WO2019225286A1 - パターン転写物の製造方法 - Google Patents

パターン転写物の製造方法 Download PDF

Info

Publication number
WO2019225286A1
WO2019225286A1 PCT/JP2019/017631 JP2019017631W WO2019225286A1 WO 2019225286 A1 WO2019225286 A1 WO 2019225286A1 JP 2019017631 W JP2019017631 W JP 2019017631W WO 2019225286 A1 WO2019225286 A1 WO 2019225286A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
pattern
adhesiveness
transferred
room temperature
Prior art date
Application number
PCT/JP2019/017631
Other languages
English (en)
French (fr)
Inventor
成樹 志野
寛彦 後閑
徳永 幸雄
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018124520A external-priority patent/JP2020004902A/ja
Priority claimed from JP2018126829A external-priority patent/JP2020009805A/ja
Priority claimed from JP2018131961A external-priority patent/JP2020009705A/ja
Priority claimed from JP2018138334A external-priority patent/JP7144229B2/ja
Priority claimed from JP2018149474A external-priority patent/JP2019206164A/ja
Priority claimed from JP2018149372A external-priority patent/JP2020024874A/ja
Priority claimed from JP2018155255A external-priority patent/JP2020029020A/ja
Priority claimed from JP2018161857A external-priority patent/JP7232595B2/ja
Priority claimed from JP2018161856A external-priority patent/JP7232594B2/ja
Priority claimed from JP2018171163A external-priority patent/JP2020043275A/ja
Priority claimed from JP2018171164A external-priority patent/JP2020043276A/ja
Priority claimed from JP2019059100A external-priority patent/JP7077261B2/ja
Priority to EP19808407.1A priority Critical patent/EP3815926A4/en
Priority to KR1020207035166A priority patent/KR20210006436A/ko
Priority to US17/058,523 priority patent/US20210219433A1/en
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Publication of WO2019225286A1 publication Critical patent/WO2019225286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/025Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5227Macromolecular coatings characterised by organic non-macromolecular additives, e.g. UV-absorbers, plasticisers, surfactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5236Macromolecular coatings characterised by the use of natural gums, of proteins, e.g. gelatins, or of macromolecular carbohydrates, e.g. cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5263Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5263Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B41M5/5272Polyesters; Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5263Macromolecular coatings characterised by the use of polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B41M5/5281Polyurethanes or polyureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating

