WO2019209087A1 - 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2019209087A1
WO2019209087A1 PCT/KR2019/005146 KR2019005146W WO2019209087A1 WO 2019209087 A1 WO2019209087 A1 WO 2019209087A1 KR 2019005146 W KR2019005146 W KR 2019005146W WO 2019209087 A1 WO2019209087 A1 WO 2019209087A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
coating layer
lithium secondary
secondary battery
separator
Prior art date
Application number
PCT/KR2019/005146
Other languages
English (en)
French (fr)
Inventor
신원경
안경호
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980024446.9A priority Critical patent/CN111937214B/zh
Priority to US17/044,370 priority patent/US11967732B2/en
Priority to JP2020551844A priority patent/JP7101801B2/ja
Priority to EP19793474.8A priority patent/EP3761431B1/en
Publication of WO2019209087A1 publication Critical patent/WO2019209087A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a lithium secondary battery and a lithium secondary battery including the same, and more particularly, to a separator for a lithium secondary battery including a gel polymer electrolyte and a lithium secondary battery using the same.
  • Such electric vehicles (EVs) and hybrid electric vehicles (HEVs) use nickel-metal hydride (Ni-MH) secondary batteries or lithium secondary batteries with high energy density, high discharge voltage, and output stability as power sources.
  • Ni-MH nickel-metal hydride
  • a lithium secondary battery is manufactured using an anode and a cathode, a separator interposed therebetween, and an electrolyte that is a transfer medium of lithium ions.
  • a conventional secondary battery is a liquid electrolyte, in particular, Ion conductive organic liquid electrolytes in which salts are dissolved in non-aqueous organic solvents have been mainly used.
  • the use of the electrolyte in the liquid state is not only highly likely to deteriorate the electrode material and volatilize the organic solvent, but also has problems in safety such as combustion due to an increase in the ambient temperature and the temperature of the battery itself.
  • the lithium secondary battery has a problem in that gas is generated inside the battery due to decomposition of the carbonate organic solvent and / or side reaction between the organic solvent and the electrode during charging and discharging, thereby expanding the battery thickness. Therefore, the performance and safety degradation of the battery is necessarily caused.
  • the separator provides a path through which lithium ions move to operate an inactive material or a battery that does not participate in an electrochemical reaction, and is a material that separates physical contact between the positive electrode and the negative electrode, and has a great influence on the performance and stability of the battery. Mitch is one of the key materials.
  • the processability is excellent to be applied to various battery types, while maintaining durability over a certain level, the adhesion between the gel polymer electrolyte is improved, the separator and lithium which can improve the safety and life characteristics of the battery There is a need for development of a secondary battery.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2015-0131513
  • the present invention provides a lithium secondary battery separator and a lithium secondary battery including the same, which increases the adhesion to the gel polymer electrolyte and improves the safety and lifespan characteristics of the battery, and may also improve the processability by having a multilayer structure.
  • the present invention the substrate; A first coating layer comprising a first organic binder capable of bonding with the gel polymer electrolyte through an epoxy ring-opening reaction; And a second coating layer including a second organic binder, wherein the first organic binder includes a functional group capable of ring-opening reaction with an epoxy group or a combination thereof, and the gel polymer electrolyte is capable of ring-opening reaction with an epoxy group, an epoxy group, and the like.
  • a separator for a lithium secondary battery in which an oligomer including a functional group or a combination thereof is polymerized and formed.
  • the functional group capable of ring-opening reaction with the epoxy group is at least one functional group selected from the group consisting of hydroxyl group (OH), carboxylic acid group (COOH), amine group, isocyanate group, mercaptan group and imide group.
  • the first organic binder is an alkylene group of 1 to 5 carbon atoms substituted with at least one halogen element, an alkylene oxide group of 1 to 5 carbon atoms, alkylene oxide of 1 to 5 carbon atoms substituted with at least one halogen element A group including at least one selected from the group consisting of a group, an imide group, and a celluloid, and may be substituted with a functional group capable of ring-opening reaction with an epoxy group, an epoxy group, or a combination thereof.
  • the oligomer at least one unit selected from the group consisting of a unit containing an alkylene oxide group and a unit containing an amine group,
  • An epoxy group and a functional group capable of ring-opening reaction with epoxy or a combination thereof may be substituted in the main chain formed of the unit.
  • At least one coating layer selected from the first coating layer and the second coating layer is Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf And, and may include an inorganic oxide containing at least one element selected from the group consisting of Sr.
  • the first coating layer is formed on the substrate, the second coating layer may be formed on the first coating layer, as another embodiment, the second coating layer is It may be formed on a substrate, the first coating layer may be formed on the second coating layer.
  • an electrode assembly comprising at least one unit cell including at least one anode, at least one cathode, and at least one first separator interposed between the anode and the cathode; And a gel polymer electrolyte formed by polymerizing an oligomer including an epoxy group, an epoxy group, and a functional group capable of ring-opening reaction or a combination thereof, wherein the first separator includes a lithium secondary battery that is a separator for a lithium secondary battery. to provide.
  • the separator for a lithium secondary battery according to the present invention includes a first coating layer including a first organic binder that can be combined with a gel polymer electrolyte through an epoxy ring-opening reaction, thereby improving adhesion to the gel polymer electrolyte, thereby preventing battery internal short circuits. It can suppress and improve safety, and can improve the life characteristic of a lithium secondary battery.
  • FIG. 1 is a cross-sectional view of the separator according to Examples 1 and 2 of the present invention.
  • Figure 2 shows a cross section of the separator according to Examples 3 and 4 of the present invention.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the weight average molecular weight (Mw) in the present invention can be measured using gel permeation chromatography (Gel Permeation Chromatography (GPC)).
  • GPC Gel Permeation Chromatography
  • the GPC measurement system alliance 4 instrument is stabilized. Once the instrument is stabilized, the standard sample and the sample sample are injected into the instrument to obtain a chromatogram, and then the molecular weight can be calculated according to the analytical method (System: Alliance 4, Column: Ultrahydrogel linear ⁇ 2, eluent: 0.1M NaNO 3 ( pH 7.0 phosphate buffer, flow rate: 0.1 mL / min, temp: 40 ° C., injection: 100 ⁇ l).
  • the separator for a lithium secondary battery comprises (1) a base material, (2) a first coating layer including a first organic binder capable of bonding with a gel polymer electrolyte through an epoxy ring-opening reaction, and (3) a second organic binder.
  • a first coating layer including a first organic binder capable of bonding with a gel polymer electrolyte through an epoxy ring-opening reaction
  • a second organic binder Including a second coating layer, wherein the first organic binder comprises an epoxy group and a ring-opening reaction functional group or a combination thereof
  • the gel polymer electrolyte includes an epoxy group, a functional group capable of ring-opening reaction with epoxy group or a combination thereof
  • the oligomer to be polymerized is formed.
  • the substrate may be a porous substrate, and generally, the porous substrate may be used without particular limitation as long as the porous substrate can be used as a separator material of an electrochemical device.
  • a porous substrate for example, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenyl Non-woven fabric or porous polymer film formed of at least one of the polymer resin, such as rensulphide, polyethylene naphthalene, or a laminate of two or more thereof, but is not particularly limited thereto.
  • the first coating layer includes a first organic binder that can be bonded to the gel polymer electrolyte through an epoxy ring-opening reaction.
  • the first coating layer may optionally further include an inorganic oxide.
  • the first organic binder includes an epoxy group and a functional group capable of ring-opening reaction or a combination thereof
  • the gel polymer electrolyte is formed by polymerizing an oligomer including an epoxy group, an epoxy group and a functional group capable of ring-opening reaction or a combination thereof.
  • the first coating layer may optionally further include an inorganic oxide.
  • the functional group capable of ring-opening reaction with the epoxy group may be at least one functional group selected from the group consisting of hydroxyl group (OH), carboxylic acid group (COOH), amine group, isocyanate group, mercaptan group and imide group.
  • the amine group may be represented by -NR 1 R 2 , wherein R 1 and R 2 are each independently hydrogen (H), a substituted or unsubstituted chain alkyl group having 1 to 10 carbon atoms, and 1 to C carbon atoms. It may be at least one selected from the group consisting of 10 substituted or unsubstituted cyclic alkyl group.
  • the imide group may be represented by -R 3 -CO-N (R 4 ) -CO-R 5 , wherein R 3 to R 5 are each independently hydrogen (H) and substituted with 1 to 10 carbon atoms. Or at least one selected from the group consisting of an unsubstituted chain alkyl group and a substituted or unsubstituted cyclic alkyl group having 1 to 10 carbon atoms.
  • the first organic binder is a general organic binder well known in the art, for example, PVdF (Polylidene fluoride) (PVdF), PVdF-co-HFP (copolymer of Poly (Vinylidene fluoride) and hexafluoropropylene)) Binders substituted with an epoxy group and / or an epoxy group and a functional group capable of ring opening reaction may be used.
  • PVdF Polylidene fluoride
  • PVdF-co-HFP copolymer of Poly (Vinylidene fluoride) and hexafluoropropylene
  • the first organic binder in addition to the functional group, an alkylene group having 1 to 5 carbon atoms, an alkylene oxide group having 1 to 5 carbon atoms, at least one substituted with at least one halogen element (F, Cl, Br, I), It may further comprise a unit comprising at least one selected from the group consisting of celluloid.
  • an epoxy group, an epoxy group, and a functional group capable of ring-opening reaction or a combination thereof may be substituted in the main chain formed of the unit.
  • hydrogen (H) located in the main chain may be substituted with an epoxy group, an epoxy group, a functional group capable of ring-opening reaction, or a combination thereof, and the degree of substitution may be calculated in mol%.
  • the number or position of the functional groups to be attached is not specified.
  • the unit including the alkylene group substituted with at least one halogen element may be represented by at least one selected from units represented by the following formula (X-1) or (X-2).
  • m1 is an integer of 1 to 10,000, preferably, an integer of 1 to 7,500, more preferably an integer of 1 to 5,000.
  • m2 and m3 are each independently an integer of 1 to 10,000, preferably an integer of 1 to 7,500, more preferably an integer of 1 to 5,000.
  • a unit including an alkylene oxide group may be represented as in the following Chemical Formula X-3.
  • m4 is an integer of 1 to 10,000, preferably an integer of 1 to 7,500, more preferably an integer of 1 to 5,000.
  • the unit including the alkylene oxide group substituted with the halogen element may be represented as in the following formula (X-4).
  • m5 is an integer of 1 to 10,000, preferably an integer of 1 to 7,500, more preferably an integer of 1 to 5,000.
  • the unit including the imide group may be represented as in the following Chemical Formula X-5.
  • m6 is an integer of 1 to 10,000, preferably, an integer of 1 to 7,500, more preferably an integer of 1 to 5,000.
  • the unit including the celluloid may be represented by the following Chemical Formula X-6.
  • m7 is an integer of 1 to 10,000, preferably, an integer of 1 to 7,500, and more preferably an integer of 1 to 5,000.
  • the first organic binder may be included in an amount of 100% by weight based on the total weight of the first coating layer to form a coating layer alone, and in the case of further comprising an inorganic oxide, the first organic binder may be based on the total weight of the first coating layer. It may be included in the weight% to 80% by weight, specifically, may be included in 10% by weight to 60% by weight, more specifically may be included in 10% by weight to 50% by weight.
  • the inorganic oxide is a compound having good heat resistance and durability, and when coated on the separator, can improve the mechanical strength of the separator, as well as improve the heat resistance.
  • the inorganic oxide may include at least one element selected from the group consisting of Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, and Sr. It may include, and preferably, may include at least one or more elements selected from the group consisting of Si, Al, Ti and Zr.
  • the inorganic oxide is SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO, Y 2 O 3 , Pb (Zr, Ti) O 3 (PZT), Pb (1-a1) La a1 Zr (1-b1) Ti b1 O 3 (0 ⁇ a1 ⁇ 1, 0 ⁇ b1 ⁇ 1, PLZT), PB (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), BaTiO 3 , HfO 2 (hafnia), SrTiO 3 , and the like, and the inorganic oxides listed above generally do not change their physical properties even at high temperatures of 200 ° C. or higher.
  • the inorganic oxide may include at least one selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2, and ZrO 2 .
  • the inorganic oxide may be included in an amount of 20% to 90% by weight, specifically 40% to 90% by weight, and more specifically, 50% to 90% by weight based on the total weight of the first coating layer. May be included as a%. When the inorganic oxide is included in the above range, the inorganic oxide may be prevented from being detached from the first coating layer, and the durability of the separator may be improved.
  • the second coating layer may include a second organic binder and optionally further include an inorganic oxide.
  • the second organic binder is used to fix the inorganic oxide when improving the processability and optionally further including an inorganic oxide.
  • the second organic binder is a copolymer of general organic binders well known in the art, for example, polyvinyllidene fluoride (PVdF) and polyvinyllidene fluoride (PVdF-co-HFP) and hexafluoropropylene ) Can be used.
  • 100% by weight based on the total weight of the second coating layer of the second coating layer may be formed alone to form a coating layer, and further comprises an inorganic oxide, the second 10 wt% to 80 wt% based on the total weight of the coating layer, specifically 10 wt% to 70 wt%, and more specifically 10 wt% to 60 wt%.
  • the inorganic oxide is a compound having good heat resistance and durability, and when coated on the separator, can improve the mechanical strength of the separator, as well as improve the heat resistance.
  • the inorganic oxide may include at least one element selected from the group consisting of Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, and Sr. It may include, and preferably, may include at least one or more elements selected from the group consisting of Si, Al, Ti and Zr.
  • the inorganic oxide is SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , MgO, CaO, ZnO, Y 2 O 3 , Pb (Zr, Ti) O 3 (PZT), Pb (1-a1) La a1 Zr (1-b1) Ti b1 O 3 (0 ⁇ a1 ⁇ 1, 0 ⁇ b1 ⁇ 1, PLZT), PB (Mg 3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), BaTiO 3 , HfO 2 (hafnia), SrTiO 3 , and the like, and the inorganic oxides listed above generally do not change their physical properties even at high temperatures of 200 ° C.
  • the inorganic oxide may include at least one selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2, and ZrO 2 .
  • the inorganic oxide may be included in 20 wt% to 90 wt% based on the total weight of the second coating layer, specifically 40 wt% to 90 wt%, more specifically, 50 wt% to 90 wt% May be included as a%.
  • the inorganic oxide may be prevented from being detached from the second coating layer, and the durability of the separator may be improved.
  • the first coating layer is formed on the substrate, and the second coating layer is formed on the first coating layer, or (2) the second coating layer is formed on the substrate.
  • the first coating layer may be formed in a structure formed on the second coating layer.
  • a second coating layer containing an inorganic oxide having strong durability and heat resistance is formed on the first coating layer, and thus the separator formed as described above is provided.
  • a lamination-stack process or lamination-folding process using the electrode assembly may also be easily performed.
  • the unit Cells may be prepared by stacking / welding cells through a separator to form an electrode assembly, inserting the electrode assembly into a battery case, and then injecting an electrolyte.
  • unit cells manufactured through the lamination process are folded by using a separator sheet having a long length to form an electrode assembly, the electrode assembly is inserted into a battery case, and then an electrolyte. It can be prepared by injecting.
  • the coating layer is formed of the inorganic oxide and the second organic binder and voids exist in the coating layer, the oligomer included in the electrolyte composition penetrates within the gap between the gel polymer electrolyte and the first coating layer, thereby polymerizing the reaction. Since it can proceed, the bonding force between the gel polymer electrolyte and the separator is maintained above a certain level.
  • the laminate structure is not limited to one of the two laminate structures, and may be set differently according to the purpose of use and the process for manufacturing the separator for a lithium secondary battery.
  • the total thickness of the sum of the thickness of the first coating layer and the second coating layer may be 0.2 ⁇ m to 20 ⁇ m. Specifically, the total thickness may be 0.5 ⁇ m to 17 ⁇ m, and more specifically, the total thickness may be 1 ⁇ m to 15 ⁇ m. When the total thickness is within the above range, the mechanical performance of the separator and the bonding force with the gel polymer electrolyte may be improved without reducing the mobility of lithium ions.
  • a lithium secondary battery includes: (1) an electrode assembly including at least one unit cell including at least one or more positive electrodes, at least one or more negative electrodes, and at least one first separator interposed between the positive and negative electrodes; And (2) a gel polymer electrolyte formed by polymerizing an oligomer including an epoxy group, an epoxy group and a functional group capable of ring-opening reaction or a combination thereof,
  • the first separator may be a separator according to the present invention.
