WO2022196230A1 - リチウム(n-カルボニル)スルホンアミド化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 - Google Patents
リチウム(n-カルボニル)スルホンアミド化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 Download PDFInfo
- Publication number
- WO2022196230A1 WO2022196230A1 PCT/JP2022/006194 JP2022006194W WO2022196230A1 WO 2022196230 A1 WO2022196230 A1 WO 2022196230A1 JP 2022006194 W JP2022006194 W JP 2022006194W WO 2022196230 A1 WO2022196230 A1 WO 2022196230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- lithium
- carbon atoms
- mmol
- lithium secondary
- Prior art date
Links
- -1 sulfonamide compound Chemical class 0.000 title claims abstract description 459
- 229910052744 lithium Inorganic materials 0.000 title claims description 275
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 265
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 116
- 239000002243 precursor Substances 0.000 title claims description 63
- 239000000654 additive Substances 0.000 title claims description 46
- 230000000996 additive effect Effects 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title description 37
- 229940124530 sulfonamide Drugs 0.000 title description 7
- 125000003118 aryl group Chemical group 0.000 claims abstract description 103
- 125000000304 alkynyl group Chemical group 0.000 claims abstract description 60
- 125000004432 carbon atom Chemical group C* 0.000 claims description 238
- 150000001875 compounds Chemical class 0.000 claims description 196
- 125000000217 alkyl group Chemical group 0.000 claims description 145
- 125000005843 halogen group Chemical group 0.000 claims description 134
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 96
- 125000003342 alkenyl group Chemical group 0.000 claims description 64
- 229910052731 fluorine Inorganic materials 0.000 claims description 55
- 125000003545 alkoxy group Chemical group 0.000 claims description 40
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 40
- 239000003792 electrolyte Substances 0.000 claims description 33
- 125000001153 fluoro group Chemical group F* 0.000 claims description 33
- 239000008151 electrolyte solution Substances 0.000 claims description 25
- 125000002947 alkylene group Chemical group 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 238000007600 charging Methods 0.000 claims description 21
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 20
- 229910001416 lithium ion Inorganic materials 0.000 claims description 20
- 239000007774 positive electrode material Substances 0.000 claims description 20
- 238000009831 deintercalation Methods 0.000 claims description 13
- 238000009830 intercalation Methods 0.000 claims description 13
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 13
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 13
- 238000007599 discharging Methods 0.000 claims description 12
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 10
- 125000004450 alkenylene group Chemical group 0.000 claims description 10
- 125000000732 arylene group Chemical group 0.000 claims description 10
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 125000005842 heteroatom Chemical group 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical compound [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 claims description 5
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 claims description 5
- 125000005704 oxymethylene group Chemical group [H]C([H])([*:2])O[*:1] 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims description 4
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 4
- 229910052795 boron group element Inorganic materials 0.000 claims description 4
- 229910052800 carbon group element Inorganic materials 0.000 claims description 4
- 101150004907 litaf gene Proteins 0.000 claims description 4
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 4
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 4
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 claims description 4
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 229910052696 pnictogen Inorganic materials 0.000 claims description 4
- 229910000552 LiCF3SO3 Inorganic materials 0.000 claims description 3
- 229910014733 LiNiaCobMncO2 Inorganic materials 0.000 claims description 3
- 150000001721 carbon Chemical group 0.000 claims description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 abstract 1
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 225
- 238000003786 synthesis reaction Methods 0.000 description 217
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 216
- 239000007787 solid Substances 0.000 description 207
- 238000005160 1H NMR spectroscopy Methods 0.000 description 186
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 174
- 238000006243 chemical reaction Methods 0.000 description 117
- 239000002904 solvent Substances 0.000 description 108
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 108
- 238000005259 measurement Methods 0.000 description 94
- 239000000243 solution Substances 0.000 description 84
- 239000000203 mixture Substances 0.000 description 78
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 75
- 208000028659 discharge Diseases 0.000 description 69
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 64
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 56
- 238000000034 method Methods 0.000 description 55
- 230000002829 reductive effect Effects 0.000 description 48
- 239000010410 layer Substances 0.000 description 45
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 44
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 44
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 42
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 230000007423 decrease Effects 0.000 description 29
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 238000003860 storage Methods 0.000 description 25
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 22
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 21
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 21
- 239000011737 fluorine Substances 0.000 description 21
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 20
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 20
- 239000002002 slurry Substances 0.000 description 20
- 239000003125 aqueous solvent Substances 0.000 description 19
- 125000004122 cyclic group Chemical group 0.000 description 19
- 238000001035 drying Methods 0.000 description 19
- 238000001914 filtration Methods 0.000 description 19
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 19
- KAKQVSNHTBLJCH-UHFFFAOYSA-N trifluoromethanesulfonimidic acid Chemical compound NS(=O)(=O)C(F)(F)F KAKQVSNHTBLJCH-UHFFFAOYSA-N 0.000 description 19
- 229910052801 chlorine Inorganic materials 0.000 description 18
- 125000001309 chloro group Chemical group Cl* 0.000 description 18
- 239000012044 organic layer Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 229910052717 sulfur Inorganic materials 0.000 description 17
- 229910003002 lithium salt Inorganic materials 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 239000011593 sulfur Substances 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 14
- 239000012043 crude product Substances 0.000 description 14
- 229960004132 diethyl ether Drugs 0.000 description 14
- 239000012071 phase Substances 0.000 description 14
- 239000013557 residual solvent Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 159000000002 lithium salts Chemical class 0.000 description 13
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 12
- 230000032683 aging Effects 0.000 description 12
- 239000007795 chemical reaction product Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 150000005676 cyclic carbonates Chemical class 0.000 description 10
- 239000012153 distilled water Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000003818 flash chromatography Methods 0.000 description 10
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 10
- 235000019341 magnesium sulphate Nutrition 0.000 description 10
- 239000003575 carbonaceous material Substances 0.000 description 9
- 150000005678 chain carbonates Chemical class 0.000 description 9
- WRJWRGBVPUUDLA-UHFFFAOYSA-N chlorosulfonyl isocyanate Chemical compound ClS(=O)(=O)N=C=O WRJWRGBVPUUDLA-UHFFFAOYSA-N 0.000 description 9
- 239000007773 negative electrode material Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 150000001408 amides Chemical class 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 229940021013 electrolyte solution Drugs 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 239000012230 colorless oil Substances 0.000 description 7
- 238000010828 elution Methods 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 7
- 229910052808 lithium carbonate Inorganic materials 0.000 description 7
- CIFNOPIPROJVFE-UHFFFAOYSA-N lithium;2,2,2-trifluoro-n-(trifluoromethylsulfonyl)acetamide Chemical compound [Li].FC(F)(F)C(=O)NS(=O)(=O)C(F)(F)F CIFNOPIPROJVFE-UHFFFAOYSA-N 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- XOIYZMDJFLKIEI-UHFFFAOYSA-N (hydroxysulfonimidoyl)oxybenzene Chemical compound NS(=O)(=O)OC1=CC=CC=C1 XOIYZMDJFLKIEI-UHFFFAOYSA-N 0.000 description 6
- VJYFIYOHHYIOMA-UHFFFAOYSA-N 2,2,2-trifluoroethyl sulfamate Chemical compound NS(=O)(=O)OCC(F)(F)F VJYFIYOHHYIOMA-UHFFFAOYSA-N 0.000 description 6
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 6
- 239000007770 graphite material Substances 0.000 description 6
- 229910052740 iodine Inorganic materials 0.000 description 6
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- VLJQDHDVZJXNQL-UHFFFAOYSA-N 4-methyl-n-(oxomethylidene)benzenesulfonamide Chemical compound CC1=CC=C(S(=O)(=O)N=C=O)C=C1 VLJQDHDVZJXNQL-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- NRDQFWXVTPZZAZ-UHFFFAOYSA-N butyl carbonochloridate Chemical compound CCCCOC(Cl)=O NRDQFWXVTPZZAZ-UHFFFAOYSA-N 0.000 description 5
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- BGGQCYYULFFRLC-UHFFFAOYSA-N ethyl sulfamate Chemical compound CCOS(N)(=O)=O BGGQCYYULFFRLC-UHFFFAOYSA-N 0.000 description 5
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- AHWALFGBDFAJAI-UHFFFAOYSA-N phenyl carbonochloridate Chemical compound ClC(=O)OC1=CC=CC=C1 AHWALFGBDFAJAI-UHFFFAOYSA-N 0.000 description 5
- VBKNTGMWIPUCRF-UHFFFAOYSA-M potassium;fluoride;hydrofluoride Chemical compound F.[F-].[K+] VBKNTGMWIPUCRF-UHFFFAOYSA-M 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 4
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 229940052303 ethers for general anesthesia Drugs 0.000 description 4
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- TVHXQQJDMHKGGK-UHFFFAOYSA-N 4-(trifluoromethyl)benzenesulfonamide Chemical group NS(=O)(=O)C1=CC=C(C(F)(F)F)C=C1 TVHXQQJDMHKGGK-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- SZOXCEXCWAZYGX-UHFFFAOYSA-N FC(OC1=CC=C(C=C1)S(=O)(=O)NC(OC)=O)(F)F Chemical compound FC(OC1=CC=C(C=C1)S(=O)(=O)NC(OC)=O)(F)F SZOXCEXCWAZYGX-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- KOOADCGQJDGAGA-UHFFFAOYSA-N [amino(dimethyl)silyl]methane Chemical compound C[Si](C)(C)N KOOADCGQJDGAGA-UHFFFAOYSA-N 0.000 description 3
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 3
- 239000012346 acetyl chloride Substances 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- CNVOISISENNSAA-UHFFFAOYSA-N benzyl N-fluorosulfonylcarbamate Chemical compound FS(=O)(=O)NC(OCC1=CC=CC=C1)=O CNVOISISENNSAA-UHFFFAOYSA-N 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 150000004292 cyclic ethers Chemical class 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 3
- NEXCAIUOAKKJIY-UHFFFAOYSA-N ethyl N-(trifluoromethylsulfonyl)carbamate Chemical compound CCOC(=O)NS(=O)(=O)C(F)(F)F NEXCAIUOAKKJIY-UHFFFAOYSA-N 0.000 description 3
- 238000012854 evaluation process Methods 0.000 description 3
- 239000006232 furnace black Substances 0.000 description 3
- 125000000457 gamma-lactone group Chemical group 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- WDAXFOBOLVPGLV-UHFFFAOYSA-N isobutyric acid ethyl ester Natural products CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002931 mesocarbon microbead Substances 0.000 description 3
- SJPYIEJWHOYGMF-UHFFFAOYSA-N methyl 2-sulfamoylacetate Chemical compound COC(=O)CS(N)(=O)=O SJPYIEJWHOYGMF-UHFFFAOYSA-N 0.000 description 3
- UDNZEZMVMGCXRO-UHFFFAOYSA-N methyl N-[4-(trifluoromethyl)phenyl]sulfonylcarbamate Chemical compound COC(=O)NS(=O)(=O)c1ccc(cc1)C(F)(F)F UDNZEZMVMGCXRO-UHFFFAOYSA-N 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 125000006678 phenoxycarbonyl group Chemical group 0.000 description 3
- XQTVFVHGAXVYSU-UHFFFAOYSA-N phenyl n-acetylsulfamate Chemical compound CC(=O)NS(=O)(=O)OC1=CC=CC=C1 XQTVFVHGAXVYSU-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- SJOOHTWCROUAQM-UHFFFAOYSA-N tert-butyl 2-sulfamoylacetate Chemical compound CC(C)(C)OC(=O)CS(N)(=O)=O SJOOHTWCROUAQM-UHFFFAOYSA-N 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- RGOJCHYYBKMRLL-UHFFFAOYSA-N 4-(trifluoromethoxy)benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=C(OC(F)(F)F)C=C1 RGOJCHYYBKMRLL-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000002194 amorphous carbon material Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 150000002148 esters Chemical group 0.000 description 2
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- QKBJDEGZZJWPJA-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound [CH2]COC(=O)OCCC QKBJDEGZZJWPJA-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical compound COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- IVRIRQXJSNCSPQ-UHFFFAOYSA-N propan-2-yl carbonochloridate Chemical compound CC(C)OC(Cl)=O IVRIRQXJSNCSPQ-UHFFFAOYSA-N 0.000 description 2
- QQKDTTWZXHEGAQ-UHFFFAOYSA-N propyl carbonochloridate Chemical compound CCCOC(Cl)=O QQKDTTWZXHEGAQ-UHFFFAOYSA-N 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- QAHVHSLSRLSVGS-UHFFFAOYSA-N sulfamoyl chloride Chemical compound NS(Cl)(=O)=O QAHVHSLSRLSVGS-UHFFFAOYSA-N 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- MEFKFJOEVLUFAY-UHFFFAOYSA-N (2,2,2-trichloroacetyl) 2,2,2-trichloroacetate Chemical compound ClC(Cl)(Cl)C(=O)OC(=O)C(Cl)(Cl)Cl MEFKFJOEVLUFAY-UHFFFAOYSA-N 0.000 description 1
- RYWGPCLTVXMMHO-UHFFFAOYSA-N (4-chlorophenyl) carbonochloridate Chemical compound ClC(=O)OC1=CC=C(Cl)C=C1 RYWGPCLTVXMMHO-UHFFFAOYSA-N 0.000 description 1
- MSBGPEACXKBQSX-UHFFFAOYSA-N (4-fluorophenyl) carbonochloridate Chemical compound FC1=CC=C(OC(Cl)=O)C=C1 MSBGPEACXKBQSX-UHFFFAOYSA-N 0.000 description 1
- CCFSGQKTSBIIHG-UHFFFAOYSA-N (4-methoxyphenyl) carbonochloridate Chemical compound COC1=CC=C(OC(Cl)=O)C=C1 CCFSGQKTSBIIHG-UHFFFAOYSA-N 0.000 description 1
- XOFZPIYYMJUNRG-UHFFFAOYSA-N (4-methylphenyl) carbonochloridate Chemical compound CC1=CC=C(OC(Cl)=O)C=C1 XOFZPIYYMJUNRG-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- LBNXAWYDQUGHGX-UHFFFAOYSA-N 1-Phenylheptane Chemical compound CCCCCCCC1=CC=CC=C1 LBNXAWYDQUGHGX-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- ZJFCVUTYZHUNSW-UHFFFAOYSA-N 3-octadecyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCCCCCCCC1CC(=O)OC1=O ZJFCVUTYZHUNSW-UHFFFAOYSA-N 0.000 description 1
