WO2020121850A1 - 電池用非水電解液及びリチウム二次電池 - Google Patents

電池用非水電解液及びリチウム二次電池 Download PDF

Info

Publication number
WO2020121850A1
WO2020121850A1 PCT/JP2019/046829 JP2019046829W WO2020121850A1 WO 2020121850 A1 WO2020121850 A1 WO 2020121850A1 JP 2019046829 W JP2019046829 W JP 2019046829W WO 2020121850 A1 WO2020121850 A1 WO 2020121850A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbon atoms
group
mass
compound represented
Prior art date
Application number
PCT/JP2019/046829
Other languages
English (en)
French (fr)
Inventor
藤山 聡子
敬 菅原
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US17/311,813 priority Critical patent/US20220029199A1/en
Priority to JP2020559146A priority patent/JP7345502B2/ja
Priority to CN201980081760.0A priority patent/CN113169377A/zh
Priority to EP19896809.1A priority patent/EP3896772A4/en
Publication of WO2020121850A1 publication Critical patent/WO2020121850A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a non-aqueous electrolyte solution for a battery and a lithium secondary battery.
  • Non-aqueous electrolyte solutions for batteries used in batteries such as lithium secondary batteries.
  • Patent Document 1 in a non-aqueous electrolyte battery, halogen acid can be generated by reacting with water for the purpose of preventing generation of halogen acid due to mixing of water and preventing deterioration of the battery.
  • a non-aqueous electrolyte for a battery characterized in that a non-aqueous electrolytic solution containing a supporting electrolyte is added with a complex-forming compound that does not generate a halogen acid by interacting with the water and the supporting electrolyte to form an inactive complex.
  • a liquid is disclosed.
  • Patent Document 2 a non-aqueous electrolytic solution containing a compound having a carbodiimide structure is provided as a non-aqueous electrolytic solution that can provide a non-aqueous gel composition in a non-aqueous electrolytic solution that generates a free acid. Furthermore, an electrochemical element (for example, a battery) using this non-aqueous electrolyte solution is disclosed.
  • Patent Document 3 a carbodiimide having a specific structure and at least one of a sulfate ester and a boron compound having a specific structure are contained as a non-aqueous electrolyte in which coloring during storage and an increase in acid content are suppressed. Non-aqueous electrolytes are known.
  • Patent Document 3 further discloses a non-aqueous electrolyte secondary battery produced using the above-mentioned non-aqueous electrolyte, which produces less gas during initial charging and has good cycle characteristics.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-294129
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-313073
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2010-251313
  • a lithium secondary battery (hereinafter, also simply referred to as “battery”) containing lithium iron phosphate as a positive electrode active material is in widespread use.
  • the battery characteristics after storage (specifically, the battery capacity and the battery resistance) may deteriorate.
  • iron is eluted from lithium iron phosphate as a positive electrode active material and deposited on the negative electrode. Therefore, it may be required to improve the battery characteristics of the above battery after storage.
  • An object of one embodiment of the present disclosure is to provide a non-aqueous electrolyte solution for a battery, which can improve battery characteristics after storage in a lithium secondary battery containing lithium iron phosphate as a positive electrode active material.
  • An object of another aspect of the present disclosure is to provide a lithium secondary battery containing lithium iron phosphate as a positive electrode active material and having improved battery characteristics after storage.
  • Means for solving the above problems include the following aspects. ⁇ 1> Used in a lithium secondary battery containing lithium iron phosphate as a positive electrode active material, A non-aqueous electrolytic solution for a battery, which contains a compound represented by the following formula (1).
  • R 11 and R 12 each independently represent an aliphatic group having 1 to 12 carbon atoms or a fluorinated aliphatic group having 1 to 12 carbon atoms.
  • the compound represented by the formula (1) includes a compound in which the R 11 and the R 12 in the formula (1) are each independently an aliphatic group having 3 to 8 carbon atoms.
  • Item 2 The nonaqueous electrolytic solution for a battery according to Item 1.
  • ⁇ 3> The battery non-use according to ⁇ 1> or ⁇ 2>, further containing at least one selected from the group consisting of compounds represented by any of the following formulas (2) to (9): Water electrolyte.
  • R 21 to R 24 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, or a fluorohydrocarbon group having 1 to 6 carbon atoms.
  • R 31 to R 34 are each independently a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by formula (a), or a group represented by formula (b). Represents.
  • * represents a bond position.
  • R 41 to R 44 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
  • R 41 to R 44 are not hydrogen atoms at the same time.
  • R 51 and R 52 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
  • R 61 to R 63 each independently represent a fluorine atom or an —OLi group, and at least one of R 61 to R 63 is a —OLi group.
  • R 71 to R 76 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorohydrocarbon group having 1 to 3 carbon atoms.
  • R 81 to R 84 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorohydrocarbon group having 1 to 3 carbon atoms.
  • M represents an alkali metal
  • Y represents a transition element, or a group 13, 14 or 15 element of the periodic table
  • b is an integer of 1 to 3
  • m is 1 to 4
  • N is an integer from 0 to 8
  • q is 0 or 1.
  • R 91 is an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these groups are: In the structure, a substituent or a hetero atom may be contained, and when q is 1 and m is 2 to 4, m R 91 s each may be bonded to each other.
  • n R 92 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms (these groups are , May contain a substituent or a hetero atom in the structure, and when n is 2 to 8, each of n R 92 s may be bonded to form a ring), or Represents -X 3 R 93 .
  • X 1 , X 2 and X 3 each independently represent O, S or NR 94
  • R 93 and R 94 are each independently hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms.
  • a plurality of 93 or R 94 When a plurality of 93 or R 94 are present, they may be bonded to each other to form a ring.
  • ⁇ 4> The nonaqueous electrolytic solution for a battery according to ⁇ 3>, which contains the compound represented by the formula (3).
  • ⁇ 5> The nonaqueous electrolytic solution for a battery according to ⁇ 3> or ⁇ 4>, containing the compound represented by the formula (3) and the compound represented by the formula (5).
  • ⁇ 6> The content mass of the compound represented by the formula (5) is larger than the content mass of the compound represented by the formula (1), and the content mass of the compound represented by the formula (3).
  • the nonaqueous electrolytic solution for a battery according to ⁇ 5> which is larger than ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, in which the content of the compound represented by the formula (1) is 0.01% by mass to 5% by mass with respect to the total amount of the nonaqueous electrolytic solution.
  • the non-aqueous electrolyte solution for a battery according to. ⁇ 8> A positive electrode containing lithium iron phosphate as a positive electrode active material, Negative electrode, ⁇ 1> to ⁇ 7>, the non-aqueous electrolyte for a battery according to any one of Rechargeable lithium battery.
  • ⁇ 9> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to ⁇ 8>.
  • a non-aqueous electrolyte solution for a battery which can improve battery characteristics after storage in a lithium secondary battery containing lithium iron phosphate as a positive electrode active material.
  • a lithium secondary battery containing lithium iron phosphate as a positive electrode active material and having improved battery characteristics after storage there is provided.
  • FIG. 3 is a schematic perspective view showing an example of a laminated battery, which is an example of the lithium secondary battery of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view in the thickness direction of a laminated electrode body housed in the laminated battery shown in FIG. 1.
  • FIG. 7 is a schematic cross-sectional view showing an example of a coin-type battery that is another example of the lithium secondary battery of the present disclosure.
  • a numerical range represented by “to” means a range including the numerical values before and after “to” as a lower limit value and an upper limit value.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition, unless a plurality of substances corresponding to each component are present in the composition.
  • Non-aqueous electrolytic solution for a battery of the present disclosure is a lithium secondary battery containing lithium iron phosphate as a positive electrode active material (for example, a lithium secondary battery of the present disclosure described later). ), which contains a compound represented by the following formula (1).
  • battery characteristics after storage in a lithium secondary battery containing lithium iron phosphate as a positive electrode active material can be improved. The reason why such an effect is exhibited is not clear, but it is presumed as follows.
  • the non-aqueous electrolytic solution of the present disclosure contains at least one compound represented by the formula (1).
  • R 11 and R 12 each independently represent an aliphatic group having 1 to 12 carbon atoms or a fluorinated aliphatic group having 1 to 12 carbon atoms.
  • the fluoroaliphatic group means an aliphatic group substituted with at least one fluorine atom.
  • the aliphatic group and the fluorinated aliphatic group may each include a branched and/or ring structure.
  • the aliphatic group is preferably an alkyl group or an alkenyl group, and more preferably an alkyl group.
  • the fluorinated aliphatic group is preferably a fluorinated alkyl group or a fluorinated alkenyl group, and more preferably a fluorinated alkyl group.
  • the aliphatic group having 1 to 12 carbon atoms preferably has 2 to 10 carbon atoms, and more preferably has 3 to 8 carbon atoms.
  • the fluorinated aliphatic group having 1 to 12 carbon atoms preferably has 2 to 10 carbon atoms, and more preferably has 3 to 8 carbon atoms.
  • the compound represented by the formula (1) contained in the non-aqueous electrolytic solution of the present disclosure is one in which “R 11 and R 12 in the formula (1) are And each independently, a compound which is an aliphatic group having 3 to 8 carbon atoms.
  • R 11 and R 12 are each independently It is preferably an alkyl group having 1 to 12 carbon atoms or a fluorinated alkyl group having 1 to 12 carbon atoms, More preferably, it is an alkyl group having 1 to 12 carbon atoms, It is more preferably a normal propyl group, an isopropyl group, a cyclohexyl group, a methylcyclohexyl group, or a dimethylcyclohexyl group, More preferably, it is an isopropyl group or a cyclohexyl group.
  • N,N′-diisopropylcarbodiimide a compound in which both R 11 and R 12 are isopropyl groups; hereinafter also referred to as “DIC”
  • N,N′-dicyclohexylcarbodiimide a compound in which both R 11 and R 12 are cyclohexyl groups; hereinafter also referred to as “DCC”
  • the content of the compound represented by the formula (1) is preferably 0.01% by mass to 5% by mass, more preferably 0.05% by mass to 3% by mass, based on the total amount of the non-aqueous electrolytic solution. %, more preferably 0.1% by mass to 2% by mass, and further preferably 0.1% by mass to 1% by mass.
  • the non-aqueous electrolyte solution of the present disclosure is further selected from the group consisting of compounds represented by the following formulas (2) to (9) from the viewpoint of more effectively obtaining the effect of improving battery characteristics after storage. At least one kind may be contained.
  • the compounds represented by formulas (2) to (9) will be described below.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the formula (2).
  • R 21 to R 24 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, or a fluorohydrocarbon group having 1 to 6 carbon atoms.
  • the hydrocarbon group having 1 to 6 carbon atoms represented by R 21 to R 24 may be a linear hydrocarbon group, or a hydrocarbon group having a branched and/or ring structure. May be
  • the hydrocarbon group having 1 to 6 carbon atoms represented by R 21 to R 24 is preferably an alkyl group or an aryl group, and more preferably an alkyl group.
  • the number of carbon atoms of the hydrocarbon group having 1 to 6 carbon atoms represented by R 21 to R 24 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 21 to R 24 may be a linear fluorohydrocarbon group, or may have a branched and/or ring structure. It may be a fluorinated hydrocarbon group.
  • the C 1-6 fluorohydrocarbon group represented by R 21 to R 24 is preferably a fluoroalkyl group or a fluoroaryl group, and more preferably a fluoroalkyl group.
  • the number of carbon atoms of the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 21 to R 24 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1. ..
  • the compound represented by the formula (2) include compounds represented by the following formula (2-1) to the following formula (2-9) (hereinafter, compound (2-1) to compound (2 -9)), but the compound represented by the formula (2) is not limited to these specific examples. Of these, the compound (2-1) or the compound (2-2) is particularly preferable.
  • the content of the compound represented by the formula (2) is 0.001% by mass to the total amount of the non-aqueous electrolyte. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 2 mass% is further preferable, and 0.1 mass% to 1 mass% is particularly preferable.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the formula (3).
  • R 31 to R 34 are each independently a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by formula (a), or a group represented by formula (b). Represents.
  • * represents a bond position.
  • a preferred embodiment of the hydrocarbon group having 1 to 6 carbon atoms represented by R 31 to R 34 is that having 1 to 6 carbon atoms represented by R 21 to R 24 in the formula (2). It is the same as the preferable embodiment of the hydrocarbon group.
  • the number of carbon atoms of the hydrocarbon group having 1 to 6 carbon atoms represented by R 31 to R 34 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • R 31 is a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b)
  • R 32 is a hydrogen atom
  • R 33 is a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b)
  • R 34 is a hydrogen atom.
  • the compound represented by the formula (3) include compounds represented by the following formulas (3-1) to (3-4) (hereinafter, compound (3-1) to compound (3 -4)), but the compound represented by the formula (3) is not limited to these specific examples. Of these, compounds (3-1) to (3-3) are preferable.
