WO2022202454A1 - 分離膜及びその製造方法 - Google Patents

分離膜及びその製造方法 Download PDF

Info

Publication number
WO2022202454A1
WO2022202454A1 PCT/JP2022/011421 JP2022011421W WO2022202454A1 WO 2022202454 A1 WO2022202454 A1 WO 2022202454A1 JP 2022011421 W JP2022011421 W JP 2022011421W WO 2022202454 A1 WO2022202454 A1 WO 2022202454A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
porous
membrane
separation membrane
zeolite
Prior art date
Application number
PCT/JP2022/011421
Other languages
English (en)
French (fr)
Inventor
貴博 鈴木
英了 三木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023509033A priority Critical patent/JPWO2022202454A1/ja
Publication of WO2022202454A1 publication Critical patent/WO2022202454A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11

Definitions

  • the present invention relates to a separation membrane and a method for producing the same, and more particularly to a separation membrane that can be suitably used for separating a part of hydrocarbons from a hydrocarbon mixture, and a method for producing the separation membrane.
  • the membrane separation method has been used as a method for separating a specific component from a mixture of other components with low energy.
  • the separation membrane for example, a zeolite membrane obtained by forming a zeolite film on a support is widely used.
  • Patent Document 1 a porous support with seed crystals is obtained by supporting seed crystals on the outer surface of a tubular support made of porous alumina by dip coating, and tetraethyl orthosilicate and tetrapropylammonium orthosilicate are obtained. Hydrothermal synthesis is performed at 100° C. for 7 days by immersing the seed crystal-attached porous support in a gel prepared by mixing hydroxide, ethanol, and pure water, and then calcination is performed to obtain a gel on the support.
  • a technique has been proposed in which a zeolite membrane is formed in a liquid, and the obtained separation membrane is used for membrane separation of a hydrocarbon mixture.
  • Patent Document 2 proposes a separation membrane in which a zeolite membrane is formed on Shirasu porous glass as a support.
  • the present invention provides a separation membrane that has excellent mechanical strength and can maintain excellent separation performance over a long period of time when used for membrane separation of a hydrocarbon mixture, and an efficient production of the separation membrane. The purpose is to provide a method to
  • the inventors have conducted extensive studies to achieve the above objectives.
  • the present inventors have found that a separation membrane having excellent mechanical strength can be produced by hydrothermally synthesizing zeolite under predetermined conditions while using a porous body containing silicon carbide as a main component as a support. Furthermore, the inventors have newly found that the separation membrane obtained thereby can maintain excellent separation performance over a long period of time, and have completed the present invention.
  • a separation membrane of the present invention is a separation membrane used for membrane separation of a hydrocarbon mixture and has a plurality of pores.
  • a separation comprising a porous support made of a porous body containing silicon carbide as a main component and a porous separation layer made of zeolite formed on the inner surface of the pores of the porous support
  • the membrane has excellent mechanical strength and can maintain excellent separation performance over a long period of time when used for membrane separation of hydrocarbon mixtures.
  • containing silicon carbide as a main component means "containing 90% by mass or more of silicon carbide”.
  • the "inner surface of pores” means the walls of pores of a porous support.
  • zeolite as used herein means a Si-containing compound having a pore structure.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and a method for producing a separation membrane according to the present invention is a method for producing a separation membrane used for membrane separation of a hydrocarbon mixture, Separation in which a porous support having a plurality of pores to which zeolite seed crystals are attached is immersed in an aqueous sol containing a silica source and a structure-directing agent, and zeolite is synthesized by hydrothermal synthesis to form a porous separation layer.
  • the porous support is made of a porous body containing silicon carbide as a main component, and the hydrothermal synthesis is performed at a hydrothermal synthesis temperature of 135° C.
  • the porous separation layer is formed on the inner surfaces of the pores.
  • a porous body containing silicon carbide as a main component is used as a porous support, and zeolite is synthesized at a hydrothermal synthesis temperature of 135° C. or less for a hydrothermal synthesis time of 30 hours or less to obtain fine particles of the porous support.
  • the hydrothermal synthesis temperature is preferably 115°C or lower.
  • the hydrothermal synthesis time is preferably 24 hours or less.
  • a separation membrane having excellent mechanical strength and capable of maintaining excellent separation performance over a long period of time when used for membrane separation of a hydrocarbon mixture, and efficient production of the separation membrane. can provide a way to
  • FIG. 1 is a diagram showing a schematic configuration of a test apparatus used in Examples.
  • the separation membrane of the present invention is used for membrane separation of hydrocarbon mixtures.
  • the separation membrane of the present invention can be produced, for example, by using the separation membrane production method of the present invention.
  • the separation membrane of the present invention used for membrane separation of hydrocarbon mixtures comprises a porous support having a plurality of pores and a porous separation layer formed on the inner surfaces of the pores.
  • the porous support is made of a porous material containing silicon carbide as a main component, and the porous separation layer is made of zeolite.
  • the porous separation layer may be formed over the entire inner surface of the plurality of pores of the porous support. It may be formed on the inner surface of the pores of the part.
  • the porous support is made of a porous material containing silicon carbide as a main component, and the porous separation layer made of zeolite is formed on the inner surface of the pores of the porous support. Therefore, it has excellent mechanical strength and can maintain excellent separation performance over a long period of time when used for membrane separation of hydrocarbon mixtures. Therefore, if the separation membrane of the present invention is used in a separation device, the separation device can exhibit excellent separation performance even if the number of separation membranes is reduced, so that the cost of the separation device can be reduced.
  • the hydrocarbon mixture to be membrane-separated using the separation membrane of the present invention is a mixture containing linear hydrocarbons having the same number of carbon atoms and branched hydrocarbons and/or cyclic hydrocarbons.
  • the hydrocarbon mixture is preferably a mixture containing linear hydrocarbons having 4 carbon atoms and branched hydrocarbons having 4 carbon atoms and/or cyclic hydrocarbons having 4 carbon atoms as main components, or A mixture containing, as main components, a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon having 5 carbon atoms and/or a cyclic hydrocarbon having 5 carbon atoms, more preferably 5 carbon atoms It is a mixture containing linear hydrocarbons and branched hydrocarbons having 5 carbon atoms and/or cyclic hydrocarbons having 5 carbon atoms as main components.
  • straight-chain hydrocarbons having 4 or 5 carbon atoms and branched hydrocarbons and/or cyclic hydrocarbons having the same number of carbon atoms as the straight-chain hydrocarbons are included as main components.
  • Hydrocarbon mixtures can be efficiently separated.
  • hydrocarbons containing linear hydrocarbons having 5 carbon atoms and branched hydrocarbons having 5 carbon atoms and/or cyclic hydrocarbons having 5 carbon atoms as main components Hydrogen mixtures can be efficiently separated.
  • linear hydrocarbons and branched hydrocarbons and/or cyclic hydrocarbons as main components
  • linear hydrocarbons and branched hydrocarbons and/or cyclic hydrocarbons It refers to containing 50 mol % or more of hydrogen in total.
  • the mixture containing a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon and/or cyclic hydrocarbon having 4 carbon atoms as main components includes n-butane, 1-butene, and 2-butene. , Butadiene and other linear hydrocarbons having 4 carbon atoms, branched hydrocarbons having 4 carbon atoms such as isobutane and isobutene, and/or cyclic hydrocarbons having 4 carbon atoms such as cyclobutane and cyclobutene. are mentioned.
  • a mixture containing a linear hydrocarbon having 4 carbon atoms and a branched hydrocarbon having 4 carbon atoms and/or a cyclic hydrocarbon having 4 carbon atoms as main components for example, naphtha C4 fraction by-produced when producing ethylene by pyrolysis, and the fraction remaining after recovering at least part of butadiene from the C4 fraction.
  • n-pentane, 1-pentene, 2-pentene , 1,3-pentadiene also referred to as “piperylene”
  • a linear hydrocarbon having 5 carbon atoms isopentane, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl- Branched hydrocarbons with 5 carbon atoms such as 1-butene and isoprene and/or cyclic hydrocarbons with 5 carbon atoms such as cyclopentane, cyclopentene, 1-methylcyclobutane, 1-methylcyclobutene and cyclopentadiene mixtures.
  • a mixture containing a linear hydrocarbon having 5 carbon atoms and a branched hydrocarbon having 5 carbon atoms and/or a cyclic hydrocarbon having 5 carbon atoms as main components for example, naphtha and a fraction remaining after recovering at least a part of isoprene from the C5 fraction.
  • the porous support has a plurality of pores and is composed of a porous body containing silicon carbide (SiC) as a main component.
  • the porous support used in the separation membrane of the present invention may optionally contain components other than silicon carbide (hereinafter referred to as "other components").
  • other components components other than silicon carbide.
  • the content of silicon carbide in the porous body is usually 85% by mass or more, preferably 87% by mass or more, and more preferably 90% by mass or more.
  • porous body other components contained in the porous body are not particularly limited, and examples thereof include binder components such as mullite (Al 6 O 13 Si 2 ).
  • the shape of the porous support is not particularly limited, and may be any shape such as a flat membrane, a flat plate, a tube, or a honeycomb.
  • the average pore diameter of the porous support is preferably 1.0 ⁇ m or more, more preferably 1.2 ⁇ m or more, still more preferably 1.5 ⁇ m or more, and 2.2 ⁇ m or less. is preferably 2.0 ⁇ m or less, and even more preferably 1.8 ⁇ m or less.
  • the "average pore size of the porous support" can be obtained by the method described in the examples of this specification.
  • the porous separation layer is a layer provided to separate linear hydrocarbons having the same number of carbon atoms from branched hydrocarbons and/or cyclic hydrocarbons.
  • the porous separation layer must be formed on the inner surface of the pores of the porous support and must be made of zeolite.
  • the porous separation layer made of zeolite can be obtained, for example, by immersing a porous support to which zeolite seed crystals are attached in an aqueous sol containing a silica source and a structure-directing agent, and obtaining a predetermined hydrothermal synthesis temperature and hydrothermal It can be formed by hydrothermal synthesis in synthesis time.
  • the "zeolite” preferably has an MFI-type pore structure and a skeleton structure containing Si.
  • the term "zeolite” includes silicalite, which consists substantially only of Si and O and has an MFI type structure, in addition to zeolite in the narrow sense generally defined as an aluminosilicate.
  • the zeolite forming the porous separation layer is preferably silicalite consisting essentially of Si and O. If the porous separation layer is made of silicalite, the separation membrane can maintain superior separation performance over a long period of time.
  • the layer thickness of the porous separation layer can be controlled, for example, by adjusting the average particle size of the zeolite seed crystals used for forming the porous separation layer, zeolite synthesis conditions (e.g., temperature and time), and the like. can be done.
  • Separatation membrane manufacturing method The separation membrane of the present invention having the porous separation layer having the properties described above can be efficiently produced, for example, by using the separation membrane production method of the present invention.
  • the method for producing a separation membrane of the present invention is a method for producing a separation membrane used for membrane separation of a hydrocarbon mixture, comprising a porous support having a plurality of pores to which zeolite seed crystals are attached, It includes a step of forming a porous separation layer by immersing it in an aqueous sol containing a silica source and a structure directing agent and synthesizing zeolite by hydrothermal synthesis (separation layer forming step).
  • the porous support is composed of a porous body containing silicon carbide as a main component, and the hydrothermal synthesis is performed at a hydrothermal synthesis temperature of 135° C.
  • the separation membrane manufacturing method of the present invention optionally includes a step of preparing zeolite seed crystals (seed crystal preparation step) and a step of adhering the zeolite seed crystals prepared in the seed crystal preparation step to a porous support (seed crystal deposition step).
