WO2021086132A1 - 음극의 제조 방법 - Google Patents

음극의 제조 방법 Download PDF

Info

Publication number
WO2021086132A1
WO2021086132A1 PCT/KR2020/015078 KR2020015078W WO2021086132A1 WO 2021086132 A1 WO2021086132 A1 WO 2021086132A1 KR 2020015078 W KR2020015078 W KR 2020015078W WO 2021086132 A1 WO2021086132 A1 WO 2021086132A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
preliminary
drying
preliminary negative
simple cell
Prior art date
Application number
PCT/KR2020/015078
Other languages
English (en)
French (fr)
Inventor
채오병
김예리
이수연
황승혜
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/770,239 priority Critical patent/US20220359855A1/en
Priority to ES20881012T priority patent/ES2975913T3/es
Priority to EP20881012.7A priority patent/EP4044277B1/en
Priority to CN202080070553.8A priority patent/CN114586219B/zh
Publication of WO2021086132A1 publication Critical patent/WO2021086132A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of manufacturing a negative electrode capable of improving the life characteristics of a battery by effectively removing moisture from a negative electrode that has undergone prelithiation.
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the negative electrode may include a current collector and a negative active material, and may include a negative active material layer disposed on the current collector.
  • various negative electrode active materials such as silicon are used, but there is a problem in that the capacity of the battery is reduced and lifespan characteristics are reduced due to a high irreversible amount.
  • a lithiation method in which an irreversible site in a negative electrode is first filled with lithium has been introduced.
  • lithium is inserted into the negative electrode by impregnating the simple cell in which the negative electrode, the separator, and lithium metal are sequentially bonded to the electrolyte solution, and the negative electrode into which the lithium is inserted is separated from the simple cell, and then used for a battery. There is a way to do it.
  • One problem to be solved by the present invention is to provide a method of manufacturing a negative electrode capable of solving the irreversibility of the negative electrode, reducing the resistance of the battery, and improving safety and lifespan characteristics.
  • a preliminary anode, a separator, and a lithium metal are sequentially stacked to form a simple cell; Applying an electric current after immersing the simple cell in an electrolyte containing a lithium salt and a solvent; Separating the preliminary negative electrode from the simple cell after removing the simple cell immersed in the electrolyte solution from the electrolyte solution; Washing the separated preliminary negative electrode; First drying the washed preliminary negative electrode at room temperature; And second drying the first dried preliminary negative electrode at a temperature of 30° C. to 70° C. in a vacuum state.
  • a method of manufacturing a negative electrode comprising a.
  • the step of forming a prelithiation structure by bonding a preliminary negative electrode and a lithium metal Aging after immersing the prelithiation structure in an electrolyte solution containing a lithium salt and a solvent; Separating the preliminary negative electrode from the prelithiation structure after taking the prelithiation structure immersed in the electrolyte solution out of the electrolyte solution; Washing the separated preliminary negative electrode; First drying the washed preliminary negative electrode at room temperature; And second drying the first dried preliminary negative electrode at a temperature of 30° C. to 70° C. in a vacuum state.
  • a method of manufacturing a negative electrode comprising a.
  • the irreversible amount of the negative electrode can be eliminated.
  • moisture in the SEI film formed on the negative electrode and the negative electrode can be effectively removed, generation of HF in the electrolyte is suppressed, so that the resistance of the battery can be reduced, and the safety and life characteristics of the battery can be improved.
  • the first drying performed at room temperature and the second drying performed at a temperature of 30° C. to 70° C. are sequentially performed, the non-aqueous solvent and moisture in the negative electrode can be sequentially removed, and accordingly, between the negative active material and the negative electrode A decrease in bonding strength between the active material and the current collector may be suppressed, and thus battery life may be improved.
  • a method of manufacturing a negative electrode according to an embodiment of the present invention includes the steps of sequentially stacking a preliminary negative electrode, a separator, and a lithium metal to form a simple cell (S1-1); Applying an electric current after immersing the simple cell in an electrolyte containing a lithium salt and a solvent (S1-2); Separating the preliminary negative electrode from the simple cell after removing the simple cell immersed in the electrolyte solution from the electrolyte solution (S1-3); Washing the separated preliminary negative electrode (S1-4); First drying the washed preliminary negative electrode at room temperature (S1-5); And second drying the first dried preliminary negative electrode at a temperature of 30° C. to 70° C. in a vacuum state (S1-6).
  • the preliminary negative electrode may include a current collector and a preliminary negative active material layer disposed on the current collector.
  • the current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium, etc. on the surface of aluminum or stainless steel. What has been surface-treated with silver or the like may be used.
  • the current collector may generally have a thickness of 3 ⁇ m to 500 ⁇ m, and fine unevenness may be formed on the surface of the current collector to increase the adhesion of the active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the preliminary negative active material layer may be disposed on the current collector. Specifically, the preliminary negative active material layer may be disposed on one or both surfaces of the current collector.
  • the preliminary negative active material layer may include a negative active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbon-based materials such as hard carbon, soft carbon, artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy;
  • Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SiO 2 , SnO 2, vanadium oxide, and lithium vanadium oxide;
  • a composite including the metal compound and a carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more of them may be used.
  • the negative active material may be at least one selected from the group consisting of a carbonaceous material, SiO x (0 ⁇ x ⁇ 2), SnO 2, Si-C composite, and Sn-C composite.
  • a carbonaceous material SiO x (0 ⁇ x ⁇ 2)
  • SnO 2 Si-C composite
  • Sn-C composite Sn-C composite
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are typical
  • high crystalline carbon is amorphous, plate, scale, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish). graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches, and petroleum or coal tar pitch
  • High-temperature calcined carbon such as derived cokes
  • the negative active material may include at least one of SiO x (0 ⁇ x ⁇ 2) and a carbon-based material.
  • SiO x (0 ⁇ x ⁇ 2) has an advantage of improving the capacity of the cathode, but the SiO x (0 ⁇ x ⁇ 2) has a problem of low initial efficiency due to its large irreversibility.
  • the method of manufacturing a negative electrode according to the present invention since the irreversible amount of the negative electrode may be reduced, the initial efficiency may be maintained even if the SiO x (0 ⁇ x ⁇ 2) is included in the negative electrode active material, and the negative electrode The capacity of can be improved.
  • the preliminary negative active material layer may further include a binder.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacrylate, polymethylmethacrylate, and polyvinylidene fluoride.
  • Vinyl alcohol carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), alcohol It may include at least any one selected from the group consisting of phonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid, and a material in which hydrogen thereof is substituted with Li, Na, or Ca, etc., It may also include various copolymers thereof.
  • the negative active material layer may further include a conductive material.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, Parnes black, lamp black, thermal black, and Denka black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the loading amount of the preliminary negative active material layer may be 1 mg/cm 2 to 20 mg/cm 2 , and specifically 5 mg/cm 2 to 10 mg/cm 2 . When the above range is satisfied, it is possible to suppress a large stress from being applied to the negative electrode in the prelithiation process, and to minimize damage to the negative electrode.
  • the separator separates the negative electrode from the lithium metal and provides a path for lithium ions to move, and can be used without particular limitation as long as it is used as a separator in a general secondary battery. It is desirable to be excellent.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A stacked structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and optionally, a single layer or a multilayer structure may be used.
  • the lithium metal serves to supply lithium to the preliminary negative electrode.
  • the lithium metal may have an electrode shape made of lithium.
  • the thickness of the lithium metal may be 10 ⁇ m to 200 ⁇ m, but is not limited thereto.
  • the preliminary negative electrode, the separator, and the lithium metal may be sequentially stacked, thereby forming a simple cell.
