WO2022103101A1 - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
WO2022103101A1
WO2022103101A1 PCT/KR2021/016153 KR2021016153W WO2022103101A1 WO 2022103101 A1 WO2022103101 A1 WO 2022103101A1 KR 2021016153 W KR2021016153 W KR 2021016153W WO 2022103101 A1 WO2022103101 A1 WO 2022103101A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
formula
secondary battery
lithium secondary
positive electrode
Prior art date
Application number
PCT/KR2021/016153
Other languages
English (en)
French (fr)
Inventor
안유하
황승혜
김현승
이철행
오정우
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21892269.8A priority Critical patent/EP4170773A1/en
Priority to US18/017,547 priority patent/US20230335795A1/en
Priority to CN202180059023.8A priority patent/CN116134640A/zh
Publication of WO2022103101A1 publication Critical patent/WO2022103101A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery having improved high-temperature performance by strengthening the stability of the electrode film.
  • Lithium secondary batteries generally form an electrode assembly by interposing a separator between a positive electrode including a positive electrode active material made of a transition metal oxide containing lithium and a negative electrode including a negative electrode active material capable of storing lithium ions, and the electrode It is manufactured by inserting the assembly into the battery case, injecting a non-aqueous electrolyte as a medium for transferring lithium ions, and then sealing the assembly.
  • Lithium secondary batteries can be miniaturized and have high energy density and operating voltage, so they are being applied to various fields such as mobile devices, electronic products, and electric vehicles.
  • the required physical property conditions are gradually increasing, and in particular, there is a demand for the development of a lithium secondary battery that can be stably driven even in a high temperature condition.
  • PF 6 ⁇ anions may be thermally decomposed from lithium salts such as LiPF 6 contained in the electrolyte to generate Lewis acids such as PF 5 , which react with moisture to generate HF. Transition metals of the cathode material may be eluted into the electrolyte due to decomposition products such as PF 5 and HF, and unstable structural changes of the anode due to charging and discharging. Electrolyte decomposition and battery performance degradation due to the elution of the intensified, so improvement is required.
  • the present invention is to solve the electrolyte decomposition problem due to the elution of iron in the battery including the above-described LFP positive electrode, and ultimately to provide a lithium secondary battery with improved initial resistance and durability.
  • the present invention provides a non-aqueous electrolyte comprising a lithium salt, an organic solvent, a first additive represented by the following formula (1) and a second additive represented by the following formula (2);
  • a positive electrode including a lithium iron phosphate-based composite oxide
  • a negative electrode comprising an anode active material
  • the content of the first additive and the second additive is 0.1 wt% to 5 wt%, respectively, based on the total weight of the non-aqueous electrolyte.
  • R1 and R2 are the same as or different from each other and each independently represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms; a substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; Or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms,
  • Cy1 is a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms
  • L1 is a direct bond or a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms.
  • the present invention enables a lithium secondary battery having excellent durability while exhibiting low initial resistance by using an electrolyte containing a specific additive combination together with an LFP-based positive electrode active material.
  • substituted or unsubstituted refers to deuterium, a halogen group, a hydroxy group, an amino group, a thiol group, a nitro group, a nitrile group, a silyl group, a straight or branched C 1 -C 10 alkyl group, or a straight chain Or it is substituted with one or more substituents selected from a branched C 1 -C 10 alkoxy group, or it means that it does not have any substituents.
  • the alkylene group refers to a divalent unsaturated hydrocarbon group having two bonding positions in an alkane. Except that these are divalent groups, the description of the alkyl group may be applied.
  • LiPF 6 a lithium salt widely used in lithium secondary batteries, forms decomposition products such as hydrogen fluoride (HF) and PF 5 by high temperature or moisture. These decomposition products have acidic properties and deteriorate the film or electrode surface in the battery.
  • HF hydrogen fluoride
  • the decomposition product easily elutes the transition metal constituting the positive electrode into the electrolyte, and the eluted transition metal ions move to the negative electrode through the electrolyte and are electrodeposited on the solid electrolyte interphase (SEI) film formed on the negative electrode, further decomposing the electrolyte cause a reaction
  • the present inventors remove the first additive represented by the following Chemical Formula 1, which can suppress the formation of additional Lewis acid (HF) by adsorbing moisture, and decomposition products such as PF 5 and metal ions eluted from the positive electrode, and nitrile It is possible to simultaneously improve the initial resistance characteristics and durability of a battery including a lithium iron phosphate (LFP)-based positive electrode by including the second additive represented by the following formula (2) in the electrolyte solution, which can form a solid SEI film of system and polymer components was confirmed.
  • Chemical Formula 1 Chemical Formula 1
  • the initial capacity retention rate could be improved through the first additive, and the long-term lifespan could be improved through the second additive. 1 It has been found that since the additive reduces the LiF component, which is a decomposition product of salt present on the electrode surface, through moisture control, a relatively organic rich film can be formed, resulting in additional resistance reduction.
  • a lithium secondary battery includes a lithium salt, an organic solvent, a non-aqueous electrolyte including a first additive represented by the following formula (1) and a second additive represented by the following formula (2); a positive electrode including a lithium iron phosphate-based composite oxide; a negative electrode comprising an anode active material; and a separator interposed between the positive electrode and the negative electrode, and a description of each configuration is as follows.
  • the non-aqueous electrolyte of the present invention includes a lithium salt, an organic solvent, a first additive and a second additive.
  • the lithium salt includes Li + as a cation, and F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , ClO 4 - , B 10 Cl 10 - , AlCl 4 as an anion.
  • the lithium salt is LiPF 6 , LiClO 4 , LiFSI, LiTFSI, LiSO 3 CF 3 , LiPO 2 F 2 , lithium bis (oxalato) borate (LiBOB), lithium difluoro ( Lithium difluoro(bisoxalato) phosphate (LiDFBP), lithium tetrafluoro(oxalato) phosphate (LiTFOP), and lithium fluoromalonato (difluoro) borate (Lithium) It may be at least one selected from the group consisting of fluoromalonato (difluoro) borate, LiFMDFB), preferably LiPF 6 .
  • LiPF 6 is preferable as the lithium salt of the present invention from the viewpoint of being well soluble in a carbonate solvent and having high ionic conductivity.
  • the lithium salt may be included in the non-aqueous electrolyte at a concentration of 0.5M to 3.0M, specifically, in a concentration of 1.0M to 2.0M.
  • concentration of the lithium salt satisfies the above range, the lithium ion yield (Li+ transference number) and the degree of dissociation of lithium ions may be improved, thereby improving the output characteristics of the battery.
  • the concentration of the lithium salt is less than 0.5M, the mobility of lithium ions is reduced, and the effect of improving low-temperature output and improving cycle characteristics during high-temperature storage is insignificant.
  • concentration of lithium salt exceeds the concentration of 3.0M, the viscosity of the non-aqueous electrolyte is excessively increased, the non-aqueous electrolyte impregnation property may be deteriorated, and the film formation effect may be reduced.
  • the organic solvent various organic solvents commonly used in lithium electrolytes may be used without limitation, but preferably, the organic solvent may include a cyclic carbonate-based solvent and a linear carbonate-based solvent.
  • the cyclic carbonate-based solvent is a high-viscosity organic solvent and has a high dielectric constant, so that it can well dissociate lithium salts in the electrolyte, and ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butyl It may be at least one selected from the group consisting of ene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate. Among them, ethylene carbonate (EC) may be included in terms of securing high ionic conductivity.
  • the linear carbonate-based solvent is an organic solvent having a low viscosity and a low dielectric constant, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methyl It may be at least one selected from the group consisting of propyl carbonate and ethylpropyl carbonate. Among them, ethylmethyl carbonate (EMC), which is preferable in terms of boiling point and viscosity, may be included.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • EMC ethylmethyl carbonate
  • the volume ratio of the cyclic carbonate-based solvent and the linear carbonate-based solvent may be 1:10 to 5:5, specifically 2:8 to 4:6, and more specifically 2:8 to 3:7. there is.
  • the organic solvent has a low melting point in the cyclic carbonate-based solvent and/or the linear carbonate-based solvent in order to prepare an electrolyte solution having high ionic conductivity
  • a linear ester-based solvent and/or a cyclic ester-based solvent having high stability at high temperature may further include.
  • the linear ester solvent may be at least one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and butyl propionate.
  • the cyclic ester solvent may be at least one selected from the group consisting of ⁇ -butyrolactone, ⁇ -buvalerolactone, ⁇ -bucaprolactone, ⁇ -valerolactone and ⁇ -caprolactone.
  • the remainder is an organic solvent unless otherwise specified.
  • the non-aqueous electrolyte of the present invention includes a first additive represented by the following formula (1) and a second additive represented by the following formula (2).
  • R1 and R2 are the same as or different from each other and each independently represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms; a substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms; Or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms,
  • Cy1 is a substituted or unsubstituted heterocyclic group having 2 to 30 carbon atoms
  • L1 is a direct bond or a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms.