- LFLSATHZMYYIAQ-UHFFFAOYSA-N 4-flourobenzenesulfonamide Chemical group NS(=O)(=O)C1=CC=C(F)C=C1 LFLSATHZMYYIAQ-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- KNDQHSIWLOJIGP-UHFFFAOYSA-N 826-62-0 Chemical compound C1C2C3C(=O)OC(=O)C3C1C=C2 KNDQHSIWLOJIGP-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 102100028667 C-type lectin domain family 4 member A Human genes 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 239000006245 Carbon black Super-P Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101000766908 Homo sapiens C-type lectin domain family 4 member A Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910013825 LiNi0.33Co0.33Mn0.33O2 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910012742 LiNi0.5Co0.3Mn0.2O2 Inorganic materials 0.000 description 1
- 229910011328 LiNi0.6Co0.2Mn0.2O2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- GRSMWKLPSNHDHA-UHFFFAOYSA-N Naphthalic anhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=CC3=C1 GRSMWKLPSNHDHA-UHFFFAOYSA-N 0.000 description 1
- 229910016722 Ni0.5Co0.2Mn0.3 Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- ACSKZOMYHNKKGB-UHFFFAOYSA-N O(C1=CC=CC=C1)CS(=O)(=O)N Chemical compound O(C1=CC=CC=C1)CS(=O)(=O)N ACSKZOMYHNKKGB-UHFFFAOYSA-N 0.000 description 1
- IXQBGTQSKMBDMY-UHFFFAOYSA-N O=C=NS(=O)=O Chemical class O=C=NS(=O)=O IXQBGTQSKMBDMY-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DGIDDDIFEQSDJB-UHFFFAOYSA-J [Cl-].[Cl-].[Cl-].[Cl-].[Li+].[Li+].[Li+].[Li+] Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Li+].[Li+].[Li+].[Li+] DGIDDDIFEQSDJB-UHFFFAOYSA-J 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- XGIUDIMNNMKGDE-UHFFFAOYSA-N bis(trimethylsilyl)azanide Chemical compound C[Si](C)(C)[N-][Si](C)(C)C XGIUDIMNNMKGDE-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- IDKXMGZRWKCTGA-UHFFFAOYSA-N chloroimino(oxo)methane Chemical compound ClN=C=O IDKXMGZRWKCTGA-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N cyclohexene-1,2-dicarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- GPTJTTCOVDDHER-UHFFFAOYSA-N cyclononane Chemical compound C1CCCCCCCC1 GPTJTTCOVDDHER-UHFFFAOYSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 238000007723 die pressing method Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- JILPJDVXYVTZDQ-UHFFFAOYSA-N lithium methoxide Chemical compound [Li+].[O-]C JILPJDVXYVTZDQ-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- LZWQNOHZMQIFBX-UHFFFAOYSA-N lithium;2-methylpropan-2-olate Chemical compound [Li+].CC(C)(C)[O-] LZWQNOHZMQIFBX-UHFFFAOYSA-N 0.000 description 1
- AZVCGYPLLBEUNV-UHFFFAOYSA-N lithium;ethanolate Chemical compound [Li+].CC[O-] AZVCGYPLLBEUNV-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- YSEQYIDUBUJABL-UHFFFAOYSA-N methyl 4,4-dimethylpentanoate Chemical compound COC(=O)CCC(C)(C)C YSEQYIDUBUJABL-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- NCKZHFSVCRZQGH-UHFFFAOYSA-N methylsulfinylmethane;phosphoric acid Chemical compound CS(C)=O.OP(O)(O)=O NCKZHFSVCRZQGH-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000003012 phosphoric acid amides Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- CAEWJEXPFKNBQL-UHFFFAOYSA-N prop-2-enyl carbonochloridate Chemical compound ClC(=O)OCC=C CAEWJEXPFKNBQL-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007767 slide coating Methods 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003456 sulfonamides Chemical group 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/50—Compounds containing any of the groups, X being a hetero atom, Y being any atom
- C07C311/52—Y being a hetero atom
- C07C311/53—X and Y not being nitrogen atoms, e.g. N-sulfonylcarbamic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C307/00—Amides of sulfuric acids, i.e. compounds having singly-bound oxygen atoms of sulfate groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C307/02—Monoamides of sulfuric acids or esters thereof, e.g. sulfamic acids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/109—Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure includes a lithium (N-carbonyl) sulfonamide compound, an additive for lithium secondary batteries, a non-aqueous electrolyte for lithium secondary batteries, a lithium secondary battery precursor, a lithium secondary battery, and a lithium secondary battery. It relates to a manufacturing method.
- Lithium secondary batteries are attracting attention as batteries with high energy density.
- Patent Document 1 discloses compounds used as salts in electrolyte compositions.
- a compound specifically disclosed in Patent Document 1 is lithium trifluoromethylcarbonyltrifluoromethylsulfonamide.
- Patent Document 1 Japanese Patent Publication No. 2020-515558
- the present disclosure is a lithium (N-carbonyl) sulfonamide compound that can suppress an increase in direct current resistance and a decrease in discharge capacity even when a lithium secondary battery is stored in a high temperature environment.
- An object of the present invention is to provide an additive for a secondary battery, a non-aqueous electrolyte for a lithium secondary battery, a lithium secondary battery precursor, a lithium secondary battery, and a method for producing a lithium secondary battery.
- the means for solving the above problems include the following embodiments.
- Each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), an alkenyl group having 2 to 10 carbon atoms (the above At least one hydrogen atom of the alkenyl group may be substituted with a halogen atom.), an alkynyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group may be substituted with a halogen atom.
- L 1 and L 2 represent a single bond or -O-. However, the case where each of L 1 and L 2 is a single bond is excluded.
- Each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom, excluding a trifluoromethyl group), carbon 2 to 10 alkenyl groups (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), alkynyl groups having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group is may be substituted with a halogen atom), or an aryl group (at least one hydrogen atom of the aryl group is substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
- Each of L 1 and L 2 represents a single bond or -O-. ] ⁇ 3>
- Each of said R 1 and said R 2 is instead of the alkyl group, the alkenyl group, the alkynyl group, or the aryl group, an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of said alkyl group may be substituted with a halogen atom), said alkenyl group, said alkynyl group, said aryl group, aralkyl having 7 to 16 carbon atoms; group (at least one hydrogen atom of the aromatic ring in the aralkyl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.), or a halogen atom represents When R 1 is a halogen atom and L 1 is —O—, when R 2 is a
- Each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom, excluding a trifluoromethyl group), carbon 2 to 10 alkenyl groups (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), alkynyl groups having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group is may be substituted with a halogen atom), or an aryl group (at least one hydrogen atom of the aryl group is substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
- Each of L 1 and L 2 represents a single bond or -O-. ] ⁇ 5>
- Each of said R 1 and said R 2 is instead of the alkyl group, the alkenyl group, the alkynyl group, or the aryl group, an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of said alkyl group may be substituted with a halogen atom), said alkenyl group, said alkynyl group, said aryl group, aralkyl having 7 to 16 carbon atoms; group (at least one hydrogen atom of the aromatic ring in the aralkyl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.), or a halogen atom represents When R 1 is a halogen atom and L 1 is
- the electrolyte includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluorotantalate (LiTaF 6 ), trifluoromethane.
- LiPF 6 lithium hexafluorophosphate
- LiBF 4 lithium tetrafluoroborate
- LiAsF 6 lithium hexafluoroarsenate
- LiTaF 6 lithium hexafluorotantalate
- lithium sulfonate LiCF3SO3
- lithium bis(trifluoromethanesulfonyl)imide Li ( CF3SO2 )2N
- lithium bis (pentafluoroethanesulfonyl)imide Li ( C2F5SO2 ) 2N
- the lithium (N-carbonyl)sulfonamide compound (I) is The R 1 represents the aryl group, said L 1 represents a single bond, wherein R 2 represents the alkyl group, the alkenyl group, the alkynyl group, the aryl group, or the aralkyl group;
- R 2 represents the alkyl group, the alkenyl group, the alkynyl group, the aryl group, or the aralkyl group;
- the non-aqueous electrolyte for a lithium secondary battery according to any one of ⁇ 4> to ⁇ 6>, wherein L 2 represents -O-.
- the lithium (N-carbonyl)sulfonamide compound (I) is The R 1 represents the alkyl group, the L 1 represents a single bond, the R 2 represents the alkyl group, the alkenyl group, the alkynyl group, the aryl group, or the aralkyl group;
- the non-aqueous electrolyte for a lithium secondary battery according to any one of ⁇ 4> to ⁇ 6>, wherein L 2 represents -O-.
- the lithium (N-carbonyl)sulfonamide compound (I) is The R 1 represents a fluorine atom, the L 1 represents a single bond, the R 2 represents the alkyl group, the alkenyl group, the alkynyl group, the aryl group, or the aralkyl group;
- ⁇ 11> The non-aqueous electrolyte for a lithium secondary battery according to any one of ⁇ 4> to ⁇ 10>, containing a compound (III) represented by the following formula (III).
- M is an alkali metal
- Y is a transition element, a group 13 element, a group 14 element, or a group 15 element of the periodic table
- b is an integer from 1 to 3
- m is an integer from 1 to 4
- n is an integer from 0 to 8, q is 0 or 1
- R 3 is an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these groups are The structure may contain a substituent or a heteroatom, and when q is 1 and m is 2 to 4, each of m R 3 may be bonded.
- R 4 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or
- R 5 is an oxygen atom, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms
- R 6 is an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, a group represented by formula (iv-1), or a group represented by formula (iv-2); * indicates the binding position
- R 61 is an oxygen atom, an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or an oxymethylene group
- R 62 is an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
- the content of the lithium (N-carbonyl)sulfonamide compound (I) is 0.01% by mass or more and 5% by mass or less with respect to the total amount of the non-aqueous electrolyte for lithium secondary battery ⁇ 4 > to ⁇ 12>, the non-aqueous electrolyte for a lithium secondary battery according to any one of the above.
- the positive electrode contains a lithium-containing composite oxide represented by the following formula (C1) as a positive electrode active material. LiNiaCobMncO2 ...
- Formula ( C1 ) [In Formula (C1), a, b and c are each independently greater than 0 and less than 1, and the sum of a, b and c is 0.99 or more and 1.00 or less. ]
- ⁇ 16> A step of preparing the lithium secondary battery precursor according to ⁇ 14> or ⁇ 15>; and charging and discharging the lithium secondary battery precursor.
- ⁇ 17> A lithium secondary battery obtained by subjecting the lithium secondary battery precursor according to ⁇ 14> or ⁇ 15> to charging and discharging.
- a lithium (N-carbonyl) sulfonamide compound and a lithium secondary battery that can suppress an increase in DC resistance and a decrease in discharge capacity even when the lithium secondary battery is stored in a high-temperature environment.
- FIG. 1 is a schematic cross-sectional view showing a laminate-type battery that is an example of a lithium secondary battery precursor of the present disclosure
- FIG. 2 is a schematic cross-sectional view showing a coin-type battery that is another example of the lithium secondary battery precursor of the present disclosure
- a numerical range represented by “to” means a range including the numerical values before and after “to” as lower and upper limits.
- the amount of each component in the composition refers to the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. means In this specification, the term "process” is used not only for independent processes, but also when the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. be
- lithium (N-carbonyl) sulfonamide compound according to the present disclosure, an additive for lithium secondary batteries, a non-aqueous electrolyte for lithium secondary batteries, a lithium secondary battery precursor, a lithium secondary Embodiments of a battery and a method for manufacturing a lithium secondary battery will be described.
- the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
- the lithium (N-carbonyl)sulfonamide compound of the present disclosure is a novel compound represented by the following formula (I) (hereinafter sometimes referred to as "compound (A)").
- each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), 10 alkenyl group (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), an alkynyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group is a halogen atom, or an aryl group (at least one hydrogen atom of the aryl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms ).
- Each of L 1 and L 2 represents a single bond or an ether bond (-O-). However, the case where each of L 1 and L 2 is a single bond is excluded.
- the lithium (N-carbonyl) sulfonamide compound (that is, compound (A)) of the present disclosure is represented by the following formula (I), so a non-aqueous electrolyte for lithium secondary batteries (hereinafter, “non-aqueous electrolyte ), it is possible to suppress an increase in DC resistance and a decrease in discharge capacity even when the lithium secondary battery is stored in a high-temperature environment. Details of the lithium secondary battery will be described later with reference to FIGS.
- a reaction product refers to a product from the reaction of a lithium (N-carbonyl)sulfonamide compound with a compound (eg, LiF) originating from the electrolyte.
- the stability of the lithium secondary battery using the lithium (N-carbonyl)sulfonamide compound (ie, compound (A)) of the present disclosure is excellent even in high-temperature environments.
- a battery reaction indicates a reaction in which lithium ions move in and out (intercalate) between a positive electrode and a negative electrode.
- the side reaction includes a reductive decomposition reaction of the electrolytic solution by the negative electrode, an oxidative decomposition reaction of the electrolytic solution by the positive electrode, elution of the metal element in the positive electrode active material, and the like. This suppresses the progress of the decomposition reaction of the non-aqueous electrolyte. As a result, even if the lithium secondary battery is stored in a high-temperature environment, the discharge capacity of the lithium secondary battery is less likely to decrease.