  • the simple cell may be composed of a plurality of preliminary negative electrodes, a plurality of separators, and a plurality of lithium metals, and the preliminary negative electrode and the lithium metal may be spaced apart from each other by a separator.
  • step S1-2 the simple cell may be immersed in an electrolyte.
  • the electrolyte may include an organic electrolyte, an inorganic electrolyte, and the like, but is not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a lithium salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, ethylmethyl carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1 ,2-dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolone, formamide, dimethylformamide, dioxolone, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphoric acid tryester, trimethoxy methane, dioxolone derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, pyrofion
  • An aprotic organic solvent such as
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - , and (CF 3 At least one selected from
  • the lithium salt may be included in an amount of 0.5M to 3M in the electrolyte solution, and specifically, may be included in an amount of 0.7M to 1.5M.
  • Applying the current serves to assist the movement of lithium ions from the lithium metal to the preliminary negative electrode.
  • the intensity of the current may be 0.1 mA/cm 2 to 10 mA/cm 2 , and specifically 0.5 mA/cm 2 to 2 mA/cm 2 . When the above range is satisfied, stable prelithiation is possible.
  • the preliminary negative electrode may be charged up to 5% SOC to 50% SOC by the applied current, and specifically, may be 10% SOC to 30% SOC.
  • the SOC state of charge
  • the SOC of a fully charged battery is 100% SOC
  • the SOC of a fully discharged battery means SOC 0%.
  • the applying of the current (S1-2) may be performed while applying pressure to the simple cell.
  • the pressure may be 10 kPa to 3500 kPa, and specifically 300 kPa to 2000 kPa.
  • step S1-3 the simple cell which has been immersed in the electrolyte is removed from the electrolyte and the preliminary negative electrode is separated from the simple cell.
  • step S1-4 the separated preliminary negative electrode is washed.
  • dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc. may be used, and the electrolyte remaining on the surface of the preliminary negative electrode through the washing And lithium salts can be removed.
  • the washed preliminary negative electrode may be first dried at room temperature.
  • the room temperature may mean a temperature of 15 °C to 25 °C.
  • the non-aqueous solvent of the electrolyte may be effectively removed through the first drying. If only the second drying to be described later is performed without the first drying, the non-aqueous solvent and moisture are simultaneously rapidly removed by vacuum and high-temperature drying, so that the adhesion between the negative active materials and the negative active material and the current collector decreases. The generated space is likely to occur, and accordingly, the life characteristics of the battery may be deteriorated.
  • the non-aqueous solvent is first removed by performing the first drying at room temperature prior to the second drying, and then the moisture is sequentially removed through the second drying. Accordingly, since the non-aqueous solvent and moisture can be sequentially removed, the life characteristics of the battery can be maintained.
  • the first drying may be performed for 5 minutes to 2 hours, and specifically for 10 minutes to 30 minutes. When the above range is satisfied, the electrolyte may be sufficiently dried.
  • the first drying may be performed at normal pressure.
  • the first drying may be performed in a dry room.
  • the dry room may have a dew point of -80°C to -30°C. As the dry room is used, oxidation of the negative electrode due to moisture during the first drying can be prevented.
  • the first dried preliminary negative electrode may be second dried in a vacuum state.
  • the second drying may be performed at a temperature of 30°C to 70°C, specifically 40°C to 60°C, and more specifically 45°C to 55°C.
  • the second drying is performed at a temperature of less than 30° C., it is difficult to effectively remove moisture present in the preliminary cathode and the SEI film formed on the preliminary cathode, and there is a high possibility that moisture remains.
  • the second drying is performed at a temperature of more than 70° C., since the SEI film formed in step S1-2 is destroyed, the life characteristics of the battery deteriorate even if moisture is effectively removed.
  • the drying is performed in a vacuum at an appropriate temperature of 30°C to 70°C, and the safety and life characteristics of the battery are improved by effectively removing moisture in the SEI film on the preliminary negative electrode and the preliminary negative electrode, while preventing the destruction of the SEI film I can make it.
  • the second drying is performed in a vacuum state, moisture can be effectively removed even at a low temperature, thereby preventing damage to the negative electrode due to high temperature.
  • the second drying may be performed for 1 to 48 hours, and specifically for 5 to 15 hours. When the above range is satisfied, moisture in the negative electrode can be effectively removed, so that battery performance can be improved.
  • a method of manufacturing a negative electrode according to another embodiment of the present invention comprises the steps of forming an all-lithiation structure by bonding a preliminary negative electrode and a lithium metal (S2-1); Aging the prelithiation structure after being immersed in an electrolyte solution containing a lithium salt and a solvent (S2-2); Separating the preliminary negative electrode from the prelithiation structure after taking the prelithiation structure immersed in the electrolyte solution out of the electrolyte solution (S2-3); Washing the separated preliminary negative electrode (S2-4); First drying the washed preliminary negative electrode at room temperature (S2-5); And second drying the first dried preliminary negative electrode at a temperature of 30° C. to 70° C. in a vacuum state (S2-6).
  • the preliminary negative electrode, the lithium metal, and the electrolyte are the same as those introduced in the above-described exemplary embodiment, and description thereof will be omitted.
  • step S2-1 the preliminary negative electrode and the lithium metal may be bonded to each other.
  • the lithium metal may be located on the preliminary negative active material layer of the preliminary negative electrode, through which the prelithiation structure may be formed.
  • the prelithiation structure may be immersed in the electrolyte and then aged.
  • lithium ions may be transferred and inserted from the lithium metal to the preliminary negative electrode, and an SEI film may be formed at an interface between the preliminary negative active material layer and the lithium metal.
  • the aging refers to restraining the prelithiation structure for a predetermined period of time while being immersed in the electrolyte solution. The aging may be performed for 0.01 to 10 hours, and specifically for 0.05 to 5 hours. When the above range is satisfied, a stable SEI film may be formed.
  • step S2-3 the prelithiation structure is taken out from the electrolytic solution, and the preliminary negative electrode is separated from the prelithiation structure.
  • Steps S2-4, S2-5, and S2-6 are the same as steps S1-4, S1-5, and S1-6 of the above-described exemplary embodiment, and thus a description thereof will be omitted.
  • a cathode according to another embodiment of the present invention may be a cathode formed through the above-described embodiments.
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above, that is, a negative electrode for which prelithiation has been completed.
  • the negative electrode included in the secondary battery corresponds to the negative electrode manufactured according to the negative electrode manufacturing method of the above-described embodiment. Accordingly, since the cathode has been described above, a detailed description of the cathode will be omitted.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes to the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , Nickel, titanium, silver, or the like may be used.
  • the positive electrode current collector may generally have a thickness of 3 to 500 ⁇ m, and fine unevenness may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the positive active material may be a commonly used positive active material.
  • the positive electrode active material may include a layered compound such as lithium cobalt oxide (LiCoO 2 ) or lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium iron oxides such as LiFe 3 O 4; Lithium manganese oxides such as formula Li 1+c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7; Formula LiNi 1-c2 M c2 O 2 (here, M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and satisfies 0.01 ⁇ c2 ⁇ 0.3) Ni-site type lithium nickel oxide; Formula LiMn 2-
  • the positive electrode active material layer may include a positive electrode conductive material and a positive electrode binder in addition to the positive electrode active material described above.
  • the positive electrode conductive material is used to impart conductivity to the electrode, and in the configured battery, as long as it does not cause chemical changes and has electronic conductivity, it can be used without particular limitation.
  • Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide;
  • a conductive polymer such as a polyphenylene derivative may be used, and one of them alone or a mixture of two or more may be used.
  • the positive electrode binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC).