  • a separation membrane having excellent mechanical strength and capable of maintaining excellent separation performance over a long period of time when used for membrane separation of a hydrocarbon mixture can be obtained.
  • the porous support dissolves when synthesizing zeolite by hydrothermal synthesis. As a result, it is possible to suppress the generation of acid sites in the zeolite. Therefore, by using the separation membrane obtained by the production method of the present invention, it is possible to suppress side reactions caused by the presence of acid sites in zeolite during membrane separation of a hydrocarbon mixture.
  • a separation membrane is manufactured in a shorter time than the conventional separation membrane manufacturing method by using a porous body containing silicon carbide as a main component as a porous support.
  • the heat history applied to the porous support can be reduced.
  • the hydrothermal synthesis temperature is set to 135° C. or less
  • the hydrothermal synthesis time is set to 30 hours or less to obtain a fine porous support.
  • the reason why the porous separation layer can be formed on the inner surface of the pores is not clear, but is presumed to be as follows.
  • the zeolite seed crystals that have entered the pores of the porous support grow and form a film by the hydrothermal synthesis reaction while moving toward the outer surface of the porous support to form a zeolite membrane.
  • the hydrothermal synthesis temperature is set to 135° C.
  • the hydrothermal synthesis time is set to 30 hours or less.
  • the zeolite seed crystals that have entered the pores of the body remain in the form of twin crystals on the inner surface of the pores of the porous support, forming a porous separation layer on the inner surface of the pores of the porous support. It is assumed that According to the separation membrane production method of the present invention, the porous separation layer is usually not observed on the outer surface of the porous support by SEM observation. In addition, according to the separation membrane manufacturing method of the present invention, the reason why a separation membrane having excellent separation efficiency can be obtained even when the hydrothermal synthesis temperature is set to 135° C. or less and the hydrothermal synthesis time is set to 30 hours or less is not clear. , is assumed to be as follows.
  • the average particle size of the zeolite seed crystals is preferably 50 nm or more and 700 nm or less. is more preferably 300 nm or more, and more preferably 500 nm or less.
  • the "average particle size of zeolite seed crystals" can be determined by the method described in the examples of the present specification.
  • the ratio of the average particle size of the zeolite seed crystals to the average pore size of the porous support is preferably 130 or more, more preferably 150 or more, even more preferably 180 or more, and 330 or less , more preferably 310 or less, and even more preferably 290 or less.
  • the porous support to which zeolite seed crystals are attached is obtained by synthesizing zeolite as seed crystals on a porous support to which zeolite seed crystals are not attached.
  • a porous support to which zeolite seed crystals are not attached may be used, but from the viewpoint of forming a porous separation layer with good properties and obtaining a separation membrane with excellent separation efficiency, it is preferable to attach zeolite seed crystals prepared in advance to a porous support. is preferably used. That is, in the method for producing a separation membrane of the present invention, it is preferable to carry out a seed crystal preparation step and a seed crystal attachment step.
  • zeolite seed crystals are prepared using a known method for producing zeolite seed crystals, without any particular limitation.
  • the zeolite seed crystals preferably contain MFI-type zeolite.
  • an aqueous sol for seed crystals obtained by mixing a silica source, a structure-directing agent, and water is heated, and crude crystals of zeolite are prepared by hydrothermal synthesis.
  • Zeolite seed crystals are prepared by drying and pulverizing the crude crystals obtained in .
  • the silica source used for obtaining the aqueous sol for seed crystals is not particularly limited. sodium, silica sol, silica gel, kaolinite, diatomaceous earth, aluminum silicate, white carbon, tetrabutoxysilane, tetrabutylorthosilicate, tetraethoxysilane and the like. Among these, tetraethoxysilane and colloidal silica are preferred, and tetraethoxysilane is more preferred.
  • the structure-directing agent used for obtaining the aqueous sol for seed crystals is not particularly limited. Alcohol etc. are mentioned. Among these, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrapropylammonium bromide are preferred.
  • the compounding ratio of the structure-directing agent is not particularly limited, but the molar ratio of "silica source: structure-directing agent" is preferably in the range of 1:0.01 to 1:2.0, more preferably 1:0. .1 to 1:1.0, more preferably 1:0.15 to 1:0.8.
  • the mixing ratio of water in the aqueous sol for seed crystals is not particularly limited, but the molar ratio of "silica source:water” is preferably in the range of 1:3 to 1:100, and more preferably. can range from 1:5 to 1:50.
  • the heating temperature for obtaining crude crystals by hydrothermal synthesis by heating the aqueous sol for seed crystals is preferably 100° C. or higher and 200° C. or lower, more preferably 130° C. or higher and 150° C. or lower.
  • the heating time is preferably 10 hours or more and 50 hours or less, more preferably 20 hours or more and 50 hours or less.
  • the hydrothermal synthesis is usually performed by putting the aqueous sol for seed crystals into a pressure vessel and heating the pressure vessel under the above hydrothermal synthesis conditions.
  • the pressure-resistant container is not particularly limited, for example, a stainless steel pressure-resistant container with a fluororesin inner cylinder, a nickel metal pressure-resistant container, a fluororesin pressure-resistant container, and the like can be used.
  • a method of heating the pressure-resistant container a method of heating the pressure-resistant container in a hot air dryer, a method of directly attaching a heater to the pressure-resistant container, and the like can be mentioned.
  • the crude crystals obtained by heating the aqueous sol for seed crystals can be recovered using a known solid-liquid separation method such as centrifugation.
  • the recovered crude crystals may be used as zeolite seed crystals as they are, or may be used as zeolite seed crystals after being dried and pulverized.
  • the temperature for drying the collected crude crystals is not particularly limited, it is preferably 70° C. or higher and 100° C. or lower.
  • the method and conditions for pulverizing the coarse crystals are not particularly limited, and a method and conditions that give a desired average particle size may be employed.
  • the zeolite seed crystals can be attached (supported) to the porous support using techniques such as coating, imprinting, filtering, and impregnation.
  • a method of attaching zeolite seed crystals to a porous support a method of coating zeolite seed crystals on a porous support; A method of imprinting zeolite seed crystals on a porous support placed thereon; A method of filtering a dispersion obtained by dispersing zeolite seed crystals in water through a porous support; A dispersion obtained by dispersing zeolite seed crystals in water a method of impregnating a porous support with a liquid; and the like.
  • porous support As the porous support to which the zeolite seed crystals are adhered, the porous material containing silicon carbide as a main component described in the section ⁇ Porous support> above is used.
  • the adhered zeolite seed crystals can be fixed to the porous support by removing moisture contained in the porous support by drying.
  • the drying temperature at this time is not particularly limited, it is preferably 70° C. or higher and 100° C. or lower.
  • the drying time at this time is not particularly limited, but is preferably 10 hours or more and 48 hours or less.
  • ⁇ Separation layer forming step> the porous support to which the zeolite seed crystals are adhered is immersed in an aqueous sol containing a silica source and a structure-directing agent, and hydrothermal synthesis is performed to synthesize zeolite and form the porous support.
  • a porous separating layer of zeolite is formed on the inner surface of the pores.
  • the separation membrane obtained by forming the porous separation layer on the inner surface of the pores of the porous support in the separation layer forming step may optionally be subjected to boiling washing or calcination treatment.
  • the aqueous sol used for forming the porous separation layer can be prepared by mixing a silica source, a structure-directing agent and water.
  • the silica source used to obtain the aqueous sol is not particularly limited, and the same silica sources as those listed in the above section [Aqueous sol for seed crystals] are used. be able to.
  • the structure directing agent used for obtaining the aqueous sol is not particularly limited, and quaternary ammonium such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrapropylammonium bromide, etc.
  • quaternary ammonium such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrapropylammonium bromide, etc.
  • tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrapropylammonium bromide are preferred, and tetrapropylammonium hydroxide and tetrapropylammonium bromide are more preferably used in combination.
  • the compounding ratio of the structure-directing agent in the aqueous sol is not particularly limited, but the molar ratio of "silica source:structure-directing agent" is preferably in the range of 1:0.01 to 1:2.0. It is more preferably in the range of 1:0.1 to 1:1.0, still more preferably in the range of 1:0.15 to 1:0.8.
  • the mixing ratio of water in the aqueous sol is not particularly limited, but the molar ratio of "silica source: water” can be preferably in the range of 1:100 to 1:1000, more preferably 1: It can range from 200 to 1:800.
  • the method of immersing the porous support having zeolite seed crystals attached thereto in the aqueous sol is not particularly limited. a method in which a porous support to which zeolite seed crystals are adhered is placed in a pressure vessel containing an aqueous sol; As the pressure vessel used at this time, the same pressure vessel as that which can be used when producing zeolite seed crystals can be used.
  • the hydrothermal synthesis temperature When synthesizing zeolite by hydrothermal synthesis and forming a porous separation layer composed of zeolite on the inner surface of the pores of the porous support, the hydrothermal synthesis temperature must be 135° C. or less. , preferably 125° C. or lower, more preferably 120° C. or lower, even more preferably 115° C. or lower, and preferably 100° C. or higher.
  • the hydrothermal synthesis time must be 30 hours or less, preferably 28 hours, more preferably 24 hours or less, and preferably 10 hours or more, and 20 hours or more. is more preferable.
  • the hydrothermal synthesis at the above temperature can be performed, for example, by heating the aqueous sol and the porous support in a heat-resistant container at the above temperature.
  • Methods for heating the aqueous sol and the porous support in the pressure vessel include a method in which the pressure vessel is placed in a hot air dryer and a method in which a heater is directly attached to the pressure vessel for heating.
  • a separation membrane obtained by forming a porous separation layer on the inner surface of pores of a porous support is preferably washed with boiling water.
  • distilled water for example, can be used as the cleaning liquid.
  • the boiling washing time is preferably 10 minutes or more and 2 hours or less, more preferably 30 minutes or more and 1.5 hours or less.
  • the boiling cleaning may be performed multiple times (for example, 2 to 3 times), and the boiling cleaning conditions when performing the boiling cleaning multiple times may be the same or different.
  • drying treatment may be performed as necessary, and the drying temperature of the separation membrane after boiling and washing is preferably 70° C. or more and 100° C. or less.
  • the separation membrane obtained by forming the porous separation layer on the inner surface of the pores of the porous support is preferably subjected to a calcination treatment in order to remove the structure-directing agent.
  • the conditions for the calcination treatment are not particularly limited, but the temperature increase rate is preferably 0.1° C./min or more and 1° C./min or less, more preferably 0.1° C./min or more and 0.5° C./min or less. is.
  • the firing temperature is preferably 400° C. or higher and 800° C. or lower, and more preferably 400° C. or higher and 600° C. or lower.
  • the temperature drop rate is preferably 0.1° C./minute or more and 1° C./minute or less, more preferably 0.1° C./minute or more and 0.4° C./minute or less.
  • the firing time (holding time) is preferably 1 hour or more and 30 hours or less, more preferably 5 hours or more and 30 hours or less.
  • the separation membrane of the present invention that can be produced by the method for producing a separation membrane of the present invention is used for membrane separation of hydrocarbon mixtures.
  • linear hydrocarbons can be efficiently separated off, thereby increasing the content of branched hydrocarbons and/or cyclic hydrocarbons in the hydrocarbon mixture.
  • some components for example, linear hydrocarbons
  • membrane separation is preferably carried out under heating conditions. Specifically, the membrane separation is preferably carried out at a temperature of 20°C or higher and 300°C or lower, more preferably 25°C or higher and 250°C or lower, still more preferably 50°C or higher and 200°C or lower.