  • the separation membrane according to the present invention is the same as the above description, and thus a detailed description thereof will be omitted.
  • each configuration of the unit cell included in the electrode assembly will be described.
  • At least one positive electrode included in the unit cell may be prepared by coating a positive electrode mixture slurry including a positive electrode active material, an electrode binder, an electrode conductive material, and a solvent on a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (Eg, LiNiO 2, etc.), lithium-nickel-manganese oxides (eg, LiNi 1-Y1 Mn Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), LiMn 2-z1 Ni z1 O 4 ( Here, 0 ⁇ Z1 ⁇ 2) and the like, lithium-nickel-cobalt-based oxide (for example, LiNi 1-Y2 Co Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1) and the like), lithium-mangane
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , and lithium nickel manganese cobalt oxides may be improved in capacity and stability of the battery.
  • the lithium composite metal oxide is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , considering the remarkable effect of the improvement effect according to the type and content ratio of the member forming the lithium composite metal oxide.
  • the cathode active material may be included in an amount of 60 wt% to 98 wt%, preferably 70 wt% to 98 wt%, and more preferably 80 wt% to 98 wt%, based on the total weight of the solid except the solvent in the cathode mixture slurry. have.
  • the electrode binder is a component that assists in bonding the positive electrode active material and the electrode conductive material to the current collector.
  • polyvinylidene fluoride polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene (PE) , Polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the binder for the electrode is 1% by weight to 20% by weight, preferably 1% by weight to 15% by weight, more preferably 1% by weight to 10% by weight, based on the total weight of the solids excluding the solvent in the positive electrode mixture slurry. It may be included as.
  • the electrode conductive material is a component for further improving the conductivity of the positive electrode active material.
  • the electrode conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, for example, graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the electrode conductive material may be included in 1% by weight to 20% by weight, preferably 1% by weight to 15% by weight, more preferably 1% by weight to 10% by weight, based on the total weight of the solids excluding the solvent in the positive electrode mixture slurry. have.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material, and optionally a positive electrode binder and a positive electrode conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the positive electrode active material and, optionally, the solid content including the positive electrode binder and the positive electrode conductive material is 60% to 95% by weight, preferably 70% to 95% by weight, more preferably 70% by weight. To 90% by weight.
  • the negative electrode may be prepared by, for example, coating a negative electrode mixture slurry including a negative electrode active material, a negative electrode binder, a negative electrode conductive material, and a solvent on a negative electrode current collector.
  • the negative electrode may use the metal current collector itself as an electrode.
  • the negative electrode current collector generally has a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material natural graphite, artificial graphite, carbonaceous material; Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me) (MeOx); And one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • Metals (Me) that are lithium-containing titanium composite oxide (LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
  • Oxides of the metals (Me) (MeOx) Oxides of the metals (Me) (MeOx)
  • one or two or more negative electrode active materials selected from the group consisting of a complex of the metals (Me) and carbon.
  • the negative electrode active material may be included in an amount of 60 wt% to 98 wt%, preferably 70 wt% to 98 wt%, and more preferably 80 wt% to 98 wt%, based on the total weight of the solid except the solvent in the negative electrode mixture slurry. have.
  • the gel polymer electrolyte may be disposed between the positive electrode, the negative electrode, and the separator, and the gel polymer electrolyte is formed by polymerizing an oligomer, and includes an epoxy group, an epoxy group, a functional group capable of ring-opening reaction, or a combination thereof.
  • the oligomer not only may be thermally polymerized through an epoxy ring-opening reaction between oligomers, but also may be bonded to the first organic binder included in the first coating layer through an epoxy ring-opening reaction.
  • the oligomer includes an epoxy group, an epoxy group, a functional group capable of ring-opening reaction, or a combination thereof.
  • the oligomer not only may be thermally polymerized through an epoxy ring-opening reaction between oligomers, but also may be coupled to the first organic binder included in the first coating layer through an epoxy ring-opening reaction.
  • the polymerization initiator in the case of the oligomer which is polymerized through the existing radical polymerization reaction, the polymerization initiator must be used essentially to be bonded through the polymerization reaction.
  • azo and peroxide compounds which are used as radical polymerization initiators, have a problem in that gas is generated inside the battery during the curing reaction, thereby degrading safety of the battery.
  • the oligomer used in the gel polymer electrolyte of the present invention is an oligomer to be polymerized through an epoxy ring-opening reaction, it is possible to perform the polymerization reaction without using a polymerization initiator or the like used when polymerizing the existing oligomer. Therefore, since gas is not generated inside the battery even during curing through the polymerization reaction, swelling of the battery and electrode short circuit induced therefrom may be prevented in advance, thereby improving safety of the battery.
  • the oligomer includes at least one or more units selected from the group consisting of a unit containing an alkylene oxide group and a unit containing an amine group, a functional group capable of ring-opening reaction with an epoxy group and epoxy in the main chain consisting of the unit or these May be substituted.
  • the oligomer may include at least one compound selected from the group consisting of compounds represented by Formula 1 and Formula 2.
  • N1 is an integer of 2 to 10,000, preferably an integer of 2 to 7,500, more preferably an integer of 2 to 5,000.
  • R 6 to R 11 are substituted or unsubstituted alkylene groups having 1 to 5 carbon atoms
  • R 12 to R 16 are each independently hydrogen (H) or substituted or unsubstituted carbon atoms.
  • At least one selected from the group consisting of a substituted alkyl group, -NR 17 R 18 and -R 19 NR 20 R 21 , R 19 is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms
  • R 17 , R 18 , R 20 , R 21 are each independently hydrogen (H), a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms
  • -R 22 NH 2 wherein R 22 is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms
  • N2 is an integer of 1 to 10,000, preferably 1 to 7,500, and more preferably 1 to 5,000.
  • the compound represented by the formula (1) and the compound represented by the formula (2) is (30 ⁇ 100): (0 ⁇ 70) It can be mixed in a weight ratio of, preferably (40 to 95): (5 to 60) weight ratio.
  • the mechanical properties of the polymer formed of the oligomer may be improved to prevent leakage of the gel polymer electrolyte, and adhesion to the separator may be improved.
  • the compound represented by Formula 2 may include at least one compound selected from the group consisting of compounds represented by Formulas 2-1 to 2-3.
  • n2 is an integer of 1 to 10,000.
  • n2 is an integer of 1 to 10,000
  • n2 is an integer of 1 to 10,000.
  • N2 is preferably an integer of 1 to 10,000, more preferably, an integer of 1 to 7,500.
  • the weight average molecular weight (Mw) of the oligomer represented by Formula 1 or Formula 2 may be about 100 to 1,000,000. It may be preferably from 100 to 900,000, more preferably from 300 to 800,000.
  • Mw weight average molecular weight
  • the gel polymer electrolyte formed by curing is stably formed, thereby improving mechanical performance in the battery, thereby suppressing heat generation and ignition that may occur due to external impact of the battery. It is also possible to control explosive phenomena which may occur due to heat generation and fire.
  • the leakage and volatilization of the electrolyte can be suppressed, so that the high temperature safety of the lithium secondary battery can be greatly improved.
  • the gel polymer electrolyte is preferably formed by injecting and curing the gel polymer electrolyte composition containing the oligomer in a battery case.
  • the secondary battery according to the present invention includes (a) a unit cell including at least one positive electrode, at least one negative electrode, and at least one first separator interposed between the positive electrode and the negative electrode. Inserting an electrode assembly including at least one or more into the battery case and (b) injecting the gel polymer electrolyte composition according to the present invention into the battery case and then polymerized to form a gel polymer electrolyte. .
  • the gel polymer electrolyte composition may include, in addition to the oligomer, a lithium salt and a non-aqueous organic solvent.
  • the lithium salt may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries.
  • the cationic include Li +, the anions F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3 ) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (F 2 SO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -
  • the said lithium salt can also be used 1 type or in mixture of 2 or more types as needed.
  • the lithium salt may contain a concentration of 0.8 M to 2M, specifically 0.8M to 1.5M of the gel polymer electrolyte composition.
  • the present invention is not necessarily limited to the above concentration range, and may be included at a high concentration of 2 M or more according to other components in the gel polymer electrolyte composition.
  • the non-aqueous organic solvent may be used without limitation those conventionally used in the electrolyte for lithium secondary batteries.
  • an ether compound, an ester compound, an amide compound, a linear carbonate compound, or a cyclic carbonate compound etc. can be used individually or in mixture of 2 or more types, respectively.
  • it may include a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC) are any one selected from the group consisting of or mixtures of two or more thereof.
  • linear carbonate compound examples include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate Any one selected from, or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • cyclic carbonates such as ethylene carbonate and propylene carbonate, which are known to dissociate lithium salts in electrolytes due to high dielectric constants as high-viscosity organic solvents among the carbonate-based organic solvents, may be used.
  • dimethyl carbonate and diethyl When a low viscosity, low dielectric constant linear carbonate such as carbonate is mixed and used in an appropriate ratio, an electrolyte having high electrical conductivity can be prepared.
  • the ether compound in the non-aqueous organic solvent may be any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof. Can be used, but is not limited thereto.
  • ester compounds in the non-aqueous organic solvent include linear esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate; And cyclic esters such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and ⁇ -caprolactone, or a mixture of two or more thereof may be used.
  • the present invention is not limited thereto.
  • the electrode assembly may include two or more unit cells, and further include a second separator interposed between the unit cells.
  • the unit cells used are the same as described above, and in the case of the second separator, polypropylene, polyethylene, or the like may be used as a commonly used polyolefin separator, or an olefin substrate.
  • a composite separator in which an organic or inorganic composite layer is formed may be used, or the separator according to the present invention may be used.
  • the electrode assembly may be a lamination-folding type or a lamination-stack type electrode assembly.
  • Lithium secondary batteries may be classified according to the structure of the cathode / separation membrane / cathode structure unit cell included in the electrode assembly, and typically, a structure in which long sheet-shaped anodes and cathodes are wound with a separator interposed therebetween.
  • Jelly-roll (winding type) unit cell a stacked (stacked) unit cell in which a plurality of positive and negative electrodes cut in units of a predetermined size are sequentially stacked with a separator interposed therebetween, the unit cell is a monocell and a stack-folding electrode assembly wound with a separator in the form of a -cell or a bi-cell film.
  • the second coating layer included in the first separator includes an inorganic oxide having high heat resistance and mechanical durability, and thus lamination-folding or lamination.
  • the substrate used for the first and second separators may be damaged by high temperature and high pressure conditions during the process, thereby preventing a short circuit of the battery, and thus the processability may be improved. Is improved.
  • polyethylene and 20 g of polyvinyl alcohol were mixed with a pore-forming agent to form a mixture.
  • the mixture was dissolved in dimethylformamide as a polar solvent in a ratio of about 1:10 parts by weight to form a polymer solution.
  • the polymer solution was cast on a glass plate, then placed in an oven at about 100 ° C., and dried for about 30 minutes to obtain a polymer film. Thereafter, polyvinyl alcohol (PVA) was extracted by immersing the polymer film in water to prepare a porous substrate.
  • PVA polyvinyl alcohol
  • PVdF Poly (Vinylidene fluoride) (weight average molecular weight: 50,000) 3g substituted with 0.5 mol% of an epoxy group as the first organic binder, and aluminum oxide (Al 2 O 3 ) 27g as an inorganic oxide was added to 72.1 ml of N-methyl-2-pyrrolidone (hereinafter, NMP) as a solvent, followed by mixing to prepare a first coating layer composition. Thereafter, the first coating layer composition was coated on the porous substrate, and then dried to form a first coating layer having a thickness of 5 ⁇ m.
  • NMP N-methyl-2-pyrrolidone
  • PVdF weight average molecular weight: 50,000
  • Al 2 O 3 aluminum oxide
  • Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 ) as a positive electrode active material, 3% by weight carbon black as a conductive material, and 3% by weight PVdF as a binder were added to NMP as a solvent to prepare a positive electrode mixture slurry.
  • NMP as a solvent
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, and dried, followed by roll press to prepare a positive electrode.
  • a negative electrode mixture slurry was prepared by adding carbon powder as a negative electrode active material, PVdF as a binder, and carbon black as a conductive material at 96 wt%, 3 wt%, and 1 wt%, respectively, to NMP as a solvent.
  • the negative electrode mixture slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
  • Cu copper
  • Ethylene carbonate (EC): Ethyl methyl carbonate (EMC) compound represented by the formula (1) in 94.99 g of an organic solvent in which 1M LiPF 6 is dissolved in 3: 7 (volume ratio) (weight average molecular weight (Mw): 500) and formula (2) 5 g of the mixture of the compound represented by -3 in a 7: 3 weight ratio was added, stirred, and completely dissolved to prepare a composition for a gel polymer electrolyte.
  • the unit cell (electrode assembly) obtained by sequentially stacking the anode / separator / cathode was stored in a battery case, and the gel polymer electrolyte composition was injected and then stored at room temperature for 2 days. Then, the lithium secondary battery was manufactured by heating at 60 ° C. for 24 hours (thermal polymerization reaction step).
  • Example 1 the air of PVdF-co-HFP (Polylidene fluoride) and hexafluoropropylene substituted with 0.5 mol% of epoxy group instead of PVdF (weight average molecular weight: 50,000) with 0.5 mol% of epoxy group as the first organic binder Copolymer, hereinafter referred to as PVdF-co-HFP) (weight average molecular weight: 100,000), except that PVdF-co-HFP without an epoxy group was used instead of PVdF without an epoxy group as a second organic binder.
  • a separator for a lithium secondary battery and a lithium secondary battery were prepared.
  • Example 1 the second coating layer composition is first coated on a substrate and then dried to form a second coating layer, and then the first coating layer composition is dried and then dried to form a first coating layer.
  • a separator for a lithium secondary battery and a lithium secondary battery were prepared.
  • Example 2 except that the first coating layer composition was first applied on a substrate and then dried to form a second coating layer, and then the first coating layer composition was applied and then dried to form a first coating layer.
  • a separator for a lithium secondary battery and a lithium secondary battery were manufactured in the same manner as in Example 2.
  • Example 1 a separator for a lithium secondary battery and a lithium secondary battery were manufactured in the same manner except that the substrate on which the first and second coating layers were not formed was used as the separator.
  • Example 1 a separator for a lithium ion battery and a lithium secondary battery were manufactured in the same manner except that the first coating layer was not formed and the second coating layer was immediately formed on the substrate.
  • the lithium secondary batteries of Examples 1 to 4 had higher adhesion between the gel polymer electrolyte and the separator than the lithium secondary batteries of Comparative Examples 1 and 2, resulting in improved interfacial properties and lower initial resistance. can confirm.
  • the gel polymer electrolyte was stably formed, and the adhesion with the separator was excellent, and the distribution of the gel polymer electrolyte was improved, thereby causing further degradation reaction of the gel polymer electrolyte. It can be confirmed that the cycle characteristics can be improved at high temperature.
  • X represents a case where no ignition occurs during storage at 150 °C
  • O represents a case where ignition occurred during storage at 150 °C.
  • the lithium secondary batteries of Examples 1 to 4 have excellent interfacial stability between the electrolyte and the separator even when stored at high temperature in a fully charged state, so that exothermic reactions and thermal runaways are suppressed and thus no ignition occurs. I could confirm it.
  • the lithium secondary batteries of Comparative Examples 1 and 2 have low interfacial stability between the electrolyte and the separator, and thus, heat generation may not be suppressed during storage at 150 ° C., and thermal runaway and ignition may occur in series.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 기재; 에폭시 개환 반응을 통해 젤 폴리머 전해질과 결합될 수 있는 제1유기 바인더를 포함하는 제1코팅층; 및 제2유기 바인더를 포함하는 제2코팅층;을 포함하고, 상기 제1유기 바인더는 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하며, 상기 젤 폴리머 전해질은 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성되는 것인 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지를 제공한다.