  • the second additive Since the second additive generates a propargyl radical intermediate that can be electrochemically reduced and decomposed, the ability to form a strong SEI film of nitrile-based and polymeric components through the reaction of the generated radicals is excellent. Durability can be improved.
  • the negative SEI film can be strengthened as well as the HF formation inhibitory effect through moisture removal, so it is possible not only to control the electrodeposition of the eluted transition metal on the negative electrode, but also to prevent the formed SEI film from being etched by HF. Since it can prevent it, initial performance and lifespan can be secured at the same time.
  • the LFP-based positive electrode which has high structural stability compared to a layered positive electrode such as a lithium nickel cobalt manganese (NCM)-based positive electrode, but is sensitive to moisture and may be deformed due to the elution of metal ions, is an additive of the present invention
  • NCM lithium nickel cobalt manganese
  • R1 and R2 in Formula 1 are the same as or different from each other and each independently may be a substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, preferably a cyclohexyl group, respectively. there is.
  • the first additive may be represented by the following Chemical Formula 1-1.
  • Cy1 of Formula 2 is a nitrogen-containing heterocyclic group
  • L1 may be represented by -(CH 2 ) n -, wherein n is an integer of 1 to 10, preferably 1 to an integer of 5.
  • Cy1 of Formula 2 may be a substituted or unsubstituted heterocyclic group having 2 to 10 carbon atoms including two or more nitrogen atoms, preferably a substituted or unsubstituted imidazolyl ( imidazolyl) group.
  • L1 in Formula 2 may be a methylene group or an ethylene group, preferably a methylene group.
  • the second additive may be represented by the following Chemical Formula 2-1.
  • the content of the first additive and the second additive may be 0.1 wt% to 5 wt%, respectively, based on the total weight of the non-aqueous electrolyte.
  • the content of the first additive may be 0.1 wt% to 1 wt%, preferably 0.1 wt% to 0.5 wt%, based on the total weight of the non-aqueous electrolyte.
  • the content of the second additive may be 0.1 wt% to 1 wt%, preferably 0.1 wt% to 0.5 wt%, based on the total weight of the non-aqueous electrolyte.
  • the metal ion removal effect due to the input of the second additive may be insignificant, and if it exceeds 5% by weight, the initial film resistance may be increased according to an increase in the SEI film thickness.
  • the weight ratio of the first additive and the second additive is 1:5 to 5:1, preferably 1:2 to 2:1, more preferably 1:1 to 1:2 can be
  • the weight ratio of the first additive and the second additive is included in the above range, it is preferable in that an optimal synergistic effect can be obtained while preventing problems caused by excessive input of the first additive and the second additive.
  • the weight of the second additive may be greater than that of the first additive, and in this case, it may help to improve the high temperature durability of the battery.
  • the non-aqueous electrolyte for a lithium secondary battery forms a stable film on the surface of the negative electrode and the positive electrode without significantly increasing the initial resistance, suppresses the decomposition of the solvent in the non-aqueous electrolyte, and improves the mobility of lithium ions. It may optionally further include a third additive capable of performing a second function.
  • the third additive may be a vinyl silane-based chemical, a phosphate-based compound, a sulfite-based compound, a sulfone-based compound, a sulfate-based compound, a sultone-based compound, a halogen-substituted carbonate-based compound, a nitrile-based compound, or a borate-based compound , and may include one or more compounds selected from the group consisting of lithium salt-based compounds.
  • the vinyl silane compound may be electrochemically reduced on the surface of the negative electrode to form a stable SEI, thereby improving battery durability. More specifically, the vinyl silane-based compound may include tetravinyl silane and the like.
  • the phosphate-based compound is electrochemically decomposed on the surfaces of the positive electrode and the negative electrode to help form the SEI film, and may improve the lifespan characteristics of the secondary battery. More specifically, lithium difluoro (bisoxalato) phosphate, tris (trimethyl silyl) phosphate (TMSPa), tris (trimethyl silyl) phosphite (TMSPi), tris (2,2,2-trifluoroethyl) and at least one compound selected from the group consisting of phosphate (TFEPa) and tris(trifluoroethyl) phosphite (TFEPi).
  • TMSPa tris (trimethyl silyl) phosphate
  • TMSPi tris (trimethyl silyl) phosphite
  • TFEPa tris(trifluoroethyl) phosphite
  • the sulfone-based compound may include at least one compound selected from the group consisting of divinyl sulfone, dimethyl sulfone, diethyl sulfone, methylethyl sulfone, and methylvinyl sulfone.
  • the sulfate-based compound may include at least one compound selected from the group consisting of ethylene sulfate (Esa), trimethylene sulfate (TMS), and methyltrimethylene sulfate (MTMS).
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyltrimethylene sulfate
  • the sultone-based compound may include at least one compound selected from the group consisting of 1,3-propane sultone (PS) and 1,4-butane sultone, except for the compound represented by Formula 2 above.
  • PS 1,3-propane sultone
  • 1,4-butane sultone except for the compound represented by Formula 2 above.
  • fluoroethylene carbonate FEC
  • the nitrile-based compound is succinonitrile (SN), adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptannitrile, cyclopentane carbonitrile, cyclohexane consisting of carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile and 4-fluorophenylacetonitrile It may include one or more compounds selected from the group.
  • the lithium salt-based compound is a compound different from the lithium salt included in the non-aqueous electrolyte, and includes lithium difluoro(oxalato)borate (LiDFOB), lithium bisoxalatoborate (LiBOB), lithium 2-trifluoromethyl-4, It may include at least one compound selected from the group consisting of 5-dicyanoimidazole (lithium 2-trifluoromethyl-4,5-dicyanoimidazole, LiTDI) and LiBF 4 .
  • LiDFOB lithium difluoro(oxalato)borate
  • LiBOB lithium bisoxalatoborate
  • Li 2-trifluoromethyl-4 It may include at least one compound selected from the group consisting of 5-dicyanoimidazole (lithium 2-trifluoromethyl-4,5-dicyanoimidazole, LiTDI) and LiBF 4 .
  • the third additive may be lithium difluoro(oxalato)borate (LiDFOB).
  • LiDFOB lithium difluoro(oxalato)borate
  • the electrolyte containing LiDFOB can contribute to improving the high-temperature performance of the battery.
  • the third additive may be included in an amount of 20 wt% or less, preferably 10 wt% or less, and more preferably 0.1 wt% to 2 wt% based on the total weight of the non-aqueous electrolyte. If the content of the additives exceeds the above range, side reactions in the electrolyte may excessively occur during charging and discharging of the lithium secondary battery, and may not be sufficiently decomposed at high temperature, and may exist as unreacted or precipitated in the non-aqueous electrolyte, Accordingly, the lifespan or resistance characteristics of the secondary battery may be reduced.
  • the positive electrode according to the present invention includes a lithium iron phosphate (LFP)-based composite oxide.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material included in the positive electrode active material layer may be formed of the lithium iron phosphate-based composite oxide.
  • the LFP-based anode has an olivine structure and has superior structural stability and long-term lifespan compared to a layered anode having a risk of structural collapse, such as an NCM-based anode.
  • a layered anode having a risk of structural collapse such as an NCM-based anode.
  • the LFP-based positive electrode has high moisture sensitivity and voltage dependence, and is vulnerable to the problem of metal ion elution, when these problems are solved through the additive combination of the present invention, a battery superior in stability and lifespan can be obtained compared to the NCM-based positive electrode. .
  • the positive electrode active material layer may be prepared by coating a positive electrode slurry including a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • stainless steel aluminum; nickel; titanium; calcined carbon; Alternatively, a surface treated with carbon, nickel, titanium, silver, etc. on the surface of aluminum or stainless steel may be used.
  • the lithium iron phosphate-based composite oxide may be represented by Formula 3 below.
  • M is at least one selected from Ni, Co, Mn, Al, Mg, Y, Zn, In, Ru, Sn, Sb, Ti, Te, Nb, Mo, Cr, Zr, W, Ir, and V;
  • the lithium iron phosphate-based composite oxide may be LiFePO 4 .
  • the cathode active material may be included in an amount of 80 wt% to 99 wt%, specifically, 90 wt% to 99 wt%, based on the total weight of the solid content in the cathode slurry. In this case, when the content of the positive active material is 80% by weight or less, the energy density may be lowered, and thus the capacity may be lowered.
  • the binder in the positive electrode slurry is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • binders examples include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene , polyethylene, polypropylene, ethylene-propylene-diene ether monomer, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, or various copolymers thereof.
  • CMC carboxymethylcellulose
  • hydroxypropylcellulose regenerated cellulose
  • polyvinylpyrrolidone polytetrafluoroethylene
  • polyethylene polypropylene
  • ethylene-propylene-diene ether monomer styrene-butadiene rubber
  • fluororubber or various copolymers thereof.
  • the conductive material in the positive electrode slurry is a material that imparts conductivity without causing chemical change to the battery, and may be added in an amount of 0.5 to 20 wt % based on the total weight of the solid content in the positive electrode slurry.
  • a conductive material include carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black; Graphite powder, such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure; conductive fibers such as carbon fibers and metal fibers; conductive powders such as carbon fluoride powder, aluminum powder, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Alternatively, a conductive material such as a polyphenylene derivative may be used.
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black
  • Graphite powder such as natural graphite, artificial graphite, or graphite with a highly developed crystal structure
  • conductive fibers such as carbon fibers and metal fibers
  • conductive powders such as carbon fluoride powder, aluminum powder, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • the solvent of the positive electrode slurry may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount having a desirable viscosity when the positive electrode active material and, optionally, a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content concentration in the positive electrode slurry including the positive electrode active material and optionally the binder and the conductive material may be 10 wt% to 90 wt%, preferably 40 wt% to 85 wt%.