Definitions

  • the present invention relates to a method for producing a pattern transfer product by transferring a transfer pattern formed on a transfer substrate from a transfer substrate to a transfer target.
  • Insulating resin compositions containing these inorganic fillers and alkali-insoluble resins have excellent physical properties such as heat resistance, dielectric properties, mechanical strength, and chemical resistance, and are therefore used on the outer layer surface of conductive materials. It is widely used as a constituent member of conductive materials such as solder resists and interlayer insulating materials used for multilayer build-up wiring boards.
  • a method for forming a conductive pattern on the adhesive insulating resin layer surface As a method for forming a conductive pattern on the adhesive insulating resin layer surface, a method using photolithography is known. As such a method, for example, after forming a metal layer on the adhesive insulating resin layer, providing a photoresist layer on the metal layer, forming a resist pattern, and then etching and removing the metal layer. The law is known. However, the method using photolithography has a problem that the process is complicated. Therefore, a method for easily forming a conductive pattern on an adhesive insulating resin layer is desired.
  • a method for easily forming a conductive pattern on an adhesive insulating resin layer As a method for easily forming a conductive pattern on an adhesive insulating resin layer, a method of printing ink containing conductive particles on the adhesive insulating resin layer is known. As such a method, for example, in Patent Document 1, a conductive paste is screen printed on an adhesive insulating resin layer, and then the conductive paste is cured to form a conductive pattern on the adhesive insulating resin layer. A method of forming is disclosed. However, in the method of screen printing a conductive paste on the adhesive insulating resin layer, the adhesiveness between the adhesive insulating resin layer and the cured conductive pattern may be insufficient.
  • Patent Document 2 discloses inorganic particles having an average particle diameter of 300 nm or less on a film serving as a substrate, and 5 to 50% by mass of a binder with respect to the inorganic particles.
  • An ink-receiving layer transfer sheet for ink-jet recording which has an ink-receiving layer contained therein and further has an adhesive layer made of a thermoplastic resin having a glass transition point of 0 to 50 ° C. on the ink-receiving layer.
  • the conductive substrate is formed on the adhesive insulating resin layer in the conductive material using the transfer substrate disclosed in Patent Document 2, the conductive pattern is heated on the adhesive insulating resin layer in the transfer step. By pressure bonding, it is possible to improve the adhesion between the adhesive insulating resin layer and the conductive pattern.
  • Patent Document 3 discloses that a dispersion liquid containing conductive metal particles having an average particle diameter of 1 to 100 nm is printed on a releasable heat-resistant substrate by an ink jet recording method and formed to have a width of 200 ⁇ m or less.
  • the releasable heat-resistant substrate does not have an ink receiving layer, there is a problem in that it is easy to cause repelling when the dispersion is printed and it is difficult to form a conductive pattern.
  • Patent Document 4 discloses a method of developing conductivity and inorganic fine particles characterized in that metal ultrafine particles and a compound having halogen in the molecule by ionic bonding are allowed to act to obtain conductivity on a substrate.
  • a substrate having a porous layer composed of 80% by mass or less of a binder with respect to the inorganic fine particles as an ink receiving layer is disclosed.
  • the substrate is used as a substrate for transfer, for example, an adhesive layer is used as an adhesive surface.
  • the pressure-sensitive adhesive adsorbs to the porous layer and adheres very firmly, and therefore the pressure-sensitive adhesive layer cannot be peeled off from the porous layer or is peeled off. Further, the porous layer was bound to the pressure-sensitive adhesive layer, and the conductive pattern could not be successfully transferred from the substrate to the transfer target.
  • Patent Document 5 a porous layer for absorbing and removing a solvent component such as water or an organic solvent contained in an ink or paste containing metal fine particles is provided on a support, and a colloidal layer is formed on the porous layer.
  • a conductive pattern is formed with an ink or paste containing metal fine particles on a base material provided with a layer containing silica as a main component, and the adhesive surface of the transfer target is provided with an adhesive layer on the support.
  • the manufacturing method of the electroconductive pattern which transfers an electroconductive pattern is disclosed. However, the conductive pattern obtained by this method has been required to be further improved with respect to the adhesion to the transfer target.
  • Patent Document 6 discloses a method of forming a metal layer by irradiating a surface of a carbon fiber reinforced resin molded product with low temperature plasma to perform plating. Therefore, the process is complicated and complicated.
  • a conductive member can be manufactured by sticking to the housing
  • a hot stamp is known in which a metal foil is transferred to the surface of the transfer target.
  • Hot stamping is a method in which a metal foil having a sheet-like adhesive layer is placed on the surface of a transfer object, and the metal foil is broken along the mold by applying pressure with a heated mold from above. Is used to transfer the metal foil of the pattern of the mold to the transfer object.
  • hot stamping since there is a pressurizing process using a mold, it is necessary to manufacture the mold separately for each pattern design, and there is a problem that the manufacturing cost is high.
  • Patent Document 7 a thermal head is used instead of using a mold, and a metal vapor deposition layer is temporarily transferred from a metal vapor deposition transfer sheet to a transfer foil in an arbitrary pattern.
  • a method for obtaining a metallic decoration member that does not require a mold by transferring to a metal is disclosed, a transfer foil as an intermediate is necessary, and the process is complicated.
  • Patent Document 8 a metal foil is bonded to the surface of a transfer object, a resist layer is formed in an arbitrary pattern thereon by UV inkjet printing, and the resist is removed after etching, thereby eliminating the need for a mold.
  • Patent Document 9 a decorative ink containing silver ⁇ -ketocarboxylate is printed on a transfer medium using an inkjet method or a dispenser, and then heated to decompose the silver ⁇ -ketocarboxylate into metallic silver.
  • a method for obtaining a metallic decorative member that does not require a mold, but if the transfer object is non-permeable, bleeding of the decorative ink becomes a problem, and the transfer object is also a problem.
  • a method in which an image pattern is formed and held in advance on a transfer substrate, and this is transferred to a transfer target.
  • a transfer substrate For example, as in Patent Document 2, after a pattern made of a colorant is formed on a transfer substrate with an ink jet printer, the transfer substrate is heated and pressure-bonded to the surface of the transfer object, whereby the pattern is applied to the transfer object.
  • a method of transferring is already used. However, in this method, since transfer is performed and the ink receiving layer is transferred to the transfer target, a transfer pattern with high definition and high color development may not be obtained.
  • An object of the present invention is to provide a method for producing a pattern transfer product, in which the process is simple and a pattern transfer product having good adhesion between the transferred pattern and the transfer object can be obtained.
  • the object of the present invention described above is basically achieved by the following invention. 1. Forming a transfer pattern on the dissociation layer of the transfer substrate having at least a porous layer on the support and a dissociation layer on the porous layer; and A transfer step selected from the step of transferring the transfer pattern and the step of transferring the transfer pattern to the transfer medium via the adhesive substance, and the step of removing the adhesiveness of the transfer target surface or the adhesive substance.
  • the transferred body having adhesiveness on the surface is a transferred body having adhesiveness at room temperature, and the step of removing the adhesiveness on the surface of the transferred body is a step of heat-curing the transferred body.
  • a method for producing a pattern transfer product 3.
  • the transferred object having adhesiveness on the surface is a transferred object that does not have adhesiveness at room temperature and generates adhesiveness by heating, and the process of removing the adhesiveness on the surface of the transferred object is heat-curing the transferred object 2.
  • the transferred object having adhesiveness on the surface is a transferred object that does not have adhesiveness at room temperature and generates adhesiveness by heating.
  • the process of removing the adhesiveness on the surface of the transferred object 2.
  • the substance having adhesiveness is a substance that does not have adhesiveness at room temperature and produces adhesiveness by heating, and the process of removing the adhesiveness of the adhesive substance is a process of allowing the transferred object to cool to room temperature.
  • a method for producing a transcript is a method that does not have adhesiveness at room temperature and produces adhesiveness by heating, and the process of removing the adhesiveness of the adhesive substance is a process of allowing the transferred object to cool to room temperature. 2.
  • the present invention it is possible to provide a method for producing a pattern transfer product, in which the process is simple and a pattern transfer product having good adhesion between the transferred pattern and the transfer object can be obtained.
  • Schematic cross-sectional view of a transfer substrate having a transfer pattern according to the present invention Schematic sectional view when the transfer substrate on which the transfer pattern in the present invention is formed and the transfer target are bonded together
  • Schematic sectional view of the pattern transfer product in the present invention Another schematic sectional view of the pattern transfer product in the present invention
  • a transfer substrate 10 having a porous layer 2 and a dissociation layer 3 on a support 1 is prepared (FIG. 1).
  • the transfer pattern 4 is printed on the dissociation layer 3 of the transfer substrate 10 by using, for example, an ink jet printer (FIG. 1).
  • the transfer pattern 4 forming surface of the substrate for transfer 10 is bonded to the transfer body 5 having adhesiveness on the surface at normal temperature or heated to a temperature at which the surface exhibits adhesiveness (FIG. 2). .
  • the substrate for transfer 10 bonded from the body to be transferred 5 is removed, and when the body to be transferred 5 has adhesive strength at room temperature, the body to be transferred 5 is further removed.
  • the pattern transfer product of the present invention such as the transfer target 5 (FIG. 3 or 4) onto which the transfer pattern 4 has been transferred can be produced.
  • the material 6 is adhesive to the transfer pattern 4 forming surface of the transfer substrate 10 and the transfer target 5 which are formed in the same manner as described above via the material 6 that does not have adhesiveness at room temperature and generates adhesiveness when heated. Is heated and bonded to a temperature (FIG. 5). Then, after passing through the process of standing to cool to room temperature, the transfer base material 10 is removed from the transfer body 5 to remove the transfer substrate 4 to which the transfer pattern 4 has been transferred (FIG. 6). A pattern transfer can be produced.
  • the step of removing the adhesiveness of the surface of the transferred body such as heat curing and cooling and the step of removing the transfer substrate bonded from the transferred body may be mixed.
  • the transfer substrate in the present invention is a substrate having at least a porous layer on a support and a dissociation layer on the porous layer.
  • the transfer substrate in the present invention temporarily holds the transfer pattern on the dissociation layer, and then transfers the transfer pattern to the transfer target having adhesiveness on the surface, or to the transfer target via an adhesive substance. It is used for the purpose of transferring.
  • the porous layer and the dissociation layer may be provided on both sides of the support, if necessary.
  • Examples of the support that the transfer substrate has include polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, and polyester resins such as polyethylene terephthalate and polyethylene naphthalate.
  • polyolefin resins such as polyethylene and polypropylene
  • polyvinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate.
  • Epoxy resin polyarylate, polysulfone, polyethersulfone, fluorine resin, phenoxy resin, triacetyl cellulose, polyimide, polyphenylene sulfide, polycarbonate, acrylic resin represented by polymethyl methacrylate, cellophane, nylon, polystyrene resin, ABS resin Films made of various resins such as quartz glass, alkali-free glass, crystallized transparent glass, Pyrex (registered trademark) and other glass, paper, nonwoven fabric, cloth, various metals, various ceramics Scan and the like, but is not limited thereto. Further, these supports can be appropriately combined depending on the application. For example, polyolefin resin-coated paper in which paper is laminated with polyolefin resin can be used.
  • a film made of paper, polyolefin resin-coated paper, and polyolefin resin, triacetyl cellulose, polyethylene terephthalate, or polycarbonate is preferable.
  • a non-liquid-absorbing support such as a film made of various resins, glass, polyolefin resin-coated paper or the like
  • the adhesion between the non-liquid-absorbing support and the porous layer is improved. Therefore, it is preferable to provide a known undercoat layer made of gelatin, various urethane resins, polyvinyl alcohol or the like between the support and the porous layer.
  • a polyethylene terephthalate film is commercially available with an undercoat layer provided in advance as an easy adhesion treatment product, and this may be used. It is also preferable to improve the wettability of the support by corona treatment or plasma treatment.
  • the solid coating amount of the undercoat layer is preferably 0.5 g / m 2 or less, more preferably 0.3 g / m 2 or less, still more preferably 0.1 g / m 2 or less.
  • the lower limit is preferably 0.01 g / m 2 or more.
  • the porous layer of the transfer substrate is a solvent component such as an ink or paste containing conductive fine particles suitable for forming a transfer pattern, which will be described later, or water or an organic solvent contained in an ink containing a pigment colorant. Responsible for absorbing the function.
  • a solvent component such as an ink or paste containing conductive fine particles suitable for forming a transfer pattern, which will be described later, or water or an organic solvent contained in an ink containing a pigment colorant.
  • the porous layer of the transfer substrate is preferably a layer mainly containing fine particles from the viewpoint of the absorbability of the solvent component contained in the ink or the like used for forming the transfer pattern.
  • Containing mainly fine particles means that the proportion of fine particles in the total solid content of the porous layer is 50% by mass or more, and preferably 70% by mass or more.
  • fine particles used known fine particles can be widely used.
  • the organic fine particles include a spherical shape or an amorphous shape made of at least one kind of resin as described above, and non-porous or porous organic fine particles.
  • Two or more kinds of the inorganic fine particles described above can be used in combination, two or more kinds of organic fine particles can be used in combination, or one or more kinds of inorganic fine particles and one or more kinds of organic fine particles can be used in combination.
  • inorganic fine particles are preferably used from the viewpoint of absorbability of the solvent component, and light calcium carbonate, heavy calcium carbonate, kaolin, talc, magnesium carbonate, amorphous synthetic silica, alumina, and alumina hydrate are included. More preferred are amorphous synthetic silica, alumina, and alumina hydrate.
  • the transfer substrate in the present invention requires flexibility, such as when the transfer target has a curved surface, it is particularly preferable to use alumina hydrate.
  • Amorphous synthetic silica can be roughly classified into wet method silica, gas phase method silica and others depending on the production method.
  • Precipitated silica is produced by reacting sodium silicate and sulfuric acid under alkaline conditions, and the silica particles that have grown are agglomerated and settled, and are then commercialized through filtration, water washing, drying, pulverization and classification.
  • Precipitated silica is, for example, from Tosoh Silica Co., Ltd. as nip seal (registered trademark), from Maruo Calcium Co., Ltd. as Toxeal (registered trademark), as fine seal (registered trademark), from Mizusawa Chemical Co., Ltd. (Registered trademark).
  • Gel silica is produced by reacting sodium silicate and sulfuric acid under acidic conditions. During the ripening, the fine particles dissolve and reprecipitate so as to bind other primary particles, so that the distinct primary particles disappear and form relatively hard aggregated particles having an internal void structure.
  • the gel method silica is, for example, from Tosoh Silica Co., Ltd. as Nipgel (registered trademark), GCP Japan Co., Ltd. as Syloid (registered trademark), Sirojet (registered trademark), Mizusawa Chemical Industry Co., Ltd. as Mizukasil It is commercially available.
  • precipitation method silica or gel method silica is preferably used, and precipitation method silica is more preferable.
  • the average primary particle diameter is preferably 50 nm or less, preferably 3 to 40 nm, and the average aggregated particle diameter is preferably 1 to 50 ⁇ m. It is more preferable to disperse wet silica particles having an average aggregate particle diameter of 5 to 50 ⁇ m to an average secondary particle diameter of 500 nm or less.
  • the average secondary particle size of the dispersed wet process silica is more preferably 10 to 300 nm, and still more preferably 20 to 200 nm.
  • a wet dispersion method in which wet-process silica mixed with an aqueous medium is mechanically pulverized is preferably used.
  • a media mill such as a bead mill is preferably used.
  • the bead mill is for pulverizing the pigment by collision between the beads filled in the sealed vessel and the pigment, as a dyno mill from Willy et Bacofen, as a Glen Mill (registered trademark) from Asada Tekko Co., Ltd. It is commercially available as Star Mill (registered trademark) from Ashizawa Finetech Co., Ltd.
  • the wet process silica is preferably dispersed using a media mill or the like and then further dispersed using a pressure disperser such as a high pressure homogenizer or an ultra high pressure homogenizer, an ultrasonic disperser, a thin film swirl disperser, or the like.
  • the average primary particle diameter of the fine particles referred to in the present invention means that the diameter of a circle equal to the projected area of each of the 100 primary particles existing within a certain area by observing the fine particles with an electron microscope is the average particle diameter. Is what we asked for.
  • the average secondary particle diameter of the fine particles can be determined by observation with an electron microscope, but for simplicity, the number median can be obtained using a laser scattering type particle size distribution analyzer (for example, LA910 manufactured by Horiba, Ltd.). It can be measured as a diameter.
  • the average agglomerated particle diameter of the wet process silica indicates an average particle diameter in a state of being supplied as a powder, and can be determined by, for example, a Coulter counter method.
  • Vapor phase silica is also called a dry method as opposed to a wet method, and is generally made by a flame hydrolysis method. Specifically, a method of making silicon tetrachloride by burning with hydrogen and oxygen is generally known, but silanes such as methyltrichlorosilane and trichlorosilane can be used alone or tetrachlorosilane instead of silicon tetrachloride. It can be used in a mixed state with silicon. Vapor phase silica is commercially available from Nippon Aerosil Co., Ltd. as Aerosil (registered trademark), and from Tokuyama Co., Ltd. as Leorosil (registered trademark).
  • the average primary particle diameter is preferably 40 nm or less, and more preferably 15 nm or less. More preferably, the average primary particle diameter is 3 to 15 nm and the specific surface area by the BET method is 200 m 2 / g or more (preferably 250 to 500 m 2 / g).
  • the BET method referred to in the present invention is one of the powder surface area measurement methods by the gas phase adsorption method, and is a method for obtaining the total surface area, that is, the specific surface area of a 1 g sample from the adsorption isotherm.
  • nitrogen gas is often used as the adsorbed gas, and the most frequently used method is to measure the amount of adsorption from the change in pressure or volume of the gas to be adsorbed.
  • the most prominent expression for representing the isotherm of multimolecular adsorption is the Brunauer, Emmett, and Teller equation, called the BET equation, which is widely used for determining the surface area of powders.
  • the adsorption amount of the adsorbed gas is obtained based on the BET equation, and the surface area is obtained by multiplying the adsorption amount by the area occupied by one adsorbed molecule on the adsorption surface.
  • vapor phase method silica Even when vapor phase method silica is used, it is preferable to disperse particles of vapor phase method silica with an average secondary particle diameter of 500 nm or less, as with wet method silica.
  • the average secondary particle diameter of the dispersed vapor phase method silica is more preferably 10 to 300 nm, still more preferably 20 to 200 nm.
  • a dispersion method pre-mixing a dispersion medium mainly composed of gas phase silica and water by ordinary propeller stirring, turbine type stirring, homomixer type stirring, etc., and then a media mill such as a ball mill, a bead mill, a sand grinder, It is preferable to perform dispersion using a pressure disperser such as a high-pressure homogenizer or an ultra-high-pressure homogenizer, an ultrasonic disperser, a thin film swirl disperser, or the like.
  • a pressure disperser such as a high-pressure homogenizer or an ultra-high-pressure homogenizer, an ultrasonic disperser, a thin film swirl disperser, or the like.
  • the porous layer is formed by applying the coating liquid containing the fine particles described above on the support and drying it.
  • a coating solution it is preferable to produce a slurry containing wet-process silica or vapor-phase process silica having an average secondary particle size of 500 nm or less.
  • concentration of the slurry and the dispersion stability are improved.
  • various known methods may be used. For example, a method of dispersing silica particles in the presence of an alkaline compound described in JP-A Nos.
  • a method of dispersing silica particles in the presence of a cationic compound examples thereof include a method of dispersing silica particles in the presence of a coupling agent, and a method of dispersing silica particles in the presence of a cationic compound is more preferred.
  • Examples of the cationic compound used for dispersion of the wet process silica or gas phase process silica include polyethyleneimine, polydiallylamine, a polymer having a structural unit derived from a diallylamine derivative, a polyallylamine, an alkylamine polymer, and a primary to tertiary amino acid.
  • a polymer having a group or a quaternary ammonium base is preferably used.
  • a polymer having a structural unit derived from a diallylamine derivative is preferably used.
  • the molecular weight of these cationic polymers is preferably about 2,000 to 100,000, more preferably about 2,000 to 30,000.
  • the alumina preferably contained in the porous layer is preferably ⁇ -alumina, which is a ⁇ -type crystal of aluminum oxide, and more preferably a ⁇ group crystal.
  • ⁇ -alumina exists in which the primary particle size is reduced to about 10 nm, usually secondary particles are formed, and the particle size of secondary particle crystals is from several thousand nm to several tens of thousands nm.
  • a secondary particle crystal obtained by pulverizing an average secondary particle diameter to preferably 500 nm or less, more preferably about 20 to 300 nm using an ultrasonic disperser, a high-pressure homogenizer, a counter collision type jet pulverizer, or the like can be used.
  • the alumina hydrate is generally obtained by a known production method such as hydrolysis of an aluminum alkoxide such as aluminum isopropoxide, neutralization of an aluminum salt with an alkali, hydrolysis of an aluminate.
  • the average secondary particle size of the alumina hydrate is preferably 500 nm or less, more preferably 20 to 300 nm.
  • the above-mentioned alumina and hydrated alumina preferably contained in the porous layer are preferably used in the form of a dispersion dispersed by a known dispersing agent such as acetic acid, lactic acid, formic acid or nitric acid.
  • the porous layer preferably contains a resin binder together with the fine particles described above.
  • the resin binder include polyvinyl alcohol, silanol-modified polyvinyl alcohol, oxidized starch, etherified starch, cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose, casein, gelatin, soybean protein and the like.
  • conjugated diene copolymer latexes such as styrene-butadiene copolymers and methyl methacrylate-butadiene copolymers, or functional group-modified polymer latexes with functional group-containing monomers such as carboxyl groups of these various polymers. Etc.
  • aqueous adhesives such as thermosetting synthetic resins such as melamine resin and urea resin, and synthetic resin systems such as polymethyl methacrylate, polyurethane resin, unsaturated polyester resin, vinyl chloride-vinyl acetate copolymer, polyvinyl butyral, alkyd resin, etc.
  • An adhesive etc. can be mentioned, These can be used individually or in mixture.
  • the use of known natural or synthetic resin binders alone or in combination is not particularly limited.
  • polyvinyl alcohol or silanol-modified polyvinyl alcohol is preferable, and particularly preferable is partially saponified polyvinyl alcohol having a saponification degree of 80% or more, completely saponified polyvinyl alcohol, or silanol-modified polyvinyl alcohol.
  • the average degree of polymerization of polyvinyl alcohol is preferably 200 to 5,000.
  • the content of the resin binder with respect to the fine particles is not particularly limited, but in order to form a porous layer, the content of the resin binder is preferably 8 to 80% by mass with respect to the fine particles. More preferably, it is 8 to 50% by mass.
  • the porous layer can contain a hardener together with the above-described resin binder as necessary.
  • the hardener include aldehyde compounds such as formaldehyde and glutaraldehyde, ketone compounds such as diacetyl and chloropentanedione, bis (2-chloroethyl) urea, 2-hydroxy-4,6-dichloro-1 , 3,5-triazine, compounds having reactive halogen such as compounds described in US Pat. No. 3,288,775, compounds having reactive olefins such as compounds described in US Pat. No. 3,635,718 N-methylol compounds such as compounds described in US Pat. No. 2,732,316, isocyanates such as compounds described in US Pat. No.
  • the hardener is preferably borax, boric acid, or borates, Boric acid is particularly preferred.
  • the amount of boric acid used is preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 20% by mass or less with respect to these polyvinyl alcohols.
  • the lower limit is preferably 0.1% by mass or more.
  • the porous layer contains preservatives, surfactants, coloring dyes, UV absorbers, antioxidants, fine particle dispersants, antifoaming agents, leveling agents, viscosity stabilizers, pH adjusters, etc., as necessary. can do.
  • the porous layer preferably contains at least one compound selected from glycerin and polyglycerin.
  • Polyglycerin is a compound having a structure in which a plurality of glycerins are polymerized. From Sakamoto Yakuhin Kogyo Co., Ltd., polyglycerin having a polymerization degree of 2 (diglycerin) is diglycerin S and polyglycerin having a polymerization degree of 4 is polyglycerin # 310, polyglycerin # 500 as a polyglycerin having a polymerization degree of 6 and polyglycerin # 750 as a polyglycerin having a polymerization degree of 10 are commercially available.
  • diglycerin S diglycerin S
  • polyglycerin having a polymerization degree of 4 is polyglycerin # 310
  • polyglycerin # 750 as a polyglycerin having a polymerization degree of 10 are commercially available.
  • polyglycerin 03P as polyglycerin (triglycerin) 3 polymerization degree
  • polyglycerin 06 as polyglycerin polymerization degree 6
  • polyglycerin 10PSW polyglycerin polymerization degree 10
  • polyglycerin 20PW as a polyglycerin having a polymerization degree of 20
  • polyglycerin XPW PGLXPW
  • the content of at least one compound selected from glycerin and polyglycerin is preferably 2.5% by mass or more, and more preferably 7.5% by mass or more, based on the solid content coating amount of the porous layer. More preferred is 12.5% by mass or more.
  • the upper limit is not particularly defined, it is preferably 30% by mass or less so as not to impede the absorbability of the porous layer with respect to the solvent component contained in the ink or paste used for forming the transfer pattern.
  • the layer thickness (when dried) of the porous layer is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m.
  • the porous layer may be composed of two or more layers. In this case, the structures of the porous layers may be the same or different from each other. For example, a porous layer containing alumina hydrate may be formed on a porous layer containing wet process silica.
  • the porous layer is prepared by dissolving or dispersing fine particles and resin binder or the like in an appropriate solvent to prepare a coating solution.
  • the coating solution is a slide curtain method, slide bead method, slot die method, direct gravure roll method, reverse gravure roll. System, spray method, air knife method, blade coating method, rod bar coating method, spin coating method, etc., screen printing, inkjet printing, dispenser printing, offset printing, reverse offset printing, gravure printing, flexographic printing, etc.
  • coating By using various known coating or printing methods, selective coating can be performed on the entire surface of the support or on a required site.
  • coating the cast process which press-contacts to a mirror surface roll can be performed, the porous layer surface can be smoothed, or a calender process can be performed to smooth the porous layer surface.
  • the transfer substrate has a dissociation layer on the porous layer.
  • the dissociation layer is a layer that separates the porous layer and the transfer pattern when the transfer pattern is transferred to the transfer target, and transfers only the transfer pattern to the transfer target as shown in FIG. 3, or FIG. As shown in FIG. 6, both the transfer pattern and a part of the dissociation layer can be transferred to the transfer target. A part of the transferred dissociation layer may be removed by washing or wiping as necessary.
  • the dissociation layer in the present invention preferably contains fine particles selected from inorganic fine particles and organic fine particles as a main component, and is preferably a layer that does not melt or stick at the temperature during pattern transfer.
  • the main component means that 93% by mass or more of the total solid content of the layer is fine particles selected from inorganic fine particles and organic fine particles, and preferably 98% by mass or more.
  • known inorganic fine particles can be widely used as the inorganic fine particles contained in the dissociation layer.
  • the inorganic fine particles include magnesium carbonate, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, zinc sulfide, zinc carbonate, aluminum silicate, calcium silicate, magnesium silicate, amorphous synthetic silica, alumina, alumina hydrate, Examples thereof include inorganic fine particles such as magnesium hydroxide, cerium oxide, zirconium oxide, niobium oxide, and tin oxide, and two or more of these may be used in combination.
  • the average primary particle size of the inorganic fine particles contained in the dissociation layer is preferably 10 to 200 nm, more preferably 20 nm or more. If the average primary particle diameter is less than 10 nm, the pores of the porous layer may be blocked and the absorbability may be lowered. If the average primary particle diameter exceeds 200 nm, the inorganic fine particles may settle in the coating solution used for forming the dissociation layer, which may hinder the coating.
  • inorganic fine particles it is preferable to use a dispersion of colloidal inorganic fine particles, for example, colloidal silica colloidal silica, titanium oxide sol, alumina sol, cerium oxide sol, zirconium oxide sol, niobium oxide sol, tin oxide sol.
  • colloidal inorganic fine particles for example, colloidal silica colloidal silica, titanium oxide sol, alumina sol, cerium oxide sol, zirconium oxide sol, niobium oxide sol, tin oxide sol.
  • Zirconium oxide sol is, for example, ZSL-20N from Daiichi Rare Element Chemical Co., Ltd., Zr100 / 20 from Nyacol Corporation (USA)
  • cerium oxide sol is, for example, CEO2 (AC) from Nyacol Corporation (USA)
  • the niobium oxide sol is commercially available, for example, as Biral (registered trademark) from Taki Chemical Co., Ltd.
  • Colloidal silica is a type in which particles are grown from silica sol under weak alkalinity, a type in which the alkali component is reduced by ion exchange, and a type in which part of silicon atoms in silica is replaced with aluminum atoms to enhance anionicity. Examples include those made cationic by surface treatment with alumina and those synthesized by sol-gel method using alkoxysilane as a raw material, but any of them can be used. These colloidal silicas are commercially available as, for example, Snowtex (registered trademark) from Nissan Chemical Co., Ltd. and Quattron (registered trademark) from Fuso Chemical Industry Co., Ltd.
  • organic fine particles can be widely used as the organic fine particles contained in the dissociation layer.
  • organic fine particles such as acrylic resin, styrene resin, polyamide, silicone resin, fluororesin, phenol resin, polyvinyl acetal, polyimide, epoxy resin, polyphenylene sulfide, polyethersulfone, and polyamideimide can be exemplified. Two or more species may be used in combination.
  • the average primary particle size of the organic fine particles contained in the dissociation layer is preferably 10 to 500 nm, more preferably 20 nm or more. If the average primary particle diameter is less than 10 nm, the pores of the porous layer may be blocked and the absorbability may be lowered. If the average primary particle diameter exceeds 500 nm, the organic fine particles may settle in the coating liquid used when forming the dissociation layer, which may hinder the coating.
  • polyamideimide is, for example, Trepal (registered trademark) PAI from Toray Industries, Inc.
  • polyethersulfone is, for example, Trepearl PES from Toray Industries
  • fluororesin is, for example, Mitsui It is commercially available as 31-JR from Chemers Fluoro Products Co., Ltd. and D-210C from Daikin Industries, Ltd.
  • the dissociation layer in the present invention can be used in combination with one or more of the above-mentioned inorganic fine particles and one or more of the organic fine particles.
  • the volume ratio of inorganic fine particles to organic fine particles when used in combination is preferably in the range of 1: 9 to 9: 1.
  • the obtained pattern transfer product is a conductive pattern transfer product, its conductivity is excellent, and when the obtained pattern transfer product is a metallic tone pattern transfer product, its reflectance is excellent.
  • components other than the inorganic fine particles and / or organic fine particles contained in the dissociation layer in the present invention include water-soluble resins such as polyvinyl alcohol and latexes as resin binders, resin binder hardeners, surfactants, and the like. be able to.
  • the solid content coating amount of the dissociation layer is preferably 0.01 g / m 2 or more, and more preferably 0.1 g / m 2 or more.
  • the porous layer may be transferred to the transfer target.
  • the upper limit of the solid content coating amount of the dissociation layer is not particularly limited, but if it exceeds 10 g / m 2 , the dissociation layer containing inorganic fine particles and / or organic fine particles as a main component is likely to crack, and thus 10 g / m 2 The following is preferable.
  • the coating liquid for forming the release layer is slide curtain method, slide bead method, slot die method, direct gravure roll method, reverse gravure roll method, spray method, air knife method, blade coating method, rod bar coating method, spin coating method, Using various known coating methods or printing methods such as coating by inkjet method, screen printing, inkjet printing, dispenser printing, offset printing, reversal offset printing, gravure printing, flexographic printing, etc. on the support in advance
  • the dissociation layer can be formed by selectively applying to the entire surface of the produced porous layer or a required portion.
  • a reverse gravure roll method is preferable, and among the reverse gravure roll methods, an oblique gravure roll (gravure roll having oblique grooves) having a roll diameter of 100 mm or less (more preferably 20 to 80 mm) is preferable. This method is used.
  • the porous layer and the dissociation layer may be applied at the same time by using a coating method capable of simultaneous multilayer coating such as a multilayer slide curtain method, a multilayer slide bead method, and a multilayer slot die method. Further, a tandem type multi-layer coating apparatus in which a plurality of coating apparatuses are installed on a line on which the support is conveyed may be used.
  • the transfer pattern formed on the dissociation layer of the transfer substrate can be appropriately selected depending on the intended use of the resulting pattern transfer product. It is preferable that the transfer pattern is a conductive pattern, a metal tone pattern, or a pattern of a pigment colorant because a pattern transfer product having good adhesion between the transferred pattern and the transfer target can be obtained.
  • the transfer pattern is conveniently and preferably formed on the dissociation layer of the transfer substrate using an ink or paste containing conductive fine particles or fine particles of a pigment colorant as a pattern forming main body.
  • the ink or paste used for forming the transfer pattern in the present invention has such a size that the contained fine particle component is held on the dissociation layer, that is, the size of the fine particle component is larger than the gap created by the dissociation layer. If it is large, it can be used as appropriate.
  • the average particle diameter of the fine particle component is preferably 1 nm to 10 ⁇ m, more preferably 1 nm to 1 ⁇ m. In the present invention, the average particle size of the fine particle component is obtained by observing the fine particle with an electron microscope and determining the average particle size with the diameter of a circle equal to the projected area of each of 100 particles existing within a certain area as the particle size.
  • examples of the ink or paste used when the transfer pattern is a conductive pattern or a metallic tone pattern include an ink or paste containing metal fine particles that are conductive fine particles.
  • the ink or paste containing fine metal particles used in the present invention known inks or pastes can be widely used, and examples thereof include silver nano ink, copper nano ink, silver paste, copper paste, and aluminum paste.
  • an ink or paste containing other conductive fine particles such as carbon ink and carbon paste can be used.
  • silver nano ink is commercially available as, for example, the NBSIJ series from Mitsubishi Paper Industries Co., Ltd.
  • the silver paste is commercially available as, for example, the Dotite (registered trademark) series from Fujikura Kasei Co., Ltd.
  • the ink or paste containing conductive fine particles is patterned on the dissociation layer of the transfer substrate by various printing methods or coating methods.
  • pattern formation using a dispenser printing method capable of performing linear coating pattern formation using various types of ink jet printing methods such as thermal, piezo, micro pump, static electricity, letterpress printing method, flexographic printing method, lithographic plate
  • pattern formation include various known printing methods such as printing methods, intaglio printing methods, gravure printing methods, reverse offset printing methods, sheet-fed screen printing methods, and rotary screen printing methods.
  • a pattern as a continuous surface on the entire surface or part of the dissociation layer of the transfer substrate is formed using various known coating methods such as gravure roll method, slot die method, spin coating method, etc.
  • intermittent coating Use a die coater or the like to form a pattern as a continuous or intermittent surface of the dissociation layer of the transfer substrate, or use a dip coating method (also called a dip method) to dissociate the transfer substrate.
  • Ink or paste can be applied to the entire layer.
  • More preferable printing methods include an inkjet printing method, a flexographic printing method, a gravure printing method, a reverse offset printing method, a sheet-fed screen printing method, and a rotary screen printing method.
  • the ink or paste containing the conductive fine particles patterned on the dissociation layer of the transfer substrate by these methods is used after volatilizing the contained dispersion medium and / or removing the dispersion medium from the porous layer. After being absorbed, it may be cured or baked by heating to form a transfer pattern. Further, an ink containing ultrafine metal particles mainly composed of silver is used, and the conductive expression agent described in Japanese Patent Application Laid-Open No. 2008-4375, Japanese Patent Application Laid-Open No. 2008-235224 is used as a porous layer and / or a dissociation layer. It is preferable that the metal ultrafine particles be bonded to each other by a chemical action to form a transfer pattern.
  • the resulting transfer pattern is porous, so components such as adhesive resin on the surface of the transferred body enter the transferred pattern, and the transferred pattern is transferred. High adhesion can be obtained between the body.