Description

리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
관련출원과의 상호인용
본 출원은 2018년 04월 27일자 한국특허출원 제10-2018-0049375호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 보다 상세하게는 젤 폴리머 전해질을 포함하는 리튬 이차 전지용 분리막 및 이를 이용한 리튬 이차 전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지에 대한 수요가 급격히 증가하고 있고, 그러한 이차 전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다.
이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등은 동력원으로서 니켈 수소금속(Ni-MH) 이차 전지 또는 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차 전지를 사용하고 있는데, 리튬 이차 전지를 전기 자동차에 사용할 경우에는 높은 에너지 밀도와 단시간에 큰 출력을 발휘할 수 있는 특성과 더불어, 가혹한 조건 하에서 10년 이상 사용될 수 있어야 하므로, 기존의 소형 리튬 이차 전지보다 월등히 우수한 에너지 밀도, 안전성 및 장기 수명 특성이 필연적으로 요구된다.
일반적으로, 리튬 이차 전지는 음극(anode)과 양극(cathode), 이들 사이에 개재되는 분리막(separator) 및 리튬 이온의 전달 매질인 전해질을 이용하여 제조되는데, 종래 이차전지는 액체 상태의 전해질, 특히 비수계 유기 용매에 염을 용해한 이온 전도성 유기 액체 전해질이 주로 사용되어 왔다.
그러나 이와 같이 액체 상태의 전해질을 사용하면, 전극 물질이 퇴화되고 유기 용매가 휘발될 가능성이 클 뿐만 아니라, 주변 온도 및 전지 자체의 온도 상승에 의한 연소 등과 같은 안전성에 문제가 있다. 특히, 리튬 이차 전지는 충방전 진행시 카보네이트 유기 용매의 분해 및/또는 유기 용매와 전극과의 부반응에 의해 전지 내부에 가스가 발생하여 전지 두께를 팽창시키는 문제점이 있다. 따라서 전지의 성능과 안전성 저하가 필수적으로 초래되게 된다.
일반적으로, 전지의 안전성은 액체 전해질 < 젤 폴리머 전해질 < 고체 고분자 전해질 순서로 향상되나, 이에 반해 전지 성능은 감소하는 것으로 알려져 있다. 현재 상기 고체 고분자 전해질은 열등한 전지 성능에 의하여, 아직 상업화되지 않은 것으로 알려져 있다.
반면에, 젤 폴리머 전해질의 경우, 전기화학적 안전성이 우수하여 전지의 두께를 일정하게 유지할 수 있을 뿐 아니라, 젤상 고유의 접착력으로 인해 전극과 전해질 사이의 접촉이 우수하여 박막형 전지를 제조할 수 있어서, 최근에는 젤 폴리머 전해질이 많이 사용되고 있다.
한편, 분리막은 전기화학 반응에 참여하지 않는 비활성 소재이나 전지를 작동시키기 위하여 리튬 이온이 이동하는 경로를 제공하며, 양극과 음극의 물리적 접촉을 분리하는 소재로서, 전지의 성능 및 안정성에 큰 영향을 미치는 핵심 소재 중 하나이다.
리튬 이차 전지의 경우, 충방전이 반복되는 동안 발생되는 운동에너지로 인해 쉽게 열이 날 수 있는데, 분리막은 이 열에 취약하다. 특히, 폴리에틸렌(PE)을 사용하는 분리막의 경우, 약 130℃ 근처에서 용융하기(녹기) 시작해 기공이 폐쇄되는 '단락(shut down)' 현상이 발생할 수 있고, 150℃ 이상에서는 완전히 용융해 내부 단락을 막지 못하고 붕괴(meltdown 또는 mechanical integrity 파괴)할 수도 있다.
이러한 문제를 극복하기 위하여, 최근에는 분리막 표면에 무기물 입자와 고분자 바인더를 코팅하는 딥(Dip) 코팅 방식을 사용하는 등 내구성을 강화하기 위한 연구들이 계속되고 있다.
그런데, 젤 폴리머 전해질과 무기물 입자를 포함하는 코팅층이 형성된 분리막을 함께 사용하는 경우, 상기 코팅층과 전해질 간의 접착력을 부여할 수 있는 구성요소가 없다. 따라서, 분리막에 전해질이 균일하게 형성되지 못하여 계면 저항이 커지게 되고, 전지 내 단락 현상 등이 발생하는 문제점이 있다.
따라서, 다양한 전지 형태에 적용하여 사용할 수 있도록 공정성이 우수하고, 내구성이 일정수준 이상 유지되면서도, 젤 폴리머 전해질간의 밀착성이 향상되어, 전지의 안전성과 수명 특성을 개선할 수 있는 분리막 및 이를 포함하는 리튬 이차 전지의 개발이 필요한 실정이다.
(특허문헌 1) 대한민국 특허공개공보 제10-2015-0131513호
본 발명은 젤 폴리머 전해질과의 밀착력을 상승시켜 전지의 안전성 및 수명 특성이 개선되고, 다층 구조를 가져 공정성 또한 개선될 수 있는 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지를 제공하기 위한 것이다.
일 측면에서, 본 발명은, 기재; 에폭시 개환 반응을 통해 젤 폴리머 전해질과 결합될 수 있는 제1유기 바인더를 포함하는 제1코팅층; 및 제2유기 바인더를 포함하는 제2코팅층;을 포함하고, 상기 제1유기 바인더는 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하며, 상기 젤 폴리머 전해질은 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성되는 것인 리튬 이차 전지용 분리막을 제공한다.
이때, 상기 에폭시기와 개환 반응이 가능한 작용기는 수산화기(OH), 카르복시산기(COOH), 아민기, 이소시아네이트기, 머캅탄기 및 이미드기로 이루어진 군에서 선택되는 적어도 하나 이상의 작용기이다.
한편, 상기 제1유기 바인더는 할로겐 원소가 적어도 하나 이상 치환된 탄소수 1 내지 5의 알킬렌기, 탄소수 1 내지 5의 알킬렌옥사이드기, 할로겐 원소가 적어도 하나 이상 치환된 탄소수 1 내지 5의 알킬렌옥사이드기, 이미드기 및 셀룰로이드로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 단위를 포함하고, 상기 단위로 이루어지는 주쇄에 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합이 치환되는 것일 수 있다.
한편, 상기 올리고머는, 알킬렌 옥사이드기를 포함하는 단위 및 아민기를 포함하는 단위로 이루어진 군에서 선택되는 적어도 하나 이상의 단위를 포함하고,
상기 단위로 이루어지는 주쇄에 에폭시기 및 에폭시와 개환 반응이 가능한 작용기 또는 이들의 조합이 치환되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 제1코팅층 및 제2코팅층 중 선택되는 적어도 하나 이상의 코팅층은 Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, 및 Sr로 이루어진 군으로부터 선택되는 1종 이상의 원소를 포함하는 무기 산화물을 포함하는 것일 수 있다.
본 발명의 다른 구현예에 있어서, 상기 제1코팅층은 상기 기재 상에 형성되고, 상기 제2코팅층은 상기 제1코팅층 상에 형성되는 것일 수 있고, 또 다른 구현예로서, 상기 제2코팅층은 상기 기재 상에 형성되고, 상기 제1코팅층은 상기 제2코팅층 상에 형성되는 것일 수 있다.
본 발명의 일 구현예로서, 적어도 하나 이상의 양극, 적어도 하나 이상의 음극 및 상기 양극과 음극 사이에 개재되는 적어도 하나의 제1분리막을 포함하는 단위셀을 적어도 하나 이상 포함하는 전극 조립체; 및 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성되는 젤 폴리머 전해질;을 포함하는 리튬 이차전지이며, 상기 제1분리막은 상기 리튬 이차 전지용 분리막인 리튬 이차 전지를 제공한다.
본 발명에 따른 리튬 이차 전지용 분리막은 에폭시 개환 반응을 통하여 젤 폴리머 전해질과 결합될 수 있는 제1유기 바인더를 포함하는 제1코팅층을 구비하여, 젤 폴리머 전해질과의 결합력을 향상시켜, 전지 내부 단락을 억제하여 안전성을 개선시키고, 리튬 이차 전지의 수명 특성을 개선시킬 수 있다.
도 1은 본 발명의 실시예 1 및 2에 따른 분리막의 단면을 나타낸 것이다.
도 2는 본 발명의 실시예 3 및 4에 따른 분리막의 단면을 나타낸 것이다.
이하, 본 발명에 대해 보다 자세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 특별한 언급이 없는 한 " * "는 동일하거나, 상이한 원자 또는 화학식의 말단부 간의 연결된 부분을 의미한다.
또한, 본 발명에서 중량평균분자량(Mw)은 겔투과크로마토그래피(Gel Permeation Chromatography: GPC)를 이용하여 측정할 수 있다. 예컨대, 일정 농도의 샘플 시료를 준비한 후, GPC 측정 시스템 alliance 4 기기를 안정화시킨다. 기기가 안정화되면 기기에 표준 시료와 샘플 시료를 주입하여 크로마토그램을 얻어낸 다음, 분석 방법에 따라 분자량을 산출할 수 있다 (시스템: Alliance 4, 컬럼: Ultrahydrogel linear Х 2, eluent: 0.1M NaNO3 (pH 7.0 phosphate buffer, flow rate: 0.1 mL/min, temp: 40℃, injection: 100㎕).
<리튬 이차 전지용 분리막>
본 발명에 따른 리튬 이차 전지용 분리막은, (1) 기재, (2) 에폭시 개환 반응을 통해 젤 폴리머 전해질과 결합될 수 있는 제1유기 바인더를 포함하는 제1코팅층 및 (3) 제2유기 바인더를 포함하는 제2코팅층을 포함하고, 상기 제1유기 바인더는 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하며, 상기 젤 폴리머 전해질은 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성된다.
상기 기재는, 다공성 기재를 사용할 수 있으며, 통상적으로 다공성 기재는 전기화학소자의 분리막 소재로 사용 사용 가능한 것이라면 특별한 제한 없이 사용이 가능하다. 이러한 다공성 기재로는, 예를 들어, 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리아세탈, 폴리아미드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴레페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌과 같은 고분자 수지 중 적어도 어느 하나로 형성된 부직포 또는 다공성 고분자 필름 또는 이 중 둘 이상의 적층물 등이 있으나 특별히 이에 한정되는 것은 아니다.
상기 제1코팅층은 젤 폴리머 전해질과 에폭시 개환 반응을 통해 결합될 수 있는 제1유기 바인더를 포함한다. 또한, 상기 제1코팅층은 선택적으로 무기 산화물을 더 포함할 수 있다.
이때, 상기 제1유기 바인더는 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하며, 상기 젤 폴리머 전해질은 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성된다. 이때, 상기 제1코팅층에는 선택적으로 무기 산화물이 더 포함될 수 있다.
구체적으로, 상기 에폭시기와 개환 반응이 가능한 작용기는 수산화기(OH), 카르복시산기(COOH), 아민기, 이소시아네이트기, 머캅탄기 및 이미드기로 이루어진 군에서 선택되는 적어도 하나 이상의 작용기일 수 있다.
보다 구체적으로, 아민기는, -NR1R2로 표시될 수 있으며, 상기 R1 및 R2는 각각 독립적으로 수소(H), 탄소수 1 내지 10의 치환 또는 비치환된 사슬형 알킬기 및 탄소수 1 내지 10의 치환 또는 비치환된 고리형 알킬기로 이루어진 군에서 선택되는 적어도 하나 이상인 것일 수 있다.
