
     前記工程(A)の後に前記ゼオライト膜を用いて炭化水素混合物の膜分離を行う工程(B)と、
    を含む、膜分離方法。
  2.  前記工程(A)中に前記雰囲気を昇温させる、請求項1に記載の膜分離方法。
  3.  前記工程(A)中の前記雰囲気の最高温度が100℃以上580℃以下である、請求項1または2に記載の膜分離方法。
  4.  前記雰囲気が不活性ガス雰囲気である、請求項1~3の何れかに記載の膜分離方法。
  5.  前記工程(A)において前記ゼオライト膜を前記雰囲気に5時間以上曝す、請求項1~4の何れかに記載の膜分離方法。
  6.  ハウジングと、前記ハウジング内に収容されて炭化水素混合物を膜分離するゼオライト膜とを備える膜分離モジュールと、
     前記膜分離モジュールに前記炭化水素混合物を供給する原料供給機構と、
     露点が-20℃以下の気体を前記膜分離モジュールの前記ゼオライト膜が収容された空間に供給する気体供給機構と、
    を備える、膜分離装置。
  7.  前記気体を加熱する加熱器を更に備える、請求項6に記載の膜分離装置。
  8.  前記気体供給機構が前記加熱器を有している、請求項7に記載の膜分離装置。
  9.  前記気体が不活性ガスである、請求項6~8の何れかに記載の膜分離装置。
PCT/JP2017/005179 2016-03-31 2017-02-13 膜分離方法および膜分離装置 WO2017169195A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187026250A KR20180123497A (ko) 2016-03-31 2017-02-13 막 분리 방법 및 막 분리 장치
EP17773743.4A EP3437726A4 (en) 2016-03-31 2017-02-13 MEMBRANE SEPARATION METHOD AND MEMBRANE SEPARATION DEVICE
JP2018508531A JPWO2017169195A1 (ja) 2016-03-31 2017-02-13 膜分離方法および膜分離装置
CN201780016683.1A CN109070016A (zh) 2016-03-31 2017-02-13 膜分离方法及膜分离装置
US16/082,024 US20190247783A1 (en) 2016-03-31 2017-02-13 Membrane separation method and membrane separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073134 2016-03-31
JP2016-073134 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017169195A1 true WO2017169195A1 (ja) 2017-10-05

Family

ID=59963898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005179 WO2017169195A1 (ja) 2016-03-31 2017-02-13 膜分離方法および膜分離装置

Country Status (6)

Country Link
US (1) US20190247783A1 (ja)
EP (1) EP3437726A4 (ja)
JP (1) JPWO2017169195A1 (ja)
KR (1) KR20180123497A (ja)
CN (1) CN109070016A (ja)
WO (1) WO2017169195A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158909A (ja) * 2017-03-23 2018-10-11 Jxtgエネルギー株式会社 炭化水素化合物の分離方法
WO2020050137A1 (ja) * 2018-09-05 2020-03-12 日本ゼオン株式会社 ピペリレンの製造方法
WO2022138910A1 (ja) * 2020-12-25 2022-06-30 Eneos株式会社 炭化水素製造方法
EP3950101A4 (en) * 2019-03-26 2022-12-28 Zeon Corporation METHOD FOR SEPARATION AND METHOD FOR PRODUCTION OF BRANCHED DIOLEFIN