  • the conductivity enhancer include sodium chloride, potassium chloride, calcium chloride, and ammonium chloride.
  • examples of the ink or paste containing a pigment colorant used when the transfer pattern is a pattern based on a pigment colorant include, for example, an aqueous pigment ink, a non-aqueous pigment ink, and an ultraviolet curable pigment ink.
  • Pigment inks for inkjet printing, electrophotographic printing inks, inks or pastes containing pigment colorants such as printing inks used in screen printing, etc., in particular, pigment colorants transferred to a transfer target Water-based pigment inks for inkjet printing are preferably used for reasons such as excellent pattern resolution.
  • the ink or paste containing the pigment colorant is patterned on the dissociation layer of the transfer substrate by various printing methods or coating methods as in the case of the ink or paste containing the conductive fine particles. .
  • the aqueous pigment ink for inkjet printing preferably used in the present invention has at least one of a pigment colorant, a pigment colorant dispersant, an emulsion-form thermoplastic resin and a water-soluble thermoplastic resin, and has a boiling point of 250 ° C. at 1 atm.
  • a pigment colorant a pigment colorant dispersant
  • an emulsion-form thermoplastic resin a water-soluble thermoplastic resin
  • the following known water-containing organic solvents, surfactants, water and the like can be used.
  • each component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of each component with respect to the total mass (100% by mass) of the ink is 0.2 to 10% by mass of the pigment colorant, the pigment colorant dispersant, the emulsion-form thermoplastic resin, and the water-soluble thermoplastic resin.
  • the total is 1.5 to 15% by mass, the water-soluble organic solvent having a boiling point of 250 ° C. or less at 1 atm is 5 to 40% by mass, the surfactant is 0.5 to 2% by mass, and the water is 50 to 92% by mass. Preferably there is.
  • the thickness of the transfer pattern formed on the dissociation layer of the transfer substrate is not particularly limited, but is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 10 ⁇ m.
  • the pattern transfer product is subjected to a transfer step of transferring the transfer pattern formed on the transfer substrate to a transfer target having adhesiveness on the surface, and a step of removing the adhesiveness of the transfer target surface. can get.
  • the pattern transfer product is transferred through a transfer step of transferring the transfer pattern formed on the transfer substrate to the transfer target via an adhesive material, and a step of removing the adhesive property of the adhesive material. can get.
  • having adhesiveness means that an adhesive force (N / 25 mm) per width of 25 mm measured at a peeling angle of 180 degrees in accordance with JIS Z 0237 is 0.1 N / 25 mm or more. Show.
  • the preferable adhesive strength of the transfer target having adhesiveness on the surface and the substance having adhesiveness is 0.1 to 20 N / 25 mm, more preferably 0.2 to 10 N / 25 mm. If the adhesive strength is less than 0.1 N / 25 mm, the transfer pattern cannot be transferred because the adhesiveness is insufficient. When the adhesive strength exceeds 20 N / 25 mm, it may be difficult to peel off the transfer substrate from the transfer target.
  • the transferred body (hereinafter referred to as transferred object A) having adhesiveness at room temperature and removing the adhesiveness by heat curing.
  • a material A to be transferred includes a resin that is soft and sticky at room temperature but is cured by heating.
  • Thermosetting resins are known as such resins, and examples include liquid resol type phenol resins, novolac type phenol resins, furan resins, epoxy resins, unsaturated polyester resins, urea resins, melamine resins, alkyd resins, and the like. be able to.
  • thermosetting resins such as acid curing agents and amine curing agents, phthalate esters, phosphate esters, fatty acid esters, epoxy resins, etc.
  • Plasticizers pigments such as powdered titanium oxide and carbon black, fillers such as aluminum hydroxide, zinc oxide, and calcium carbonate, reinforcing materials such as glass fibers, carbon fibers, and aramid fibers may be blended.
  • the normal temperature in the present invention means a temperature range defined in JIS Z 8703, specifically 5 to 35 ° C.
  • thermosetting resin such as epoxy resin, phenol resin, and unsaturated polyester resin containing a curing agent
  • a thermosetting resin such as epoxy resin, phenol resin, and unsaturated polyester resin containing a curing agent
  • prepregs for carbon fiber reinforced resins and glass fiber reinforced resins.
  • These materials have adhesiveness at room temperature so that they can be easily adhered and integrated when semi-cured prepregs are stacked, and can be suitably used as the transfer target A in the present invention.
  • curing agent etc. into the sheet is marketed, and can be used suitably as the to-be-transferred object A in this invention.
  • solder resist layer used on the outer layer surface of the conductive material and the like can be mentioned.
  • the solder resist layer may be a layer obtained from either one-component or two-component liquid solder resist, and may be a dry film resist.
  • the solder resist layer contains, for example, an alkali-soluble resin, a polyfunctional acrylic monomer, a photopolymerization initiator, an epoxy resin, an inorganic filler, and the like.
  • alkali-soluble resin examples include alkali-soluble resins having both photocuring and thermosetting properties.
  • a resin to which an acid anhydride has been added may be mentioned.
  • the polyfunctional acrylic monomer examples include trimethylolpropane triacrylate, dipentaerythritol hexaacrylate, pentaerythritol triacrylate, and the like.
  • the photopolymerization initiator examples include 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one.
  • Epoxy resin is used as a curing agent, and is intended to improve heat resistance and chemical resistance properties by crosslinking with a carboxylic acid of an alkali-soluble resin. Since the reaction of carboxylic acid and epoxy proceeds even at room temperature, and the storage stability is poor, the alkali developing type solder resist generally takes a two-component form that is mixed before use.
  • the inorganic filler include barium sulfate and silica.
  • PLAS FINE registered trademark
  • PLAS FINE PSR-310 A-99F
  • PLAS FINE PSR-310 SC-84 manufactured by Kyoyo Chemical Industry Co., Ltd.
  • PLAS FINE PSR-310 SW-26
  • PFR-800 AUS410, PSR-4000 G24K, PSR-4000 LEW3, S-40 T1, etc. are mentioned.
  • Examples of the dry film solder resist include PFR-800 US 410 manufactured by Taiyo Ink Mfg. Co., Ltd. and NIT215 manufactured by Nikko Materials Co., Ltd.
  • the surface of the transfer target A has adhesiveness at room temperature, and the transfer pattern is transferred in a state where the adhesiveness is expressed.
  • the transfer is performed by laminating the surface of the transfer substrate on which the transfer pattern is formed and the transfer target A and peeling them off.
  • the transfer target A is a three-dimensional object
  • the transfer is performed by laminating and peeling the transfer substrate on the transfer target A.
  • the transfer target A is a sheet-like object such as a prepreg or a solder resist layer
  • a roll A method of pressure-bonding the transfer substrate to the transfer target A by a laminating method using a laminator is preferable.
  • the laminating condition is that the roll temperature is normal temperature (5 to 35 ° C.), the pressure is 1 to 50 N / cm 2 , and the time is preferably 0.1 second to 5 minutes, more preferably the pressure is 5 to 20 N. / Cm 2 , and the time is 1 second to 1 minute, but can be adjusted as appropriate depending on the thickness and type of the material A to be transferred. If the pressure is less than 1 N / cm 2 , the transfer pattern may not be uniformly transferred to the transfer target A, and if it exceeds 50 N / cm 2 , it may be difficult to peel off the transfer substrate.
  • the peel angle set in accordance with JIS Z 0237 on the transferred object A side when peeling is shallower.
  • the transfer target A may be bent at the peeling portion depending on the peeling method.
  • the transfer pattern is a conductive pattern, the conductive pattern also bends as the transfer target A is bent at the time of peeling. A smaller angle at the time of bending is preferable because a decrease in conductivity of the conductive pattern is small.
  • the peeling is preferably performed with the peel angle on the transfer object A side being 90 degrees or less, and the transfer object A side is not bent at the time of peeling, and the peel angle on the transfer object A side is 0 degree. It is more preferable to peel while bending the substrate side for use. If the peel angle on the transfer target A side exceeds 90 degrees, the conductivity may be reduced by several tens of percent depending on the thickness of the conductive pattern.
  • the transferred object A containing the thermosetting resin in the present invention is cured by heat treatment after the transfer pattern is transferred, and the adhesiveness of the surface of the transferred object A is removed.
  • the adhesion of the transfer pattern to the transfer target A is improved.
  • the prepreg having the transferred pattern transferred thereon may be heated and cured as it is to obtain a pattern transfer product.
  • the prepreg to which the transferred pattern is not transferred may be overlapped. After molding, it may be heated and cured to form a pattern transfer product.
  • the heat treatment may be performed at a temperature and heating time suitable for the thermosetting resin.
  • an epoxy resin it is preferably 130 to 200 ° C., more preferably 140 to 190 ° C., and the heating time is 5 minutes. Although it is about ⁇ 2 hours, it is not limited to this.
  • the transfer target having adhesiveness on the surface it is a transfer target that does not have stickiness at room temperature and generates adhesiveness by heating, and the adhesive is removed by heat curing.
  • a transfer body (hereinafter referred to as a transfer object B) can be used.
  • the transfer object B is made of either a thermosetting resin or a resin in which a thermosetting resin and a thermoplastic resin are mixed.
  • the transfer object B has no adhesiveness at room temperature and has a temperature of approximately 40 ° C. or higher. It is preferably made of a resin that exhibits adhesiveness and cures at a temperature of 130 ° C. or higher.
  • a transfer body B is obtained.
  • Commercially available products used as the transfer target B include ABF-T31 manufactured by Ajinomoto Co., Ltd., Zaristo (registered trademark) -125 manufactured by Taiyo Ink Manufacturing Co., Ltd., LAZ (registered trademark) -7775 manufactured by Sumitomo Bakelite Co., Ltd. And Sekisui Chemical Co., Ltd. NX04H.
  • the heating condition for expressing the adhesiveness on the surface of the transfer target B is preferably 40 to 160 ° C. for 10 to 90 minutes, more preferably 60 to 130 ° C. for 10 to 90 minutes. It is not limited to this. Further, when heated at a high temperature exceeding 160 ° C., thermosetting proceeds, the adhesiveness required for transfer of the transfer pattern cannot be obtained, and the adhesion between the transfer target and the transfer pattern may be lowered. Further, in order to improve the workability of the heating process and the subsequent transfer process, a support can be thermocompression bonded to the back surface of the transfer surface.
  • the transferred object B does not have adhesiveness at room temperature, and is a transferred object that develops adhesiveness when the temperature is approximately 40 ° C. or higher, and the transfer pattern is transferred while the adhesiveness is expressed. Is called.
  • the transfer is performed by bonding and peeling the surface of the transfer base material on which the transfer pattern is formed and the transfer target B.
  • the transfer is performed by laminating and peeling the transfer substrate from the transfer object.
  • the transfer object B is a sheet, a roll laminator is used. A method in which the transfer substrate is pressure-bonded to the transfer object B by the laminating method is preferable.
  • Preferable laminating conditions are the same as those for the above-mentioned transfer target A except that the roll temperature is 40 ° C. or higher.
  • a preferable peeling angle when peeling the bonded transfer substrate and transferred object B is the same as that of the transferred object A described above.
  • the preferable conditions for the heat curing performed after the transfer pattern is transferred to the transfer target B are the same as those of the transfer target A described above.
  • the transfer target having adhesiveness on the surface it is a transfer target that does not have stickiness at room temperature and generates adhesiveness by heating, and the adhesive is removed by cooling.
  • a transfer body (hereinafter referred to as a transfer target C) can be given.
  • Such transfer object C includes a resin that does not have adhesiveness at room temperature, has adhesiveness by heating, and loses adhesiveness by being allowed to cool to room temperature.
  • Thermoplastic resins are known as such resins.
  • polyolefin resins such as polyethylene, polypropylene, and cyclic polyolefin
  • vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers
  • polystyrene polyvinyl acetate
  • the heating temperature for causing the transfer material C to be sticky varies depending on the thermoplastic resin, and it is preferable to heat to a temperature above the glass transition point.
  • the thermoplastic resin is softened by heating to develop adhesiveness on the surface.
  • the transfer pattern is transferred in a state where the adhesiveness is developed.
  • the transfer is performed by pasting and peeling the surface of the transfer substrate on which the transfer pattern is formed and the transfer target C. Peeling of the transfer substrate can be performed either in a state in which the transfer target C is softened by heating and has adhesiveness, or in a state in which it is allowed to cool and loses its adhesiveness. It is preferable to peel off.
  • the transfer object C is allowed to cool to room temperature.
  • the entire transferred object C or the transferred part is partially heated, and the transfer substrate is bonded and peeled off. May be.
  • a heat generating portion having a size covering the entire transfer pattern is pressed against the back surface of the transfer substrate, and the transfer substrate is passed through. Transfer may be performed by heating the transfer target C to develop adhesiveness.
  • the material to be transferred C is a sheet-like material such as a film-like material or a thin plate
  • a method of thermocompression bonding by a laminating method using a roll laminator is preferable.
  • the laminating conditions are such that the roll temperature is the temperature at which the adherence of the transfer object C is manifested, the pressure is 1 to 500 N / cm 2 , and the time is preferably 0.1 second to 5 minutes, more preferably The pressure is 10 to 300 N / cm 2 and the time is 1 second to 1 minute.
  • the pressure can be appropriately adjusted depending on the thickness and type of the transfer target C. If the pressure is less than 1 N / cm 2 , the transfer pattern may not be uniformly transferred to the transfer target C, and if it exceeds 500 N / cm 2 , it may be difficult to peel off the transfer substrate.
  • the transfer target C can be reheated.
  • the reheating conditions are preferably 100 to 200 ° C. for 1 to 60 minutes, more preferably 120 to 160 ° C. for 1 to 60 minutes, but are not limited thereto.
  • a pattern transfer is performed through a transfer step of transferring a transfer pattern formed on a transfer substrate to an object to be transferred via an adhesive material, and a step of removing the adhesive property of the adhesive material.
  • the surface on which the transfer pattern of the transfer substrate is formed is not sticky at normal temperature, and a substance that produces stickiness by heating (hereinafter referred to as a heating sticky substance).
  • the transfer pattern can be transferred by pasting to a transfer object, and then the transfer object is allowed to cool to room temperature, and the adhesive material is removed by allowing the intervening heated adhesive material to cool. .
  • a transfer target (hereinafter referred to as a transfer target D) that transfers a transfer pattern via a heat-adhesive substance does not exhibit its own stickiness, and a heat-adhesive substance is not used.
  • the transfer pattern is transferred by thermocompression bonding of the transfer substrate on which the transfer pattern is formed.
  • a material to be transferred D is not particularly limited, such as general paper, fiber material, synthetic leather, resin molded product, metal molded product, glass molded product, ceramics, and wood processed product.
  • the fiber material may be any of natural fiber material, semi-synthetic fiber material, and synthetic fiber material.
  • Examples of natural fiber materials and semi-synthetic fiber materials include cellulosic fiber materials such as cotton, hemp, lyocell, rayon and acetate, and protein fiber materials such as silk, wool and animal hair.
  • Examples of the synthetic fiber material include polyamide fiber (nylon), vinylon fiber, polyester fiber, and acrylic fiber.
  • Examples of the structure of the fiber material include a woven fabric, a knitted fabric, and a non-woven fabric, and may be woven or knitted, and a blended yarn or a blended yarn may be used.
  • the shape can be appropriately used from a flat sheet shape to a three-dimensional shape regardless of the thickness and mass, but the transfer pattern transfer surface is a flat surface or a continuous surface. It is preferable because it is excellent.
  • thermoplastic resin latex includes acrylic acid and methacrylic acid, acrylic acid esters and methacrylic acid esters, styrene and substituted styrenes, vinyl halides, fluorinated monomers such as tetrafluoroethylene, halogenated Homopolymers and copolymers made from vinylidenes, vinyl esters, vinyl ethers and fluorovinyl ethers, including not only homopolymers but also copolymers such as polyamides, polyesters, polyurethanes, epoxy resins and silicone resins And a thermoplastic resin dispersed in water with a surfactant.
  • thermoplastic resin fine particles examples include fine particles of these thermoplastic resins.
  • thermoplastic resin film sheet a film sheet of these thermoplastic resins can be used as appropriate. Especially, since it is excellent in the adhesiveness of the to-be-transferred material D and a transfer pattern, and can be used simply, it is preferable to use a thermoplastic resin film sheet.
  • thermoplastic resin film sheet includes, for example, Elfant (registered trademark) series from Nihon Matai Co., Ltd., Kurashiki Boseki Co., Ltd., Clanbetter (registered trademark) series, Seadam Co., Ltd., Ecelan (registered trademark) series, Nitto It is commercially available as a polyester hot melt adhesive sheet from Shinko Co., Ltd.
  • thermoplastic resin latex and a thermoplastic resin fine particles 2 ⁇ 200g / m 2 is preferred as the solid content, more preferably 5 ⁇ 100g / m 2 .
  • the thickness is preferably 2 to 200 ⁇ m, and more preferably 5 to 100 ⁇ m.
  • thermoplastic resin latex is applied to the surface and dried, followed by heat transfer, and thermoplastic fine particles are placed between the transfer pattern surface of the transfer substrate on which the transfer pattern is formed and the transfer surface of the transfer object D.
  • the heat-adhesive substance in the present invention is sticky on the surface by heating during transfer.
  • known heating methods such as hot pressing, hot roll pressing, high frequency heating, and ultrasonic heating can be used, and among these, the hot roll press is preferable.
  • the roll temperature is 80 to 200 ° C.
  • the pressure is 1 to 50 N / cm 2
  • the time is preferably 1 second to 5 minutes, more preferably the roll temperature is
  • the temperature is 100 to 160 ° C.
  • the pressure is 5 to 20 N / cm 2
  • the time is 10 seconds to 1 minute, but is not limited to this, and can be adjusted as appropriate depending on the thickness and amount of the heat-adhesive substance. .
  • the pressure exceeds 50 N / cm 2
  • the heating time exceeds 5 minutes, it may be difficult to peel off the transfer substrate.
  • the transfer adhesive substrate is preferably peeled off after the heat-adhesive substance is allowed to cool to 50 ° C. or less. It is more preferable to cool to the following and peel off.
  • the speed at which the transfer substrate is peeled from the transfer target D is not particularly limited, but it is preferable to peel 180 degrees at a speed of 1000 mm / min or less because the transfer pattern is transferred well.
  • the heating adhesive material can be further reheated.
  • the adhesion between the transfer target D and the transfer pattern is further improved.
  • the reheating conditions are the same as those for the transfer target C described above.
  • the transfer target is the transfer target A or the transfer target B and the transfer pattern is a conductive pattern
  • the bonded transfer substrate is removed after the transfer pattern transfer step. After that, it is preferable to form a plating layer on the surface of the conductive pattern transferred to the transferred body by plating, and to thermally cure the transferred body having the finally plated conductive pattern.
  • a pattern transfer product (FIG. 7) having excellent conductivity and good adhesion between the transfer target and the conductive pattern can be produced in a simple process.
  • the transfer target is the transfer target C and the transfer pattern is a conductive pattern
  • the conductive pattern transferred to the transfer target is removed after the step of removing the adhesiveness on the transfer target surface. It is preferable to form a plating layer on the surface by plating. As a result, a pattern transfer product (FIG. 7) having excellent conductivity and good adhesion between the transfer target and the conductive pattern can be produced in a simple process.
  • electroless plating or electrolytic plating can be used as the plating treatment performed in the present invention.
  • Electroless plating is so-called autocatalytic chemical reduction plating in which metal ions such as nickel and copper are reduced and deposited by a reducing agent, and this deposition reaction proceeds continuously to form a plating film.
  • electroless plating using nickel-phosphorus or copper is widely used today industrially, in the present invention, it is preferable to use electroless copper plating from the viewpoint of excellent conductivity.
  • the electroless copper plating solution in the present invention includes a copper source such as copper sulfate and copper chloride, a reducing agent such as formalin, glyoxylic acid, potassium tetrahydroborate, dimethylamine borane, EDTA, diethylenetriaminepentaacetic acid, Rochelle salt, Glycerol, meso-erythritol, adenyl, D-mannitol, D-sorbitol, dulcitol, iminodiacetic acid, trans-1,2-cyclohexanediaminetetraacetic acid, 1,3-diaminopropan-2-ol, glycol ether diamine, triisopropanol Copper complexing agents such as amine and triethanolamine, pH adjusting agents such as sodium hydroxide, potassium hydroxide and lithium hydroxide are contained.
  • a copper source such as copper sulfate and copper chloride
  • a reducing agent such as formalin, glyoxylic acid, potassium t
  • polyethylene glycol, yellow blood salt, bipyridyl, o-phenanthroline, neocuproine, thiourea, cyanide, and the like may be added as additives for stabilizing the bath and improving the smoothness of the plating film.
  • the electroless plating solution includes a room temperature type for thin plating and a high temperature type for thick plating. In the present invention, either type of plating solution can be used.
  • the method of electroless copper plating is described in detail in “Electroless Plating Basics and Applications” (Edited by Electroplating Research Group) p104.
  • the room temperature type plating solution the plating temperature is usually 20 to 30 ° C
  • the high temperature type plating solution the plating temperature is usually 50 to 70 ° C.
  • the treatment time is usually 1 to 30 minutes, preferably 3 to
  • the object of the present invention can be achieved by performing the electroless plating treatment for 20 minutes.
  • the degreasing process is a process for cleaning and removing oil and the like adhering to the surface to be plated, and known processing conditions can be used.
  • an alkaline degreasing agent, a surfactant, an organic solvent or the like is used, and the immersion treatment is performed at 10 to 60 ° C. for 1 to 10 minutes.
  • the catalyst application treatment is a treatment for applying a catalyst metal such as palladium, iron, cobalt, nickel, platinum or the like to the surface to be plated, and palladium is preferable as a specific catalyst metal.
  • An aqueous solution containing these catalytic metal ions is used as the catalyst application treatment liquid.
  • the counter anion is not particularly limited as long as the metal compound is an aqueous solution, and examples thereof include sulfate ions, halogen ions, phosphate ions, and nitrate ions.
  • the concentration of the catalyst metal in the aqueous solution is preferably 10 to 5000 mg / L, more preferably 50 to 1000 mg / L.
  • acetic acid, citric acid, lactic acid, tartaric acid, succinic acid, butyric acid, propionic acid, formic acid, succinic acid, glutaric acid, malonic acid, malic acid, fumaric acid, adipic acid, malein An acid or the like may be used.
  • the pH of the catalyst application treatment solution is preferably 1 to 9, more preferably 1 to 4.
  • the temperature and time of the catalyst application treatment are not particularly limited, but the treatment temperature is preferably 20 to 90 ° C., and the treatment time is preferably 30 to 120 seconds in consideration of production efficiency.
  • electrolytic plating method in the present invention known plating methods such as copper plating, nickel plating, zinc plating, tin plating and the like can be used.
  • plating Technology Guidebook Tokyo Sheet Metal Cooperative Technical Committee
  • the basic composition of the electrolytic copper plating solution in the present invention can be used without particular limitation as long as it is known and used for ordinary electrolytic copper plating, and as long as the object of the present invention is achieved, It is possible to appropriately change the composition of the basic composition, change the concentration, add additives, and the like.
  • the copper sulfate plating solution is an aqueous solution containing sulfuric acid, copper sulfate, a water-soluble chlorine compound, and a brightener as a basic composition.
  • the basic composition of the plating solution is a known copper sulfate. Any material used for plating can be used without particular limitation.
  • the plating temperature (solution temperature) can be appropriately set according to the type of the plating bath, and is usually 10 to 40 ° C., preferably 20 to 30 ° C.
  • the plating temperature is lower than 10 ° C.
  • the conductivity of the plating solution is lowered, so that the current density during electrolysis cannot be increased, the growth rate of the plating film is slowed, and the productivity may be lowered. is there.
  • the plating temperature is higher than 40 ° C., the plating solution may become unstable, which is not preferable.
  • any type of current such as a direct current or a PPR (Pulse Periodic Reverse) current can be used.
  • the applied anode current density is appropriately set according to the type of plating bath, and is usually 0.1 to 10 A / dm 2 , preferably 1 to 3 A / dm 2 .
  • the anode current density is less than 0.1 A / dm 2 , the anode area is too large to be economical, and when it is greater than 10 A / dm 2 , oxygen is generated from the anode during electrolysis. This is not preferable because the plating solution may become unstable.
  • a protective layer may be provided on the transfer pattern transferred to the transfer target.
  • a clear coat paint is preferably used.
  • Resins used for clear coat paints include acrylic resins, urethane resins, acrylic urethane resins, acrylic silicon resins, fluororesins, epoxy resins, unsaturated polyesters, alkyd resins, melamine resins, ultraviolet curable resins and electronic Examples thereof include a linear curable resin.
  • a clear coat paint of melamine resin, urethane resin, acrylic urethane resin, and acrylic silicon resin is preferable because of easy application.
  • Example 1 In water, 8 parts by mass of Charol (registered trademark) DC902P (Daiichi Kogyo Seiyaku Co., Ltd.) as diallyldimethylammonium chloride polymer having chloride ions as counter ions, and gas phase method silica (average primary particle diameter) as inorganic fine particles (7 nm, specific surface area 300 m 2 / g) 100 parts by mass were added, and a pre-dispersion was prepared using a sawtooth blade type disperser (blade peripheral speed 30 m / sec). The obtained preliminary dispersion was treated with a high-pressure homogenizer to produce an inorganic fine particle dispersion 1 having a solid content concentration of 20% by mass. The average secondary particle diameter of the vapor phase method silica was 130 nm.
  • a porous layer forming coating solution 1 having the following composition was prepared using the inorganic fine particle dispersion 1.
  • a porous layer forming coating solution 1 is applied to a 100 ⁇ m-thick polyethylene terephthalate film (manufactured by Teijin Film Solutions Co., Ltd.) that has been subjected to easy adhesion treatment as a support using a slide bead coater, and the solid content coating amount is 25 g in terms of vapor phase silica. / M 2 was applied and dried to form a porous layer.
  • the film thickness of the porous layer was 38 ⁇ m.
  • ⁇ Porous layer forming coating solution 1 Inorganic fine particle dispersion 1 (as silica solid content) 100 parts by mass polyvinyl alcohol 25 parts by mass (saponification degree 88%, average polymerization degree 3500) Boric acid 4 parts by weight Nonionic surfactant 0.3 parts by weight (polyoxyethylene alkyl ether) It adjusted with water so that component concentrations other than water might be 13 mass%.
  • the conductive expression agent coating liquid 1 having the following composition was applied to the porous layer surface by a coating method using a slanted gravure roll and dried by a dryer.
  • the oblique gravure roll used here is a gravure roll having a diameter of 60 mm, an oblique line angle of 45 degrees, a number of lines of 90 lines / inch, and a groove depth of 110 ⁇ m, and was used in reverse rotation.
  • the moisture application amount was set to 20 g / m 2 by adjusting the rotational speed of the oblique gravure roll.
  • the applied conductive developing agent coating solution 1 was absorbed inside the porous layer, and the porous layer was exposed on the surface.
  • the dissociation layer coating solution 1 having the following composition was applied to the porous layer surface by a coating method using a slanted gravure roll and dried by a drier to obtain a transfer substrate 1.
  • the oblique gravure roll used here is a gravure roll having a diameter of 60 mm, an oblique line angle of 45 degrees, a number of lines of 90 lines / inch, and a groove depth of 110 ⁇ m, and was used in reverse rotation.
  • the moisture application amount was set to 20 g / m 2 by adjusting the rotational speed of the oblique gravure roll.
  • the solid content coating amount of the dissociation layer formed on the porous layer was 0.6 g / m 2 .
  • a 50 mm ⁇ 50 mm solid pattern (planar pattern) was used for this transfer substrate 1 by using a piezo-type ink jet printer containing silver nano ink (NBSIJ-MU01 manufactured by Mitsubishi Paper Industries Co., Ltd., silver concentration 15 mass%).
  • NBSIJ-MU01 manufactured by Mitsubishi Paper Industries Co., Ltd., silver concentration 15 mass%.
  • the discharge amount of the silver nano ink was 23 ml / m 2
  • the thickness of the conductive pattern was 0.8 ⁇ m.
  • the conductive pattern forming surface of the transfer substrate 1 and a prepreg for molding a carbon fiber reinforced resin as a transfer target (Toray Industries, Inc., Torayca (registered trademark) F6343B, the thermosetting resin is an epoxy resin)
  • Adhesive strength measured at a peeling angle of 180 degrees in accordance with JIS Z 0237 at 25 ° C. is 0.25 N / 25 mm
  • roll temperature is 25 ° C.
  • pressure is 10 N / cm 2
  • speed is 0.3 m / min (crimping)
  • the transfer substrate 1 was peeled off by pressure bonding in 1 second). Thereafter, the transfer target was subjected to a heat treatment at 140 ° C. for 30 minutes to obtain a pattern transfer product of Example 1 having a conductive pattern.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 2 2.5 parts by mass of nitric acid and 100 parts by mass of alumina hydrate (average primary particle size 15 nm) are added to water, and an inorganic fine particle dispersion 2 having a solid content concentration of 30% by mass using a sawtooth blade type disperser. Got. The average secondary particle diameter of the alumina hydrate dispersed in the inorganic fine particle dispersion 2 was 160 nm.
  • a porous layer forming coating solution 2 having the following composition was prepared using the inorganic fine particle dispersion 2.
  • a porous layer forming coating solution 2 is applied to a 100 ⁇ m-thick polyethylene terephthalate film (manufactured by Teijin Film Solutions Co., Ltd.) that has been subjected to easy adhesion treatment as a support using a slide bead coater, and the solid content coating amount is 32 g in terms of alumina hydrate. / M 2 was applied and dried to form a porous layer.
  • the film thickness of the porous layer was 42 ⁇ m.
  • ⁇ Porous layer forming coating solution 2 Inorganic fine particle dispersion 2 (as alumina hydrate solid content) 100 parts by weight polyvinyl alcohol 9 parts by weight (saponification degree 88%, average polymerization degree 3,500, molecular weight about 150,000) Boric acid 0.4 parts by weight Nonionic surfactant 0.3 parts by weight (polyoxyethylene alkyl ether) It adjusted with water so that component density
  • the conductive expression agent coating liquid 1 was applied to the porous layer surface in the same manner as in Example 1.
  • the applied conductive developing agent coating solution 1 was absorbed inside the porous layer, and the porous layer was exposed on the surface.
  • the dissociation layer coating solution 2 having the following composition was applied to the porous layer surface by a coating method using a slanted gravure roll and dried by a drier to obtain a transfer substrate 2.
  • the oblique gravure roll used here is a gravure roll having a diameter of 60 mm, an oblique line angle of 45 degrees, a number of lines of 90 lines / inch, and a groove depth of 110 ⁇ m, and was used in reverse rotation.
  • the moisture application amount was set to 20 g / m 2 by adjusting the rotational speed of the oblique gravure roll.
  • the solid content coating amount of the dissociation layer formed on the porous layer was 0.4 g / m 2 .
  • ⁇ Dissociation layer coating solution 2 Colloidal silica 40% by mass slurry 5 parts by mass (manufactured by Nissan Chemical Co., Ltd., Snowtex ZL, average primary particle size 80 nm) 95 parts by weight of water
  • a piezo-type inkjet printer containing silver nano ink (NBSIJ-MU01 manufactured by Mitsubishi Paper Industries Co., Ltd., silver concentration: 15% by mass)
  • a solid pattern of 50 mm ⁇ 50 mm is printed on the transfer substrate 2.
  • a conductive pattern was formed.
  • the discharge amount of the silver nano ink was 23 ml / m 2
  • the thickness of the conductive pattern was 0.8 ⁇ m.
  • the conductive pattern forming surface of the transfer substrate 2 and an epoxy resin sheet (DRS-028 manufactured by Sanyu Rec Co., Ltd. as the transfer target, epoxy resin for thermosetting resin, JIS Z 0237 at 25 ° C.
  • the pressure is 10 N / cm 2
  • the pressure is 10 N / cm 2
  • the speed is 0.3 m / minute (1 second as the pressure bonding time).
  • the transfer substrate 2 was peeled off. Thereafter, the transfer object was subjected to a heat treatment at 150 ° C. for 60 minutes to obtain a pattern transfer product of Example 2 having a conductive pattern.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 3 A transfer substrate was prepared in the same manner as in Example 2 except that the dissociation layer coating solution 2 of Example 2 was changed to a dissociation layer coating solution 3 having the following composition. In the same manner, a pattern transfer product of Example 3 was obtained. In addition, the solid content application amount of the dissociation layer formed on the porous layer was 0.6 g / m 2 . Further, the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 4 In Example 3, the transfer target was changed from an epoxy resin sheet (DRS-028 manufactured by Sanyu Rec Co., Ltd.) to a prepreg (Trekca F6343B manufactured by Toray Co., Ltd.), and the heat treatment was performed at 140 ° C. for 30 minutes. In the same manner as in Example 3, a pattern transfer product of Example 4 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 5 A transfer substrate was prepared in the same manner as in Example 2 except that the dissociation layer coating solution 2 of Example 2 was changed to a dissociation layer coating solution 4 having the following composition. In the same manner, a pattern transfer product of Example 5 was obtained. In addition, the solid content application amount of the dissociation layer formed on the porous layer was 0.2 g / m 2 . Further, the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 6 In Example 5, the transfer target was changed from an epoxy resin sheet (DRS-028 manufactured by Sanyu Rec Co., Ltd.) to a prepreg (Trekca F6343B manufactured by Toray Co., Ltd.), and the heat treatment was performed at 140 ° C. for 30 minutes. In the same manner as in Example 5, the pattern transfer product of Example 6 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Comparative Example 1 A prepreg (Trekker F6343B manufactured by Toray Industries, Inc.) was preliminarily heated at 140 ° C. for 30 minutes, and then a silver paste (Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.) was applied to the surface using a screen printer. was printed with a solid pattern of 50 mm ⁇ 50 mm, and heat treatment was further performed at 120 ° C. for 10 minutes to obtain a member having the pattern of Comparative Example 1. The surface of the member having the obtained pattern was not sticky at room temperature.
  • a silver paste Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.
  • Comparative Example 2 An epoxy resin sheet (DRS-028 manufactured by Sanyu Rec Co., Ltd.) was preliminarily subjected to a heat treatment at 150 ° C. for 60 minutes, and then a silver paste (Dotite FA manufactured by Fujikura Kasei Co., Ltd.) was applied to the surface using a screen printer. -333) was printed with a solid pattern of 50 mm ⁇ 50 mm, and further heat-treated at 120 ° C. for 10 minutes to obtain a member having the pattern of Comparative Example 2. The surface of the member having the obtained pattern was not sticky at room temperature.
  • Example 3 A prepreg (Toray Industries, Inc. Torayca F6343B) was preliminarily heated at 140 ° C. for 30 minutes.
  • the conductive pattern produced on the transfer substrate 1 in Example 1 was measured at double-sided adhesive tape (Nitto Denko Co., Ltd. No. 5600, peel angle 180 ° in accordance with JIS Z0237 at 25 ° C.
  • the adhesive force was transferred to one side of 7.5 N / 25 mm. Thereafter, the adhesive surface on the side having no conductive pattern of the double-sided pressure-sensitive adhesive tape to which the conductive pattern was transferred was affixed to the transfer target subjected to heat treatment, and a member having the pattern of Comparative Example 3 was obtained.
  • the surface of the member having the obtained pattern had adhesiveness at room temperature because a double-sided adhesive tape was present.
  • Comparative Example 4 An epoxy resin sheet (DRS-028 manufactured by Sanyu Rec Co., Ltd.) was preliminarily heated at 150 ° C. for 60 minutes.
  • the conductive pattern produced on the transfer substrate 2 was transferred to one side of a double-sided adhesive tape (No. 5600 manufactured by Nitto Denko Corporation). Then, the adhesive surface of the double-sided pressure-sensitive adhesive tape to which the conductive pattern was transferred, which had no conductive pattern, was affixed to the transfer target subjected to heat treatment, and a member having the pattern of Comparative Example 4 was obtained.
  • the surface of the member having the obtained pattern had adhesiveness at room temperature because a double-sided adhesive tape was present.
  • Example 7 After the step of peeling the transfer substrate from the transfer target in Example 1, the pattern transfer surface of the transfer target was degreased, and then electroless copper plating was performed.
  • the degreasing treatment was carried out at 60 ° C. for 1 minute by applying a cleaner 160 manufactured by Meltex Co., Ltd. so as to be 50 g / L.
  • the electroless copper plating was carried out at 40 ° C. for 10 minutes using an electroless copper plating solution having the following composition.
  • the transferred object was washed with water. After plating, the transfer object was subjected to heat treatment at 140 ° C. for 30 minutes to obtain a pattern transfer product of Example 7. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • ⁇ Electroless copper plating solution 10 g of copper sulfate pentahydrate 20 ml of formaldehyde (37% by weight aqueous solution) Sodium hydroxide 10g EDTA ⁇ 2Na ⁇ 2H 2 O 25g The above was dissolved in water to make the total amount 1 kg.
  • Example 8 In the same manner as in Example 7, except that a copper sulfate plating solution having the following composition was used as a plating step and electrolytic copper plating (current density 2 A / dm 2 ) was performed at 25 ° C. for 4 minutes and 30 seconds. A pattern transcript was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 9 After the step of peeling the transfer substrate from the transfer target in Example 2, the pattern transfer surface of the transfer target was subjected to degreasing and electroless copper plating in the same manner as in Example 7. After plating, the transfer object was subjected to heat treatment at 150 ° C. for 60 minutes to obtain a pattern transfer product of Example 9. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 10 After the step of peeling the transfer substrate from the transfer target in Example 3, degreasing treatment and electroless copper plating were performed on the pattern transfer surface of the transfer target in the same manner as in Example 7. After plating, the transfer object was subjected to heat treatment at 150 ° C. for 60 minutes to obtain a pattern transfer product of Example 10. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 11 After the step of peeling the transfer substrate from the transfer target in Example 5, degreasing treatment and electroless copper plating were performed on the pattern transfer surface of the transfer target in the same manner as in Example 7. After the plating, the transfer object was subjected to a heat treatment at 150 ° C. for 60 minutes to obtain a pattern transfer product of Example 11. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 12 In Example 8, after the step of peeling the transfer substrate from the transfer object, plating the transfer object and then subjecting the transfer object to heat treatment instead of performing the heat treatment of the transfer object first. Then, a pattern transfer product of Example 12 was obtained in the same manner as in Example 8 except that the transferred material was plated. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Comparative Example 5 The pattern formation surface of the member having the pattern of Comparative Example 3 was subjected to degreasing treatment and electroless copper plating in the same manner as in Example 7 to obtain a member having the pattern of Comparative Example 5.