보다 구체적으로, 이미드기는 -R3-CO-N(R4)-CO-R5 로 표시될 수 있으며, 상기 R3 내지 R5는 각각 독립적으로 수소(H), 탄소수 1 내지 10의 치환 또는 비치환된 사슬형 알킬기 및 탄소수 1 내지 10의 치환 또는 비치환된 고리형 알킬기로 이루어진 군에서 선택되는 적어도 하나 이상인 것일 수 있다.
한편, 상기 제1유기 바인더는 당해 기술 분야에 잘 알려진 일반적인 유기 바인더들, 예를 들면, PVdF(Poly(Vinylidene fluoride)), PVdF-co-HFP(Poly(Vinylidene fluoride)과 hexafluoropropylene)의 공중합체)등에 에폭시기 및/또는 에폭시기와 개환 반응 가능한 작용기가 치환된 바인더들이 사용될 수 있다. 보다 구체적으로, 상기 제1유기 바인더는 상기 작용기 이외에, 할로겐 원소(F, Cl, Br, I)가 적어도 하나 이상 치환된 탄소수 1 내지 5의 알킬렌기, 탄소수 1 내지 5의 알킬렌옥사이드기, 이미드기, 셀룰로이드로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 단위를 더 포함할 수 있다.
이때, 상기 단위로 이루어지는 주쇄에 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합이 치환될 수 있다. 구체적으로, 상기 주쇄에 위치하는 수소(H)가 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합으로 치환될 수 있으며, 상기 치환된 정도는 몰%로 계산될 수 있다. 다만, 부착되는 작용기의 개수나 위치가 특정되는 것은 아니다.
예를 들어, 상기 할로겐 원소가 적어도 하나 이상 치환된 알킬렌기를 포함하는 단위는 하기 화학식 X-1 또는 X-2로 표시되는 단위 중 선택되는 적어도 하나 이상으로 표시될 수 있다.
[화학식 X-1]
Figure PCTKR2019005146-appb-I000001
상기 화학식 X-1에서, 상기 m1은 1 내지 10,000인 정수, 바람직하게는, 1 내지 7,500 인 정수, 보다 바람직하게는 1 내지 5,000 인 정수이다.
[화학식 X-2]
Figure PCTKR2019005146-appb-I000002
상기 화학식 X-2에서, 상기 m2 및 m3는 각각 독립적으로 1 내지 10,000인 정수, 바람직하게는, 1 내지 7,500 인 정수, 보다 바람직하게는 1 내지 5,000 인 정수이다.
예를 들어, 알킬렌옥사이드기를 포함하는 단위는 하기 화학식 X-3과 같이 표시될 수 있다.
[화학식 X-3]
Figure PCTKR2019005146-appb-I000003
상기 화학식 X-3에서, 상기 m4는 1 내지 10,000인 정수, 바람직하게는, 1 내지 7,500 인 정수, 보다 바람직하게는 1 내지 5,000 인 정수이다.
예를 들어, 상기 할로겐 원소가 치환된 알킬렌옥사이드기를 포함하는 단위는 하기 화학식 X-4과 같이 표시될 수 있다.
[화학식 X-4]
Figure PCTKR2019005146-appb-I000004
상기 화학식 X-4에서, 상기 m5는 1 내지 10,000인 정수, 바람직하게는, 1 내지 7,500 인 정수, 보다 바람직하게는 1 내지 5,000 인 정수이다.
예를 들어, 상기 이미드기를 포함하는 단위는 하기 화학식 X-5와 같이 표시될 수 있다.
[화학식 X-5]
Figure PCTKR2019005146-appb-I000005
상기 화학식 X-5에서, 상기 m6은 1 내지 10,000인 정수, 바람직하게는, 1 내지 7,500 인 정수, 보다 바람직하게는 1 내지 5,000 인 정수이다.
예를 들어, 상기 셀룰로이드를 포함하는 단위는 하기 화학식 X-6과 같이 표시될 수 있다.
[화학식 X-6]
Figure PCTKR2019005146-appb-I000006
상기 화학식 X-6에서 상기 m7은 1 내지 10,000인 정수, 바람직하게는, 1 내지 7,500 인 정수, 보다 바람직하게는 1 내지 5,000 인 정수이다.
한편, 상기 제1유기 바인더는 상기 제1코팅층의 전체 중량을 기준으로 100 중량%로 포함되어 단독으로 코팅층을 형성할 수 있고, 무기 산화물을 더 포함하는 경우, 제1코팅층 전체 중량을 기준으로 10 중량% 내지 80 중량%로 포함될 수 있고, 구체적으로 10 중량% 내지 60 중량%로 포함될 수 있으며, 보다 구체적으로 10 중량% 내지 50 중량%로 포함될 수 있다.
상기 무기 산화물은 내열성 및 내구성이 좋은 화합물로서, 분리막에 코팅되는 경우, 분리막의 기계적 강도를 향상시킬 수 있음은 물론, 내열성을 개선시킬 수 있다.
구체적으로, 예를 들어, 상기 무기 산화물은, Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, 및 Sr로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있으며, 바람직하게는, Si, Al, Ti 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있다.
보다 구체적으로, 상기 무기 산화물은 SiO2, Al2O3, TiO2, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3, Pb(Zr,Ti)O3 (PZT), Pb(1-a1)Laa1Zr(1-b1)Tib1O3 (0≤a1≤1, 0≤b1≤1, PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), BaTiO3, HfO2(hafnia), SrTiO3 등이 있으며, 상기 나열된 무기 산화물들은 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 가지고 있다. 보다 바람직하게는, 상기 무기 산화물은 SiO2, Al2O3, TiO2 및 ZrO2로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다.
상기 무기 산화물은 상기 제1코팅층의 전체 중량을 기준으로 20 중량% 내지 90 중량%로 포함될 수 있고, 구체적으로 40 중량% 내지 90 중량%로 포함될 수 있으며, 보다 구체적으로, 50 중량% 내지 90 중량%로 포함될 수 있다. 상기 무기 산화물이 상기 범위 내로 포함되는 경우, 무기 산화물이 제1코팅층으로부터 탈리되는 것을 방지할 수 있고, 분리막의 내구성을 개선시킬 수 있다.
제2코팅층은, 제2유기 바인더를 포함하며, 선택적으로 무기 산화물을 더 포함할 수 있다.
상기 제2유기 바인더는, 공정성을 향상시키고, 선택적으로 무기 산화물을 더 포함하는 경우, 무기 산화물을 고정시키기 위하여 사용되는 것이다. 구체적으로, 상기 제2유기 바인더는 당해 기술 분야에 잘 알려진 일반적인 유기 바인더들, 예를 들면, PVdF(Poly(Vinylidene fluoride)), PVdF-co-HFP(Poly(Vinylidene fluoride)과 hexafluoropropylene)의 공중합체)등을 사용할 수 있다. 한편, 상기 제2유기 바인더의 경우, 상기 제2코팅층의 상기 제2코팅층의 전체 중량을 기준으로 100 중량%로 포함되어 단독으로 코팅층을 형성할 수 있고, 무기 산화물을 더 포함하는 경우, 제2코팅층 전체 중량을 기준으로 10 중량% 내지 80 중량%로 포함될 수 있고, 구체적으로 10 중량% 내지 70 중량%로 포함될 수 있으며, 보다 구체적으로 10 중량% 내지 60 중량%로 포함될 수 있다.
상기 무기 산화물은 내열성 및 내구성이 좋은 화합물로서, 분리막에 코팅되는 경우, 분리막의 기계적 강도를 향상시킬 수 있음은 물론, 내열성을 개선시킬 수 있다.
구체적으로, 예를 들어, 상기 무기 산화물은, Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, 및 Sr로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있으며, 바람직하게는, Si, Al, Ti 및 Zr로 이루어진 군에서 선택된 적어도 하나 이상의 원소를 포함할 수 있다.
보다 구체적으로, 상기 무기 산화물은 SiO2, Al2O3, TiO2, ZrO2, SnO2, CeO2, MgO, CaO, ZnO, Y2O3, Pb(Zr, Ti)O3 (PZT), Pb(1-a1)Laa1Zr(1-b1)Tib1O3 (0≤a1≤1, 0≤b1≤1, PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT), BaTiO3, HfO2(hafnia), SrTiO3 등이 있으며, 상기 나열된 무기 산화물들은 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 가지고 있다. 보다 바람직하게는, 상기 무기 산화물은 SiO2, Al2O3, TiO2 및 ZrO2로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. 상기 무기 산화물은 상기 제2코팅층의 전체 중량을 기준으로 20 중량% 내지 90 중량%로 포함될 수 있고, 구체적으로 40 중량% 내지 90 중량%로 포함될 수 있으며, 보다 구체적으로, 50 중량% 내지 90 중량%로 포함될 수 있다. 상기 무기 산화물이 상기 범위 내로 포함되는 경우, 무기 산화물이 제2코팅층으로부터 탈리되는 것을 방지할 수 있고, 분리막의 내구성을 개선시킬 수 있다.
한편, 본 발명에 따른 리튬 이차 전지용 분리막의 경우, (1) 제1코팅층이 기재 상에 형성되고, 제2코팅층은 제1코팅층 상에 형성되는 구조 또는 (2) 제2코팅층이 기재 상에 형성되고, 제1코팅층은 제2코팅층 상에 형성되는 구조로 형성될 수 있다.
이때, (1) 구조와 같이 제1코팅층이 기재 상에 먼저 형성되는 경우에는 내구성 및 내열성이 강한 무기 산화물을 포함하는 제2코팅층이 제1코팅층 상에 형성되어 있어, 이와 같이 형성된 분리막이 구비된 전극조립체를 사용한 라미네이션-스택 공정(lamination-stack) 또는 라미네이션-폴딩 공정(lamination-folding)도 용이하게 진행할 수 있다. 구체적으로, 라미네이션-스택형 리튬 이차 전지의 경우, 하나 이상의 양극 또는 음극과 하나 이상의 분리막을 먼저 접착하는 라미네이션(lamination) 공정을 거쳐 양극/분리막/음극을 포함하는 단위 셀을 형성한 뒤, 상기 단위 셀들을 분리막을 개재하여 스택/용접해 전극조립체를 형성하고, 상기 전극조립체를 전지 케이스에 삽입한 후 전해질을 주입하는 단계 등을 거쳐 제조될 수 있다. 한편, 라미네이션-폴딩형 리튬 이차 전지의 경우, 상기 라미네이션 공정을 거쳐 제조된 단위셀들을 긴 길이의 분리막 시트를 사용하여 폴딩하여, 전극 조립체를 형성하고, 상기 전극조립체를 전지케이스에 삽입한 후 전해질을 주입하여 제조될 수 있다. 한편, 제2코팅층의 경우, 무기 산화물과 제2유기 바인더로 코팅층이 형성되어 코팅층 내부에 공극이 존재하므로, 제1코팅층과의 젤 폴리머 전해질 간의 간격 내에서도 전해질 조성물에 포함되는 올리고머가 침투하여 중합반응을 진행할 수 있으므로, 젤 폴리머 전해질과 분리막 간의 결합력은 일정 수준 이상으로 유지된다.
한편, (2) 구조와 같이 제2코팅층이 기재 상에 먼저 형성되는 경우에는, 내구성이 강한 무기 산화물을 기재에 우선적으로 코팅하여 기재의 기계적 물성이 향상될 수 있고 분리막을 만들기 위한 공정의 경제성을 개선시킬 수 있다. 다만, 분리막을 설계할 때, 상기 2가지 적층 구조 중 하나의 구조에 한정되지 않고, 리튬 이차 전지용 분리막의 사용 목적 및 제조하기 위한 공정에 따라 적층 구조를 달리 설정할 수 있다. 또한, 상기 적층 구조에 추가적으로 분리막의 내열성이나 기계적 성능을 개선시키기 위하여 제1코팅층 및/또는 제2코팅층을 추가로 더 적층하여 다층구조의 코팅층을 더 형성하는 것 또한 가능하다.
한편, 상기 제1코팅층 두께 및 제2코팅층 두께를 합한 총 두께는 0.2㎛ 내지 20㎛인 것일 수 있다. 구체적으로 총 두께는 0.5 ㎛ 내지 17 ㎛, 보다 구체적으로 총 두께는 1 ㎛ 내지 15 ㎛인 것일 수 있다. 상기 총 두께가 상기 범위 내인 경우, 리튬 이온의 이동성을 저하하지 않으면서도, 분리막의 기계적 성능 및 젤 폴리머 전해질과의 결합력을 향상시킬 수 있다.