- the lithium (N-carbonyl)sulfonamide compound of the present disclosure that is, the compound (A)
- the lithium secondary battery can be stored in a high-temperature environment.
- an increase in DC resistance and a decrease in discharge capacity can be suppressed.
- the “alkyl group having 1 to 10 carbon atoms” represented by each of R 1 and R 2 is a linear or branched alkyl group having 1 or more and 10 or less carbon atoms.
- the "alkyl group having 1 to 10 carbon atoms” includes methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2-methylbutyl group, 1 -methylpentyl group, neopentyl group, 1-ethylpropyl group, hexyl group, 3,3-dimethylbutyl group, heptyl group, octyl group, nonyl group, decyl group and the like.
- the "alkyl group having 1 to 10 carbon atoms” is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms. At least one hydrogen atom of the "alkyl group having 1 to 10 carbon atoms" may be substituted with a halogen atom.
- the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a fluorine atom, a chlorine atom, or a bromine atom, still more preferably a fluorine atom or a chlorine atom, and particularly preferably a fluorine atom.
- the number of hydrogen atoms to be substituted with halogen atoms is not particularly limited, is appropriately selected according to the number of carbon atoms in the alkyl group, and is preferably 1 to 7.
- the “alkenyl group having 2 to 10 carbon atoms” represented by each of R 1 and R 2 is a linear or branched alkenyl group having 2 or more and 10 or less carbon atoms.
- the "alkenyl group having 2 to 10 carbon atoms” includes a vinyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group. etc.
- the "alkenyl group having 2 to 10 carbon atoms” is preferably an alkenyl group having 2 to 6 carbon atoms, more preferably an alkenyl group having 2 to 3 carbon atoms.
- At least one hydrogen atom in the "alkenyl group having 2 to 10 carbon atoms" may be substituted with a halogen atom.
- the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a fluorine atom, a chlorine atom, or a bromine atom, still more preferably a fluorine atom or a chlorine atom, and particularly preferably a fluorine atom.
- the number of hydrogen atoms substituted with halogen atoms is not particularly limited, is appropriately selected according to the number of carbon atoms in the alkenyl group, and is preferably 1 to 7.
- the “alkynyl group having 2 to 10 carbon atoms” represented by each of R 1 and R 2 is a linear or branched alkynyl group having 2 or more and 10 or less carbon atoms.
- Examples of the "alkynyl group having 2 to 10 carbon atoms” include ethynyl group, propargyl group (2-propynyl group), 2-butynyl group, 3-butynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group, 5-hexynyl group and the like.
- the "alkynyl group having 2 to 10 carbon atoms” is preferably an alkynyl group having 2 to 6 carbon atoms, more preferably an alkynyl group having 2 to 3 carbon atoms.
- At least one hydrogen atom in the "alkynyl group having 2 to 10 carbon atoms" may be substituted with a halogen atom.
- the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a fluorine atom, a chlorine atom, or a bromine atom, still more preferably a fluorine atom or a chlorine atom, and particularly preferably a fluorine atom.
- the number of hydrogen atoms substituted with halogen atoms is not particularly limited, is appropriately selected according to the number of carbon atoms in the alkynyl group, and is preferably 1 to 7.
- At least one hydrogen atom in the "aryl group" represented by each of R 1 and R 2 is a halogen atom, or an alkoxy group having 1 to 6 carbon atoms , or may be substituted with an alkyl group having 1 to 6 carbon atoms.
- the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a fluorine atom, a chlorine atom, or a bromine atom, still more preferably a fluorine atom or a chlorine atom, and particularly preferably a fluorine atom.
- the number of hydrogen atoms substituted with halogen atoms is not particularly limited, and is preferably 1 to 5.
- the alkyl group of the alkoxy group having 1 to 6 carbon atoms may be linear, branched or cyclic.
- the alkoxy group having 1 to 6 carbon atoms includes methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy, pentyloxy and the like.
- the alkoxy group having 1 to 6 carbon atoms is preferably an alkoxy group having 1 to 3 carbon atoms, and more preferably a methoxy group and an ethoxy group.
- the number of hydrogen atoms substituted by the alkoxy group having 1 to 6 carbon atoms is not particularly limited, and is preferably 1 to 3.
- the alkyl group having 1 to 6 carbon atoms may be linear, branched or cyclic.
- Examples of alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group and n-hexyl. group, cyclohexyl group, and the like.
- the alkyl group having 1 to 6 carbon atoms is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group and an ethyl group.
- the number of hydrogen atoms substituted by the alkyl group having 1 to 6 carbon atoms is not particularly limited, and preferably 1 to 3.
- each of L 1 and L 2 represents a single bond or -O-. However, the case where each of L 1 and L 2 is a single bond is excluded. In other words, except when L 1 is a single bond and L 2 is a single bond. Among them, L 1 preferably represents a single bond, and L 2 preferably represents -O-.
- lithium (N-carbonyl)sulfonamide compound that is, the compound (A)
- the lithium (N-carbonyl)sulfonamide compound include synthetic compounds (I-1) to synthetic compounds (I-41) synthesized in Examples described later (however, synthesis excluding compound (I-9)).
- the lithium (N-carbonyl)sulfonamide compounds of the present disclosure are in the lithium (N-carbonyl)sulfonamide compound (i.e., compound (A)) described above,
- Each of said R 1 and said R 2 is instead of the alkyl group, the alkenyl group, the alkynyl group, or the aryl group,
- the lithium (N-carbonyl)sulfonamide compound of the present disclosure may be a novel compound represented by the following formula (I) (hereinafter sometimes referred to as "compound (B)").
- each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), 10 alkenyl groups (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), an alkynyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group is a halogen atom, ), aryl group (at least one hydrogen atom of the aryl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
- an aralkyl group having 7 to 16 carbon atoms (at least one hydrogen atom of the aromatic ring in the aralkyl group is substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. may be used.), or represents a halogen atom.
- Each of L 1 and L 2 represents a single bond or -O-.
- R 1 is a halogen atom and L 1 is —O—
- R 2 is a halogen atom and L 2 is —O—
- each of R 1 and R 2 is The case where it is the alkyl group or the aryl group and each of L 1 and L 2 is a single bond is excluded.
- the lithium (N-carbonyl)sulfonamide compound of the present disclosure that is, compound (B)
- compound (B) is added to a non-aqueous electrolyte and used, even if the lithium secondary battery is stored in a high-temperature environment, An increase in resistance and a decrease in discharge capacity can be suppressed.
- the reason for the above effect is that when the compound (A) is added to the non-aqueous electrolyte and used, the DC resistance increases and the discharge capacity increases even if the lithium secondary battery is stored in a high temperature environment. It is speculated that the decline may be suppressed for similar reasons.
- the "alkyl group having 1 to 10 carbon atoms” represented by each of R 1 and R 2 in the formula (I) corresponds to the "alkyl group having 1 to 10 carbon atoms” in the compound (A). ” is the same as that exemplified as In the compound (B), the “alkenyl group having 2 to 10 carbon atoms” represented by each of R 1 and R 2 in the formula (I) is equivalent to the “alkenyl group having 2 to 10 carbon atoms” in the compound (A).
- the “aralkyl group having 7 to 16 carbon atoms” represented by each of R 1 and R 2 in formula (I) is an aralkyl group having 7 to 16 carbon atoms including an aryl group.
- At least one hydrogen atom of the aromatic ring in the aralkyl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
- the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, more preferably a fluorine atom, a chlorine atom, or a bromine atom, still more preferably a fluorine atom or a chlorine atom, and particularly preferably a fluorine atom.
- the number of hydrogen atoms substituted with halogen atoms is not particularly limited, and is preferably 1 to 5.
- the alkyl group of the alkoxy group having 1 to 6 carbon atoms may be linear, branched or cyclic.
- the alkoxy group having 1 to 6 carbon atoms includes methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy, pentyloxy and the like.
- the alkoxy group having 1 to 6 carbon atoms is preferably an alkoxy group having 1 to 3 carbon atoms, and more preferably a methoxy group and an ethoxy group.
- the number of hydrogen atoms substituted by the alkoxy group having 1 to 6 carbon atoms is not particularly limited, and is preferably 1 to 3.
- the alkyl group having 1 to 6 carbon atoms may be linear, branched or cyclic.
- alkyl groups having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-pentyl group and n-hexyl. group, cyclohexyl group, and the like.
- the alkyl group having 1 to 6 carbon atoms is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group and an ethyl group.
- the number of hydrogen atoms substituted by the alkyl group having 1 to 6 carbon atoms is not particularly limited, and is preferably 1 to 3.
- the aralkyl group having 7 to 16 carbon atoms is preferably an aralkyl group consisting of an aryl group substituted with an alkylene group having 1 to 6 carbon atoms.
- an aryl group having 6 to 10 carbon atoms is preferable.
- Specific examples of the "aralkyl group having 7 to 16 carbon atoms” include a benzyl group, a phenylethyl group and a naphthylmethyl group.
- the "halogen atom" represented by each of R 1 and R 2 in the formula (I) is preferably a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, and a fluorine atom and a chlorine atom. , or a bromine atom is more preferred, a fluorine atom or a chlorine atom is more preferred, and a fluorine atom is particularly preferred.
- each of L 1 and L 2 represents a single bond or -O-. provided that when R 1 is a halogen atom and L 1 is —O—, when R 2 is a halogen atom and L 2 is —O—, and when each of R 1 and R 2 is The case where it is the alkyl group or the aryl group and each of L 1 and L 2 is a single bond is excluded.
- L 1 preferably represents a single bond
- L 2 preferably represents -O-.
- lithium (N-carbonyl)sulfonamide compound that is, compound (B)
- compound (B) Specific examples of the lithium (N-carbonyl)sulfonamide compound (that is, compound (B)) include synthetic compound (I-1) to synthetic compound (I-48) synthesized in Examples described later.
- the additive of the present disclosure contains a lithium (N-carbonyl)sulfonamide compound (I) represented by the following formula (I) (hereinafter sometimes referred to as "compound (C)").
- each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom, provided that a trifluoromethyl group ), an alkenyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), an alkynyl group having 2 to 10 carbon atoms (at least One hydrogen atom may be substituted with a halogen atom.), or an aryl group (at least one hydrogen atom of the aryl group is a halogen atom, a C1-6 alkoxy group, or a C1-6 may be substituted with an alkyl group of.).
- Each of L 1 and L 2 represents a single bond or -O-.
- excluding a trifluoromethyl group in an alkyl group having 1 to 10 carbon atoms means that R 1 is a trifluoromethyl group, L 1 is a single bond, R 2 is a trifluoromethyl group, and L It shows that the case where 2 is a single bond is excluded from formula (I).
- additive (A) an additive containing compound (C) may be referred to as "additive (A)".
- the additive (A) of the present disclosure contains a lithium (N-carbonyl)sulfonamide compound (I) (that is, the compound (C)), when it is added to a non-aqueous electrolyte and used, under a high temperature environment Even if the lithium secondary battery is stored at , it is possible to suppress an increase in DC resistance and a decrease in discharge capacity.
- the reason for the above effect is that when the lithium (N-carbonyl)sulfonamide compound (I) (that is, compound (A)) of the present disclosure is added to a non-aqueous electrolyte and used, it can be used in a high-temperature environment. This is presumed to be the same as the reason why the increase in DC resistance and the decrease in discharge capacity can be suppressed even when the lithium secondary battery is stored.
- the additive (A) of the present disclosure is suitable as an additive for a non-aqueous electrolyte for lithium secondary batteries.
- each of L 1 and L 2 may be a single bond.
- the additive of the present disclosure is the above-described lithium secondary battery additive (that is, additive (A)),
- R 1 and said R 2 is instead of the alkyl group, the alkenyl group, the alkynyl group, or the aryl group, an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of said alkyl group may be substituted with a halogen atom), said alkenyl group, said alkynyl group, said aryl group, aralkyl having 7 to 16 carbon atoms; group (at least one hydrogen atom of the aromatic ring in the aralkyl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.), or a halogen atom represents When R 1 is a halogen atom and L 1 is -O-, when R 2 is a halogen atom and L 2 is
- the lithium secondary battery additive of the present disclosure is an additive (hereinafter , may be referred to as “additive (B)”).
- each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), 10 alkenyl group (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), an alkynyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group is a halogen atom, ), aryl group (at least one hydrogen atom of the aryl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
- an aralkyl group having 7 to 16 carbon atoms (at least one hydrogen atom of the aromatic ring in the aralkyl group is substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. may be used.), or represents a halogen atom.
- Each of L 1 and L 2 represents a single bond or -O-.
- R 1 is a halogen atom and L 1 is —O—
- R 2 is a halogen atom and L 2 is —O—
- each of R 1 and R 2 is The case where it is the alkyl group or the aryl group and each of L 1 and L 2 is a single bond is excluded.
- the additive (B) of the present disclosure contains a lithium (N-carbonyl)sulfonamide compound (I) (that is, the compound (B)), when it is added to a non-aqueous electrolyte and used, under a high temperature environment Even if the lithium secondary battery is stored at , it is possible to suppress an increase in DC resistance and a decrease in discharge capacity.
- the reason for the above effect is that when the additive (A) is added to the nonaqueous electrolyte and used, the DC resistance increases and the discharge capacity increases even if the lithium secondary battery is stored in a high temperature environment. It is presumed that the reason why the decrease in
- the additive (B) of the present disclosure is suitable as an additive for a non-aqueous electrolyte for lithium secondary batteries.
- Lithium (N-carbonyl)sulfonamide compound (I) (i.e., compound (B)) included in Addition (B) of the present disclosure is lithium (N-carbonyl)sulfonamide compound (I) (i.e., compound The same as those exemplified as (B)) can be mentioned.
- Non-aqueous electrolyte for lithium secondary batteries (Non-aqueous electrolyte (A)) A non-aqueous electrolyte for a lithium secondary battery of the present disclosure will be described.