  • the surface of the member having the obtained pattern had adhesiveness at room temperature because a double-sided adhesive tape was present.
  • Example 7 0.037 ⁇ / ⁇
  • Example 8 0.008 ⁇ / ⁇
  • Example 9 0.036 ⁇ / ⁇
  • Example 10 0.040 ⁇ / ⁇
  • Example 11 0.045 ⁇ / ⁇
  • Example 12 0.010 ⁇ / ⁇ Comparative Example 5: 0.040 ⁇ / ⁇
  • Example 10 Adhesion was good with no peeling of squares.
  • Example 11 There was no peeling of the cells and the adhesion was good.
  • Example 12 Although the conductive pattern formed by the silver nano ink transferred from the transfer substrate remained, peeling of the copper plating layer formed by plating to the tape side was observed. Comparative Example 5: Separation of squares was observed occasionally and adhesion was poor.
  • solder resist layer DSR-330S32-21 manufactured by Tamura Corporation was used as a liquid solder resist.
  • the solder resist layer is mixed with the main agent of DSR-330S32-21 and a curing agent, coated on a SUS304 steel plate as a support using an applicator, and dried after drying at 70 ° C. for 30 minutes. did.
  • the adhesive strength of the solder resist layer measured at a peeling angle of 180 degrees in accordance with JIS Z 0237 at 25 ° C. was in the range of 0.2 to 10 N / 25 mm.
  • the transfer of the conductive pattern to the solder resist layer was performed using a roll laminator, and the conductive pattern forming surface and the solder resist layer of the transfer substrate 1 produced and patterned in Example 1 were rolled at a roll temperature of 25 ° C. and a pressure of 10 N. / cm 2, subjected to pressure bonding process at a rate 0.3 m / min (1 sec as bonding time), was peeled off the transfer base material. Thereafter, heat treatment was performed at 180 ° C. for 60 minutes to obtain a pattern transfer product of Example 13 having a conductive pattern. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 13 is the same as Example 13 except that PFR-800 AUS410 manufactured by Taiyo Ink Mfg. Co., Ltd., which is a dry film solder resist, was used as the solder resist layer in a state of being thermocompression bonded to a SUS304 steel plate as a support. 14 pattern transcripts were obtained. At the time of pattern transfer, the adhesive strength of the solder resist layer measured at a peeling angle of 180 degrees in accordance with JIS Z 0237 at 25 ° C. is in the range of 0.2 to 10 N / 25 mm. The surface of was not sticky at room temperature.
  • Comparative Example 6 A silver paste (Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.) was screen-printed with a solid pattern of 50 mm ⁇ 50 mm on the surface of the solder resist layer used in Example 13, and subjected to heat treatment at 120 ° C. for 10 minutes. . Thereafter, heat treatment was further performed at 180 ° C. for 60 minutes to obtain a member having the pattern of Comparative Example 6. The surface of the member having the obtained pattern was not sticky at room temperature.
  • Example 7 The surface of the solder resist layer used in Example 14 was screen-printed with a silver paste (Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.) in a solid pattern of 50 mm ⁇ 50 mm, and heat-treated at 120 ° C. for 10 minutes. It was. Then, the heat processing for 60 minutes were further performed at 180 degreeC, and the member which has the pattern of the comparative example 7 was obtained. The surface of the member having the obtained pattern was not sticky at room temperature.
  • a silver paste Dotite FA-333 manufactured by Fujikura Kasei Co., Ltd.
  • Example 15 After the step of peeling the transfer substrate from the transfer object in Example 13, degreasing treatment, catalyst application treatment, and electroless copper plating were sequentially performed on the pattern transfer surface of the transfer object.
  • the degreasing treatment was carried out at 60 ° C. for 1 minute by applying a cleaner 160 manufactured by Meltex Co., Ltd. so as to be 50 g / L.
  • the catalyst application treatment was carried out at 25 ° C. for 2 minutes after activating an activator 350 manufactured by the same company so that the concentration of palladium was 100 ppm.
  • the electroless copper plating was carried out at 50 ° C.
  • the transferred object was washed with water.
  • the thickness of the conductive pattern after plating was 1.8 ⁇ m.
  • the transfer object was subjected to a heat treatment at 180 ° C. for 60 minutes to obtain a pattern transfer product of Example 15. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 16 After the step of peeling the transfer substrate from the transfer target in Example 14, degreasing treatment and electrolytic copper plating were sequentially performed on the pattern transfer surface of the transfer target.
  • the degreasing treatment is the same as in Example 15.
  • Electrolytic copper plating was performed by laying a copper sulfate plating solution having the following composition at 25 ° C. for 3 minutes (current density 2 A / dm 2 ). After each of the degreasing treatment, the catalyst application treatment, and the electrolytic copper plating treatment, the transferred object was washed with water. The thickness of the conductive pattern after plating was 1.8 ⁇ m. After plating, the transfer object was subjected to heat treatment at 180 ° C. for 60 minutes to obtain a pattern transfer product of Example 16. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Copper sulfate plating solution Copper sulfate pentahydrate 75g 190g of 12N sulfuric acid Appropriate amount of brightener (manufactured by Rohm and Haas, Coppergream (registered trademark) CLX) Chloride ion 50mg The total volume was adjusted to 1000 ml with water.
  • Comparative Example 8 Using a piezo-type ink jet printer containing silver nano ink (NBSIJ-MU01 manufactured by Mitsubishi Paper Industries, Ltd., silver concentration: 15% by mass) on the surface of the solder resist layer used in Example 13, a solid of 50 mm ⁇ 50 mm Printing was done with a pattern. Thereafter, the solder resist layer was heated at 180 ° C. for 1 hour to obtain a member having the pattern of Comparative Example 8. The discharge amount of the silver nano ink was 23 ml / m 2 , and the thickness of the conductive pattern was 0.9 ⁇ m. Moreover, the surface of the member which has the obtained pattern did not have adhesiveness at normal temperature.
  • Example 17 LAZ-7752 manufactured by Sumitomo Bakelite Co., Ltd. was used as a transfer medium that does not have adhesiveness at room temperature and develops adhesiveness when heated. After preliminarily heating the transferred body at 80 ° C. for 1 hour, using a SUS304 steel plate adjusted to 50 ° C., the adhesive strength when the transferred body is 50 ° C. conforms to JIS Z 0237. When measured at a peeling angle of 180 degrees, it was 1.1 N / 25 mm. In addition, it was 0.03 N / 25mm when the adhesive force of the to-be-transferred body before performing a preheating was measured at 25 degreeC.
  • LAZ-7752 manufactured by Sumitomo Bakelite Co., Ltd. was used as a transfer target, and the transfer target was used in a state where a SUS304 steel plate was thermocompression bonded as a support during pattern transfer.
  • the transfer of the conductive pattern onto the transfer target was performed by using a roll laminator whose roll temperature was adjusted to 50 ° C., and the conductive pattern forming surface of the transfer substrate 1 produced and patterned in Example 1 and 80 ° C. in advance.
  • the transfer surface of the transfer target that had been pre-heated for 1 hour was subjected to pressure-bonding treatment at a temperature of the transfer target of 50 ° C., a pressure of 20 N / cm 2 , and a speed of 0.3 m / min (1 second as the pressure-bonding time).
  • the substrate for transfer was peeled off after being allowed to cool to room temperature.
  • the heat processing for 60 minutes were performed at 180 degreeC, and the pattern transcription
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 18 A pattern transfer product of Example 18 was obtained in the same manner as in Example 17 except that the roll temperature of the laminator was changed to 70 ° C. The temperature of the transfer target during pattern transfer is 70 ° C. The surface of the obtained pattern transfer product was not sticky at room temperature. The adhesive strength when the transferred material was 70 ° C. was measured in the same manner as in Example 17 except that the temperature of the SUS304 steel plate was adjusted to 70 ° C., and was 4.9 N / 25 mm.
  • Example 19 is the same as Example 18 except that the transfer substrate 2 formed and patterned in Example 2 was used instead of the transfer substrate 1 as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Similarly, a pattern transfer product of Example 19 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 20 As in Example 18, except that the transfer substrate formed in Example 3 and patterned was used in place of the transfer substrate 1 as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Thus, a pattern transfer product of Example 20 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 21 As in Example 18, except that the transfer substrate formed in Example 5 and patterned was used instead of the transfer substrate 1 as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Thus, a pattern transfer product of Example 21 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 17 0.150 ⁇ / ⁇
  • Example 18 0.150 ⁇ / ⁇
  • Example 19 0.150 ⁇ / ⁇
  • Example 20 0.150 ⁇ / ⁇
  • Example 21 0.250 ⁇ / ⁇ Comparative Example 9: 0.200 ⁇ / ⁇
  • Example 19 There was no peeling of the cells and the adhesion was good.
  • Example 20 There was no peeling of the cells and the adhesion was good.
  • Example 21 There was no peeling of the cells and the adhesion was good. Comparative Example 9: Separation of squares was observed occasionally and adhesion was poor.
  • Example 22 After the step of peeling the transfer substrate from the transfer object in Example 17, degreasing treatment, catalyst application treatment, and electroless copper plating were sequentially performed on the pattern transfer surface of the transfer object. Degreasing treatment, catalyst application treatment, electroless copper plating, and water washing were performed in the same manner as in Example 15. The thickness of the conductive pattern after plating was 1.8 ⁇ m. After plating, the transfer object was subjected to heat treatment at 180 ° C. for 60 minutes to obtain a pattern transfer product of Example 22. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 23 After the step of peeling the transfer substrate from the transfer object in Example 18, degreasing treatment and electrolytic copper plating were sequentially performed on the pattern transfer surface of the transfer object. Degreasing treatment, electrolytic copper plating, and water washing are the same as in Example 16. The thickness of the conductive pattern after plating was 1.8 ⁇ m. After plating, the transfer object was subjected to heat treatment at 180 ° C. for 60 minutes to obtain a pattern transfer product of Example 23. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 24 In Example 22, after the step of peeling the transfer substrate from the transfer body, instead of plating the transfer body and then subjecting the transfer body to heat treatment, the transfer body is heated first. Thereafter, a pattern transfer product of Example 24 was obtained in the same manner as Example 22 except that the transfer target was plated. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 25 An acrylic resin plate (Komoray Co. (registered trademark) P clear, thickness 1 mm) manufactured by Kuraray Co., Ltd. was used as a transfer target that does not have adhesiveness at room temperature and develops adhesiveness when heated. Using a SUS304 steel plate temperature-controlled at 150 ° C., the adhesive strength when the transferred material was 150 ° C. was measured at a peeling angle of 180 degrees in accordance with JIS Z0237, and it was 2.5 N / 25 mm.
  • the transfer of the conductive pattern to the transfer object is performed using a roll laminator, and the transfer pattern 1 formed on the transfer substrate 1 formed in Example 1 and the transfer surface of the transfer object are transferred at a roll temperature of 150 ° C.
  • a pressure-bonding process was performed at a pressure of 200 N / cm 2 and a speed of 0.3 m / min (1 second as the pressure-bonding time).
  • a pattern transcript was obtained.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 26 Same as Example 25, except that an ABS resin plate (ABS sheet F-4626 black manufactured by Sekon Seisakusho Co., Ltd., 1 mm thickness) was used as a transfer target that does not have adhesiveness at room temperature and develops adhesiveness when heated. Thus, a pattern transfer product of Example 26 having a conductive pattern was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature. In addition, when the SUS304 steel plate temperature-controlled at 150 ° C. was used and the adhesive strength when the transfer target was 150 ° C. was measured at a peeling angle of 180 degrees in accordance with JIS Z 0237, it was 2.3 N / 25 mm. there were.
  • ABS resin plate ABS sheet F-4626 black manufactured by Sekon Seisakusho Co., Ltd., 1 mm thickness
  • Example 25 is the same as Example 25 except that instead of the transfer substrate 1, the transfer substrate 2 produced and patterned in Example 2 was used as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Similarly, a pattern transfer product of Example 27 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 28 In Example 27, a conductive member of Example 28 was obtained in the same manner as in Example 27 except that the transfer target was changed to an ABS resin plate (ABS sheet F-4626 black manufactured by Secon Corporation). The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 25 is the same as Example 25 except that instead of the transfer substrate 1, the transfer substrate prepared and patterned in Example 3 was used as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Thus, a pattern transfer product of Example 29 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 30 In Example 29, a conductive member of Example 30 was obtained in the same manner as in Example 29 except that the transfer target was changed to an ABS resin plate (ABS sheet F-4626 black manufactured by Secon Corporation). The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 25 is the same as Example 25 except that instead of the transfer substrate 1, the transfer substrate formed and patterned in Example 5 was used as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Thus, a pattern transfer product of Example 31 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 32 A conductive member of Example 32 was obtained in the same manner as in Example 31, except that the transfer target was changed to an ABS resin plate (ABS sheet F-4626 black manufactured by Secon Seisakusho Co., Ltd.). The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Comparative Example 11 In Comparative Example 10, a member having the pattern of Comparative Example 11 was obtained in the same manner as Comparative Example 10 except that the transferred body was changed to an ABS resin plate (ABS sheet F-4626 black manufactured by Secon Corporation). . The surface of the member having the obtained pattern was not sticky at room temperature.
  • Example 12 The conductive pattern of the transfer base material 1 produced and patterned in Example 1 was transferred to one side of a double-sided pressure-sensitive adhesive tape (Nitto Denko Corporation No. 5600). Thereafter, the adhesive surface on the side having no conductive pattern of the double-sided adhesive tape to which the conductive pattern was transferred was pasted on an acrylic resin plate ( Komoray P clear from Kuraray Co., Ltd.), and the pattern of Comparative Example 12 was obtained. A member was obtained. The surface of the member having the obtained pattern had adhesiveness at room temperature because a double-sided adhesive tape was present.
  • Comparative Example 13 In Comparative Example 12, a member having the pattern of Comparative Example 13 was obtained in the same manner as Comparative Example 12 except that the transferred body was changed to an ABS resin plate (ABS sheet F-4626 black manufactured by Secon Corporation). . The surface of the member having the obtained pattern had adhesiveness at room temperature because a double-sided adhesive tape was present.
  • Degreasing treatment and electroless copper plating were performed on the pattern transfer surface of the pattern transfer product of Example 25 in the same manner as in Example 7 to obtain a pattern transfer product of Example 33.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 34 Degreasing treatment and electrolytic copper plating were performed on the pattern transfer surface of the pattern transfer product of Example 25 in the same manner as in Example 8 to obtain the pattern transfer product of Example 34.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 35 A conductive member of Example 35 was obtained in the same manner as in Example 33 except that the transfer target was changed to an ABS resin plate (ABS sheet F-4626 black manufactured by Secon Seisakusho Co., Ltd.). The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 33 is the same as Example 33 except that instead of the transfer substrate 1, the transfer substrate 2 prepared and patterned in Example 2 was used as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Similarly, a pattern transfer product of Example 36 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 33 is the same as Example 33 except that instead of the transfer substrate 1, the transfer substrate prepared and patterned in Example 3 was used as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Thus, a pattern transfer product of Example 37 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 38 As in Example 33, except that the transfer substrate formed in Example 5 and patterned was used instead of the transfer substrate 1 as the transfer substrate on which the conductive pattern used for pattern transfer was formed. Thus, a pattern transfer product of Example 38 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Comparative Example 14 The pattern formation surface of the member having the pattern of Comparative Example 12 was subjected to degreasing treatment and electroless copper plating in the same manner as in Example 7 to obtain a member having the pattern of Comparative Example 14.
  • the surface of the member having the obtained pattern had adhesiveness at room temperature because a double-sided adhesive tape was present.
  • Example 33 0.035 ⁇ / ⁇
  • Example 34 0.008 ⁇ / ⁇
  • Example 35 0.033 ⁇ / ⁇
  • Example 36 0.035 ⁇ / ⁇
  • Example 37 0.040 ⁇ / ⁇
  • Example 38 0.044 ⁇ / ⁇ Comparative Example 14: 0.040 ⁇ / ⁇
  • Example 36 There was no peeling of the cells and the adhesion was good.
  • Example 37 There was no peeling of the cells and the adhesion was good.
  • Example 38 There was no peeling of the cells and the adhesion was good. Comparative Example 14: Separation of squares was scattered and adhesion was poor.
  • Example 39 A transfer substrate was prepared in the same manner as in Example 1 except that the conductive expression agent coating solution 1 was not applied. An image pattern having a size of 50 mm ⁇ 50 mm was printed on the transfer substrate using an ink jet printer using an aqueous pigment ink to form a transfer pattern on the transfer substrate.
  • a transfer pattern forming surface of a transfer substrate and a prepreg for carbon fiber reinforced resin molding (Trayca F6343B manufactured by Toray Industries, Inc.) as a transfer target, roll temperature 25 ° C., pressure 10 N / cm 2 , A pressure bonding process was performed at a speed of 0.3 m / min (1 second as the pressure bonding time), and the transfer substrate was peeled off. Thereafter, the transfer object was subjected to a heat treatment at 140 ° C. for 30 minutes to obtain a pattern transfer product of Example 39 having a transfer pattern. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 40 A substrate for transfer was prepared in the same manner as in Example 2 except that the conductive expression agent coating solution 1 was not applied on the porous layer used in Example 2, and the dissociation layer coating solution 5 having the following composition was applied. did.
  • the solid content coating amount of the dissociation layer formed on the porous layer was 0.04 g / m 2 .
  • a transfer pattern was formed on the transfer substrate in the same manner as in Example 39.
  • a transfer pattern forming surface of a transfer substrate and an epoxy resin sheet (DRS-028 manufactured by Sanyu Rec Co., Ltd.) as a transfer target roll temperature 25 ° C., pressure 10 N / cm 2 , speed 0.3 m
  • the substrate for transfer was peeled off at a pressure of 1 minute / minute (1 second as the pressure bonding time).
  • the transfer object was subjected to a heat treatment at 150 ° C. for 60 minutes to obtain a pattern transfer product of Example 40 having a transfer pattern.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 41 A transfer substrate was prepared in the same manner as in Example 39 except that the dissociation layer coating solution 1 used in the transfer substrate of Example 39 was changed to the dissociation layer coating solution 3 used in Example 3. The solid content coating amount of the dissociation layer formed on the porous layer was 0.6 g / m 2 . Using this transfer substrate, a pattern transfer product of Example 41 was obtained in the same manner as Example 39. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 42 A transfer substrate was produced in the same manner as in Example 39 except that the dissociation layer coating solution 1 used in the transfer substrate of Example 39 was changed to the dissociation layer coating solution 4 used in Example 5.
  • the solid content coating amount of the dissociation layer formed on the porous layer was 0.2 g / m 2 .
  • a pattern transfer product of Example 42 was obtained in the same manner as Example 39. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 43 The following ink adjustment liquid 1 was applied to the transfer substrate of Example 39 with a wire bar so that the moisture application amount was 12 g / m 2 , thereby forming a transfer pattern on the transfer substrate. Using the transfer substrate on which this transfer pattern was formed, a pattern transfer product of Example 43 was obtained in the same manner as Example 39. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 44 A pattern transfer product of Example 44 was obtained in the same manner as Example 43 except that the ink adjustment liquid 1 of Example 43 was changed to the following ink adjustment liquid 2. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 39 In Example 39, a transfer substrate having only the porous layer was prepared without applying the dissociation layer coating solution on the porous layer, and using this transfer substrate, the same procedure as in Example 39 was performed. A pattern transfer product of Comparative Example 15 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 39 a transfer substrate having only a dissociation layer without applying the porous layer forming coating solution was prepared, and using this transfer substrate, the transfer substrate of Comparative Example 16 was prepared in the same manner as in Example 39. An attempt was made to obtain a pattern transfer, but the transfer substrate having only the dissociation layer did not absorb the solvent of the aqueous pigment ink, and a good pattern transfer was not obtained.
  • Comparative Example 17 A pattern transfer product of Comparative Example 17 was obtained in the same manner as in Example 39 except that the material to be transferred in Example 39 was changed to ABS resin (ABS sheet F-4626 black manufactured by Secon Corporation). The transfer pattern was not transferred to the transfer target, and a good pattern transfer product could not be obtained. Note that the surface of the ABS resin is not sticky at room temperature.
  • Comparative Example 18 In Comparative Example 17, an acrylic transparent optical adhesive double-sided film sheet (NNX50 manufactured by Gunze Co., Ltd., thickness 50 ⁇ m, JIS Z0237 at 25 ° C.) in which the PET release film on both sides was peeled between the transfer substrate and the transfer object.
  • the adhesive strength measured at a peeling angle of 180 degrees in accordance with the above is 0.2 N / 25 mm or more, no heat-curing property), using a roll laminator, roll temperature 25 ° C., pressure 10 N / cm 2 , speed
  • a pattern transfer product of Comparative Example 18 was obtained in the same manner as Comparative Example 17, except that the pressure-bonding treatment was performed at 0.5 m / min.
  • the surface of the obtained pattern transfer product had adhesiveness at room temperature because of the presence of the acrylic transparent optical adhesive double-sided film sheet.
  • Example 39 a pattern transfer product of Comparative Example 19 was obtained in the same manner as in Example 39 except that the heat curing treatment at 140 ° C. for 30 minutes was not performed. The surface of the obtained pattern transfer product was sticky at room temperature.
  • Example 20 The transfer substrate of Example 39 was changed to a receiving layer transfer sheet (iron-printed paper JP-TPRTTYN made by Sanwa Supply Co., Ltd.) and applied to the transfer object according to the transfer method described in the instructions. After transferring the image pattern, heat treatment was performed at 140 ° C. for 30 minutes to obtain a pattern transfer product of Comparative Example 20. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • a receiving layer transfer sheet iron-printed paper JP-TPRTTYN made by Sanwa Supply Co., Ltd.
  • Example 45 A polyamide-based thermoplastic resin as a heat-adhesive material between a plain-woven cotton fabric using a 50th yarn as a transfer target and a surface on which a transfer pattern of the transfer substrate prepared in Example 39 is formed.
  • a roll laminator with a film sheet (Elfan NT-120 manufactured by Nihon Matai Co., Ltd .: 50 ⁇ m thick)
  • press-bonding is performed at a roll temperature of 110 ° C., a pressure of 10 N / cm 2 , and a speed of 0.5 m / min.
  • the transfer substrate was peeled off to obtain a pattern transfer product of Example 45 having a transfer pattern.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • the adhesive strength measured at a peeling angle of 180 degrees according to JIS Z 0237 is 0.2 to 10 N /
  • the adhesive strength at room temperature was less than 0.1 N / 25 mm.
  • Example 46 A pattern transfer product of Example 46 was obtained in the same manner as in Example 45 except that the pattern-formed transfer base material used in Example 40 was used. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 47 The pattern of Example 47 was the same as Example 45 except that the heat-adhesive substance of Example 45 was changed to a polyurethane-based thermoplastic resin film sheet (Elfan UH-203 manufactured by Nippon Matai Co., Ltd .: thickness 50 ⁇ m). A transcript was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the adhesive strength measured at a peel angle of 180 degrees according to JIS Z 0237 when a polyurethane-based thermoplastic resin film sheet having a width of 25 mm was heated to 110 ° C. was 0.2 to 10 N /
  • the adhesive strength at room temperature was less than 0.1 N / 25 mm.
  • Example 48 A polyamide-based thermoplastic as a heat-adhesive substance between a polyethylene terephthalate (PET) resin plate having a thickness of 5 mm as a transfer target and a surface on which a transfer pattern of the transfer substrate prepared and patterned in Example 1 is formed.
  • PET polyethylene terephthalate
  • a pressure is applied at a roll temperature of 110 ° C., a pressure of 10 N / cm 2 , and a speed of 0.5 m / min.
  • the transfer substrate was peeled off to obtain a pattern transfer product of Example 48 having a transfer pattern.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • the sheet resistance value of the conductive pattern transferred onto the obtained pattern transfer product was measured using a measuring instrument (Loresta-GP manufactured by Dia Instruments Co., Ltd.) and found to be 0.150 ⁇ / ⁇ . Further, since the transfer pattern of the obtained pattern transfer product was a metallic tone pattern having a metallic luster, this pattern transfer product could be used as a metallic decoration member.
  • Example 49 A pattern transfer product of Example 49 was obtained in the same manner as in Example 45 except that the pattern-formed transfer base material used in Example 41 was used. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 50 A pattern transfer product of Example 50 was obtained in the same manner as in Example 45 except that the patterned transfer substrate prepared in Example 42 was used as the patterned transfer substrate. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 51 As the patterned transfer substrate, the transfer substrate prepared and patterned in Example 43 was used. Using a roll laminator, a transfer pattern forming surface of a transfer substrate and a plain weave polyester fabric using a 50th yarn as a transfer target are pressure-bonded at a roll temperature of 140 ° C., a pressure of 10 N / cm 2 , and a speed of 0.5 m / min. The substrate was transferred to room temperature, and then the transfer substrate was peeled off to obtain a pattern transfer product of Example 51 having a transfer pattern. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the adhesive strength measured at a peeling angle of 180 degrees in accordance with JIS Z 0237 when the dried film of the transfer pattern in the form of a sheet having a width of 25 mm is heated to 140 ° C. is 0.2 to 10 N / 25 mm.
  • the adhesive strength at room temperature was less than 0.1 N / 25 mm.
  • Example 52 A pattern transfer product of Example 52 was obtained in the same manner as in Example 51 except that the patterned transfer substrate prepared in Example 44 was used as the patterned transfer substrate. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the adhesive strength measured at a peeling angle of 180 degrees in accordance with JIS Z 0237 when a dry film of a transfer pattern in the form of a sheet having a width of 25 mm is heated to 140 ° C. is 0.2 to 10 N / 25 mm.
  • the adhesive strength at room temperature (room temperature) was less than 0.1 N / 25 mm.
  • Example 45 a transfer base material having only a porous layer was prepared without applying the dissociation layer coating solution on the porous layer, and using this transfer base material, in the same manner as in Example 45, A pattern transfer product of Comparative Example 21 was obtained. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 45 a transfer substrate having only a dissociation layer without applying the porous layer forming coating solution was prepared, and using this transfer substrate, the transfer substrate of Comparative Example 22 was prepared in the same manner as in Example 45. An attempt was made to obtain a pattern transfer, but the transfer substrate having only the dissociation layer did not absorb the solvent of the aqueous pigment ink, and a good pattern transfer was not obtained.
  • Comparative Example 23 The polyamide thermoplastic resin film sheet of Example 45 was changed to an acrylic transparent optical adhesive double-sided film sheet (NNX50 manufactured by Gunze Co., Ltd.) from which the PET release films on both sides were peeled off, and a roll temperature of 25 was used using a roll laminator.
  • a pattern transfer product of Comparative Example 23 was obtained in the same manner as in Example 45 except that the pressure-bonding treatment was performed at 0 ° C., a pressure of 10 N / cm 2 , and a speed of 0.5 m / min.
  • the surface of the obtained pattern transfer product had adhesiveness at room temperature because of the presence of the acrylic transparent optical adhesive double-sided film sheet.
  • Example 24 The transfer substrate of Example 45 was changed to a receiving layer transfer sheet (iron-printed paper JP-TPRTTYN made by Sanwa Supply Co., Ltd.) and applied to the transfer object according to the transfer method described in the instructions. The image pattern was transferred to obtain a pattern transfer product of Comparative Example 24. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • a receiving layer transfer sheet iron-printed paper JP-TPRTTYN made by Sanwa Supply Co., Ltd.
  • Example 53 A porous layer forming coating solution 3 having the following composition was prepared.
  • a porous layer-forming coating solution 3 is applied to a polyethylene terephthalate film (manufactured by Teijin Film Solutions Co., Ltd.) having a thickness of 100 ⁇ m that has been subjected to an easy adhesion treatment as a support, using a slide bead coater. / M 2 was applied and dried to form a porous layer.
  • the porous layer contained 5% by mass of glycerin and diglycerin as a total amount with respect to the total solid content of the porous layer.
  • ⁇ Porous layer forming coating solution 3 Inorganic fine particle dispersion 2 (as alumina hydrate solid content) 100 parts by weight polyvinyl alcohol 9 parts by weight (saponification degree 88%, average polymerization degree 3,500, molecular weight about 150,000) Boric acid 0.4 parts by weight Nonionic surfactant 0.3 parts by weight (polyoxyethylene alkyl ether) Diglycerin 6.0 parts by mass (Sakamoto Yakuhin Kogyo Co., Ltd. diglycerin S, glycerin 0.9 mass%, diglycerin 95.4 mass%) It adjusted with water so that component density
  • the conductive expression agent coating liquid 2 was applied to the porous layer surface by a coating method using a slanted gravure roll and dried by a dryer.
  • the oblique gravure roll used here is a gravure roll having a diameter of 60 mm, an oblique line angle of 45 degrees, a number of lines of 90 lines / inch, and a groove depth of 110 ⁇ m, and was used in reverse rotation.
  • the moisture application amount was set to 20 g / m 2 by adjusting the rotational speed of the oblique gravure roll.
  • the applied conductive expression agent coating solution was absorbed inside the porous layer, and the porous layer was exposed on the surface.
  • Example 1 the dissociation layer coating solution 1 used in Example 1 was applied and dried in the same manner as in Example 1 to obtain a transfer substrate, and a conductive pattern was produced on the transfer substrate in the same manner as in Example 1. .
  • a pressure-bonding treatment at a roll temperature of 110 ° C., a pressure of 10 N / cm 2 , and a speed of 0.3 m / min (1 second as the pressure-bonding time), and the transfer substrate was peeled off. Thereafter, the transfer object was subjected to a heat treatment at 160 ° C. for 60 minutes to obtain a pattern transfer product of Example 53 having a conductive pattern.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • the adhesive strength measured at a peeling angle of 180 degrees in accordance with JIS Z 0237 when the polyimide coverlay film having a width of 25 mm was heated to 110 ° C. was 0.2 to 10 N / 25 mm.
  • the adhesive strength at room temperature was less than 0.1 N / 25 mm.
  • Example 54 The porous layer forming coating solution 3 of Example 53 was changed to a porous layer forming coating solution 4 having the following composition, and the porous layer was coated so that the coating amount after drying was 36.5 g / m 2.
  • a pattern transfer product of Example 54 having a conductive pattern was obtained in the same manner as Example 53 except that the layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the porous layer contained 10% by mass of glycerin and diglycerin as a total amount with respect to the total solid content of the porous layer.
  • ⁇ Porous layer forming coating solution 4 Inorganic fine particle dispersion 2 (as alumina hydrate solid content) 100 parts by weight polyvinyl alcohol 9 parts by weight (saponification degree 88%, average polymerization degree 3,500, molecular weight about 150,000) Boric acid 0.4 parts by weight Nonionic surfactant 0.3 parts by weight (polyoxyethylene alkyl ether) Diglycerin (Sakamoto Yakuhin Kogyo Co., Ltd. diglycerin S) 12.7 parts by mass It was adjusted with water so that the component concentration other than water was 18% by mass.
  • Example 55 The porous layer forming coating solution 3 of Example 53 was changed to a porous layer forming coating solution 5 having the following composition, and the porous layer was coated so that the coating amount after drying was 38.6 g / m 2.
  • a pattern transfer product of Example 55 having a conductive pattern was obtained in the same manner as Example 53 except that the layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the porous layer contained 15% by mass of glycerin and diglycerin as a total amount with respect to the total solid content of the porous layer.
  • Example 56 The porous layer forming coating solution 3 of Example 53 was changed to a porous layer forming coating solution 6 having the following composition, and the porous layer was coated so that the coating amount after drying was 41.0 g / m 2.
  • a pattern transfer product of Example 56 having a conductive pattern was obtained in the same manner as Example 53 except that the layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the porous layer contained 20% by mass of glycerin and diglycerin as a total amount with respect to the total solid content of the porous layer.
  • ⁇ Porous layer forming coating solution 6 Inorganic fine particle dispersion 2 (as alumina hydrate solid content) 100 parts by weight polyvinyl alcohol 9 parts by weight (saponification degree 88%, average polymerization degree 3,500, molecular weight about 150,000) Boric acid 0.4 parts by weight Nonionic surfactant 0.3 parts by weight (polyoxyethylene alkyl ether) Diglycerin (Diglycerin S manufactured by Sakamoto Pharmaceutical Co., Ltd.) 28.5 parts by mass The composition was adjusted with water so that the concentration of the components other than water was 20% by mass.
  • Example 57 The porous layer forming coating solution 3 of Example 53 was changed to a porous layer forming coating solution 7 having the following composition, and the porous layer was coated so that the coating amount after drying was 38.6 g / m 2.
  • a pattern transfer product of Example 57 having a conductive pattern was obtained in the same manner as Example 53 except that the layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the porous layer contained 15% by mass of glycerin with respect to the total solid content of the porous layer.
  • Example 58 The porous layer forming coating solution 3 of Example 53 was changed to a porous layer forming coating solution 8 having the following composition, and the porous layer was coated so that the coating amount after drying was 38.6 g / m 2.
  • a pattern transfer product of Example 58 having a conductive pattern was obtained in the same manner as Example 53 except that the layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the porous layer contained 15% by mass of glycerin and polyglycerin as a total amount with respect to the total solid content of the porous layer.
  • Example 59 The porous layer forming coating solution 3 of Example 53 was changed to a porous layer forming coating solution 9 having the following composition, and the porous layer was coated so that the coating amount after drying was 38.6 g / m 2.
  • a pattern transfer product of Example 59 having a conductive pattern was obtained in the same manner as Example 53 except that the layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the porous layer contained 15% by mass of glycerin, diglycerin, and polyglycerin as a total amount with respect to the total solid content of the porous layer.
  • Example 60 The porous layer forming coating solution 3 of Example 53 was changed to a porous layer forming coating solution 10 having the following composition, and the porous layer was coated so that the coating amount after drying was 38.6 g / m 2.
  • a pattern transfer product of Example 60 having a conductive pattern was obtained in the same manner as Example 53 except that the layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • the porous layer contained 15% by mass of glycerin and polyglycerin as a total amount with respect to the total solid content of the porous layer.
  • ⁇ Porous layer forming coating solution 10 Inorganic fine particle dispersion 2 (as alumina hydrate solid content) 100 parts by weight polyvinyl alcohol 9 parts by weight (saponification degree 88%, average polymerization degree 3,500, molecular weight about 150,000) Boric acid 0.4 parts by weight Nonionic surfactant 0.3 parts by weight (polyoxyethylene alkyl ether) 21.5 parts by mass of polyglycerol (degree of polymerization 10) (Sakamoto Pharmaceutical Co., Ltd. polyglycerol # 750, 1.1% by mass of glycerin and 88.9% by mass of polyglycerol) It adjusted with water so that component density
  • Example 61 The porous layer forming coating solution 3 of Example 53 was changed to the porous layer forming coating solution 2 used in Example 2, and coating was performed so that the coating amount after drying of the porous layer was 32.8 g / m 2. Thus, a pattern transfer product of Example 61 having a conductive pattern was obtained in the same manner as Example 53 except that the porous layer was formed. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 62 Using a pigment ink type ink jet printer (OfficeJet Pro 6230 manufactured by Hewlett-Packard), a black solid pattern of 50 mm ⁇ 50 mm was printed on the transfer substrate prepared in Example 55, and transferred onto the transfer substrate. A pattern was formed.
  • a polyamide-based thermoplastic resin film sheet (Nippon Matai Co., Ltd.) is used as a heat-adhesive material between a plain-woven cotton fabric using 50th yarn as a transfer target and the surface on which the transfer pattern of the patterned transfer substrate is formed.
  • press-bonding is performed at a roll temperature of 110 ° C., a pressure of 10 N / cm 2 , and a speed of 0.5 m / min.
  • the base material for peeling was peeled, and the pattern transfer thing of Example 62 which has a transfer pattern was obtained.
  • the surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 63 A pattern transfer product of Example 63 was obtained in the same manner as in Example 62 except that the transfer substrate prepared in Example 61 was used as the transfer substrate. The surface of the obtained pattern transfer product was not sticky at room temperature.
  • Example 53 The number of contaminated sheets was 10% or more and less than 30%.
  • Example 54 The number of contaminated sheets was 5% or more and less than 10%.
  • Example 55 The number of contaminated sheets was 0%.
  • Example 56 The number of contaminated sheets was 0%.
  • Example 57 The number of contaminated sheets was 0%.
  • Example 58 The number of contaminated sheets was 0%.
  • Example 59 The number of contaminated sheets was 0%.
  • Example 60 The number of contaminated sheets was 5% or more and less than 10%.
  • Example 61 The number of contaminated sheets was 30% or more.
  • Example 62 The number of contaminated sheets was 5% or more and less than 10%.
  • Example 63 The number of contaminated sheets was 30% or more.