  • the pressure condition when performing membrane separation is not particularly limited, but the differential pressure between the non-permeate side and the permeate side (pressure on the non-permeate side - pressure on the permeate side) is preferably 10 kPa or more and 600 kPa or less. It is more preferable to make it 50 kPa or more and 300 kPa or less.
  • ⁇ Average particle size of zeolite seed crystals> A scanning electron microscope (SEM) was used to measure the particle size of 20 zeolite seed crystals. Then, the average value of the obtained measured values was calculated as the average particle size of the zeolite seed crystals.
  • X-ray diffraction measurement of zeolite seed crystal and porous separation layer> (X-ray diffraction peak intensity ratio and crystallite size)
  • the X-ray diffraction peak intensity ratio and the crystallite size were determined based on the X-ray diffraction data measured by an X-ray diffraction measurement device ("SmartLab” manufactured by Rigaku) equipped with Cu K ⁇ rays as an X-ray source, and analyzed using analysis software (manufactured by Rigaku "PDXL software”).
  • X-ray intensity 45 kV 200 mA, angle range 2 ⁇ 25 to 80 °, scanning speed 0.12.
  • a ZnO film surface of about 5 mm square was measured.
  • the in-plane measurement (2 ⁇ ) mode was selected, the scanning speed was changed to 0.48°/sec, and the sampling interval was changed to 0.04°. .
  • K ⁇ 2 removal and smoothing were performed.
  • the Scherrer method was used, the Scherrer constant was set to 0.94, and the half width was applied.
  • the permeation flux F was calculated using the following formula (I).
  • the separation factor ⁇ was calculated using the following formula (II).
  • the ratio of the F ⁇ value at the subsequent sampling time points was calculated assuming that the F ⁇ value at 10 minutes after the start of the test was 100%, and this was used as the separation performance maintenance rate.
  • X n is the content of linear hydrocarbons in the raw material [GC%]
  • X bc is the content of branched-chain hydrocarbons and cyclic hydrocarbons in the raw material [ GC%]
  • Yn is the linear hydrocarbon content [GC%] in the permeate sample
  • Ybc is the content of branched and cyclic hydrocarbons in the permeate sample It is the ratio [GC%].
  • the sampling time was set to 10 minutes as described later. 10 minutes after the start of the test, each time point every hour from 1 hour to 7 hours after the start of the test, and each time point every 10 hours from 20 hours after the start of the test to 100 hours after the start of the test.
  • the thickness of the separation membrane was the average value of the thickness of the separation membrane measured at four or more arbitrary points on the separation membrane with a vernier caliper.
  • Example 1 ⁇ Seed crystal preparation step> ⁇ Preparation of aqueous sol for seed crystals>> 152.15 g of a tetrapropylammonium hydroxide aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd.) having a concentration of 22.5% by mass (34.23 g in terms of tetrapropylammonium hydroxide as a structure directing agent) and 48.44 g of ultrapure water Mixed with a magnetic stirrer.
  • ⁇ Preparation of zeolite seed crystal>> The aqueous sol for seed crystals was placed in a stainless steel pressure vessel with a fluororesin inner cylinder, and reacted (hydrothermally synthesized) in a hot air dryer at 130° C. for 48 hours. Next, the obtained reaction liquid was subjected to solid-liquid separation by centrifugation for 10 minutes in a centrifuge (10000 rpm), and the solid content was recovered. Then, the recovered solid content was dried in a constant temperature dryer at 80° C. for 12 hours, and then the obtained dried solid was pulverized in a mortar to obtain zeolite seed crystals.
  • the obtained zeolite seed crystal was subjected to X-ray diffraction measurement to obtain an X-ray diffraction pattern.
  • the obtained zeolite seed crystal was confirmed to have an MFI type structure by the X-ray diffraction pattern.
  • the average particle size of the zeolite seed crystals was 400 nm.
  • ⁇ Seed crystal attachment step> A cylindrical silicon carbide porous support (outer diameter 12 mm, inner diameter 9 mm, length 250 mm, average pore diameter 1.5 ⁇ m) was immersed in ultrapure water for 10 minutes. Then, 0.08 g of the zeolite seed crystals obtained above are rubbed on the outer surface of the wet porous support after being immersed in ultrapure water, and dried in a dryer at 80° C. for 12 hours or more. , zeolite seed crystals were attached to the surface of the porous support.
  • ⁇ Separation layer forming step> ⁇ Preparation of Aqueous Sol A for Porous Separation Layer>> 4.99 g of a 22.5% concentration tetrapropylammonium hydroxide aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd.) (1.12 g in terms of tetrapropylammonium hydroxide as structure-directing agent (I)), and structure-directing agent (II) 0.74 g of tetrapropylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) and 238.79 g of ultrapure water were mixed with a magnetic stirrer at room temperature for 10 minutes.
  • tetraethoxysilane manufactured by SIGMA-ALDLICH
  • SIGMA-ALDLICH tetraethoxysilane
  • porous separation layer aqueous sol A obtained above was placed in a stainless steel pressure vessel.
  • the porous support to which the zeolite seed crystals obtained in the seed crystal attachment step are attached is immersed in the aqueous sol A for the porous separation layer, and the hydrothermal synthesis temperature is 115° C. and the hydrothermal synthesis time is 24 hours.
  • Hydrothermal synthesis was performed in a hot air dryer as time.
  • the porous support was boiled and washed twice for 1 hour in a warm air dryer at 105° C. using distilled water as a washing liquid. After that, the porous support was dried in a constant temperature dryer at 80° C. for 12 hours.
  • baking was performed to remove the structure-directing agent (I) (tetrapropylammonium hydroxide) and the structure-directing agent (II) (tetrapropylammonium bromide) to obtain a separation membrane.
  • the firing conditions were as follows: heating rate: 0.25° C./min, firing temperature: 500° C., firing time (holding time): 20 hours, and cooling rate: 0.38° C./min.
  • the obtained separation membrane was subjected to X-ray diffraction measurement to obtain an X-ray diffraction pattern. From the X-ray diffraction pattern, it was confirmed that a porous separation layer was formed on the inner surface of the pores of the porous support of the separation membrane. It was also confirmed that the porous separation layer contained MFI zeolite.
  • the test apparatus 100 shown in FIG. 1 includes a raw material tank 101, a liquid feed pump 102, a first heat exchanger 103, a high boiler removal device 104, a separation device 105, a second heat exchanger 106, and a waste liquid tank. 107.
  • the separation device 105 is constructed by assembling the separation membrane (not shown) obtained above into a cylindrical tube.
  • the test apparatus 100 shown in FIG. and a vacuum pump 115 connected to the side.
  • the test apparatus 100 includes a sampling valve 116 between the raw material tank 101 and the liquid feed pump 102, and a back pressure valve 108 and a pressure gauge 109 downstream of the separation apparatus 105.
  • the raw material filled in the raw material tank 101 is sent to the first heat exchanger 103 by the liquid sending pump 102 .
  • the raw material can be heated to a temperature within a range in which the raw material is not liquefied under the pressure conditions on the non-permeation side.
  • the raw material is sent to the separation device 105 in a gas phase, and components are separated (membrane separation) by a separation membrane assembled in the separation device 105 .
  • the permeate side of the separation membrane is kept in a decompressed state by the decompression pump 115, and the component that permeates the separation membrane is discharged from the cold trap 111 connected via the three-way valve 110 or the cold trap 111 for sampling. Sent to trap 112 .
  • non-permeating components that have not permeated the separation membrane assembled in the separation device 105 are cooled in the second heat exchanger 106 and transferred to the waste liquid tank 107 .
  • the back pressure is adjusted by the back pressure valve 108 and the pressure gauge 109 provided downstream of the separation apparatus 105 .
  • a membrane separation test using the test apparatus 100 shown in FIG. 1 was conducted as follows. Specifically, first, raw material tank 101 is filled with a hydrocarbon mixture containing 62% by mass or more of piperylene and 35% by mass or more of cyclic hydrocarbon as a separation target. Then, the hydrocarbon mixture is supplied in the gas phase to the separation device 105 via the first heat exchanger 103 heated to 70° C., then condensed by the second heat exchanger 106 and discharged to the waste liquid tank 107. Started the transfer process. Then, after starting the raw material transfer, the system was operated until the temperature in the system reached a steady state.
  • the non-permeate side is pressurized to 10 kPa by the back pressure valve 108, and the pressure reduction pump 115 is started to open the permeate side (the region on the permeate side of the separation membrane in the separation device 105, Cold trap 111 and cold trap 112) were evacuated to -100 kPa.
  • membrane separation was started by opening the three-way valve 110 on the permeate side. That is, the membrane separation was performed under the conditions of a temperature of 70° C. and a differential pressure of 110 kPa between the non-permeate side and the permeate side.
  • Example 1 As the porous support, instead of the cylindrical silicon carbide porous support, a cylindrical mullite porous support (manufactured by Nikkato, trade name "PM tube", outer diameter 12 mm, inner diameter 9 mm, length 100 mm, an average pore diameter of 1.4 ⁇ m, and a porosity of 42.7%), the same operation as in Example 1 was performed to obtain a separation membrane. As a result of observing the obtained separation membrane by SEM, it was confirmed that a porous separation layer having a layer thickness of 10 nm was formed on the inner surface of the pores of the porous support. Also, the porous separation layer was subjected to X-ray diffraction measurement to obtain an X-ray diffraction pattern.
  • a cylindrical mullite porous support manufactured by Nikkato, trade name "PM tube”, outer diameter 12 mm, inner diameter 9 mm, length 100 mm, an average pore diameter of 1.4 ⁇ m, and a porosity of 42.7%
  • the obtained X-ray diffraction pattern confirmed that the porous separation layer contained MFI zeolite. Also, in the same manner as in Example 1, the thickness, breaking stress, and stress per thickness of the resulting separation membrane were measured. Table 1 shows the results. Furthermore, using the obtained separation membrane and using the same test apparatus as in Example 1, the same membrane separation test for a hydrocarbon mixture as in Example 1 was conducted. As a result, the sample on the permeate side obtained by membrane separation had a pipereline concentration of 89.7% by mass. Further, in the same manner as in Example 1, the permeation flux F, the separation factor ⁇ , and the separation performance maintenance rate were calculated for the sample obtained by membrane separation. Table 3 shows the results.
  • Example 2 As the porous support, instead of the cylindrical silicon carbide porous support, a cylindrical shirasu porous glass support (manufactured by SPG Techno, trade name "SPG membrane", outer diameter 10 mm, inner diameter 8 8 mm, length 100 mm, average pore diameter 1.5 ⁇ m), the same operation as in Example 1 was performed to obtain a separation membrane. As a result of observing the obtained separation membrane by SEM, it was confirmed that a porous separation layer having a layer thickness of 7 nm was formed on the inner surface of the pores of the porous support. Also, the porous separation layer was subjected to X-ray diffraction measurement to obtain an X-ray diffraction pattern.
  • SPG membrane trade name "SPG membrane”
  • the obtained X-ray diffraction pattern confirmed that the porous separation layer contained MFI zeolite. Also, in the same manner as in Example 1, the thickness, breaking stress, and stress per thickness of the resulting separation membrane were measured. Table 1 shows the results. Furthermore, using the obtained separation membrane and using the same test apparatus as in Example 1, the same membrane separation test for a hydrocarbon mixture as in Example 1 was conducted. As a result, the sample on the permeation side obtained by the membrane separation had a pipereline concentration of 94.2% by mass. Further, in the same manner as in Example 1, the permeation flux F, the separation factor ⁇ , and the separation performance maintenance rate were calculated for the sample obtained by membrane separation. Table 4 shows the results.
  • Example 1 can provide a separation membrane having better mechanical strength than Comparative Examples 1 and 2. From the comparison between Example 1 and Comparative Examples 1 and 2, the separation membrane of Example 1 maintains excellent separation performance over a long period of time compared to the separation membranes of Comparative Examples 1 and 2. I know it can be done.
  • a separation membrane having excellent mechanical strength and capable of maintaining excellent separation performance over a long period of time when used for membrane separation of a hydrocarbon mixture, and efficient production of the separation membrane. can provide a way to
  • Test device 101 Raw material tank 102 Liquid feed pump 103 First heat exchanger 104 High boiling point removal device 105 Separator 106 Second heat exchanger 107 Waste liquid tank 108 Back pressure valve 109 Pressure gauges 110, 114 Three-way valve 111 Cold trap 112 Sampling cold trap 115 decompression pump 116 sampling valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