  • the negative electrode may be prepared by coating a negative electrode slurry including a negative electrode active material, a binder, a conductive material and a solvent on a negative electrode current collector, and then drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
  • copper; stainless steel; aluminum; nickel; titanium; calcined carbon; Copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc.; Alternatively, an aluminum-cadmium alloy or the like may be used.
  • the bonding strength of the negative electrode active material may be strengthened by forming fine irregularities on the surface, and may be used in various forms such as a film, sheet, foil, net, porous body, foam, non-woven body, and the like.
  • the negative active material may include lithium metal, a carbon material capable of reversibly intercalating/deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal composite oxide, and lithium doping and de-doping. It may include at least one selected from the group consisting of materials and transition metal oxides.
  • any carbon-based negative active material generally used in lithium ion secondary batteries may be used without particular limitation, and representative examples thereof include crystalline carbon, Amorphous carbon or these may be used together.
  • the crystalline carbon include graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (low-temperature calcined carbon). or hard carbon, mesophase pitch carbide, and calcined coke.
  • Examples of the above metals or alloys of these metals with lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al. And a metal selected from the group consisting of Sn or an alloy of these metals and lithium may be used.
  • metal composite oxide examples include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 . , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1) and Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, group 1, 2, 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) One or more selected from may be used.
  • Materials capable of doping and dedoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloy (wherein Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, An element selected from the group consisting of rare earth elements and combinations thereof, but not Si), Sn, SnO 2 , Sn-Y (wherein Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth) It is an element selected from the group consisting of elements and combinations thereof, and is not Sn) and the like, and at least one of these and SiO 2 may be mixed and used.
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db (dubnium), Cr, Mo, W, Sg, Tc, Re, Bh , Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S , Se, Te, Po, and may be selected from the group consisting of combinations thereof.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative active material is graphite, it is advantageous in terms of high temperature durability.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the solids in the negative electrode slurry.
  • the binder in the negative active material is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene , polyethylene, polypropylene, ethylene-propylene-diene monomer, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, styrene-butadiene rubber-carboxymethylcellulose (SBR-CMC) or various copolymers thereof, etc.
  • SBR-CMC styrene-butadiene rubber-carboxymethylcellulose
  • the conductive material in the anode active material is a component for further improving the conductivity of the anode active material, and may be added in an amount of 0.5 wt% to 20 wt% based on the total weight of the solid content in the anode slurry.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black.
  • a conductive material such as a polyphenylene derivative may be used.
  • the solvent of the negative electrode slurry is water; Alternatively, it may contain an organic solvent such as NMP or alcohol, and may be used in an amount that has a desirable viscosity when the negative electrode active material and optionally a binder and a conductive material are included.
  • the solid content concentration in the slurry including the negative electrode active material and optionally the binder and the conductive material may be 40 wt% to 75 wt%, preferably 40 wt% to 65 wt%.
  • the lithium secondary battery according to the present invention includes a separator between the positive electrode and the negative electrode.
  • the separator separates the anode and the anode and provides a passage for lithium ions to move, and can be used without any particular limitation as long as it is normally used as a separator in a lithium secondary battery. Excellent is preferred.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • a laminated structure of two or more layers thereof may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator including a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • the lithium secondary battery according to the present invention as described above is a portable device such as a mobile phone, a notebook computer, a digital camera; and an electric vehicle field such as a hybrid electric vehicle (HEV).
  • a portable device such as a mobile phone, a notebook computer, a digital camera
  • an electric vehicle field such as a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium-to-large devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a prismatic shape, a pouch type, or a coin type using a can.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device, but can also be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • a non-aqueous organic solution was prepared by dissolving LiPF 6 (lithium hexafluorophosphate) to 1.0M in an organic solvent mixed with ethylene carbonate (EC):ethylmethyl carbonate (EMC) in a volume ratio of 3:7.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • LiFePO 4 as a positive electrode active material, carbon black as a conductive material, polyvinylidene fluoride as a binder, and nitrile-butadiene rubber in a weight ratio of 95.86:0.8:2.2:1.14 to N-methyl-2-pyrrolidone (NMP) as a solvent was added to prepare a positive electrode slurry (solid content: 67.5 wt%).
  • the positive electrode slurry was applied to a positive electrode current collector (Al thin film) having a thickness of 15 ⁇ m, and dried and roll pressed to prepare a positive electrode.
  • the positive electrode, the negative electrode, and the separator made of polypropylene/polyethylene/polypropylene (PP/PE/PP) were laminated in the order of the positive electrode/separator/negative electrode, and the laminated structure was placed in a pouch-type battery case and then the prepared non-aqueous electrolyte solution was injected to prepare a lithium secondary battery.
  • PP/PE/PP polypropylene/polyethylene/polypropylene
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1 wt% of lithium difluoro(oxalato)borate (LiDFOB) was further added during the preparation of the non-aqueous electrolyte.
  • LiDFOB lithium difluoro(oxalato)borate
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the content of the compound of Formula 1-1 was changed to 0.4 wt % during the preparation of the non-aqueous electrolyte.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the content of the compound of Formula 2-1 was changed to 0.5 wt % during the preparation of the non-aqueous electrolyte.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the compound of Formula 1-1 and the compound of Formula 2-1 were not added during the preparation of the non-aqueous electrolyte.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the compound of Formula 2-1 was not added during the preparation of the non-aqueous electrolyte.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the compound of Formula 1-1 was not added during the preparation of the non-aqueous electrolyte.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the content of the compound of Formula 1-1 was changed to 6% by weight when preparing the non-aqueous electrolyte, and the compound of Formula 2-1 was not added. did
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the compound of Formula 1-1 was not added during the preparation of the non-aqueous electrolyte and the content of the compound of Formula 2-1 was changed to 6% by weight. did
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the content of the compound of Formula 1-1 and the compound of Formula 2-1 was changed to 6 wt %, respectively, during the preparation of the non-aqueous electrolyte.
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the compound of Formula A was used instead of the compound of Formula 1-1 when preparing the non-aqueous electrolyte, and the compound of Formula 2-1 was not added. did
  • a lithium secondary battery was prepared in the same manner as in Example 1, except that the compound of Formula 1-1 was not added during the preparation of the non-aqueous electrolyte, and the compound of Formula B was used instead of the compound of Formula 2-1. .
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiNi 0.8 Co 0.1 Mn 0.1 O 2 was used instead of LiFePO 4 as a positive electrode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiCoO 2 was used instead of LiFePO 4 as a positive electrode active material.
  • the lithium secondary battery was transferred to a charge/discharger at room temperature (25° C.), charged at a rate of 0.33 C to 3.6 V under constant current/constant voltage conditions, and charged at 0.05 C cut off, and discharged at 0.33 C and 2.5 V.
  • charge/discharge PNE-0506 charger/discharger, manufacturer: PNE solution, 5V, 6A
  • PNE solution, 5V, 6A PNE solution, 5V, 6A
  • Fresh LiFePO 4 positive electrode was punched out to a size of 1 cm ⁇ 1 cm, a total of 10 sheets were placed in a beaker together with 10 g of the non-aqueous electrolyte prepared in Examples 1 to 4 and Comparative Examples 1 to 9, respectively, and Fe eluted while stored at 60° C. for 2 weeks was analyzed through the ICP analysis method (ICP-OES, inductively coupled plasma optical emission spectrophotometer, Perkin Elimner), and the results are shown in Table 1 below.
  • ICP-OES inductively coupled plasma optical emission spectrophotometer
  • the electrolytes of Examples 1 to 4 each containing the first additive and the second additive according to the present invention in an amount of 0.1 to 5% by weight have low metal elution amounts of 600 ppm or less.
  • the batteries including the electrolytes of Examples 1 to 4 exhibit very excellent lifespan characteristics and resistance characteristics, with a capacity retention rate of 97% or more and a resistance increase rate of 4% or less.
  • the electrolyte of Example 2 which further includes LiDFOB as the third additive, is the most excellent in all aspects of metal elution amount, capacity retention rate, and resistance increase rate.
  • the electrolyte including the first and second additives in a specific content range has a significant effect in improving the performance of a battery employing the LFP positive electrode, and the electrolyte contains the third additive It was confirmed that this effect can be further maximized when it is further included.