- the non-aqueous electrolyte of the present disclosure is used as an electrolyte for lithium secondary batteries.
- the non-aqueous electrolyte of the present disclosure contains a lithium (N-carbonyl)sulfonamide compound (I) represented by the following formula (I) (ie, compound (C)).
- each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom, provided that a trifluoromethyl group ), an alkenyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), an alkynyl group having 2 to 10 carbon atoms (at least One hydrogen atom may be substituted with a halogen atom.), or an aryl group (at least one hydrogen atom of the aryl group is a halogen atom, a C1-6 alkoxy group, or a C1-6 may be substituted with an alkyl group of.).
- Each of L 1 and L 2 represents a single bond or -O-.
- excluding a trifluoromethyl group means that R 1 is a trifluoromethyl group, L 1 is a single bond, R 2 is a trifluoromethyl group, and L 2 is a single bond. Indicates exclusion from (I).
- non-aqueous electrolyte containing compound (C) may be referred to as “non-aqueous electrolyte (A)".
- the nonaqueous electrolyte (A) of the present disclosure contains the lithium (N-carbonyl)sulfonamide compound (I) (that is, the compound (C)), even if the lithium secondary battery is stored in a high temperature environment, An increase in DC resistance and a decrease in discharge capacity can be suppressed.
- the reason for the above effect is that when the lithium (N-carbonyl)sulfonamide compound (I) (that is, compound (A)) of the present disclosure is added to a non-aqueous electrolyte and used, it can be used in a high-temperature environment. This is presumed to be the same as the reason why the increase in DC resistance and the decrease in discharge capacity can be suppressed even when the lithium secondary battery is stored.
- the lithium (N-carbonyl) sulfonamide compound (I) (that is, the compound (C)) contained in the non-aqueous electrolyte (A) of the present disclosure is the lithium contained in the additive (A) of the present disclosure ( N-Carbonyl)sulfonamide compound (I) (that is, compound (C)) is the same as those exemplified.
- Non-aqueous electrolyte (B) The non-aqueous electrolyte of the present disclosure is in the above non-aqueous electrolyte for lithium secondary batteries (that is, non-aqueous electrolyte (A)),
- Each of said R 1 and said R 2 is instead of the alkyl group, the alkenyl group, the alkynyl group, or the aryl group, an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of said alkyl group may be substituted with a halogen atom), said alkenyl group, said alkynyl group, said aryl group, aralkyl having 7 to 16 carbon atoms; group (at least one hydrogen atom of the aromatic ring in the aralkyl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.), or a halogen atom represents When R 1 is
- non-aqueous electrolytic solution of the present disclosure contains an additive (hereinafter, may be referred to as “non-aqueous electrolyte (B)").
- each of R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), 10 alkenyl group (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom), an alkynyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group is a halogen atom, ), aryl group (at least one hydrogen atom of the aryl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
- an aralkyl group having 7 to 16 carbon atoms (at least one hydrogen atom of the aromatic ring in the aralkyl group is substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms. may be used.), or represents a halogen atom.
- Each of L 1 and L 2 represents a single bond or -O-.
- R 1 is a halogen atom and L 1 is —O—
- R 2 is a halogen atom and L 2 is —O—
- each of R 1 and R 2 is The case where it is the alkyl group or the aryl group and each of L 1 and L 2 is a single bond is excluded.
- the non-aqueous electrolyte (B) of the present disclosure can suppress an increase in DC resistance and a decrease in discharge capacity even when a lithium secondary battery is stored in a high-temperature environment.
- the reason for the above effect is that when the non-aqueous electrolyte (A) is added to the non-aqueous electrolyte and used, the DC resistance increases even if the lithium secondary battery is stored in a high-temperature environment, and It is presumed that the reason why the decrease in discharge capacity can be suppressed is the same.
- the lithium (N-carbonyl)sulfonamide compound (I) (that is, the compound (B)) contained in the non-aqueous electrolyte (B) of the present disclosure is the lithium (N-carbonyl)sulfonamide compound (I) ( That is, the same compounds as those exemplified as the compound (B)) can be mentioned.
- compound (C) or compound (D) is simply referred to as “lithium (N-carbonyl)sulfonamide compound (I)".
- additive (A) or additive (B) is simply referred to as “additive”.
- non-aqueous electrolyte (A) or the non-electrolyte (B) is simply referred to as “non-aqueous electrolyte”.
- the lithium (N-carbonyl)sulfonamide compound (I) is preferably an aryl group-containing compound. Since the non-aqueous electrolyte solution of the present disclosure is an aryl group-containing compound, an increase in DC resistance and a decrease in discharge capacity can be further suppressed even when the lithium secondary battery is stored in a high-temperature environment.
- Aryl group-containing compounds are represented by formula (I), R 1 represents an aryl group (at least one hydrogen atom of the aryl group may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms); L 1 represents a single bond, R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), an alkenyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkenyl group may be substituted with a halogen atom.), an alkynyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group may be substituted with a halogen atom.), an aryl group (at least One hydrogen atom may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an al
- aryl group-containing compound examples include synthetic compound (I-1) to synthetic compound (I-9) synthesized in Examples described later, synthetic compound (I-24), synthetic compound (I-25), Synthetic compounds (I-30) to synthetic compounds (I-32), synthetic compounds (I-38) to synthetic compounds (I-40), synthetic compounds (I-47), synthetic compounds (I-48), etc. mentioned.
- the lithium (N-carbonyl)sulfonamide compound (I) is preferably an alkyl group-containing compound. Since the non-aqueous electrolyte of the present disclosure is an alkyl group-containing compound, even if the lithium secondary battery is stored in a high-temperature environment, an increase in DC resistance and a decrease in discharge capacity can be further suppressed.
- Alkyl group-containing compounds are represented by formula (I), R 1 represents an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom); L 1 represents a single bond, R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), an alkenyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkenyl group Atoms may be substituted with halogen atoms.), alkynyl groups having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group may be substituted with a halogen atom.), aryl groups (the At least one hydrogen atom may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.), or an aralkyl
- alkyl group-containing compounds include synthetic compound (I-10) to synthetic compound (I-23) synthesized in Examples described later, synthetic compound (I-26) to synthetic compound (I-29), Synthetic compounds (I-33) to (I-37), synthetic compounds (I-41), and the like.
- Lithium (N-carbonyl)sulfonamide compound (I) is preferably a fluorine atom-containing compound.
- the fluorine atom-containing compound is represented by formula (I), R 1 represents a fluorine atom, L 1 represents a single bond, R 2 is an alkyl group having 1 to 10 carbon atoms (at least one hydrogen atom of the alkyl group may be substituted with a halogen atom), an alkenyl group having 2 to 10 carbon atoms (at least one hydrogen atom of the alkenyl group Atoms may be substituted with halogen atoms.), alkynyl groups having 2 to 10 carbon atoms (at least one hydrogen atom of the alkynyl group may be substituted with a halogen atom.), aryl groups (the At least one hydrogen atom may be substituted with a halogen atom, an alkoxy group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.), or an aralkyl group having 7 to 16 carbon atoms (the above aralkyl group At least one hydrogen atom of the aromatic ring
- fluorine atom-containing compounds include synthetic compounds (I-42) to (I-46) synthesized in Examples described later.
- the intrinsic viscosity of the non-aqueous electrolyte is preferably 10.0 mPa ⁇ s or less at 25°C from the viewpoint of further improving the dissociation of the electrolyte and the mobility of ions.
- the amount of the lithium (N-carbonyl)sulfonamide compound (I) was compared with the amount added to the non-aqueous electrolyte. may have decreased over time. Even in this case, if even a small amount of the lithium (N-carbonyl)sulfonamide compound (I) is detected in the non-aqueous electrolyte taken out of the lithium secondary battery, the electrolyte of the lithium secondary battery is Included within the scope of the non-aqueous electrolyte of the present disclosure.
- the content of the lithium (N-carbonyl)sulfonamide compound (I) is preferably 0.01% by mass to 5.0% by mass, more preferably 0.05% by mass to 3%, based on the total amount of the non-aqueous electrolyte. 0 mass %, more preferably 0.10 mass % to 1.5 mass %, and particularly preferably 0.20 mass % to 1.5 mass %. If the content of the lithium (N-carbonyl)sulfonamide compound (I) is within the above range, the lithium secondary battery can operate without the SEI membrane impairing the conductivity of lithium cations. Furthermore, the SEI film containing the phosphoric acid structure improves the battery characteristics of the lithium secondary battery.
- the SEI film contains a sufficient amount of structures derived from the lithium (N-carbonyl)sulfonamide compound (I). This facilitates the formation of thermally and chemically stable inorganic salts or polymeric structures. Therefore, at high temperatures, elution of components of the SEI film and deterioration of the SEI film, which impair the durability of the SEI film, are less likely to occur. As a result, the durability of the SEI film and the characteristics after high-temperature storage of the lithium secondary battery are improved.
- the non-aqueous electrolyte of the present disclosure is a compound (II) that is at least one selected from the group consisting of lithium monofluorophosphate and lithium difluorophosphate (hereinafter sometimes referred to as "lithium fluorophosphate compound (II)"). There is.) is preferably included.
- Lithium difluorophosphate is represented by the following formula (II-1), and lithium monofluorophosphate is represented by the following formula (II-2).
- the non-aqueous electrolyte of the present disclosure contains the lithium fluorophosphate compound (II), so that in the charge-discharge cycle after being stored in a high-temperature environment Also, the decrease in discharge capacity and the increase in DC resistance of the lithium secondary battery are further suppressed.
- the content of the lithium fluorophosphate compound (II) is preferably 0.001% by mass to 5% with respect to the total amount of the non-aqueous electrolyte. % by mass, more preferably 0.01% to 3% by mass, still more preferably 0.1% to 2% by mass. If the content of the lithium fluorophosphate compound (II) is within the above range, the solubility of the lithium fluorophosphate in non-aqueous solvents can be ensured, and the DC resistance of the lithium secondary battery can be further reduced. can be done.
- the nonaqueous electrolytic solution of the present disclosure preferably contains a compound (III) represented by the following formula (III) (hereinafter referred to as "cyclic dicarbonyl compound (III)").
- M is an alkali metal
- Y is a transition element, a group 13 element, a group 14 element, or a group 15 element of the periodic table
- b is an integer from 1 to 3
- m is an integer from 1 to 4
- n is an integer from 0 to 8, q is 0 or 1
- R 3 is an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these groups are The structure may contain a substituent or a heteroatom, and when q is 1 and m is 2 to 4, each of m R 3 may be bonded.
- R 4 is a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or
- the non-aqueous electrolytic solution of the present disclosure By containing the cyclic dicarbonyl compound (III) in addition to the lithium (N-carbonyl) sulfonamide compound (I), the non-aqueous electrolytic solution of the present disclosure, even in charge-discharge cycles after being stored in a high-temperature environment, A decrease in discharge capacity and an increase in DC resistance of the lithium secondary battery are further suppressed. This effect is presumed to be due to the following reasons. Since the non-aqueous electrolyte contains the cyclic dicarbonyl compound (III) in addition to the lithium (N-carbonyl) sulfonamide compound (I), the SEI membrane and the like contain the above-mentioned reaction products and the like inside it.
- the lithium secondary battery may contain a bond derived from the cyclic dicarbonyl compound (III).
- This facilitates the formation of thermally and chemically stable inorganic salts or polymeric structures. Therefore, at high temperatures, elution of components of the SEI film, etc., which impair the durability of the SEI film, etc., and deterioration of the SEI film, etc., are unlikely to occur. As a result, a decrease in discharge capacity and an increase in direct current resistance of the lithium secondary battery are further suppressed even in charge-discharge cycles after long-term storage in a high-temperature environment.
- M is an alkali metal.
- Alkali metals include lithium, sodium, potassium and the like. Among them, M is preferably lithium.
- Y is a transition element, a group 13 element, a group 14 element, or a group 15 element of the periodic table. Y is preferably Al, B, V, Ti, Si, Zr, Ge, Sn, Cu, Y, Zn, Ga, Nb, Ta, Bi, P, As, Sc, Hf or Sb; , B or P are more preferred.
- Y is Al, B or P, synthesis of the anion compound is relatively easy, and production costs can be reduced.
- b represents the valence of the anion and the number of cations.
- b is an integer of 1 to 3, preferably 1; When b is 3 or less, the salt of the anion compound is easily dissolved in the mixed organic solvent.
- Each of m and n is a value related to the number of ligands. Each of m and n depends on the type of M. m is an integer of 1-4. n is an integer from 0 to 8; q is 0 or 1; When q is 0, the chelate ring is a five-membered ring, and when q is 1, the chelate ring is a six-membered ring.
- R 3 represents an alkylene group having 1 to 10 carbon atoms, a halogenated alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms.
- These alkylene groups, halogenated alkylene groups, arylene groups or halogenated arylene groups may contain substituents and heteroatoms in their structures. Specifically, these groups may contain substituents instead of hydrogen atoms.
- substituents include halogen atoms, chain or cyclic alkyl groups, aryl groups, alkenyl groups, alkoxy groups, aryloxy groups, sulfonyl groups, amino groups, cyano groups, carbonyl groups, acyl groups, amide groups, or hydroxyl groups. be done. A structure in which a nitrogen atom, a sulfur atom, or an oxygen atom is introduced in place of the carbon atoms of these groups may also be used. When q is 1 and m is 2 to 4, each of m R 3 may be bonded. Examples of such may include ligands such as ethylenediaminetetraacetic acid.
- R 4 represents a halogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogenated aryl group having 6 to 20 carbon atoms.
- These alkyl groups, halogenated alkyl groups, aryl groups or halogenated aryl groups may contain substituents and heteroatoms in their structures , and when n is 2 to 8, n R 4 of may be combined to form a ring.
- an electron-withdrawing group is preferable, and a fluorine atom is particularly preferable.