  • a separator As a separator, it separates the negative electrode and the positive electrode and provides a passage for lithium ions. If it is used as a separator in a general secondary battery, it can be used without special restrictions. It is desirable. Specifically, a porous polymer film, for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A stacked structure of two or more layers of may be used.
  • polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A stacked structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and optionally, a single layer or a multilayer structure may be used.
  • the electrolyte may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used when manufacturing a lithium secondary battery.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1,2-dime Toxicethane, tetrahydrofuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolone, formamide, dimethylformamide, dioxolone, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Tryester, trimethoxy methane, dioxolone derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl pyropionate, propionic acid
  • An aprotic organic solvent such as ethyl may
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trivalent for the purpose of improving the life characteristics of the battery, suppressing the reduction in battery capacity, and improving the discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and trivalent for the purpose of improving the life characteristics of the battery, suppressing the reduction in battery capacity, and improving the discharge capacity of the battery.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride may be further included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and site characteristics, a mid- to large-sized device selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems It can be used as a power source.
  • An anode active material 92% by weight, Denka black (conductive agent) 3% by weight, SBR (binder) 3.5% by weight, and CMC (thickener) 1.5% by weight were added to water to prepare a negative electrode slurry.
  • the prepared negative electrode slurry was coated on both surfaces of a copper current collector, dried and rolled to prepare a preliminary negative electrode including a negative active material layer (10 mg/cm 2 ).
  • a simple cell was manufactured by sequentially laminating a separator (poly propylene) and a lithium metal (the preliminary negative electrode and lithium metal are separated by a separator).
  • a separator poly propylene
  • the preliminary negative electrode and lithium metal are separated by a separator.
  • six preliminary negative electrodes and a plurality of lithium metals are disposed, and the preliminary negative electrode and the lithium metal are separated by separators.
  • Electrolyte (Ethylene carbonate (EC), ethyl methyl carbonate (EMC) in a volume ratio of 3:7, 2wt% of fluoroethylene carbonate (FEC) is added to a non-aqueous solvent, and 1M LiPF 6 is dissolved)
  • the simple cell was pressurized at a pressure of 1000 kPa through a pressurizing jig, and electrochemical charging was performed through a charge/discharger to perform pre-lithiation on the preliminary negative electrode.
  • the intensity of the current was set to 2mA/cm 2 , and charged up to 25% (SOC25%) of the negative electrode charging capacity.
  • the preliminary negative electrode was separated from the simple cell, and the preliminary negative electrode was washed with DMC.
  • the washed preliminary negative electrode was first dried in a dry room (dew point: -60°C) for 20 minutes at room temperature (25°C). After removing the non-aqueous solvent through the first drying, the preliminary negative electrode was introduced into a vacuum chamber and second drying was performed at 50° C. for 8 hours to remove moisture. Through this, a negative electrode was manufactured.
  • a negative electrode was manufactured in the same manner as in Example 1-1, except that the second drying was performed at 40°C.
  • a negative electrode was manufactured in the same manner as in Example 1-1, except that the second drying was performed at 60°C.
  • a negative electrode was manufactured in the same manner as in Example 1-1, except that the second drying was performed at 25°C.
  • a negative electrode was manufactured in the same manner as in Example 1-1, except that the second drying was performed at 80°C.
  • a negative electrode was manufactured in the same manner as in Example 1-1, except that the second drying was not performed.
  • a negative electrode was manufactured in the same manner as in Example 1-1, except that the first drying was not performed.
  • An anode active material 92% by weight, Denka black (conductive agent) 3% by weight, SBR (binder) 3.5% by weight, and CMC (thickener) 1.5% by weight were added to water to prepare a negative electrode slurry.
  • the prepared negative electrode slurry was coated on both surfaces of a copper current collector, dried and rolled to prepare a preliminary negative electrode including a negative active material layer (10 mg/cm 2 ).
  • a lithium metal having a thickness of 150 ⁇ m was disposed on the negative electrode active material layer of the preliminary negative electrode to prepare a prelithiation structure in which the negative electrode active material layer and the lithium metal contacted. Thereafter, 2wt% of fluorine ethylene carbonate (FEC) was added to the electrolithiated structure in a non-aqueous solvent in which an electrolyte solution (ethylene carbonate (EC) and ethylmethyl carbonate (EMC) was mixed in a volume ratio of 3:7), and 1M LiPF 6 Was supported on the dissolved electrolyte), and allowed to stand for 0.5 hours (aging). After the aging was completed, the prelithiation structure was taken out from the electrolyte solution, and the preliminary negative electrode was separated from the alllithiation structure. Thereafter, the preliminary negative electrode was washed using DMC.
  • FEC fluorine ethylene carbonate
  • EMC ethylmethyl carbonate
  • the washed preliminary negative electrode was first dried in a dry room (dew point: -60°C) for 20 minutes at room temperature (25°C). After removing the non-aqueous solvent through the first drying, the preliminary negative electrode was put into a vacuum chamber and second drying was performed at 50° C. for 8 hours to remove moisture. Through this, a negative electrode was manufactured.
  • a negative electrode was manufactured in the same manner as in Example 2-1, except that the second drying was performed at 40°C.
  • a negative electrode was manufactured in the same manner as in Example 2-1, except that the second drying was performed at 60°C.
  • a negative electrode was manufactured in the same manner as in Example 2-1, except that the second drying was performed at 25°C.
  • a negative electrode was manufactured in the same manner as in Example 2-1, except that the second drying was performed at 80°C.
  • a negative electrode was manufactured in the same manner as in Example 2-1, except that the second drying was not performed.
  • a negative electrode was manufactured in the same manner as in Example 2-1, except that the first drying was not performed.
  • the moisture content (ppm wt%) was measured through a karl fischer titrator (metrohm, 831 KF coulometer), and the moisture content is shown in Table 1.
  • a battery was manufactured as follows using each of the negative electrodes of Examples and Comparative Examples.
  • An electrode assembly was manufactured by laminating the negative electrode and the positive electrode (positive electrode active material: LiNi 0.8 Co 0.1 Mn 0.1 O 2) with the separator (poly propylene) interposed therebetween. Put the electrode assembly in a pouch, and 2wt% of fluoroethylene carbonate (FEC) was added to a nonaqueous solvent in which an electrolyte solution (ethylene carbonate (EC), ethylmethyl carbonate (EMC) was mixed in a volume ratio of 3:7) and 1M LiPF 6 was added. Dissolved electrolyte) was injected to prepare a pouch-type secondary battery.
  • FEC fluoroethylene carbonate
  • EMC ethylmethyl carbonate
  • the prelithiated negative electrode not only absorbs moisture from the SEI film, but also absorbs a large amount of moisture from the highly reactive negative electrode itself.
  • Examples 1-1 to 1-3 it can be seen that not only the first drying but also the second drying are performed, so that the moisture is significantly reduced and the capacity retention rate is high. In particular, moisture was removed effectively due to the high capacity retention rate.
  • Comparative Example 1-1 it can be seen that the second drying was performed at a low temperature, so that moisture was not effectively removed, and thus the battery resistance increased, and the capacity retention rate of the battery was low.
  • Comparative Example 1-2 the second drying was performed at a very high temperature, so that the moisture content was small, but the SEI film was destroyed by the high temperature, so that the capacity retention rate was low.
  • Comparative Example 1-3 since the second drying was not performed, an excessive amount of moisture remained, and thus the battery resistance increased, indicating that the capacity retention rate of the battery was low.
  • Comparative Examples 1-4 only the second drying was performed without the first drying, and the moisture content was low, but the non-aqueous solvent and moisture were rapidly removed together, resulting in a rapid structural change of the negative electrode, and accordingly, between the negative active materials and the negative electrode. It can be seen that the bonding strength between the active material and the current collector is lowered, so that the capacity retention rate is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 예비 음극, 분리막, 및 리튬 금속을 순차적으로 적층하여 간이 셀을 형성하는 단계; 상기 간이 셀을 리튬염 및 용매를 포함하는 전해액에 침지시킨 뒤 전류를 가하는 단계; 상기 전해액 내에 침지되었던 상기 간이 셀을 상기 전해액으로부터 꺼낸 뒤 상기 간이 셀로부터 상기 예비 음극을 분리하는 단계; 분리된 상기 예비 음극을 세척하는 단계; 세척된 상기 예비 음극을 상온에서 제1 건조하는 단계; 및 제1 건조된 상기 예비 음극을 진공 상태에서 30℃ 내지 70℃의 온도로 제2 건조하는 단계;를 포함하는 음극의 제조 방법에 관한 것이다.