  • the content of the compound represented by the formula (3) is 0.001% by mass to the total amount of the non-aqueous electrolyte solution. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 2 mass% is further preferable, and 0.1 mass% to 1 mass% is further preferable.
  • the ratio of the content mass of the compound represented by the formula (3) to the content mass of the compound represented by the formula (1) is preferably 0.1 to 10, more preferably 0.2 to 5, and still more preferably 0.3 to 3.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the following formula (4).
  • R 41 to R 44 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. However, R 41 to R 44 are not hydrogen atoms at the same time.
  • a preferable embodiment of the hydrocarbon group having 1 to 6 carbon atoms represented by R 41 to R 44 is the one having 1 to 6 carbon atoms represented by R 21 to R 24 in the formula (2). It is the same as the hydrocarbon group. However, the hydrocarbon group having 1 to 6 carbon atoms represented by R 41 to R 44 is also preferably an alkenyl group.
  • the carbon number of the hydrocarbon group having 1 to 6 carbon atoms represented by R 41 to R 44 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • a preferable embodiment of the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 41 to R 44 is 1 to 6 carbon atoms represented by R 21 to R 24 in the formula (2). It is the same as the preferable embodiment of the fluorohydrocarbon group of 6.
  • the C 1-6 fluorohydrocarbon group represented by R 41 to R 44 is also preferably a fluorinated alkenyl group.
  • the number of carbon atoms of the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 41 to R 44 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the compound represented by the formula (4) include compounds represented by the following formula (4-1) to the following formula (4-5) (hereinafter, compound (4-1) to compound (4 -5)), but the compound represented by the formula (4) is not limited to these specific examples. Of these, the compound (4-1) or the compound (4-2) is particularly preferable.
  • the content of the compound represented by the formula (4) is 0.001% by mass to the total amount of the non-aqueous electrolytic solution. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 2 mass% is further preferable, and 0.1 mass% to 1 mass% is particularly preferable.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the following formula (5).
  • R 51 and R 52 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
  • a preferable embodiment of the hydrocarbon group having 1 to 6 carbon atoms represented by R 51 or R 52 is that having 1 to 6 carbon atoms represented by R 21 to R 24 in the formula (2). It is the same as the preferable embodiment of the hydrocarbon group.
  • the carbon number of the hydrocarbon group having 1 to 6 carbon atoms represented by R 51 or R 52 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • a preferable embodiment of the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 51 or R 52 is 1 to 6 carbon atoms represented by R 21 to R 24 in the formula (2). It is the same as the preferable embodiment of the fluorohydrocarbon group of 6.
  • the number of carbon atoms in the fluorohydrocarbon group having 1 to 6 carbon atoms represented by R 51 or R 52 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the compound represented by the formula (5) include compounds represented by the following formula (5-1) to the following formula (5-11) (hereinafter, compound (5-1) to compound (5), respectively. -11)), but the compound represented by the formula (5) is not limited to these specific examples. Of these, the compound (5-1) is particularly preferable.
  • the content of the compound represented by the formula (5) is 0.001% by mass to the total amount of the non-aqueous electrolyte. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 5 mass% is further preferable, and 0.1 mass% to 3 mass% is particularly preferable.
  • the content mass of the compound represented by the formula (5) is larger than the content mass of the compound represented by the formula (1). It is preferably large.
  • the ratio of the content mass of the compound represented by the formula (5) to the content mass of the compound represented by the formula (1) (hereinafter, “content mass ratio [compound represented by the formula (5)/(1) Also referred to as “compounds represented”] is preferably 0.2 to 10, more preferably 0.5 to 8, still more preferably 1.1 to 8, and still more preferably 1.5 to 6 and more preferably 2 to 6.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the following formula (6).
  • R 61 to R 63 each independently represent a fluorine atom or an —OLi group, and at least one of R 61 to R 63 is a —OLi group.
  • Specific examples of the compound represented by the formula (6) include compounds represented by the following formula (6-1) and the following formula (6-2) (hereinafter, compound (6-1) and compound (6), respectively. -2)), but the compound represented by the formula (6) is not limited to these specific examples.
  • the content of the compound represented by the formula (6) is 0.001 mass% to the total amount of the non-aqueous electrolytic solution. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 2 mass% is further preferable, and 0.1 mass% to 1 mass% is particularly preferable.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the following formula (7).
  • R 71 to R 76 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorohydrocarbon group having 1 to 3 carbon atoms.
  • a preferred embodiment of the hydrocarbon group having 1 to 3 carbon atoms represented by R 71 to R 76 is R 21 in the formula (2) except that the hydrocarbon group has 1 to 3 carbon atoms. It is the same as the preferable embodiment of the hydrocarbon group having 1 to 6 carbon atoms represented by to R 24 .
  • the number of carbon atoms of the hydrocarbon group having 1 to 3 carbon atoms represented by R 71 to R 76 is preferably 1 or 2, and more preferably 1.
  • a preferred embodiment of the C 1 to C 3 fluorohydrocarbon group represented by R 71 to R 76 is that in the formula (2), except that the number of carbon atoms is 1 to 3, This is the same as the preferable embodiment of the fluorocarbon group having 1 to 6 carbon atoms represented by R 21 to R 24 .
  • the number of carbon atoms of the fluorocarbon group having 1 to 3 carbon atoms represented by R 71 to R 76 is preferably 1 or 2, and more preferably 1.
  • Specific examples of the compound represented by the formula (7) include compounds represented by the following formulas (7-1) to (7-21) (hereinafter, compound (7-1) to compound (7), respectively. -21)), but the compound represented by the formula (7) is not limited to these specific examples. Of these, the compound (7-1) is particularly preferable.
  • the content of the compound represented by the formula (7) is 0.001% by mass to the total amount of the non-aqueous electrolyte. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 2 mass% is further preferable, and 0.1 mass% to 1 mass% is particularly preferable.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the following formula (8).
  • R 81 to R 84 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorohydrocarbon group having 1 to 3 carbon atoms.
  • a preferable embodiment of the hydrocarbon group having 1 to 3 carbon atoms represented by R 81 to R 84 is R 21 in the formula (2) except that the hydrocarbon group has 1 to 3 carbon atoms. It is the same as the preferable embodiment of the hydrocarbon group having 1 to 6 carbon atoms represented by to R 24 .
  • the carbon number of the hydrocarbon group having 1 to 3 carbon atoms represented by R 81 to R 84 is preferably 1 or 2, and more preferably 1.
  • a preferred embodiment of the fluorohydrocarbon group having 1 to 3 carbon atoms represented by R 81 to R 84 is that in the formula (2), except that the number of carbon atoms is 1 to 3, This is the same as the preferable embodiment of the fluorocarbon group having 1 to 6 carbon atoms represented by R 21 to R 24 .
  • the number of carbon atoms of the fluorohydrocarbon group having 1 to 3 carbon atoms represented by R 81 to R 84 is preferably 1 or 2, and more preferably 1.
  • Specific examples of the compound represented by the formula (8) include compounds represented by the following formulas (8-1) to (8-21) (hereinafter, compound (8-1) to compound (8), respectively). -21)), but the compound represented by the formula (8) is not limited to these specific examples. Of these, the compound (8-1) is particularly preferable.
  • the content of the compound represented by the formula (8) is 0.001% by mass to the total amount of the non-aqueous electrolytic solution. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 2 mass% is further preferable, and 0.1 mass% to 1 mass% is particularly preferable.
  • the non-aqueous electrolyte solution of the present disclosure may contain at least one compound represented by the following formula (9).
  • M represents an alkali metal
  • Y represents a transition element, or a group 13, 14 or 15 element of the periodic table
  • b is an integer of 1 to 3
  • m is 1 to 4
  • N is an integer from 0 to 8
  • q is 0 or 1.
  • R 91 is an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these groups are: In the structure, a substituent or a hetero atom may be contained, and when q is 1 and m is 2 to 4, m R 91 s each may be bonded to each other.
  • 92 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms (these groups are , May contain a substituent or a hetero atom in the structure, and when n is 2 to 8, n R 92 s may be bonded to each other to form a ring), or Represents -X 3 R 93 .
  • X 1 , X 2 and X 3 each independently represent O, S or NR 94
  • R 93 and R 94 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or 1 to 10 carbon atoms.
  • a plurality of 93 or R 94 When a plurality of 93 or R 94 are present, they may be bonded to each other to form a ring.
  • M is an alkali metal and Y is a transition metal or a group 13, 14 or 15 element of the periodic table.
  • Y is preferably Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf or Sb.
  • Al, B or P is more preferable.
  • B which represents the valency of anions and the number of cations, is an integer of 1 to 3, and is preferably 1.
  • the constants m and n are values related to the number of ligands and are determined depending on the type of M, but m is an integer of 1 to 4 and n is an integer of 0 to 8.
  • the constant q is 0 or 1. When q is 0, the chelate ring is a five-membered ring, and when q is 1, the chelate ring is a six-membered ring.
  • R 91 represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms.
  • These alkylene group, halogenated alkylene group, arylene group or halogenated arylene group may contain a substituent or a hetero atom in its structure.
  • a halogen atom instead of a hydrogen atom of these groups, a halogen atom, a chain or cyclic alkyl group, an aryl group, an alkenyl group, an alkoxy group, an aryloxy group, a sulfonyl group, an amino group, a cyano group, a carbonyl group, It may contain an acyl group, an amide group, or a hydroxyl group as a substituent. Further, it may have a structure in which a nitrogen atom, a sulfur atom, or an oxygen atom is introduced instead of the carbon element of these groups. Further, when q is 1 and m is 2 to 4, each of m R 91 s may be bonded. Such an example may include a ligand such as ethylenediaminetetraacetic acid.
  • R 92 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms, or —X 3 R 93 (X 3 , R 93 will be described later) is represented.
  • These alkyl group in R 92, halogenated alkyl group, an aryl group or a halogenated aryl group, like R 91, substituent in the structure may contain a hetero atom, also, n is 2 to When it is 8, n R 12 s may be bonded to each other to form a ring.
  • R 92 an electron-withdrawing group is preferable, and a fluorine atom is particularly preferable.
  • X 1 , X 2 and X 3 each independently represent O, S or NR 94 . That is, the ligand will be bonded to Y through these heteroatoms.
  • R 93 and R 94 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a carbon group having 6 to 20 carbon atoms. Represents a halogenated aryl group. Similar to R 91 , these alkyl group, halogenated alkyl group, aryl group, or halogenated aryl group may have a substituent or a hetero atom in its structure. When a plurality of R 93 and R 94 are present, they may be bonded to each other to form a ring.
  • Examples of the alkali metal represented by M include lithium, sodium, potassium and the like. Of these, lithium is particularly preferable. As n, an integer of 0 to 4 is preferable.
  • a compound represented by the following formula (9A), a compound represented by the following formula (9B), a compound represented by the following formula (9C), a following formula (9D) More preferably, at least one selected from the group consisting of the compound represented by: and the compound represented by the following formula (9E).
  • M has the same meaning as M in formula (9), and the preferred embodiments are also the same.
  • the content of the compound represented by the formula (9) is 0.001% by mass to the total amount of the non-aqueous electrolytic solution. 10 mass% is preferable, 0.005 mass% to 5 mass% is more preferable, 0.01 mass% to 2 mass% is further preferable, and 0.1 mass% to 1 mass% is particularly preferable.
  • the non-aqueous electrolyte solution of the present disclosure includes, among the compounds represented by the above formulas (2) to (9), It is more preferable to contain the compound represented by formula (3), It is more preferable to contain the compound represented by formula (3) and the compound represented by formula (5).
  • the content mass of the compound represented by the formula (5) is represented by the formula ( It is preferably larger than the content mass of the compound represented by 1) and larger than the content mass of the compound represented by the formula (3).
  • the formula (with respect to the content mass of the compound represented by the formula (3) (The content mass ratio of the compound represented by 5) (hereinafter, also referred to as "content mass ratio [compound represented by formula (5)/compound represented by formula (3)]") is preferably 0. It is 2 to 10, more preferably 0.5 to 8, still more preferably 1.1 to 8, still more preferably 1.5 to 6, and still more preferably 2 to 6.
  • the nonaqueous electrolytic solution of the present disclosure contains the compound represented by the formula (3) and the compound represented by the formula (5), the formula (
  • the content mass ratio of the compound represented by 5) (hereinafter, also referred to as “content mass ratio [compound represented by formula (5)/compound represented by formula (1)]”) is preferably 0. It is 2 to 10, more preferably 0.5 to 8, still more preferably 1.1 to 8, still more preferably 1.5 to 6, and still more preferably 2 to 6.