Abstract

본 발명은 리튬염, 유기용매, 화학식 1로 표시되는 제1 첨가제 및 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액; 리튬 인산철계 복합 산화물을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 상기 양극 및 음극 사이에 개재되는 분리막을 포함하고, 상기 제1 첨가제 및 제2 첨가제의 함량은 각각 상기 비수 전해액 총 중량 대비 0.1중량% 내지 5중량%인 리튬 이차 전지에 관한 것이다.

Description

리튬 이차 전지
본 출원은 2020년 11월 13일 한국 특허청에 제출된 한국 특허 출원 제10-2020-0151754호의 출원일 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 리튬 이차 전지에 관한 것으로, 보다 상세하게는 전극 피막의 안정성 강화를 통해 고온 성능이 향상된 리튬 이차 전지에 관한 것이다.
리튬 이차 전지는 일반적으로 리튬을 함유하고 있는 전이금속 산화물로 이루어진 양극 활물질을 포함하는 양극과, 리튬 이온을 저장할 수 있는 음극 활물질을 포함하는 음극 사이에 분리막을 개재하여 전극 조립체를 형성하고, 상기 전극 조립체를 전지 케이스에 삽입한 후, 리튬 이온을 전달하는 매개체가 되는 비수 전해액을 주입한 다음 밀봉하는 방법으로 제조된다.
리튬 이차 전지는 소형화가 가능하고 에너지 밀도 및 사용 전압이 높아 모바일 기기, 전자 제품, 전기 자동차 등 다양한 분야에 적용되고 있다. 리튬 이차 전지의 적용 분야가 다양해짐에 따라 요구되는 물성 조건도 점차 높아지고 있으며, 특히 고온 조건에서도 안정적으로 구동될 수 있는 리튬 이차 전지의 개발이 요구되고 있다.
고온에서는 전해액에 포함되는 LiPF6 등의 리튬염으로부터 PF6 - 음이온이 열분해되어 PF5 등의 루이스산이 발생될 수 있으며, 이는 수분과 반응하여 HF를 생성시킨다. 이러한 PF5, HF 등의 분해 산물, 그리고 충-방전에 따른 양극의 불안정한 구조 변화 등으로 인해 양극재의 전이금속들이 전해액 내부로 용출될 수 있는데, 특히 LFP(lithium iron phosphate) 양극을 포함하는 경우 철의 용출로 인한 전해질 분해 및 전지의 성능 저하가 심화되므로 이에 대한 개선이 필요하다.
본 발명은 전술한 LFP 양극을 포함하는 전지에서의 철의 용출로 인한 전해질 분해 문제를 해결하기 위한 것으로, 궁극적으로는 초기 저항 및 내구성이 개선된 리튬 이차 전지를 제공하고자 한다.
일 구현예에 따르면, 본 발명은 리튬염, 유기용매, 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액;
리튬 인산철계 복합 산화물을 포함하는 양극;
음극 활물질을 포함하는 음극; 및
상기 양극 및 음극 사이에 개재되는 분리막을 포함하고,
상기 제1 첨가제 및 제2 첨가제의 함량은 각각 상기 비수 전해액 총 중량 대비 0.1중량% 내지 5중량%인 리튬 이차 전지를 제공한다.
[화학식 1]
Figure PCTKR2021016153-appb-I000001
상기 화학식 1에서,
R1 및 R2는 서로 같거나 상이하며 각각 독립적으로 탄소수 1 내지 10의 치환 또는 비치환된 알킬기; 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기; 또는 탄소수 6 내지 30의 치환 또는 비치환된 아릴기이며,
[화학식 2]
Figure PCTKR2021016153-appb-I000002
상기 화학식 2에서,
Cy1은 탄소수 2 내지 30의 치환 또는 비치환된 헤테로고리기이고,
L1은 직접결합 또는 탄소수 1 내지 10의 치환 또는 비치환된 알킬렌기이다.
본 발명은 특정 첨가제 조합을 포함하는 전해액을 LFP계 양극 활물질과 함께 사용함으로써 낮은 초기 저항을 나타내면서도 내구성이 우수한 리튬 이차 전지가 구현될 수 있도록 한다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서에서, "치환 또는 비치환된"이라는 용어는, 중수소, 할로겐기, 히드록시기, 아미노기, 싸이올기, 니트로기, 니트릴기, 실릴기, 직쇄 또는 분지쇄 C1-C10의 알킬기, 또는 직쇄 또는 분지쇄 C1-C10의 알콕시기 중 선택된 1개 이상의 치환기로 치환되었거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서에서, 알킬렌(alkylene)기는 알칸(alkane)에 결합위치가 두 개 있는 것, 즉 2가의 불포화 탄화수소기를 의미한다. 이들은 2가기인 것을 제외하고는 알킬기에 대한 설명이 적용될 수 있다.
일반적으로, 리튬 이차전지에 널리 사용되는 리튬염인 LiPF6는 고온 또는 수분 등에 의해 불화수소(HF), PF5와 같은 분해 산물을 형성하게 된다. 이러한 분해 산물은 산(acid)의 성질을 가지고 있으며 전지 내에서 피막 혹은 전극 표면을 열화시킨다.
예컨대, 상기 분해 산물은 양극을 구성하는 전이금속을 쉽게 전해액으로 용출시키고, 용출된 전이금속 이온은 전해액을 통하여 음극으로 이동한 후 음극에 형성된 solid electrolyte interphase(SEI) 막에 전착되어, 추가적인 전해질 분해 반응을 일으킨다.
이러한 일련의 반응들은 전지 내의 가용 리튬 이온의 양을 감소시키기 때문에, 전지의 용량 열화를 가져올 뿐만 아니라, 추가적인 전해액 분해 반응이 수반되므로 저항 증가의 원인이 되며, 이로 인해 전지의 수명 및 고온 성능이 저하될 수 있다.
이에, 본 발명자들은 수분을 흡착하여 추가적인 루이스 산(HF)의 생성을 억제할 수 있는 하기 화학식 1로 표시되는 제1 첨가제, 및 PF5 등의 분해 산물 및 양극에서 용출된 금속 이온을 제거하며 니트릴계 및 고분자 성분의 견고한 SEI 막을 형성할 수 있는 하기 화학식 2로 표시되는 제2 첨가제를 전해액에 포함시킴으로써 LFP(lithium iron phosphate)계 양극을 포함하는 전지의 초기 저항 특성 및 내구성을 동시에 개선할 수 있음을 확인하였다.
구체적으로, 상기 제1 첨가제를 통해 초기 용량 유지율을 개선할 수 있고, 상기 제2 첨가제를 통해 장기 수명 개선할 수 있었으며, 이 둘의 시너지 효과로는 제2 첨가제를 통해 SEI 막이 형성될 때, 제1 첨가제가 수분 제어를 통해 전극 표면에 존재하는 염의 분해 산물인 LiF 성분을 감소시키므로, 상대적으로 유기물이 풍부한(organic rich) 피막이 형성될 수 있어, 추가적인 저항 감소의 효과를 얻을 수 있음을 밝혀내었다.
본 발명에 따른 리튬 이차 전지는 리튬염, 유기용매, 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액; 리튬 인산철계 복합 산화물을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 상기 양극 및 음극 사이에 개재되는 분리막을 포함하며, 각 구성에 대한 설명은 하기와 같다.
(1) 비수 전해액
본 발명의 비수 전해액은 리튬염, 유기용매, 제1 첨가제 및 제2 첨가제를 포함한다.
(a) 리튬염
상기 리튬염은 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, ClO4 -, B10Cl10 -, AlCl4 -, AlO4 -, PF6 -, CF3SO3 -, CH3CO2 -, CF3CO2 -, AsF6 -, SbF6 -, CH3SO3 -, (CF3CF2SO2)2N-, (CF3SO2)2N-, (FSO2)2N-, BF2C2O4CHF-, PF4C2O4 -, PF2C4O8 -, PO2F2 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, C4F9SO3 -, CF3CF2SO3 -, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CF3(CF2)7SO3 - 및 SCN-로 이루어진 군으로부터 선택된 어느 하나를 포함할 수 있다.
구체적으로, 상기 리튬염은 LiPF6, LiClO4, LiFSI, LiTFSI, LiSO3CF3, LiPO2F2, 리튬 비스(옥살레이토)보레이트(Lithium bis(oxalato)borate, LiBOB), 리튬 디플루오로(비스옥살레이토)포스페이트(Lithium difluoro(bisoxalato) phosphate, LiDFBP), 리튬 테트라플루오로(옥살레이토)포스페이트 (Lithium tetrafluoro(oxalato) phosphate, LiTFOP), 및 리튬 플루오로말로나토(디플루오로)보레이트 (Lithium fluoromalonato(difluoro) borate, LiFMDFB)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 LiPF6이다. LiPF6는 카보네이트 용매에 잘 용해되고 이온전도도가 높은 면에서 본 발명의 리튬염으로서 바람직하다.
상기 리튬염은 상기 비수 전해액 내에 0.5M 내지 3.0M의 농도, 구체적으로 1.0M 내지 2.0M의 농도로 포함될 수 있다. 리튬염의 농도가 상기 범위를 만족할 때, 리튬 이온 수율(Li+ transference number) 및 리튬 이온의 해리도가 향상되어 전지의 출력 특성이 향상될 수 있다.
상기 리튬염의 농도가 0.5M 미만이면, 리튬 이온의 이동성이 감소하여 저온 출력 개선 및 고온 저장 시 사이클 특성 개선의 효과가 미미하고, 리튬염의 농도가 3.0M 농도를 초과하면 비수 전해액의 점도가 과도하게 증가하여 비수 전해액 함침성이 저하될 수 있고, 피막 형성 효과가 감소할 수 있다.
(b) 유기용매
상기 유기용매로는, 리튬 전해질에 통상적으로 사용되는 다양한 유기 용매들이 제한 없이 사용될 수 있으나, 바람직하게는 상기 유기용매가 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함할 수 있다.