Description

음극의 제조 방법
관련출원과의 상호인용
본 출원은 2019년 11월 01일자 출원된 한국 특허 출원 제10-2019-0138873호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전리튬화를 거친 음극의 수분을 효과적으로 제거하여, 전지의 수명 특성을 개선시킬 수 있는 음극의 제조방법에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도, 즉 고용량의 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성된다. 이 중, 상기 음극은 집전체 및 음극 활물질을 포함하며 상기 집전체 상에 배치된 음극 활물질층을 포함할 수 있다. 상기 음극의 에너지 밀도를 높이기 위해, 실리콘 등의 다양한 음극 활물질을 사용하고 있으나, 높은 비가역량에 의해 전지의 용량이 줄고 수명 특성이 저하되는 문제가 있다.
이를 해결하기 위해, 음극 내 비가역 사이트(site)를 리튬으로 먼저 채우는 전리튬화(lithiation) 방법이 소개되고 있다. 상기 전리튬화 방법으로는 상기 음극, 분리막, 리튬 금속이 순차적으로 접합된 간이 셀을 전해액에 함침시켜 음극에 리튬을 삽입시키고, 리튬이 삽입된 상기 음극을 간이 셀에서 분리한 뒤, 전지에 사용하는 방법이 있다.
한편, 전리튬화가 이루어진 음극 내에서 전해액의 용매를 제거하기 위해 건조 과정을 거치게 되는데, 이 때 필연적으로 상기 음극 및 음극 표면의 SEI막에서 다량의 수분을 흡수하게 된다. 따라서, 수분이 포함된 음극을 전지에 사용할 시 전해액 내에 과량의 HF가 발생하게 되어, 양극의 용해가 심해지며, 전지의 저항도 증가하며, 가스 발생에 따라 안전성이 저하되고, 전지의 수명 특성이 저하되는 문제가 있다.
따라서, 전리튬화된 음극의 수분을 효과적으로 제거할 수 있는 음극의 제조 방법이 요구된다.
본 발명이 해결하고자 하는 일 과제는, 음극의 비가역량을 해소할 수 있으며, 전지의 저항을 줄이고, 안전성 및 수명 특성을 개선시킬 수 있는 음극의 제조 방법을 제공하는 것이다.
본 발명의 일 실시예에 따르면, 예비 음극, 분리막, 및 리튬 금속을 순차적으로 적층하여 간이 셀을 형성하는 단계; 상기 간이 셀을 리튬염 및 용매를 포함하는 전해액에 침지시킨 뒤 전류를 가하는 단계; 상기 전해액 내에 침지되었던 상기 간이 셀을 상기 전해액으로부터 꺼낸 뒤 상기 간이 셀로부터 상기 예비 음극을 분리하는 단계; 분리된 상기 예비 음극을 세척하는 단계; 세척된 상기 예비 음극을 상온에서 제1 건조하는 단계; 및 제1 건조된 상기 예비 음극을 진공 상태에서 30℃ 내지 70℃의 온도로 제2 건조하는 단계; 를 포함하는 음극의 제조 방법이 제공된다.
본 발명의 다른 실시예에 따르면, 예비 음극 및 리튬 금속을 접합시켜서 전리튬화 구조체를 형성하는 단계; 상기 전리튬화 구조체를 리튬염 및 용매를 포함하는 전해액에 침지시킨 뒤 에이징하는 단계; 상기 전해액 내에 침지되었던 상기 전리튬화 구조체를 상기 전해액으로부터 꺼낸 뒤 상기 전리튬화 구조체로부터 상기 예비 음극을 분리하는 단계; 분리된 상기 예비 음극을 세척하는 단계; 세척된 상기 예비 음극을 상온에서 제1 건조하는 단계; 및 제1 건조된 상기 예비 음극을 진공 상태에서 30℃ 내지 70℃의 온도로 제2 건조하는 단계; 를 포함하는 음극의 제조 방법이 제공된다.
본 발명에 따르면, 전리튬화가 수행되므로, 음극의 비가역량을 해소할 수 있다. 또한, 음극 및 음극 상에 형성되는 SEI막 내 수분이 효과적으로 제거될 수 있으므로, 전해액 내 HF의 발생이 억제되므로, 전지의 저항이 감소할 수 있고, 전지의 안전성 및 수명 특성을 개선될 수 있다. 나아가, 상온에서 수행되는 제1 건조와 30℃ 내지 70℃의 온도에서 수행되는 제2 건조가 순차적으로 수행되므로, 음극 내 비수 용매와 수분이 순차적으로 제거될 수 있고, 이에 따라 음극 활물질간 및 음극 활물질과 집전체 간의 접합력 감소가 억제되어 전지 수명이 개선될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 일 실시예에 따른 음극의 제조 방법은 예비 음극, 분리막, 및 리튬 금속을 순차적으로 적층하여 간이 셀을 형성하는 단계(S1-1); 상기 간이 셀을 리튬염 및 용매를 포함하는 전해액에 침지시킨 뒤 전류를 가하는 단계(S1-2); 상기 전해액 내에 침지되었던 상기 간이 셀을 상기 전해액으로부터 꺼낸 뒤 상기 간이 셀로부터 상기 예비 음극을 분리하는 단계(S1-3); 분리된 상기 예비 음극을 세척하는 단계(S1-4); 세척된 상기 예비 음극을 상온에서 제1 건조하는 단계(S1-5); 및 제1 건조된 상기 예비 음극을 진공 상태에서 30℃ 내지 70℃의 온도로 제2 건조하는 단계(S1-6);를 포함할 수 있다.
S1-1단계에 있어서, 상기 예비 음극은, 집전체 및 상기 집전체 상에 배치된 예비 음극 활물질층을 포함할 수 있다.
상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 예비 음극 활물질층은 상기 집전체 상에 배치될 수 있다. 구체적으로, 상기 예비 음극 활물질층은 상기 집전체의 일면 또는 양면 상에 배치될 수 있다.
상기 예비 음극 활물질층은 음극 활물질을 포함할 수 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 하드카본, 소프트카본, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소계 물질; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0<x<2), SiO2, SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 물질을 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 구체적으로, 상기 음극 활물질은 탄소질 물질, SiOx(0≤x≤2), SnO2, Si-C 복합체, 및 Sn-C 복합체로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
보다 구체적으로, 상기 음극 활물질은 SiOx(0≤x<2) 및 탄소계 물질 중 적어도 어느 하나를 포함할 수 있다. 특히, SiOx(0≤x<2)는 음극의 용량을 향상시킬 수 있는 장점이 있으나, 상기 SiOx(0≤x<2)는 비가역량이 커서 초기 효율이 낮은 문제가 있다. 이러한 관점에서, 본 발명에 따른 음극의 제조방법에 따를 시, 음극의 비가역량이 줄어들 수 있으므로, 상기 SiOx(0≤x<2)가 음극 활물질에 포함되더라도 초기 효율이 유지될 수 있으며, 음극의 용량은 향상될 수 있다.