  • the nonaqueous electrolytic solution of the present disclosure contains the compound represented by the formula (3) and the compound represented by the formula (5), the formula (
  • the ratio of the content mass of the compound represented by 3) (hereinafter, also referred to as “content mass ratio [compound represented by formula (3)/compound represented by formula (1)]”) is preferably 0. It is 1 to 10, more preferably 0.2 to 5, and still more preferably 0.3 to 3.
  • the non-aqueous electrolytic solution generally contains an electrolyte and a non-aqueous solvent.
  • the non-aqueous electrolyte solution of the present disclosure contains an electrolyte.
  • the electrolyte preferably contains a lithium salt, and more preferably contains LiPF 6 .
  • the proportion of LiPF 6 occupied in the electrolyte is preferably 10 wt% to 100 wt%, more preferably 50 mass% to 100 mass%, more preferably 70 mass% to 100 mass% is there.
  • the concentration of the electrolyte in the non-aqueous electrolytic solution of the present disclosure is preferably 0.1 mol/L to 3 mol/L, more preferably 0.5 mol/L to 2 mol/L. Further, the concentration of LiPF 6 in the non-aqueous electrolytic solution of the present disclosure is preferably 0.1 mol/L to 3 mol/L, more preferably 0.5 mol/L to 2 mol/L.
  • the electrolyte may contain a compound other than LiPF 6 .
  • the non-aqueous electrolyte solution of the present disclosure contains a non-aqueous solvent.
  • the non-aqueous solvent contained in the non-aqueous electrolytic solution may be only one type or two or more types.
  • As the non-aqueous solvent various known ones can be appropriately selected.
  • As the non-aqueous solvent for example, the non-aqueous solvent described in paragraphs 0069 to 0087 of JP-A-2017-45723 can be used.
  • the non-aqueous solvent preferably contains a cyclic carbonate compound and a chain carbonate compound.
  • the cyclic carbonate compound and the chain carbonate compound contained in the non-aqueous solvent may each be only one kind or two or more kinds.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate and 2,3-pentylene carbonate.
  • ethylene carbonate and propylene carbonate which have a high dielectric constant, are preferable.
  • the non-aqueous solvent more preferably contains ethylene carbonate.
  • chain carbonate compounds include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, ethyl pentyl.
  • a cyclic carbonate and a chain carbonate specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, and propylene carbonate.
  • the mixing ratio of the cyclic carbonate compound and the chain carbonate compound is represented by a mass ratio, and the cyclic carbonate compound:chain carbonate compound is, for example, 5:95 to 80:20, preferably 10:90 to 70:30, and further preferably Is from 15:85 to 55:45.
  • the increase in viscosity of the non-aqueous electrolyte can be suppressed and the dissociation degree of the electrolyte can be increased, so that the conductivity of the non-aqueous electrolyte related to the charge/discharge characteristics of the battery can be increased. ..
  • the solubility of the electrolyte can be further increased. Therefore, the nonaqueous electrolytic solution having excellent electric conductivity at room temperature or low temperature can be obtained, so that the load characteristics of the battery at room temperature to low temperature can be improved.
  • the non-aqueous solvent may contain a compound other than the cyclic carbonate compound and the chain carbonate compound.
  • the other compound contained in the non-aqueous solvent may be only one kind or two or more kinds.
  • other compounds include cyclic carboxylic acid ester compounds (for example, ⁇ -butyrolactone), cyclic sulfone compounds, cyclic ether compounds, chain carboxylic acid ester compounds, chain ether compounds, chain phosphoric acid ester compounds, amide compounds, chain carbamates.
  • examples thereof include compounds, cyclic amide compounds, cyclic urea compounds, boron compounds, polyethylene glycol derivatives and the like. Regarding these compounds, the description in paragraphs 0069 to 0087 of JP-A-2017-45723 can be appropriately referred to.
  • the ratio of the cyclic carbonate compound and the chain carbonate compound in the non-aqueous solvent is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • the proportion of the cyclic carbonate compound and the chain carbonate compound in the non-aqueous solvent may be 100% by mass.
  • the proportion of the non-aqueous solvent in the non-aqueous electrolytic solution is preferably 60% by mass or more, more preferably 70% by mass or more.
  • the upper limit of the proportion of the non-aqueous solvent in the non-aqueous electrolyte depends on the content of other components (electrolyte, additive, etc.), but the upper limit is, for example, 99% by mass, preferably 97% by mass. Yes, and more preferably 90% by mass.
  • the lithium secondary battery of the present disclosure is A positive electrode containing lithium iron phosphate as a positive electrode active material, Negative electrode, The non-aqueous electrolyte solution of the present disclosure described above, Equipped with.
  • the lithium secondary battery of the present disclosure is a lithium secondary battery containing lithium iron phosphate as a positive electrode active material, deterioration of battery characteristics after storage is reduced. Such an effect is an effect brought about by the compound represented by the formula (1) in the non-aqueous electrolytic solution.
  • the positive electrode contains lithium iron phosphate (LiFePO 4 ) as a positive electrode active material.
  • the positive electrode may contain a component other than lithium iron phosphate as a positive electrode active material.
  • components other than lithium iron phosphate Transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , V 2 O 5 ; LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi X Co (1-X) O 2 [0 ⁇ X ⁇ 1], LiNi x Mn y Co z O 2 [x, y and z are independent of each other.
  • a composite oxide composed of lithium and a transition metal such as LiMnPO 4 .
  • Conducting polymer materials such as polyaniline, polythiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazole, and polyaniline complex; Etc.
  • the proportion of lithium iron phosphate in the positive electrode active material is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the proportion of lithium iron phosphate in the positive electrode active material may be 100% by mass or less than 100% by mass.
  • the positive electrode preferably includes a positive electrode active material layer containing a positive electrode active material.
  • the positive electrode active material layer may contain components other than the positive electrode active material.
  • components other than the positive electrode active material include a conductive auxiliary agent and a binder.
  • the conductive aid include carbon materials such as carbon black (for example, acetylene black), amorphous whiskers, and graphite.
  • the binder include polyvinylidene fluoride and the like.
  • the positive electrode active material layer can be formed by applying a positive electrode mixture slurry containing a positive electrode active material and a solvent onto a positive electrode current collector described later and drying it.
  • the positive electrode mixture slurry may contain components other than the positive electrode active material (for example, a conductive auxiliary agent, a binder, etc.).
  • the solvent in the positive electrode mixture slurry include organic solvents such as N-methylpyrrolidone.
  • the proportion of the positive electrode active material in the total solid content of the positive electrode active material layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the proportion of the positive electrode active material in the total solid content of the positive electrode active material layer may be 100% by mass.
  • the total solid content of the positive electrode active material layer when the solvent remains in the positive electrode active material layer, means the total amount excluding the solvent from the positive electrode active material layer, the solvent in the positive electrode active material layer When not remaining, it means the total amount of the positive electrode active material layer.
  • the proportion of lithium iron phosphate in the total solid content of the positive electrode active material layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the proportion of lithium iron phosphate in the total solid content of the positive electrode active material layer may be 100% by mass or less than 100% by mass.
  • the positive electrode preferably includes a positive electrode current collector.
  • the material for the positive electrode current collector is not particularly limited, and any known material can be used. Specific examples of the positive electrode current collector include metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium, and tantalum; carbon materials such as carbon cloth and carbon paper; and the like.
  • the negative electrode preferably contains a negative electrode active material.
  • the negative electrode active material for example, metallic lithium, a lithium-containing alloy, a metal or an alloy capable of alloying with lithium, an oxide capable of doping/dedoping lithium ions, a doping/dedoping of lithium ions is possible. At least one selected from the group consisting of transition metal nitrides and carbon materials capable of doping/dedoping lithium ions can be used. Examples of metals or alloys that can be alloyed with lithium (or lithium ions) include silicon, silicon alloys, tin, and tin alloys. Further, as the negative electrode active material, lithium titanate can also be used.
  • carbon materials capable of doping/dedoping lithium ions are preferable.
  • examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of fibrous, spherical, potato-like and flake-like forms.
  • amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500° C. or lower, and mesophase pitch carbon fiber (MCF).
  • the graphite material examples include natural graphite and artificial graphite.
  • As the artificial graphite graphitized MCMB, graphitized MCF or the like is used.
  • a material containing boron can be used.
  • a material coated with a metal such as gold, platinum, silver, copper, tin, a material coated with amorphous carbon, or a material mixed with amorphous carbon and graphite can be used.
  • These carbon materials may be used alone or in combination of two or more.
  • a carbon material having an interplanar spacing d(002) of (002) planes measured by X-ray analysis of 0.340 nm or less is particularly preferable.
  • graphite having a true density of 1.70 g/cm 3 or more or a highly crystalline carbon material having a property close to that is also preferable.
  • the proportion of the carbon material (preferably graphite material) in the negative electrode active material is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the proportion of the carbon material (preferably graphite material) in the negative electrode active material may be 100% by mass or less than 100% by mass.
  • the negative electrode preferably includes a negative electrode active material layer containing a negative electrode active material.
  • the negative electrode active material layer may contain components other than the negative electrode active material. Examples of components other than the negative electrode active material include binders. Examples of the binder include carboxymethyl cellulose and SBR latex.
  • the negative electrode active material layer can be formed by applying a negative electrode mixture slurry containing a negative electrode active material and a solvent onto a negative electrode current collector described later and drying the slurry.
  • the negative electrode mixture slurry may contain a component (for example, a binder) other than the negative electrode active material.
  • the solvent in the negative electrode mixture slurry include water.
  • the proportion of the negative electrode active material in the total solid content of the negative electrode active material layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the proportion of the negative electrode active material in the total solid content of the negative electrode active material layer may be 100% by mass.
  • the total solid content of the negative electrode active material layer when the solvent remains in the negative electrode active material layer, means the total amount of the negative electrode active material layer excluding the solvent, the solvent in the negative electrode active material layer When it does not remain, it means the total amount of the negative electrode active material layer.
  • the proportion of the carbon material (preferably graphite material) in the total solid content of the negative electrode active material layer is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. ..
  • the proportion of the carbon material (preferably graphite material) in the total solid content of the negative electrode active material layer may be 100% by mass.
  • the negative electrode preferably includes a negative electrode current collector.
  • the material of the negative electrode current collector is not particularly limited, and any known material can be used.
  • Specific examples of the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among them, copper is particularly preferable in terms of workability.
  • the lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
  • the separator is a film that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions, and examples thereof include a porous film and a polymer electrolyte.
  • a microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester and the like.
  • porous polyolefin is preferable, and specific examples thereof include a porous polyethylene film, a porous polypropylene film, and a multilayer film of a porous polyethylene film and a polypropylene film.
  • the porous polyolefin film may be coated with another resin having excellent thermal stability.
  • the polymer electrolyte include a polymer in which a lithium salt is dissolved and a polymer swollen with an electrolytic solution.
  • the non-aqueous electrolyte solution of the present disclosure may be used for the purpose of swelling a polymer to obtain a polymer electrolyte.
  • the lithium secondary battery of the present disclosure can have various known shapes, and can be formed into any shape such as a cylindrical shape, a coin shape, a square shape, a laminate type, a film type, or the like.
  • the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
  • FIG. 1 is a schematic perspective view showing an example of a laminated battery which is an example of the lithium secondary battery of the present disclosure
  • FIG. 2 is a thickness of a laminated electrode body housed in the laminated battery shown in FIG. It is a schematic sectional drawing of a direction.
  • the laminated battery shown in FIG. 1 has a non-aqueous electrolyte solution (not shown in FIG. 1) and a laminated electrode body (not shown in FIG. 1) housed therein, and the peripheral portion is sealed.
  • the laminate exterior body 1 having the inside sealed by the above is provided.
  • As the laminated outer casing 1 for example, a laminated outer casing made of aluminum is used. As shown in FIG.
  • the laminated electrode body housed in the laminated outer casing 1 includes a laminated body in which positive electrode plates 5 and negative electrode plates 6 are alternately laminated with a separator 7 interposed therebetween, and a laminated body of this laminated body. And a separator 8 surrounding the periphery.
  • the positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8 are impregnated with the nonaqueous electrolytic solution of the present disclosure.
  • the positive electrode plate 5 includes a positive electrode current collector and a positive electrode active material layer.
  • the negative electrode plate 5 includes a negative electrode current collector and a negative electrode active material layer.
  • All of the plurality of positive electrode plates 5 in the above laminated electrode body are electrically connected to the positive electrode terminal 2 via a positive electrode tab (not shown), and a part of the positive electrode terminal 2 of the laminated outer package 1 is provided. It projects outward from the peripheral edge (Fig. 1). A portion where the positive electrode terminal 2 projects at the peripheral end portion of the laminated outer casing 1 is sealed by an insulating seal 4.