상기 환형 카보네이트계 용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있으며, 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 이 중에서도 높은 이온전도도를 확보하기 위한 측면에서 에틸렌 카보네이트(EC)를 포함할 수 있다.
또한, 상기 선형 카보네이트계 용매는 저점도 및 저유전율을 가지는 유기용매로서, 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 이 중에서도 끓는점(boiling point) 및 점도 측면에서 바람직한 에틸메틸 카보네이트(EMC)를 포함할 수 있다.
본 발명에서 상기 환형 카보네이트계 용매 및 선형 카보네이트계 용매의 부피비는 1:10 내지 5:5, 구체적으로 2:8 내지 4:6일 수 있으며, 더욱 구체적으로는 2:8 내지 3:7일 수 있다.
또한, 상기 유기용매는 높은 이온 전도율을 갖는 전해액을 제조하기 위하여, 상기 환형 카보네이트계 용매 및/또는 선형 카보네이트계 용매에 융점이 낮고, 고온에서 안정성이 높은 선형 에스테르계 용매 및/또는 환형 에스테르계 용매를 추가로 포함할 수 있다.
상기 선형 에스테르계 용매는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 상기 환형 에스테르계 용매는 γ-부티로락톤, γ-부발레로락톤, γ-부카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
상기 비수 전해액 전체 중량 중 유기용매를 제외한 타 구성성분, 예컨대 리튬염, 제1 첨가제, 제2 첨가제 및 후술하는 제3 첨가제의 함량을 제외한 잔부는 별도의 언급이 없는 한 모두 유기용매이다.
(c) 제1 첨가제 및 제2 첨가제
본 발명의 비수 전해액은 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 포함한다.
[화학식 1]
Figure PCTKR2021016153-appb-I000003
상기 화학식 1에서,
R1 및 R2는 서로 같거나 상이하며 각각 독립적으로 탄소수 1 내지 10의 치환 또는 비치환된 알킬기; 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기; 또는 탄소수 6 내지 30의 치환 또는 비치환된 아릴기이며,
[화학식 2]
Figure PCTKR2021016153-appb-I000004
상기 화학식 2에서,
Cy1은 탄소수 2 내지 30의 치환 또는 비치환된 헤테로고리기이고,
L1은 직접결합 또는 탄소수 1 내지 10의 치환 또는 비치환된 알킬렌기이다.
상기 제1 첨가제는 수분(H2O)과 만났을 때 -C=N- 결합의 분해와 동시에 수소결합이 형성되며 H2O를 화학적으로 소모하는 반응이 일어나므로 전지 내 수분을 제어할 수 있고, 이에 따라 리튬염과 수분이 만나 루이스 산을 생성하는 것을 억제할 수 있다.
상기 제2 첨가제는 전기화학적으로 환원 분해될 수 있는 프로파길(Propargyl) 라디칼 중간체를 생성하므로 생성된 라디칼의 반응을 통해 니트릴계 및 고분자 성분의 견고한 SEI 막을 형성하는 능력이 우수하며, 이에 따라 전지의 내구성을 향상시킬 수 있다.
상기 제1 첨가제만 사용할 경우 HF 생성을 제어함으로 초기 용량 유지율 개선에는 효과가 있으나 사이클이 반복될수록 지속적인 염의 분해와 전극-전해질 간 계면 퇴화에 의한 수명 저하는 방지할 수 없다.
상기 제2 첨가제만 사용하는 경우에도 양극으로부터의 금속 이온 용출을 억제하고 음극 SEI 막의 내구성 향상시켜 전지 수명을 개선하는 효과는 있으나 전지의 초기 저항을 개선하기는 어렵다.
이 둘을 함께 사용하는 경우 수분 제거를 통한 HF 형성 억제 효과와 더불어 음극 SEI 막을 강화시킬 수 있으므로 용출된 전이금속이 음극에 전착되는 현상을 제어할 수 있을 뿐만 아니라, 형성된 SEI막이 HF에 의해 식각되는 것을 막아줄 수 있으므로, 초기 성능 및 수명을 동시에 확보할 수 있다.
특히, 리튬 니켈 코발트 망간(NCM)계 양극 등 층상(layered) 구조의 양극에 비해 구조적 안정성은 높지만 수분에 민감하며 금속 이온의 용출에 따라 구조가 변형될 우려가 있는 LFP계 양극을 본 발명의 첨가제 조합과 함께 사용할 경우, LFP계 양극이 갖는 문제점을 효과적으로 해소할 수 있으므로 전지의 구조적 안정성 및 이에 따른 장기 내구성을 확보할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 화학식 1의 R1 및 R2는 서로 같거나 상이하며 각각 독립적으로 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기일 수 있고, 바람직하게는 각각 사이클로헥실기일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제1 첨가제는 하기 화학식 1-1로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2021016153-appb-I000005
본 발명의 일 실시상태에 있어서, 상기 화학식 2의 Cy1은 질소 함유 헤테로고리기이고, L1은 -(CH2)n-으로 표시될 수 있으며, 상기 n은 1 내지 10의 정수, 바람직하게는 1 내지 5의 정수이다.
본 발명의 일 실시상태에 있어서, 상기 화학식 2의 Cy1은 둘 이상의 질소 원자를 포함하는 탄소수 2 내지 10의 치환 또는 비치환된 헤테로고리기일 수 있으며, 바람직하게는 치환 또는 비치환된 이미다졸릴(imidazolyl)기일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 화학식 2의 L1은 메틸렌기 또는 에틸렌기일 수 있으며, 바람직하게는 메틸렌기일 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제2 첨가제는 하기 화학식 2-1로 표시될 수 있다.
[화학식 2-1]
Figure PCTKR2021016153-appb-I000006
본 발명의 일 실시상태에 있어서, 상기 제1 첨가제 및 제2 첨가제의 함량은 각각 상기 비수 전해액 총 중량 대비 0.1중량% 내지 5중량%일 수 있다.
구체적으로, 상기 제1 첨가제의 함량은 상기 비수 전해액 총 중량 대비 0.1중량% 내지 1중량%, 바람직하게는 0.1중량% 내지 0.5중량%일 수 있다.
상기 제1 첨가제의 함량이 0.1중량% 미만일 경우, 제1 첨가제 투입으로 인한 수분 제거 효과가 미미할 수 있으며 5중량% 초과일 경우 전지 내 C=N 결합의 함량이 높아지므로 집전체 내 Cu의 용출로 인하여 집전체와 활물질 간 탈리가 발생하여 음극의 열화 및 이에 다른 수명 특성 저하가 야기될 수 있다.
상기 제2 첨가제의 함량은 상기 비수 전해액 총 중량 대비 0.1중량% 내지 1중량%, 바람직하게는 0.1중량% 내지 0.5중량%일 수 있다.
상기 제2 첨가제의 함량이 0.1중량% 미만일 경우, 제2 첨가제 투입으로 인한 금속 이온 제거 효과가 미미할 수 있으며 5중량% 초과일 경우 SEI 막 두께 증가에 따라 초기 피막 저항이 높아질 수 있다.
본 발명의 일 실시상태에 있어서, 상기 제1 첨가제 및 제2 첨가제의 중량비는 1:5 내지 5:1, 바람직하게는 1:2 내지 2:1, 더욱 바람직하게는 1:1 내지 1:2일 수 있다. 제1 첨가제 및 제2 첨가제의 중량비가 상기 범위에 포함될 경우 전술한 제1 첨가제 및 제2 첨가제 과량 투입에 따른 문제점을 방지하면서 최적의 시너지 효과를 낼 수 있는 점에서 바람직하다.
본 발명의 일 실시상태에 있어서, 상기 제2 첨가제의 중량이 상기 제1 첨가제에 비해 많을 수 있으며, 이 경우 전지의 고온 내구성 개선에 도움이 될 수 있다.
(d) 제3 첨가제
한편, 본 발명에 따른 리튬 이차 전지용 비수 전해액은 초기저항을 크게 증가시키지 않으면서, 음극 및 양극 표면에 안정한 피막을 형성하거나, 비수전해액 내 용매의 분해를 억제하고, 리튬 이온의 이동성을 향상시키는 보완제 역할을 할 수 있는 제3 첨가제를 선택적으로 더 포함할 수 있다.
예를 들어, 상기 제3 첨가제는 바이닐 실란계 화학물, 포스페이트계 화합물, 설파이트계 화합물, 설폰계 화합물, 설페이트계 화합물, 설톤계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 보레이트계 화합물, 및 리튬염계 화합물로 이루어진 군으로부터 선택되는 하나 이상의 화합물을 포함할 수 있다.
상기 바이닐 실란계 화합물은 음극 표면에서 전기화학적으로 환원되어 안정한 SEI를 형성하여 전지의 내구성을 개선시킬 수 있다. 보다 구체적으로, 바이닐 실란계 화합물로서 테트라 바이닐 실란 등을 포함할 수 있다.
상기 포스페이트계 화합물은 양극과 음극 표면에서 전기 화학적으로 분해되어 SEI 막 형성에 도움을 주는 성분으로, 이차전지의 수명 특성을 향상시킬 수 있다. 보다 구체적으로, 리튬 디플루오로(비스옥살라토)포스페이트, 트리스(트리메틸 실릴) 포스페이트(TMSPa), 트리스(트리메틸 실릴) 포스파이트 (TMSPi), 트리스(2,2,2-트리플루오로에틸)포스페이트(TFEPa) 및 트리스(트리플루오로에틸) 포스파이트(TFEPi)로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다.
상기 설파이트계 화합물은 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 및 1,3-부틸렌 글리콜 설파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다.
상기 설폰계 화합물로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 및 메틸비닐 설폰으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다.
상기 설페이트계 화합물은 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 및 메틸트리메틸렌설페이트 (Methyltrimethylene sulfate; MTMS)로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다.