- Q 1 and Q 2 each independently represent O or S; That is, the ligand will be attached to Y through these heteroatoms.
- cyclic dicarbonyl compound (III) examples include compounds represented by the following formulas (III-1) to (III-2).
- the compound represented by formula (III-1) may be referred to as "lithium bisoxalate borate (III-1)".
- the content of the cyclic dicarbonyl compound (III) is preferably 0.01% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte, More preferably 0.05% by mass to 5.0% by mass, still more preferably 0.10% by mass to 3.0% by mass, and particularly preferably 0.10% by mass to 2.0% by mass. If the content of the cyclic dicarbonyl compound (III) is within the above range, the lithium secondary battery can operate without the SEI film or the like impairing the conductivity of lithium cations.
- the battery characteristics of the lithium secondary battery are improved as the SEI film or the like contains a cyclic dicarbonyl structure. If the content of the cyclic dicarbonyl compound (III) is within the above range, the SEI film or the like contains a sufficient amount of a structure mainly composed of a cyclic dicarbonyl structure. This facilitates the formation of thermally and chemically stable inorganic salts or polymeric structures. Therefore, under high temperature, the elution of the components of the SEI film, etc., which impair the durability of the SEI film, etc., and the deterioration of the SEI film, etc., are unlikely to occur. As a result, the durability of the SEI film and the like and the characteristics of the lithium secondary battery after high temperature storage are improved.
- the non-aqueous electrolytic solution of the present disclosure preferably contains a compound (IV) "(hereinafter referred to as a cyclic sulfur-containing ester compound (IV)”) represented by the following formula (IV).
- R 5 is an oxygen atom, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms
- R 6 is an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, a group represented by formula (iv-1), or a group represented by formula (iv-2); * indicates the binding position
- R 61 is an oxygen atom, an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or an oxymethylene group
- R 62 is an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 2 to 6 carbon atoms.
- the non-aqueous electrolyte of the present disclosure contains the cyclic sulfur-containing ester compound (IV) in addition to the lithium (N-carbonyl) sulfonamide compound (I), lithium secondary A decrease in battery discharge capacity and an increase in DC resistance can be suppressed. This effect is presumed to be due to the following reasons.
- the reaction product is generated from the cyclic sulfur-containing ester compound (IV) and the electrolyte. (eg, LiF). This further enhances the stability of the lithium secondary battery in a high-temperature environment.
- R 5 is preferably an alkylene group having 2 to 3 carbon atoms, a vinylene group, or an oxygen atom, more preferably a trimethylene group, a vinylene group, or an oxygen atom. It is particularly preferred to have
- R5 is preferably an oxygen atom. This facilitates formation of a thermally and chemically stable inorganic salt structure. Therefore, under high temperature, the elution of the components of the SEI film, etc., which impair the durability of the SEI film, etc., and the deterioration of the SEI film, etc., are unlikely to occur. As a result, the durability of the SEI film and the like and the battery characteristics of the lithium secondary battery are improved.
- R6 is preferably a group represented by formula (iv-1) or a group represented by formula (iv-2).
- R 61 is preferably an alkylene group having 1 to 3 carbon atoms, an alkenylene group having 1 to 3 carbon atoms, or an oxymethylene group, more preferably an oxymethylene group.
- R 62 is preferably an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 2 to 3 carbon atoms, more preferably a propyl group.
- cyclic sulfur-containing ester compound (IV) examples include compounds represented by formula (IV-1) and formulas (IV-1) to (IV-4).
- the compound represented by formula (IV-1) may be referred to as "cyclic sulfur-containing ester compound (IV-1)".
- the non-aqueous electrolyte may contain only one type of cyclic sulfur-containing ester compound (IV), or may contain two or more types.
- the content of the cyclic sulfur-containing ester compound (IV) is preferably 0.01% by mass to 5.0% by mass relative to the total amount of the non-aqueous electrolyte. 0 mass %, more preferably 0.05 mass % to 3.0 mass %, and still more preferably 0.10 mass % to 2.0 mass %. If the content of the cyclic sulfur-containing ester compound (IV) is within the above range, the lithium secondary battery can operate without the SEI film or the like impairing the conductivity of lithium ions. Furthermore, the battery characteristics of the lithium secondary battery are improved as the SEI film or the like contains a cyclic sulfur-containing ester structure.
- the SEI film or the like contains a sufficient amount of cyclic sulfur-containing ester structures. This facilitates the formation of thermally and chemically stable inorganic salts or polymeric structures. Therefore, under high temperature, the elution of the components of the SEI film, etc., which impair the durability of the SEI film, etc., and the deterioration of the SEI film, etc., are unlikely to occur. As a result, the durability of the SEI film and the like and the battery characteristics of the lithium secondary battery are improved.
- the non-aqueous electrolyte of the present disclosure may contain other additives.
- Other additives are not particularly limited, and any known ones can be used.
- additives described in paragraphs 0042 to 0055 of JP-A-2019-153443 can be used.
- a non-aqueous electrolyte generally contains a non-aqueous solvent.
- the non-aqueous solvent various known solvents can be appropriately selected. Only one type of non-aqueous solvent may be used, or two or more types may be used.
- Non-aqueous solvents include, for example, cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, fluorine-containing chain carbonates, aliphatic carboxylic acid esters, fluorine-containing aliphatic carboxylic acid esters, and ⁇ -lactones. , fluorine-containing ⁇ -lactones, cyclic ethers, fluorine-containing cyclic ethers, chain ethers, fluorine-containing chain ethers, nitriles, amides, lactams, nitromethane, nitroethane, sulfolane, trimethyl phosphate, dimethyl sulfoxide , dimethyl sulfoxide phosphate, and the like.
- Examples of cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and the like.
- Examples of fluorine-containing cyclic carbonates include fluoroethylene carbonate (FEC).
- Examples of chain carbonates include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), dipropyl carbonate (DPC), and the like. are mentioned.
- Examples of aliphatic carboxylic acid esters include methyl formate, methyl acetate, methyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylbutyrate, ethyl formate, ethyl acetate, ethyl propionate, ethyl butyrate, ethyl isobutyrate, trimethyl ethyl butyrate, and the like.
- Examples of ⁇ -lactones include ⁇ -butyrolactone, ⁇ -valerolactone, and the like.
- Cyclic ethers include, for example, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, and the like.
- chain ethers include 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, 1,2-dimethoxyethane, 1,2-dibutoxyethane, and the like.
- Nitriles include, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, and the like.
- Amides include, for example, N,N-dimethylformamide.
- lactams include N-methylpyrrolidinone, N-methyloxazolidinone, N,N'-dimethylimidazolidinone, and the like.
- the non-aqueous solvent preferably contains at least one selected from the group consisting of cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, and fluorine-containing chain carbonates.
- the total ratio of cyclic carbonates, fluorine-containing cyclic carbonates, chain carbonates, and fluorine-containing chain carbonates is preferably 50% by mass or more and 100% by mass or less with respect to the total amount of the non-aqueous solvent. , more preferably 60% by mass or more and 100% by mass or less, still more preferably 80% by mass or more and 100% by mass or less.
- the non-aqueous solvent preferably contains at least one selected from the group consisting of cyclic carbonates and chain carbonates.
- the total proportion of cyclic carbonates and chain carbonates in the non-aqueous solvent is preferably 50% by mass or more and 100% by mass or less, more preferably 60% by mass, relative to the total amount of the non-aqueous solvent. 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less.
- the content of the nonaqueous solvent is preferably 60% by mass to 99% by mass, more preferably 70% by mass to 97% by mass, and still more preferably 70% by mass to 90% by mass, relative to the total amount of the nonaqueous electrolyte. be.
- the intrinsic viscosity of the non-aqueous solvent is preferably 10.0 mPa ⁇ s or less at 25°C from the viewpoint of further improving the dissociation of the electrolyte and the mobility of ions.
- a non-aqueous electrolyte generally contains an electrolyte.
- Electrode for lithium secondary batteries refers to a substance responsible for carrier transport between the positive electrode and the negative electrode.
- the solubility of the electrolyte in non-aqueous solvents is high, and the degree of dissociation of the electrolyte in non-aqueous solvents is high.
- Lithium salts are often used as electrolytes.
- the electrolyte preferably contains at least one of a fluorine-containing lithium salt (hereinafter sometimes referred to as a "fluorine-containing lithium salt”) and a fluorine-free lithium salt.
- a fluorine-containing lithium salt hereinafter sometimes referred to as a "fluorine-containing lithium salt”
- fluorine-free lithium salt a fluorine-free lithium salt
- fluorine-containing lithium salts include inorganic acid anion salts and organic acid anion salts.
- inorganic acid anion salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluorotantalate ( LiTaF 6 ), and the like.
- organic acid anion salts examples include lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(trifluoromethanesulfonyl)imide (Li(CF 3 SO 2 ) 2 N), lithium bis(pentafluoroethanesulfonyl) imide (Li(C 2 F 5 SO 2 ) 2 N) and the like.
- the fluorine-containing lithium salt is preferably a lithium salt other than the lithium (N-carbonyl)sulfonamide compound (I) represented by formula (I).
- the fluorine-containing lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluorotantalate (LiTaF 6 ), lithium trifluoromethanesulfonate ( LiCF3SO3 ) , lithium bis (trifluoromethanesulfonyl)imide (Li ( CF3SO2 )2N), and lithium bis(pentafluoroethanesulfonyl)imide (Li( C2 It is preferably at least one selected from the group consisting of F 5 SO 2 ) 2 N).
- the fluorine-containing lithium salt is particularly preferably lithium hexafluorophosphate (LiPF 6 ).
- Lithium salts containing no fluorine include lithium perchlorate (LiClO 4 ), lithium tetrachloride aluminumate (LiAlCl 4 ), lithium decachlorodecaborate (Li 2 B 10 Cl 10 ), and the like.
- the content of the fluorine-containing lithium salt is preferably 50% by mass or more and 100% by mass or less, more preferably 60% by mass or more and 100% by mass or less, based on the total amount of the electrolyte. Preferably, it is 80% by mass or more and 100% by mass or less.
- the fluorine-containing lithium salt contains lithium hexafluorophosphate (LiPF 6 )
- the content of lithium hexafluorophosphate (LiPF 6 ) is preferably 50% by mass or more and 100% by mass with respect to the total amount of the electrolyte. Below, more preferably 60% by mass or more and 100% by mass or less, still more preferably 80% by mass or more and 100% by mass or less.
- the concentration of the electrolyte in the non-aqueous electrolyte is preferably 0.1 mol/L or more and 3 mol/L or less, more preferably 0.5 mol/L or more and 2 mol/L or less.
- the concentration of lithium hexafluorophosphate (LiPF 6 ) in the non-aqueous electrolyte is preferably 0.1 mol/L or more and 3 mol/L or less. , more preferably 0.5 mol/L or more and 2 mol/L or less.
- the non-aqueous electrolyte may contain other components as needed.
- Other components include acid anhydrides and the like.
- lithium secondary battery precursor Next, the lithium secondary battery precursor of the present disclosure will be described.
- a lithium secondary battery precursor of the present disclosure includes a case, a positive electrode, a negative electrode, a separator, and an electrolytic solution.
- the positive electrode, negative electrode, separator, and electrolyte are housed in a case.
- the positive electrode is a positive electrode capable of intercalating and deintercalating lithium ions.
- the negative electrode is a negative electrode capable of intercalating and deintercalating lithium ions.
- the electrolyte is the non-aqueous electrolyte of the present disclosure.
- a lithium secondary battery precursor indicates a lithium secondary battery before being subjected to charging and discharging. That is, in the lithium secondary battery precursor, the negative electrode does not contain the negative electrode SEI film, and the positive electrode does not contain the positive electrode SEI film.
- the shape of the case and the like are not particularly limited, and are appropriately selected according to the intended use of the lithium secondary battery precursor of the present disclosure.
- Examples of the case include a case including a laminate film, a case including a battery can and a battery can lid, and the like.
- the positive electrode is a positive electrode capable of intercalating and deintercalating lithium ions.
- the positive electrode preferably contains at least one positive electrode active material capable of intercalating and deintercalating lithium ions.
- the positive electrode includes a positive electrode current collector and a positive electrode mixture layer.
- the positive electrode mixture layer is provided on at least part of the surface of the positive electrode current collector.
- Examples of materials for the positive electrode current collector include metals and alloys. Specifically, examples of materials for the positive electrode current collector include aluminum, nickel, stainless steel (SUS), and copper. Among them, aluminum is preferable from the viewpoint of balance between high conductivity and cost.
- “aluminum” means pure aluminum or an aluminum alloy.
- Aluminum foil is preferred as the positive electrode current collector. The material of the aluminum foil is not particularly limited, and examples thereof include A1085 material and A3003 material.
- the positive electrode mixture layer contains a positive electrode active material and a binder.
- the positive electrode active material is not particularly limited as long as it is capable of intercalating and deintercalating lithium ions, and can be adjusted as appropriate according to the intended use of the lithium secondary battery precursor.
- positive electrode active materials include first oxides and second oxides.
- the first oxide contains lithium (Li) and nickel (Ni) as constituent metal elements.
- the second oxide contains Li, Ni, and at least one of metal elements other than Li and Ni as constituent metal elements.
- metal elements other than Li and Ni include transition metal elements and typical metal elements.
- the second oxide preferably contains a metal element other than Li and Ni in a proportion equal to or lower than that of Ni in terms of the number of atoms.
- Metal elements other than Li and Ni are, for example, Co, Mn, Al, Cr, Fe, V, Mg, Ca, Na, Ti, Zr, Nb, Mo, W, Cu, Zn, Ga, In, Sn, La and Ce. These positive electrode active materials may be used singly or in combination.
- the positive electrode active material preferably contains a lithium-containing composite oxide (hereinafter sometimes referred to as "NCM") represented by the following formula (C1).