  • each of the plurality of negative electrode plates 6 in the above-mentioned laminated electrode body is electrically connected to the negative electrode terminal 3 via a negative electrode tab (not shown), and a part of the negative electrode terminal 3 is the laminated exterior. It projects outward from the peripheral edge of the body 1 (Fig. 1).
  • a portion where the negative electrode terminal 3 projects at the peripheral end portion of the laminated outer casing 1 is sealed by an insulating seal 4.
  • the number of the positive electrode plates 5 is 5, and the number of the negative electrode plates 6 is 6, and the positive electrode plate 5 and the negative electrode plate 6 are disposed on both sides of the separator 7 via the separator 7. All of the outer layers are laminated in such a manner that they serve as the negative electrode plate 6.
  • the number of positive electrode plates, the number of negative electrode plates, and the arrangement in the laminated battery are not limited to this example, and various changes may be made.
  • FIG. 3 is a schematic perspective view showing an example of a coin battery that is another example of the lithium secondary battery of the present disclosure.
  • the disc-shaped negative electrode 12, the separator 15 injecting the non-aqueous electrolyte, the disc-shaped positive electrode 11, and, if necessary, the spacer plates 17 and 18 made of stainless steel or aluminum are arranged in this order. It is housed between the positive electrode can 13 (hereinafter, also referred to as “battery can”) and the sealing plate 14 (hereinafter, also referred to as “battery can lid”) in the state of being laminated.
  • the positive electrode can 13 hereinafter, also referred to as “battery can”
  • the sealing plate 14 hereinafter, also referred to as “battery can lid”
  • the positive electrode can 13 and the sealing plate 14 are caulked and sealed via a gasket 16.
  • the nonaqueous electrolytic solution of the present disclosure is used as the nonaqueous electrolytic solution injected into the separator 15.
  • the disk-shaped positive electrode 11 includes a positive electrode current collector and a positive electrode active material layer.
  • the disk-shaped negative electrode 12 includes a negative electrode current collector and a negative electrode active material layer.
  • the lithium secondary battery of the present disclosure is obtained by charging and discharging a lithium secondary battery (a lithium secondary battery before charging and discharging) including a positive electrode, a negative electrode, and the non-aqueous electrolyte solution of the present disclosure.
  • a lithium secondary battery (a lithium secondary battery before charging and discharging) including a positive electrode, a negative electrode, and the non-aqueous electrolyte solution of the present disclosure.
  • It may be a lithium secondary battery. That is, the lithium secondary battery of the present disclosure first prepares a lithium secondary battery before charging/discharging including a positive electrode, a negative electrode, and the non-aqueous electrolyte solution of the present disclosure, and then, this lithium secondary battery before charging/discharging. It may be a lithium secondary battery manufactured by charging and discharging the secondary battery once or more (charged and discharged lithium secondary battery).
  • the application of the lithium secondary battery of the present disclosure is not particularly limited, and it can be used for various publicly known applications.
  • addition amount represents the content with respect to the total amount of the finally obtained non-aqueous electrolytic solution.
  • wt% means mass %.
  • Example 1 A coin-type lithium secondary battery (hereinafter, also referred to as “coin-type battery”) having the configuration shown in FIG. 3 was produced by the following procedure.
  • Lithium iron phosphate (LiFePO 4 ; hereinafter also referred to as “LFP”) (90 parts by mass) as a positive electrode active material, acetylene black (5 parts by mass) as a conductive auxiliary agent, and polyvinylidene fluoride (as a binder) ( 5 parts by mass) was kneaded with N-methylpyrrolidinone as a solvent to prepare a paste-like positive electrode mixture slurry.
  • this positive electrode mixture slurry is applied to a positive electrode current collector of a strip-shaped aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press to form a sheet having a positive electrode current collector and a positive electrode active material layer.
  • a positive electrode was obtained.
  • the coating density of the positive electrode active material layer was 22 mg/cm 2 , and the filling density was 2.5 g/mL.
  • Amorphous-coated natural graphite (97 parts by mass) as a negative electrode active material, carboxymethyl cellulose (1 part by mass) as a binder, and SBR latex (2 parts by mass) as a binder were kneaded in a water solvent to form a paste-like negative electrode.
  • a mixture slurry was prepared.
  • the negative electrode mixture slurry is applied to a negative electrode current collector made of strip-shaped copper foil having a thickness of 10 ⁇ m, dried, and then compressed by a roll press to form a sheet-shaped negative electrode including the negative electrode current collector and the negative electrode active material layer.
  • the coating density of the negative electrode active material layer was 12 mg/cm 2
  • the filling density was 1.5 g/mL.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC methyl ethyl carbonate
  • LiPF 6 as an electrolyte was dissolved in the obtained mixed solvent so that the electrolyte concentration in the finally prepared non-aqueous electrolyte was 1 mol/liter.
  • the following additives were added to the obtained solution to obtain a non-aqueous electrolyte solution.
  • DCC N,N′-dicyclohexylcarbodiimide, which is a specific example of the compound represented by formula (1) (hereinafter, also referred to as “compound of formula (1)”); a compound in which both R 11 and R 12 are cyclohexyl groups ) was added so that the content was 0.5 mass% with respect to the total mass of the finally prepared non-aqueous electrolytic solution (that is, the addition amount was 0.5 mass%).
  • the non-aqueous electrolysis for finally preparing the compound (5-1) (vinylene carbonate), which is a specific example of the compound represented by the formula (5) (hereinafter, also referred to as “compound of the formula (5)”) The content was added so that the content was 2% by mass relative to the total mass of the liquid (that is, the addition amount was 2% by mass).
  • the above negative electrode was punched into a disc shape with a diameter of 14 mm and the above positive electrode with a diameter of 13 mm to obtain a coin-shaped negative electrode and a coin-shaped positive electrode, respectively. Further, a 20 ⁇ m-thick microporous polyethylene film was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode were stacked in this order in a stainless steel battery can (2032 size), and then 20 ⁇ L of non-aqueous electrolyte was injected into the battery can. , The separator, the positive electrode, and the negative electrode.
  • a coin-type battery that is, a coin-type lithium secondary battery having a configuration shown in FIG. 3 having a diameter of 20 mm and a height of 3.2 mm was obtained.
  • condition means that the coin-type battery is charged and discharged three times between 2.75 V and 3.5 V at 25° C. in a constant temperature bath.
  • high temperature storage means an operation of storing the coin battery in a constant temperature bath at 75° C. for 7 days.
  • the battery resistance was measured under each of two temperature conditions of 25° C. and ⁇ 20° C.
  • the coin type battery was conditioned.
  • the SOC (State of Charge) of the coin-type battery after conditioning was adjusted to 80%, and then the battery resistance (DC resistance) of the coin-type battery before high temperature storage was measured by the following method.
  • CC10s discharge was performed at a discharge rate of 0.2C.
  • CC10s discharge means discharging with a constant current (Constant Current) for 10 seconds.
  • the coin type battery was conditioned. After conditioning, the coin-type battery is CC-CV charged in a constant temperature bath at 25° C. to 3.5 V at a charge rate of 0.2 C, and then at 25° C. at a discharge rate of 0.2 C before being stored at high temperature.
  • the discharge capacity (0.2C) (mAh) was measured.
  • the coin type battery whose discharge capacity (0.2 C) before high temperature storage was measured was CC-CV charged at 25° C. to 3.5 V at a charge rate of 0.2 C, and then stored at high temperature.
  • the coin type battery after the high temperature storage was CC-discharged at 25° C. at a discharge rate of 0.2 C until the SOC became 0%, and then charged at a charge rate of 0.2 C to 3.5 V by CC-CV.
  • this coin-type battery was CC-discharged at a discharge rate of 0.2 C, and the recovery discharge capacity (0.2 C) (mAh) after high temperature storage was measured.
  • discharge capacity before storage at high temperature (1C) The discharge capacity before high temperature storage (1 C) (mAh) was measured in the same manner as the discharge capacity before high temperature storage (0.2 C) except that the discharge rate was changed to 1 C.
  • the coin-type battery whose discharge capacity (1 C) before high temperature storage was measured was CC-CV charged at 25° C. to 3.5 V at a charge rate of 0.2 C, and then stored at high temperature.
  • the coin type battery after the high temperature storage was CC-discharged at 25° C. at a discharge rate of 0.2 C until the SOC became 0%, and then charged at a charge rate of 0.2 C to 3.5 V by CC-CV.
  • this coin-type battery was CC-discharged at a discharge rate of 1C, and the recovery discharge capacity (1C) (mAh) after high temperature storage was measured.
  • the coin type battery was conditioned.
  • the conditioned coin-type battery was CC-CV charged at 25° C. to 3.5 V at a charge rate of 0.2 C, and then stored at high temperature.
  • the coin battery after storage at high temperature was disassembled and the coin-shaped negative electrode was taken out.
  • the surface of this negative electrode was scraped off and made into a powder, and then quantitative analysis of Fe (ICP-MS manufactured by Perkin Elmer) was performed by ICP mass spectrometry. Based on the obtained results, the precipitation concentration (mass ppm) of Fe with respect to the entire negative electrode active material layer was obtained.
  • Example 2 Example 1 was repeated except that the DCC used for the preparation of the non-aqueous electrolytic solution was changed to DIC (N,N′-diisopropylcarbodiimide; a compound in which R 11 and R 12 are both isopropyl groups) having the same mass. The same operation was performed. The results are shown in Table 1.
  • Example 1 The same operation as in Example 1 was performed except that the non-aqueous electrolyte did not contain DCC. The results are shown in Table 1.
  • Example 101 Example 101, Example 102, and Comparative Example 101
  • Example 101 The same operation as in Example 1 was performed except that the type and amount of the additive contained in the non-aqueous electrolyte was changed as shown in Table 2.
  • the results are shown in Table 2.
  • Table 2 the discharge capacity and the battery resistance in Example 101 and Example 102 are shown as relative values when the value in Comparative Example 101 is 100, respectively.
  • the additives in Table 2 are as follows. DCC and DIC are specific examples of the compound of the formula (1) as described above, The compound (3-3) is a specific example of the compound represented by the formula (3) (hereinafter, also referred to as “compound of formula (3)”), The compound (5-1) is a specific example of the compound of the formula (5) as described above.
  • lithium iron phosphate (LFP) was used as the positive electrode active material, and the non-aqueous electrolyte was made to contain the compound of formula (1), the compound of formula (3), and the compound of formula (5).
  • the battery resistance was reduced as compared with Comparative Example 101 in which the non-aqueous electrolyte did not contain the compound of formula (1).