機械的強度に優れ、炭化水素混合物の膜分離に使用した際に、長期間にわたって優れた分離性能を維持することができる分離膜とその製造方法提供する。分離膜は、複数の細孔を有する多孔性支持体と、細孔の内表面上に形成された多孔性分離層とを備える。多孔性支持体はシリコンカーバイドを主成分とする多孔質体からなり、多孔性分離層はゼオライトからなる。

Description

分離膜及びその製造方法
 本発明は、分離膜及びその製造方法に関し、特には、炭化水素混合物から一部の炭化水素を分離する際に好適に使用し得る分離膜、及び当該分離膜の製造方法に関するものである。
 従来、他成分の混合物から特定の成分を低エネルギーで分離する方法として、膜分離法が用いられている。そして、分離膜としては、例えば、支持体上にゼオライトを膜状に形成してなるゼオライト膜が広く用いられている。
 例えば、特許文献1では、多孔質のアルミナからなるチューブ状の支持体の外表面に種晶をディップコーティングにより担持することで種晶付多孔質支持体を得て、オルト珪酸テトラエチル、テトラプロピルアンモニウムヒドロキシド、エタノール及び純水を混合して調製したゲルに、上記種晶付多孔質支持体を浸漬して100℃で7日間、水熱合成を行い、その後焼成を行うことで、支持体上にゼオライト膜を形成し、得られた分離膜を炭化水素混合物の膜分離に用いる技術が提案されている。
 また、特許文献2では、支持体としてのシラスポーラスガラスの上にゼオライト膜を形成してなる分離膜が提案されている。
国際公開第2018/173929号 国際公開第2018/181349号
 しかし、上記従来の分離膜は、長期間にわたって優れた分離性能を維持するという点において、更なる改善の余地があった。
 また、上記従来の分離膜は、機械的強度を向上させるという点において、更なる改善の余地があった。
 そこで、本発明は、機械的強度に優れるとともに、炭素水素混合物の膜分離に使用した際に、長期間にわたって優れた分離性能を維持することができる分離膜と、当該分離膜を効率的に製造する方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行った。そして、本発明者らは、シリコンカーバイドを主成分とする多孔質体を支持体として用いるとともに、所定の条件でゼオライトを水熱合成することで、機械的強度に優れる分離膜を製造することができ、また、これにより得られる分離膜が、長期間にわたって優れた分離性能を維持することができることを新たに見出し、本発明を完成させた。
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の分離膜は、炭化水素混合物の膜分離に用いられる分離膜であって、複数の細孔を有する多孔性支持体と、前記細孔の内表面上に形成された多孔性分離層とを備え、前記多孔性支持体はシリコンカーバイドを主成分とする多孔質体からなり、前記多孔性分離層はゼオライトからなることを特徴とする。このように、シリコンカーバイドを主成分とする多孔質体からなる多孔性支持体と、この多孔性支持体の細孔の内表面上に形成されたゼオライトからなる多孔性分離層とを備えた分離膜は、機械的強度に優れるとともに、炭化水素混合物の膜分離に使用した際に、長期間にわたって優れた分離性能を維持することができる。
 なお、本明細書において、「シリコンカーバイドを主成分とする」は、「シリコンカーバイドを90質量%以上含有する」ことを意味する。
 また、本明細書において、「細孔の内表面」とは、多孔性支持体の細孔の壁面を意味する。
 また、本明細書において、「ゼオライト」とは、細孔構造を有する含Si化合物を意味する。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の分離膜の製造方法は、炭化水素混合物の膜分離に用いられる分離膜の製造方法であって、ゼオライト種結晶を付着させた複数の細孔を有する多孔性支持体を、シリカ源及び構造規定剤を含む水性ゾルに浸漬し、水熱合成によりゼオライトを合成して多孔性分離層を形成する分離層形成工程を含み、前記多孔性支持体はシリコンカーバイドを主成分とする多孔質体からなり、前記水熱合成を水熱合成温度135℃以下、水熱合成時間30時間以下で行うことで前記細孔の内表面上に前記多孔性分離層を形成することを特徴とする。このように、シリコンカーバイドを主成分とする多孔質体を多孔性支持体として使用し、水熱合成温度135℃以下、水熱合成時間30時間以下でゼオライトを合成して多孔性支持体の細孔の内表面上に多孔性分離層を形成することで、機械的強度に優れるとともに、長期間にわたって優れた分離性能を維持することが可能な分離膜を効率的に製造することができる。
 そして本発明の分離膜の製造方法において、前記水熱合成温度が115℃以下であることが好ましい。水熱合成温度を115℃以下としてゼオライトを合成すれば、ゼオライトに酸点が発生することを抑制して、分離膜の寿命を向上させることができる。
 さらに、本発明の分離膜の製造方法において、前記水熱合成時間が24時間以下であることが好ましい。水熱合成時間を24時間以下としてゼオライトを合成すれば、ゼオライトに酸点が発生することを更に抑制して、分離膜の寿命を更に向上させることができる。
 本発明によれば、機械的強度に優れるとともに、炭化水素混合物の膜分離に使用した際に、長期間にわたって優れた分離性能を維持することができる分離膜と、当該分離膜を効率的に製造する方法を提供することができる。
図1は、実施例で用いた試験装置の概略構成を示す図である。
 以下、本発明の実施形態について説明する。
 ここで、本発明の分離膜は、炭化水素混合物の膜分離に用いられる。そして、本発明の分離膜は、例えば本発明の分離膜の製造方法を用いて製造することができる。
(分離膜)
 炭化水素混合物の膜分離に用いられる本発明の分離膜は、複数の細孔を有する多孔性支持体と、この細孔の内表面上に形成された多孔性分離層とを備えている。そして、多孔性支持体は、シリコンカーバイドを主成分とする多孔質体からなり、多孔性分離層はゼオライトからなることを特徴とする。
 なお、本発明の分離膜において、多孔性分離層は、多孔性支持体の複数の細孔の内表面の全体にわたって形成されていてもよく、多孔性支持体の複数の細孔のうちの一部の細孔の内表面に形成されていてもよい。
 そして、本発明の分離膜は、多孔性支持体がシリコンカーバイドを主成分とする多孔質体からなり、ゼオライトからなる多孔性分離層が多孔性支持体の細孔の内表面上に形成されているので、機械的強度に優れるとともに、炭化水素混合物の膜分離に使用した際に、長期間にわたって優れた分離性能を維持することができる。したがって、本発明の分離膜を分離装置に用いれば、分離膜の数を少なくしても分離装置に優れた分離性能を発揮させることができるため、分離装置のコストを低減することができる。
<炭化水素混合物>
 ここで、本発明の分離膜を用いて膜分離される炭化水素混合物は、炭素数が等しい直鎖状炭化水素と、分岐状炭化水素及び/又は環状炭化水素とを含む混合物である。この炭化水素混合物は、好ましくは炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素及び/又は炭素数が4の環状炭化水素とを主成分として含む混合物、又は、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素及び/又は炭素数が5の環状炭化水素とを主成分として含む混合物であり、より好ましくは炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素及び/又は炭素数が5の環状炭化水素とを主成分として含む混合物である。本発明の分離膜によれば、炭素数が4又は5の直鎖状炭化水素と、当該直鎖状炭化水素と炭素数が等しい分岐状炭化水素及び/又は環状炭化水素とを主成分として含む炭化水素混合物を効率的に分離することができる。特に、本発明の分離膜によれば、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素及び/又は炭素数が5の環状炭化水素とを主成分として含む炭化水素混合物を効率的に分離することができる。
 なお、本発明において、「直鎖状炭化水素と、分岐状炭化水素及び/又は環状炭化水素とを主成分として含む」とは、直鎖状炭化水素と、分岐状炭化水素及び/又は環状炭化水素とを合計で50モル%以上含有することを指す。
 そして、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素及び/又は環状炭化水素とを主成分として含む混合物としては、n-ブタン、1-ブテン、2-ブテン、ブタジエンなどの炭素数が4の直鎖状炭化水素と、イソブタン、イソブテンなどの炭素数が4の分岐状炭化水素及び/又はシクロブタン、シクロブテンなどの炭素数が4の環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が4の直鎖状炭化水素と、炭素数が4の分岐状炭化水素及び/又は炭素数が4の環状炭化水素とを主成分として含む混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC4留分や、C4留分から少なくともブタジエンの一部を回収した後に残る留分などが挙げられる。
 また、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素及び/又は環状炭化水素とを主成分として含む混合物としては、n-ペンタン、1-ペンテン、2-ペンテン、1,3-ペンタジエン(「ピペリレン」ともいう。)などの炭素数が5の直鎖状炭化水素と、イソペンタン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン、イソプレンなどの炭素数が5の分岐状炭化水素及び/又はシクロペンタン、シクロペンテン、1-メチルシクロブタン、1-メチルシクロブテン、シクロペンタジエンなどの炭素数が5の環状炭化水素とを含む混合物が挙げられる。具体的には、炭素数が5の直鎖状炭化水素と、炭素数が5の分岐状炭化水素及び/又は炭素数が5の環状炭化水素とを主成分として含む混合物としては、例えば、ナフサを熱分解してエチレンを生産する際に副生するC5留分や、C5留分から少なくともイソプレンの一部を回収した後に残る留分などが挙げられる。
<多孔性支持体>
 多孔性支持体は、複数の細孔を有しており、シリコンカーバイド(SiC)を主成分とする多孔質体からなる。そして、本発明の分離膜に用いる多孔性支持体は、任意に、シリコンカーバイド以外の成分(以下、「その他の成分」と称する。)を含み得る。シリコンカーバイドを主成分とする多孔質体を多孔性支持体として用いることで、機械的強度に優れる分離膜を効率的に製造することができる。また、水熱合成によりゼオライトを合成する際に、ゼオライトに酸点が発生するのを抑制して、分離膜の性能の低下を抑制することができる。
 そして、多孔質体中のシリコンカーバイドの含有割合は、通常、85質量%以上であり、87質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 また、多孔質体中に含まれるその他の成分としては、特に限定されることなく、例えば、ムライト(Al13Si)等のバインダー成分が挙げられる。