- the lithium-containing composite oxide (C1) has advantages of high energy density per unit volume and excellent thermal stability. LiNiaCobMncO2 ... Formula ( C1 )
- a, b and c are each independently greater than 0 and less than 1, and the sum of a, b and c is 0.99 or more and 1.00 or less.
- NCM include LiNi0.33Co0.33Mn0.33O2 , LiNi0.5Co0.3Mn0.2O2 , LiNi0.5Co0.2Mn0.3O _ 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 and the like.
- the positive electrode active material may include a lithium-containing composite oxide (hereinafter sometimes referred to as "NCA") represented by the following formula (C2). LitNi1 -xyCoxAlyO2 ... Formula ( C2 )
- NCA lithium-containing composite oxide
- t is 0.95 or more and 1.15 or less
- x is 0 or more and 0.3 or less
- y is 0.1 or more and 0.2 or less
- x and y The sum is less than 0.5.
- Specific examples of NCA include LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like.
- the positive electrode in the lithium secondary battery precursor of the present disclosure includes a positive electrode current collector and a positive electrode mixture layer containing a positive electrode active material and a binder
- the content of the positive electrode active material in the positive electrode mixture layer is , with respect to the total amount of the positive electrode mixture layer, preferably 10% by mass to 99.9% by mass, more preferably 30% by mass to 99.0% by mass, still more preferably 50% by mass to 99.0% by mass, particularly preferably is 70% by mass to 99.0% by mass.
- binders include polyvinyl acetate, polymethyl methacrylate, nitrocellulose, fluororesins, and rubber particles.
- fluororesins include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), vinylidene fluoride-hexafluoropropylene copolymer, and the like.
- Rubber particles include styrene-butadiene rubber particles, acrylonitrile rubber particles, and the like. Among these, fluororesins are preferable from the viewpoint of improving the oxidation resistance of the positive electrode mixture layer.
- a binder can be used individually by 1 type, and can be used in combination of 2 or more types as needed.
- the content of the binder in the positive electrode mixture layer is It is preferably 0.1% by mass or more and 4% by mass or less.
- the content of the binder is 0.1% by mass or more, the adhesiveness of the positive electrode mixture layer to the positive electrode current collector and the binding property between the positive electrode active materials are further improved.
- the content of the binder is 4% by mass or less, the amount of the positive electrode active material in the positive electrode mixture layer can be increased, thereby further improving the discharge capacity.
- the positive electrode mixture layer preferably contains a conductive aid.
- a known conductive aid can be used as the material of the conductive aid.
- a conductive carbon material is preferable as the known conductive aid.
- Carbon materials having conductivity include graphite, carbon black, conductive carbon fiber, fullerene, and the like. These can be used alone or in combination of two or more.
- Examples of conductive carbon fibers include carbon nanotubes, carbon nanofibers, and carbon fibers.
- Examples of graphite include artificial graphite and natural graphite. Examples of natural graphite include flaky graphite, massive graphite, earthy graphite, and the like.
- the material of the conductive aid may be a commercially available product.
- Examples of commercially available carbon black include Toka Black #4300, #4400, #4500, #5500 (Furnace Black manufactured by Tokai Carbon Co., Ltd.), Printex L (Furnace Black manufactured by Degussa), Raven7000, 5750. , 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA, Conductex 975 ULTRA, etc., PUER BLACK 100, 115, 205, etc. (manufactured by Columbian, furnace black), # 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3230B, # 325 #3350B, #3400B, #5400B, etc.
- the positive electrode mixture layer may contain other components.
- Other ingredients include thickeners, surfactants, dispersants, wetting agents, antifoaming agents, and the like.
- the negative electrode is a negative electrode capable of intercalating and deintercalating lithium ions.
- the negative electrode preferably contains at least one negative electrode active material capable of intercalating and deintercalating lithium ions.
- the negative electrode more preferably comprises a negative electrode current collector and a negative electrode mixture layer.
- the negative electrode mixture layer is provided on at least part of the surface of the negative electrode current collector.
- the material of the negative electrode current collector is not particularly limited and can be arbitrarily known, and examples thereof include metals and alloys.
- examples of materials for the negative electrode current collector include aluminum, nickel, stainless steel (SUS), nickel-plated steel, and copper.
- SUS stainless steel
- nickel-plated steel nickel-plated steel
- copper copper is preferable as the material for the negative electrode current collector from the viewpoint of workability.
- a copper foil is preferable as the negative electrode current collector.
- the negative electrode mixture layer contains a negative electrode active material and a binder.
- the negative electrode active material is not particularly limited as long as it can absorb and release lithium ions.
- the negative electrode active material is, for example, a lithium metal, a lithium-containing alloy, a metal or alloy that can be alloyed with lithium, an oxide that can be doped and dedoped with lithium ions, a transition material that can be doped and dedoped with lithium ions. It is preferably at least one selected from the group consisting of metal nitrides and carbon materials capable of doping and dedoping lithium ions.
- the negative electrode active material is preferably a carbon material capable of doping and dedoping lithium ions (hereinafter referred to as “carbon material”).
- Examples of carbon materials include carbon black, activated carbon, graphite materials, and amorphous carbon materials. These carbon materials may be used singly or in combination of two or more.
- the form of the carbon material is not particularly limited, and examples thereof include fibrous, spherical, potato-like, and flake-like.
- the particle size of the carbon material is not particularly limited, and is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 20 ⁇ m or more and 30 ⁇ m or less.
- Examples of amorphous carbon materials include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500° C. or lower, and mesophase pitch carbon fibers (MCF).
- Graphite materials include natural graphite and artificial graphite.
- Artificial graphite includes graphitized MCMB, graphitized MCF, and the like.
- the graphite material may contain boron.
- the graphite material may be coated with metal or amorphous carbon. Gold, platinum, silver, copper, tin and the like can be used as the material of the metal that coats the graphite material.
- the graphite material may be a mixture of amorphous carbon and graphite.
- the negative electrode mixture layer preferably contains a conductive aid.
- the conductive aid include conductive aids similar to the conductive aids exemplified as the conductive aid that can be contained in the positive electrode mixture layer.
- the negative electrode mixture layer may contain other components in addition to the above components.
- Other ingredients include thickeners, surfactants, dispersants, wetting agents, antifoaming agents, and the like.
- separators include porous resin flat plates.
- the material of the porous resin flat plate include resin, non-woven fabric containing this resin, and the like.
- resins include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polyester, cellulose, and polyamide.
- the separator is preferably a porous resin sheet having a single-layer or multi-layer structure.
- the material of the porous resin sheet is mainly composed of one or more polyolefin resins.
- the thickness of the separator is preferably 5 ⁇ m or more and 30 ⁇ m or less.
- a separator is preferably placed between the positive and negative electrodes.
- FIG. 1 is a cross-sectional view of a lithium secondary battery precursor 1 according to an embodiment of the present disclosure.
- the lithium secondary battery precursor 1 is of a laminated type. As shown in FIG. 1 , in the lithium secondary battery precursor 1 , the battery element 10 is enclosed inside the exterior body 30 .
- the exterior body 30 is made of a laminate film.
- a positive electrode lead 21 and a negative electrode lead 22 are attached to the battery element 10 . Each of the positive electrode lead 21 and the negative electrode lead 22 is led out in opposite directions from the inside of the exterior body 30 toward the outside.
- the battery element 10 is formed by stacking a positive electrode 11, a separator 13, and a negative electrode 12, as shown in FIG.
- the positive electrode 11 is formed by forming positive electrode mixture layers 11B on both main surfaces of a positive electrode current collector 11A.
- the negative electrode 12 is formed by forming negative electrode mixture layers 12B on both main surfaces of a negative electrode current collector 12A.
- the non-aqueous electrolyte solution of the present disclosure is injected into the interior of the exterior body 30 of the lithium secondary battery precursor 1 .
- the non-aqueous electrolyte of the present disclosure permeates the positive electrode mixture layer 11B, the separator 13, and the negative electrode mixture layer 12B.
- one unit cell layer 14 is formed by the adjacent positive electrode mixture layer 11B, separator 13, and negative electrode mixture layer 12B.
- the positive electrode and the negative electrode may each have an active material layer formed on one side of each current collector.
- the lithium secondary battery precursor 1 is of a laminated type, but the present disclosure is not limited to this, and may be of a wound type, for example.
- the wound type is formed by stacking a positive electrode, a separator, a negative electrode, and a separator in this order and winding them in layers.
- a wound type includes a cylindrical shape or a square shape.
- the direction in which each of the positive electrode lead and the negative electrode lead protrudes from the interior of the exterior body 30 toward the outside is the opposite direction to the exterior body 30, but the present disclosure It is not limited to this.
- the positive electrode lead and the negative electrode lead may protrude from the inside of the package 30 toward the outside in the same direction with respect to the package 30 .
- a lithium secondary battery precursor is added to each surface of the positive electrode mixture layer 11B and the negative electrode mixture layer 12B in the lithium secondary battery precursor 1.
- a lithium secondary battery in which an SEI film is formed by charging and discharging the body 1 can be mentioned.
- FIG. 2 is a schematic perspective view showing an example of a coin-type battery, which is another example of the lithium secondary battery precursor of the present disclosure.
- a disk-shaped negative electrode 42, a separator 45 filled with a non-aqueous electrolyte, a disk-shaped positive electrode 41, and optionally spacer plates 47 and 48 made of stainless steel or aluminum are arranged in this order.
- a positive electrode can 43 hereinafter also referred to as "battery can”
- a sealing plate 44 hereinafter also referred to as "battery can lid”
- the positive electrode can 43 and the sealing plate 44 are caulked and sealed with a gasket 46 interposed therebetween.
- the non-aqueous electrolytic solution of the present disclosure is used as the non-aqueous electrolytic solution injected into the separator 45 .
- Lithium secondary battery Next, a lithium secondary battery according to embodiments of the present disclosure will be described.
- a lithium secondary battery includes a case, a positive electrode, a negative electrode, a separator, and an electrolytic solution.
- a positive electrode, a negative electrode, a separator, and an electrolytic solution are housed in a case.
- the positive electrode is a positive electrode capable of intercalating and deintercalating lithium ions.
- the negative electrode is a negative electrode capable of intercalating and deintercalating lithium ions.
- the electrolyte is the non-aqueous electrolyte of the present disclosure.
- the negative electrode includes a negative SEI film.
- the positive electrode includes a positive electrode SEI.
- the lithium secondary battery according to the present embodiment differs from the lithium secondary battery precursor according to the present embodiment mainly in the first point that the negative electrode includes a negative electrode SEI film and the second point that the positive electrode includes a positive electrode SEI film. . That is, the lithium secondary battery according to this embodiment is the same as the lithium secondary battery precursor according to this embodiment except for the first and second points. Therefore, the description of the constituent members of the lithium secondary battery of the present embodiment other than the first and second points will be omitted below.
- the negative electrode includes a negative electrode SEI film
- the first negative electrode form indicates a form in which a negative electrode SEI film is formed on at least a portion of the surface of the negative electrode mixture layer.
- the second negative electrode form indicates a form in which a negative electrode SEI film is formed on the surface of a negative electrode active material, which is a constituent material of the negative electrode mixture layer.
- the positive electrode includes a positive electrode SEI film
- the positive electrode includes a positive electrode SEI film
- the first positive electrode form indicates a form in which a positive electrode SEI film is formed on at least a portion of the surface of the positive electrode mixture layer.
- the second positive electrode form indicates a form in which a positive electrode SEI film is formed on the surface of the positive electrode active material, which is the constituent material of the positive electrode mixture layer.
- the SEI membrane consists of, for example, a decomposition product of the lithium (N-carbonyl)sulfonamide compound (I), a reaction product of the lithium (N-carbonyl)sulfonamide compound (I) and the electrolyte, and a decomposition product of the reaction product. including at least one selected from the group;
- the component of the negative electrode SEI film and the component of the positive electrode SEI film may be the same or different.
- the film thickness of the negative electrode SEI film and the film thickness of the positive electrode SEI film may be the same or different.
- the lithium secondary battery of the present disclosure is obtained by charging and discharging the lithium secondary battery precursor of the present disclosure.
- the lithium secondary battery of the present disclosure is obtained by subjecting it to the aging process described below.
- a method for producing a lithium (N-carbonyl)sulfonamide compound has a first step described later and a second step described later. The first step and the second step are executed in this order. This yields the lithium (N-carbonyl)sulfonamide compounds of the present disclosure.
- a sulfonamide compound and a carboxylic acid chloride or carboxylic acid anhydride are reacted in a solvent, the resulting salt is removed, and the (N-carbonyl) sulfonamide compound is obtained by column chromatography. .
- Each of the sulfonamide compound, the carboxylic acid chloride and the carboxylic acid anhydride is appropriately selected according to the type of the product (N-carbonyl)sulfonamide compound.
- sulfonamide compounds include trifluoromethanesulfonamide, methanesulfonamide, phenoxymethylsulfonamide, ethylsulfamate, 2,2,2-trifluoroethylsulfamate and the like.
- carboxylic acid chlorides examples include methyl chloroformate, ethyl chloroformate, propyl chloroformate, isopropyl chloroformate, butyl chloroformate, phenyl chloroformate, and acetyl chloride.
- carboxylic anhydrides include trifluoroacetic anhydride, acetic anhydride, trichloroacetic anhydride, di-tert-butyl dicarbonate, succinic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, glutaric anhydride, and 1,2-cyclohexenedicarboxylic acid, n-octadecylsuccinic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalic anhydride and the like.
- Solvents include non-aqueous solvents.
- non-aqueous solvents examples include tetrahydrofuran, diethyl ether, dimethoxyethane, 1,4-dioxane, acetone, ethyl acetate, acetonitrile, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, pentane, hexane, heptane, octane, nonane, decane.
- Xylene includes ortho-xylene, meta-xylene, or para-xylene.
- the above reaction in the first step can be carried out under normal pressure or under reduced pressure.