  • Table 2 when the non-aqueous electrolyte contains the compound of formula (3) (Table 2), when the non-aqueous electrolyte does not contain the compound of formula (3) (Table 1) It can be seen that the improvement in recovery capacity after storage is larger than that of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リン酸鉄リチウムを正極活物質として含むリチウム二次電池に用いられ、式(1)で表される化合物を含有する電池用非水電解液。式(1)中、R11及びR12は、それぞれ独立に、炭素数1~12の脂肪族基又は炭素数1~12のフッ化脂肪族基を表す。

Description

電池用非水電解液及びリチウム二次電池
 本開示は、電池用非水電解液及びリチウム二次電池に関する。
 従来より、リチウム二次電池等の電池に用いられる電池用非水電解液について、種々の検討がなされている。
 例えば、下記特許文献1には、非水電解液電池において、水の混入に基づくハロゲン酸の発生を防止して、電池の劣化を防ぐことを目的として、水と反応してハロゲン酸を生じ得る支持電解質を含む非水電解液に、前記水及び支持電解質と相互作用して不活性な錯体を形成することによりハロゲン酸を生じさせない錯体形成化合物を添加したことを特徴とする電池用非水電解液が開示されている。
 また、下記特許文献2には、遊離酸を発生させる非水系電解液中で非水系ゲル状組成物を提供できる非水系電解液として、カルボジイミド構造を有する化合物を含有してなる非水系電解液が開示されており、更に、この非水系電解液を用いた電気化学素子(例えば電池)が開示されている。
 また、下記特許文献3には、保管時の着色と酸分の上昇が抑制された非水電解質として、特定構造のカルボジイミドと、特定構造の硫酸エステル及びホウ素化合物の少なくとも1種と、を含有する非水電解質が知られている。特許文献3には、更に、上記非水電解質を用いて作成した初期充電時のガス発生が少なくサイクル特性も良好となる非水電解質二次電池が開示されている。
 特許文献1:特開平10-294129号公報
 特許文献2:特開2001-313073号公報
 特許文献3:特開2010-251313号公報
 ところで、リン酸鉄リチウムを正極活物質として含むリチウム二次電池(以下、単に「電池」ともいう)が普及している。
 しかし、上記電池において、保存後の電池特性(具体的には、電池容量及び電池抵抗)が低下する場合があることが判明した。この理由の一つとして、電池の保存中に、正極活物質としてのリン酸鉄リチウムから鉄が溶出し、負極上に析出することが考えられる。
 従って、上記電池における保存後の電池特性を改善することが求められる場合がある。
 本開示の一態様の目的は、リン酸鉄リチウムを正極活物質として含むリチウム二次電池における、保存後の電池特性を改善できる電池用非水電解液を提供することである。
 本開示の別の一態様の目的は、リン酸鉄リチウムを正極活物質として含み、かつ、保存後の電池特性が改善されたリチウム二次電池を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> リン酸鉄リチウムを正極活物質として含むリチウム二次電池に用いられ、
 下記式(1)で表される化合物を含有する電池用非水電解液。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R11及びR12は、それぞれ独立に、炭素数1~12の脂肪族基又は炭素数1~12のフッ化脂肪族基を表す。
<2> 前記式(1)で表される化合物は、前記式(1)中の前記R11及び前記R12が、それぞれ独立に、炭素数3~8の脂肪族基である化合物を含む請求項1に記載の電池用非水電解液。
<3> 更に、下記式(2)~下記式(9)のいずれかで表される化合物からなる群から選択される少なくとも1種を含有する<1>又は<2>に記載の電池用非水電解液。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R21~R24は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。
 式(3)中、R31~R34は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。
 式(4)中、R41~R44は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。但し、R41~R44は、同時に水素原子となることはない。
 式(5)中、R51及びR52は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。
 式(6)中、R61~R63は、それぞれ独立に、フッ素原子又は-OLi基を表し、R61~R63の少なくとも1つが-OLi基である。
 式(7)中、R71~R76は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。
 式(8)中、R81~R84は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。
 式(9)中、Mは、アルカリ金属を表し、Yは、遷移元素、又は周期律表の13族、14族もしくは15族元素を表し、bは1~3の整数、mは1~4の整数、nは0~8の整数、qは0又は1を表す。R91は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、またqが1でmが2~4の場合にはm個のR91はそれぞれが結合していてもよい。)を表し、R92は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、また、nが2~8の場合はn個のR92はそれぞれが結合して環を形成していてもよい。)、又は-X93を表す。X、X及びXは、それぞれ独立に、O、SまたはNR94を表し、R93およびR94は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、R93またはR94が複数個存在する場合はそれぞれが結合して環を形成してもよい。)を表す。
<4> 前記式(3)で表される化合物を含有する<3>に記載の電池用非水電解液。
<5> 前記式(3)で表される化合物と、前記式(5)で表される化合物と、を含有する<3>又は<4>に記載の電池用非水電解液。
<6> 前記式(5)で表される化合物の含有質量が、前記式(1)で表される化合物の含有質量よりも大きく、かつ、前記式(3)で表される化合物の含有質量よりも大きい<5>に記載の電池用非水電解液。
<7> 前記式(1)で表される化合物の含有量が、非水電解液の全量に対し、0.01質量%~5質量%である<1>~<6>のいずれか1つに記載の電池用非水電解液。
<8> リン酸鉄リチウムを正極活物質として含む正極と、
 負極と、
 <1>~<7>のいずれか1つに記載の電池用非水電解液と、
を備えるリチウム二次電池。
<9> <8>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
 本開示の一態様によれば、リン酸鉄リチウムを正極活物質として含むリチウム二次電池における保存後の電池特性を改善できる電池用非水電解液が提供される。
 本開示の別の一態様によれば、リン酸鉄リチウムを正極活物質として含み、かつ、保存後の電池特性が改善されたリチウム二次電池が提供される。
本開示のリチウム二次電池の一例である、ラミネート型電池の一例を示す概略斜視図である。 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。 本開示のリチウム二次電池の別の一例である、コイン型電池の一例を示す概略断面図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
〔電池用非水電解液〕
 本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、リン酸鉄リチウムを正極活物質として含むリチウム二次電池(例えば、後述する本開示のリチウム二次電池)に用いられる非水電解液であり、下記式(1)で表される化合物を含有する。
 本開示の非水電解液によれば、リン酸鉄リチウムを正極活物質として含むリチウム二次電池における保存後の電池特性を改善できる。
 かかる効果が奏される理由は明らかではないが、以下のように推測される。
 上記リチウム二次電池における保存後の電池特性の低下の一因として、電池の保存中に、正極活物質としてのリン酸鉄リチウムから鉄が溶出し、負極上に析出することが考えられる。
 本開示の非水電解液を用いた場合には、非水電解液に含有される式(1)で表される化合物の作用により、電池の保存中における、リン酸鉄リチウムからの鉄の溶出を抑制できると考えられる。これにより、保存後の電池特性を改善できると考えられる。
<式(1)で表される化合物>
 本開示の非水電解液は、式(1)で表される化合物を少なくとも1種含有する。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R11及びR12は、それぞれ独立に、炭素数1~12の脂肪族基又は炭素数1~12のフッ化脂肪族基を表す。
 式(1)中、フッ化脂肪族基とは、少なくとも1個のフッ素原子によって置換された脂肪族基を意味する。
 式(1)中、脂肪族基及びフッ化脂肪族基は、それぞれ、分岐及び/又は環構造を含んでいてもよい。
 式(1)中、脂肪族基としては、アルキル基又はアルケニル基が好ましく、アルキル基がより好ましい。
 式(1)中、フッ化脂肪族基としては、フッ化アルキル基又はフッ化アルケニル基が好ましく、フッ化アルキル基がより好ましい。
 式(1)中、炭素数1~12の脂肪族基の炭素数は、好ましくは2~10であり、より好ましくは3~8である。
 式(1)中、炭素数1~12のフッ化脂肪族基の炭素数は、好ましくは2~10であり、より好ましくは3~8である。
 本開示の非水電解液の好ましい態様の一つとして、本開示の非水電解液に含有される式(1)で表される化合物が、「式(1)中のR11及びR12が、それぞれ独立に、炭素数3~8の脂肪族基である化合物」を含む態様が挙げられる。
 式(1)中、R11及びR12は、それぞれ独立に、
炭素数1~12のアルキル基又は炭素数1~12のフッ化アルキル基であることが好ましく、
炭素数1~12のアルキル基であることがより好ましく、
ノルマルプロピル基、イソプロピル基、シクロヘキシル基、メチルシクロヘキシル基、又はジメチルシクロヘキシル基であることが更に好ましく、
イソプロピル基又はシクロヘキシル基であることが更に好ましい。
 式(1)で表される化合物としては、
N,N’-ジイソプロピルカルボジイミド(R11及びR12がいずれもイソプロピル基である化合物;以下、「DIC」ともいう)、又は、
N,N’-ジシクロヘキシルカルボジイミド(R11及びR12がいずれもシクロヘキシル基である化合物;以下、「DCC」ともいう)
が特に好ましい。
 式(1)で表される化合物の含有量は、非水電解液の全量に対し、好ましくは0.01質量%~5質量%であり、より好ましくは0.05質量%~3質量%であり、更に好ましくは0.1質量%~2質量%であり、更に好ましくは0.1質量%~1質量%である。
 本開示の非水電解液は、保存後の電池特性改善の効果をより効果的に得る観点から、更に、下記式(2)~下記式(9)で表される化合物からなる群から選択される少なくとも1種を含有してもよい。
 以下、式(2)~式(9)で表される化合物について説明する。
<式(2)で表される化合物>
 本開示の非水電解液は、式(2)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R21~R24は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。
 式(2)中、R21~R24で表される炭素数1~6の炭化水素基は、直鎖の炭化水素基であってもよいし、分岐及び/又は環構造を有する炭化水素基であってもよい。
 R21~R24で表される炭素数1~6の炭化水素基としては、アルキル基又はアリール基が好ましく、アルキル基が更に好ましい。
 式(2)中、R21~R24で表される炭素数1~6の炭化水素基の炭素数としては、1~3がより好ましく、1又は2が更に好ましく、1が特に好ましい。
 式(2)中、R21~R24で表される炭素数1~6のフッ化炭化水素基は、直鎖のフッ化炭化水素基であってもよいし、分岐及び/又は環構造を有するフッ化炭化水素基であってもよい。
 R21~R24で表される炭素数1~6のフッ化炭化水素基としては、フッ化アルキル基又はフッ化アリール基が好ましく、フッ化アルキル基が更に好ましい。
 式(2)中、R21~R24で表される炭素数1~6のフッ化炭化水素基の炭素数としては、1~3がより好ましく、1又は2が更に好ましく、1が特に好ましい。
 式(2)で表される化合物の具体例としては、下記式(2-1)~下記式(2-9)で表される化合物(以下、それぞれ、化合物(2-1)~化合物(2-9)ともいう)が挙げられるが、式(2)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(2-1)又は化合物(2-2)が特に好ましい。
Figure JPOXMLDOC01-appb-C000007
 本開示の非水電解液が式(2)で表される化合物を含有する場合、非水電解液の全量に対する式(2)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~2質量%が更に好ましく、0.1質量%~1質量%が特に好ましい。
<式(3)で表される化合物>
 本開示の非水電解液は、式(3)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000008
 式(3)中、R31~R34は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。
 式(3)中、R31~R34で表される炭素数1~6の炭化水素基の好ましい態様は、式(2)中、R21~R24で表される炭素数1~6の炭化水素基の好ましい態様と同様である。
 R31~R34で表される炭素数1~6の炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
 式(3)の好ましい態様は、
31が、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基であり、
32が、水素原子であり、
33が、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基であり、
34が、水素原子である態様である。
 式(3)で表される化合物の具体例としては、下記式(3-1)~下記式(3-4)で表される化合物(以下、それぞれ、化合物(3-1)~化合物(3-4)ともいう)が挙げられるが、式(3)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(3-1)~化合物(3-3)が好ましい。
Figure JPOXMLDOC01-appb-C000009
 本開示の非水電解液が式(3)で表される化合物を含有する場合、非水電解液の全量に対する式(3)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~2質量%が更に好ましく、0.1質量%~1質量%が更に好ましい。
 本開示の非水電解液が式(3)で表される化合物を含有する場合、
 式(1)で表される化合物の含有質量に対する式(3)で表される化合物の含有質量の比(以下、「含有質量比〔式(3)で表される化合物/式(1)で表される化合物〕」ともいう)は、好ましくは0.1~10であり、より好ましくは0.2~5であり、更に好ましくは0.3~3である。
<式(4)で表される化合物>
 本開示の非水電解液は、下記式(4)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000010
 式(4)中、R41~R44は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。但し、R41~R44は、同時に水素原子となることはない。
 式(4)中、R41~R44で表される炭素数1~6の炭化水素基の好ましい態様は、式(2)中、R21~R24で表される炭素数1~6の炭化水素基と同様である。
 但し、R41~R44で表される炭素数1~6の炭化水素基は、アルケニル基であることも好ましい。
 R41~R44で表される炭素数1~6の炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
 式(4)中、R41~R44で表される炭素数1~6のフッ化炭化水素基の好ましい態様は、式(2)中、R21~R24で表される炭素数1~6のフッ化炭化水素基の好ましい態様と同様である。
 但し、R41~R44で表される炭素数1~6のフッ化炭化水素基は、フッ化アルケニル基であることも好ましい。
 R41~R44で表される炭素数1~6のフッ化炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
 式(4)で表される化合物の具体例としては、下記式(4-1)~下記式(4-5)で表される化合物(以下、それぞれ、化合物(4-1)~化合物(4-5)ともいう)が挙げられるが、式(4)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(4-1)又は化合物(4-2)が特に好ましい。
Figure JPOXMLDOC01-appb-C000011
 本開示の非水電解液が式(4)で表される化合物を含有する場合、非水電解液の全量に対する式(4)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~2質量%が更に好ましく、0.1質量%~1質量%が特に好ましい。
<式(5)で表される化合物>
 本開示の非水電解液は、下記式(5)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000012
 式(5)中、R51及びR52は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。