 なお、多孔性支持体の形状は、特に限定されることなく、例えば、平膜状、平板上、チューブ状、ハニカム状などの任意の形状とすることができる。
 そして、多孔性支持体の平均細孔径は、1.0μm以上であることが好ましく、1.2μm以上であることがより好ましく、1.5μm以上であることが更に好ましく、2.2μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.8μm以下であることが更に好ましい。
 なお、本明細書において、「多孔性支持体の平均細孔径」は、本明細書の実施例に記載の方法により求めることができる。
<多孔性分離層>
 多孔性分離層は、炭素数が等しい直鎖状炭化水素と、分岐状炭化水素及び/又は環状炭化水素とを分離するために設けられた層である。そして、本発明の分離膜において、多孔性分離層は、多孔性支持体の細孔の内表面上に形成されており、ゼオライトからなることを必要とする。ここで、ゼオライトからなる多孔性分離層は、例えば、ゼオライト種結晶を付着させた多孔性支持体を、シリカ源及び構造規定剤を含む水性ゾルに浸漬し、所定の水熱合成温度及び水熱合成時間で水熱合成することによって形成することができる。
 ここで、「ゼオライト」は、MFI型細孔構造を有し、骨格構造がSiを含んでなることが好ましい。なお、本明細書では、「ゼオライト」として、一般的にアルミノケイ酸塩として定義される狭義のゼオライトに加えて、実質的にSiとOのみからなり、かつMFI型構造を有する、シリカライトも含む。
 さらに、多孔性分離層を形成するゼオライトは、実質的にSiとOのみからなるシリカライトであることが好ましい。多孔性分離層がシリカライトにより形成されていれば、分離膜は、長期間にわたって一層優れた分離性能を維持することができる。
 なお、多孔性分離層の層厚は、例えば、多孔性分離層の形成に用いるゼオライト種結晶の平均粒子径や、ゼオライトの合成条件(例えば、温度及び時間)等を調整することにより制御することができる。
(分離膜の製造方法)
 上述した性状の多孔性分離層を有する本発明の分離膜は、例えば本発明の分離膜の製造方法を用いて効率的に製造することができる。
 ここで、本発明の分離膜の製造方法は、炭化水素混合物の膜分離に用いられる分離膜の製造方法であって、ゼオライト種結晶を付着させた複数の細孔を有する多孔性支持体を、シリカ源及び構造規定剤を含む水性ゾルに浸漬し、水熱合成によりゼオライトを合成して多孔性分離層を形成する工程(分離層形成工程)を含む。そして、本発明の分離膜の製造方法において、上記多孔性支持体はシリコンカーバイドを主成分とする多孔質体からなり、上記水熱合成を水熱合成温度135℃以下、水熱合成時間30時間以下で行うことで多孔性支持体の細孔の内表面上に多孔性分離層を形成する。
 なお、本発明の分離膜製造方法は、任意に、ゼオライト種結晶を準備する工程(種結晶準備工程)と、種結晶準備工程において準備したゼオライト種結晶を多孔性支持体に付着させる工程(種結晶付着工程)とを更に含み得る。
 そして、本発明の分離膜の製造方法によれば、機械的強度に優れるとともに、炭化水素混合物の膜分離に使用した際に、長期間にわたって優れた分離性能を維持することが可能な分離膜を得ることができる。
 また、本発明の分離膜の製造方法によれば、シリコンカーバイドを主成分とする多孔質体を多孔性支持体として用いることで、水熱合成によりゼオライトを合成する際に多孔性支持体が溶解してゼオライトに酸点が発生することを抑制することができる。したがって、本発明の製造方法により得られる分離膜を用いれば、炭化水素混合物を膜分離する際にゼオライトに酸点が存在することに起因する副反応を抑制することができるため、副生成物が分離膜に付着して分離膜の詰まりが生じることを回避して、分離膜の寿命を向上させることができる。
 さらに、本発明の分離膜の製造方法によれば、シリコンカーバイドを主成分とする多孔質体を多孔性支持体として用いることで、従来の分離膜の製造方法よりも短い時間で分離膜を製造することができるとともに、多孔性支持体にかかる熱履歴を小さくすることができる。
 ここで、多孔性支持体としてシリコンカーバイドを主成分とする多孔質体を使用し、水熱合成温度を135℃以下、水熱合成時間を30時間以下とすることで、多孔性支持体の細孔の内表面上に多孔性分離層を形成することができる理由は、明らかではないが、以下のとおりであると推察される。すなわち、多孔性支持体の細孔内に入り込んだゼオライト種結晶は、水熱合成反応で成長及び膜化しながら多孔性支持体の外表面へと向かってゼオライト膜を形成していく。本発明の分離膜の製造方法では、水熱合成温度を135℃以下、水熱合成時間を30時間以下とすることで、ゼオライト種結晶の水熱合成反応が初期段階で停止し、多孔性支持体の細孔内に入り込んだゼオライト種結晶は多孔性支持体の細孔の内表面上で双晶形のまま膜化して留まり、多孔性支持体の細孔の内表面に多孔性分離層が形成されると推察される。なお、本発明の分離膜の製造方法によれば、通常、多孔性支持体の外表面上には、SEM観察上では多孔性分離層は確認されない。
 また、本発明の分離膜の製造方法によれば、水熱合成温度を135℃以下、水熱合成時間を30時間以下としても分離効率に優れた分離膜が得られる理由は、明らかではないが、以下のとおりであると推察される。すなわち、ゼオライトからなる多孔性分離層と多孔性支持体としてのシリコンカーバイドとの接着性が良好であることで、水熱合成温度を135℃以下、水熱合成時間を30時間以下としても、分離効率に優れた分離膜が得られると推察される。
 そして、多孔性支持体の細孔の内表面上に多孔性分離膜を効率的に形成する観点からは、ゼオライト種結晶の平均粒子径は、50nm以上であることが好ましく、700nm以下であることがより好ましく、300nm以上であることがより好ましく、500nm以下であることがより好ましい。
 なお、本発明において、「ゼオライト種結晶の平均粒子径」は、本明細書の実施例に記載の方法により求めることができる。
 また、多孔性支持体の細孔の内表面上に多孔性分離層を効率的に形成する観点からは、多孔性支持体の平均細孔径に対するゼオライト種結晶の平均粒子径の比[ゼオライト種結晶の平均粒子径(nm)/多孔性支持体の平均細孔径(μm)]は、130以上であることが好ましく、150以上であることがより好ましく、180以上であることが更に好ましく、330以下であることが好ましく、310以下であることがより好ましく、290以下であることが更に好ましい。
 さらに、本発明の分離膜の製造方法では、ゼオライト種結晶を付着させた多孔性支持体として、ゼオライト種結晶が付着していない多孔性支持体上で種結晶となるゼオライトを合成してなるものを用いてもよいが、良好な性状の多孔性分離層を形成し、分離効率に優れる分離膜を得る観点からは、予め準備しておいたゼオライト種結晶を多孔性支持体に付着させたものを用いることが好ましい。すなわち、本発明の分離膜の製造方法では、種結晶準備工程及び種結晶付着工程を実施することが好ましい。
<種結晶準備工程>
 ここで、種結晶準備工程では、特に限定されることなく、既知のゼオライト種結晶の製造方法を用いてゼオライト種結晶を調製する。なお、ゼオライト種結晶は、MFI型ゼオライトを含むことが好ましい。
 具体的には、種結晶準備工程では、例えば、シリカ源、構造規定剤及び水を混合して得た種結晶用水性ゾルを加熱し、水熱合成によりゼオライトの粗結晶を調製した後、任意に得られた粗結晶を乾燥及び粉砕することにより、ゼオライト種結晶を調製する。
[種結晶用水性ゾル]
 ここで、ゼオライト種結晶の調製において、種結晶用水性ゾルを得るために用いるシリカ源としては、特に限定されることなく、例えば、コロイダルシリカ、湿式シリカ、無定形シリカ、ヒュームドシリカ、ケイ酸ナトリウム、シリカゾル、シリカゲル、カオリナイト、珪藻土、ケイ酸アルミニウム、ホワイトカーボン、テトラブトキシシラン、テトラブチルオルソシリケート、テトラエトキシシラン等が挙げられる。これらの中でも、テトラエトキシシラン、コロイダルシリカが好ましく、テトラエトキシシランがより好ましい。
 また、種結晶用水性ゾルを得るために用いる構造規定剤としては、特に限定されることなく、例えば、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドなどの4級アンモニウム塩や、アルコール等が挙げられる。これらの中でも、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドが好ましい。構造規定剤の配合比率は、特に限定されないが、「シリカ源:構造規定剤」のモル比で、好ましくは1:0.01~1:2.0の範囲であり、より好ましくは1:0.1~1:1.0の範囲であり、更に好ましくは1:0.15~1:0.8の範囲である。
 そして、種結晶用水性ゾル中の水の配合比率は、特に限定されないが、「シリカ源:水」のモル比で、好ましくは1:3~1:100の範囲とすることができ、より好ましくは1:5~1:50の範囲とすることができる。
[粗結晶の水熱合成]
 種結晶用水性ゾルを加熱し、水熱合成により粗結晶を得る際の加熱温度は、好ましくは100℃以上200℃以下、より好ましくは130℃以上150℃以下である。また、加熱時間は、好ましくは10時間以上50時間以下、より好ましくは20時間以上50時間以下である。
 なお、水熱合成は、通常、耐圧容器中に種結晶用水性ゾルを入れ、耐圧容器を上記水熱合成が行われる条件にて加熱することにより行う。耐圧容器としては、特に限定されないが、例えば、フッ素樹脂製内筒付のステンレス製耐圧容器、ニッケル金属製耐圧容器、フッ素樹脂製耐圧容器等を使用することができる。また、耐圧容器を加熱する方法としては、耐圧容器を熱風乾燥器に入れて加熱する方法や、耐圧容器にヒーターを直接取り付けて加熱する方法などが挙げられる。
 そして、種結晶用水性ゾルを加熱して得られた粗結晶は、遠心分離等の既知の固液分離法を用いて回収することができる。なお、回収した粗結晶は、そのままゼオライト種結晶として用いてもよいし、乾燥及び粉砕してからゼオライト種結晶として用いてもよい。
[粗結晶の乾燥及び粉砕]
 回収した粗結晶を乾燥する温度は、特に限定されないが、好ましくは70℃以上100℃以下である。また、粗結晶を粉砕する際の粉砕方法及び条件も、特に限定されず、所望の平均粒子径となるような方法及び条件を採用すればよい。
<種結晶付着工程>
 種結晶付着工程では、塗布、刷り込み、ろ過、含浸等の手法を用いてゼオライト種結晶を多孔性支持体に付着(担持)させることができる。具体的には、ゼオライト種結晶を多孔性支持体に付着させる方法としては、ゼオライト種結晶を多孔性支持体上に塗布する方法;超純水に1~60分間浸漬することにより予め湿らせておいた多孔性支持体上にゼオライト種結晶を刷り込む方法;ゼオライト種結晶を水中に分散させて得た分散液を多孔性支持体でろ過する方法;ゼオライト種結晶を水中に分散させて得た分散液に対して、多孔性支持体を含浸する方法;等が挙げられる。