<리튬 이차 전지>
이하, 리튬 이차 전지에 대해 설명한다.
본 발명에 따른 리튬 이차 전지는, (1) 적어도 하나 이상의 양극, 적어도 하나 이상의 음극 및 상기 양극과 음극 사이에 개재되는 적어도 하나의 제1분리막을 포함하는 단위셀을 적어도 하나 이상 포함하는 전극 조립체; 및 (2) 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성되는 젤 폴리머 전해질을 포함하는 리튬 이차 전지이며,
상기 제1분리막은 본 발명에 따른 분리막인 것일 수 있다.
이때, 상기 본 발명에 따른 분리막에 대해서는 상술한 내용과 동일한 바, 구체적인 설명을 생략한다. 이하 상기 전극 조립체 내에 포함되는 단위셀의 각 구성에 대해 설명한다.
먼저, 상기 단위셀에 포함되는 적어도 하나 이상의 양극은 양극 집전체 상에 양극 활물질, 전극용 바인더, 전극 도전재 및 용매 등을 포함하는 양극 합제 슬러리를 코팅하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiMn2-z1Niz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-z2Coz2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Nip1Coq1Mnr1)O2(여기에서, 0<p1<1, 0<q1<1, 0<r1<1, p1+q1+r1=1) 또는 Li(Nip2Coq2Mnr2)O4(여기에서, 0<p2<2, 0<q2<2, 0<r2<2, p2+q2+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip3Coq3Mnr3MS1)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군에서 선택되고, p3, q3, r3 및 s1은 각각 독립적인 원소들의 원자 분율로서, 0<p3<1, 0<q3<1, 0<r3<1, 0<s1<1, p3+q3+r3+s1=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 60 중량% 내지 98 중량%, 바람직하게는 70 중량% 내지 98 중량%, 보다 바람직하게는 80 중량% 내지 98 중량%로 포함될 수 있다.
상기 전극용 바인더는 양극 활물질과 전극 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분이다. 구체적으로, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 통상적으로 상기 전극용 바인더는 양극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량% 로 포함될 수 있다.
상기 전극 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분이다. 상기 전극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다. 상기 전극 도전재는 양극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1 중량% 내지 20 중량%, 바람직하게는 1 중량% 내지 15 중량%, 보다 바람직하게는 1 중량% 내지 10 중량%로 포함될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 양극용 바인더 및 양극 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 양극용 바인더 및 양극 도전재를 포함하는 고형분의 농도가 60 중량% 내지 95 중량%, 바람직하게는 70 중량% 내지 95 중량%, 보다 바람직하게는 70 중량% 내지 90 중량%가 되도록 포함될 수 있다.
또한, 상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질, 음극용 바인더, 음극 도전재 및 용매 등을 포함하는 음극 합제 슬러리를 코팅하여 제조할 수 있다. 한편, 상기 음극은 금속 집전체 자체를 전극으로 사용할 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군에서 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.
상기 음극 활물질은 음극 합제 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 60 중량% 내지 98 중량%, 바람직하게는 70 중량% 내지 98 중량%, 보다 바람직하게는 80 중량% 내지 98 중량%로 포함될 수 있다.
상기 전극용 바인더, 전극 도전재 및 용매에 대한 내용은 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
상기 젤 폴리머 전해질은, 상기 양극과 음극 및 분리막 사이에 배치될 수 있고, 상기 젤 폴리머 전해질은 올리고머가 중합되어 형성되는 것으로, 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함한다. 상기 올리고머를 사용하는 경우, 올리고머 간 에폭시 개환 반응을 통해 열 중합됨은 물론 제1코팅층 내에 포함된 제1유기 바인더와도 에폭시 개환 반응을 통하여 결합될 수 있다.
보다 구체적으로, 상기 올리고머는 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함한다. 상기 올리고머를 사용하는 경우, 올리고머 간 에폭시 개환 반응을 통해 열 중합됨은 물론, 상기 제1코팅층에 포함된 제1유기 바인더와도 에폭시 개환 반응을 통하여 결합될 수 있다.
한편, 기존의 라디칼 중합 반응을 통하여 중합반응을 하는 올리고머의 경우, 중합 개시제를 필수적으로 사용하여야만 중합 반응을 통해 결합될 수 있었다. 하지만, 라디칼 중합 개시제로 사용되는 아조계(azo), 퍼옥사이드계(peroxide) 화합물 등의 경우 경화 반응 도중 전지 내부에 가스를 발생시켜 전지의 안전성을 저하시키는 문제점이 있었다.
한편, 본 발명의 젤 폴리머 전해질에 사용되는 올리고머는 에폭시 개환 반응을 통해 중합되는 올리고머로서, 기존의 올리고머를 중합할 때 사용되는 중합 개시제 등을 사용하지 않고서도 중합 반응을 수행할 수 있다. 따라서 중합 반응을 통해 경화되는 동안에도 전지 내부에 가스가 발생되지 않으므로 전지의 부풀음 현상(swelling) 및 이로부터 유도되는 전극 단락 현상 등을 미연에 방지하여 전지의 안전성을 개선시킬 수 있다.
구체적으로, 상기 올리고머는 알킬렌 옥사이드기를 포함하는 단위 및 아민기를 포함하는 단위로 이루어진 군에서 선택되는 적어도 하나 이상의 단위를 포함하고, 상기 단위로 이루어지는 주쇄에 에폭시기 및 에폭시와 개환 반응이 가능한 작용기 또는 이들의 조합이 치환되는 것일 수 있다.
예를 들어, 상기 올리고머는 하기 화학식 1 및 화학식 2로 표시되는 화합물로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2019005146-appb-I000007
상기 n1은 2 내지 10,000 인 정수이며, 바람직하게는 2 내지 7,500 인 정수, 보다 바람직하게는 2 내지 5,000 인 정수일 수 있다.
[화학식 2]
Figure PCTKR2019005146-appb-I000008
상기 화학식 2에서, 상기 R6 내지 R11은 탄소수 1 내지 5의 치환 또는 비치환된 알킬렌기이고, 상기 R12 내지 R16은 각각 독립적으로, 수소(H), 탄소수 1 내지 10의 치환 또는 비치환된 알킬기, -NR17R18 및 -R19NR20R21로 이루어진 군에서 선택되는 적어도 하나 이상인 것이고, R19는 탄소수 1 내지 5의 치환 또는 비치환된 알킬렌기이며, R17, R18, R20, R21은 각각 독립적으로 수소(H), 탄소수 1 내지 5의 치환 또는 비치환된 알킬기 및 -R22NH2로서, 상기 R22는 탄소수 1 내지 5의 치환 또는 비치환된 알킬렌기이고, 상기 n2는 1 내지 10,000, 바람직하게는 1 내지 7,500, 보다 바람직하게는 1 내지 5,000 인 정수이다.
한편, 상기 올리고머가 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 모두 포함하는 경우, 상기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물은 (30~100):(0~70)의 중량비, 바람직하게는 (40~95):(5~60) 중량비로 혼합될 수 있다. 상기 올리고머를 상기 중량비로 혼합하여 사용하게 되면, 올리고머로 형성되는 폴리머의 기계적 물성이 향상되어 젤 폴리머 전해질의 누액을 방지할 수 있고, 분리막과의 밀착력이 개선될 수 있다.
보다 구체적으로, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 화학식 2-3으로 표시되는 화합물로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함하는 것일 수 있다.
[화학식 2-1]
Figure PCTKR2019005146-appb-I000009
상기 화학식 2-1에서, 상기 n2는 1 내지 10,000 인 정수이다.
[화학식 2-2]
Figure PCTKR2019005146-appb-I000010
상기 화학식 2-2에서, 상기 n2는 1 내지 10,000 인 정수이고,
[화학식 2-3]
Figure PCTKR2019005146-appb-I000011
상기 화학식 2-3에서, 상기 n2는 1 내지 10,000 인 정수이다.
상기 n2는 바람직하게는 1 내지 10,000 인 정수, 보다 바람직하게는, 1 내지 7,500 인 정수일 수 있다.
상기 화학식 1 또는 화학식 2로 표시되는 올리고머의 중량평균분자량(Mw)은 약 100 내지 1,000,000일 수 있다. 바람직하게는 100 내지 900,000, 보다 바람직하게는 300 내지 800,000인 것일 수 있다. 상기 올리고머가 상기 범위의 중량평균분자량을 가지게 되면, 경화되어 형성되는 젤 폴리머 전해질이 안정적으로 형성되어 전지 내의 기계적 성능이 개선되어 전지의 외부 충격에 의해 발생할 수 있는 발열 및 발화 현상을 억제할 수 있고, 발열 및 발화에 의하여 일어날 수 있는 폭발 현상 또한 제어할 수 있다. 또한, 전해질의 누액 현상과 휘발 현상을 억제할 수 있어 리튬 이차 전지의 고온 안전성 또한 크게 향상될 수 있다.
한편, 상기 젤 폴리머 전해질은 상기 올리고머를 포함하는 젤 폴리머 전해질용 조성물을 전지 케이스 내에 주액한 후 경화시켜 형성되는 것이 바람직하다.
보다 구체적으로는, 본 발명에 따른 이차 전지는, (a) 적어도 하나 이상의 양극, 적어도 하나 이상의 음극, 및 상기 양극과 음극 사이에 개재(介在)되는 적어도 하나의 제1분리막을 포함하는 단위셀을 적어도 하나 이상 포함하는 전극 조립체를 전지 케이스에 삽입하는 단계 및 (b) 상기 전지 케이스에 본 발명에 따른 젤 폴리머 전해질용 조성물을 주입한 후 중합시켜 젤 폴리머 전해질을 형성하는 단계를 거쳐 제조될 수 있다.
이때, 상기 젤 폴리머 전해질용 조성물은, 상기 올리고머 이외에, 리튬염, 비수성 유기 용매를 포함할 수 있다.
상기 리튬염은 리튬 이차 전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 양이온으로 Li+를 포함하고, 음이온으로 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (F2SO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 적어도 어느 하나를 포함할 수 있다. 상기 리튬염은 1종 또는 필요에 따라서 2종 이상을 혼합하여 사용할 수도 있다. 상기 리튬염은 젤 폴리머 전해질용 조성물의 0.8 M 내지 2M, 구체적으로 0.8M 내지 1.5M의 농도로 포함할 수 있다. 다만, 반드시 상기 농도 범위에 한정되지는 않고, 젤 폴리머 전해질용 조성물 중 다른 성분에 따라 2M 이상의 고농도로 포함할 수도 있다.