 式(5)中、R51又はR52で表される炭素数1~6の炭化水素基の好ましい態様は、式(2)中、R21~R24で表される炭素数1~6の炭化水素基の好ましい態様と同様である。
 R51又はR52で表される炭素数1~6の炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
 式(5)中、R51又はR52で表される炭素数1~6のフッ化炭化水素基の好ましい態様は、式(2)中、R21~R24で表される炭素数1~6のフッ化炭化水素基の好ましい態様と同様である。
 R51又はR52で表される炭素数1~6のフッ化炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
 式(5)で表される化合物の具体例としては、下記式(5-1)~下記式(5-11)で表される化合物(以下、それぞれ、化合物(5-1)~化合物(5-11)ともいう)が挙げられるが、式(5)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(5-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000013
 本開示の非水電解液が式(5)で表される化合物を含有する場合、非水電解液の全量に対する式(5)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~5質量%が更に好ましく、0.1質量%~3質量%が特に好ましい。
 本開示の非水電解液が式(5)で表される化合物を含有する場合、式(5)で表される化合物の含有質量が、式(1)で表される化合物の含有質量よりも大きいことが好ましい。
 式(1)で表される化合物の含有質量に対する式(5)で表される化合物の含有質量の比(以下、「含有質量比〔式(5)で表される化合物/式(1)で表される化合物〕」ともいう)は、好ましくは0.2~10であり、より好ましくは0.5~8であり、更に好ましくは1.1~8であり、更に好ましくは1.5~6であり、更に好ましくは2~6である。
<式(6)で表される化合物>
 本開示の非水電解液は、下記式(6)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000014
 式(6)中、R61~R63は、それぞれ独立に、フッ素原子又は-OLi基を表し、R61~R63の少なくとも1つが-OLi基である。
 式(6)で表される化合物の具体例としては、下記式(6-1)及び下記式(6-2)で表される化合物(以下、それぞれ、化合物(6-1)及び化合物(6-2)ともいう)が挙げられるが、式(6)で表される化合物は、これらの具体例には限定されない。
Figure JPOXMLDOC01-appb-C000015
 本開示の非水電解液が式(6)で表される化合物を含有する場合、非水電解液の全量に対する式(6)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~2質量%が更に好ましく、0.1質量%~1質量%が特に好ましい。
<式(7)で表される化合物>
 本開示の非水電解液は、下記式(7)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000016
 式(7)中、R71~R76は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。
 式(7)中、R71~R76で表される炭素数1~3の炭化水素基の好ましい態様は、炭素数が1~3であることを除けば、式(2)中、R21~R24で表される炭素数1~6の炭化水素基の好ましい態様と同様である。
 R71~R76で表される炭素数1~3の炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
 式(7)中、R71~R76で表される炭素数1~3のフッ化炭化水素基の好ましい態様は、炭素数が1~3であることを除けば、式(2)中、R21~R24で表される炭素数1~6のフッ化炭化水素基の好ましい態様と同様である。
 R71~R76で表される炭素数1~3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
 式(7)で表される化合物の具体例としては、下記式(7-1)~下記式(7-21)で表される化合物(以下、それぞれ、化合物(7-1)~化合物(7-21)ともいう)が挙げられるが、式(7)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(7-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000017
 本開示の非水電解液が式(7)で表される化合物を含有する場合、非水電解液の全量に対する式(7)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~2質量%が更に好ましく、0.1質量%~1質量%が特に好ましい。
<式(8)で表される化合物>
 本開示の非水電解液は、下記式(8)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000018
 式(8)中、R81~R84は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。
 式(8)中、R81~R84で表される炭素数1~3の炭化水素基の好ましい態様は、炭素数が1~3であることを除けば、式(2)中、R21~R24で表される炭素数1~6の炭化水素基の好ましい態様と同様である。
 R81~R84で表される炭素数1~3の炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
 式(8)中、R81~R84で表される炭素数1~3のフッ化炭化水素基の好ましい態様は、炭素数が1~3であることを除けば、式(2)中、R21~R24で表される炭素数1~6のフッ化炭化水素基の好ましい態様と同様である。
 R81~R84で表される炭素数1~3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1がより好ましい。
 式(8)で表される化合物の具体例としては、下記式(8-1)~下記式(8-21)で表される化合物(以下、それぞれ、化合物(8-1)~化合物(8-21)ともいう)が挙げられるが、式(8)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(8-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000019
 本開示の非水電解液が式(8)で表される化合物を含有する場合、非水電解液の全量に対する式(8)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~2質量%が更に好ましく、0.1質量%~1質量%が特に好ましい。
<式(9)で表される化合物>
 本開示の非水電解液は、下記式(9)で表される化合物を少なくとも1種含有してもよい。
Figure JPOXMLDOC01-appb-C000020
 式(9)中、Mは、アルカリ金属を表し、Yは、遷移元素、又は周期律表の13族、14族もしくは15族元素を表し、bは1~3の整数、mは1~4の整数、nは0~8の整数、qは0又は1を表す。R91は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、またqが1でmが2~4の場合にはm個のR91はそれぞれが結合していてもよい。)を表し、R92は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、また、nが2~8の場合はn個のR92はそれぞれが結合して環を形成していてもよい。)、又は-X93を表す。X、X及びXは、それぞれ独立に、O、SまたはNR94を表し、R93およびR94は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、R93またはR94が複数個存在する場合はそれぞれが結合して環を形成してもよい。)を表す。
 式(9)において、Mは、アルカリ金属であり、Yは、遷移金属、又は周期表の13族、14族もしくは15族元素である。Yとしては、このうちAl、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf又はSbであることが好ましく、Al、BまたはPであることがより好ましい。YがAl、BまたはPの場合には、アニオン化合物の合成が比較的容易になり、製造コストを抑えることができる。アニオンの価数およびカチオンの個数を表すbは1~3の整数であり、1であることが好ましい。bが3より大きい場合は、アニオン化合物の塩が混合有機溶媒に溶解しにくくなる傾向があるので好ましくない。また、定数m、nは、配位子の数に関係する値であり、Mの種類によって決まってくるものであるが、mは1~4の整数、nは0~8の整数である。定数qは、0または1である。qが0の場合には、キレートリングが五員環となり、qが1の場合にはキレートリングが六員環となる。
 R91は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基又は炭素数6~20のハロゲン化アリーレン基を表す。これらのアルキレン基、ハロゲン化アルキレン基、アリーレン基又はハロゲン化アリーレン基はその構造中に置換基、ヘテロ原子を含んでいてもよい。具体的には、これらの基の水素原子の代わりに、ハロゲン原子、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、又は水酸基を置換基として含んでいてもよい。また、これらの基の炭素元素の代わりに、窒素原子、硫黄原子、又は酸素原子が導入された構造であってもよい。また、qが1でmが2~4のときには、m個のR91はそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
 R92は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基又は-X93(X、R93については後述する。)を表す。
 R92におけるこれらのアルキル基、ハロゲン化アルキル基、アリール基又はハロゲン化アリール基は、R91と同様に、その構造中に置換基、ヘテロ原子を含んでいてもよく、また、nが2~8のときにはn個のR12は、それぞれ結合して環を形成してもよい。R92としては、電子吸引性の基が好ましく、特にフッ素原子が好ましい。
 X、X及びXは、それぞれ独立に、O、SまたはNR94を表す。つまり、配位子はこれらヘテロ原子を介してYに結合することになる。
 R93及びR94は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素集6~20のハロゲン化アリール基を表す。これらのアルキル基、ハロゲン化アルキル基、アリール基、又はハロゲン化アリール基は、R91と同様に、その構造中に置換基、ヘテロ原子を含んでいてもよい。また、R93及びR94は複数個存在する場合にはそれぞれが結合して環を形成してもよい。
 Mで表されるアルカリ金属としては、例えばリチウム、ナトリウム、カリウム等が挙げられる。このうち、リチウムが特に好ましい。
 nとしては、0~4の整数が好ましい。
 式(9)で表される化合物としては、下記式(9A)で表される化合物、下記式(9B)で表される化合物、下記式(9C)で表される化合物、下記式(9D)で表される化合物、及び下記式(9E)で表される化合物からなる群から選ばれる少なくとも1種がより好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(9A)~式(9E)中、Mは、式(9)におけるMと同義であり、好ましい態様も同様である。
 式(9)で表される化合物として、特に好ましくは、式(9A)で表される化合物であってMがリチウムである化合物、又は、式(9D)で表される化合物であってMがリチウムである化合物である。
 本開示の非水電解液が式(9)で表される化合物を含有する場合、非水電解液の全量に対する式(9)で表される化合物の含有量としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~2質量%が更に好ましく、0.1質量%~1質量%が特に好ましい。
 本開示の非水電解液は、保存後の電池特性改善の効果をより効果的に得る観点から、上記式(2)~上記(9)で表される化合物のうち、
式(3)で表される化合物を含有することがより好ましく、
式(3)で表される化合物と式(5)で表される化合物とを含有することが更に好ましい。
 本開示の非水電解液が、式(3)で表される化合物と式(5)で表される化合物とを含有する場合、式(5)で表される化合物の含有質量が、式(1)で表される化合物の含有質量よりも大きく、かつ、式(3)で表される化合物の含有質量よりも大きいことが好ましい。
 本開示の非水電解液が、式(3)で表される化合物と式(5)で表される化合物とを含有する場合において、式(3)で表される化合物の含有質量に対する式(5)で表される化合物の含有質量の比(以下、「含有質量比〔式(5)で表される化合物/式(3)で表される化合物〕」ともいう)は、好ましくは0.2~10であり、より好ましくは0.5~8であり、更に好ましくは1.1~8であり、更に好ましくは1.5~6であり、更に好ましくは2~6である。
 本開示の非水電解液が、式(3)で表される化合物と式(5)で表される化合物とを含有する場合において、式(1)で表される化合物の含有質量に対する式(5)で表される化合物の含有質量の比(以下、「含有質量比〔式(5)で表される化合物/式(1)で表される化合物〕」ともいう)は、好ましくは0.2~10であり、より好ましくは0.5~8であり、更に好ましくは1.1~8であり、更に好ましくは1.5~6であり、更に好ましくは2~6である。
 本開示の非水電解液が、式(3)で表される化合物と式(5)で表される化合物とを含有する場合において、式(1)で表される化合物の含有質量に対する式(3)で表される化合物の含有質量の比(以下、「含有質量比〔式(3)で表される化合物/式(1)で表される化合物〕」ともいう)は、好ましくは0.1~10であり、より好ましくは0.2~5であり、更に好ましくは0.3~3である。
 次に、非水電解液の他の成分について説明する。非水電解液は、一般的には、電解質と非水溶媒とを含有する。
<電解質>
 本開示の非水電解液は、電解質を含有する。
 電解質は、リチウム塩を含むことが好ましく、LiPFを含むことがより好ましい。
 電解質がLiPFを含む場合、電解質中に占めるLiPFの比率は、好ましくは10質量%~100質量%、より好ましくは50質量%~100質量%、さらに好ましくは70質量%~100質量%である。
 本開示の非水電解液における電解質の濃度は、0.1mol/L~3mol/Lが好ましく、0.5mol/L~2mol/Lがより好ましい。
 また、本開示の非水電解液におけるLiPFの濃度は、0.1mol/L~3mol/Lが好ましく、0.5mol/L~2mol/Lがより好ましい。
 電解質がLiPFを含む場合、電解質は、LiPF以外の化合物を含んでいてもよい。
 LiPF以外の化合物としては;
(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1~8の整数)、(CNPF[C(2k+1)(6-n)(n=1~5の整数、k=1~8の整数)などのテトラアルキルアンモニウム塩;
LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5の整数、k=1~8の整数)、LiC(SO)(SO)(SO)、LiN(SOOR10)(SOOR11)、LiN(SO12)(SO13)(ここでR~R13は互いに同一でも異なっていてもよく、フッ素原子又は炭素数1~8のパーフルオロアルキル基である)等のリチウム塩(即ち、LiPF以外のリチウム塩);
等が挙げられる。
<非水溶媒>
 本開示の非水電解液は、非水溶媒を含有する。
 非水電解液に含有される非水溶媒は、1種のみであってもよいし、2種以上であってもよい。
 非水溶媒としては、種々公知のものを適宜選択することができる。
 非水溶媒としては、例えば、特開2017-45723号公報の段落0069~0087に記載の非水溶媒を用いることができる。
 非水溶媒は、環状カーボネート化合物及び鎖状カーボネート化合物を含むことが好ましい。
 この場合、非水溶媒に含まれる環状カーボネート化合物及び鎖状カーボネート化合物は、それぞれ、1種のみであってもよいし2種以上であってもよい。
 環状カーボネート化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネート等が挙げられる。
 これらのうち、誘電率が高い、エチレンカーボネート及びプロピレンカーボネートが好適である。黒鉛を含む負極活物質を使用した電池の場合は、非水溶媒は、エチレンカーボネートを含むことがより好ましい。
 鎖状カーボネート化合物としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、等が挙げられる。
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
 環状カーボネート化合物と鎖状カーボネート化合物の混合割合は、質量比で表して、環状カーボネート化合物:鎖状カーボネート化合物が、例えば5:95~80:20、好ましくは10:90~70:30、更に好ましくは15:85~55:45である。このような比率にすることによって、非水電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる非水電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温または低温での電気伝導性に優れた非水電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
 非水溶媒は、環状カーボネート化合物及び鎖状カーボネート化合物以外のその他の化合物を含んでいてもよい。
 この場合、非水溶媒に含まれるその他の化合物は、1種のみであってもよいし、2種以上であってもよい。
 その他の化合物としては、環状カルボン酸エステル化合物(例えばγブチロラクトン)、環状スルホン化合物、環状エーテル化合物、鎖状カルボン酸エステル化合物、鎖状エーテル化合物、鎖状リン酸エステル化合物、アミド化合物、鎖状カーバメート化合物、環状アミド化合物、環状ウレア化合物、ホウ素化合物、ポリエチレングリコール誘導体、等が挙げられる。