Abstract

本発明は、工程が簡便で、転写されたパターンと被転写体との密着性が良好なパターン転写物が得られるパターン転写物の製造方法を提供することを目的とする。本発明のパターン転写物の製造方法は、支持体上に少なくとも多孔質層と該多孔質層上に解離層を有する転写用基材の解離層の上に転写パターンを形成する工程と、表面に粘着性を有する被転写体に該転写パターンを転写する工程及び粘着性を有する物質を介して被転写体へ該転写パターンを転写する工程から選ばれる転写工程と、被転写体表面または粘着性を有する物質の粘着性を除去する工程とを少なくとも具備する。

Description

パターン転写物の製造方法
 本発明は、転写用基材上に形成された転写パターンを転写用基材上から被転写体に転写してパターン転写物を製造する方法に関する。
 近年、電子機器の小型化、高性能化に伴って、それらに用いられる導電性材料に対して、微細配線の形成や熱膨張係数の低下が強く求められている。導電性材料の構成部材である絶縁材料の低熱膨張係数化の手段として、絶縁材料を高充填化する、すなわち、絶縁材料における無機充填材の含有量を高くする方法が知られている。また、絶縁材料として、エポキシ樹脂、フェノールノボラック系硬化剤、フェノキシ樹脂、シアネート樹脂等を含む耐湿性に優れたアルカリ不溶性樹脂を使用することが提案されている。これらの無機充填材及びアルカリ不溶性樹脂を含む絶縁性の樹脂組成物は、耐熱性、誘電特性、機械強度、耐化学薬品性等に優れた物性を有することから、導電性材料の外層表面に用いられるソルダーレジストや、多層ビルドアップ配線板に用いられる層間絶縁材料などの導電性材料の構成部材として広く使用されている。
 層間絶縁材料を利用した導電性材料としては、従来から知られる導電性材料の表面に、層間絶縁材料として接着性絶縁樹脂層を形成した後、接着性絶縁樹脂層表面に導電性パターンを形成した導電性材料積層体が知られている。
 接着性絶縁樹脂層表面への導電性パターンの形成方法としては、フォトリソグラフィーを用いる方法が知られている。このような方法としては、例えば、接着性絶縁樹脂層上に金属層を形成した後、金属層上にフォトレジスト層を設け、レジストパターンを形成した後、金属層をエッチングして除去するサブトラクティブ法が知られている。しかし、フォトリソグラフィーを用いる方法は工程が煩雑であるという問題がある。そこで、簡便に接着性絶縁樹脂層上に導電性パターンを形成する方法が望まれている。
 簡便に接着性絶縁樹脂層上に導電性パターンを形成する方法としては、接着性絶縁樹脂層上に導電性粒子を含有するインクを印刷する方式が知られている。このような方法としては、例えば特許文献1には、接着性絶縁樹脂層上に導電性ペーストをスクリーン印刷した後、導電性ペーストを硬化することで、接着性絶縁樹脂層上に導電性パターンを形成する方法が開示されている。しかしながら、接着性絶縁樹脂層上に導電性ペーストをスクリーン印刷する方法では、接着性絶縁樹脂層と硬化後の導電性パターンとの密着性が不足する場合があった。
 一方、対象物上に導電性パターンを形成する方法としては、インクジェットプリンタで転写用基材上に導電性パターンを形成した後、対象物(被転写体)表面にこの転写用基材を加熱・圧着することにより、導電性パターンを対象物に転写する方法が知られている。このような方法に用いる転写用基材としては、例えば特許文献2には、基材となるフィルム上に平均粒子径300nm以下の無機粒子及び、該無機粒子に対してバインダーを5~50質量%含有するインク受容層を有し、更に、その上にガラス転移点が0~50℃の熱可塑性樹脂からなる接着剤層を有するインクジェット記録用インク受容層転写シートが開示されている。特許文献2に開示される転写用基材を使用して導電性材料における接着性絶縁樹脂層上に導電性パターンを形成した場合、転写工程で導電性パターンが接着性絶縁樹脂層上に加熱・圧着されることによって、接着性絶縁樹脂層と導電性パターンとの密着性を改善することが可能である。しかしながら、仮に特許文献2に開示される転写用基材を導電性材料における導電性パターンの形成に用いたとしても、転写工程において導電性パターンと共にインク受容層が導電性材料に転写されてしまい、転写されたインク受容層が導電性パターン表面を覆ってしまう。このため、導電性パターンと他の導電性部材とを電気的に接続することができなくなることから、得られた部材を導電性材料として利用することは困難であった。
 他にも、導電性パターンを被転写体へ転写することによって導電性材料を製造する方法が検討されている。例えば特許文献3には、離型性耐熱基板上に、平均粒子径1~100nmの導電性金属系粒子を含む分散液をインクジェット記録方式で印刷し、焼成することにより形成された幅200μm以下の配線からなる配線回路を有する転写用配線回路板を用い、被転写体の少なくとも一方の面に、該転写用配線回路板における配線回路を、粘着剤層を介して転写してなる配線回路部材が開示されている。しかし離型性耐熱基板はインク受容層を有さないため、該分散液を印刷する際にはじきが生じやすく、導電性パターンの形成が難しいという課題があった。
 また、特許文献4には、金属超微粒子と、イオン結合により分子内にハロゲンを有する化合物とを作用させ、基材上にて導電性を得ることを特徴とする導電性発現方法及び、無機微粒子と無機微粒子に対し80質量%以下のバインダーからなる多孔質層をインク受容層として有する基材が開示されているが、該基材を転写用基材として用い、例えば粘着面として粘着剤層を有する被転写体への導電性パターンの転写を試みた場合、粘着剤が多孔質層に吸着し非常に強固に粘着するため、多孔質層から粘着剤層を剥がすことができない、あるいは剥がした際に粘着剤層に多孔質層が結着してしまい、該基材から被転写体へ導電性パターンを上手く転写することはできなかった。
 更には、特許文献5には、金属微粒子を含むインクあるいはペーストが含有する水あるいは有機溶剤といった溶媒成分を吸収し除去するための多孔質層を支持体上に設け、該多孔質層上にコロイダルシリカを主成分とする層を設けた基材上に、金属微粒子を含むインクあるいはペーストで導電性パターンを形成し、支持体上に粘着性を有する層が設けられた被転写体の粘着面に、導電性パターンを転写する導電性パターンの製造方法が開示されている。しかし、この方法で得られた導電性パターンは、被転写体との密着性に関し更なる改善が求められていた。
 また近年、自動車や携帯型電子機器等の進展が著しく、軽量化、薄型化、高強度化の要求が進む中、例えば炭素繊維強化樹脂やガラス繊維強化樹脂といった、エポキシ樹脂やフェノール樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂を、炭素繊維やガラス繊維に含浸させ、加熱硬化させることにより製造された成型物を筐体として利用する方法が検討されている。
 更に、こうして作られた筐体に耐摩耗性や耐食性を高めるためにめっき層を設ける検討や、該筐体に導電性金属層あるいはタッチセンサーやアンテナなどの導電性パターンを形成して複合体とした導電性部材として使用する検討が行われている。例えば前者の例としては特許文献6に、炭素繊維強化樹脂成型品の表面に低温プラズマを照射しめっきを行うことにより金属層を形成する方法が開示されているが、製造装置が高価かつめっき処理が必要となるため工程が多く煩雑であった。
 また、特許文献5に開示される導電性パターンを転写した被転写体を筐体に貼り付けることにより導電性部材を製造することができるが、導電性パターンと筐体との密着性に関し更なる改善が求められていた。更には、被転写体は少なくとも数μmから数十μm以上の厚みがあり、且つ、パターンが転写されていない非画像部は粘着剤層が露出していることから、筐体とパターンの一体感が損なわれるという問題が新たに発生した。
 一方、被転写体に金属調パターンを形成して金属調加飾部材を得る方法として、被転写体の表面に金属箔を転写する、ホットスタンプが知られている。ホットスタンプは、被転写体の表面にシート状の接着層を有する金属箔を乗せ、その上から加熱した型で圧力を加えることで金属箔を型に沿って破断させ、金属箔が有する接着層を利用して、被転写体へ型のパターンの金属箔を転写する方法である。しかし、ホットスタンプの場合、型を用いた加圧工程があるため、パターンのデザイン毎に型を別途製造する必要があり、製造コストがかかるという問題があった。
 そのため、例えば特許文献7には、型を用いる代わりにサーマルヘッドを用い、金属蒸着転写シートから転写箔へ金属蒸着層を任意のパターンで一旦転写し、この転写箔から金属蒸着層を被転写体へ転写することにより、型を不要とした金属調加飾部材を得る方法が開示されているが、中間体としての転写箔が必要であり、工程が多く煩雑であった。
 また、例えば特許文献8には、被転写体の表面に金属箔を接着し、その上にUVインクジェット印刷により任意パターンでレジスト層を形成し、エッチング後レジストを除去することにより、型を不要とした金属調加飾部材を得る方法が開示されているが、エッチング工程やレジスト除去工程があるため、工程が多く煩雑であった。
 また、例えば特許文献9には、β-ケトカルボン酸銀を含有する加飾用インクをインクジェット方式あるいはディスペンサーを用いて被転写体へ印刷し、その後加熱してβ-ケトカルボン酸銀を金属銀に分解することにより、型を不要とした金属調加飾部材を得る方法が開示されているが、被転写体が非浸透性である場合には加飾用インクのにじみが問題となり、また被転写体が浸透性である場合にはアンダーコート層を事前に設ける必要があった。
 また、特許文献5に開示される導電性パターンを転写した被転写体を金属調加飾部材として用いることができるが、金属調パターンと被転写体との密着性に関し、更なる改善が求められていた。
 また近年、様々な高精細印刷技術が開発され、多くの高精細な印刷物が製造・販売されており、他人とは違う印刷物を得るためのオンデマンド性の要求の高まりにより、従来の紙媒体だけでなく、布帛などの繊維材料、合成皮革、樹脂成型物、金属成型物、木材加工物など様々な対象物に、顔料や染料等の色剤による高精細な印刷を施す必要性が高まってきた。このような状況の中、このような用途には、例えば昇華型インクを用いて印刷した転写紙を使用して対象物に熱昇華転写する昇華型インク捺染転写、水性顔料インクを対象物に直接印刷する水性顔料インクダイレクト捺染、UV硬化型インクを使用し対象物に直接印刷するUVインクジェット印刷、その他スクリーン印刷による方法などが使用されている。
 しかし、例えば昇華型インク捺染転写や水性顔料インクダイレクト捺染では、対象物によっては昇華型インクや水性顔料インクを保持するための定着層(吸収層)を設ける必要があった。インクを保持することができる布帛等に水性顔料インクダイレクト捺染にて直接印刷した場合でも、印刷されたインクの不要成分を除去するために後洗浄が必要な場合があった。またUVインクジェット印刷を使用した場合、比較的多くの種類の対象物に印刷することができるものの、UV硬化型インクの残存モノマー成分によると思われる臭気が酷く、しばしば問題となる場合があった。またスクリーン印刷による方法では、UVインクジェット印刷と比較して臭気などは低いが、使用するインキの硬化に時間がかかる場合があり、布帛等へ印刷した場合は、インキの不要成分が残存するため後洗浄が必要な場合があった。
 このような問題に対し、予め転写用基材上に画像パターンを形成・保持しておき、これを被転写体へ転写する方法が用いられている。例えば特許文献2のように、インクジェットプリンタで転写用基材上に色剤によるパターンを形成した後、被転写体表面にこの転写用基材を加熱・圧着することにより、パターンを被転写体に転写する方法が既に用いられている。しかしながら、この方法では転写を行うと共にインク受容層まで被転写体に転写されてしまうため、高精細で高発色な転写パターンが得られない場合があった。
 一方、このような用途に特許文献5に開示される転写方法を使用した場合、確かに被転写体への不要な溶剤成分の転写や不要な多孔質層の転写はないが、粘着剤層を有する被転写体へ色剤によるパターンが転写されることから、転写後のパターンと被転写体との密着性が悪くパターンが脱落する場合があった。
特開平11-150150号公報 特開2007-313847号公報 特開2010-135692号公報 特開2008-4375号公報 特開2014-192275号公報 特開平6-264250号公報 特開2011-93296号公報 特開2016-175305号公報 特開2017-87483号公報
 本発明の目的は、工程が簡便で、転写されたパターンと被転写体との密着性が良好なパターン転写物が得られるパターン転写物の製造方法を提供するものである。
 前記した本発明の目的は、以下の発明によって基本的に達成される。
1.支持体上に少なくとも多孔質層と該多孔質層上に解離層を有する転写用基材の解離層の上に転写パターンを形成する工程と、表面に粘着性を有する被転写体に該転写パターンを転写する工程及び粘着性を有する物質を介して被転写体へ該転写パターンを転写する工程から選ばれる転写工程と、被転写体表面または粘着性を有する物質の粘着性を除去する工程とを少なくとも具備する、パターン転写物の製造方法。
2.表面に粘着性を有する被転写体が、常温で粘着性を有する被転写体であり、被転写体表面の粘着性を除去する工程が、被転写体を加熱硬化する工程である1に記載のパターン転写物の製造方法。
3.表面に粘着性を有する被転写体が、常温で粘着性を有さず加熱により粘着性を生じる被転写体であり、被転写体表面の粘着性を除去する工程が、被転写体を加熱硬化する工程である1に記載のパターン転写物の製造方法。
4.表面に粘着性を有する被転写体が、常温で粘着性を有さず加熱により粘着性を生じる被転写体であり、被転写体表面の粘着性を除去する工程が、被転写体を常温まで放冷する工程である1に記載のパターン転写物の製造方法。
5.粘着性を有する物質が、常温で粘着性を有さず加熱により粘着性を生じる物質であり、粘着性を有する物質の粘着性を除去する工程が、被転写体を常温まで放冷する工程である1に記載のパターン転写物の製造方法。
6.転写パターンが導電性パターン、金属調パターン及び顔料色剤によるパターンから選ばれるパターンである1~5のいずれかに記載のパターン転写物の製造方法。
7.転写パターンが導電性パターンであり、転写工程の後に、転写された導電性パターンにめっきを施す工程を行い、その後、被転写体表面の粘着性を除去する工程を行う2または3に記載のパターン転写物の製造方法。
8.転写パターンが導電性パターンであり、被転写体表面の粘着性を除去する工程の後に、転写された導電性パターンにめっきを施す工程を行う4に記載のパターン転写物の製造方法。
9.多孔質層がグリセリン及びポリグリセリンから選択される少なくとも1種の化合物を含有する1~8のいずれかに記載のパターン転写物の製造方法。
 本発明によれば、工程が簡便で、転写されたパターンと被転写体との密着性が良好なパターン転写物が得られるパターン転写物の製造方法を提供することができる。
本発明における転写パターンを形成した転写用基材の概略断面図 本発明における転写パターンを形成した転写用基材と被転写体を貼合した際の概略断面図 本発明におけるパターン転写物の概略断面図 本発明におけるパターン転写物の別の概略断面図 本発明における、転写パターンを形成した転写用基材と被転写体を、常温で粘着性を有さず加熱により粘着性を生じる物質を介して貼合した際の概略断面図 本発明における、常温で粘着性を有さず加熱により粘着性を生じる物質を介してパターンを転写することにより作製したパターン転写物の概略断面図 本発明における、導電性パターン上にめっき層を有するパターン転写物の概略断面図
 以下、本発明を詳細に説明する。
 図面を用いて本発明のパターン転写物の製造方法を説明する。まず、支持体1上に多孔質層2と解離層3を有する転写用基材10を準備する(図1)。次に、転写用基材10の解離層3の上に転写パターン4を、例えばインクジェットプリンタ等で印刷して形成する(図1)。続いて、常温で表面に粘着性を有する、あるいは表面に粘着性が発現する温度まで加熱した被転写体5に対して転写用基材10の転写パターン4形成面を貼合する(図2)。その後、必要に応じ常温まで放冷する工程を経て、被転写体5から貼合した転写用基材10を取り除き、被転写体5が常温で粘着力を有する場合は、更に被転写体5を加熱硬化することで、転写パターン4が転写された被転写体5(図3あるいは図4)のような本発明のパターン転写物を製造することができる。
 また、常温で粘着性を有さず加熱により粘着性を生じる物質6を介し、先と同様に形成した転写用基材10の転写パターン4形成面と被転写体5を、物質6が粘着性を生じる温度まで加熱し貼合する(図5)。その後、常温まで放冷する工程を経て、被転写体5から貼合した転写用基材10を取り除くことで、転写パターン4が転写された被転写体5(図6)のような本発明のパターン転写物を製造することができる。なお、本発明において、加熱硬化や放冷などの被転写体表面の粘着性を除去する工程と、被転写体から貼合した転写用基材を除く工程は、相前後してもかまわない。
 本発明における転写用基材は、支持体上に少なくとも多孔質層と該多孔質層上に解離層を有する基材である。本発明における転写用基材は、該解離層の上に転写パターンを一旦保持し、次いで表面に粘着性を有する被転写体、あるいは粘着性を有する物質を介して被転写体へ、該転写パターンを転写する用途に供する。該多孔質層及び解離層は必要に応じ、支持体の両面に設けられても良い。
 転写用基材が有する支持体としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニル、塩化ビニル共重合体等のポリ塩化ビニル系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、エポキシ樹脂、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フッ素樹脂、フェノキシ樹脂、トリアセチルセルロース、ポリイミド、ポリフェニレンスルフィド、ポリカーボネート、ポリメチルメタクリレートに代表されるアクリル樹脂、セロファン、ナイロン、ポリスチレン系樹脂、ABS樹脂等の各種樹脂からなるフィルム、石英ガラス、無アルカリガラス、結晶化透明ガラス、パイレックス(登録商標)等の各種ガラス、紙、不織布、布、各種金属、各種セラミックス等を挙げることができるが、これらに限定されるものではない。また用途に応じこれら支持体を適宜組み合わせることができ、例えば、紙をポリオレフィン樹脂で積層したポリオレフィン樹脂被覆紙を用いることができる。
 これらの中でもコスト、汎用性の観点から、紙、ポリオレフィン樹脂被覆紙、及びポリオレフィン系樹脂、トリアセチルセルロース、ポリエチレンテレフタレート、ポリカーボネートからなるフィルムが好ましい。
 前記した支持体の中でも、各種樹脂からなるフィルム、ガラス、ポリオレフィン樹脂被覆紙等の非吸液性支持体を用いる場合には、非吸液性支持体と多孔質層との接着性を改善するために、支持体と多孔質層との間に、ゼラチンや各種ウレタン樹脂、ポリビニルアルコール等からなる公知の下塗層を設けることが好ましい。また、例えばポリエチレンテレフタレートフィルムでは易接着処理品として下塗層を予め設けた状態で市販されており、これを用いても良い。また、コロナ処理あるいはプラズマ処理により支持体の濡れ性を改善することも好ましい。
 下塗層の固形分塗布量は、0.5g/m以下であることが好ましく、より好ましくは0.3g/m以下、更に好ましくは0.1g/m以下である。下限は0.01g/m以上であることが好ましい。
 本発明において転写用基材が有する多孔質層は、後述する転写パターンの形成に好適な導電性微粒子を含むインクやペースト、顔料色剤を含有するインク等が含有する水あるいは有機溶剤といった溶媒成分を吸収する機能を担う。
 本発明において転写用基材が有する多孔質層は、転写パターンの形成に用いるインク等が含有する溶媒成分の吸収性の観点から、微粒子を主体に含有する層であることが好ましい。微粒子を主体に含有するとは、多孔質層の全固形分中に占める微粒子の割合が50質量%以上であることを意味し、好ましくは70質量%以上である。用いられる微粒子としては、公知の微粒子を広く用いることができる。例えば、軽質炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチンホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、非晶質合成シリカ、アルミナ、コロイダルアルミナ、アルミナ水和物、リトポン、ゼオライト、加水ハロイサイト、水酸化マグネシウム等の無機微粒子、アクリル樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、ポリエステル系樹脂、スチレン/アクリル共重合体、スチレン/ブタジエン共重合体、スチレン/イソプレン共重合体、ポリカーボネート、シリコーン樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、フェノール樹脂、ジアリルフタレート樹脂等の有機微粒子が挙げられる。有機微粒子は前記した少なくとも1種以上の樹脂からなる真球状あるいは不定型で、無孔質あるいは多孔質の有機微粒子等を挙げることができる。前記した無機微粒子の2種以上を併用したり、有機微粒子の2種以上を併用したり、無機微粒子の1種以上と有機微粒子の1種以上を併用して用いることもできる。前記の中でも、溶媒成分の吸収性の観点からは無機微粒子を用いることが好ましく、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、非晶質合成シリカ、アルミナ、アルミナ水和物がより好ましく、非晶質合成シリカ、アルミナ、アルミナ水和物が特に好ましい。また、被転写体が曲面を有する場合など、本発明における転写用基材に可撓性が要求される場合には、アルミナ水和物を用いることが特に好ましい。
 非晶質合成シリカは、製造法によって湿式法シリカ、気相法シリカ及びその他に大別することができる。
 湿式法シリカは、更に製造方法によって沈降法シリカ、ゲル法シリカ、ゾル法シリカに分類される。沈降法シリカは珪酸ソーダと硫酸をアルカリ条件で反応させて製造され、粒子成長したシリカ粒子が凝集・沈降し、その後濾過、水洗、乾燥、粉砕・分級の工程を経て製品化される。沈降法シリカは、例えば、東ソー・シリカ(株)からニップシール(登録商標)として、丸尾カルシウム(株)からトクシール(登録商標)、ファインシール(登録商標)として、水澤化学工業(株)からミズカシル(登録商標)として市販されている。ゲル法シリカは珪酸ソーダと硫酸を酸性条件下で反応させて製造する。熟成中に微小粒子は溶解し、他の一次粒子同士を結合するように再析出するため、明確な一次粒子は消失し、内部空隙構造を有する比較的硬い凝集粒子を形成する。ゲル法シリカは、例えば、東ソー・シリカ(株)からニップジェル(登録商標)として、GCPジャパン(株)からシロイド(登録商標)、シロジェット(登録商標)として、水澤化学工業(株)からミズカシルとして市販されている。本発明において沈降法シリカあるいはゲル法シリカを用いることが好ましく、沈降法シリカがより好ましい。
 湿式法シリカの粒子性状としては、平均一次粒子径が50nm以下、好ましくは3~40nmであり、かつ平均凝集粒子径が1~50μmであることが好ましい。また平均凝集粒子径が5~50μmである湿式法シリカの粒子を、平均二次粒子径500nm以下に分散することがより好ましい。分散された湿式法シリカの平均二次粒子径は、より好ましくは10~300nm、更に好ましくは20~200nmである。分散方法としては、水性媒体と混合した湿式法シリカを機械的に粉砕する湿式分散法が好ましく使用され、これにはビーズミルなどのメディアミルを用いることが好ましい。ビーズミルは密閉されたベッセル内に充填されたビーズと顔料との衝突により顔料の粉砕を行うものであり、ウィリー・エ・バッコーフェン社よりダイノーミルとして、浅田鉄工(株)よりグレンミル(登録商標)として、アシザワ・ファインテック(株)よりスターミル(登録商標)として市販されている。湿式法シリカは、メディアミル等を用いて分散した後に、更に高圧ホモジナイザー、超高圧ホモジナイザー等の圧力式分散機、超音波分散機、薄膜旋回型分散機等を用いて分散することが好ましい。
 本発明でいう微粒子の平均一次粒子径とは、微粒子を電子顕微鏡で観察することにより、一定面積内に存在する100個の一次粒子各々の投影面積に等しい円の直径を粒子径として平均粒子径を求めたものである。また微粒子の平均二次粒子径とは、電子顕微鏡による観察でも求めることができるが、簡易的にはレーザー散乱式の粒度分布計(例えば、(株)堀場製作所製LA910)を用いて、個数メジアン径として測定することができる。また、湿式法シリカの平均凝集粒子径とは、粉体として供給される状態での平均粒子径を示し、例えばコールターカウンター法で求めることができる。
 気相法シリカは、湿式法に対して乾式法とも呼ばれ、一般的には火炎加水分解法によって作られる。具体的には、四塩化ケイ素を水素及び酸素と共に燃焼して作る方法が一般的に知られているが、四塩化ケイ素の代わりにメチルトリクロロシランやトリクロロシラン等のシラン類も、単独または四塩化ケイ素と混合した状態で使用することができる。気相法シリカは、日本アエロジル(株)からアエロジル(登録商標)、(株)トクヤマからレオロシール(登録商標)として市販されている。
 気相法シリカの粒子性状としては、平均一次粒子径が40nm以下であることが好ましく、15nm以下であることがより好ましい。更に好ましくは、平均一次粒子径が3~15nmでかつBET法による比表面積が200m/g以上(好ましくは250~500m/g)である。
 本発明でいうBET法とは、気相吸着法による粉体の表面積測定法の一つであり、吸着等温線から1gの試料の持つ総表面積、即ち比表面積を求める方法である。通常、吸着気体としては窒素ガスが多く用いられ、吸着量を被吸着気体の圧、または容積の変化から測定する方法が最も多く用いられている。多分子吸着の等温線を表すのに最も著名なものは、Brunauer、Emmett、Tellerの式であってBET式と呼ばれ粉体の表面積決定に広く用いられている。BET式に基づいて吸着気体の吸着量を求め、それに吸着表面における吸着分子1個が占める面積を掛けて表面積が得られる。
 気相法シリカを用いた場合においても、湿式法シリカと同様に、気相法シリカの粒子を平均二次粒子径500nm以下に分散することが好ましい。分散された気相法シリカの平均二次粒子径は、より好ましくは10~300nm、更に好ましくは20~200nmである。分散方法としては、通常のプロペラ撹拌、タービン型撹拌、ホモミキサー型撹拌等で気相法シリカと水を主体とする分散媒を予備混合し、次にボールミル、ビーズミル、サンドグラインダー等のメディアミル、高圧ホモジナイザー、超高圧ホモジナイザー等の圧力式分散機、超音波分散機、薄膜旋回型分散機等を用いて分散を行うことが好ましい。
 本発明では、多孔質層は、前述した微粒子を含む塗布液を支持体上に塗布し、乾燥して形成することが簡便であり、好ましい。かかる塗布液を調製するにあたり、平均二次粒子径500nm以下の湿式法シリカあるいは気相法シリカを含有するスラリーを製造することが好ましく、該スラリーの製造にあたりスラリーの高濃度化や分散安定性を向上させるため、公知の種々の方法を用いても良い。例えば、特開2002-144701号公報や特開2005-1117号公報に記載されているアルカリ性化合物の存在下でシリカ粒子を分散する方法、カチオン性化合物の存在下でシリカ粒子を分散する方法、シランカップリング剤存在下でシリカ粒子を分散する方法等を挙げることができ、カチオン性化合物の存在下でシリカ粒子を分散する方法がより好ましい。
 前記湿式法シリカあるいは気相法シリカの分散に使用するカチオン性化合物としては、ポリエチレンイミン、ポリジアリルアミン、ジアリルアミン誘導体由来の構造単位を有する重合物、ポリアリルアミン、アルキルアミン重合物、1~3級アミノ基や4級アンモニウム塩基を有するポリマーが好ましく用いられる。特にジアリルアミン誘導体由来の構造単位を有する重合物が好ましく用いられる。分散性及び分散液粘度の面で、これらのカチオンポリマーの分子量は、2,000~10万程度が好ましく、2,000~3万程度がより好ましい。
 本発明において多孔質層が好ましく含有するアルミナとしては、酸化アルミニウムのγ型結晶であるγ-アルミナが好ましく、中でもδグループ結晶が好ましい。γ-アルミナは一次粒子の粒子径を10nm程度まで小さくしたものが存在するが、通常は二次粒子を形成し、二次粒子結晶の粒子径が数千nmから数万nmであることから、二次粒子結晶を超音波分散機や高圧ホモジナイザー、対向衝突型ジェット粉砕機等で平均二次粒子径を好ましくは500nm以下、より好ましくは20~300nm程度まで粉砕したものが使用できる。
 本発明において多孔質層が好ましく含有するアルミナ水和物は、Al・nHO(n=1~3)の構成式で表される。アルミナ水和物は、一般にアルミニウムイソプロポキシド等のアルミニウムアルコキシドの加水分解、アルミニウム塩のアルカリによる中和、アルミン酸塩の加水分解等の公知の製造方法により得られる。アルミナ水和物の平均二次粒子径は好ましくは500nm以下、より好ましくは20~300nmである。
 本発明において多孔質層が好ましく含有する前記のアルミナ及びアルミナ水和物は、酢酸、乳酸、ギ酸、硝酸等の公知の分散剤によって分散された分散液の形態で使用することが好ましい。
 本発明において、多孔質層は前記した微粒子と共に樹脂バインダーを含有することが好ましい。該樹脂バインダーとしては、例えば、ポリビニルアルコール、シラノール変性ポリビニルアルコール、酸化澱粉、エーテル化澱粉、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体、カゼイン、ゼラチン、大豆蛋白等を挙げることができる。また、スチレン-ブタジエン共重合体、メチルメタクリレート-ブタジエン共重合体などの共役ジエン系共重合体ラテックス、あるいはこれらの各種重合体のカルボキシル基などの官能基含有単量体による官能基変性重合体ラテックス等を挙げることができる。また、メラミン樹脂、尿素樹脂などの熱硬化性合成樹脂などの水性接着剤や、ポリメチルメタクリレート、ポリウレタン樹脂、不飽和ポリエステル樹脂、塩化ビニル-酢酸ビニルコポリマー、ポリビニルブチラール、アルキッド樹脂などの合成樹脂系接着剤等を挙げることができ、これらを単独あるいは混合して用いることができる。この他、公知の天然、あるいは合成樹脂バインダーを単独であるいは混合して用いることは特に限定されない。
 これらの内、ポリビニルアルコールあるいはシラノール変性ポリビニルアルコールが好ましく、特に好ましいのは、ケン化度が80%以上の部分ケン化したポリビニルアルコールや完全ケン化したポリビニルアルコール、あるいはシラノール変性ポリビニルアルコールである。ポリビニルアルコールの平均重合度は200~5000であることが好ましい。
 多孔質層において、微粒子に対する樹脂バインダーの含有量は特に限定されないが、多孔質な層を形成するためには、樹脂バインダーの含有量は、微粒子に対して8~80質量%であることが好ましく、より好ましくは8~50質量%である。
 また多孔質層は、前記した樹脂バインダーと共に必要に応じ硬膜剤を含有することもできる。硬膜剤の具体的な例としては、ホルムアルデヒド、グルタルアルデヒドなどのアルデヒド系化合物、ジアセチル、クロルペンタンジオンなどのケトン化合物、ビス(2-クロロエチル)尿素、2-ヒドロキシ-4,6-ジクロロ-1,3,5-トリアジン、米国特許第3,288,775号記載の化合物などの反応性のハロゲンを有する化合物、米国特許第3,635,718号記載の化合物などの反応性のオレフィンを持つ化合物、米国特許第2,732,316号記載の化合物などのN-メチロール化合物、米国特許第3,103,437号記載の化合物などのイソシアナート類、米国特許第3,017,280号、同2,983,611号記載の化合物などのアジリジン化合物類、米国特許第3,100,704号記載の化合物などのカルボジイミド系化合物類、米国特許第3,091,537号記載の化合物などのエポキシ化合物、ジヒドロキシジオキサンなどのジオキサン誘導体、ホウ砂、ホウ酸、ホウ酸塩類などの無機架橋剤等があり、これらを1種または2種以上組み合わせて用いることができる。硬膜剤の含有量は特に限定されないが、樹脂バインダーに対して50質量%以下が好ましく、より好ましくは40質量%以下であり、特に好ましくは30質量%以下である。
 樹脂バインダーとしてケン化度が80%以上の部分ケン化したポリビニルアルコールや完全ケン化したポリビニルアルコール、あるいはシラノール変性ポリビニルアルコールを用いる場合、硬膜剤はホウ砂、ホウ酸、ホウ酸塩類が好ましく、ホウ酸が特に好ましい。ホウ酸の使用量は、これらのポリビニルアルコールに対し40質量%以下が好ましく、より好ましくは30質量%以下であり、特に好ましくは20質量%以下である。下限は0.1質量%以上であることが好ましい。
 その他、多孔質層は必要に応じ、防腐剤、界面活性剤、着色染料、紫外線吸収剤、酸化防止剤、微粒子の分散剤、消泡剤、レベリング剤、粘度安定剤、pH調整剤などを含有することができる。
 更には、多孔質層はグリセリン及びポリグリセリンから選択される少なくとも1種の化合物を含有することが好ましい。これにより、転写パターンの転写時に、転写用基材の支持体上に形成された多孔質層までが解離層と共に支持体から部分的に剥離して被転写体へ転写され、パターン転写物のパターン転写面が汚染される現象を抑制することができる。
 ポリグリセリンとは複数のグリセリンが重合した構造を持つ化合物であり、阪本薬品工業(株)より、重合度2のポリグリセリン(ジグリセリン)としてジグリセリンS、重合度4のポリグリセリンとしてポリグリセリン#310、重合度6のポリグリセリンとしてポリグリセリン#500、重合度10のポリグリセリンとしてポリグリセリン#750が市販されている。また(株)ダイセルより、重合度3のポリグリセリン(トリグリセリン)としてポリグリセリン03P(PGL03P)、重合度6のポリグリセリンとしてポリグリセリン06(PGL06)、重合度10のポリグリセリンとしてポリグリセリン10PSW(PGL10PSW)、重合度20のポリグリセリンとしてポリグリセリン20PW(PGL20PW)、重合度40のポリグリセリンとしてポリグリセリンXPW(PGLXPW)が市販されているので、これらを入手し利用することができる。
 グリセリン及びポリグリセリンから選択される少なくとも1種の化合物の含有量は、多孔質層の固形分塗布量に対し2.5質量%以上であることが好ましく、7.5質量%以上であることがより好ましく、12.5質量%以上であることが特に好ましい。上限は特に定めないが、転写パターンの形成に用いるインクやペーストが含有する溶媒成分に対する多孔質層の吸収性を阻害しないためには30質量%以下であることが好ましい。
 グリセリン及びポリグリセリンから選択される少なくとも1種の化合物を多孔質層へ含有せしめる方法としては、多孔質層の形成用の塗布液にこれらの化合物を含ませ塗布・乾燥する方法、これらの化合物を含む水溶液を多孔質層の上に塗布・乾燥する方法、多孔質層の上に塗布される解離層の形成用の塗布液にこれらの化合物を含ませ、塗布・乾燥する方法等を例示することができる。
 多孔質層の層厚(乾燥時)は1~100μmが好ましく、5~50μmがより好ましい。多孔質層は2層以上から構成されていてもよく、この場合、それらの多孔質層の構成はお互いに同じであっても異なっていても良い。例えば湿式法シリカを含有する多孔質層の上に、アルミナ水和物を含有する多孔質層が形成されていても良い。
 多孔質層は、微粒子と樹脂バインダー等を適当な溶媒に溶解または分散させて塗布液を調製し、該塗布液をスライドカーテン方式、スライドビード方式、スロットダイ方式、ダイレクトグラビアロール方式、リバースグラビアロール方式、スプレー方式、エアナイフ方式、ブレードコーティング方式、ロッドバーコーティング方式、スピンコート方式等による塗布、スクリーン印刷、インクジェット印刷、ディスペンサー印刷、オフセット印刷、反転オフセット印刷、グラビア印刷、フレキソ印刷等による印刷等、公知の各種塗布あるいは印刷方法を利用して、支持体表面の全面あるいは必要とされる部位への選択的な塗布を行い、形成することができる。また、塗布後に、鏡面ロールに圧接するキャスト処理を行って多孔質層表面を平滑にすることや、カレンダー処理を行って多孔質層表面を平滑にすることもできる。
 本発明において転写用基材は、前記した多孔質層上に解離層を有する。解離層とは、転写パターンを被転写体へ転写する際に多孔質層と転写パターンを分離する層であり、図3のように転写パターンのみを被転写体へ転写する、あるいは図4、図6のように転写パターンと解離層の一部を共に被転写体へ転写することができる。転写された解離層の一部は必要に応じ洗浄や払拭し、除去してもよい。
 本発明における解離層は、無機微粒子及び有機微粒子から選ばれる微粒子を主成分として含有することが好ましく、パターン転写時の温度で溶融あるいは粘着性を示さない層であることが好ましい。なお、主成分とするとは、かかる層の全固形分に対して、93質量%以上が無機微粒子及び有機微粒子から選ばれる微粒子であることを示し、好ましくは98質量%以上である。
 本発明において解離層が含有する無機微粒子としては、公知の無機微粒子を広く用いることができる。無機微粒子としては、例えば、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム、非晶質合成シリカ、アルミナ、アルミナ水和物、水酸化マグネシウム、酸化セリウム、酸化ジルコニウム、酸化ニオブ、酸化錫等の無機微粒子を例示することができ、これらを2種以上併用してもよい。
 解離層が含有する無機微粒子の平均一次粒子径は10~200nmであることが好ましく、20nm以上がより好ましい。平均一次粒子径が10nm未満であると、多孔質層の空隙を塞ぎ、吸収性が低下する場合がある。平均一次粒子径が200nmを超えると、解離層を形成する際に使用される塗布液において、無機微粒子が沈降し塗布に支障をきたす場合がある。
 このような無機微粒子として、コロイド状態にある無機微粒子の分散液を用いることが好ましく、例えば、コロイド状シリカであるコロイダルシリカ、酸化チタンゾル、アルミナゾル、酸化セリウムゾル、酸化ジルコニウムゾル、酸化ニオブゾル、酸化錫ゾルを挙げることができる。酸化ジルコニウムゾルは、例えば、第一稀元素化学工業(株)よりZSL-20N、ナイヤコール社(米国)よりZr100/20として、酸化セリウムゾルは、例えば、ナイヤコール社(米国)よりCEO2(AC)として、酸化ニオブゾルは、例えば、多木化学(株)よりバイラール(登録商標)として市販されている。
 コロイダルシリカとしては、シリカゾルから弱アルカリ性下で粒子成長させたそのままのタイプ、イオン交換によりアルカリ成分を減量したタイプ、シリカ中の珪素原子の一部をアルミニウム原子に置換してアニオン性を強化したタイプ、アルミナによる表面処理によりカチオン性にしたタイプ、アルコキシシランを原料にゾルゲル法で合成されたタイプ等が例示されるが何れも使用可能である。これらコロイダルシリカは、例えば日産化学(株)よりスノーテックス(登録商標)、扶桑化学工業(株)よりクォートロン(登録商標)として市販されている。
 本発明において解離層が含有する有機微粒子としては、公知の有機微粒子を広く用いることができる。例えば、アクリル樹脂、スチレン樹脂、ポリアミド、シリコーン樹脂、フッ素樹脂、フェノール樹脂、ポリビニルアセタール、ポリイミド、エポキシ樹脂、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリアミドイミド等の有機微粒子を例示することができ、これらを2種以上併用してもよい。
 解離層が含有する有機微粒子の平均一次粒子径は10~500nmであることが好ましく、20nm以上がより好ましい。平均一次粒子径が10nm未満であると、多孔質層の空隙を塞ぎ、吸収性が低下する場合がある。平均一次粒子径が500nmを超えると、解離層を形成する際に使用される塗布液において、有機微粒子が沈降し塗布に支障をきたす場合がある。
 このような有機微粒子として、ポリアミドイミドは、例えば、東レ(株)よりトレパール(登録商標)PAIとして、ポリエーテルスルホンは、例えば、東レ(株)よりトレパールPESとして、フッ素樹脂は、例えば、三井・ケマーズ フロロプロダクツ(株)より31-JR、ダイキン工業(株)よりD-210Cとして市販されている。
 本発明における解離層は、前記した無機微粒子の1種以上と有機微粒子の1種以上を併用して用いることもできる。併用する場合の無機微粒子と有機微粒子の体積比率としては、1:9から9:1の範囲が好ましい。得られるパターン転写物が導電性パターンの転写物である場合に、その導電性が優れること、及び、得られるパターン転写物が金属調パターンの転写物である場合に、その反射率が優れることから、解離層には無機微粒子を用いることが好ましい。
 本発明において解離層に含まれる無機微粒子及び/または有機微粒子以外の成分としては、樹脂バインダーとしての例えばポリビニルアルコールなどの水溶性樹脂やラテックス類、樹脂バインダーの硬膜剤、界面活性剤等を挙げることができる。
 本発明において解離層の固形分塗布量は、0.01g/m以上であることが好ましく、0.1g/m以上がより好ましい。固形分塗布量が0.01g/m未満であると、被転写体へ多孔質層が転写されてしまうことがある。解離層の固形分塗布量の上限は特にないが、10g/mを超えると無機微粒子及び/または有機微粒子を主成分とする解離層に亀裂の入る可能性が高くなるため、10g/m以下であることが好ましい。
 解離層の形成用塗布液は、スライドカーテン方式、スライドビード方式、スロットダイ方式、ダイレクトグラビアロール方式、リバースグラビアロール方式、スプレー方式、エアナイフ方式、ブレードコーティング方式、ロッドバーコーティング方式、スピンコート方式、インクジェット方式等による塗布、スクリーン印刷、インクジェット印刷、ディスペンサー印刷、オフセット印刷、反転オフセット印刷、グラビア印刷、フレキソ印刷等による印刷等、公知の各種塗布方法あるいは印刷方法を利用して、予め支持体上に作製された多孔質層表面の全面、あるいは必要とされる部位への選択的な塗布を行い、解離層を形成することができる。塗布方法としてはリバースグラビアロール方式が好ましく、より好ましくは、リバースグラビアロール方式の中でも、ロールの直径が100mm以下(更に好ましくは20~80mm)の斜線グラビアロール(斜線の溝を有するグラビアロール)を用いる方式である。
 本発明の転写用基材における多孔質層の形成用の塗布液に用いる溶媒あるいは分散媒と、解離層の形成用の塗布液に用いる溶媒あるいは分散媒が、共に主に水である場合には、多層スライドカーテン方式、多層スライドビード方式、多層スロットダイ方式等の多層同時塗布が可能な塗布方式を用い、多孔質層と解離層を同時に塗布しても良い。また、支持体が搬送されるライン上に複数の塗布装置が設置されるタンデム型の多層塗布装置を用いても良い。
 本発明において転写用基材の解離層の上に形成される転写パターンは、得られるパターン転写物の使用目的により適宜選択することができる。転写パターンが導電性パターン、金属調パターンあるいは顔料色剤によるパターンであると、転写されたパターンと被転写体との密着性が良好なパターン転写物が得られることから好ましい。転写パターンは、パターン形成主体として導電性微粒子または顔料色剤の微粒子成分を含有するインクやペーストを用いて転写用基材の解離層の上に形成されることが簡便であり好ましい。本発明において転写パターン形成に用いられるインクやペーストは、含まれる微粒子成分が解離層の上で保持される程度の大きさを有するもの、つまりは微粒子成分の大きさが解離層で作られる隙間より大きいものであれば適宜使用することができる。微粒子成分の平均粒子径は、好ましくは1nm~10μmであり、より好ましくは1nm~1μmである。本発明において微粒子成分の平均粒子径は、微粒子の電子顕微鏡観察により一定面積内に存在する100個の粒子各々の投影面積に等しい円の直径を粒子径として平均粒子径を求めたものである。
 本発明において、転写パターンが導電性パターンまたは金属調パターンである場合に用いられるインクあるいはペーストとしては、導電性微粒子である金属微粒子を含むインクあるいはペーストが例示される。本発明に用いられる金属微粒子を含むインクあるいはペーストには、公知のインクあるいはペーストを広く用いることができ、銀ナノインク、銅ナノインク、銀ペースト、銅ペースト、アルミペースト等を例示することができる。導電性パターンを形成するためには、カーボンインク、カーボンペースト等の他の導電性微粒子を含むインクあるいはペーストを用いることもできる。これらの中では、被転写体へ転写された導電性パターンの導電性に優れ、酸化されにくい点から、銀超微粒子を含有する銀ナノインクや、銀微粒子を含有する銀ペーストを用いることが好ましく、厚み1μm程度の非常に薄い導電性パターンを形成できる点から、銀ナノインクを用いることがより好ましい。銀ナノインクは、例えば三菱製紙(株)よりNBSIJシリーズとして市販されており、銀ペーストは、例えば藤倉化成(株)よりドータイト(登録商標)シリーズとして市販されている。
 本発明において、導電性微粒子を含むインクあるいはペーストは、様々な印刷方法あるいは塗布方式により、転写用基材が有する解離層の上にパターン形成される。例えば線状の塗布を行うことができるディスペンサー印刷方法を用いたパターン形成、サーマル、ピエゾ、マイクロポンプ、静電気等の各種方式のインクジェット印刷方法を用いたパターン形成、凸版印刷方法、フレキソ印刷方法、平版印刷方法、凹版印刷方法、グラビア印刷方法、反転オフセット印刷方法、枚葉スクリーン印刷方法、ロータリースクリーン印刷方法等の公知の各種印刷方法によるパターン形成を例示することができる。また、グラビアロール方式、スロットダイ方式、スピンコート方式等、公知の各種塗布方式を用い、転写用基材が有する解離層の全面あるいは一部に連続した面としてパターンを形成すること、間欠塗工ダイコーター等を用い転写用基材が有する解離層の全面あるいは一部に断続した面としてパターンを形成すること、あるいは浸漬塗布方法(ディップ方式とも言われる)を用い、転写用基材が有する解離層全体にインクあるいはペーストを付着させることもできる。より好ましい印刷方法としては、インクジェット印刷方法、フレキソ印刷方法、グラビア印刷方法、反転オフセット印刷方法、枚葉スクリーン印刷方法、ロータリースクリーン印刷方法を挙げることができる。
 これらの方法により転写用基材が有する解離層の上にパターン形成された導電性微粒子を含むインクあるいはペーストは、含まれている分散媒を揮散させた後、及び/または分散媒を多孔質層が吸収した後、加熱により硬化あるいは焼成して転写パターンとしても良い。更には、主に銀からなる金属超微粒子を含むインクを用い、特開2008-4375号公報、特開2008-235224号公報等に記載される導電性発現剤を多孔質層及び/または解離層に含有させ、化学的な作用により金属超微粒子同士を結合し転写パターンとすることが好ましい。化学的な作用により金属超微粒子同士を結合させた場合、得られる転写パターンは多孔質となるため、被転写体表面の粘着性を有する樹脂等の成分が転写パターンの内部へ侵入し、被転写体との間に高い密着力を得ることができる。かかる導電性発現剤としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化アンモニウムを例示することができる。