상기 설톤계 화합물은 상기 화학식 2로 표시되는 화합물을 제외하고, 1,3-프로판 설톤(PS) 및 1,4-부탄 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함할 수 있다.
상기 할로겐 치환된 카보네이트계 화합물로서, 플루오로에틸렌 카보네이트(FEC))등을 포함할 수 있다.
또한, 상기 니트릴계 화합물은 숙시노니트릴(SN), 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 하나 이상의 화합물을 포함할 수 있다.
상기 리튬염계 화합물은 상기 비수전해액에 포함되는 리튬염과 상이한 화합물로서, 리튬 디플루오로(옥살레이토)보레이트(LiDFOB), 리튬 비스옥살레이토보레이트(LiBOB), 리튬 2-트리플루오로메틸-4,5-디시아노이미다졸(lithium 2-trifluoromethyl-4,5-dicyanoimidazole, LiTDI) 및 LiBF4로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다.
바람직하게는, 상기 제3 첨가제는 리튬 디플루오로(옥살레이토)보레이트(LiDFOB)일 수 있다. 비수 전해액 내에 LiDFOB가 포함될 경우 전기화학 반응을 통해 양/음극 표면에 BxOy계 성분을 포함하는 안정한 피막을 형성하는 효과가 있다. 양극 표면에 형성된 피막은 금속 이온이 용출되는 것을 억제할 수 있으며 음극 표면에 형성된 피막은 용출된 금속 이온이 음극 표면에 전착되는 것을 억제할 뿐만 아니라 고온에서 추가적인 전해액의 분해를 방지하는 효과가 있다. 이러한 작용을 통해 LiDFOB를 포함하는 전해액은 전지의 고온 성능을 개선하는 데 기여할 수 있다.
상기 제3 첨가제는 상기 비수 전해액 전체 중량을 기준으로 20 중량% 이하, 바람직하게는 10 중량% 이하, 더욱 바람직하게는 0.1 중량% 내지 2 중량%로 포함될 수 있다. 상기 첨가제들의 함량이 상기 범위를 초과하면 리튬 이차 전지가 충방전하는 도중 전해질 내 부반응이 과도하게 발생할 수 있고, 고온에서 충분히 분해되지 못하여, 비수전해액 내에서 미반응물 또는 석출된 채로 존재할 수 있으며, 이에 따라 이차전지의 수명 또는 저항특성이 저하될 수 있다.
(2) 양극
본 발명에 따른 양극은 리튬 인산철(LFP)계 복합 산화물을 포함한다. 구체적으로 상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층에 포함된 양극 활물질은 상기 리튬 인산철계 복합 산화물로 이루어질 수 있다.
LFP계 양극은 올리빈 구조로서, NCM계 양극 등 구조 붕괴의 리스크가 있는 층상(layered) 구조의 양극에 비해 구조적 안정성 및 장기 수명이 우수하다. 다만, LFP계 양극은 수분 민감도 및 전압 의존성이 높으며 금속 이온의 용출 문제에 취약하므로 본 발명의 첨가제 조합을 통해 이러한 문제점이 해소될 경우 NCM계 양극에 비해 안정성 및 수명 면에서 우수한 전지를 얻을 수 있다.
상기 양극 활물질층은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 또는 알루미늄 또는 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 리튬 인산철계 복합 산화물은 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
LiFe1-xMxPO4
상기 화학식 3에서,
M은 Ni, Co, Mn, Al, Mg, Y, Zn, In, Ru, Sn, Sb, Ti, Te, Nb, Mo, Cr, Zr, W, Ir 및 V 중 선택된 1종 이상이고,
0≤x≤1이다.
본 발명의 일 실시상태에 있어서, 상기 리튬 인산철계 복합 산화물은 LiFePO4일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%, 구체적으로 90 중량% 내지 99 중량%로 포함될 수 있다. 이때, 상기 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 양극 슬러리 내 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 모노머, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체 등을 들 수 있다.
또한, 양극 슬러리 내 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 부여하는 물질로서, 양극 슬러리 중 고형분의 전체 중량을 기준으로 0.5 내지 20 중량%로 첨가될 수 있다. 
이러한 도전재는 그 대표적인 예로 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 카본 블랙; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
또한, 상기 양극 슬러리의 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질 및 선택적으로 바인더 및 도전재를 포함하는 양극 슬러리 중의 고형분 농도가 10 중량% 내지 90 중량%, 바람직하게 40 중량% 내지 85 중량%가 되도록 포함될 수 있다.
(3) 음극
상기 음극은 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리; 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 구리 또는 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 또는 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극 활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질 및 전이 금속 산화물로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1) 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8)로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0<x≤2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db(dubnium), Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
본 발명에서 상기 음극 활물질이 흑연일 경우 고온 내구성 측면에서 유리하다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 음극 활물질 내 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 스티렌-부타디엔 고무-카르복시메틸셀룰로우즈(SBR-CMC) 또는 이들의 다양한 공중합체 등을 들 수 있다.
상기 음극 활물질 내 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 0.5 중량% 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본 분말, 알루미늄 분말, 니켈 분말 등의 도전성 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 음극 슬러리의 용매는 물; 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 40 중량% 내지 75 중량%, 바람직하게 40 중량% 내지 65 중량%가 되도록 포함될 수 있다.
(4) 분리막
본 발명에 따른 리튬 이차전지는, 상기 양극 및 음극 사이에 분리막을 포함한다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함침 능력이 우수한 것이 바람직하다.
구체적으로는 분리막으로 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기; 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.
<실시예: 리튬 이차 전지의 제조>
실시예 1.
(1) 비수 전해액의 제조
에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)를 3:7 부피비로 혼합한 유기용매에 LiPF6(리튬헥사플루오로포스페이트)가 1.0M이 되도록 용해하여 비수성 유기용액을 제조하였다.
그런 다음, 상기 화학식 1-1의 화합물 0.2중량%, 상기 화학식 2-1의 화합물 0.3중량% 및 잔부의 상기 비수성 유기용액을 혼합하여, 비수 전해액 100중량%을 제조하였다.
(2) 리튬 이차 전지 제조
양극 활물질로서 LiFePO4, 도전재로서 카본 블랙, 바인더로서 폴리비닐리덴플루오라이드 및 니트릴-부타디엔 고무를 95.86:0.8:2.2:1.14의 중량비로 용제인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리(고형분 함량 67.5중량%)를 제조하였다. 상기 양극 슬러리를 두께가 15㎛인 양극 집전체(Al 박막)에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
용제인 증류수에 음극 활물질로 흑연(인조흑연:천연흑연(8:2)), 바인더로서 스티렌-부타디엔 고무-카르복시메틸셀룰로우즈(SBR-CMC), 도전재로서 카본블랙, 증점제로서 카르복시메틸셀룰로스나트륨(CMC)을 96.0:1.3:0.7:1의 중량비로 혼합한 뒤, 증류수를 용제로서 혼합하여 고형분 함량이 47.0 중량%인 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 8㎛인 음극 집전체(Cu 박막)에 도포하고, 건조 및 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP)으로 이루어진 분리막을 양극/분리막/음극 순서대로 적층하였으며, 상기 적층 구조물을 파우치형 전지 케이스에 위치시킨 후 상기 제조된 비수 전해액을 주액하여 리튬 이차 전지를 제조하였다.