 これらの化合物については、特開2017-45723号公報の段落0069~0087の記載を適宜参照できる。
 非水溶媒中に占める、環状カーボネート化合物及び鎖状カーボネート化合物の割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上である。
 非水溶媒中に占める、環状カーボネート化合物及び鎖状カーボネート化合物の割合は、100質量%であってもよい。
 非水電解液中に占める非水溶媒の割合は、好ましくは60質量%以上であり、より好ましくは70質量%以上である。
 非水電解液中に占める非水溶媒の割合の上限は、他の成分(電解質、添加剤等)の含有量にもよるが、上限は、例えば99質量%であり、好ましくは97質量%であり、更に好ましくは90質量%である。
〔リチウム二次電池〕
 本開示のリチウム二次電池は、
 リン酸鉄リチウムを正極活物質として含む正極と、
 負極と、
 前述した本開示の非水電解液と、
を備える。
 本開示のリチウム二次電池は、リン酸鉄リチウムを正極活物質として含むリチウム二次電池でありながら、保存後の電池特性の低下が低減されている。
 かかる効果は、非水電解液中の式(1)で表される化合物によってもたらされる効果である。
<正極>
 正極は、リン酸鉄リチウム(LiFePO)を正極活物質として含む。
 正極は、正極活物質として、リン酸鉄リチウム以外の成分を含んでいてもよい。
 リン酸鉄リチウム以外の成分としては;
MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物;
LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-X)〔0<X<1〕、LiNiMnCo〔x、y及びzは、それぞれ独立に、0超1.00未満であり、かつ、x、y及びzの合計は、0.99~1.00である。〕、LiMnPOなどの、リチウムと遷移金属とからなる複合酸化物;
ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料;
等が挙げられる。
 正極活物質中に占めるリン酸鉄リチウムの割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。
 正極活物質中に占めるリン酸鉄リチウムの割合は、100質量%であってもよいし、100質量%未満であってもよい。
 正極は、好ましくは、正極活物質を含む正極活物質層を備える。
 正極活物質層は、正極活物質以外の成分を含んでいてもよい。
 正極活物質以外の成分としては、導電性助剤、バインダー、等が挙げられる。
 導電性助剤としては、カーボンブラック(例えばアセチレンブラック)、アモルファスウィスカー、グラファイトなどの炭素材料が挙げられる。
 バインダーとしては、ポリフッ化ビニリデン等が挙げられる。
 正極活物質層は、正極活物質と溶媒とを含む正極合剤スラリーを、後述する正極集電体上に塗布し、乾燥させることによって形成され得る。
 正極合剤スラリーは、正極活物質以外の成分(例えば、導電性助剤、バインダー等)を含んでいてもよい。
 正極合剤スラリーにおける溶媒としては、例えば、N-メチルピロリドン等の有機溶剤が挙げられる。
 正極活物質層の全固形分に占める正極活物質の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。
 正極活物質層の全固形分に占める正極活物質の割合は、100質量%であってもよい。
 ここで、正極活物質層の全固形分とは、正極活物質層に溶媒が残存している場合には、正極活物質層から溶媒を除いた全量を意味し、正極活物質層に溶媒が残存していない場合には、正極活物質層の全量を意味する。
 正極活物質層の全固形分に占めるリン酸鉄リチウムの割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。
 正極活物質層の全固形分に占めるリン酸鉄リチウムの割合は、100質量%であってもよいし、100質量%未満であってもよい。
 正極は、好ましくは正極集電体を含む。
 正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
<負極>
 負極は、好ましくは負極活物質を含む。
 負極活物質としては、例えば、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を用いることができる。
 リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。
 また、負極活物質としては、チタン酸リチウムも挙げられる。
 これらの中でも、リチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。
 このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状のいずれの形態であってもよい。
 上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
 上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
 負極活物質中に占める炭素材料(好ましくは黒鉛材料)の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。
 負極活物質中に占める炭素材料(好ましくは黒鉛材料)の割合は、100質量%であってもよいし、100質量%未満であってもよい。
 負極は、好ましくは、負極活物質を含む負極活物質層を備える。
 負極活物質層は、負極活物質以外の成分を含んでいてもよい。
 負極活物質以外の成分としては、バインダーが挙げられる。
 バインダーとしては、カルボキシメチルセルロース、SBRラテックス等が挙げられる。
 負極活物質層は、負極活物質と溶媒とを含む負極合剤スラリーを、後述する負極集電体上に塗布し、乾燥させることによって形成され得る。
 負極合剤スラリーは、負極活物質以外の成分(例えばバインダー)を含んでいてもよい。
 負極合剤スラリーにおける溶媒としては、例えば、水が挙げられる。
 負極活物質層の全固形分に占める負極活物質の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。
 負極活物質層の全固形分に占める負極活物質の割合は、100質量%であってもよい。
 ここで、負極活物質層の全固形分とは、負極活物質層に溶媒が残存している場合には、負極活物質層から溶媒を除いた全量を意味し、負極活物質層に溶媒が残存していない場合には、負極活物質層の全量を意味する。
 負極活物質層の全固形分に占める炭素材料(好ましくは黒鉛材料)の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。
 負極活物質層の全固形分に占める炭素材料(好ましくは黒鉛材料)の割合は、100質量%であってもよい。
 負極は、好ましくは負極集電体を含む。
 負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
<セパレータ>
 本開示のリチウム二次電池は、負極と正極との間にセパレータを備えることが好ましい。
 セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
<電池の構成>
 本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
 本開示のリチウム二次電池の例として、ラミネート型電池が挙げられる。
 図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
 図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
 ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。正極板5は、正極集電体及び正極活物質層とを含む。負極板5は、負極集電体及び負極活物質層とを含む。
 上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
 同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
 なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよい。
 本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
 図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
 図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス鋼、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
 この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。円盤状正極11は、正極集電体及び正極活物質層を含む。円盤状負極12は、負極集電体及び負極活物質層を含む。
 なお、本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を備えるリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
 即ち、本開示のリチウム二次電池は、まず、正極と、負極と、本開示の非水電解液と、を備える充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
 本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。
 以下、本開示の実施例を示すが、本開示は以下の実施例によって制限されるものではない。
 なお、以下の実施例において、「添加量」は、最終的に得られる非水電解液の全量に対する含有量を表す。
 また、「wt%」は、質量%を意味する。
〔実施例1〕
 以下の手順にて、図3に示す構成を有するコイン型のリチウム二次電池(以下、「コイン型電池」とも称する)を作製した。
<正極の作製>
 正極活物質としてのリン酸鉄リチウム(LiFePO;以下、「LFP」ともいう)(90質量部)、導電性助剤としてのアセチレンブラック(5質量部)、及び、バインダーとしてのポリフッ化ビニリデン(5質量部)を、N-メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを、厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は22mg/cmであり、充填密度は2.5g/mLであった。
<負極の作製>
 負極活物質としてのアモルファスコート天然黒鉛(97質量部)、バインダーとしてのカルボキシメチルセルロース(1質量部)、及び、バインダーとしてのSBRラテックス(2質量部)を、水溶媒で混練してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ10μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は12mg/cmであり、充填密度は1.5g/mLであった。
<非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質としてのLiPFを、最終的に調製される非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
 得られた溶液に対して、以下の通り添加剤を添加して非水電解液を得た。
 式(1)で表される化合物(以下、「式(1)化合物」ともいう)の具体例であるDCC(N,N’-ジシクロヘキシルカルボジイミド;R11及びR12がいずれもシクロヘキシル基である化合物)を、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加し(即ち、添加量0.5質量%にて添加し)た。
 さらに、式(5)で表される化合物(以下、「式(5)化合物」ともいう)の具体例である化合物(5-1)(ビニレンカーボネート)を、最終的に調製される非水電解液全質量に対する含有量が2質量%となるように添加し(即ち、添加量2質量%にて添加し)た。
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜き、コイン状の負極及びコイン状の正極をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
 得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス鋼製の電池缶(2032サイズ)内に積層し、次いで、この電池缶内に非水電解液20μLを注入し、セパレータと正極と負極とに含漬させた。
 次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封した。
 以上により、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池(即ち、コイン型のリチウム二次電池)を得た。
<評価>
 得られたコイン型電池について、以下の評価を実施した。
 評価結果を表1に示す。
 表1では、実施例1及び2における放電容量及び電池抵抗を、後述の比較例1における値を100とした場合の相対値として示す。
 放電容量が大きい程、電池特性に優れることを意味し、電池抵抗が小さい程、電池特性に優れることを意味する。
 以下において、「コンディショニング」とは、コイン型電池を、恒温槽内で25℃にて、2.75Vと3.5Vとの間で充放電を三回繰り返すことを指す。
 以下、「高温保存」とは、コイン型電池を、恒温槽内で、75℃で7日間保存する操作を意味する。
 以下、電池抵抗は、25℃及び-20℃の2つの温度条件の各々にて測定した。
(高温保存前の電池抵抗)
 上記コイン型電池に対し、コンディショニングを施した。
 コンディショニング後のコイン型電池のSOC(State of Charge)を80%に調整し、次いで、以下の方法により、コイン型電池の高温保存前の電池抵抗(直流抵抗)を測定した。
 上述のSOC80%に調整されたコイン型電池を用い、放電レート0.2CでのCC10s放電を行った。
 ここで、CC10s放電とは、定電流(Constant Current)にて10秒間放電することを意味する。
 上記「放電レート0.2CでのCC10s放電」における、電流値(即ち、放電レート0.2Cに相当する電流値)と、電圧低下量(=放電開始前の電圧-放電開始後10秒目の電圧)と、に基づき直流抵抗を求め、得られた直流抵抗(Ω)を、コイン型電池の高温保存前の電池抵抗(Ω)とした。
(高温保存後の電池抵抗)
 高温保存前の電池抵抗を測定したコイン型電池を、25℃にて充電レート0.2Cで3.5VまでCC-CV充電し、この状態で高温保存(即ち、75℃にて7日間の保存)を施した。ここで、CC-CV充電とは、定電流定電圧(Constant Current - Constant Voltage)を意味する。
 高温保存後のコイン型電池のSOCを80%に調整し、次いで、高温保存前の電池抵抗の測定と同様の方法により、コイン型電池の高温保存後の電池抵抗(Ω)を測定した。
(高温保存前の放電容量(0.2C))
 上記コイン型電池に対し、コンディショニングを施した。
 コンディショニング後のコイン型電池を恒温槽内で25℃にて充電レート0.2Cで3.5VまでCC-CV充電し、次いで、25℃にて、放電レート0.2Cにて、高温保存前の放電容量(0.2C)(mAh)を測定した。
(高温保存後の回復放電容量(0.2C))
 高温保存前の放電容量(0.2C)を測定したコイン型電池を、25℃にて充電レート0.2Cで3.5VまでCC-CV充電した後、高温保存した。
 高温保存後のコイン型電池を、25℃にて、SOCが0%となるまで放電レート0.2CでCC放電させ、次いで充電レート0.2Cで3.5VまでCC-CV充電した。次いでこのコイン型電池を、放電レート0.2CにてCC放電させ、高温保存後の回復放電容量(0.2C)(mAh)を測定した。
(高温保存前の放電容量(1C))
 放電レートを1Cに変更したこと以外は高温保存前の放電容量(0.2C)と同様にして、高温保存前の放電容量(1C)(mAh)を測定した。
(高温保存後の回復放電容量(1C))
 高温保存前の放電容量(1C)を測定したコイン型電池を、25℃にて充電レート0.2Cで3.5VまでCC-CV充電した後、高温保存した。
 高温保存後のコイン型電池を、25℃にて、SOCが0%となるまで放電レート0.2CでCC放電させ、次いで充電レート0.2Cで3.5VまでCC-CV充電した。次いでこのコイン型電池を、放電レート1CにてCC放電させ、高温保存後の回復放電容量(1C)(mAh)を測定した。
(高温保存後の負極Fe分析(Feの析出量;質量ppm))
 上記コイン型電池に対し、コンディショニングを施した。
 コンディショニング後のコイン型電池を、25℃にて充電レート0.2Cで3.5VまでCC-CV充電した後、高温保存した。
 高温保存後のコイン型電池を分解し、コイン状の負極を取り出した。
 この負極の表面を削り取り、粉末状にした後、ICP質量分析法により、Feの定量分析(パーキンエルマー製 ICP-MS)を行った。
 得られた結果に基づき、負極活物質層全体に対するFeの析出濃度(質量ppm)を求めた。
〔実施例2〕
 非水電解液の調製に用いたDCCを、同質量の、DIC(N,N’-ジイソプロピルカルボジイミド;R11及びR12がいずれもイソプロピル基である化合物)に変更したこと以外は実施例1と同様の操作を行った。
 結果を表1に示す。
〔比較例1〕
 非水電解液にDCCを含有させなかったこと以外は実施例1と同様の操作を行った。
 結果を表1に示す。
〔比較例2~4〕
 下記変更点以外は、比較例1、実施例1及び実施例2の各々と同様の操作を行った。
 正極活物質としてのLPFを、同質量のLiCoO(以下、「LCO」ともいう)に変更した。
 電池の評価における充電電圧を3.5Vから4.2Vに変更した。
 高温保存後の負極に対し、Feの定量分析に代えてCoの定量分析を行った。
 結果を表1に示す。
 表1では、比較例3及び4における放電容量及び電池抵抗を、それぞれ、比較例2における値を100とした場合の相対値として示す。
Figure JPOXMLDOC01-appb-T000022
-表1の説明-
 正極活物質としてLFPを使用した比較例1、実施例1、及び実施例2については、「保存後負極金属分析」欄の数値として、Feの析出量(質量ppm)を示している。