 本発明において、転写パターンが顔料色剤によるパターンである場合に用いられる顔料色剤を含むインクあるいはペーストとしては、例えば、水性顔料インク、非水性顔料インク、または紫外線硬化型の顔料インクに代表されるインクジェット印刷用顔料インク、電子写真印刷用インク、スクリーン印刷等で用いられる印刷用インキなどの顔料色剤を含有するインクあるいはペーストなどが挙げられ、特に、被転写体へ転写された顔料色剤によるパターンの解像度が優れるなどの理由によりインクジェット印刷用水性顔料インクが好ましく用いられる。顔料色剤を含むインクあるいはペーストは、前記した導電性微粒子を含むインクあるいはペーストの場合と同様に、様々な印刷方法あるいは塗布方式により、転写用基材が有する解離層の上にパターン形成される。
 本発明において好ましく用いられるインクジェット印刷用水性顔料インクは、少なくとも顔料色剤、顔料色剤分散剤、エマルション形態の熱可塑性樹脂と水溶性の熱可塑性樹脂のうち少なくともいずれか、1atmにおける沸点が250℃以下である水溶性有機溶剤、界面活性剤、水等を含む公知のものを使用することができる。また各成分は、それぞれ1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。インクの総質量(100質量%)に対する、各成分の含有量は、顔料色剤が0.2~10質量%、顔料色剤分散剤、エマルション形態の熱可塑性樹脂及び水溶性の熱可塑性樹脂の合計が1.5~15質量%、1atmにおける沸点が250℃以下である水溶性有機溶剤が5~40質量%、界面活性剤が0.5~2質量%、水が50~92質量%であることが好ましい。
 本発明において、転写用基材が有する解離層の上に形成される転写パターンの厚みは特に制限はないが、0.1~20μmが好ましく、0.2~10μmがより好ましい。
 本発明においては、転写用基材上に形成された転写パターンを、表面に粘着性を有する被転写体に転写する転写工程、被転写体表面の粘着性を除去する工程を経てパターン転写物が得られる。あるいは、転写用基材上に形成された転写パターンを、粘着性を有する物質を介して被転写体へ転写する転写工程、粘着性を有する物質の粘着性を除去する工程を経てパターン転写物が得られる。なお、本発明において粘着性を有するとは、JIS Z 0237に準拠して剥離角度180度にて測定される幅25mmあたりの粘着力(N/25mm)が0.1N/25mm以上であることを示す。
 本発明において、表面に粘着性を有する被転写体及び粘着性を有する物質の好ましい粘着力は、0.1~20N/25mmであり、より好ましくは0.2~10N/25mmである。粘着力が0.1N/25mm未満では、粘着性が不十分であることから転写パターンの転写を行うことができない。粘着力が20N/25mmを超えると、被転写体からの転写用基材の剥離が困難となる場合がある。
 本発明において表面に粘着性を有する被転写体の態様の一つとして、常温で粘着性を有し加熱硬化により粘着性の除去が行われる被転写体(以下、被転写体Aと称する。)を挙げることができる。このような被転写体Aは常温では柔らかく粘着性を有するが、加熱により硬化する樹脂を含む。このような樹脂として熱硬化性樹脂が知られており、液状レゾール型フェノール樹脂、ノボラック型フェノール樹脂、フラン樹脂、エポキシ樹脂、不飽和ポリエステル系樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂などを例示することができる。これらの樹脂を用い被転写体を製造する際には、熱硬化性樹脂以外に、酸硬化剤、アミン系硬化剤などの硬化剤、フタル酸エステル、リン酸エステル、脂肪酸エステル、エポキシ系などの可塑剤、粉末様の酸化チタンやカーボンブラックなどの顔料、水酸化アルミニウム、酸化亜鉛、炭酸カルシウムなどの充填材、ガラス繊維、炭素繊維、アラミド繊維などの補強材などが配合されていてもよい。なお、本発明における常温とはJIS Z 8703に規定される温度範囲、具体的には5~35℃を示す。
 特に、硬化剤などを含んだエポキシ樹脂やフェノール樹脂、及び不飽和ポリエステル樹脂などの熱硬化性樹脂を炭素繊維やガラス繊維に含浸させ、フィルム状に成型し、離型フィルムや離型紙を両面に貼合し、加熱または乾燥により半硬化状態とした材料が、炭素繊維強化樹脂やガラス繊維強化樹脂のプリプレグとして広く用いられている。これらの材料は、半硬化状態のプリプレグを重ねた際に容易に粘着し一体化するように、常温で粘着性を有しており、本発明における被転写体Aとして好適に用いることができる。また、プリプレグを製造するために、硬化剤などを含んだエポキシ樹脂をシート化したエポキシ樹脂シートが市販されており、本発明における被転写体Aとして好適に用いることができる。
 また、本発明における熱硬化性樹脂を含有する被転写体Aとして、導電性材料の外層表面などに用いられるソルダーレジスト層が挙げられる。ソルダーレジスト層は1液性、2液性の、どちらの液状ソルダーレジストから得られる層であってもよく、ドライフィルム状レジストであっても使用できる。ソルダーレジスト層は、例えば、アルカリ可溶性樹脂、多官能アクリルモノマー、光重合開始剤、エポキシ樹脂、無機フィラー等を含有する。
 アルカリ可溶性樹脂としては、光硬化性と熱硬化性の両方の特性を有するアルカリ可溶性樹脂が挙げられ、例えば、ノボラック型エポキシ樹脂にアクリル酸を付加させてエポキシアクリレート化した樹脂の2級の水酸基に酸無水物を付加させた樹脂が挙げられる。多官能アクリルモノマーとしては、例えば、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールトリアクリレート等が挙げられる。光重合開始剤としては、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等が挙げられる。エポキシ樹脂は硬化剤として用いられ、アルカリ可溶性樹脂のカルボン酸と反応させることで架橋させることで耐熱性や耐薬品性の特性の向上を図っている。カルボン酸とエポキシは常温でも反応が進むために、保存安定性が悪いことから、アルカリ現像型ソルダーレジストは一般的に使用前に混合する2液性の形態をとっている場合が多い。無機フィラーとしては、例えば、硫酸バリウム、シリカ等が挙げられる。
 本発明に用いられるソルダーレジストの市販品としては、液状ソルダーレジストとして、互応化学工業(株)製PLAS FINE(登録商標) PSR-310(A-99F)、PLAS FINE PSR-310(SC-84)、PLAS FINE PSR-310(SW-26)、(株)タムラ製作所製USR-2B14-84-200、USR-2G14-94-250、DSR-330S32-21、太陽インキ製造(株)製PFR-800 AUS410、PSR-4000 G24K、PSR-4000 LEW3、S-40 T1等が挙げられる。また、ドライフィルム状ソルダーレジストとして、太陽インキ製造(株)製PFR-800 US 410や、ニッコー・マテリアルズ(株)製NIT215等が挙げられる。
 被転写体Aの表面は常温で粘着性を有し、粘着性が発現している状態で転写パターンの転写が行われる。転写は転写用基材の転写パターンが形成された面と被転写体Aを貼合し剥離することにより行われる。例えば被転写体Aが立体物である場合には、被転写体Aに転写用基材を貼合し剥離することにより行われ、例えばプリプレグやソルダーレジスト層等のシート状物であれば、ロールラミネーターを使用したラミネート法により転写用基材を被転写体Aに圧着する方法が好ましい。ラミネートの条件としては、ロール温度は常温(5~35℃)、圧力が1~50N/cmで、時間が0.1秒~5分であることが好ましく、より好ましくは圧力が5~20N/cmで、時間が1秒~1分であるが、被転写体Aの厚みや種類等により適宜調整することができる。圧力が1N/cmを下回ると被転写体Aへの転写パターンの転写が均一に行われない場合があり、50N/cmを超えると転写用基材の剥離が困難になる場合がある。
 貼合された転写用基材と被転写体Aを剥離する場合、剥離する際の被転写体A側のJIS Z 0237に準拠して設定される引きはがし角度は浅い方が好ましい。転写用基材から被転写体Aを剥離する際に、剥離方法によっては剥離部分にて被転写体Aに曲がりが発生することがある。転写パターンが導電性パターンである場合に、剥離時の被転写体Aの曲がりに伴って導電性パターンも曲がることとなる。この曲がる時の角度が小さい程、導電性パターンの導電性低下が小さいため好ましい。具体的には、被転写体A側の引きはがし角度を90度以下として剥離することが好ましく、剥離時に被転写体Aを曲げずに被転写体A側の引きはがし角度を0度とし、転写用基材側を曲げながら剥離することがより好ましい。被転写体A側の引きはがし角度が90度を超えると、導電性パターンの厚みにもよるが、導電性が数十%程度低下する場合がある。
 本発明における熱硬化性樹脂を含む被転写体Aは転写パターンの転写後に加熱処理による硬化を行い被転写体A表面の粘着性の除去が行われる。加熱処理による硬化を行うことにより、転写パターンの被転写体Aに対する密着力が向上する。また被転写体Aとしてプリプレグを用いた場合には、転写パターンが転写されたプリプレグをそのまま加熱して硬化しパターン転写物としても良いが、必要に応じ転写パターンが転写されていないプリプレグを重ねて成型した後に加熱して硬化し、パターン転写物としてもよい。加熱処理の条件は熱硬化性樹脂に適した温度や加熱時間で行えば良く、例えばエポキシ樹脂の場合には好ましくは130~200℃であり、より好ましくは140~190℃、加熱時間は5分~2時間程度であるが、これに限定されるものではない。
 本発明において表面に粘着性を有する被転写体の態様の一つとして、常温で粘着性を有さず加熱により粘着性を生じる被転写体であり、加熱硬化により粘着性の除去が行われる被転写体(以下、被転写体Bと称する。)を挙げることができる。被転写体Bは熱硬化性樹脂または熱硬化性樹脂と熱可塑性樹脂を混合した樹脂のいずれかから成り、具体的には常温では粘着性を有さず、おおよそ40℃以上の温度となることで粘着性を発現し、130℃以上の温度で硬化する樹脂から成ることが好ましい。具体的にはエポキシ樹脂、マレイミド化合物、ベンゾオキサジン化合物、シアネート樹脂などの樹脂を1種または複数種混合したものに、硬化剤や無機充填剤、各種カップリング剤などを添加、形成することで被転写体Bは得られる。被転写体Bとして用いられる市販品としては、味の素(株)製ABF-T31、太陽インキ製造(株)製Zaristo(登録商標)-125、住友ベークライト(株)製LAZ(登録商標)-7752、及び積水化学工業(株)製NX04H等が挙げられる。
 被転写体Bの表面に粘着性を発現させるための加熱条件としては、40~160℃で10~90分であることが好ましく、より好ましくは60~130℃で10~90分であるが、これに限定されるものではない。また、160℃を超える高温で加熱すると、熱硬化が進行し、転写パターンの転写に必要とされる粘着性を得ることができず被転写体と転写パターンの密着性が低下する場合がある。また、加熱工程及びそれに続く転写工程の作業性を向上させるために、被転写体には、転写面の裏面に支持体を熱圧着しておくことも可能である。
 被転写体Bは常温では粘着性を有さず、おおよそ40℃以上の温度となることで粘着性を発現する被転写体であり、粘着性が発現している状態で転写パターンの転写が行われる。転写は転写用基材の転写パターンが形成された面と被転写体Bを貼合し剥離することにより行われる。例えば被転写体Bが立体物である場合には、被転写体に転写用基材を貼合し剥離することにより行われ、例えば被転写体Bがシート状物であれば、ロールラミネーターを使用したラミネート法により転写用基材を被転写体Bに圧着する方法が好ましい。好ましいラミネートの条件としては、ロール温度を40℃以上とする以外は、前記した被転写体Aの場合と同様である。貼合された転写用基材と被転写体Bを剥離する場合の好ましい引きはがし角度は、前記した被転写体Aの場合と同様である。被転写体Bへの転写パターンの転写後に行う加熱硬化の好ましい条件は、前記した被転写体Aの場合と同様である。
 本発明において表面に粘着性を有する被転写体の態様の一つとして、常温で粘着性を有さず加熱により粘着性を生じる被転写体であり、放冷により粘着性の除去が行われる被転写体(以下、被転写体Cと称する。)を挙げることができる。このような被転写体Cは常温では粘着性を有さず、加熱することにより粘着性を有し、放冷し常温に戻ることにより粘着性を失う樹脂を含む。このような樹脂として熱可塑性樹脂が知られており、例えば、ポリエチレン、ポリプロピレン、環状ポリオレフィン等のポリオレフィン系樹脂、ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂、ポリスチレン、ポリ酢酸ビニル、ポリメチルメタクリレートに代表されるアクリル樹脂、ポリウレタン、ABS樹脂、ASA樹脂、AS樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド等を挙げることができるが、これらに限定されるものではない。
 また、被転写体Cとして、前記の熱可塑性樹脂を射出成形や押出成形、3Dプリンター等の公知の加工方法にて、複雑な形状を有する立体物やシート状、フィルム状等に成型した成形体を用いることもできる。
 被転写体Cに粘着性を生じさせるための加熱温度は熱可塑性樹脂により異なり、ガラス転移点以上の温度に加熱することが好ましい。例えば、塩化ビニル系樹脂は90℃以上、ポリスチレン、アクリル樹脂は100℃以上、AS樹脂、ABS樹脂は110℃以上、ポリカーボネートは150℃以上に加熱することが好ましい。
 被転写体Cは常温では粘着性を有さないため、加熱により熱可塑性樹脂を軟化させ表面に粘着性を発現させる。次いで粘着性が発現している状態で転写パターンの転写が行われる。転写は転写用基材の転写パターンが形成された面と被転写体Cを貼合し剥離することにより行われる。転写用基材の剥離は被転写体Cが加熱により軟化し粘着性を有する状態、あるいは放冷され粘着性を失った状態のどちらでも行うことができるが、放冷され粘着性を失った状態で剥離することが好ましい。最終的に被転写体Cは常温まで放冷される。なお、被転写体Cが複雑な形状を有する立体物である場合には、被転写体Cの全体あるいは被転写部を部分的に加熱し、転写用基材を貼合し剥離することにより行ってもよい。例えば、被転写体Cの被転写部に転写用基材を貼合してから、転写用基材の裏面に、転写パターン全体を覆うようなサイズの発熱部を押し当て、転写用基材を通して被転写体Cを加熱し粘着性を発現させ転写を行ってもよい。
 なお、被転写体Cがフィルム状物や薄板等のシート状物であればロールラミネーターを使用したラミネート法により熱圧着する方法が好ましい。ラミネートの条件としては、ロール温度は被転写体Cの粘着性が発現する温度とし、圧力が1~500N/cmで、時間が0.1秒~5分であることが好ましく、より好ましくは圧力が10~300N/cmで、時間が1秒~1分であるが、被転写体Cの厚みや種類等により適宜調整することができる。圧力が1N/cmを下回ると被転写体Cへの転写パターンの転写が均一に行われない場合があり、500N/cmを超えると転写用基材の剥離が困難になる場合がある。
 本発明において、転写パターンを転写し転写用基材を剥離した後に、更に被転写体Cに再加熱を実施することもできる。再加熱により被転写体Cと転写パターンの密着性が更に向上する。再加熱の条件としては、好ましくは100~200℃で1~60分であり、より好ましくは120~160℃で1~60分であるが、これに限定されるものではない。
 本発明において、転写用基材上に形成された転写パターンを、粘着性を有する物質を介して被転写体へ転写する転写工程、粘着性を有する物質の粘着性を除去する工程を経てパターン転写物を得る態様においては、転写用基材の転写パターンが形成された面を、常温で粘着性を有さず加熱により粘着性を生じる物質(以下、加熱粘着性物質と称する。)を介して被転写体と貼合して転写パターンを転写し、その後被転写体を常温まで放冷し、介在する加熱粘着性物質が放冷されることにより粘着性の除去を行う方法を挙げることができる。
 本発明において、加熱粘着性物質を介して転写パターンの転写を行う被転写体(以下、被転写体Dと称する。)は、そのもの自体で粘着性が発現するものではなく、加熱粘着性物質を介して転写パターンが形成された転写用基材を熱圧着することで、転写パターンが転写される。このような被転写体Dとしては、一般的な紙、繊維材料、合成皮革、樹脂成型物、金属成型物、ガラス成型物、陶器類、木材加工物等、特に限定されることはない。例えば繊維材料としては、天然繊維材料、半合成繊維材料及び合成繊維材料の何れでも構わない。天然繊維材料や半合成繊維材料としては、例えば、綿、麻、リヨセル、レーヨン、アセテート等のセルロース系繊維材料、絹、羊毛、獣毛等の蛋白質系繊維材料等を挙げることができる。合成繊維材料は、例えば、ポリアミド繊維(ナイロン)、ビニロン繊維、ポリエスエル繊維、アクリル繊維等を挙げることができる。繊維材料の構成としては、織物、編物、不織布等を挙げることができ、交織や交編であってもよく、混紡糸や混繊糸が用いられていてもよい。また形状は平面シート状のものから立体的な形状のものまで、厚みや質量に関係なく適宜使用することができるが、転写パターンを転写する面は平面もしくは連続面であると転写パターンの密着性に優れるため好ましい。
 本発明における加熱粘着性物質としては、熱可塑性樹脂ラテックス、熱可塑性樹脂微粒子、熱可塑性樹脂フィルムシート等の公知の材料が使用できる。熱可塑性樹脂ラテックスとしては、アクリル酸及びメタクリル酸、アクリル酸エステル及びメタクリル酸エステル類、スチレン及び置換されたスチレン類、ハロゲン化ビニル類、テトラフルオロエチレンのようなフッ素化されたモノマー類、ハロゲン化ビニリデン類、ビニルエステル類、ビニルエーテル類及びフルオロビニルエーテル類等から作られるホモポリマー及び共重合体、ポリアミド、ポリエステル、ポリウレタン、エポキシ樹脂及びシリコーン樹脂のような、単独ポリマーだけでなく共重合体等も含めた熱可塑性樹脂を界面活性剤により水に分散したものが挙げられる。熱可塑性樹脂微粒子としては、これら熱可塑性樹脂を微粒子化したものが挙げられる。熱可塑性樹脂フィルムシートとしては、これら熱可塑性樹脂をフィルムシート化したものを適宜使用できる。中でも、被転写体Dと転写パターンの密着性に優れ、簡便に使用できることから、熱可塑性樹脂フィルムシートを使用することが好ましい。熱可塑性樹脂フィルムシートとしては、例えば日本マタイ(株)からエルファン(登録商標)シリーズ、倉敷紡績(株)からクランベター(登録商標)シリーズ、シーダム(株)からエセラン(登録商標)シリーズ、日東シンコー(株)からポリエスホットメルト接着シートとして市販されている。
 本発明における加熱粘着性物質の量あるいは厚みは特に制限はないが、熱可塑性樹脂ラテックスや熱可塑性樹脂微粒子では、固形分量として2~200g/mが好ましく、5~100g/mがより好ましい。熱可塑性樹脂フィルムシートでは、厚みとして2~200μmが好ましく、5~100μmがより好ましい。
 本発明における、被転写体Dへ加熱粘着性物質を介して転写パターンを転写する方法としては、転写パターンを形成した転写用基材の転写パターン面もしくは被転写体Dの転写面の少なくとも一方の面に、熱可塑性樹脂ラテックスを塗布・乾燥した後、加熱転写する方法、熱可塑性微粒子を、転写パターンを形成した転写用基材の転写パターン面と被転写体Dの転写面との間に載置した後、加熱転写する方法、熱可塑性樹脂フィルムシートを、転写パターンを形成した転写用基材の転写パターン面と被転写体Dの転写面の間に載置した後、加熱転写する方法、及び、予め、熱可塑性樹脂を含有したインクあるいはペーストを用いて転写用基材上に転写パターンを形成し、そのまま被転写体Dに加熱転写する方法などが挙げられる。
 本発明における加熱粘着性物質は、転写時の加熱によってその表面に粘着性が生じる。転写時に加熱粘着性物質を加熱する方法としては、熱プレス、熱ロールプレス、高周波加熱、超音波加熱などの公知の加熱方法が使用でき、中でも熱ロールプレスが好ましい。熱ロールプレスを用いた際の加熱条件としては、ロール温度が80~200℃、圧力が1~50N/cmで、時間が1秒~5分であることが好ましく、より好ましくはロール温度が100~160℃、圧力が5~20N/cmで、時間が10秒~1分であるが、これに限定されるものではなく、加熱粘着性物質の厚みや量により適宜調整することができる。ロール温度が200℃を超える場合や圧力が50N/cmを超える場合、加熱時間が5分を超える場合などには転写用基材の剥離が困難となる場合がある。
 熱ロールプレス等を用いて加熱粘着性物質を加熱して転写パターンを転写した後は、加熱粘着性物質を50℃以下まで放冷した上で転写用基材を剥離することが好ましく、40℃以下まで放冷して剥離することがより好ましい。なお、被転写体Dから転写用基材を剥離する速度は特に制限はないが、1000mm/分以下の速度で180度剥離を行うことが、転写パターンが良好に転写されることから好ましい。
 本発明において、転写パターンを転写し転写用基材を剥離した後に、更に加熱粘着性物質に再加熱を実施することもできる。再加熱により被転写体Dと転写パターンの密着性が更に向上する。再加熱の条件は、前記した被転写体Cの場合と同様である。
 本発明において、被転写体が被転写体Aあるいは被転写体Bであり、転写パターンが導電性パターンである場合には、転写パターンの転写工程の後、貼合した転写用基材を剥離して取り除き、その後、被転写体に転写された導電性パターンの表面にめっき処理によりめっき層を形成し、最後にめっきされた導電性パターンを有する被転写体を加熱硬化することが好ましい。これにより、導電性に優れ、被転写体と導電性パターンとの密着性が良好なパターン転写物(図7)を、簡便な工程で製造することができる。また、被転写体が被転写体Cであり、転写パターンが導電性パターンである場合には、被転写体表面の粘着性を除去する工程の後に、被転写体に転写された導電性パターンの表面にめっき処理によりめっき層を形成することが好ましい。これにより、導電性に優れ、被転写体と導電性パターンとの密着性が良好なパターン転写物(図7)を、簡便な工程で製造することができる。
 本発明で実施するめっき処理としては、無電解めっきと電解めっきのどちらでも用いることができる。
 無電解めっきの技術に関しては「無電解めっき」電気鍍金研究会編、日刊工業新聞社(1994年)に記載されている。無電解めっきは、ニッケルや銅などの金属イオンが還元剤によって還元析出し、この析出反応が連続的に進行しめっき膜が形成される、いわゆる自己触媒型化学還元めっきである。今日工業的に多く使用されているのはニッケル-リンや銅を利用した無電解めっきであるが、本発明では導電性に優れる点から無電解銅めっきを利用するのが好ましい。
 本発明における無電解銅めっき液には、硫酸銅や塩化銅などの銅の供給源、ホルマリンやグリオキシル酸、テトラヒドロホウ酸カリウム、ジメチルアミンボランなどの還元剤、EDTAやジエチレントリアミン5酢酸、ロシェル塩、グリセロール、メソ-エリトリトール、アドニール、D-マンニトール、D-ソルビトール、ズルシトール、イミノ2酢酸、trans-1,2-シクロヘキサンジアミン4酢酸、1,3-ジアミノプロパン-2-オール、グリコールエーテルジアミン、トリイソプロパノールアミン、トリエタノールアミン等の銅の錯化剤、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのpH調整剤などが含有される。更にその他に浴の安定化やめっき皮膜の平滑性を向上させるための添加剤としてポリエチレングリコール、黄血塩、ビピリジル、o-フェナントロリン、ネオクプロイン、チオ尿素、シアン化物などを含有させることもできる。
 無電解めっき液には薄付けめっき用の室温タイプと厚付けめっき用の高温タイプがあるが、本発明ではどちらのタイプのめっき液でも利用することができる。無電解銅めっきの手法については「無電解めっき 基礎と応用」(電気鍍金研究会編)p104などに詳しく記載されている。室温タイプのめっき液では通常液温が20~30℃でめっき処理し、高温タイプのめっき液では通常液温が50~70℃で処理し、処理時間は通常1~30分、好ましくは3~20分無電解めっき処理を行うことで本発明の目的を達することができる。
 無電解めっきに先立ち、被転写体に転写された導電性パターンに脱脂処理を行うことも可能である。脱脂処理とは、めっきを行う面に付着した油分等を洗浄除去するための処理であり、公知の処理条件を使用することができる。一般にはアルカリ脱脂剤や界面活性剤、有機溶媒等を使用し、10~60℃で1~10分間浸漬処理する。
 無電解めっきに先立ち、被転写体に転写された導電性パターンに触媒付与処理を行うことも可能である。触媒付与処理とは、めっきを行う面にパラジウム、鉄、コバルト、ニッケル、白金等の触媒金属を付与する処理であり、具体的な触媒金属としては、パラジウムが好ましい。触媒付与処理液としては、これら触媒金属イオンを含む水溶液を用いる。なお、対アニオンとしては、その金属化合物を水溶液とするものであればよく、特に制限されないが、硫酸イオン、ハロゲンイオン、リン酸イオン、硝酸イオン等が挙げられる。前記の触媒金属の水溶液中の濃度は10~5000mg/Lが好ましく、より好ましくは50~1000mg/Lである。また、触媒付与処理液中に、安定剤として、酢酸、クエン酸、乳酸、酒石酸、蓚酸、酪酸、プロピオン酸、ギ酸、コハク酸、グルタル酸、マロン酸、リンゴ酸、フマル酸、アジピン酸、マレイン酸等を用いてもよい。触媒付与処理液のpHは1~9が好ましく、より好ましくは1~4である。また、触媒付与処理の温度及び時間には特に制限はないが、処理温度としては20~90℃が好ましく、処理時間としては、生産効率を考慮して30~120秒が好ましい。
 本発明における電解めっき法としては銅めっき、ニッケルめっき、亜鉛めっき、スズめっき等の公知のめっき方法を用いることができ、その方法として例えば「めっき技術ガイドブック」(東京鍍金材料協同組合技術委員会編、1987年)記載の方法を用いることができる。本発明では導電性に優れる点から電解銅めっきを利用するのが好ましい。
 本発明における電解銅めっき液の基本組成としては、公知の、通常の電解銅めっきに使用されるものであれば特に制限なく使用することができ、本発明の目的が達成される限りにおいては、適宜、基本組成の組成物の変更、濃度の変更、添加剤の添加等をすることが可能である。例えば、硫酸銅めっきの場合には、硫酸銅めっき液は、硫酸、硫酸銅、水溶性塩素化合物、光沢剤を基本組成として含む水性溶液であり、該めっき液の基本組成は、公知の硫酸銅めっきに用いられているものであれば特に制限なく使用することができる。
 電解銅めっき処理において、めっき温度(液温)はめっき浴の種類に応じて適宜設定でき、通常10~40℃であり、好ましくは20~30℃である。めっき温度が10℃より低い場合には、めっき液の導電性が低下するため、電解時の電流密度を高くすることができず、めっき皮膜の成長速度が遅くなり、生産性が低下する場合がある。また、めっき温度が40℃より高い場合には、めっき液が不安定化する場合があり好ましくない。本発明の電解銅めっき処理においては、例えば、直流電流、PPR(Pulse Periodic Reverse)電流など、任意の種類の電流を使用できる。適用される陽極電流密度はめっき浴の種類に応じて適宜設定され、通常0.1~10A/dm、好ましくは1~3A/dmである。陽極電流密度が0.1A/dm未満の場合には陽極面積が大きすぎて経済的ではなく、また、10A/dmより大きい場合には、電解中に陽極からの酸素が発生することにより、めっき液が不安定化する場合があるので好ましくない。めっき厚みについては特に制限はないが、実用的に求められる導電性を確保できる厚さにめっきされることが好ましい。
 本発明において、被転写体に転写された転写パターンの上に保護層を設けてもよい。かかる保護層には、クリアーコート塗料を用いることが好ましい。クリアーコート塗料に用いられる樹脂としては、アクリル樹脂、ウレタン樹脂、アクリルウレタン樹脂、アクリルシリコン樹脂、フッ素樹脂、エポキシ樹脂、不飽和ポリエステル、アルキッド樹脂、メラミン樹脂等の樹脂、また紫外線硬化型樹脂や電子線硬化型樹脂等を挙げることができる。これらの中でも塗布が容易であることから、メラミン樹脂、ウレタン樹脂、アクリルウレタン樹脂、アクリルシリコン樹脂のクリアーコート塗料が好ましい。これら各種クリアーコート塗料は、例えば大日本塗料(株)、日本ペイント(株)、関西ペイント(株)、エスケー化研(株)、大橋化学工業(株)等から市販されている。
 以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。
(実施例1)
 水に、カウンターイオンに塩素イオンを持つジアリルジメチルアンモニウムクロライド重合物としてシャロール(登録商標)DC902P(第一工業製薬(株)製)8質量部と、無機微粒子として気相法シリカ(平均一次粒子径7nm、比表面積300m/g)100質量部を添加し、のこぎり歯状ブレード型分散機(ブレード周速30m/秒)を使用して予備分散液を作製した。得られた予備分散液を高圧ホモジナイザーで処理して、固形分濃度が20質量%の無機微粒子分散液1を製造した。気相法シリカの平均二次粒子径は130nmであった。
 無機微粒子分散液1を用い下記組成の多孔質層形成塗布液1を作製した。支持体として易接着処理がなされた厚み100μmのポリエチレンテレフタレートフィルム(帝人フィルムソリューション(株)製)に多孔質層形成塗布液1をスライドビードコーターで、固形分塗布量が気相法シリカ換算で25g/mとなるように塗布、乾燥し多孔質層を形成した。該多孔質層の膜厚は38μmであった。
<多孔質層形成塗布液1>
無機微粒子分散液1        (シリカ固形分として)100質量部
ポリビニルアルコール                   25質量部
(ケン化度88%、平均重合度3500)
ホウ酸                           4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
水以外の成分濃度が13質量%になるように水で調整した。
 次いで、多孔質層面に下記組成の導電性発現剤塗布液1を、斜線グラビアロールを用いた塗布方式により塗布を行い、乾燥機により乾燥した。ここで用いた斜線グラビアロールは、直径60mm、斜線角度45度、線数90線/インチ、溝深さ110μmのグラビアロールであり、リバース回転で用いた。湿分塗布量は、斜線グラビアロールの回転数を調整し20g/mに設定した。塗布された導電性発現剤塗布液1は多孔質層内部に吸収され、表面には多孔質層が露出していた。
<導電性発現剤塗布液1>
塩化ナトリウム                     0.3質量部
水                          99.7質量部
 次いで多孔質層面に下記組成の解離層塗布液1を、斜線グラビアロールを用いた塗布方式により塗布を行い、乾燥機により乾燥し、転写用基材1を得た。ここで用いた斜線グラビアロールは、直径60mm、斜線角度45度、線数90線/インチ、溝深さ110μmのグラビアロールであり、リバース回転で用いた。湿分塗布量は、斜線グラビアロールの回転数を調整し20g/mに設定した。多孔質層上に形成された解離層の固形分塗布量は0.6g/mであった。
<解離層塗布液1>
コロイダルシリカ20質量%スラリー            15質量部
(扶桑化学工業(株)製、クォートロンPL-3L、平均一次粒子径35nm)
水                            85質量部
 この転写用基材1に対し、銀ナノインク(三菱製紙(株)製NBSIJ-MU01、銀濃度15質量%)を入れたピエゾタイプのインクジェットプリンタを用い、50mm×50mmのベタパターン(面状パターン)で印刷を行い、導電性パターンを形成した。銀ナノインクの吐出量は23ml/mであり、導電性パターンの厚みは0.8μmであった。
 ロールラミネーターを用い、転写用基材1の導電性パターン形成面と、被転写体として炭素繊維強化樹脂成型用のプリプレグ(東レ(株)製トレカ(登録商標)F6343B、熱硬化性樹脂はエポキシ樹脂、25℃におけるJIS Z 0237に準拠して剥離角度180度にて測定された粘着力は0.25N/25mm)を、ロール温度25℃、圧力10N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行い、転写用基材1を剥離した。その後、被転写体に140℃で30分間の加熱処理を行い、導電性パターンを有する実施例1のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例2)
 水に硝酸2.5質量部とアルミナ水和物(平均一次粒子径15nm)100質量部を添加し、のこぎり歯状ブレード型分散機を用いて、固形分濃度30質量%の無機微粒子分散液2を得た。無機微粒子分散液2中に分散しているアルミナ水和物の平均二次粒子径は160nmであった。
 無機微粒子分散液2を用い下記組成の多孔質層形成塗布液2を作製した。支持体として易接着処理がなされた厚み100μmのポリエチレンテレフタレートフィルム(帝人フィルムソリューション(株)製)に多孔質層形成塗布液2をスライドビードコーターで、固形分塗布量がアルミナ水和物換算で32g/mとなるように塗布、乾燥し多孔質層を形成した。該多孔質層の膜厚は42μmであった。
<多孔質層形成塗布液2>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
水以外の成分濃度が16質量%になるように水で調整した。
 次いで、多孔質層面に導電性発現剤塗布液1を、実施例1と同様にして塗布した。塗布された導電性発現剤塗布液1は多孔質層内部に吸収され、表面には多孔質層が露出していた。
 次いで多孔質層面に下記組成の解離層塗布液2を、斜線グラビアロールを用いた塗布方式により塗布を行い、乾燥機により乾燥し、転写用基材2を得た。ここで用いた斜線グラビアロールは、直径60mm、斜線角度45度、線数90線/インチ、溝深さ110μmのグラビアロールであり、リバース回転で用いた。湿分塗布量は、斜線グラビアロールの回転数を調整し20g/mに設定した。多孔質層上に形成された解離層の固形分塗布量は0.4g/mであった。
<解離層塗布液2>
コロイダルシリカ40質量%スラリー             5質量部
(日産化学(株)製、スノーテックスZL、平均一次粒子径80nm)
水                            95質量部
 この転写用基材2に対し、銀ナノインク(三菱製紙(株)製NBSIJ-MU01、銀濃度15質量%)を入れたピエゾタイプのインクジェットプリンタを用い、50mm×50mmのベタパターンで印刷を行い、導電性パターンを形成した。銀ナノインクの吐出量は23ml/mであり、導電性パターンの厚みは0.8μmであった。
 ロールラミネーターを用い、転写用基材2の導電性パターン形成面と、被転写体としてエポキシ樹脂シート(サンユレック(株)製DRS-028、熱硬化性樹脂はエポキシ樹脂、25℃におけるJIS Z 0237に準拠して剥離角度180度にて測定された粘着力は0.9N/25mm)を、ロール温度25℃、圧力10N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行ない、転写用基材2を剥離した。その後、被転写体に150℃で60分間の加熱処理を行い、導電性パターンを有する実施例2のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例3)
 実施例2の解離層塗布液2を下記組成の解離層塗布液3へ変更した以外は実施例2と同様にして転写用基材を作製し、この転写用基材を用いて、実施例2と同様にして実施例3のパターン転写物を得た。なお、多孔質層上に形成された解離層の固形分塗布量は0.6g/mであった。また、得られたパターン転写物の表面は、常温において粘着性を有していなかった。
<解離層塗布液3>
酸化ジルコニウム20質量%ゾル              15質量部
(ナイヤコール社製、Zr100/20、平均一次粒子径100nm)
水                            85質量部
(実施例4)
 実施例3において、被転写体をエポキシ樹脂シート(サンユレック(株)製DRS-028)からプリプレグ(東レ(株)製トレカF6343B)に変更し、加熱処理を140℃で30分間行った以外は実施例3と同様にして、実施例4のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例5)
 実施例2の解離層塗布液2を下記組成の解離層塗布液4へ変更した以外は実施例2と同様にして転写用基材を作製し、この転写用基材を用いて、実施例2と同様にして実施例5のパターン転写物を得た。なお、多孔質層上に形成された解離層の固形分塗布量は0.2g/mであった。また、得られたパターン転写物の表面は、常温において粘着性を有していなかった。
<解離層塗布液4>
フッ素樹脂60質量%水分散体              1.7質量部
(ダイキン工業(株)製PTFE D-210C、平均一次粒子径220nm)
水                          98.2質量部
アニオン性界面活性剤                 0.05質量部
(ポリオキシエチレンラウリルエーテル硫酸ナトリウム)
(実施例6)
 実施例5において、被転写体をエポキシ樹脂シート(サンユレック(株)製DRS-028)からプリプレグ(東レ(株)製トレカF6343B)に変更し、加熱処理を140℃で30分間行った以外は実施例5と同様にして、実施例6のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例1)
 プリプレグ(東レ(株)製トレカF6343B)に予め140℃で30分間の加熱処理を行った後、その表面に、スクリーン印刷機を用いて、銀ペースト(藤倉化成(株)製ドータイトFA-333)を50mm×50mmのベタパターンで印刷を行い、更に120℃で10分間の加熱処理を行い、比較例1のパターンを有する部材を得た。得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
(比較例2)
 エポキシ樹脂シート(サンユレック(株)製DRS-028)に予め150℃で60分間の加熱処理を行った後、その表面に、スクリーン印刷機を用いて、銀ペースト(藤倉化成(株)製ドータイトFA-333)を50mm×50mmのベタパターンで印刷を行い、更に120℃で10分間の加熱処理を行い、比較例2のパターンを有する部材を得た。得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
(比較例3)
 プリプレグ(東レ(株)製トレカF6343B)に予め140℃で30分間の加熱処理を行った。実施例1において転写用基材1上に作製された導電性パターンを両面粘着テープ(日東電工(株)製No.5600、25℃におけるJIS Z0237に準拠して剥離角度180度にて測定された粘着力は7.5N/25mm)の片面に転写した。その後、導電性パターンが転写された両面粘着テープの導電性パターンを有さない側の粘着面を、加熱処理を行った被転写体に貼り付け、比較例3のパターンを有する部材を得た。得られたパターンを有する部材の表面は、両面粘着テープが存在することから、常温において粘着性を有していた。
(比較例4)
 エポキシ樹脂シート(サンユレック(株)製DRS-028)に予め150℃で60分間の加熱処理を行った。実施例2において転写用基材2上に作製された導電性パターンを両面粘着テープ(日東電工(株)製No.5600)の片面に転写した。その後、導電性パターンが転写された両面粘着テープの導電性パターンを有さない側の粘着面を、加熱処理を行った被転写体に貼り付け、比較例4のパターンを有する部材を得た。得られたパターンを有する部材の表面は、両面粘着テープが存在することから、常温において粘着性を有していた。
 得られた実施例1~6のパターン転写物及び比較例1~4のパターンを有する部材に関し、次の評価を行った。なお、実施例1~6のパターン転写物の転写パターンは金属光沢を有する金属調パターンであったことから、これらは金属調加飾部材としても使用可能であった。
<導電性の評価>
 各部材が有する導電性パターンのシート抵抗値を測定器((株)ダイアインスツルメンツ製ロレスタ(登録商標)-GP)を用いて測定した。この結果を表1に示す。
<密着性の評価>
 JIS K 5600-5-6に規定されるクロスカット法にて、各部材が有する導電性パターンの被転写体に対する密着性を確認した。密着性はJIS K 5600-5-6における評価と同様に0~5の6段階で評価した。(0:どの格子の目にもはがれがない。1:はがれの程度が5%以下である。2:はがれの程度が5%を超え15%以下である。3:はがれの程度が15%を超え35%以下である。4:はがれの程度が35%を超え65%以下である。5:はがれの程度が65%を超える。)この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例7)
 実施例1における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に脱脂処理を行い、その後、無電解銅めっきを行った。脱脂処理は、メルテックス(株)製、クリーナー160を50g/Lとなるように建浴し、60℃で1分間行った。無電解銅めっきは、下記組成の無電解銅めっき液を建浴し、40℃で10分間行った。脱脂処理、無電解銅めっきの各処理の後には被転写体の水洗を行った。めっきを施した後に、被転写体に140℃で30分間の加熱処理を行い、実施例7のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
<無電解銅めっき液>
硫酸銅5水和物                        10g
ホルムアルデヒド(37質量%水溶液)            20ml
水酸化ナトリウム                       10g
EDTA・2Na・2HO                  25g
以上を水に溶解し、全量を1kgとした。
(実施例8)
 めっき工程として下記組成の硫酸銅めっき液を建浴し、25℃で4分30秒間の電解銅めっき(電流密度2A/dm)行った以外、実施例7と同様にして、実施例8のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
<硫酸銅めっき液>
硫酸銅5水和物                       120g
12規定硫酸                        120g
水                             760g
(実施例9)
 実施例2における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に実施例7と同様に脱脂処理と無電解銅めっきを行った。めっきを施した後に、被転写体に150℃で60分間の加熱処理を行い、実施例9のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例10)
 実施例3における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に実施例7と同様に脱脂処理と無電解銅めっきを行った。めっきを施した後に、被転写体に150℃で60分間の加熱処理を行い、実施例10のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例11)
 実施例5における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に実施例7と同様に脱脂処理と無電解銅めっきを行った。めっきを施した後に、被転写体に150℃で60分間の加熱処理を行い、実施例11のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例12)
 実施例8において、被転写体から転写用基材を剥離した工程の後に、被転写体にめっきを施し、その後に被転写体の加熱処理を行う代わりに、被転写体の加熱処理を先に行い、その後に被転写体にめっきを施した以外は実施例8と同様にして、実施例12のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例5)
 比較例3のパターンを有する部材のパターン形成面に実施例7と同様に脱脂処理と無電解銅めっきを行い、比較例5のパターンを有する部材を得た。得られたパターンを有する部材の表面は、両面粘着テープが存在することから、常温において粘着性を有していた。
 得られた実施例7~12のパターン転写物及び比較例5のパターンを有する部材に関し、次の評価を行った。
<導電性の評価>
 各部材が有する導電性パターンのシート抵抗値を測定器((株)ダイアインスツルメンツ製ロレスタ-GP)を用いて測定した。その結果は以下の通りであった。
実施例7 :0.037Ω/□
実施例8 :0.008Ω/□
実施例9 :0.036Ω/□
実施例10:0.040Ω/□
実施例11:0.045Ω/□
実施例12:0.010Ω/□
比較例5 :0.040Ω/□
<密着性の評価>
 各部材の導電性パターンの被転写体に対する密着性を、JIS K 5600-5-6に規定されるクロスカット法に準拠し確認した。各部材の導電性パターン部に幅2mm間隔に5マス×5マスの計25マス目をクロスカットし、ニチバン(株)製セロテープ(登録商標)(24mm幅)を貼り付け、急激に剥離し、残ったマス目の状態にて評価を行った。その結果は以下の通りであった。
実施例7 :マス目の剥離が無く密着性は良好であった。
実施例8 :マス目の剥離が無く密着性は良好であった。
実施例9 :マス目の剥離が無く密着性は良好であった。
実施例10:マス目の剥離が無く密着性は良好であった。
実施例11:マス目の剥離が無く密着性は良好であった。
実施例12:転写用基材から転写された銀ナノインクにより形成された導電性パターンは残っていたものの、めっきにより形成された銅めっき層はテープ側への剥離が散見された。
比較例5 :マス目の剥離が散見され密着性が不良であった。
(実施例13)
 ソルダーレジスト層として、液状ソルダーレジストである(株)タムラ製作所製DSR-330S32-21を使用した。パターンの転写に際して、該ソルダーレジスト層は、DSR-330S32-21の主剤と硬化剤を混合したのち、支持体としてSUS304鋼板上にアプリケーターを用いて塗工し、70℃、30分間乾燥した後に使用した。ソルダーレジスト層の25℃におけるJIS Z 0237に準拠して剥離角度180度にて測定された粘着力は0.2~10N/25mmの範囲内であった。
 ソルダーレジスト層への導電性パターンの転写は、ロールラミネーターを用い、実施例1で作製しパターン形成した転写用基材1の導電性パターン形成面とソルダーレジスト層を、ロール温度25℃、圧力10N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行い、転写用基材を剥離した。その後、180℃で60分間の加熱処理を行い、導電性パターンを有する実施例13のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例14)
 ソルダーレジスト層として、ドライフィルム状ソルダーレジストである太陽インキ製造(株)製PFR-800 AUS410を、支持体としてSUS304鋼板に熱圧着した状態で使用したこと以外は実施例13と同様にして実施例14のパターン転写物を得た。パターンの転写に際して、ソルダーレジスト層の25℃におけるJIS Z 0237に準拠して剥離角度180度にて測定された粘着力は0.2~10N/25mmの範囲内であり、得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例6)