상기 예비 음극 활물질층은 바인더를 더 포함할 수 있다. 상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 음극 활물질층은 도전재를 더 포함할 수 있다. 상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 덴카 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 예비 음극 활물질층의 로딩량은 1mg/cm2 내지 20mg/cm2일 수 있으며, 구체적으로 5mg/cm2 내지 10mg/cm2일 수 있다. 상기 범위를 만족할 시, 전리튬화 공정에 있어서, 음극에 큰 스트레스가 가해지는 것을 억제할 수 있으며, 음극의 손상을 최소화할 수 있다.
상기 분리막은 음극과 리튬 금속을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 리튬 금속은 상기 예비 음극에 리튬을 공급하는 역할을 한다. 상기 리튬 금속은 리튬으로 이루어진 전극 형상일 수 있다.
상기 리튬 금속의 두께는 10㎛ 내지 200㎛일 수 있으나, 이에 반드시 한정되는 것은 아니다.
상기 예비 음극, 상기 분리막, 및 상기 리튬 금속은 순차적으로 적층될 수 있으며, 이를 통해 간이 셀이 형성될 수 있다. 상기 간이 셀은 복수의 예비 음극, 복수의 분리막, 복수의 리튬 금속으로 구성될 수 있으며, 분리막에 의해 상기 예비 음극과 상기 리튬 금속이 이격될 수 있다.
S1-2단계에 있어서, 상기 간이 셀은 전해액에 침지될 수 있다.
상기 전해액은 유기계 전해액, 무기계 전해액 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해액은 비수계 유기용매와 리튬염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 에틸메틸 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있으며, 이들 중 2종 이상이 혼합되어서 사용될 수도 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 리튬염은 상기 전해액 내에 0.5M 내지 3M로 포함될 수 있으며, 구체적으로 0.7M 내지 1.5M로 포함될 수 있다. 상기 범위를 만족할 시, 큰 저항없이 안정적인 전리튬화가 이루어질 수 있다는 이점이 있다.
상기 전류를 가하는 것은 상기 리튬 금속으로부터 상기 예비 음극으로 리튬 이온의 이동을 돕는 역할을 한다.
상기 전류의 세기는 0.1mA/cm2 내지 10mA/cm2일 수 있으며, 구체적으로 0.5mA/cm2 내지 2mA/cm2일 수 있다. 상기 범위를 만족할 시, 안정적인 전리튬화가 가능하다.
가해진 상기 전류에 의해 상기 예비 음극은 SOC 5% 내지 SOC 50%까지 충전될 수 있으며, 구체적으로 SOC 10% 내지 SOC 30%일 수 있다. 여기서 SOC(state of charge)는 전지의 충전 수준을 의미하며, 구체적으로 만충된 전지의 SOC는 SOC 100%이며, 완전 방전된 전지의 SOC는 SOC 0%를 의미한다.
상기 전류가 가해지면, 상기 예비 음극 내에 리튬 이온이 일부 삽입되며, 상기 예비 음극 상에는 SEI막이 형성된다.
상기 전류가 가하는 단계(S1-2)는 상기 간이 셀에 압력을 가하면서 수행될 수 있다. 상기 압력을 가할 시 상기 예비 음극과 상기 리튬 금속의 간격을 작고 일정하게 유지할 수 있으므로, 전리튬화가 더욱 안정적이고 균일하게 진행될 수 있다. 상기 압력은 10kPa 내지 3500kPa일 수 있으며, 구체적으로 300kPa 내지 2000kPa일 수 있다.
S1-3단계에서, 상기 전해액 내에 침지되었던 상기 간이 셀을 상기 전해액으로부터 꺼낸 뒤 상기 간이 셀로부터 상기 예비 음극을 분리시킨다.
S1-4단계에서, 분리된 상기 예비 음극은 세척된다. 상기 세척에는 디메틸카보네이트(dimethyl carbonate, DMC), 디에틸카보네이트(diethyl carbonate, DEC), 에틸메틸카보네이트(ethyl methyl carbonate, EMC) 등이 사용될 수 있으며, 상기 세척을 통해 상기 예비 음극 표면에 잔류하는 전해액 및 리튬염이 제거될 수 있다.
S1-5단계에서, 세척된 상기 예비 음극은 상온에서 제1 건조될 수 있다. 상기 상온은 15℃ 내지 25℃의 온도를 의미할 수 있다. 상기 제1 건조를 통해 상기 전해액의 비수 용매가 효과적으로 제거될 수 있다. 만일 상기 제1 건조 없이 후술할 제2 건조만이 수행될 시에는 진공, 고온의 건조에 의해 비수 용매와 수분이 동시에 급격하게 제거되므로, 음극 활물질들 간 및 음극 활물질과 집전체 간의 접합력이 떨어져 이격된 공간이 발생하기 쉬우며, 이에 따라 전지의 수명 특성이 저하될 수 있다. 따라서 본 발명에서는 제2 건조에 앞서 상온에서 제1 건조를 진행하여 비수 용매를 먼저 제거한 뒤, 순차적으로 제2 건조를 통해 수분을 제거시키는 차별점이 있다. 이에 따라, 비수 용매와 수분이 순차적으로 제거될 수 있으므로, 전지의 수명 특성이 유지될 수 있다.
상기 제1 건조는 5분 내지 2시간 동안 수행될 수 있으며, 구체적으로 10분 내지 30분 동안 수행될 수 있다. 상기 범위를 만족할 시 전해액을 충분히 건조시킬 수 있다.
상기 제1 건조는 상압에서 수행될 수 있다.
상기 제1 건조는 드라이룸(dry room)에서 수행될 수 있다. 구체적으로 상기 드라이룸의 이슬점은 -80℃ 내지 -30℃일 수 있다. 상기 드라이룸을 사용함에 따라 상기 제1 건조 시 수분에 의한 음극의 산화를 방지할 수 있다.
S1-6단계에서, 제1 건조된 상기 예비 음극은 진공 상태에서 제2 건조될 수 있다. 상기 제2 건조는 30℃ 내지 70℃의 온도에서 수행될 수 있으며, 구체적으로 40℃ 내지 60℃에서 수행될 수 있으며, 보다 구체적으로 45℃ 내지 55℃에서 수행될 수 있다. 상기 제2 건조가 30℃ 미만의 온도에서 수행될 시, 상기 예비 음극 및 상기 예비 음극 상에 형성된 SEI막에 존재하는 수분이 효과적으로 제거되기 어려우며, 수분이 잔류할 가능성이 크다. 상기 제2 건조가 70℃ 초과의 온도에서 수행될 시, S1-2단계에서 형성된 SEI막이 파괴되므로, 수분이 효과적으로 제거되더라도 전지의 수명 특성이 저하된다. 따라서, 본 발명에서는 진공에서 30℃ 내지 70℃의 온도의 적정 온도로 건조시키는 바, 예비 음극 및 예비 음극 상의 SEI막 내 수분을 효과적으로 제거하면서도 SEI막의 파괴를 방지하여 전지의 안전성 및 수명 특성을 향상시킬 수 있다.