 なお、ゼオライト種結晶を付着させる多孔性支持体としては、上記<多孔性支持体>の項に記載したシリコンカーバイドを主成分とする多孔質体を用いる。
 そして、付着させたゼオライト種結晶は、多孔性支持体に含まれる水分を乾燥により除去することで多孔性支持体に固定できる。この際の乾燥温度は、特に限定されないが、好ましくは70℃以上100℃以下である。また、この際の乾燥時間は、特に限定されないが、好ましくは10時間以上48時間以下である。
<分離層形成工程>
 分離層形成工程では、ゼオライト種結晶を付着させた多孔性支持体を、シリカ源及び構造規定剤を含む水性ゾルに浸漬し、水熱合成を行うことによりゼオライトを合成して多孔性支持体の細孔の内表面上にゼオライトからなる多孔性分離層を形成する。なお、分離層形成工程において多孔性支持体の細孔の内表面上に多孔性分離層を形成して得られた分離膜には、任意に、煮沸洗浄や焼成処理を施してもよい。
[水性ゾル]
 ここで、多孔性分離層の形成に用いられる水性ゾルは、シリカ源、構造規定剤及び水を混合することにより調製することができる。
 なお、多孔性分離層の形成において、水性ゾルを得るために用いるシリカ源としては、特に限定されることなく、上記[種結晶用水性ゾル]の項で挙げたシリカ源と同様のものを用いることができる。
 また、多孔性分離層の形成において、水性ゾルを得るために用いる構造規定剤としては、特に限定されることなく、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドなどの4級アンモニウム塩やクラウンエーテル、アルコール等が挙げられる。これらの中でも、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミドが好ましく、テトラプロピルアンモニウムヒドロキシドと、テトラプロピルアンモニウムブロミドとを併用することがより好ましい。
 なお、水性ゾル中の構造規定剤の配合比率は、特に限定されないが、「シリカ源:構造規定剤」のモル比で、好ましくは1:0.01~1:2.0の範囲であり、より好ましくは1:0.1~1:1.0の範囲であり、更に好ましくは1:0.15~1:0.8の範囲である。
 また、水性ゾル中の水の配合比率は、特に限定されないが、「シリカ源:水」のモル比で、好ましくは1:100~1:1000の範囲とすることができ、より好ましくは1:200~1:800の範囲とすることができる。
[ゼオライトの水熱合成]
 ゼオライト種結晶を付着させた多孔性支持体を水性ゾルに浸漬させる方法としては、特に限定されず、例えば、ゼオライト種結晶を付着させた多孔性支持体を収容した耐圧容器に水性ゾルを入れる方法;水性ゾルを収容した耐圧容器にゼオライト種結晶を付着させた多孔性支持体を入れる方法;等が挙げられる。この際用いる耐圧容器としては、ゼオライト種結晶を製造する際に使用し得る耐圧容器と同様のものを用いることができる。
 そして、水熱合成によりゼオライトを合成して多孔性支持体の細孔の内表面上にゼオライトからなる多孔性分離層を形成する際に、水熱合成温度は、135℃以下であることを必要とし、125℃以下であることが好ましく、120℃以下であることがより好ましく、115℃以下であることが更に好ましく、100℃以上であることが好ましい。また、水熱合成時間は、30時間以下であることを必要とし、28時間であることが好ましく、24時間以下であることがより好ましく、また、10時間以上であることが好ましく、20時間以上であることがより好ましい。なお、上記温度での水熱合成は、例えば、耐熱容器中の水性ゾル及び多孔性支持体を上記温度で加熱することで行うことができる。そして、耐圧容器中の水性ゾル及び多孔性支持体を加熱する方法としては、耐圧容器を熱風乾燥器に入れて加熱する方法や、耐圧容器にヒーターを直接取り付けて加熱する方法などが挙げられる。
[煮沸洗浄]
 多孔性支持体の細孔の内表面上に多孔性分離層を形成して得られた分離膜は、煮沸洗浄することが好ましい。その際、洗浄液としては、例えば、蒸留水を用いることができる。また、煮沸洗浄時間は、好ましくは10分以上2時間以下であり、より好ましくは30分以上1.5時間以下である。また、煮沸洗浄は、複数回(例えば、2~3回)行ってもよく、煮沸洗浄を複数回実施する場合における煮沸洗浄条件は、互いに同一としてもよいし、それぞれ異なるものとしてもよい。さらに、煮沸洗浄を行った後、必要に応じて乾燥処理を行ってもよく、煮沸洗浄後の分離膜の乾燥温度は、好ましくは70℃以上100℃以下である。
[焼成処理]
 また、多孔性支持体の細孔の内表面上に多孔性分離層を形成して得られた分離膜は、構造規定剤を除去するために、焼成処理を行うことが好ましい。焼成処理の条件は、特に限定されないが、昇温速度は、好ましくは0.1℃/分以上1℃/分以下であり、より好ましくは0.1℃/分以上0.5℃/分以下である。また、焼成温度は、好ましくは400℃以上800℃以下であり、より好ましくは400℃以上600℃以下である。さらに、降温速度は、好ましくは0.1℃/分以上1℃/分以下であり、より好ましくは0.1℃/分以上0.4℃/分以下である。そして、焼成時間(保持時間)は、好ましくは1時間以上30時間以下であり、より好ましくは5時間以上30時間以下である。
(炭化水素混合物の膜分離方法)
 上記本発明の分離膜の製造方法により製造し得る本発明の分離膜は、炭化水素混合物の膜分離に用いられる。本発明の分離膜を用いた炭化水素混合物の膜分離では、炭素数が等しい直鎖状炭化水素と、分岐状炭化水素及び/又は環状炭化水素とを含む炭化水素混合物から例えば直鎖状炭化水素を効率的に分離除去し、これにより、炭化水素混合物中における分岐状炭化水素及び/又は環状炭化水素の含有割合を高めることができる。具体的には、本発明の分離膜を用いた炭化水素混合物の膜分離では、炭化水素混合物を分離膜に通すことで、一部の成分(例えば、直鎖状炭化水素)を炭化水素混合物から分離除去することができる。
 なお、膜分離は、加温条件下で行うことが好ましい。具体的には、膜分離は、好ましくは20℃以上300℃以下、より好ましくは25℃以上250℃以下、さらに好ましくは50℃以上200℃以下の条件下で行ことが好ましい。また、膜分離を行う際の圧力条件は、特に限定されないが、非透過側と透過側との差圧(非透過側の圧力-透過側の圧力)を10kPa以上600kPa以下とすることが好ましく、50kPa以上300kPa以下とすることがより好ましい。
 以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」等は、特に断らない限り、質量基準である。
 実施例及び比較例において、ゼオライト種結晶の平均粒子径、多孔性支持体の平均細孔径、ゼオライト種結晶及び多孔性分離層のX線回折測定、透過流束F、分離係数α、及び分離性能維持率、分離膜の肉厚、破壊応力及び肉厚当たりの応力は、下記の方法で測定した。
<ゼオライト種結晶の平均粒子径>
 走査型電子顕微鏡(SEM)を使用し、ゼオライト種結晶20個の粒子径を測定した。そして、得られた測定値の平均値を算出し、ゼオライト種結晶の平均粒子径とした。
<多孔性支持体の平均細孔径>
 水銀ポロシメータ(Quantachrome社製、PoreMaster 60GT)を使用して、水銀圧入法により、多孔性支持体の平均細孔径を求めた。なお、水銀ポロシメータを使用した水銀圧入法による測定では、細孔径は、細孔を円筒形にモデル化して、Washburnの式(-4σcosθ=PD[式中、σは水銀の表面張力(N/m)を表し、θは接触角(deg)を表し、Pは圧力(Pa)を表し、Dは細孔の直径(m)を表す。])により求められる。
<ゼオライト種結晶及び多孔性分離層のX線回折測定>
(X線回折ピーク強度比及び結晶子サイズ)
 X線回折ピーク強度比及び結晶子サイズは、X線源としてCu・Kα線を備えるX線回折測定装置(リガク製「SmartLab」)により測定したX線回折データを基に、解析ソフト(リガク製「PDXL software」)にて算出した。
 基板面に平行な面方向の結晶配向性及び結晶子サイズを評価する際は、2θ/ωモードを選択し、X線強度45kV・200mA、角度域2θ=25~80°、走査速度0.12°/秒、サンプリング間隔0.02°の条件で、ZnO膜面の約5mm角を測定した。基板面に垂直な面方向を評価する際は、イン・プレーン測定(2θχ)モードを選択し、走査速度を0.48°/秒、サンプリング間隔を0.04°に変更して測定を行った。得られたX線回折パターンの解析に際しては、Kα2除去及びスムージング処理を行った。結晶子サイズの算出には、Scherrer法を用い、Scherrer定数を0.94とし、半値幅を適用した。
<透過流束F、分離係数α及び分離性能維持率>
 後述する膜分離試験の結果から、下記式(I)を用いて透過流束Fを算出した。また、下記式(II)を用いて分離係数αを算出した。さらに、試験開始後10分の時点におけるF×αの値を100%とした、以降のサンプリング時点におけるF×αの値の割合を算出し、分離性能維持率とした。
 F[kg/(m・h)]=W/(A×t)  ・・・(I)
 α=(Y/Ybc)/(X/Xbc) ・・・(II)
 なお、式(I)中、Wは、分離膜を透過した成分の質量[kg]であり、Aは、分離膜の有効面積[m]であり、tは、処理時間[時間]である。また、式(II)中、Xは、原料中の直鎖状炭化水素の含有割合[GC%]であり、Xbcは、原料中の分岐鎖状炭化水素及び環状炭化水素の含有割合[GC%]であり、Yは、透過側サンプル中の直鎖状炭化水素の含有割合[GC%]であり、Ybcは、透過側サンプル中の分岐鎖状炭化水素及び環状炭化水素の含有割合[GC%]である。
 また、透過側サンプルの取得にあたり、後述のように、サンプリング時間は10分間とした。試験開始10分後、1時間後~7時間後までの1時間毎の各時点、及び試験開始20時間後~100時間後までの10時間毎の各時点における上記各値はそれぞれ、かかる時点が、10分間のサンプリング時間の中間時点となるように取得した各サンプルを用いて算出した。
 分離係数αの値が大きく、透過流束Fの値が大きいほど、分離膜は分離効率に優れていることを意味する。また、分離性能維持率の値が高いほど、高い持続性で膜分離を行うことができることを意味する。
<分離膜の肉厚、破壊応力及び肉厚当たりの応力>
 分離膜の肉厚は、ノギスにより分離膜の任意の4点以上で測定した分離膜の肉厚の平均値とした。
 また、分離膜の破壊応力は、強度試験機(Mecmesin社製「TH3/500」)を用いて、多孔性支持体を縦に挟み、破壊された時の読み値から求めた。
 そして、上記で得られた分離膜の肉厚及び破壊応力から、分離膜の肉厚当たりの応力(=分離膜の破断応力[N]/分離膜肉厚[mm])を求めた。分離膜の肉厚当たりの応力が大きいほど、分離膜は機械的強度に優れる。
(実施例1)
<種結晶準備工程>
<<種結晶用水性ゾルの調製>>
 濃度22.5質量%のテトラプロピルアンモニウムヒドロキシド水溶液(東京化成工業社製)152.15g(構造規定剤としてのテトラプロピルアンモニウムヒドロキシド換算で34.23g)と、超純水48.44gとをマグネチックスターラーで混合した。さらに、シリカ源としてのテトラエトキシシラン(SIGMA-ALDLICH社製)99.41gを加えて、室温にて70分間マグネチックスターラーで混合することで、種結晶用水性ゾルを調製した。