- the reaction in the first step is preferably carried out in an inert atmosphere from the viewpoint of preventing the contamination of components (such as moisture) that inhibit the formation of the (N-carbonyl)sulfonamide compound. Water and the like are examples of components that inhibit the production of (N-carbonyl)sulfonamide compounds.
- Examples of the inert atmosphere include nitrogen atmosphere and argon atmosphere.
- the reaction temperature in the first step is preferably -20°C or higher and 60°C or lower, more preferably 0°C or higher and 40°C or lower, and still more preferably 10°C or higher and 30°C or lower. When the reaction temperature is 60° C.
- the reaction time in the first step is preferably 30 minutes or more and 12 hours or less, more preferably 1 hour or more and 6 hours or less, from the viewpoint of allowing the reaction to proceed efficiently.
- lithium salt compounds include lithium bis(trimethylsilyl)amide, lithium chloride, lithium carbonate, lithium hydroxide, lithium methoxide, lithium ethoxide, and lithium-t-butoxide.
- the lithium salt compound is preferably lithium bis(trimethylsilyl)amide, lithium chloride, lithium carbonate, or lithium hydroxide, and more preferably lithium bis(trimethylsilyl)amide.
- the above reaction in the second step can be carried out under normal pressure or under reduced pressure.
- the reaction in the synthesis step is preferably carried out under an inert atmosphere from the viewpoint of preventing the contamination of components (such as moisture) that inhibit the formation of the lithium (N-carbonyl)sulfonamide compound.
- components that inhibit the production of lithium (N-carbonyl)sulfonamide compounds include water.
- the inert atmosphere include nitrogen atmosphere and argon atmosphere.
- the reaction temperature in the second step is preferably ⁇ 20° C. or higher and 60° C. or lower, more preferably 0° C. or higher and 40° C. or lower, and still more preferably 10° C. or higher and 30° C. or lower.
- the reaction time in the second step is preferably 30 minutes or more and 12 hours or less, more preferably 1 hour or more and 6 hours or less, from the viewpoint of allowing the reaction to proceed efficiently.
- the method of extracting the lithium (N-carbonyl)sulfonamide compound from the product is not particularly limited, and can be adjusted as appropriate according to the state of the resulting product.
- the lithium (N-carbonyl)sulfonamide compound is removed without any special treatment.
- the slurry in which the lithium (N-carbonyl)sulfonamide compound is dispersed in the solvent is the product, the lithium (N-carbonyl)sulfonamide compound is recovered by separating the solvent from the slurry and drying it.
- the lithium (N-carbonyl)sulfonamide compound can be removed by distilling off the solvent from the solution by heating and concentrating.
- the product is a solution in which a lithium (N-carbonyl)sulfonamide compound is dissolved in a solvent
- lithium (N- The lithium (N-carbonyl)sulfonamide compound is removed by precipitating the carbonyl)sulfonamide compound, then separating the solvent from the solution and drying.
- the lithium (N-carbonyl)sulfonamide compound extracted from the product may be subjected to drying treatment.
- the drying treatment is not particularly limited. A method of supplying warm air or hot air using a dryer can be used.
- the pressure for drying the lithium (N-carbonyl)sulfonamide compound extracted from the product may be normal pressure or reduced pressure.
- the drying temperature for drying the lithium (N-carbonyl)sulfonamide compound extracted from the product is preferably 20° C. or higher and 100° C. or lower, more preferably 40° C. or higher and 80° C. or lower, further preferably 50° C. or higher and 70° C. It is below. Drying efficiency is excellent when the drying temperature is 20° C. or higher. When the drying temperature is 100° C. or lower, decomposition of the lithium (N-carbonyl)sulfonamide compound produced is suppressed, and the lithium (N-carbonyl)sulfonamide compound can be stably and easily extracted.
- the lithium (N-carbonyl)sulfonamide compound extracted from the product may be used as it is, for example, it may be used after being dispersed or dissolved in a solvent, or it may be used after being mixed with other substances. .
- the method for producing the lithium (N-carbonyl)sulfonamide compound (I) of the present disclosure comprises: a sulfonamide compound, a carboxylic acid such that each of L 1 and L 2 in formula (1) may be a single bond; Except that chlorides, carboxylic acid anhydrides, etc. may be selected, it is carried out in the same manner as the method for producing the lithium (N-carbonyl)sulfonamide compound (I) described above. This gives the lithium (N-carbonyl)sulfonamide compound (I).
- the manufacturing method of the non-aqueous electrolyte of the present disclosure includes a synthesis step, a dissolution step, and a mixing step. A dissolution process and a mixing process are performed in this order. The synthesis step may be performed before the mixing step.
- a lithium (N-carbonyl)sulfonamide compound (I) is synthesized.
- the synthetic steps can be carried out in the same manner as the method for producing the lithium (N-carbonyl)sulfonamide compound (I) described above.
- the electrolyte is dissolved in a non-aqueous solvent to obtain a solution. It is preferable that the electrical conductivity of the resulting non-aqueous electrolytic solution is lower than the electrical conductivity of the solution before adding the lithium (N-carbonyl)sulfonamide compound (I).
- the lithium (N-carbonyl)sulfonamide compound (I) and, if necessary, other additives are added to the solution and mixed.
- a non-aqueous electrolyte is obtained.
- the non-aqueous electrolyte solution obtained by the method for producing a non-aqueous electrolyte solution according to the present embodiment more effectively exhibits the effect of reducing direct current resistance in a lithium secondary battery.
- the method for producing a non-aqueous electrolyte according to the present disclosure includes a synthesis step, a dissolution step, and a mixing step, the present disclosure is not limited to this.
- the method for manufacturing a lithium secondary battery precursor of the present disclosure includes a first preparation process, a second preparation process, a third preparation process, a housing process, and an injection process.
- the accommodation process and the injection process are performed in this order.
- Each of the first preparation process, the second preparation process, and the third preparation process is performed before the accommodation process.
- a positive electrode is prepared.
- the method for preparing the positive electrode include a method of applying a positive electrode mixture slurry to the surface of the positive electrode current collector and drying the slurry.
- the positive electrode mixture slurry contains a positive electrode active material and a binder.
- An organic solvent is preferable as the solvent contained in the positive electrode mixture slurry.
- Organic solvents include N-methyl-2-pyrrolidone (NMP) and the like.
- the method of applying the positive electrode mixture slurry is not particularly limited, and examples thereof include slot die coating, slide coating, curtain coating, and gravure coating.
- the method for drying the positive electrode mixture slurry is not particularly limited, and includes drying with warm air, hot air, or low humidity air; vacuum drying; drying with infrared (for example, far-infrared) irradiation; and the like.
- the drying time is not particularly limited, and is preferably from 1 minute to 30 minutes.
- the drying temperature is not particularly limited, and is preferably 40°C or higher and 80°C or lower. It is preferable that the positive electrode current collector is coated with the positive electrode mixture slurry and the dried product is subjected to a pressure treatment. This reduces the porosity of the positive electrode active material layer. Examples of the method of pressure treatment include die pressing and roll pressing.
- a negative electrode is prepared in a 2nd preparation process.
- a method of preparing the negative electrode for example, a method of applying a negative electrode mixture slurry to the surface of the negative electrode current collector and drying the slurry can be used.
- the negative electrode mixture slurry contains a negative electrode active material and a binder.
- the solvent contained in the negative electrode mixture slurry include water and a liquid medium compatible with water. When the solvent contained in the negative electrode mixture slurry contains a liquid medium that is compatible with water, it is possible to improve the coatability onto the negative electrode current collector.
- Liquid media compatible with water include alcohols, glycols, cellosolves, aminoalcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphate esters. , ethers, nitriles and the like.
- the application method, drying method, and pressure treatment of the negative electrode mixture slurry include the same methods as those exemplified as the application method, drying method, and pressure treatment of the positive electrode mixture slurry.
- a non-aqueous electrolyte is prepared in the third preparation step.
- the method for preparing the non-aqueous electrolyte is the same as the method described in the method for producing the non-aqueous electrolyte.
- the positive electrode, the negative electrode, and the separator are housed in the case.
- a battery element is created with a positive electrode, a negative electrode, and a separator.
- the positive electrode current collector of the positive electrode and the positive electrode lead are electrically connected
- the negative electrode current collector of the negative electrode and the negative electrode lead are electrically connected.
- the battery element is housed in the case and fixed.
- a method for electrically connecting the positive electrode current collector and the positive electrode lead is not particularly limited, and examples thereof include ultrasonic welding and resistance welding.
- a method for electrically connecting the negative electrode current collector and the negative electrode lead is not particularly limited, and examples thereof include ultrasonic welding and resistance welding.
- the state in which the positive electrode, the negative electrode, and the separator are accommodated in the case will be referred to as the "assembly".
- the non-aqueous electrolyte of the present disclosure is injected into the assembly. This allows the non-aqueous electrolyte to permeate the positive electrode mixture layer, the separator, and the negative electrode mixture layer. As a result, a lithium secondary battery precursor is obtained.
- the manufacturing method of the lithium secondary battery of the present disclosure includes a fourth preparation step and an aging step.
- a 4th preparation process and an aging process are performed in this order.
- a lithium secondary battery precursor is prepared.
- the method for preparing the lithium secondary battery precursor is the same as the method described in the method for producing the lithium secondary battery precursor.
- the lithium secondary battery precursor is subjected to aging treatment. Thereby, a negative electrode SEI film and a positive electrode SEI film are formed. That is, a lithium secondary battery is obtained.
- the aging treatment includes subjecting the lithium secondary battery precursor to charging and discharging under an environment of 25°C or higher and 70°C or lower. Specifically, the aging process includes a first charge phase, a first hold phase, a second charge phase, a second hold phase, and a charge/discharge phase.
- the lithium secondary battery precursor is charged in an environment of 25°C or higher and 70°C or lower.
- the first holding phase the lithium secondary battery precursor after the first charging phase is held in an environment of 25°C or higher and 70°C or lower.
- the lithium secondary battery precursor after the first holding phase is charged in an environment of 25°C or higher and 70°C or lower.
- the lithium secondary battery precursor after the second charging phase is held in an environment of 25°C or higher and 70°C or lower.
- the lithium secondary battery precursor after the second holding phase is subjected to a combination of charging and discharging one or more times under an environment of 25° C. or higher and 70° C. or lower.
- the lithium secondary battery obtained by the lithium secondary battery manufacturing method of the present disclosure more effectively exhibits the effect of suppressing an increase in DC resistance and a decrease in discharge capacity even when stored in a high-temperature environment.
- Synthetic compounds (I-1) to (I-48) represented by the following formula (I) were synthesized as follows. Tables 1 and 2 show R 1 , R 2 , L 1 , and L 2 in the formula (I) of each of Synthetic Compounds (I-1) to (I-48).
- lithium butoxytosylamide [synthetic compound (I-5)] was obtained according to the following reaction scheme.
- ⁇ Second step Synthesis of lithium methoxycarbonyltrifluoromethylsulfonamide (I-10)>
- a nitrogen-substituted 200 mL four-necked flask was charged with methoxycarbonyltrifluoromethylsulfonamide (1.90 g, 9.17 mmol) and diethyl ether (50 mL) as a solvent, maintained at -20 degrees, and lithium bis ( A solution of trimethylsilyl)amide (1.3 M) in tetrahydrofuran (7.1 mL, 9.17 mmol) was added over 5 minutes, then the temperature was returned to room temperature and the reaction was stirred for 3 hours.
- lithium methoxycarbonyltrifluoromethylsulfonamide (synthetic compound (I-10)] was obtained according to the following reaction scheme.
- ⁇ Second step Synthesis of lithium methoxycarbonyl tosylamide (I-1)> Methoxycarbonyltosylamide (1.52 g, 6.63 mmol), tetrahydrofuran (30 mL) as a solvent, and lithium bis(trimethylsilyl)amide (1.3 M) in the same manner as in the second step in Synthesis Example 1 (Synthetic Compound 5). The reaction was carried out using a tetrahydrofuran solution (5.1 mL, 6.63 mmol). This gave a sixth white solid, lithium methoxycarbonyl tosylamide (0.99 g, 4.20 mmol, 63% yield).
- Acetylethoxysulfonamide> Acetylethoxysulfonamidoethyl was synthesized following the patent document (International Publication No. 2017/156179). Chlorosulfonyl isocyanate (7.08 g, 50 mmol) and dichloromethane (100 mL) as a solvent were placed in a nitrogen-substituted 200 mL four-necked flask, kept at 0° C., acetic acid (3.0 g, 50 mmol) was added, The temperature was returned to room temperature and the mixture was reacted with stirring for 6 hours. After completion of the reaction, the solvent was removed by concentration to obtain a white solid.
- a first reaction solution was prepared by charging tetrahydrofuran (50 mL) into this four-necked flask and kept at 0°C. Separately, ethanol (2.92 g, 63.5 mmol), pyridine (5.02 g, 63.5 mmol), and 4-dimethylaminopyridine (0.78 g, 6.4 mmol) were added to tetrahydrofuran (50 mL) for a second reaction. A solution was prepared. This second reaction solution was added to the four-necked flask charged with the first reaction solution at 0° C. over 10 minutes, then returned to room temperature and stirred for 6 hours.
- ⁇ Second step Synthesis of lithium acetylethoxysulfonamide (I-19)> Acetylethoxysulfonamide (1.74 g, 10.4 mmol) and tetrahydrofuran (30 mL) as a solvent were placed in a nitrogen-substituted 200 mL four-necked flask, kept at ⁇ 20° C., and lithium bis(trimethylsilyl) amide ( 1.3 M) tetrahydrofuran solution (8.0 mL, 10.4 mmol) was added over 5 minutes, then the temperature was returned to room temperature and the reaction was stirred for 3 hours. After that, n-hexane (30 mL) was added to precipitate No.