상기 비수성 유기 용매는 리튬 이차전지용 전해질에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있다. 예를 들면, 에테르 화합물, 에스테르 화합물, 아미드 화합물, 선형 카보네이트 화합물, 또는 환형 카보네이트 화합물 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 또는 이들의 혼합물을 포함할 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 유기 용매 중 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키는 것으로 알려진 에틸렌 카보네이트 및 프로필렌 카보네이트와 같은 환형 카보네이트가 사용될 수 있으며, 이러한 환형 카보네이트에 더하여 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 제조할 수 있다.
또한, 상기 비수성 유기 용매 중 에테르 화합물로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 비수성 유기 용매 중 에스테르 화합물로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 부틸 프로피오네이트와 같은 선형 에스테르; 및 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤와 같은 환형 에스테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
한편, 다른 구현예로서, 상기 전극 조립체는 2 이상의 단위셀을 포함하고, 상기 단위셀들 사이에 개재되는 제2분리막을 더 포함할 수 있다. 이때, 사용되는 단위셀에 대해서는 상기 설명한 내용과 동일하고, 상기 제2분리막의 경우, 일반적으로 사용되는 분리막으로서, 통상 알려진 폴리올레핀계 분리막으로서, 폴리프로필렌, 폴리에틸렌 등을 사용할 수 있고, 또는 올레핀계 기재에 유, 무기 복합층이 형성된 복합 분리막 등을 사용하거나, 본 발명에 따른 분리막을 사용할 수 있다.
또한, 상기 전극 조립체는 라미네이션-폴딩형 또는 라미네이션-스택형 전극 조립체일 수 있다. 리튬 이차 전지는 전극 조립체 내에 포함된 양극/분리막/음극 구조 단위셀이 어떠한 구조로 이루어져 있는지에 따라서 분류될 수 있는데, 대표적으로는 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 단위셀, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막이 개재된 상태로 순차적으로 적층한 스택형(적층형) 단위셀, 상기 단위셀을 모노셀(Mono-cell) 또는 바이셀(Bi-cell) 필름 형태의 분리막 등으로 권취한 스택-폴딩형 전극조립체 등을 들 수 있다.
이때, 단위셀에 포함되는 제1분리막에 본 발명에 따른 상기 분리막을 사용하는 경우, 제1분리막에 포함된 제2코팅층은 내열성 및 기계적 내구성이 강한 무기 산화물을 포함하고 있어, 라미네이션-폴딩 또는 라미네이션-스택 방식으로 제조되는 리튬 이차 전지 내에 적용되는 경우에도, 제1, 2 분리막에 사용되는 기재가 공정 도중에 고온, 고압 조건에 의하여 훼손되어 전지가 단락되는 문제점을 미연에 방지할 수 있어, 공정성이 향상된다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
[실시예]
1. 실시예 1
(1) 기재 준비
폴리에틸렌 100 g, 기공형성제로 폴리비닐알코올 20 g을 혼합하여 혼합물을 형성하였다. 상기 혼합물을 극성 용매로서 디메틸포름아미드에 약 1:10 중량부 비율로 용해시켜 고분자 용액을 형성하였다. 상기 고분자 용액을 유리판 위에 캐스팅한 후, 약 100 ℃ 오븐 내에 넣고, 약 30 분 동안 건조하여 고분자 필름을 수득하였다. 이후, 상기 고분자 필름을 물에 침지함으로써 폴리비닐 알코올(PVA)을 추출하여 다공성 기재를 제조하였다.
(2) 리튬 이차 전지용 분리막 제조
제1유기 바인더로서 에폭시기가 0.5 몰% 치환된 폴리비닐리덴 플루오라이드((Poly(Vinylidene fluoride)), 이하 PVdF) (중량평균분자량: 50,000) 3g, 무기 산화물로서 알루미늄 옥사이드(Al2O3) 27g을 용매인 N-메틸-2-피롤리돈(이하, NMP) 72.1ml에 첨가한 뒤 혼합하여 제1코팅층 조성물을 제조하였다. 이후, 상기 다공성 기재 상에 상기 제1코팅층 조성물을 도포한 후, 건조시켜 5㎛ 두께의 제1코팅층을 형성하였다. 이후, 제2유기 바인더로서 에폭시기가 치환되지 않은 PVdF(중량평균분자량: 50,000) 3g, 무기 산화물로서 알루미늄 옥사이드(Al2O3) 27g을 용매인 NMP 72.1ml에 첨가 후 혼합하여 제2코팅층 조성물을 제조한 뒤, 이를 상기 제1코팅층 상에 도포한 후 건조시켜 5㎛ 두께의 제2코팅층을 형성하였다.
(3) 리튬 이차 전지 제조
양극 활물질로 (Li(Ni0.8Mn0.1Co0.1)O2) 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 바인더로 PVdF 3 중량%를 용매인 NMP에 첨가하여 양극 합제 슬러리를 제조하였다. 상기 양극 합제 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로 탄소 분말, 바인더로 PVdF, 도전재로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 합제 슬러리를 제조하였다. 상기 음극 합제 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
에틸렌카보네이트(EC):에틸메틸카보네이트(EMC) = 3:7 (부피비)에 1M LiPF6가 용해된 유기용매 94.99g에 화학식 1로 표시되는 화합물 (중량평균분자량(Mw): 500) 및 화학식 2-3으로 표시되는 화합물을 7:3 중량비로 혼합한 혼합물을 5g 첨가하여 교반시킨 뒤 완전 용해시켜 젤 폴리머 전해질용 조성물을 제조하였다.
상기 양극/분리막/음극을 순차적으로 적층한 단위셀(전극조립체)를 전지 케이스 내에 수납하고, 상기 젤 폴리머 전해질용 조성물을 주입한 후 2일 동안 상온에서 저장하였다. 이후, 60℃에서 24시간 동안 가열하여(열 중합 반응 공정) 리튬 이차 전지를 제조하였다.
2. 실시예 2
상기 실시예 1에서, 제1유기 바인더로서 에폭시기가 0.5 몰% 치환된 PVdF(중량평균분자량: 50,000) 대신 에폭시기가 0.5 몰% 치환된 PVdF-co-HFP(Poly(Vinylidene fluoride)과 hexafluoropropylene)의 공중합체, 이하, PVdF-co-HFP) (중량평균분자량: 100,000)를 사용하고, 제2유기 바인더로서 에폭시기가 치환되지 않은 PVdF 대신 에폭시기가 치환되지 않은 PVdF-co-HFP를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지용 분리막 및 리튬 이차 전지를 제조하였다.
3. 실시예 3
상기 실시예 1에서, 기재 상에 상기 제2코팅층 조성물을 먼저 도포한 후 건조하여 제2코팅층을 형성시킨 후에 상기 제1코팅층 조성물을 도포한 후 건조하여 제1코팅층을 형성시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지용 분리막 및 리튬 이차 전지를 제조하였다.
4. 실시예 4
상기 실시예 2에서, 기재 상에 상기 제2코팅층 조성물을 먼저 도포한 후 건조하여 제2코팅층을 형성시킨 후에 상기 제1코팅층 조성물을 도포한 후 건조하여 제1코팅층을 형성시킨 것을 제외하고는 상기 실시예 2와 동일한 방법으로 리튬 이차 전지용 분리막 및 리튬 이차 전지를 제조하였다
[비교예]
1. 비교예 1
상기 실시예 1에서, 제1, 2 코팅층을 모두 형성하지 않은 기재를 분리막으로 사용한 것을 제외하고는 동일한 방법으로 리튬 이차 전지용 분리막 및 리튬 이차 전지를 제조하였다.
2. 비교예 2
상기 실시예 1에서, 제1코팅층은 형성하지 않고, 제2코팅층을 기재 위에 곧바로 형성시킨 것을 제외하고는 동일한 방법으로 리튬 이온 전지용 분리막 및 리튬 이차 전지를 제조하였다.
[실험예]
1. 실험예 1: 초기 저항 측정 실험
실시예 1 내지 4와 비교예 1 및 2에서 제조된 각각의 리튬 이차 전지에 대하여 200mA 전류(0.1 C rate)로 포메이션을 진행 한 이후로 4.2 V 666mA (0.33 C, 0.05 C cut-off) CC/CV 충전과 3 V 666 mA (0.33 C) CC 방전을 3회 반복한 후, 5A (2.5 C)의 전류로 10초 방전을 진행할 때 발생하는 전압 강하를 측정하고, 측정된 값을 R=V/I (옴의 법칙) 공식을 대입하여 산출한 DC-저항 값을 하기 표 1에 초기 저항값으로 나타내었다.
초기 저항 (Ohm)
실시예 1 0.041
실시예 2 0.043
실시예 3 0.041
실시예 4 0.042
비교예 1 0.070
비교예 2 0.065
표 1을 참조하면, 실시예 1 내지 4의 리튬 이차 전지의 경우, 비교예 1 및 2의 리튬 이차 전지에 비하여 젤 폴리머 전해질과 분리막 간의 밀착력이 높아 계면 특성이 개선되어 측정되는 초기 저항이 더 낮음을 확인할 수 있다.
2. 실험예 2: 전지 고온 사이클(수명) 측정 실험
실시예 1 내지 4에서 제조된 리튬 이차 전지와 비교예 1 및 2에서 제조된 리튬 이차 전지 각각에 대하여 200mA 전류(0.1 C rate)로 포메이션(formation)을 진행 한 이후로 4.2 V 666mA (0.33 C, 0.05 C cut-off) CC/CV 충전과 3 V 666 mA (0.33 C) CC 방전을 45℃ 고온에서 50회 진행하였다.
이후 50번째 방전 용량과 첫 번째 초기용량(1회 충방전을 진행한 상태에서의 방전용량)을 이용하여 용량 유지율을 계산하고 그 결과를 표 2에 나타내었다.
50 사이클 후 용량 유지율(%)
실시예 1 93
실시예 2 94
실시예 3 91
실시예 4 93
비교예 1 78
비교예 2 82
표 2를 참조하면, 실시예 1 내지 4의 리튬 이차 전지의 경우 젤 폴리머 전해질이 안정적으로 형성됨과 동시에, 분리막과의 접착력이 우수하며, 젤 폴리머 전해질 분포가 개선되어 젤 폴리머 전해질의 추가적인 열화 반응을 억제할 수 있어 고온에서 사이클 특성이 개선됨을 확인할 수 있다.
3. 실험 예 3: 고온 안전성 평가 (핫 박스 테스트: HOT box test)
실시예 1 내지 4, 비교예 1 및 2에서 제조된 각각의 리튬 이차 전지를 SOC(State Of Charge) 100%로 만충시킨 뒤, 리튬 이차 전지를 150℃에서 4시간 동안 방치하여 발화되는지 여부 및 그 발화가 시작되는 시간을 확인하는 실험을 실시하였다. 그 결과를 하기 표 3에 나타내었다.
발화 여부 발화 시작 시간(분)
실시예 1 X -
실시예 2 X -
실시예 3 X -
실시예 4 X -
비교예 1 O <5
비교예 2 O 30
상기 표 3에서, X는 150℃ 보관 중에 발화가 일어나지 않은 경우를 나타내고, O는 150℃ 보관 중에 발화가 일어난 경우를 나타낸다.
상기 표 3을 살펴보면, 실시예 1 내지 4의 리튬 이차 전지는 만충전 상태에서 고온 저장 시에도 전해질과 분리막간의 계면 안정성이 우수하기 때문에 발열 반응 및 열폭주 현상이 억제되어 발화 현상도 발생하지 않음을 확인할 수 있었다. 반면, 비교예 1 및 2의 리튬 이차 전지의 경우 전해질과 분리막 간의 계면 안전성이 낮아 150℃에서 보관하는 도중 발열이 억제되지 못하고 열폭주 현상 및 발화 현상이 연쇄적으로 발생됨을 확인할 수 있다.
(부호의 설명) 10: 기재 20: 제1코팅층 30: 제2코팅층