 実施例13で用いたソルダーレジスト層の表面に対して銀ペースト(藤倉化成(株)製ドータイト FA-333)を50mm×50mmのベタパターンでスクリーン印刷し、120℃10分間の加熱処理を行った。その後更に180℃で60分間の加熱処理を行い、比較例6のパターンを有する部材を得た。得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
(比較例7)
 実施例14で用いたソルダーレジスト層の表面に対して銀ペースト(藤倉化成(株)製ドータイト FA-333)を50mm×50mmのベタパターンでスクリーン印刷し、120℃で10分間の加熱処理を行った。その後、更に180℃で60分間の加熱処理を行い、比較例7のパターンを有する部材を得た。得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
 得られた実施例13、14のパターン転写物及び比較例6、7のパターンを有する部材に関し、次の評価を行った。
<密着性の評価>
 各部材の導電性パターンの被転写体に対する密着性を、JIS K 5600-5-6に規定されるクロスカット法に準拠し確認した。各部材の導電性パターン部に幅1mm間隔に10マス×10マスの計100マス目をクロスカットし、そこにニチバン(株)製セロテープ(24mm幅)を貼り付け、急激に剥離し、残ったマス目の状態にて評価を行った。その結果は以下の通りであった。
実施例13:マス目の剥離が無く密着性は良好であった。
実施例14:マス目の剥離が無く密着性は良好であった。
比較例6 :マス目の剥離が散見され密着性が不良であった。
比較例7 :マス目の剥離が散見され密着性が不良であった。
(実施例15)
 実施例13における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に、脱脂処理、触媒付与処理、無電解銅めっきを順に行った。脱脂処理は、メルテックス(株)製、クリーナー160を50g/Lとなるように建浴し、60℃で1分間行った。触媒付与処理は、同社製、アクチベーター350をパラジウムの濃度が100ppmとなるよう建浴して25℃で2分間行った。無電解銅めっきは、同社製厚付無電解銅めっき、メルプレート(登録商標)CU-5100を標準希釈で建浴し、50℃で10分間行った。脱脂処理、触媒付与処理、無電解銅めっきの各処理の後には被転写体の水洗を行った。めっきを施した後の導電性パターンの厚みは1.8μmであった。めっきを施した後に、被転写体に180℃で60分間の加熱処理を行い、実施例15のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例16)
 実施例14における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に、脱脂処理、電解銅めっきを順に行った。脱脂処理は実施例15と同様である。電解銅めっきは、下記組成の硫酸銅めっき液を建浴し、25℃で3分間(電流密度2A/dm)行った。脱脂処理、触媒付与処理、電解銅めっきの各処理の後には被転写体の水洗を行った。めっきを施した後の導電性パターンの厚みは1.8μmであった。めっきを施した後に、被転写体に180℃で60分間の加熱処理を行い、実施例16のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
<硫酸銅めっき液>
硫酸銅5水和物                        75g
12規定硫酸                        190g
光沢剤                             適量
(ローム・アンド・ハース社製、カパーグリーム(登録商標)CLX)
塩化物イオン                        50mg
水で全量を1000mlに調製した。
(比較例8)
 実施例13で用いたソルダーレジスト層の表面に対して、銀ナノインク(三菱製紙(株)製NBSIJ-MU01、銀濃度15質量%)を入れたピエゾタイプのインクジェットプリンタを用い、50mm×50mmのベタパターンで印刷を行った。その後、ソルダーレジスト層に180℃で1時間の加熱処理を行い、比較例8のパターンを有する部材を得た。銀ナノインクの吐出量は23ml/mであり、導電性パターンの厚みは0.9μmであった。また、得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
 得られた実施例15、16のパターン転写物及び比較例8のパターンを有する部材に関し、次の評価を行った。
<導電性の評価>
 各部材が有する導電性パターンのシート抵抗値を測定器((株)ダイアインスツルメンツ製ロレスタ-GP)を用いて測定した。その結果は以下の通りであった。
実施例15:0.022Ω/□
実施例16:0.015Ω/□
比較例8 :0.110Ω/□
<密着性の評価>
 各部材の導電性パターンの被転写体に対する密着性を、JIS K 5600-5-6に規定されるクロスカット法に準拠し確認した。各部材の導電性パターン部に幅1mm間隔に10マス×10マスの計100マス目をクロスカットし、そこにニチバン(株)製セロテープ(24mm幅)を貼り付け、急激に剥離し、残ったマス目の状態にて評価を行った。その結果は以下の通りであった。
実施例15:マス目の剥離が無く密着性は良好であった。
実施例16:マス目の剥離が無く密着性は良好であった。
比較例8 :マス目の剥離が散見され密着性が不良であった。
(実施例17)
 常温で粘着性を有さず加熱により粘着性を発現する被転写体として、住友ベークライト(株)製LAZ-7752を使用した。予め該被転写体に80℃で1時間の予備加熱を行った後、50℃に温調したSUS304鋼板を用いて、被転写体が50℃であるときの粘着力をJIS Z 0237に準拠して剥離角度180度にて測定したところ、1.1N/25mmであった。なお、予備加熱を行う前の被転写体の粘着力を25℃で測定したところ、0.03N/25mmであった。
 被転写体として住友ベークライト(株)製LAZ-7752を使用し、パターンの転写に際して、該被転写体は支持体としてSUS304鋼板を熱圧着した状態で使用した。被転写体への導電性パターンの転写は、ロール温度を50℃に調整したロールラミネーターを用い、実施例1で作製しパターン形成した転写用基材1の導電性パターン形成面と、予め80℃で1時間の予備加熱を行った被転写体の転写面を、被転写体の温度が50℃、圧力20N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行い、室温まで放冷してから転写用基材を剥離した。その後、180℃で60分間の加熱処理を行い、導電性パターンを有する実施例17のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例18)
 ラミネーターのロール温度を70℃に変更したこと以外は実施例17と同様にして、実施例18のパターン転写物を得た。パターン転写時の被転写体の温度は70℃である。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、被転写体が70℃であるときの粘着力を、SUS304鋼板を70℃に調温した以外は実施例17と同様にして測定したところ、4.9N/25mmであった。
(実施例19)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例2で作製しパターン形成した転写用基材2を用いたこと以外は実施例18と同様にして、実施例19のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例20)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例3で作製しパターン形成した転写用基材を用いたこと以外は実施例18と同様にして、実施例20のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例21)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例5で作製しパターン形成した転写用基材を用いたこと以外は実施例18と同様にして、実施例21のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例9)
 住友ベークライト(株)製LAZ-7752に、支持体としてSUS304鋼板を熱圧着し、80℃で1時間加熱した後、その表面に、スクリーン印刷機を用いて、銀ペースト(藤倉化成(株)製ドータイトFA-333)を50mm×50mmのベタパターンで印刷を行い、120℃で10分間の加熱処理を行った。その後、更に180℃で60分間の加熱処理を行い、比較例9のパターンを有する部材を得た。得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
 得られた実施例17~21のパターン転写物及び比較例9のパターンを有する部材に関し、次の評価を行った。
<導電性の評価>
 各部材が有する導電性パターンのシート抵抗値を測定器((株)ダイアインスツルメンツ製ロレスタ-GP)を用いて測定した。その結果は以下の通りであった。
実施例17:0.150Ω/□
実施例18:0.150Ω/□
実施例19:0.150Ω/□
実施例20:0.150Ω/□
実施例21:0.250Ω/□
比較例9 :0.200Ω/□
<密着性の評価>
 各部材の導電性パターンの被転写体に対する密着性を、JIS K 5600-5-6に規定されるクロスカット法に準拠し確認した。各部材の導電性パターン部に幅1mm間隔に10マス×10マスの計100マス目をクロスカットし、そこにニチバン(株)製セロテープ(24mm幅)を貼り付け、急激に剥離し、残ったマス目の状態にて評価を行った。その結果は以下の通りであった。
実施例17:マス目の剥離が無く密着性は良好であった。
実施例18:マス目の剥離が無く密着性は良好であった。
実施例19:マス目の剥離が無く密着性は良好であった。
実施例20:マス目の剥離が無く密着性は良好であった。
実施例21:マス目の剥離が無く密着性は良好であった。
比較例9 :マス目の剥離が散見され密着性が不良であった。
(実施例22)
 実施例17における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に、脱脂処理、触媒付与処理、無電解銅めっきを順に行った。脱脂処理、触媒付与処理、無電解銅めっき、水洗は実施例15と同様に行った。めっきを施した後の導電性パターンの厚みは1.8μmであった。めっきを施した後に、被転写体に180℃で60分間の加熱処理を行い、実施例22のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例23)
 実施例18における被転写体から転写用基材を剥離した工程の後に、被転写体のパターン転写面に、脱脂処理、電解銅めっきを順に行った。脱脂処理、電解銅めっき、水洗は実施例16と同様である。めっきを施した後の導電性パターンの厚みは1.8μmであった。めっきを施した後に、被転写体に180℃で60分間の加熱処理を行い、実施例23のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例24)
 実施例22において、被転写体から転写用基材を剥離した工程の後に、被転写体にめっきを施し、その後に被転写体の加熱処理を行う代わりに、被転写体の加熱処理を先に行い、その後に被転写体にめっきを施した以外は実施例22と同様にして、実施例24のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
 得られた実施例22~24のパターン転写物に関し、次の評価を行った。
<導電性の評価>
 各部材が有する導電性パターンのシート抵抗値を測定器((株)ダイアインスツルメンツ製ロレスタ-GP)を用いて測定した。その結果は以下の通りであった。
実施例22:0.022Ω/□
実施例23:0.015Ω/□
実施例24:0.045Ω/□
<密着性の評価>
 各部材の導電性パターンの被転写体に対する密着性を、JIS K 5600-5-6に規定されるクロスカット法に準拠し確認した。各部材の導電性パターン部に幅1mm間隔に10マス×10マスの計100マス目をクロスカットし、そこにニチバン(株)製セロテープ(24mm幅)を貼り付け、急激に剥離し、残ったマス目の状態にて評価を行った。その結果は以下の通りであった。
実施例22:マス目の剥離が無く密着性は良好であった。
実施例23:マス目の剥離が無く密着性は良好であった。
実施例24:転写用基材から転写された銀ナノインクにより形成された導電性パターンは残っていたものの、めっきにより形成された銅めっき層は全てテープ側に剥離してしまった。
(実施例25)
 常温で粘着性を有さず加熱により粘着性を発現する被転写体として、アクリル樹脂板((株)クラレ製コモグラス(登録商標)Pクリア、厚み1mm)を使用した。150℃に温調したSUS304鋼板を用いて、被転写体が150℃であるときの粘着力をJIS Z0237準拠して剥離角度180度にて測定したところ、2.5N/25mmであった。
 被転写体への導電性パターンの転写は、ロールラミネーターを用い、実施例1で作製しパターン形成した転写用基材1の導電性パターン形成面と被転写体の転写面を、ロール温度150℃、圧力200N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行い、室温まで放冷してから転写用基材を剥離し、導電性パターンを有する実施例25のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例26)
 常温で粘着性を有さず加熱により粘着性を発現する被転写体として、ABS樹脂板((株)セコン製作所製ABSシート F-4626黒、厚み1mm)を使用した以外は実施例25と同様にして、導電性パターンを有する実施例26のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。なお、150℃に温調したSUS304鋼板を用いて、被転写体が150℃であるときの粘着力をJIS Z 0237に準拠して剥離角度180度にて測定したところ、2.3N/25mmであった。
(実施例27)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例2で作製しパターン形成した転写用基材2を用いたこと以外は実施例25と同様にして、実施例27のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例28)
 実施例27において、被転写体をABS樹脂板((株)セコン製作所製ABSシート F-4626黒)に変更した以外は実施例27と同様にして、実施例28の導電性部材を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例29)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例3で作製しパターン形成した転写用基材を用いたこと以外は実施例25と同様にして、実施例29のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例30)
 実施例29において、被転写体をABS樹脂板((株)セコン製作所製ABSシート F-4626黒)に変更した以外は実施例29と同様にして、実施例30の導電性部材を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例31)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例5で作製しパターン形成した転写用基材を用いたこと以外は実施例25と同様にして、実施例31のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例32)
 実施例31において、被転写体をABS樹脂板((株)セコン製作所製ABSシート F-4626黒)に変更した以外は実施例31と同様にして、実施例32の導電性部材を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例10)
 アクリル樹脂板((株)クラレ製コモグラスPクリア)の表面に、スクリーン印刷機を用いて、銀ペースト(藤倉化成(株)製ドータイトFA-333)を50mm×50mmのベタパターンで印刷を行い、更に120℃で10分間の加熱処理を行い、比較例10のパターンを有する部材を得た。得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
(比較例11)
 比較例10において、被転写体をABS樹脂板((株)セコン製作所製ABSシート F-4626黒)に変更した以外は比較例10と同様にして、比較例11のパターンを有する部材を得た。得られたパターンを有する部材の表面は、常温において粘着性を有していなかった。
(比較例12)
 実施例1で作製しパターン形成した転写用基材1の導電性パターンを両面粘着テープ(日東電工(株)製No.5600)の片面に転写した。その後、導電性パターンが転写された両面粘着テープの導電性パターンを有さない側の粘着面を、アクリル樹脂板((株)クラレ製コモグラスPクリア)に貼り付け、比較例12のパターンを有する部材を得た。得られたパターンを有する部材の表面は、両面粘着テープが存在することから、常温において粘着性を有していた。
(比較例13)
 比較例12において、被転写体をABS樹脂板((株)セコン製作所製ABSシート F-4626黒)に変更した以外は比較例12と同様にして、比較例13のパターンを有する部材を得た。得られたパターンを有する部材の表面は、両面粘着テープが存在することから、常温において粘着性を有していた。
 得られた実施例25~32のパターン転写物及び比較例10~13のパターンを有する部材に関し、実施例1~6のパターン転写物及び比較例1~4のパターンを有する部材に関する評価と同様にして評価を行った。結果を表2に示す。なお、実施例25~32のパターン転写物の転写パターンは金属光沢を有する金属調パターンであったことから、これらは金属調加飾部材としても使用可能であった。
Figure JPOXMLDOC01-appb-T000002
(実施例33)
 実施例25のパターン転写物のパターン転写面に実施例7と同様にして脱脂処理と無電解銅めっきを行い、実施例33のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例34)
 実施例25のパターン転写物のパターン転写面に実施例8と同様にして脱脂処理と電解銅めっきを行い、実施例34のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例35)
 実施例33において、被転写体をABS樹脂板((株)セコン製作所製ABSシート F-4626黒)に変更した以外は実施例33と同様にして、実施例35の導電性部材を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例36)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例2で作製しパターン形成した転写用基材2を用いたこと以外は実施例33と同様にして、実施例36のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例37)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例3で作製しパターン形成した転写用基材を用いたこと以外は実施例33と同様にして、実施例37のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例38)
 パターン転写に用いる導電性パターンが形成された転写用基材として、転写用基材1の代わりに、実施例5で作製しパターン形成した転写用基材を用いたこと以外は実施例33と同様にして、実施例38のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例14)
 比較例12のパターンを有する部材のパターン形成面に実施例7と同様に脱脂処理と無電解銅めっきを行い、比較例14のパターンを有する部材を得た。得られたパターンを有する部材の表面は、両面粘着テープが存在することから、常温において粘着性を有していた。
 得られた実施例33~38のパターン転写物及び比較例14のパターンを有する部材に関し、次の評価を行った。
<導電性の評価>
 各部材が有する導電性パターンのシート抵抗値を測定器((株)ダイアインスツルメンツ製ロレスタ-GP)を用いて測定した。その結果は以下の通りであった。
実施例33:0.035Ω/□
実施例34:0.008Ω/□
実施例35:0.033Ω/□
実施例36:0.035Ω/□
実施例37:0.040Ω/□
実施例38:0.044Ω/□
比較例14:0.040Ω/□
<密着性の評価>
 各部材の導電性パターンの被転写体に対する密着性を、JIS K 5600-5-6に規定されるクロスカット法に準拠し確認した。各部材の導電性パターン部に幅2mm間隔に5マス×5マスの計25マス目をクロスカットし、ニチバン(株)製セロテープ(24mm幅)を貼り付け、急激に剥離し、残ったマス目の状態にて評価を行った。その結果は以下の通りであった。
実施例33:マス目の剥離が無く密着性は良好であった。
実施例34:マス目の剥離が無く密着性は良好であった。
実施例35:マス目の剥離が無く密着性は良好であった。
実施例36:マス目の剥離が無く密着性は良好であった。
実施例37:マス目の剥離が無く密着性は良好であった。
実施例38:マス目の剥離が無く密着性は良好であった。
比較例14:マス目の剥離が散見され密着性が不良であった。
(実施例39)
 導電性発現剤塗布液1を塗布しなかった以外は実施例1と同様にして転写用基材を作製した。この転写用基材に、水性顔料インクを用いたインクジェットプリンタを用い、50mm×50mmの大きさの画像パターンの印刷を行い、転写用基材上に転写パターンを形成した。
 ロールラミネーターを用い、転写用基材の転写パターン形成面と、被転写体として炭素繊維強化樹脂成型用のプリプレグ(東レ(株)製トレカF6343B)を、ロール温度25℃、圧力10N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行い、転写用基材を剥離した。その後、被転写体に140℃で30分間の加熱処理を行い、転写パターンを有する実施例39のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例40)
 実施例2で用いた多孔質層上に、導電性発現剤塗布液1は塗布せず、下記組成の解離層塗布液5を塗布した以外は実施例2と同様にして転写用基材を作製した。多孔質層上に形成された解離層の固形分塗布量は0.04g/mであった。この転写用基材に、実施例39と同様にして転写パターンを形成した。
<解離層塗布液5>
コロイダルシリカ12質量%スラリー           1.7質量部
(扶桑化学工業(株)製、クォートロンPL-1、平均一次粒子径15nm)
水                          98.3質量部
 ロールラミネーターを用い、転写用基材の転写パターン形成面と、被転写体としてエポキシ樹脂シート(サンユレック(株)製DRS-028)を、ロール温度25℃、圧力10N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行い、転写用基材を剥離した。その後、被転写体に150℃で60分間の加熱処理を行い、転写パターンを有する実施例40のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例41)
 実施例39の転写用基材で用いた解離層塗布液1を実施例3で用いた解離層塗布液3へ変更した以外は実施例39と同様にして転写用基材を作製した。多孔質層上に形成された解離層の固形分塗布量は0.6g/mであった。この転写用基材を用いて、実施例39と同様にして実施例41のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例42)
 実施例39の転写用基材で用いた解離層塗布液1を実施例5で用いた解離層塗布液4へ変更した以外は実施例39と同様にして転写用基材を作製した。多孔質層上に形成された解離層の固形分塗布量は0.2g/mであった。この転写用基材を用いて、実施例39と同様にして実施例42のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例43)
 実施例39の転写用基材に、下記のインク調整液1をワイヤーバーにて湿分塗布量が12g/mになるよう塗布し、転写用基材上に転写パターンを形成した。この転写パターンを形成した転写用基材を用いて、実施例39と同様にして実施例43のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
<インク調整液1>
詰め替え用インク ユニバーサルインク顔料ブラック    0.5質量部
(有限会社総合企業サービス製、UNI-E100-BK)
アクリルエマルジョン                 0.37質量部
(楠本化成(株)製、NeoCryl(登録商標) YK-188、固形分濃度44.5質量%)
水                          0.14質量部
(実施例44)
 実施例43のインク調整液1を下記のインク調整液2に変更した以外は実施例43と同様にして、実施例44のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
<インク調整液2>
詰め替え用インク ユニバーサルインク顔料ブラック    0.5質量部
(有限会社総合企業サービス製、UNI-E100-BK)
アクリルエマルジョン                 0.25質量部
(楠本化成(株)製、NeoCryl YK-188)
水                          0.25質量部
(比較例15)
 実施例39において、解離層塗布液を多孔質層上に塗布せず、多孔質層のみを有する転写用基材を作製し、この転写用基材を使用して実施例39と同様にして、比較例15のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例16)
 実施例39において、多孔質層形成塗布液を塗布せず、解離層のみを有する転写用基材を作製し、この転写用基材を使用して実施例39と同様にして、比較例16のパターン転写物を得ようとしたが、解離層のみを有する転写用基材が水性顔料インクの溶剤を吸収せず、良好なパターン転写物が得られなかった。
(比較例17)
 実施例39の被転写体をABS樹脂((株)セコン製作所製ABSシート F-4626黒)に変更した以外は実施例39と同様にして比較例17のパターン転写物を得ようとしたが、転写パターンが被転写体に転写せず、良好なパターン転写物が得られなかった。なお、ABS樹脂の表面は常温において粘着性を有さない。
(比較例18)
 比較例17において、転写用基材と被転写体との間に、両面のPET剥離フィルムを剥がしたアクリル系透明光学粘着両面フィルムシート(グンゼ(株)製NNX50、厚み50μm、25℃におけるJIS Z0237に準拠して剥離角度180度にて測定された粘着力は0.2N/25mm以上、加熱硬化性無し)を挟んで、ロールラミネーターを用いて、ロール温度25℃、圧力10N/cm、速度0.5m/分で圧着処理を行った以外は比較例17と同様にして、比較例18のパターン転写物を得た。得られたパターン転写物の表面は、アクリル系透明光学粘着両面フィルムシートが存在することから、常温において粘着性を有していた。
(比較例19)
 実施例39において、140℃で30分間の加熱硬化処理を行わなかった以外は実施例39と同様にして、比較例19のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していた。
(比較例20)
 実施例39の転写用基材を、受容層転写シート(サンワサプライ(株)製洗濯に強いアイロンプリント紙JP-TPRTYN)に変更し、説明書に記載された転写方法に準じて、被転写体に画像パターンを転写後に、140℃で30分間の加熱処理を行って、比較例20のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
 得られた実施例39~44及び比較例15、18~20のパターン転写物に関し、次の評価を行った。
<転写性>
 パターン転写物の転写状態を目視で観察し、以下の基準で評価した。この結果を表3に示す。
1 :パターンが非常にきれいに転写されている。
2 :上記1にはやや劣るがパターンがきれいに転写されている。
3 :パターンは転写されているものの鮮明ではない。
4 :パターンの転写されていない部分が散見される。
<密着性>
 パターン転写物にエリエールプロワイプ(登録商標)ソフトワイパーS200(大王製紙(株)製)をあて、10往復擦った後のパターンの状態を目視で観察し、以下の基準で評価した。この結果を表3に示す。
1 :擦る前と全く変わらない。
2 :擦る前とほとんど変わらない。
3 :パターンが一部脱落しワイパー側にくっついた。
4 :パターンがほとんど脱落した。
Figure JPOXMLDOC01-appb-T000003
(実施例45)
 被転写体として50番手糸を使った平織り綿布帛と、実施例39で作製しパターン形成した転写用基材の転写パターンを形成した面との間に、加熱粘着性物質としてポリアミド系熱可塑性樹脂フィルムシート(日本マタイ(株)製エルファンNT-120:厚み50μm)を挟んで、ロールラミネーターを用いて、ロール温度110℃、圧力10N/cm、速度0.5m/分で圧着処理を行い、室温まで放冷してから転写用基材を剥離し、転写パターンを有する実施例45のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。なお、幅25mmのシート状としたポリアミド系熱可塑性樹脂フィルムシートを110℃に加熱したときの、JIS Z 0237に準拠して剥離角度180度にて測定される粘着力は0.2~10N/25mmの範囲にあり、常温での粘着力は0.1N/25mm未満であった。
(実施例46)
 パターン形成した転写用基材として、実施例40で作製しパターン形成した転写用基材を用いた以外は実施例45と同様にして、実施例46のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例47)
 実施例45の加熱粘着性物質をポリウレタン系熱可塑性樹脂フィルムシート(日本マタイ(株)製エルファンUH-203:厚み50μm)に変更した以外は実施例45と同様にして、実施例47のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。なお、幅25mmのシート状としたポリウレタン系熱可塑性樹脂フィルムシートを110℃に加熱したときの、JIS Z 0237に準拠して剥離角度180度にて測定される粘着力は0.2~10N/25mmの範囲にあり、常温での粘着力は0.1N/25mm未満であった。
(実施例48)
 被転写体として5mm厚のポリエチレンテレフタレート(PET)樹脂板と、実施例1で作製しパターン形成した転写用基材の転写パターンを形成した面との間に、加熱粘着性物質としてポリアミド系熱可塑性樹脂フィルムシート(日本マタイ(株)製エルファンNT-120)を挟んで、ロールラミネーターを用いて、ロール温度110℃、圧力10N/cm、速度0.5m/分で圧着処理を行い、室温まで放冷してから転写用基材を剥離し、転写パターンを有する実施例48のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
 得られたパターン転写物上に転写された導電性パターンのシート抵抗値を測定器((株)ダイアインスツルメンツ製ロレスタ-GP)を用いて測定したところ、0.150Ω/□であった。また、得られたパターン転写物の転写パターンは金属光沢を有する金属調パターンであったことから、このパターン転写物は金属調加飾部材としても使用可能であった。
(実施例49)
 パターン形成した転写用基材として、実施例41で作製しパターン形成した転写用基材を用いた以外は実施例45と同様にして、実施例49のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例50)
 パターン形成した転写用基材として、実施例42で作製しパターン形成した転写用基材を用いた以外は実施例45と同様にして、実施例50のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例51)
 パターン形成した転写用基材として、実施例43で作製しパターン形成した転写用基材を用いた。ロールラミネーターを用い、転写用基材の転写パターン形成面と、被転写体として50番手糸を使った平織りポリエステル布帛を、ロール温度140℃、圧力10N/cm、速度0.5m/分で圧着処理を行い、室温まで放冷してから転写用基材を剥離し、転写パターンを有する実施例51のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。なお、幅25mm幅のシート状とした転写パターンの乾燥被膜を140℃に加熱したときの、JIS Z 0237に準拠して剥離角度180度にて測定される粘着力は0.2~10N/25mmの範囲にあり、常温での粘着力は0.1N/25mm未満であった。
(実施例52)
 パターン形成した転写用基材として、実施例44で作製しパターン形成した転写用基材を用いた以外は実施例51と同様にして実施例52のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。なお、幅25mm幅のシート状とした転写パターンの乾燥被膜を140℃に加熱したときの、JIS Z 0237に準拠して剥離角度180度にて測定される粘着力は0.2~10N/25mmの範囲にあり、室温(常温)での粘着力は0.1N/25mm未満であった。
(比較例21)
 実施例45において、解離層塗布液を多孔質層上に塗布せず、多孔質層のみを有する転写用基材を作製し、この転写用基材を使用して実施例45と同様にして、比較例21のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(比較例22)
 実施例45において、多孔質層形成塗布液を塗布せず、解離層のみを有する転写用基材を作製し、この転写用基材を使用して実施例45と同様にして、比較例22のパターン転写物を得ようとしたが、解離層のみを有する転写用基材が水性顔料インクの溶剤を吸収せず、良好なパターン転写物が得られなかった。
(比較例23)
 実施例45のポリアミド系熱可塑性樹脂フィルムシートを、両面のPET剥離フィルムを剥がしたアクリル系透明光学粘着両面フィルムシート(グンゼ(株)製NNX50)に変えて、ロールラミネーターを用いて、ロール温度25℃、圧力10N/cm、速度0.5m/分で圧着処理を行った以外は実施例45と同様にして、比較例23のパターン転写物を得た。得られたパターン転写物の表面は、アクリル系透明光学粘着両面フィルムシートが存在することから、常温において粘着性を有していた。
(比較例24)
 実施例45の転写用基材を、受容層転写シート(サンワサプライ(株)製洗濯に強いアイロンプリント紙JP-TPRTYN)に変更し、説明書に記載された転写方法に準じて、被転写体に画像パターンを転写し、比較例24のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
 得られた実施例45~52及び比較例21、23、24のパターン転写物に関し、実施例39~44及び比較例15、18~20のパターン転写物に関する評価と同様にして評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例53)
 下記組成の多孔質層形成塗布液3を作製した。支持体として易接着処理がなされた厚み100μmのポリエチレンテレフタレートフィルム(帝人フィルムソリューション(株)製)に多孔質層形成塗布液3をスライドビードコーターで、多孔質層の乾燥後塗布量が34.5g/mとなるように塗布、乾燥し多孔質層を形成した。多孔質層には、多孔質層の全固形分量に対してグリセリンとジグリセリンを合計量として5質量%含有していた。
<多孔質層形成塗布液3>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
ジグリセリン                      6.0質量部
(阪本薬品工業(株)製ジグリセリンS、グリセリンを0.9質量%、ジグリセリンを95.4質量%含有。)
水以外の成分濃度が17質量%になるように水で調整した。
 次いで、多孔質層面に導電性発現剤塗布液2を、斜線グラビアロールを用いた塗布方式により塗布を行い、乾燥機により乾燥した。ここで用いた斜線グラビアロールは、直径60mm、斜線角度45度、線数90線/インチ、溝深さ110μmのグラビアロールであり、リバース回転で用いた。湿分塗布量は、斜線グラビアロールの回転数を調整し20g/mに設定した。塗布された導電性発現剤塗布液は多孔質層内部に吸収され、表面には多孔質層が露出していた。
<導電性発現剤塗布液2>
塩化ナトリウム                     0.6質量部
水                          99.4質量部
 更に、実施例1で用いた解離層塗布液1を実施例1と同様に塗布、乾燥し転写用基材を得、実施例1と同様にして転写用基材上へ導電性パターンを作製した。
 ロールラミネーターを用い、転写用基材の導電性パターン形成面と、被転写体としてポリイミドカバーレイフィルム((株)有沢製作所製CMA1025KA、ポリイミドフィルム上に熱硬化性樹脂であるエポキシ樹脂層を有する。)を、ロール温度110℃、圧力10N/cm、速度0.3m/分(圧着時間として1秒)で圧着処理を行い、転写用基材を剥離した。その後、被転写体に160℃で60分間の加熱処理を行い、導電性パターンを有する実施例53のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。なお、幅25mm幅のシート状としたポリイミドカバーレイフィルムを110℃に加熱したときの、JIS Z 0237に準拠して剥離角度180度にて測定される粘着力は0.2~10N/25mmの範囲にあり、常温での粘着力は0.1N/25mm未満であった。
(実施例54)
 実施例53の多孔質層形成塗布液3を下記組成の多孔質層形成塗布液4に変更し、多孔質層の乾燥後塗布量が36.5g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例54のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、多孔質層には、多孔質層の全固形分量に対してグリセリンとジグリセリンを合計量として10質量%含有していた。
<多孔質層形成塗布液4>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
ジグリセリン(阪本薬品工業(株)製ジグリセリンS)  12.7質量部
水以外の成分濃度が18質量%になるように水で調整した。
(実施例55)
 実施例53の多孔質層形成塗布液3を下記組成の多孔質層形成塗布液5に変更し、多孔質層の乾燥後塗布量が38.6g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例55のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、多孔質層には、多孔質層の全固形分量に対してグリセリンとジグリセリンを合計量として15質量%含有していた。
<多孔質層形成塗布液5>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
ジグリセリン(阪本薬品工業(株)製ジグリセリンS)  20.1質量部
水以外の成分濃度が19質量%になるように水で調整した。
(実施例56)
 実施例53の多孔質層形成塗布液3を下記組成の多孔質層形成塗布液6に変更し、多孔質層の乾燥後塗布量が41.0g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例56のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、多孔質層には、多孔質層の全固形分量に対してグリセリンとジグリセリンを合計量として20質量%含有していた。
<多孔質層形成塗布液6>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
ジグリセリン(阪本薬品工業(株)製ジグリセリンS)  28.5質量部
水以外の成分濃度が20質量%になるように水で調整した。
(実施例57)
 実施例53の多孔質層形成塗布液3を下記組成の多孔質層形成塗布液7に変更し、多孔質層の乾燥後塗布量が38.6g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例57のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、多孔質層には、多孔質層の全固形分量に対してグリセリンを15質量%含有していた。
<多孔質層形成塗布液7>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
グリセリン                      20.4質量部
(昭和化学(株)製グリセリン、グリセリンを95質量%含有。)
水以外の成分濃度が19質量%になるように水で調整した。
(実施例58)
 実施例53の多孔質層形成塗布液3を下記組成の多孔質層形成塗布液8に変更し、多孔質層の乾燥後塗布量が38.6g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例58のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、多孔質層には、多孔質層の全固形分量に対してグリセリンとポリグリセリンを合計量として15質量%含有していた。
<多孔質層形成塗布液8>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
ポリグリセリン(重合度4)              20.5質量部
(阪本薬品工業(株)製ポリグリセリン#310、グリセリンを7.3質量%、ポリグリセリンを87.2質量%含有。)
水以外の成分濃度が19質量%になるように水で調整した。
(実施例59)
 実施例53の多孔質層形成塗布液3を下記組成の多孔質層形成塗布液9に変更し、多孔質層の乾燥後塗布量が38.6g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例59のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、多孔質層には、多孔質層の全固形分量に対してグリセリン、ジグリセリン、ポリグリセリンを合計量として15質量%含有していた。
<多孔質層形成塗布液9>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
ポリグリセリン(重合度6)              21.5質量部
(阪本薬品工業(株)製ポリグリセリン#500、グリセリンを0.1質量%、ジグリセリンを3.6質量%、ポリグリセリンを86.2質量%含有。)
水以外の成分濃度が19質量%になるように水で調整した。
(実施例60)
 実施例53の多孔質層形成塗布液3を下記組成の多孔質層形成塗布液10に変更し、多孔質層の乾燥後塗布量が38.6g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例60のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。また、多孔質層には、多孔質層の全固形分量に対してグリセリンとポリグリセリンを合計量として15質量%含有していた。
<多孔質層形成塗布液10>
無機微粒子分散液2    (アルミナ水和物固形分として)100質量部
ポリビニルアルコール                    9質量部
(ケン化度88%、平均重合度3,500、分子量約150,000)
ホウ酸                         0.4質量部
ノニオン性界面活性剤                  0.3質量部
(ポリオキシエチレンアルキルエーテル)
ポリグリセリン(重合度10)             21.5質量部
(阪本薬品工業(株)製ポリグリセリン#750、グリセリンを1.1質量%、ポリグリセリンを88.9質量%含有。)
水以外の成分濃度が19質量%になるように水で調整した。
(実施例61)
 実施例53の多孔質層形成塗布液3を実施例2で用いた多孔質層形成塗布液2に変更し、多孔質層の乾燥後塗布量が32.8g/mとなるよう塗布を行って多孔質層を形成した以外は実施例53と同様にして、導電性パターンを有する実施例61のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例62)
 実施例55で作製した転写用基材に、顔料インクタイプのインクジェットプリンタ(Hewlett-Packard社製OfficeJet Pro 6230)を用い、50mm×50mmの黒ベタパターンの印刷を行い、転写用基材上に転写パターンを形成した。
 被転写体として50番手糸を使った平織り綿布帛と、パターン形成した転写用基材の転写パターンを形成した面との間に、加熱粘着性物質としてポリアミド系熱可塑性樹脂フィルムシート(日本マタイ(株)製エルファンNT-120)を挟んで、ロールラミネーターを用いて、ロール温度110℃、圧力10N/cm、速度0.5m/分で圧着処理を行い、室温まで放冷してから転写用基材を剥離し、転写パターンを有する実施例62のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
(実施例63)
 転写用基材として、実施例61で作製した転写用基材を用いた以外は実施例62と同様にして、実施例63のパターン転写物を得た。得られたパターン転写物の表面は、常温において粘着性を有していなかった。
 実施例53~63のパターン転写物は各々20枚作製した上で、次の評価を行った。
<パターン転写物のパターン転写面の汚染の評価>
 20枚のパターン転写物中で、転写用基材の支持体上に形成された多孔質層と解離層が支持体より部分的に剥離して被転写体へ転写され、パターン転写面が汚染されたパターン転写物の枚数の割合を評価した。その結果は以下の通りであった。
実施例53:汚染された枚数が10%以上30%未満であった。
実施例54:汚染された枚数が5%以上10%未満であった。
実施例55:汚染された枚数が0%であった。
実施例56:汚染された枚数が0%であった。
実施例57:汚染された枚数が0%であった。
実施例58:汚染された枚数が0%であった。
実施例59:汚染された枚数が0%であった。
実施例60:汚染された枚数が5%以上10%未満であった。
実施例61:汚染された枚数が30%以上であった。
実施例62:汚染された枚数が5%以上10%未満であった。
実施例63:汚染された枚数が30%以上であった。
 以上の結果より、工程が簡便な本発明のパターン転写物の製造方法により、転写されたパターンと被転写体との密着性が良好なパターン転写物が得られることが判る。
1  支持体
2  多孔質層
3  解離層
4  転写パターン
5  被転写体
6  加熱により粘着性を生じる物質(加熱粘着性物質)
7  めっき層
10 転写用基材