한편, 제2 건조는 진공 상태에서 수행되므로 낮은 온도에서도 수분을 효과적으로 제거할 수 있으므로, 고온에 따른 음극의 손상을 방지할 수 있다.
상기 제2 건조는 1시간 내지 48시간 동안 수행될 수 있으며, 구체적으로 5시간 내지 15시간 동안 수행될 수 있다. 상기 범위를 만족할 시 음극 내 수분이 효과적으로 제거될 수 있으므로, 전지 성능이 개선될 수 있다.
본 발명의 다른 실시예에 따른 음극의 제조 방법은 예비 음극 및 리튬 금속을 접합시켜서 전리튬화 구조체를 형성하는 단계(S2-1); 상기 전리튬화 구조체를 리튬염 및 용매를 포함하는 전해액에 침지시킨 뒤 에이징하는 단계(S2-2); 상기 전해액 내에 침지되었던 상기 전리튬화 구조체를 상기 전해액으로부터 꺼낸 뒤 상기 전리튬화 구조체로부터 상기 예비 음극을 분리하는 단계(S2-3); 분리된 상기 예비 음극을 세척하는 단계(S2-4); 세척된 상기 예비 음극을 상온에서 제1 건조하는 단계(S2-5); 및 제1 건조된 상기 예비 음극을 진공 상태에서 30℃ 내지 70℃의 온도로 제2 건조하는 단계(S2-6);를 포함할 수 있다.
상기 예비 음극, 상기 리튬 금속, 상기 전해액은 상술한 일 실시예에서 소개한 것과 동일한 바 설명을 생략한다.
S2-1단계에서, 상기 예비 음극 및 리튬 금속은 서로 접하도록 접합될 수 있다. 구체적으로, 상기 예비 음극의 예비 음극 활물질층 상에 상기 리튬 금속이 위치할 수 있으며, 이를 통해 전리튬화 구조체가 형성될 수 있다.
S2-2단계에서, 상기 전리튬화 구조체는 상기 전해액에 침지된 뒤, 에이징하는 것이 수행될 수 있다. 이를 통해, 상기 리튬 금속으로부터 상기 예비 음극에 리튬 이온이 전달되어 삽입될 수 있으며, 상기 예비 음극 활물질층과 상기 리튬 금속 계면에 SEI막이 형성될 수 있다. 상기 에이징은 상기 전리튬화 구조체를 상기 전해액에 침지된 상태로 소정의 시간동안 휴지시키는 것을 의미한다. 상기 에이징은 0.01시간 내지 10시간 동안 수행될 수 있으며, 구체적으로 0.05시간 내지 5시간 동안 수행될 수 있다. 상기 범위를 만족할 시 안정적인 SEI막이 형성될 수 있다.
S2-3단계에서, 상기 전리튬화 구조체는 상기 전해액으로부터 꺼내지고, 상기 예비 음극은 상기 전리튬화 구조체로부터 분리된다.
S2-4, S2-5, S2-6단계는 상술한 일 실시예의 S1-4, S1-5, S1-6단계와 동일한 바 설명을 생략한다.
본 발명의 또 다른 실시예에 따른 음극은 상술한 실시예들을 통해 형성된 음극일 수 있다.
본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극, 즉 전리튬화가 완료된 음극과 동일하다. 다시 말해, 상기 이차 전지에 포함되는 음극은, 상술한 실시예의 음극 제조방법에 따라 제조된 음극에 해당한다. 이에, 상기 음극에 대해서는 상술하였으므로, 음극에 대한 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu,Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 또 다른 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 및 비교예
실시예 1-1: 음극의 제조
(1) 예비 음극의 제조
음극 활물질 (흑연:SiO=7:3 중량비) 92 중량%, Denka black(도전제) 3 중량% 및 SBR(결합제) 3.5 중량%, 및 CMC(증점제) 1.5 중량%를 물에 첨가하여 음극 슬러리를 제조하였다. 구리 집전체의 양면에 상기 제조된 음극 슬러리를 코팅하고, 이를 건조 및 압연하여 음극 활물질층(10mg/cm2)을 포함하는 예비 음극을 제조하였다.
(2) 전리튬화 공정
상기 예비 음극을 34mm×50mm 크기로 절단한 후 분리막(poly propylene) 및 리튬 금속을 순차적으로 적층(분리막에 의해 예비 음극과 리튬 금속이 이격됨)하여 간이 셀을 제조하였다. 제조된 간이 셀에는 6개의 예비 음극과 복수의 리튬 금속이 배치되며, 분리막들에 의해 상기 예비 음극과 리튬 금속이 이격되어 있다. 상기 간이 셀을 전해액(에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC)를 3:7의 부피비로 혼합한 비수 용매에 플루오루에틸렌 카보네이트(FEC)가 2wt% 첨가되고 1M LiPF6가 용해된 전해액)에 3시간 침지 시켜준 이후 가압 지그를 통해 1000 kPa의 압력으로 상기 간이 셀을 가압한 상태에서 충방전기를 통해 전기화학 충전을 시켜 예비 음극에 전리튬화(pre-lithiation)를 실시하였다. 이때 전류의 세기는 2mA/cm2로 설정하였고, 음극 충전용량의 25% (SOC25%)까지 충전해주었다. 이 후, 상기 간이셀로부터 상기 예비 음극을 분리한 뒤, 상기 예비 음극을 DMC를 이용하여 세척하였다.
이 후, 상기 세척된 예비 음극을 상온(25℃)에서 20분 동안 드라이룸(이슬점: -60℃)에서 제1 건조시켰다. 상기 제1 건조를 통해 상기 비수 용매를 제거한 뒤, 상기 예비 음극을 진공 챔버에 투입하고 50℃에서 8시간 동안 제2 건조를 진행하여 수분을 제거하였다. 이를 통해, 음극이 제조되었다.
실시예 1-2: 음극의 제조
상기 제2 건조를 40℃에서 수행한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 음극을 제조하였다.
실시예 1-3: 음극의 제조
상기 제2 건조를 60℃에서 수행한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 음극을 제조하였다.
비교예 1-1: 음극의 제조
상기 제2 건조를 25℃에서 수행한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 음극을 제조하였다.
비교예 1-2: 음극의 제조
상기 제2 건조를 80℃에서 수행한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 음극을 제조하였다.
비교예 1-3: 음극의 제조
상기 제2 건조를 수행하지 않은 것을 제외하고는, 실시예 1-1과 동일한 방법으로 음극을 제조하였다.
비교예 1-4: 음극의 제조
상기 제1 건조를 수행하지 않은 것을 제외하고는, 실시예 1-1과 동일한 방법으로 음극을 제조하였다.