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282640A (ja) * 2001-03-28 2002-10-02 Kyocera Corp ガス分離モジュールの保守方法
WO2011109607A1 (en) * 2010-03-04 2011-09-09 Shell Oil Company A method of separating gas mixtures
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法
WO2016121377A1 (ja) * 2015-01-27 2016-08-04 日本ゼオン株式会社 分離膜およびその製造方法
JP2016159211A (ja) * 2015-02-27 2016-09-05 三菱化学株式会社 分離膜モジュール及びその運転方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041616B1 (en) * 2002-04-12 2006-05-09 Sandia Corporation Enhanced selectivity of zeolites by controlled carbon deposition
EP2409758A4 (en) * 2009-03-16 2013-07-31 Ngk Insulators Ltd STRUCTURE HAVING ZEOLITIC SEPARATION MEMBRANE, PRODUCTION METHOD THEREFOR, METHOD FOR SEPARATING MIXED FLUIDS, AND DEVICE FOR SEPARATING MIXED FLUIDS
JP5835937B2 (ja) * 2011-05-09 2015-12-24 日立造船株式会社 Co2のゼオライト膜分離回収システム
EP2915577B1 (en) * 2012-11-01 2022-10-05 NGK Insulators, Ltd. Zeolite membrane regeneration method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282640A (ja) * 2001-03-28 2002-10-02 Kyocera Corp ガス分離モジュールの保守方法
WO2011109607A1 (en) * 2010-03-04 2011-09-09 Shell Oil Company A method of separating gas mixtures
JP2015160186A (ja) * 2014-02-28 2015-09-07 日本ゼオン株式会社 膜分離方法
WO2016121377A1 (ja) * 2015-01-27 2016-08-04 日本ゼオン株式会社 分離膜およびその製造方法
JP2016159211A (ja) * 2015-02-27 2016-09-05 三菱化学株式会社 分離膜モジュール及びその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CORONAS J. ET AL.: "Separations of C4 and C6 Isomers in ZSM-5 Tubular Membranes", IND. ENG. CHEM. RES., vol. 37, 5 January 1998 (1998-01-05), pages 166 - 176, XP002400810 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158909A (ja) * 2017-03-23 2018-10-11 Jxtgエネルギー株式会社 炭化水素化合物の分離方法
WO2020050137A1 (ja) * 2018-09-05 2020-03-12 日本ゼオン株式会社 ピペリレンの製造方法
CN112368253A (zh) * 2018-09-05 2021-02-12 日本瑞翁株式会社 间戊二烯的制造方法
JPWO2020050137A1 (ja) * 2018-09-05 2021-08-26 日本ゼオン株式会社 ピペリレンの製造方法
JP7367684B2 (ja) 2018-09-05 2023-10-24 日本ゼオン株式会社 ピペリレンの製造方法
US11905242B2 (en) 2018-09-05 2024-02-20 Zeon Corporation Method of producing piperylene
EP3950101A4 (en) * 2019-03-26 2022-12-28 Zeon Corporation METHOD FOR SEPARATION AND METHOD FOR PRODUCTION OF BRANCHED DIOLEFIN
JP7459867B2 (ja) 2019-03-26 2024-04-02 日本ゼオン株式会社 分岐鎖状ジオレフィンの分離方法及び製造方法
WO2022138910A1 (ja) * 2020-12-25 2022-06-30 Eneos株式会社 炭化水素製造方法

Also Published As

Publication number Publication date
CN109070016A (zh) 2018-12-21
EP3437726A4 (en) 2019-11-20
KR20180123497A (ko) 2018-11-16
JPWO2017169195A1 (ja) 2019-02-07
US20190247783A1 (en) 2019-08-15
EP3437726A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
WO2017169195A1 (ja) 膜分離方法および膜分離装置
Kusakabe et al. Formation of a Y-type zeolite membrane on a porous α-alumina tube for gas separation
Shen et al. Synthesis of silicalite-1 membrane with two silicon source by secondary growth method and its pervaporation performance
Chen et al. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties
WO2018180210A1 (ja) 膜再生方法
JP5124158B2 (ja) メタン濃縮装置およびメタン濃縮方法
JP6252249B2 (ja) 膜分離方法
EP3251738A1 (en) Separation membrane and method for producing same
JP7111094B2 (ja) 分離膜及び分離膜の製造方法
JPWO2007080685A1 (ja) 混合液の分離方法
JP2008188564A (ja) 有機混合溶液の分離膜及びその製造方法
ES2956818T3 (es) Procedimiento de producción de piperileno
US10550053B2 (en) Method for recovering olefin
JP2002263457A (ja) ゼオライト膜の処理方法および分離方法
JP2020182937A (ja) ガスの製造方法、および、二酸化炭素の分離システム
Chien et al. Reactive atmospheric pressure plasma for highly efficient removal of structure-directing agents from zeolite thin films
US20230356153A1 (en) Membrane heat treatment method
WO2022202454A1 (ja) 分離膜及びその製造方法
WO2023085371A1 (ja) ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法
JP7464037B2 (ja) 分離膜製造方法
WO2023085372A1 (ja) ゼオライト膜複合体および膜反応装置
JP2022169625A (ja) 硫化水素分離用ゼオライト膜の再生方法
CN113474077A (zh) 支链二烯烃的分离方法和制造方法
JP2008229408A (ja) 液体分離方法及び液体分離システム
JP2018008189A (ja) ガス分離装置、及びガス分離方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508531

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187026250

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773743

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773743

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773743

Country of ref document: EP

Kind code of ref document: A1