실시예 2.
비수 전해액 제조 시 리튬 디플루오로(옥살레이토)보레이트(LiDFOB) 1 중량%를 더 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실시예 3.
비수 전해액 제조 시 상기 화학식 1-1의 화합물의 함량을 0.4 중량%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
실시예 4.
비수 전해액 제조 시 상기 화학식 2-1의 화합물의 함량을 0.5 중량%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 1.
비수 전해액 제조 시 상기 화학식 1-1의 화합물 및 화학식 2-1의 화합물을 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 2.
비수 전해액 제조 시 상기 화학식 2-1의 화합물은 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 3.
비수 전해액 제조 시 상기 화학식 1-1의 화합물은 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 4.
비수 전해액 제조 시 상기 화학식 1-1의 화합물의 함량을 6 중량%로 변경하고, 상기 화학식 2-1의 화합물은 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 5.
비수 전해액 제조 시 상기 화학식 1-1의 화합물은 첨가하지 않고, 상기 화학식 2-1의 화합물의 함량을 6 중량%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 6.
비수 전해액 제조 시 상기 화학식 1-1의 화합물 및 화학식 2-1의 화합물의 함량을 각각 6 중량%로 변경한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 7.
비수 전해액 제조 시 상기 화학식 1-1의 화합물 대신 하기 화학식 A의 화합물을 사용하고, 상기 화학식 2-1의 화합물은 첨가하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
[화학식 A]
Figure PCTKR2021016153-appb-I000007
비교예 8.
비수 전해액 제조 시 상기 화학식 1-1의 화합물은 첨가하지 않고, 상기 화학식 2-1의 화합물 대신 하기 화학식 B의 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
[화학식 B]
Figure PCTKR2021016153-appb-I000008
비교예 9.
비수 전해액 제조 시 상기 화학식 1-1의 화합물 대신 상기 화학식 A의 화합물을 사용하고, 상기 화학식 2-1의 화합물 대신 상기 화학식 B의 화합물을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 10.
양극 활물질로서 LiFePO4 대신 LiNi0.8Co0.1Mn0.1O2를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 11.
양극 활물질로서 LiFePO4 대신 LiCoO2를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
< 실험예: 리튬 이차전지의 고온 저장 평가 >
실험예 1. 고온 저장 후의 용량 유지율 측정
상기 실시예 및 비교예에서 제조된 상기 리튬 이차 전지 각각에 대하여, 200mA 전류(0.1C rate)로 포메이션(formation)을 진행한 뒤, 전지 내 가스를 제거하였다(degas 공정). 상기 가스가 제거된 리튬 이차 전지를 상온(25℃)의 충방전기로 옮긴 후, 0.33C rate로 3.6V까지 정전류/정전압 조건으로 충전 및 0.05C cut off 충전을 실시하고, 0.33C 2.5V로 방전하였다. 이때, 상기 충/방전을 각각 3회 진행한 이후 방전 용량을 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 이용하여 측정하였고, 이때의 방전 용량을 초기 방전 용량으로 설정하였다. 이어서 0.33C rate로 3.6V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시한 뒤, 60℃에서 12주간 보관하였다.
이후, 리튬 이차 전지를 상온(25℃)의 충방전기로 옮긴 다음 0.33C rate로 3.6V까지 정전류/정전압 조건으로 충전 및 0.05C cut off 충전을 실시하고, 0.33C 2.5V로 방전을 실시하였다. 상기 충/방전을 각각 3회 진행한 이후 45℃ 1C/1C 조건으로 충/방전(PNE-0506 충방전기, 제조사: (주)PNE 솔루션, 5V, 6A)을 지속하여 200사이클까지 용량 유지율(%)을 계산한 후 하기 표 1에 그 결과를 나타내었다.
실험예 2. 저항 증가율 측정
상기 실시예 및 비교예에서 제조된 상기 리튬 이차 전지 각각에 대하여, 200mA 전류(0.1C rate)로 포메이션(formation)을 진행한 뒤, 전지 내 가스를 제거하였다(degas 공정). 상기 가스가 제거된 리튬 이차 전지를 상온(25℃)의 충방전기로 옮긴 후, 0.33C rate로 3.6V까지 정전류/정전압 조건으로 충전 및 0.05C cut off 충전을 실시하고, 0.33C 2.5V로 방전하였다. 이때, 상기 충/방전을 각각 3회 진행한 이후 SOC 50%에서 2.5C로 10초간 방전하여 초기 저항을 확인하였다. 방전시 강하된 전압을 전류로 나누어 저항값을 산출하였다. 이때, 전압은 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 측정하였다.
이후 동일한 조건으로 충/방전 과정을 지속하고 200사이클이 종료되는 시점에서 SOC 50%까지 전압을 낮춘 후 2.5C 조건에서 10초간 pulse로 방전하여 방전 저항을 측정하였다. 이때 초기 대비 200사이클 후의 저항 증가율을 하기 표 1에 나타내었다.
실험예 3. 금속 용출량 측정
Fresh한 LiFePO4 양극을 1cmХ1cm size로 타발하여 총 10장을 각각 상기 실시예 1 내지 4 및 비교예 1 내지 9에서 제조된 비수 전해액 10g과 함께 비커에 넣고, 60℃에서 2주간 보관하면서 용출되는 Fe의 양을 ICP 분석방법(ICP-OES, inductively coupled plasma optical emission spectrophotometer, Perkin Elimner사)을 통하여 분석하여 그 결과를 하기 표 1에 기재하였다.
양극 첨가제
(중량 %)
실험예 1 실험예 2 실험예 3
제1 제2 제3 용량 유지율(%) 저항 증가율(%) 금속 용출량(ppm)
실시예 1 LFP 화학식 1-1
(0.2)
화학식 2-1
(0.3)
- 98.2 3.1 587
실시예 2 LFP 화학식 1-1
(0.2)
화학식 2-1
(0.3)
LiDFOB
(1.0)
98.9 1.4 442
실시예 3 LFP 화학식 1-1(0.4) 화학식 2-1
(0.3)
- 97.8 3.7 550
실시예 4 LFP 화학식 1-1(0.2) 화학식 2-1
(0.5)
- 98.4 1.9 488
비교예 1 LFP - - - 85.4 15.4 2,512
비교예 2 LFP 화학식 1-1(0.2) - - 95.8 5.5 1,035
비교예 3 LFP - 화학식 2-1(0.3) - 96.7 5.2 1,120
비교예 4 LFP 화학식 1-1
(6)
- - 95 5.8 1,030
비교예 5 LFP - 화학식 2-1(6) - 95.2 5.6 1,113
비교예 6 LFP 화학식 1-1(6) 화학식 2-1
(6)
- 94.1 5.2 1,101
비교예 7 LFP 화학식 A(0.2) - - 89.7 10.4 2,130
비교예 8 LFP - 화학식 B(0.3) - 90.4 8.7 2,207
비교예 9 LFP 화학식 A(0.2) 화학식 B
(0.3)
- 90.1 7.5 1,986
비교예 10 NCM 화학식 1-1
(0.2)
화학식 2-1
(0.3)
- 93.5 6.2 -
비교예 11 LCO 화학식 1-1
(0.2)
화학식 2-1
(0.3)
- 91.9 8.8 -
상기 실험 결과를 통해, 본 발명에 따른 제1 첨가제 및 제2 첨가제를 각각 0.1~5중량%의 함량으로 포함하는 실시예 1 내지 4의 전해액은 금속 용출량이 모두 600ppm 이하로 낮게 측정된 것을 확인할 수 있으며, 실시예 1 내지 4의 전해액을 포함하는 전지는 용량 유지율이 97% 이상, 저항 증가율이 4% 이하로 매우 우수한 수명 특성 및 저항 특성을 나타내는 것을 확인할 수 있다. 그 중에서도 제3 첨가제로서 LiDFOB를 더 포함하는 실시예 2의 전해액이 금속 용출량, 용량 유지율 및 저항 증가율 모든 면에서 가장 우수한 것을 확인할 수 있다.
구체적으로, 첨가제를 사용하지 않는 경우(비교예 1)는 물론이고, 본 발명의 화학식 1 및/또는 2와 상이한 구조의 첨가제를 사용하거나(비교예 7 내지 9), 상기 제1 및 제2 첨가제 중 하나만 포함하는 경우(비교예 2 내지 5)에 비해서도 실험예 1 내지 3의 결과가 모두 우수한 것을 알 수 있다.
또한, 비교예 6과 같이 제1 첨가제 및 제2 첨가제를 모두 포함하더라도 그 함량이 과량일 경우 전해액의 금속 용출량 개선 효과 및 상기 전해액을 포함하는 전지의 수명 및 저항 특성이 실시예 1에 못미치는 것을 알 수 있다.
더불어, 양극 활물질로서 LFP 대신 NCM 산화물을 사용한 비교예 10 및 LCO 산화물을 사용한 비교예 11의 경우, 실시예 1과 동일한 전해액을 사용하더라도 용량 유지율 및 저항 증가율 면에서 실시예 1에 비해 효과가 좋지 못한 것을 알 수 있다.
즉, 본 발명의 일 실시상태에 따라 상기 제1 및 제2 첨가제를 특정 함량 범위로 포함하는 전해액은, LFP 양극을 채용한 전지의 성능을 개선하는 데 유의미한 효과가 있으며, 상기 전해액이 제3 첨가제를 더 포함하는 경우 이러한 효과를 더욱 극대화시킬 수 있음이 확인되었다.