Claims (10)

  1. 기재;
    에폭시 개환 반응을 통해 젤 폴리머 전해질과 결합될 수 있는 제1유기 바인더를 포함하는 제1코팅층; 및
    제2유기 바인더를 포함하는 제2코팅층;을 포함하고,
    상기 제1유기 바인더는 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하며,
    상기 젤 폴리머 전해질은 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성되는 것인 리튬 이차 전지용 분리막.
  2. 제1항에 있어서,
    상기 에폭시기와 개환 반응이 가능한 작용기는 수산화기(OH), 카르복시산기(COOH), 아민기, 이소시아네이트기, 머캅탄기 및 이미드기로 이루어진 군에서 선택되는 적어도 하나 이상의 작용기인 것인 리튬 이차 전지용 분리막.
  3. 제1항에 있어서,
    상기 제1유기 바인더는 할로겐 원소가 적어도 하나 이상 치환된 탄소수 1 내지 5의 알킬렌기, 탄소수 1 내지 5의 알킬렌옥사이드기, 할로겐 원소가 적어도 하나 이상 치환된 탄소수 1 내지 5의 알킬렌옥사이드기, 이미드기 및 셀룰로이드로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 단위를 포함하고,
    상기 단위로 이루어지는 주쇄에 에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합이 치환되는 것인 리튬 이차 전지용 분리막.
  4. 제1항에 있어서,
    상기 올리고머는, 알킬렌 옥사이드기를 포함하는 단위 및 아민기를 포함하는 단위로 이루어진 군에서 선택되는 적어도 하나 이상의 단위를 포함하고,
    상기 단위로 이루어지는 주쇄에 에폭시기 및 에폭시와 개환 반응이 가능한 작용기 또는 이들의 조합이 치환되는 것인 리튬 이차 전지용 분리막.
  5. 제1항에 있어서,
    상기 제1코팅층 및 제2코팅층 중 선택되는 적어도 하나 이상의 코팅층은 Si, Al, Ti, Zr, Sn, Ce, Mg, Ca, Zn, Y, Pb, Ba, Hf, 및 Sr로 이루어진 군으로부터 선택되는 1종 이상의 원소를 포함하는 무기 산화물을 포함하는 것인 리튬 이차 전지용 분리막.
  6. 제1항에 있어서,
    상기 제1코팅층은 상기 기재 상에 형성되고,
    상기 제2코팅층은 상기 제1코팅층 상에 형성되는 것인 리튬 이차전지용 분리막.
  7. 제1항에 있어서,
    상기 제2코팅층은 상기 기재 상에 형성되고,
    상기 제1코팅층은 상기 제2코팅층 상에 형성되는 것인 리튬 이차전지용 분리막.
  8. 제1항에 있어서,
    상기 제1코팅층 두께 및 제2코팅층 두께를 합한 총 두께는 0.2㎛ 내지 20㎛인 것인 리튬 이차 전지용 분리막.
  9. 적어도 하나 이상의 양극, 적어도 하나 이상의 음극 및 상기 양극과 음극 사이에 개재되는 적어도 하나의 제1분리막을 포함하는 단위셀을 적어도 하나 이상 포함하는 전극 조립체; 및
    에폭시기, 에폭시기와 개환 반응이 가능한 작용기 또는 이들의 조합을 포함하는 올리고머가 중합되어 형성되는 젤 폴리머 전해질;을 포함하는 리튬 이차 전지이며,
    상기 제1분리막은 청구항 1의 리튬 이차 전지용 분리막인 리튬 이차 전지.
  10. 제9항에 있어서,
    상기 전극 조립체는 2 이상의 단위셀을 포함하고, 상기 단위셀들 사이에 개재되는 제2분리막을 더 포함하는 것인 리튬 이차 전지.
PCT/KR2019/005146 2018-04-27 2019-04-29 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 WO2019209087A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980024446.9A CN111937214B (zh) 2018-04-27 2019-04-29 用于锂二次电池的隔板和包括所述隔板的锂二次电池
US17/044,370 US11967732B2 (en) 2018-04-27 2019-04-29 Separation membrane for lithium secondary battery and lithium secondary battery including same
JP2020551844A JP7101801B2 (ja) 2018-04-27 2019-04-29 リチウム二次電池用分離膜及びこれを含むリチウム二次電池
EP19793474.8A EP3761431B1 (en) 2018-04-27 2019-04-29 Separation membrane for lithium secondary battery and lithium secondary battery including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0049375 2018-04-27
KR1020180049375A KR102434068B1 (ko) 2018-04-27 2018-04-27 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2019209087A1 true WO2019209087A1 (ko) 2019-10-31