<<ゼオライト種結晶の作製>>
 種結晶用水性ゾルをフッ素樹脂製内筒付ステンレス鋼製耐圧容器内に入れ、130℃の熱風乾燥器中で48時間反応(水熱合成)させた。次に、得られた反応液を遠心分離機(10000rpm)で10分間遠心分離することにより固液分離し、固形分を回収した。そして、回収した固形分を80℃の恒温乾燥器中で12時間乾燥し、次いで、得られた乾燥固体を乳鉢にて粉砕することにより、ゼオライト種結晶を得た。得られたゼオライト種結晶のX線回折測定を行い、X線回折パターンを得た。得られたゼオライト種結晶は、X線回折パターンにより、MFI型構造を有していることが確認された。なお、ゼオライト種結晶の平均粒子径は、400nmであった。
<種結晶付着工程>
 円筒状のシリコンカーバイド製多孔性支持体(外径12mm、内径9mm、長さ250mm、平均細孔径1.5μm)を超純水に10分間浸漬した。そして、超純水に浸漬した後の湿った多孔性支持体の外表面上に、上記にて得られたゼオライト種結晶0.08gを擦り付け、80℃の乾燥器中で12時間以上乾燥させることで、多孔性支持体の表面にゼオライト種結晶を付着させた。
<分離層形成工程>
<<多孔性分離層用水性ゾルAの調製>>
 濃度22.5%のテトラプロピルアンモニウムヒドロキシド水溶液(東京化成工業社製)4.99g(構造規定剤(I)としてのテトラプロピルアンモニウムヒドロキシド換算で1.12g)と、構造規定剤(II)としてのテトラプロピルアンモニウムブロミド(和光純薬社製)0.74gと、超純水238.79gとを、室温にて10分マグネチックスターラーで混合した。さらに、シリカ源としてテトラエトキシシラン(SIGMA-ALDLICH社製)6.71gを加えて、室温にて60分間マグネチックスターラーで混合することで、多孔性分離層用水性ゾルAを調製した。なお、多孔性分離層用水性ゾルAの組成は、モル比で、シリカ源:構造規定剤(I):構造規定剤(II):水=1:0.17:0.09:419であった。
<<多孔性分離層の形成>>
 上記にて得られた多孔性分離層用水性ゾルAをステンレス鋼製耐圧容器内に入れた。次に、種結晶付着工程にて得られたゼオライト種結晶を付着させた多孔性支持体を多孔性分離層用水性ゾルAに浸漬し、水熱合成温度を115℃、水熱合成時間を24時間として熱風乾燥器中で水熱合成を行った。それから、多孔性支持体に対し、洗浄液として蒸留水を使用して、105℃の温風乾燥機中で1時間の煮沸洗浄を2回行った。その後、多孔性支持体を80℃の恒温乾燥器で12時間乾燥させた。次いで、構造規定剤(I)(テトラプロピルアンモニウムヒドロキシド)及び構造規定剤(II)(テトラプロピルアンモニウムブロミド)を除去するために焼成を行い、分離膜を得た。なお、焼成条件は、昇温速度:0.25℃/分、焼成温度:500℃、焼成時間(保持時間):20時間、降温速度0.38℃/分とした。
 得られた分離膜のX線回折測定を行い、X線回折パターンを得た。X線回折パターンより、分離膜の多孔性支持体の細孔の内表面上に多孔性分離層が形成されていることが確認された。また、多孔性分離層はMFI型ゼオライトを含んでいることが確認された。
 また、得られた分離膜の肉厚、破壊応力及び肉厚当たりの応力を測定した。結果を表1に示す。さらに、得られた分離膜を使用し、図1に示すような概略構成を有する試験装置を用いて、膜分離試験を行った。
[試験装置]
 図1に示す試験装置100は、原料タンク101と、送液ポンプ102と、第1熱交換器103と、高沸点物除去装置104と、分離装置105と、第2熱交換器106と廃液タンク107とを備えている。なお、分離装置105は、円筒管に、上記にて得られた分離膜(図示せず)を組み付けることにより構成されている。また、図1に示す試験装置100は、三方弁110を介して分離装置105に接続されたコールドトラップ111及びサンプリング用コールドトラップ112と、三方弁114を介してコールドトラップ111及びコールドトラップ112の下流側に接続された減圧ポンプ115とを備えている。さらに、試験装置100は、原料タンク101と送液ポンプ102との間に、サンプリング用弁116を備えており、また、分離装置105の下流側に、背圧弁108及び圧力計109を備えている。
 ここで、図1に示す試験装置100では、原料タンク101に充填された原料が、送液ポンプ102にて第1熱交換器103へと送られる。この際、膜分離工程でガス透過法を実施する場合には、非透過側の圧力条件下で原料が液化しない範囲の温度に加温されうる。そして、原料は、気相にて分離装置105へと送られ、分離装置105に組み付けられた分離膜により成分の分離(膜分離)が行われる。ここで、試験装置100においては、減圧ポンプ115により分離膜の透過側は減圧状態とされており、分離膜を透過した成分は、三方弁110を介して接続されたコールドトラップ111又はサンプリング用コールドトラップ112へと送られる。一方、分離装置105に組み付けられた分離膜を透過しなかった非透過成分は、第2熱交換器106で冷却され、廃液タンク107に移送される。なお、試験装置100では、分離装置105の下流側に設けた背圧弁108及び圧力計109により、背圧を調整している。そして、試験装置100では、三方弁110,114を切り替えることで、分離装置105に組み付けられた分離膜を透過した透過成分を、透過側のサンプルとして抽出することができる。
[膜分離]
 図1に示す試験装置100を用いた膜分離試験は、以下のようにして実施した。
 具体的には、まず、分離対象として、ピペリレンの含有割合が62質量%以上、環状炭化水素の含有割合が35質量%以上である炭化水素混合物を原料タンク101に充填し、送液ポンプ102にて、炭化水素混合物を70℃に加温された第1熱交換器103を介して、気相にて分離装置105に供給し、次いで、第2熱交換器106により凝縮し、廃液タンク107に移送する処理を開始した。そして、原料移送開始後、系内の温度が定常状態に達するまで運転を行った。系内の温度が定常状態に達した後、背圧弁108により非透過側を10kPaに加圧するとともに、減圧ポンプ115を起動することで透過側(分離装置105内における分離膜の透過側の領域、コールドトラップ111、及びコールドトラップ112)を-100kPaに減圧した。系内の温度、圧力が安定したことを確認した後、透過側の三方弁110を開くことで、膜分離を開始した。すなわち、温度70℃、非透過側と透過側の差圧110kPaの条件で膜分離を行った。
 そして、膜分離を開始した後、5分を経過した時点において、透過側のサンプルの抽出を開始した。具体的には、三方弁110,114を用いて、透過側の流路をコールドトラップ111側からサンプリング用コールドトラップ112側に切替えて、サンプリング用コールドトラップ112にて透過側のサンプルを凝縮液として捕集することにより抽出した。この際、サンプリング時間は10分間とした。
 膜分離で得られた、透過側のサンプルについて、重量を秤量するとともに、ガスクロマトグラフにて、ピペリレン濃度を測定した。その結果、膜分離で得られた透過側のサンプルにおけるピペリレン濃度は95.3質量%であった。
 なお、ピペリレン濃度を測定した際、ガスクロマトグラフを用いた測定の測定条件は以下のとおりであった。
・装置: 島津製作所社製GC-2025
・カラム: アジレント社製 Inertcap 60m
・カラム温度:40℃~280℃
・インジェクション温度:300℃
・キャリヤーガス:窒素
・検出器:水素炎イオン化型検出器
 膜分離で得られたサンプルについて、透過流束F、分離係数α、及び分離性能維持率を算出した。結果を表2に示す。
(比較例1)
 多孔性支持体として、円筒状のシリコンカーバイド製多孔性支持体に替えて、円筒状のムライト製多孔性支持体(ニッカトー社製、商品名「PMチューブ」、外径12mm、内径9mm、長さ100mm、平均細孔径1.4μm、気孔率42.7%)を用いた以外は実施例1と同様の操作を行い、分離膜を得た。
 得られた分離膜をSEMで観察した結果、多孔性支持体の細孔の内表面上に層厚が10nmの多孔性分離層が形成されていることが確認された。また、多孔性分離層のX線回折測定を行い、X線回折パターンを得た。得られたX線回折パターンより、多孔性分離層はMFI型ゼオライトを含んでいることが確認された。
 また、実施例1と同様にして、得られた分離膜の肉厚、破壊応力及び肉厚当たりの応力を測定した。結果を表1に示す。さらに、得られた分離膜を使用し、実施例1と同様の試験装置を用いて、実施例1と同様の炭化水素混合物の膜分離試験を行った。その結果、膜分離で得られた透過側のサンプルにおけるピペレリン濃度は89.7質量%であった。
 また、実施例1と同様にして、膜分離で得られたサンプルについて、透過流束F、分離係数α、及び分離性能維持率を算出した。結果を表3に示す。
(比較例2)
 多孔性支持体として、円筒状のシリコンカーバイド製多孔性支持体に替えて、円筒状のシラスポーラスガラス製多孔性支持体(SPGテクノ社製、商品名「SPG膜」、外径10mm、内径8.8mm、長さ100mm、平均細孔径1.5μm)を用いた以外は実施例1と同様の操作を行い、分離膜を得た。
 得られた分離膜をSEMで観察した結果、多孔性支持体の細孔の内表面上に層厚が7nmの多孔性分離層が形成されていることが確認された。また、多孔性分離層のX線回折測定を行い、X線回折パターンを得た。得られたX線回折パターンより、多孔性分離層はMFI型ゼオライトを含んでいることが確認された。
 また、実施例1と同様にして、得られた分離膜の肉厚、破壊応力及び肉厚当たりの応力を測定した。結果を表1に示す。さらに、得られた分離膜を使用し、実施例1と同様の試験装置を用いて、実施例1と同様の炭化水素混合物の膜分離試験を行った。その結果、膜分離で得られた透過側のサンプルにおけるピペレリン濃度は94.2質量%であった。
 また、実施例1と同様にして、膜分離で得られたサンプルについて、透過流束F、分離係数α及び分離性能維持率を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4より以下のことがわかる。
 実施例1と比較例1及び比較例2との対比から、実施例1によれば、比較例1及び比較例2よりも機械的強度に優れた分離膜が得られることがわかる。
 実施例1と比較例1及び比較例2との対比から、実施例1の分離膜は、比較例1及び比較例2の分離膜と比較して、長期間にわたって優れた分離性能を維持することができることが分かる。
 本発明によれば、機械的強度に優れるとともに、炭化水素混合物の膜分離に使用した際に、長期間にわたって優れた分離性能を維持することができる分離膜と、当該分離膜を効率的に製造する方法を提供することができる。
100 試験装置
101 原料タンク
102 送液ポンプ
103 第1熱交換器
104 高沸点物除去装置
105 分離装置
106 第2熱交換器
107 廃液タンク
108 背圧弁
109 圧力計
110,114 三方弁
111 コールドトラップ
112 サンプリング用コールドトラップ
115 減圧ポンプ
116 サンプリング用弁