Claims (12)

  1. 리튬염, 유기용매, 하기 화학식 1로 표시되는 제1 첨가제 및 하기 화학식 2로 표시되는 제2 첨가제를 포함하는 비수 전해액;
    리튬 인산철계 복합 산화물을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    상기 양극 및 음극 사이에 개재되는 분리막을 포함하고,
    상기 제1 첨가제 및 제2 첨가제의 함량은 각각 상기 비수 전해액 총 중량 대비 0.1중량% 내지 5중량%인 리튬 이차 전지:
    [화학식 1]
    Figure PCTKR2021016153-appb-I000009
    상기 화학식 1에서,
    R1 및 R2는 서로 같거나 상이하며 각각 독립적으로 탄소수 1 내지 10의 치환 또는 비치환된 알킬기; 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기; 또는 탄소수 6 내지 30의 치환 또는 비치환된 아릴기이며,
    [화학식 2]
    Figure PCTKR2021016153-appb-I000010
    상기 화학식 2에서,
    Cy1은 탄소수 2 내지 30의 치환 또는 비치환된 헤테로고리기이고,
    L1은 직접결합 또는 탄소수 1 내지 10의 치환 또는 비치환된 알킬렌기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1의 R1 및 R2는 서로 같거나 상이하며 각각 독립적으로 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기인 리튬 이차 전지.
  3. 청구항 1에 있어서,
    상기 화학식 2의 Cy1은 질소 함유 헤테로고리기이고,
    L1은 -(CH2)n-으로 표시되는 것이며,
    상기 n은 1 내지 10의 정수인 리튬 이차 전지.
  4. 청구항 1에 있어서,
    상기 제1 첨가제의 함량은 상기 비수 전해액 총 중량 대비 0.1중량% 내지 1중량%인 리튬 이차 전지.
  5. 청구항 1에 있어서,
    상기 제2 첨가제의 함량은 상기 비수 전해액 총 중량 대비 0.1중량% 내지 1중량%인 리튬 이차 전지.
  6. 청구항 1에 있어서,
    상기 제1 첨가제 및 제2 첨가제의 중량비는 1:5 내지 5:1인 리튬 이차 전지.
  7. 청구항 6에 있어서,
    상기 제1 첨가제 및 제2 첨가제의 중량비는 1:2 내지 2:1인 리튬 이차 전지.
  8. 청구항 1에 있어서,
    상기 비수 전해액은 제3 첨가제로서 리튬 디플루오로(옥살레이토)보레이트를 더 포함하는 것인 리튬 이차 전지.
  9. 청구항 1에 있어서,
    상기 유기용매는 환형 카보네이트계 용매 및 선형 카보네이트계 용매를 포함하는 것인 리튬 이차 전지.
  10. 청구항 1에 있어서,
    상기 리튬 인산철계 복합 산화물은 하기 화학식 3으로 표시되는 것인 리튬 이차 전지:
    [화학식 3]
    LiFe1-xMxPO4
    상기 화학식 3에서,
    M은 Ni, Co, Mn, Al, Mg, Y, Zn, In, Ru, Sn, Sb, Ti, Te, Nb, Mo, Cr, Zr, W, Ir 및 V 중 선택된 1종 이상이고,
    0≤x≤1이다.
  11. 청구항 1에 있어서,
    상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하며,
    상기 양극 활물질층에 포함된 양극 활물질은 상기 리튬 인산철계 복합 산화물로 이루어진 것인 리튬 이차 전지.
  12. 청구항 1에 있어서,
    상기 음극 활물질은 흑연을 포함하는 것인 리튬 이차 전지.
PCT/KR2021/016153 2020-11-13 2021-11-08 리튬 이차 전지 WO2022103101A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21892269.8A EP4170773A1 (en) 2020-11-13 2021-11-08 Lithium secondary battery
US18/017,547 US20230335795A1 (en) 2020-11-13 2021-11-08 Lithium Secondary Battery
CN202180059023.8A CN116134640A (zh) 2020-11-13 2021-11-08 锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0151754 2020-11-13
KR20200151754 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022103101A1 true WO2022103101A1 (ko) 2022-05-19

Family

ID=81601521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016153 WO2022103101A1 (ko) 2020-11-13 2021-11-08 리튬 이차 전지

Country Status (5)

Country Link
US (1) US20230335795A1 (ko)
EP (1) EP4170773A1 (ko)
KR (1) KR20220065686A (ko)
CN (1) CN116134640A (ko)
WO (1) WO2022103101A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240052549A (ko) * 2022-10-14 2024-04-23 주식회사 엘지에너지솔루션 비수 전해질 및 이를 포함하는 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190008100A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20190059256A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020121850A1 (ja) * 2018-12-13 2020-06-18 三井化学株式会社 電池用非水電解液及びリチウム二次電池
KR20200089623A (ko) * 2019-01-17 2020-07-27 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20200099883A (ko) * 2019-02-15 2020-08-25 주식회사 유뱃 전기화학 소자 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804689B1 (ko) 2002-01-11 2008-02-18 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190008100A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20190059256A (ko) * 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020121850A1 (ja) * 2018-12-13 2020-06-18 三井化学株式会社 電池用非水電解液及びリチウム二次電池
KR20200089623A (ko) * 2019-01-17 2020-07-27 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20200099883A (ko) * 2019-02-15 2020-08-25 주식회사 유뱃 전기화학 소자 및 이의 제조방법

Also Published As

Publication number Publication date
EP4170773A1 (en) 2023-04-26
KR20220065686A (ko) 2022-05-20
US20230335795A1 (en) 2023-10-19
CN116134640A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023027547A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022055258A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023068807A1 (ko) 리튬 이차전지
WO2023043190A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2022103101A1 (ko) 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023121028A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022197094A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022080770A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2021049875A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2023075379A1 (ko) 비수 전해질용 첨가제, 이를 포함하는 비수 전해질 및 리튬 이차전지
WO2022050712A1 (ko) 리튬 이차 전지
WO2022203417A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2024034887A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021892269

Country of ref document: EP

Effective date: 20230123

NENP Non-entry into the national phase

Ref country code: DE