실시예 2-1: 음극의 제조
(1) 예비 음극의 제조
음극 활물질 (흑연:SiO=7:3 중량비) 92 중량%, Denka black(도전제) 3 중량% 및 SBR(결합제) 3.5 중량%, 및 CMC(증점제) 1.5 중량%를 물에 첨가하여 음극 슬러리를 제조하였다. 구리 집전체의 양면에 상기 제조된 음극 슬러리를 코팅하고, 이를 건조 및 압연하여 음극 활물질층(10mg/cm2)을 포함하는 예비 음극을 제조하였다.
(2) 전리튬화 공정
상기 예비 음극의 음극 활물질층 상에 두께 150㎛의 리튬 금속을 배치하여, 상기 음극 활물질층과 상기 리튬 금속이 접촉된 전리튬화 구조체를 제조하였다. 이 후, 상기 전리튬화 구조체를 전해액(에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC)를 3:7의 부피비로 혼합한 비수 용매에 플루오루에틸렌 카보네이트(FEC)가 2wt% 첨가되고 1M LiPF6가 용해된 전해액)에 담지하고, 0.5시간 동안 방치(에이징)하였다. 에이징을 마친 전리튬화 구조체를 상기 전해액에서 꺼낸 뒤, 상기 전리튬화 구조체로부터 상기 예비 음극을 분리하였다. 이 후, 상기 예비 음극을 DMC를 이용하여 세척하였다.
상기 세척된 예비 음극을 상온(25℃)에서 20분 동안 드라이룸(이슬점: -60℃)에서 제1 건조시켰다. 상기 제1 건조를 통해 상기 비수 용매를 제거한 뒤, 상기 예비 음극을 진공 챔버에 투입하고 50℃에서 8시간 동안 제2 건조를 진행하여 수분을 제거하였다. 이를 통해, 음극이 제조되었다.
실시예 2-2: 음극의 제조
상기 제2 건조를 40℃에서 수행한 것을 제외하고는, 실시예 2-1과 동일한 방법으로 음극을 제조하였다.
실시예 2-3: 음극의 제조
상기 제2 건조를 60℃에서 수행한 것을 제외하고는, 실시예 2-1과 동일한 방법으로 음극을 제조하였다.
비교예 2-1: 음극의 제조
상기 제2 건조를 25℃에서 수행한 것을 제외하고는, 실시예 2-1과 동일한 방법으로 음극을 제조하였다.
비교예 2-2: 음극의 제조
상기 제2 건조를 80℃에서 수행한 것을 제외하고는, 실시예 2-1과 동일한 방법으로 음극을 제조하였다.
비교예 2-3: 음극의 제조
상기 제2 건조를 수행하지 않은 것을 제외하고는, 실시예 2-1과 동일한 방법으로 음극을 제조하였다.
비교예 2-4: 음극의 제조
상기 제1 건조를 수행하지 않은 것을 제외하고는, 실시예 2-1과 동일한 방법으로 음극을 제조하였다.
실험예
실험예 1: 음극 내 수분 함량 측정
실시예들과 비교예들의 음극 각각에 대하여, 수분 함량(ppm중량%)을 karl fischer titrator (metrohm, 831 KF coulometer)를 통해 측정하였고, 수분 함량을 표 1에 나타내었다.
실험예 2: 전지의 수명 특성 평가
실시예들과 비교예들의 음극 각각을 이용하여 다음과 같이 전지를 제조하였다. 상기 분리막(poly propylene)을 사이에 두고 상기 음극과 양극(양극 활물질: LiNi0.8Co0.1Mn0.1O2)을 적층하여 전극조립체를 제조하였다. 상기 전극조립체를 파우치에 넣고, 전해액(에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC)를 3:7의 부피비로 혼합한 비수 용매에 플루오루에틸렌 카보네이트(FEC)가 2wt% 첨가되고 1M LiPF6가 용해된 전해액)을 주입하여 파우치형 이차 전지를 제조하였다.
상기 이차 전지에 대해 전기화학 충방전기를 이용하여 충방전 가역성 테스트를 하였다. 충전 시 4.2 V (vs. Li/Li+)의 전압까지 0.1C-rate의 전류밀도로 전류를 가하여 충전해 주었고, 방전 시 같은 전류 밀도로 2.5 V의 전압까지 방전을 실시해 주었다. 첫번째 사이클 방전 용량을 100%로 볼 때, 100사이클 용량 유지율(%)을 표 1에 나타내었다.
제1 건조 온도(℃) 제2 건조 온도(℃) 수분 함량(ppm중량%) 100 사이클 후 용량 유지율(%)
실시예 1-1 25 50 310 94
실시예 1-2 25 40 400 91
실시예 1-3 25 60 290 93
비교예 1-1 25 25 650 85
비교예 1-2 25 80 240 79
비교예 1-3 25 - 1200 83
비교예 1-4 - 50 340 86
실시예 2-1 25 50 290 95
실시예 2-2 25 40 390 91
실시예 2-3 25 60 280 93
비교예 2-1 25 25 650 85
비교예 2-2 25 80 230 80
비교예 2-3 25 - 1200 83
비교예 2-4 - 50 320 87
전리튬화가 수행된 음극의 경우, 수분이 제거된 드라이룸에서 건조시키더라도, 필연적으로 드라이룸에 잔류하는 미세 수분에 의해 음극 표면에 형성된 SEI막이 다량의 수분을 흡수하게 된다. 특히, 전리튬화된 음극은 SEI막의 수분 흡수 뿐만 아니라, 높은 반응성을 가지는 음극 자체에서도 다량의 수분이 흡수된다. 실시예 1-1 내지 1-3의 경우 제1 건조 뿐만 아니라 제2 건조가 수행되어, 수분이 현저히 줄어들고 용량 유지율이 높은 것을 알 수 있다. 특히 용량 유지율이 높은 이유로는 수분이 효과적으로 제거된 것도 있으나, 제1 건조와 제2 건조를 순차적으로 진행하여 비수 용매와 수분이 순차적으로 제거되었기에 음극의 급격한 구조 변화를 방지하여 음극 활물질들 간 및 음극 활물질과 집전체 간이 접합력이 유지될 수 있기 때문이다.
한편, 비교예 1-1은 제2 건조가 낮은 온도에서 수행되어 수분이 효과적으로 제거되지 못하였고 이에 전지 저항이 증가하여 전지의 용량 유지율이 낮음을 알 수 있다. 비교예 1-2는 제2 건조가 매우 높은 온도에서 수행되어 수분 함량이 적었으나, 높은 온도에 의해 SEI막이 파괴되어 용량 유지율이 낮은 것을 알 수 있다. 비교예 1-3은 제2 건조가 수행되지 않아 수분이 과량으로 잔류하고 있으며, 이에 전지 저항이 증가하여 전지의 용량 유지율이 낮음을 알 수 있다. 비교예 1-4는 제1 건조없이 제2 건조만 진행되었으며, 수분 함량은 낮은 수준이나 비수 용매와 수분이 함께 급격하게 제거되어 음극의 급격한 구조 변화가 발생하였으며, 이에 따라 음극 활물질들 간 및 음극 활물질과 집전체 간이 접합력이 저하되어 용량 유지율이 낮음을 알 수 있다.
또한, 이러한 결과는 간이셀을 제조하여 전리튬화를 진행하는 방식과 달리, 음극 상태에서 전리튬화를 진행하는 경우에도 동일하게 나타나는 것을 알 수 있다. (실시예 2-1 내지 실시예 2-3 및 비교예 2-1 내지 비교예 2-4 참조)