 正極活物質としてLCOを使用した比較例2~4については、「保存後負極金属分析」欄の数値として、Coの析出量(質量ppm)を示している。
 表1に示すように、正極活物質としてリン酸鉄リチウム(LFP)を用い、かつ、非水電解液に式(1)化合物を含有させた実施例1及び2では、非水電解液に式(1)化合物を含有させなかった比較例1と比較して、保存後の電池特性(即ち、放電容量及び電池抵抗)が改善されていた。この理由は、実施例1及び実施例2では、比較例1と比較して、保存後のコイン型電池における正極活物質からのFeの溶出が抑制されたためと考えられる。
 また、表1の結果全体から、式(1)化合物による保存後の電池特性改善の効果は、正極活物質としてリン酸鉄リチウム(LFP)を用いた場合に特に顕著であることがわかる。
〔実施例101、実施例102、及び比較例101〕
 非水電解液に含有させる添加剤の種類及び量を、表2に示すように変更したこと以外は実施例1と同様の操作を行った。
 結果を表2に示す。
 表2では、実施例101及び実施例102における放電容量及び電池抵抗を、それぞれ、比較例101における値を100とした場合の相対値として示す。
 表2における添加剤は、以下のとおりである。
DCC及びDICは、前述したとおり、式(1)化合物の具体例であり、
化合物(3-3)は、式(3)で表される化合物(以下、「式(3)化合物」ともいう)の具体例であり、
化合物(5-1)は、前述したとおり、式(5)化合物の具体例である。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-T000024
 表2に示すように、正極活物質としてリン酸鉄リチウム(LFP)を用い、かつ、非水電解液に、式(1)化合物、式(3)化合物、及び式(5)化合物を含有させた実施例101及び102では、非水電解液に式(1)化合物を含有させなかった比較例101と比較して、電池抵抗が低減されていた。
 表1と表2との対比より、非水電解液が、式(3)化合物を含有する場合(表2)には、非水電解液が式(3)化合物を含有しない場合(表1)と比較して、保存後回復容量の改善幅がより大きいことがわかる。
 2018年12月13日に出願された日本国特許出願2018-233324の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  リン酸鉄リチウムを正極活物質として含むリチウム二次電池に用いられ、
     下記式(1)で表される化合物を含有する電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    〔式(1)中、R11及びR12は、それぞれ独立に、炭素数1~12の脂肪族基又は炭素数1~12のフッ化脂肪族基を表す。〕
  2.  前記式(1)で表される化合物は、前記式(1)中の前記R11及び前記R12が、それぞれ独立に、炭素数3~8の脂肪族基である化合物を含む請求項1に記載の電池用非水電解液。
  3.  更に、下記式(2)~下記式(9)のいずれかで表される化合物からなる群から選択される少なくとも1種を含有する請求項1又は請求項2に記載の電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000002

    〔式(2)中、R21~R24は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。
     式(3)中、R31~R34は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。
     式(4)中、R41~R44は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。但し、R41~R44は、同時に水素原子となることはない。
     式(5)中、R51及びR52は、それぞれ独立に、水素原子、フッ素原子、炭素数1~6の炭化水素基、又は炭素数1~6のフッ化炭化水素基を表す。
     式(6)中、R61~R63は、それぞれ独立に、フッ素原子又は-OLi基を表し、R61~R63の少なくとも1つが-OLi基である。
     式(7)中、R71~R76は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。
     式(8)中、R81~R84は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。
     式(9)中、Mは、アルカリ金属を表し、Yは、遷移元素、又は周期律表の13族、14族もしくは15族元素を表し、bは1~3の整数、mは1~4の整数、nは0~8の整数、qは0又は1を表す。R91は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、またqが1でmが2~4の場合にはm個のR91はそれぞれが結合していてもよい。)を表し、R92は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、また、nが2~8の場合はn個のR92はそれぞれが結合して環を形成していてもよい。)、又は-X93を表す。X、X及びXは、それぞれ独立に、O、SまたはNR94を表し、R93およびR94は、それぞれ独立に、水素原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、R93またはR94が複数個存在する場合はそれぞれが結合して環を形成してもよい。)を表す。〕
  4.  前記式(3)で表される化合物を含有する請求項3に記載の電池用非水電解液。
  5.  前記式(3)で表される化合物と、前記式(5)で表される化合物と、を含有する請求項3又は請求項4に記載の電池用非水電解液。
  6.  前記式(5)で表される化合物の含有質量が、前記式(1)で表される化合物の含有質量よりも大きく、かつ、前記式(3)で表される化合物の含有質量よりも大きい請求項5に記載の電池用非水電解液。
  7.  前記式(1)で表される化合物の含有量が、非水電解液の全量に対し、0.01質量%~5質量%である質量%である請求項1~請求項6のいずれか1項に記載の電池用非水電解液。
  8.  リン酸鉄リチウムを正極活物質として含む正極と、
     負極と、
     請求項1~請求項7のいずれか1項に記載の電池用非水電解液と、
    を備えるリチウム二次電池。
  9.  請求項8に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
PCT/JP2019/046829 2018-12-13 2019-11-29 電池用非水電解液及びリチウム二次電池 WO2020121850A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/311,813 US20220029199A1 (en) 2018-12-13 2019-11-29 Non-aqueous electrolyte solution for battery and lithium secondary battery
JP2020559146A JP7345502B2 (ja) 2018-12-13 2019-11-29 電池用非水電解液及びリチウム二次電池
CN201980081760.0A CN113169377A (zh) 2018-12-13 2019-11-29 电池用非水电解液及锂二次电池
EP19896809.1A EP3896772A4 (en) 2018-12-13 2019-11-29 ANHYDROUS BATTERY AND LITHIUM SECONDARY BATTERY ELECTROLYTE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-233324 2018-12-13
JP2018233324 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020121850A1 true WO2020121850A1 (ja) 2020-06-18

Family

ID=71076061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046829 WO2020121850A1 (ja) 2018-12-13 2019-11-29 電池用非水電解液及びリチウム二次電池

Country Status (5)

Country Link
US (1) US20220029199A1 (ja)
EP (1) EP3896772A4 (ja)
JP (1) JP7345502B2 (ja)
CN (1) CN113169377A (ja)
WO (1) WO2020121850A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103101A1 (ko) * 2020-11-13 2022-05-19 주식회사 엘지에너지솔루션 리튬 이차 전지
WO2022196230A1 (ja) * 2021-03-17 2022-09-22 三井化学株式会社 リチウム(n-カルボニル)スルホンアミド化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294129A (ja) 1997-04-21 1998-11-04 Toyota Central Res & Dev Lab Inc 電池用非水電解液及び非水電解液電池
JP2001313073A (ja) 2000-02-25 2001-11-09 Mitsubishi Paper Mills Ltd 非水系電解液、非水系ゲル状組成物、及びこれを用いた電気化学素子
JP2010251313A (ja) 2009-03-27 2010-11-04 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
JP2017045723A (ja) 2015-08-28 2017-03-02 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN107464925A (zh) * 2017-08-02 2017-12-12 商丘职业技术学院 一种锂电池及用电装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319430A (ja) * 2001-04-23 2002-10-31 Japan Storage Battery Co Ltd 非水電解質二次電池
US7468225B2 (en) * 2004-04-07 2008-12-23 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP5070731B2 (ja) * 2006-04-26 2012-11-14 株式会社Gsユアサ 非水電解質電池の製造方法
JP2009245866A (ja) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd 非水電解質二次電池
CN101640288B (zh) * 2008-07-30 2012-03-07 比亚迪股份有限公司 一种锂离子电池电解液及含有该电解液的锂离子电池
US9227950B2 (en) * 2010-10-22 2016-01-05 Mitsui Chemicals, Inc. Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
CN102437373A (zh) * 2011-12-01 2012-05-02 香河昆仑化学制品有限公司 一种用于磷酸铁锂动力电池的电解液及制备方法
CN102593517B (zh) * 2012-04-09 2014-05-07 山东鸿正电池材料科技有限公司 一种用于磷酸铁锂电池的非水电解液
US9716290B2 (en) * 2012-10-03 2017-07-25 Gs Yuasa International Ltd. Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
KR101582043B1 (ko) * 2013-05-23 2015-12-31 주식회사 엘지화학 출력 및 사이클 특성이 우수한 리튬 이차 전지
JP2017027930A (ja) * 2015-07-24 2017-02-02 三井化学株式会社 電池用非水電解液及びリチウム二次電池
US20180269528A1 (en) * 2015-09-23 2018-09-20 Shenzhen Capchem Technology Co., Ltd Electrolyte for lto type lithium ion batteries
CN105826607B (zh) * 2016-05-25 2019-05-14 宁德新能源科技有限公司 一种电解液以及包括该电解液的锂离子电池
KR101901886B1 (ko) * 2016-12-28 2018-09-28 파낙스 이텍(주) 이차전지 전해액 및 이를 포함하는 이차전지
JP2018147659A (ja) * 2017-03-03 2018-09-20 松本油脂製薬株式会社 二次電池スラリー組成物及びその利用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294129A (ja) 1997-04-21 1998-11-04 Toyota Central Res & Dev Lab Inc 電池用非水電解液及び非水電解液電池
JP2001313073A (ja) 2000-02-25 2001-11-09 Mitsubishi Paper Mills Ltd 非水系電解液、非水系ゲル状組成物、及びこれを用いた電気化学素子
JP2010251313A (ja) 2009-03-27 2010-11-04 Sanyo Electric Co Ltd 非水電解質及び該非水電解質を含む非水電解質二次電池
JP2017045723A (ja) 2015-08-28 2017-03-02 三井化学株式会社 電池用非水電解液及びリチウム二次電池
CN107464925A (zh) * 2017-08-02 2017-12-12 商丘职业技术学院 一种锂电池及用电装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103101A1 (ko) * 2020-11-13 2022-05-19 주식회사 엘지에너지솔루션 리튬 이차 전지
WO2022196230A1 (ja) * 2021-03-17 2022-09-22 三井化学株式会社 リチウム(n-カルボニル)スルホンアミド化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法

Also Published As

Publication number Publication date
CN113169377A (zh) 2021-07-23
US20220029199A1 (en) 2022-01-27
JP7345502B2 (ja) 2023-09-15
EP3896772A1 (en) 2021-10-20
JPWO2020121850A1 (ja) 2021-11-04
EP3896772A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
JPWO2018181369A1 (ja) 電池用非水電解液及びリチウム二次電池
JP7115724B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7103713B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2022126851A (ja) 電池用非水電解液及びリチウム二次電池
JP7345502B2 (ja) 電池用非水電解液及びリチウム二次電池
CN112470320A (zh) 电池用非水电解液及锂二次电池
JP7168158B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7263679B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6980502B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7351442B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2018170238A (ja) 電池用非水電解液及びリチウム二次電池
JP7395816B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7060190B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6894751B2 (ja) 電池用非水電解液、電池用添加剤、及びリチウム二次電池
JP7200465B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7423889B2 (ja) 電池用非水電解液及びリチウムイオン二次電池
JP7347768B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7314458B2 (ja) 電池用非水電解液及びリチウムイオン二次電池
JP7206556B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7326681B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7428346B2 (ja) リチウム二次電池、及びリチウム二次電池の製造方法
JP7070979B2 (ja) 電池用非水電解液及びリチウム二次電池
WO2022196375A1 (ja) 非水系二次電池、及び非水系二次電池の製造方法
JP7070978B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2023132195A (ja) 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019896809

Country of ref document: EP

Effective date: 20210713