Family

ID=68295547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005146 WO2019209087A1 (ko) 2018-04-27 2019-04-29 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지

Country Status (6)

Country Link
US (1) US11967732B2 (ko)
EP (1) EP3761431B1 (ko)
JP (1) JP7101801B2 (ko)
KR (1) KR102434068B1 (ko)
CN (1) CN111937214B (ko)
WO (1) WO2019209087A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102325037B1 (ko) * 2018-04-27 2021-11-12 주식회사 엘지에너지솔루션 리튬 이차 전지 및 이의 제조방법
WO2022160269A1 (zh) * 2021-01-29 2022-08-04 宁德新能源科技有限公司 电化学装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060042326A (ko) * 2004-11-09 2006-05-12 브이케이 주식회사 계면 가교 방식의 겔 고분자 전지 제조 방법 및 이를채용한 리튬 2차 전지
KR20130105334A (ko) * 2012-03-16 2013-09-25 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터
KR101346414B1 (ko) * 2013-02-15 2014-01-16 한양대학교 산학협력단 겔 폴리머 전해질 및 이를 이용한 리튬이차전지
KR20140123140A (ko) * 2013-04-10 2014-10-22 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 제조 방법
KR20150131513A (ko) 2014-05-15 2015-11-25 주식회사 엘지화학 무기물 코팅층을 포함하는 전극조립체 및 이를 포함하는 이차전지
KR101637477B1 (ko) * 2012-02-10 2016-07-07 주식회사 엘지화학 높은 전극 접착력을 갖는 세퍼레이터 및 이의 제조방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686095B2 (en) * 1999-12-28 2004-02-03 Kabushiki Kaisha Toshiba Gel electrolyte precursor and chemical battery
JP2002075331A (ja) 2000-09-01 2002-03-15 Hitachi Maxell Ltd 非水二次電池
KR101499284B1 (ko) * 2008-12-26 2015-03-05 제온 코포레이션 리튬 이온 2차전지용 세퍼레이터및 리튬 이온 2차전지
JP5605591B2 (ja) * 2010-09-30 2014-10-15 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
CN103339757B (zh) 2010-11-30 2015-11-25 日本瑞翁株式会社 二次电池多孔膜浆料、二次电池多孔膜、二次电池电极、二次电池隔板、二次电池以及二次电池多孔膜的制造方法
KR101254693B1 (ko) 2011-02-15 2013-04-15 주식회사 엘지화학 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
CN103493253B (zh) * 2011-07-20 2016-07-13 株式会社Lg化学 隔膜、其制造方法和具有该隔膜的电化学器件
KR101696311B1 (ko) 2011-12-23 2017-01-24 주식회사 엘지화학 세퍼레이터 및 이를 구비한 전기화학소자
US9450223B2 (en) 2012-02-06 2016-09-20 Samsung Sdi Co., Ltd. Lithium secondary battery
KR101683202B1 (ko) 2012-02-06 2016-12-06 삼성에스디아이 주식회사 리튬 이차 전지
KR101491061B1 (ko) 2012-05-03 2015-02-10 주식회사 엘지화학 전극 조립체 및 그의 제조방법
JP6412760B2 (ja) 2014-09-30 2018-10-24 旭化成株式会社 蓄電デバイス用セパレータ
CN106797053B (zh) 2014-10-02 2019-05-28 株式会社Lg化学 凝胶聚合物电解质和包括其的锂二次电池
JP6562569B2 (ja) 2014-10-02 2019-08-21 エルジー・ケム・リミテッド ゲルポリマー電解質及びこれを含むリチウム二次電池
WO2017033600A1 (ja) 2015-08-27 2017-03-02 日本ゼオン株式会社 全固体電池用バインダ組成物
KR101904296B1 (ko) * 2015-12-22 2018-11-13 삼성에스디아이 주식회사 다공성 접착층을 포함하는 분리막 및 이를 포함하는 전기 화학 전지
KR102338540B1 (ko) * 2018-04-10 2021-12-14 주식회사 엘지에너지솔루션 리튬 이차 전지 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060042326A (ko) * 2004-11-09 2006-05-12 브이케이 주식회사 계면 가교 방식의 겔 고분자 전지 제조 방법 및 이를채용한 리튬 2차 전지
KR101637477B1 (ko) * 2012-02-10 2016-07-07 주식회사 엘지화학 높은 전극 접착력을 갖는 세퍼레이터 및 이의 제조방법
KR20130105334A (ko) * 2012-03-16 2013-09-25 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터
KR101346414B1 (ko) * 2013-02-15 2014-01-16 한양대학교 산학협력단 겔 폴리머 전해질 및 이를 이용한 리튬이차전지
KR20140123140A (ko) * 2013-04-10 2014-10-22 삼성에스디아이 주식회사 리튬 이차 전지 및 이의 제조 방법
KR20150131513A (ko) 2014-05-15 2015-11-25 주식회사 엘지화학 무기물 코팅층을 포함하는 전극조립체 및 이를 포함하는 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3761431A4

Also Published As

Publication number Publication date
US11967732B2 (en) 2024-04-23
EP3761431A4 (en) 2021-04-28
EP3761431B1 (en) 2024-03-13
JP2021518036A (ja) 2021-07-29
EP3761431A1 (en) 2021-01-06
JP7101801B2 (ja) 2022-07-15
KR20190125085A (ko) 2019-11-06
US20210104802A1 (en) 2021-04-08
CN111937214B (zh) 2024-03-29
CN111937214A (zh) 2020-11-13
KR102434068B1 (ko) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2019198961A1 (ko) 리튬 이차 전지 및 이의 제조방법
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020209529A1 (ko) 단락 유도 부재를 포함하는 전지셀 및 이를 이용한 안전성 평가방법
WO2019216695A1 (ko) 리튬 이차 전지
WO2019013449A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2019212315A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2021025358A1 (ko) 내부 단락 유도를 위한 전기화학소자 및 이를 이용한 안전성 평가방법
WO2018056615A1 (ko) 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2019139424A1 (ko) 리튬 전극을 포함하는 리튬 금속 이차전지의 제조방법
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2020149683A1 (ko) 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 이차전지용 음극 및 리튬 이차전지
WO2019209087A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2021172774A1 (ko) 탭 상에 형성된 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2022103101A1 (ko) 리튬 이차 전지
WO2021049881A1 (ko) 리튬이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬이차전지
WO2020159083A1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
WO2019107838A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021066462A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2021086132A1 (ko) 음극의 제조 방법
WO2020091448A1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551844

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019793474

Country of ref document: EP

Effective date: 20200929

NENP Non-entry into the national phase

Ref country code: DE