Claims (11)

  1. 예비 음극, 분리막, 및 리튬 금속을 순차적으로 적층하여 간이 셀을 형성하는 단계;
    상기 간이 셀을 리튬염 및 용매를 포함하는 전해액에 침지시킨 뒤 전류를 가하는 단계;
    상기 전해액 내에 침지되었던 상기 간이 셀을 상기 전해액으로부터 꺼낸 뒤 상기 간이 셀로부터 상기 예비 음극을 분리하는 단계;
    분리된 상기 예비 음극을 세척하는 단계;
    세척된 상기 예비 음극을 상온에서 제1 건조하는 단계; 및
    제1 건조된 상기 예비 음극을 진공 상태에서 30℃ 내지 70℃의 온도로 제2 건조하는 단계;
    를 포함하는 음극의 제조 방법.
  2. 예비 음극 및 리튬 금속을 접합시켜서 전리튬화 구조체를 형성하는 단계;
    상기 전리튬화 구조체를 리튬염 및 용매를 포함하는 전해액에 침지시킨 뒤 에이징하는 단계;
    상기 전해액 내에 침지되었던 상기 전리튬화 구조체를 상기 전해액으로부터 꺼낸 뒤 상기 전리튬화 구조체로부터 상기 예비 음극을 분리하는 단계;
    분리된 상기 예비 음극을 세척하는 단계;
    세척된 상기 예비 음극을 상온에서 제1 건조하는 단계; 및
    제1 건조된 상기 예비 음극을 진공 상태에서 30℃ 내지 70℃의 온도로 제2 건조하는 단계;
    를 포함하는 음극의 제조 방법.
  3. 청구항 1 및 청구항 2에 있어서,
    상기 제1 건조는 5분 내지 2시간 동안 수행되는 음극의 제조 방법.
  4. 청구항 1 및 청구항 2에 있어서,
    상기 제1 건조는 드라이룸에서 수행되는 음극의 제조 방법.
  5. 청구항 1 및 청구항 2에 있어서,
    상기 제2 건조는 1시간 내지 48시간 동안 수행되는 음극의 제조 방법.
  6. 청구항 1 및 청구항 2에 있어서,
    상기 예비 음극은 집전체 및 상기 집전체 상에 배치된 예비 음극 활물질층을 포함하며,
    상기 예비 음극 활물질층의 로딩량은 1mg/cm2 내지 20mg/cm2인 음극의 제조 방법.
  7. 청구항 1에 있어서,
    상기 전류의 세기는 0.1mA/cm2 내지 10mA/cm2인 음극의 제조 방법.
  8. 청구항 1에 있어서,
    가해진 상기 전류에 의해 상기 예비 음극은 SOC 5% 내지 SOC 50%까지 충전되는 음극의 제조 방법.
  9. 청구항 2에 있어서,
    상기 에이징하는 단계는 0.01시간 내지 10시간 동안 수행되는 음극의 제조 방법.
  10. 청구항 1에 있어서,
    상기 전류를 가하는 단계는 상기 간이 셀에 압력이 가해지면서 수행되는 음극의 제조 방법.
  11. 청구항 10에 있어서,
    상기 압력은 10kPa 내지 3500kPa 인 음극의 제조 방법.
PCT/KR2020/015078 2019-11-01 2020-10-30 음극의 제조 방법 WO2021086132A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/770,239 US20220359855A1 (en) 2019-11-01 2020-10-30 Method of preparing negative electrode
ES20881012T ES2975913T3 (es) 2019-11-01 2020-10-30 Método de preparación de electrodo negativo
EP20881012.7A EP4044277B1 (en) 2019-11-01 2020-10-30 Method of preparing negative electrode
CN202080070553.8A CN114586219B (zh) 2019-11-01 2020-10-30 制备负极的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190138873 2019-11-01
KR10-2019-0138873 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021086132A1 true WO2021086132A1 (ko) 2021-05-06

Family

ID=75715465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015078 WO2021086132A1 (ko) 2019-11-01 2020-10-30 음극의 제조 방법

Country Status (7)

Country Link
US (1) US20220359855A1 (ko)
EP (1) EP4044277B1 (ko)
KR (1) KR20210053244A (ko)
CN (1) CN114586219B (ko)
ES (1) ES2975913T3 (ko)
HU (1) HUE065644T2 (ko)
WO (1) WO2021086132A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20210802A1 (en) * 2021-06-22 2022-12-23 Beyonder As Method for pre-lithiating an anode for an energy storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181594A1 (en) * 2014-12-22 2016-06-23 Gm Global Technology Operations, Llc Process for lithiating negative electrodes for lithium ion electrochemical cells
WO2019070896A1 (en) * 2017-10-03 2019-04-11 Ioxus, Inc. SYSTEMS AND METHODS FOR PREPARING STABILIZED LITHIUM ELECTRODES FOR ELECTROCHEMICAL ENERGY STORAGE DEVICES
KR20190090723A (ko) * 2018-01-25 2019-08-02 주식회사 엘지화학 리튬 이차전지용 음극의 제조방법
KR20190106772A (ko) * 2018-03-07 2019-09-18 주식회사 엘지화학 음극의 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302688A1 (en) * 2011-01-24 2013-11-14 Panasonic Corporation Lithium secondary battery and method for producing same
CN104584278B (zh) * 2013-03-11 2017-09-29 株式会社Lg 化学 预锂化的方法、包括该方法的制造锂二次电池的方法以及由该制造方法制造的锂二次电池
CN107799721B (zh) * 2016-09-07 2020-02-07 北京卫蓝新能源科技有限公司 预锂化负极、包括其的二次电池、以及它们的制造方法
KR102268077B1 (ko) * 2017-07-12 2021-06-23 주식회사 엘지에너지솔루션 리튬 이차전지 및 이의 제조 방법
CN109994773A (zh) * 2018-01-03 2019-07-09 郑州宇通客车股份有限公司 一种锂离子电池用固态复合电解质膜及其制备方法、固态锂离子电池
KR20190101807A (ko) * 2018-02-23 2019-09-02 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181594A1 (en) * 2014-12-22 2016-06-23 Gm Global Technology Operations, Llc Process for lithiating negative electrodes for lithium ion electrochemical cells
WO2019070896A1 (en) * 2017-10-03 2019-04-11 Ioxus, Inc. SYSTEMS AND METHODS FOR PREPARING STABILIZED LITHIUM ELECTRODES FOR ELECTROCHEMICAL ENERGY STORAGE DEVICES
KR20190090723A (ko) * 2018-01-25 2019-08-02 주식회사 엘지화학 리튬 이차전지용 음극의 제조방법
KR20190106772A (ko) * 2018-03-07 2019-09-18 주식회사 엘지화학 음극의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUSUKE ABE, TOMOAKI SAITO, SEIJI KUMAGAI: "Effect of Prelithiation Process for Hard Carbon Negative Electrode on the Rate and Cycling Behaviors of Lithium-Ion Batteries", BATTERIES, vol. 4, no. 4, 71, 12 December 2018 (2018-12-12), pages 1 - 16, XP055728029, DOI: 10.3390/batteries4040071 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20210802A1 (en) * 2021-06-22 2022-12-23 Beyonder As Method for pre-lithiating an anode for an energy storage device
NO347334B1 (en) * 2021-06-22 2023-09-18 Beyonder As Method for pre-lithiating an anode for an energy storage device

Also Published As

Publication number Publication date
US20220359855A1 (en) 2022-11-10
EP4044277A4 (en) 2023-05-03
HUE065644T2 (hu) 2024-06-28
EP4044277B1 (en) 2024-02-21
EP4044277A1 (en) 2022-08-17
ES2975913T3 (es) 2024-07-17
CN114586219A (zh) 2022-06-03
KR20210053244A (ko) 2021-05-11
CN114586219B (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019172661A1 (ko) 음극의 제조 방법
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019212315A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022010121A1 (ko) 급속충전 성능이 향상된 음극 및 리튬 이차전지
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022211521A1 (ko) 리튬 금속 전극 코팅 조성물, 리튬 금속 전극 제조방법, 리튬 금속 전극 및 리튬 이차 전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2022103094A1 (ko) 리튬 이차전지용 양극 및 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022092679A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2021085946A1 (ko) 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020116939A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2021107363A1 (ko) 도핑 원소가 도핑된 리튬 니켈계 산화물을 포함하는 양극 활물질, 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020881012

Country of ref document: EP

Effective date: 20220413

NENP Non-entry into the national phase

Ref country code: DE