Claims (9)

  1.  支持体上に少なくとも多孔質層と該多孔質層上に解離層を有する転写用基材の解離層の上に転写パターンを形成する工程と、
     表面に粘着性を有する被転写体に該転写パターンを転写する工程及び粘着性を有する物質を介して被転写体へ該転写パターンを転写する工程から選ばれる転写工程と、
     被転写体表面または粘着性を有する物質の粘着性を除去する工程とを少なくとも具備する、パターン転写物の製造方法。
  2.  表面に粘着性を有する被転写体が、常温で粘着性を有する被転写体であり、被転写体表面の粘着性を除去する工程が、被転写体を加熱硬化する工程である請求項1に記載のパターン転写物の製造方法。
  3.  表面に粘着性を有する被転写体が、常温で粘着性を有さず加熱により粘着性を生じる被転写体であり、被転写体表面の粘着性を除去する工程が、被転写体を加熱硬化する工程である請求項1に記載のパターン転写物の製造方法。
  4.  表面に粘着性を有する被転写体が、常温で粘着性を有さず加熱により粘着性を生じる被転写体であり、被転写体表面の粘着性を除去する工程が、被転写体を常温まで放冷する工程である請求項1に記載のパターン転写物の製造方法。
  5.  粘着性を有する物質が、常温で粘着性を有さず加熱により粘着性を生じる物質であり、粘着性を有する物質の粘着性を除去する工程が、被転写体を常温まで放冷する工程である請求項1に記載のパターン転写物の製造方法。
  6.  転写パターンが導電性パターン、金属調パターン及び顔料色剤によるパターンから選ばれるパターンである請求項1~5のいずれか1項に記載のパターン転写物の製造方法。
  7.  転写パターンが導電性パターンであり、転写工程の後に、転写された導電性パターンにめっきを施す工程を行い、その後、被転写体表面の粘着性を除去する工程を行う請求項2または3に記載のパターン転写物の製造方法。
  8.  転写パターンが導電性パターンであり、被転写体表面の粘着性を除去する工程の後に、転写された導電性パターンにめっきを施す工程を行う請求項4に記載のパターン転写物の製造方法。
  9.  多孔質層がグリセリン及びポリグリセリンから選択される少なくとも1種の化合物を含有する請求項1~8のいずれか1項に記載のパターン転写物の製造方法。
PCT/JP2019/017631 2018-05-25 2019-04-25 パターン転写物の製造方法 WO2019225286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/058,523 US20210219433A1 (en) 2018-05-25 2019-04-25 Pattern-transferred object manufacturing method
KR1020207035166A KR20210006436A (ko) 2018-05-25 2019-04-25 패턴 전사물의 제조 방법
EP19808407.1A EP3815926A4 (en) 2018-05-25 2019-04-25 PROCESS FOR MANUFACTURING OBJECT WITH TRANSFERRED PATTERN

Applications Claiming Priority (30)

Application Number Priority Date Filing Date Title
JP2018100301 2018-05-25
JP2018-100300 2018-05-25
JP2018100300 2018-05-25
JP2018100299 2018-05-25
JP2018-100299 2018-05-25
JP2018-100301 2018-05-25
JP2018124520A JP2020004902A (ja) 2018-06-29 2018-06-29 導電性部材の製造方法
JP2018-124520 2018-06-29
JP2018126829A JP2020009805A (ja) 2018-07-03 2018-07-03 導電性材料の製造方法
JP2018-126829 2018-07-03
JP2018-131961 2018-07-12
JP2018131961A JP2020009705A (ja) 2018-07-12 2018-07-12 導電性材料の製造方法
JP2018138334A JP7144229B2 (ja) 2018-07-24 2018-07-24 金属調パターン転写物の製造方法
JP2018-138334 2018-07-24
JP2018149372A JP2020024874A (ja) 2018-08-08 2018-08-08 導電性材料の製造方法
JP2018-149372 2018-08-08
JP2018149474A JP2019206164A (ja) 2018-05-25 2018-08-08 パターン転写物の製造方法
JP2018-149474 2018-08-08
JP2018-155255 2018-08-22
JP2018155255A JP2020029020A (ja) 2018-08-22 2018-08-22 パターン転写物の製造方法
JP2018-161857 2018-08-30
JP2018-161856 2018-08-30
JP2018161857A JP7232595B2 (ja) 2018-05-25 2018-08-30 導電性材料の製造方法
JP2018161856A JP7232594B2 (ja) 2018-05-25 2018-08-30 導電性部材の製造方法
JP2018171163A JP2020043275A (ja) 2018-09-13 2018-09-13 導電性部材の製造方法
JP2018171164A JP2020043276A (ja) 2018-09-13 2018-09-13 導電性部材の製造方法
JP2018-171164 2018-09-13
JP2018-171163 2018-09-13
JP2019059100A JP7077261B2 (ja) 2019-03-26 2019-03-26 転写用基材
JP2019-059100 2019-03-26

Publications (1)

Publication Number Publication Date
WO2019225286A1 true WO2019225286A1 (ja) 2019-11-28

Family

ID=68616770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017631 WO2019225286A1 (ja) 2018-05-25 2019-04-25 パターン転写物の製造方法

Country Status (3)

Country Link
EP (1) EP3815926A4 (ja)
TW (1) TW202218891A (ja)
WO (1) WO2019225286A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115464996A (zh) * 2022-09-15 2022-12-13 武汉华工图像技术开发有限公司 一种具有表面触感的imr膜片、成型件及制备方法
CN115504678A (zh) * 2022-11-03 2022-12-23 业泓科技(成都)有限公司 触控识别模组的减薄方法
CN115464996B (zh) * 2022-09-15 2024-05-17 武汉华工图像技术开发有限公司 一种具有表面触感的imr膜片、成型件及制备方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732316A (en) 1952-12-03 1956-01-24 Hardening of gelatin
US2983611A (en) 1957-09-16 1961-05-09 Eastman Kodak Co Gelatin compositions containing hardeners
US3017280A (en) 1959-04-20 1962-01-16 Eastman Kodak Co Hardening of coatings of polymers containing carboxyl groups
US3091537A (en) 1959-05-04 1963-05-28 Eastman Kodak Co Hardening of photographic layers
US3100704A (en) 1958-07-24 1963-08-13 Gen Aniline & Film Corp Photographic materials containing carbodhmides
US3103437A (en) 1959-04-10 1963-09-10 Hardening
US3288775A (en) 1961-04-07 1966-11-29 Ciba Ltd Method of hardening gelatin by reacting with conjugated heterocyclic compounds containing halogen atoms and water-solubilizing acid groups
US3635718A (en) 1967-03-06 1972-01-18 Ciba Geigy Ag Process for hardening water-soluble polymers
JPS60146798U (ja) * 1984-03-09 1985-09-28 凸版印刷株式会社 転写シ−ル体
JPS6387792A (ja) * 1986-09-30 1988-04-19 日本写真印刷株式会社 印刷配線板用転写材と該転写材を用いた印刷配線板およびその製造法
JPH06264250A (ja) 1993-03-10 1994-09-20 Toray Ind Inc 表面が金属化された炭素繊維強化プラスチック成形体の製造方法および表面が金属化された炭素繊維強化プラスチック成形体
JP2002144701A (ja) 2000-11-08 2002-05-22 Mitsubishi Paper Mills Ltd インクジェット用記録材料
JP2004281658A (ja) * 2003-03-14 2004-10-07 Seiko Epson Corp 導電膜パターンおよびその形成方法、配線基板および電子機器
JP2005001117A (ja) 2003-06-09 2005-01-06 Mitsubishi Paper Mills Ltd インクジェット記録材料
JP2007313847A (ja) 2006-05-29 2007-12-06 Mitsubishi Paper Mills Ltd インクジェット記録用インク受容層転写シート及びインクジェット記録媒体の製造方法
JP2008004375A (ja) 2006-06-22 2008-01-10 Mitsubishi Paper Mills Ltd 導電性発現方法および導電性部材
JP2008218459A (ja) * 2007-02-28 2008-09-18 Toyota Motor Corp 回路基板およびその製造方法
JP2008235224A (ja) 2007-03-23 2008-10-02 Mitsubishi Paper Mills Ltd 導電性発現方法及び導電性部材
JP2010135692A (ja) 2008-12-08 2010-06-17 Lintec Corp 転写用配線回路板及び配線回路部材
JP2011093296A (ja) 2009-09-29 2011-05-12 Dainippon Printing Co Ltd 成型加工用金属蒸着転写シート及びそれを使用した加飾方法
JP2014192275A (ja) 2013-03-27 2014-10-06 Mitsubishi Paper Mills Ltd 導電性パターン転写用基材および導電性パターン転写方法
JP2015196841A (ja) * 2014-03-31 2015-11-09 富士フイルム株式会社 導電膜の製造方法及び導電膜形成用組成物
JP2016175305A (ja) 2015-03-20 2016-10-06 株式会社箔一 金属箔装飾方法、及び金属箔装飾体
JP2017087483A (ja) 2015-11-05 2017-05-25 株式会社ミマキエンジニアリング メタリック加飾方法およびメタリック加飾装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314006A (ja) * 2001-04-09 2002-10-25 Kyushu Nitto Denko Kk 包装粘性魂状物及び粘性魂状物の転写方法

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2732316A (en) 1952-12-03 1956-01-24 Hardening of gelatin
US2983611A (en) 1957-09-16 1961-05-09 Eastman Kodak Co Gelatin compositions containing hardeners
US3100704A (en) 1958-07-24 1963-08-13 Gen Aniline & Film Corp Photographic materials containing carbodhmides
US3103437A (en) 1959-04-10 1963-09-10 Hardening
US3017280A (en) 1959-04-20 1962-01-16 Eastman Kodak Co Hardening of coatings of polymers containing carboxyl groups
US3091537A (en) 1959-05-04 1963-05-28 Eastman Kodak Co Hardening of photographic layers
US3288775A (en) 1961-04-07 1966-11-29 Ciba Ltd Method of hardening gelatin by reacting with conjugated heterocyclic compounds containing halogen atoms and water-solubilizing acid groups
US3635718A (en) 1967-03-06 1972-01-18 Ciba Geigy Ag Process for hardening water-soluble polymers
JPS60146798U (ja) * 1984-03-09 1985-09-28 凸版印刷株式会社 転写シ−ル体
JPS6387792A (ja) * 1986-09-30 1988-04-19 日本写真印刷株式会社 印刷配線板用転写材と該転写材を用いた印刷配線板およびその製造法
JPH06264250A (ja) 1993-03-10 1994-09-20 Toray Ind Inc 表面が金属化された炭素繊維強化プラスチック成形体の製造方法および表面が金属化された炭素繊維強化プラスチック成形体
JP2002144701A (ja) 2000-11-08 2002-05-22 Mitsubishi Paper Mills Ltd インクジェット用記録材料
JP2004281658A (ja) * 2003-03-14 2004-10-07 Seiko Epson Corp 導電膜パターンおよびその形成方法、配線基板および電子機器
JP2005001117A (ja) 2003-06-09 2005-01-06 Mitsubishi Paper Mills Ltd インクジェット記録材料
JP2007313847A (ja) 2006-05-29 2007-12-06 Mitsubishi Paper Mills Ltd インクジェット記録用インク受容層転写シート及びインクジェット記録媒体の製造方法
JP2008004375A (ja) 2006-06-22 2008-01-10 Mitsubishi Paper Mills Ltd 導電性発現方法および導電性部材
JP2008218459A (ja) * 2007-02-28 2008-09-18 Toyota Motor Corp 回路基板およびその製造方法
JP2008235224A (ja) 2007-03-23 2008-10-02 Mitsubishi Paper Mills Ltd 導電性発現方法及び導電性部材
JP2010135692A (ja) 2008-12-08 2010-06-17 Lintec Corp 転写用配線回路板及び配線回路部材
JP2011093296A (ja) 2009-09-29 2011-05-12 Dainippon Printing Co Ltd 成型加工用金属蒸着転写シート及びそれを使用した加飾方法
JP2014192275A (ja) 2013-03-27 2014-10-06 Mitsubishi Paper Mills Ltd 導電性パターン転写用基材および導電性パターン転写方法
JP2015196841A (ja) * 2014-03-31 2015-11-09 富士フイルム株式会社 導電膜の製造方法及び導電膜形成用組成物
JP2016175305A (ja) 2015-03-20 2016-10-06 株式会社箔一 金属箔装飾方法、及び金属箔装飾体
JP2017087483A (ja) 2015-11-05 2017-05-25 株式会社ミマキエンジニアリング メタリック加飾方法およびメタリック加飾装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Electroless Plating", 1994, THE NIKKAN KOGYO SHIMBUN, LTD.
See also references of EP3815926A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115464996A (zh) * 2022-09-15 2022-12-13 武汉华工图像技术开发有限公司 一种具有表面触感的imr膜片、成型件及制备方法
CN115464996B (zh) * 2022-09-15 2024-05-17 武汉华工图像技术开发有限公司 一种具有表面触感的imr膜片、成型件及制备方法
CN115504678A (zh) * 2022-11-03 2022-12-23 业泓科技(成都)有限公司 触控识别模组的减薄方法
CN115504678B (zh) * 2022-11-03 2023-09-29 业泓科技(成都)有限公司 触控识别模组的减薄方法

Also Published As

Publication number Publication date
EP3815926A4 (en) 2022-03-09
EP3815926A1 (en) 2021-05-05
TW202218891A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
JP6088311B2 (ja) 導電性パターン転写用基材および導電性パターン転写方法
JP5118824B2 (ja) 導電性発現方法
JP5265392B2 (ja) 導電性パターン形成用基材および導電性部材
JP5096771B2 (ja) 導電性発現方法
US20210219433A1 (en) Pattern-transferred object manufacturing method
JP5934576B2 (ja) 導電性部材の製造方法
WO2019225286A1 (ja) パターン転写物の製造方法
JP6068077B2 (ja) 導電性パターン形成用基材および導電性部材
JP2012089718A (ja) 導電性材料の製造方法および導電性材料
JP3993941B2 (ja) インクジェット記録材料
JP7232595B2 (ja) 導電性材料の製造方法
JP7232594B2 (ja) 導電性部材の製造方法
JP2020043275A (ja) 導電性部材の製造方法
JP7144229B2 (ja) 金属調パターン転写物の製造方法
JP2020024874A (ja) 導電性材料の製造方法
JP2020029020A (ja) パターン転写物の製造方法
JP7077261B2 (ja) 転写用基材
JP2020043276A (ja) 導電性部材の製造方法
JP2020009805A (ja) 導電性材料の製造方法
JP2020004902A (ja) 導電性部材の製造方法
JP2019206164A (ja) パターン転写物の製造方法
JP2020009705A (ja) 導電性材料の製造方法
JP2013201311A (ja) 導電性パターン形成用基材および導電性部材
JP2021016965A (ja) 転写用基材
JP2008153231A (ja) 導電性被膜複合体及び導電性被膜の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035166

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019808407

Country of ref document: EP

Effective date: 20210111