Claims (4)

  1.  炭化水素混合物の膜分離に用いられる分離膜であって、
     複数の細孔を有する多孔性支持体と、
     前記細孔の内表面上に形成された多孔性分離層とを備え、
     前記多孔性支持体はシリコンカーバイドを主成分とする多孔質体からなり、
     前記多孔性分離層はゼオライトからなる、分離膜。
  2.  炭化水素混合物の膜分離に用いられる分離膜の製造方法であって、
     ゼオライト種結晶を付着させた複数の細孔を有する多孔性支持体を、シリカ源及び構造規定剤を含む水性ゾルに浸漬し、水熱合成によりゼオライトを合成して多孔性分離層を形成する分離層形成工程を含み、
     前記多孔性支持体はシリコンカーバイドを主成分とする多孔質体からなり、
     前記水熱合成を水熱合成温度135℃以下、水熱合成時間30時間以下で行うことで前記細孔の内表面上に前記多孔性分離層を形成する、分離膜の製造方法。
  3.  前記水熱合成温度が115℃以下である、請求項2に記載の分離膜の製造方法。
  4.  前記水熱合成時間が24時間以下である、請求項2又は3に記載の分離膜の製造方法。
     
PCT/JP2022/011421 2021-03-26 2022-03-14 分離膜及びその製造方法 WO2022202454A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023509033A JPWO2022202454A1 (ja) 2021-03-26 2022-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054092 2021-03-26
JP2021-054092 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202454A1 true WO2022202454A1 (ja) 2022-09-29

Family

ID=83394933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011421 WO2022202454A1 (ja) 2021-03-26 2022-03-14 分離膜及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2022202454A1 (ja)
TW (1) TW202306636A (ja)
WO (1) WO2022202454A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073956A (ja) * 2014-10-08 2016-05-12 学校法人早稲田大学 ノルマルパラフィンの分離方法
WO2016121377A1 (ja) * 2015-01-27 2016-08-04 日本ゼオン株式会社 分離膜およびその製造方法
WO2018173929A1 (ja) * 2017-03-23 2018-09-27 Jxtgエネルギー株式会社 炭化水素化合物の分離方法
WO2020050137A1 (ja) * 2018-09-05 2020-03-12 日本ゼオン株式会社 ピペリレンの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073956A (ja) * 2014-10-08 2016-05-12 学校法人早稲田大学 ノルマルパラフィンの分離方法
WO2016121377A1 (ja) * 2015-01-27 2016-08-04 日本ゼオン株式会社 分離膜およびその製造方法
WO2018173929A1 (ja) * 2017-03-23 2018-09-27 Jxtgエネルギー株式会社 炭化水素化合物の分離方法
WO2020050137A1 (ja) * 2018-09-05 2020-03-12 日本ゼオン株式会社 ピペリレンの製造方法

Also Published As

Publication number Publication date
JPWO2022202454A1 (ja) 2022-09-29
TW202306636A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
EP3225297B1 (en) Use of a porous support-cha zeolite membrane composite for separation of a gas mixture
WO2016121377A1 (ja) 分離膜およびその製造方法
JP6252249B2 (ja) 膜分離方法
JP7111094B2 (ja) 分離膜及び分離膜の製造方法
CN108697997B (zh) 沸石分离膜及其制造方法
JP5734577B2 (ja) ゼオライト分離膜、および成分分離方法
JP5087644B2 (ja) Zsm−5型ゼオライト膜の製造方法
JP4751996B2 (ja) Zsm−5型ゼオライト膜の製造方法
JP2016174996A (ja) ゼオライト分離膜および分離モジュール
Zhang et al. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures
JP2003088735A (ja) ゼオライト積層複合体及びその製造方法
JP2008188564A (ja) 有機混合溶液の分離膜及びその製造方法
JP2002348579A (ja) ゼオライト系分離膜を用いた炭化水素混合物の分離方法、および分離して炭化水素を得る方法
WO2017081841A1 (ja) 結晶性シリカ膜複合体およびその製造方法、並びに流体分離方法
JP7321260B2 (ja) ゼオライト膜複合体およびその製造方法、並びに流体分離方法
WO2022202454A1 (ja) 分離膜及びその製造方法
WO2020050137A1 (ja) ピペリレンの製造方法
Li et al. Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol
JP2012081436A (ja) 脱水素反応の促進方法、脱水素反応器、及びケミカルヒートポンプ
JP7464037B2 (ja) 分離膜製造方法
CN113474077B (zh) 支链二烯烃的分离方法和制造方法
JP7243356B2 (ja) ゼオライト分離膜、およびそれを用いた分離方法
JP7468510B2 (ja) ゼオライト膜複合体、並びにそれを用いた分岐鎖状ジオレフィンの分離方法及び製造方法
JP2012083060A (ja) ケミカルヒートポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509033

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775245

Country of ref document: EP

Kind code of ref document: A1