- ⁇ Second step Synthesis of lithium ethoxysulfonyl-(2,2,2-trifluoroacetyl)amide (I-20))
- a nitrogen-purged 200 mL four-necked flask was charged with ethoxysulfonyl-(2,2,2-trifluoroacetyl)amide (1.0 g, 4.5 mmol) and tetrahydrofuran (20 mL) as a solvent.
- the temperature was maintained at the same temperature, and a lithium bis(trimethylsilyl)amide (1.3 M) tetrahydrofuran solution (3.5 mL, 4.5 mmol) was added over 5 minutes.
- a third reaction solution was prepared by charging tetrahydrofuran (100 mL) into the four-necked flask and kept at 0°C. Separately, 2,2,2-trifluoroethanol (12.0 g, 120 mmol), triethylamine (20.24 g, 200 mmol), and 4-dimethylaminopyridine (2.44 g, 20 mmol) were added to tetrahydrofuran (100 mL). 4 reaction solutions were prepared. This fourth reaction solution was added to the four-necked flask charged with the third reaction solution at 0° C. over 10 minutes, then returned to room temperature and stirred for 6 hours.
- ⁇ Second step Synthesis of lithium propionyl-(2,2,2-trifluoroethoxy)sulfonamide (I-21)> Propionyl-(2,2,2-trifluoroethoxy)sulfonamide (1.75 g, 7.4 mmol) and tetrahydrofuran (30 mL) as a solvent were charged into a 200 mL four-necked flask purged with nitrogen, and the temperature was -20. The temperature was maintained at the same temperature, and a lithium bis(trimethylsilyl)amide (1.3 M) tetrahydrofuran solution (5.7 mL, 7.4 mmol) was added over 5 minutes.
- ⁇ Second step Synthesis of lithium benzoyl-(2,2,2-trifluoroethoxy)sulfonamide (I-22)> Benzoyl-(2,2,2-trifluoroethoxy)sulfonamide (2.06 g, 7.3 mmol) and tetrahydrofuran (20 mL) as a solvent were placed in a nitrogen-purged 200 mL four-necked flask, and the temperature was -20. The temperature was maintained at the same temperature, and a lithium bis(trimethylsilyl)amide (1.3 M) tetrahydrofuran solution (5.6 mL, 7.3 mmol) was added over 5 minutes.
- ⁇ Second step Synthesis of lithium benzoylethoxysulfonamide (I-23)> Benzoylethoxysulfonamide (1.74 g, 7.6 mmol) and tetrahydrofuran (20 mL) as a solvent were charged into a nitrogen-substituted 200 mL four-necked flask, kept at ⁇ 20 degrees, and lithium bis(trimethylsilyl) amide ( 1.3 M) tetrahydrofuran solution (5.8 mL, 7.6 mmol) was added over 5 minutes, then the temperature was returned to room temperature and the reaction was stirred for 3 hours. After that, n-hexane (20 mL) was added to precipitate No.
- phenol (26.2 g, 278 mmol) and sodium hydride (6.67 g, 278 mmol) were added to tetrahydrofuran (100 mL) at 0° C. to prepare a sixth reaction solution.
- This sixth reaction solution was added to the four-necked flask in which the fifth reaction solution was prepared at 0° C. over 30 minutes, then returned to room temperature and stirred for 6 hours. After that, the salt was removed by filtering the obtained reaction solution, and the obtained solution was washed. That is, 100 mL of distilled water was added to the filtrate, 100 mL of ethyl acetate was added, and the mixture was extracted and washed with a separating funnel.
- the reaction formula in the first step of Synthesis Example 24 is as follows.
- ⁇ Second step Synthesis of acetylphenoxysulfonamide
- pyridine 4..99 g, 63.1 mmol
- 4-dimethylaminopyridine (0.77 g, 6.3 mmol
- tetrahydrofuran (30 mL) as a solvent
- methanesulfonamide was replaced with phenylsulfamate (2.68 g, 15.5 mmol)
- methyl chloroformate was replaced with acetyl chloride (1.46 g, 18.6 mmol).
- ⁇ Third step Synthesis of lithium acetylphenoxysulfonamide (I-24)> Acetylphenoxysulfonamide (2.11 g, 9.8 mmol) and tetrahydrofuran (20 mL) as a solvent were charged into a nitrogen-substituted 200 mL four-necked flask, kept at ⁇ 20 degrees, and lithium bis(trimethylsilyl) amide ( 1.3 M) tetrahydrofuran solution (7.5 mL, 9.8 mmol) was added over 5 minutes, then the mixture was returned to room temperature and stirred for 3 hours. After that, n-hexane (20 mL) was added to precipitate No. 48 white solid from the reaction solution.
- ⁇ Third step Synthesis of lithium benzoylphenoxysulfonamide (I-25)> Benzoylphenoxysulfonamide (3.12 g, 11.25 mmol) and tetrahydrofuran (30 mL) as a solvent were placed in a nitrogen-substituted 200 mL four-necked flask, kept at ⁇ 20 degrees, and lithium bis(trimethylsilyl) amide ( 1.3 M) tetrahydrofuran solution (8.7 mL, 11.25 mmol) was added over 5 minutes, then the mixture was returned to room temperature and stirred for 3 hours. After that, n-hexane (30 mL) was added to precipitate a 50th white solid from the reaction solution.
- the reaction formula in the first step of Synthesis Example 26 is as follows.
- ⁇ Second step Synthesis of lithium ethoxycarbonyl-(2,2,2-trifluoroethoxy)sulfonamide (I-27)> Ethoxycarbonyl-(2,2,2-trifluoroethoxy)sulfonamide (2.0 g, 7.96 mmol) and tetrahydrofuran (30 mL) as a solvent were placed in a nitrogen-substituted 200 mL four-necked flask, and After keeping the temperature at 20° C.
- ⁇ Second step Synthesis of lithium-(2,2,2-trifluoroethoxy)carbonyl-(2,2,2-trifluoroethoxy)sulfonamide (I-28)> 2,2,2-trifluoroethoxycarbonyl-(2,2,2-trifluoroethoxy)sulfonamide (1.50 g , 4.92 mmol), tetrahydrofuran (20 mL) as a solvent, and a solution of lithium bis(trimethylsilyl)amide (1.3 M) in tetrahydrofuran (3.75 mL, 4.88 mmol).
- ⁇ Second step Synthesis of p-tolyloxysulfonyl-(2,2,2-trifluoroethoxy)carbonylamide> p-Tolyloxycarbonylchlorosulfonamide (1.50 g, 6.01 mmol), chlorobenzene (10 mL) as a solvent, and 2, The reaction was carried out using 2,2-trifluoroethanol (0.60 g, 6.00 mmol). This gave a third clear colorless oil of p-tolyloxysulfonyl-(2,2,2-trifluoroethoxy)carbonylamide (1.01 g, 3.22 mmol, 54% yield).
- ⁇ Third step Synthesis of lithium-p-tolyloxysulfonyl-(2,2,2-trifluoroethoxy)carbonylamide (I-31)> p-Tolyloxysulfonyl-(2,2,2-trifluoroethoxy)carbonylamide (1.01 g, 3.22 mmol) in the same manner as in the second step in Synthesis Example 1 (Synthetic compound (I-5)) , tetrahydrofuran (15 mL) and lithium bis(trimethylsilyl)amide (1.3 M) in tetrahydrofuran (2.30 mL, 2.99 mmol) as solvents.
- ⁇ Second step Synthesis of lithium-p-tolyloxycarbonyl-p-tolyloxysulfonamide (I-32)> p-tolyloxycarbonyl-p-tolyloxysulfonamide (1.20 g, 3.73 mmol) and tetrahydrofuran (20 mL) as a solvent in the same manner as in the second step in Synthesis Example 1 (synthetic compound (I-5)) , lithium bis(trimethylsilyl)amide (1.3 M), and tetrahydrofuran solution (2.60 mL, 3.38 mmol).
- ⁇ Second step Synthesis of lithium-4-methoxyphenoxycarbonyltrifluoromethylsulfonamide (I-34)> 4-Methoxyphenoxycarbonyltrifluoromethylsulfonamide (0.95 g, 3.16 mmol), diethyl ether (20 mL) as a solvent, and The reaction was carried out using lithium bis(trimethylsilyl)amide (1.3 M) in tetrahydrofuran (2.4 mL, 3.16 mmol). This gave the 64th white solid lithium-4-methoxyphenoxycarbonyltrifluoromethylsulfonamide (0.79 g, 2.58 mmol, 82% yield). Measurement results of the 64th white solid by 1 H-NMR (DMSO-d6) are shown below. 1 H-NMR: ⁇ 3.55 (s, 3H), 6.13-6.28 (m, 2H), 6.43-6.52 (m, 2H)
- ⁇ Second step Synthesis of lithium phenoxycarbonylethoxysulfonamide (I-41)> Phenoxycarbonylethoxysulfonamide (2.19 g, 8.9 mmol) and tetrahydrofuran (20 mL) as a solvent were placed in a nitrogen-substituted 200 mL four-necked flask, kept at ⁇ 20 degrees, and lithium bis(trimethylsilyl) amide was added. A (1.3 M) tetrahydrofuran solution (6.9 mL, 8.9 mmol) was added over 5 minutes, then the temperature was returned to room temperature and the reaction was stirred for 3 hours.
- lithium fluorosulfonylmethoxycarbonylamide (synthetic compound (I-42)] was obtained according to the following reaction scheme.
- Example 1 A non-aqueous electrolyte was obtained as follows.
- Ethylene carbonate hereinafter referred to as EC
- DMC dimethyl carbonate
- EMC ethyl methyl carbonate
- the obtained electrolytic solution is referred to as the "basic electrolytic solution”.
- lithium butoxycarbonyl tosylamide (I-5) synthesized in Synthesis Example 1 and represented by the following formula (I-5) is used. It was added to the basic electrolytic solution so that the content (% by mass) described in 4 was obtained. A non-aqueous electrolyte was thus obtained.
- a coin-type battery (hereinafter also simply referred to as "battery") as a lithium secondary battery precursor was produced in the following manner.
- Graphite (96% by mass) as a negative electrode active material, carbon black (1% by mass) as a conductive agent, 1% by mass of solid content of carboxymethylcellulose sodium dispersed in pure water as a thickener, and pure Styrene-butadiene rubber (SBR) dispersed in water was mixed at a solid content of 2% by mass to obtain a negative electrode mixture slurry.
- a copper foil having a thickness of 10 ⁇ m was prepared as a negative electrode current collector. The resulting slurry was applied onto a copper foil, dried, and then rolled with a press to obtain a sheet-like negative electrode.
- the negative electrode is composed of a negative electrode current collector and a negative electrode active material layer.
- the non-aqueous electrolyte obtained in the production of the non-aqueous electrolyte described above was prepared.
- a porous polyethylene film was prepared as a separator.
- a negative electrode with a diameter of 14 mm, a positive electrode with a diameter of 13 mm, and a separator with a diameter of 17 mm were each punched out into a disc shape.
- a coin-shaped negative electrode, a coin-shaped positive electrode, and a coin-shaped separator were obtained.
- the obtained coin-shaped negative electrode, coin-shaped separator, and coin-shaped positive electrode were stacked in this order in a stainless battery can (size: 2032 size).
- 20 ⁇ L of non-aqueous electrolyte was injected into the battery can, and the separator, positive electrode, and negative electrode were impregnated with the non-aqueous electrolyte.
- an aluminum plate (thickness: 1.2 mm, diameter: 16 mm) and a spring were placed on the positive electrode, and the battery was sealed by crimping the battery can lid via a polypropylene gasket.
- a coin-shaped lithium secondary battery precursor having the configuration shown in FIG. 2 was obtained.
- the size of the lithium secondary battery precursor was 20 mm in diameter and 3.2 mm in height.
- the obtained lithium secondary battery precursor was subjected to the following aging treatment to obtain a first battery.
- the obtained first battery was subjected to the following initial charge/discharge treatment to obtain a second battery.
- the obtained second battery was subjected to the following DC resistance evaluation treatment to obtain a third battery.
- the obtained third battery was subjected to high-temperature storage treatment to obtain a fourth battery.
- the obtained fourth battery was subjected to the following late charge/discharge treatment to obtain a fifth battery.
- the capacity after high temperature storage, the resistance after high temperature storage, and the resistance increase rate were each measured by the following measurement method. These measurement results are shown in Table 4.
- the lithium secondary battery precursor was subjected to the following aging treatment to obtain a first battery.
- the battery precursor was charged at a temperature range of 25 to 70° C. with a final voltage range of 1.5 V to 3.5 V, and then rested for 5 to 50 hours. Next, the battery precursor was charged at a final voltage of 3.5 V to 4.2 V under a temperature range of 25 to 70° C. and held for 5 to 50 hours. Next, the battery precursor was charged to 4.2V and then discharged to 2.5V under a temperature range of 25-70°C.
- the first battery was held in a temperature environment of 25°C for 12 hours. Then, the first battery was charged at a charge rate of 0.2C to 4.2V (SOC (State Of Charge) 100%) by constant current and constant voltage charge (0.2C-CCCV), then rested for 30 minutes, and then the discharge rate Constant current discharge (0.2C-CC) was performed at 0.2C to 2.5V. This was repeated for 3 cycles to stabilize the battery. Then, constant current and constant voltage charge (0.5C-CCCV) to 4.2V at a charge rate of 0.2C, followed by resting for 30 minutes, and then constant current discharge (1C-CCV) to 2.5V at a discharge rate of 1C. ). Thus, a second battery was obtained.
- SOC State Of Charge
- the DC resistance evaluation process was performed in a temperature environment of 25°C.
- the second battery was CC-discharged to 2.5V at a discharge rate of 0.2C and CCCV-charged to 3.7V at a charge rate of 0.2C.
- CCCV charging means charging with a constant current constant voltage (Constant Current Constant Voltage).
- CC10s discharge means discharging for 10 seconds at a constant current (Constant Current).
- CC10s charging means charging for 10 seconds at a constant current (Constant Current).
- the second battery was subjected to CC10s discharge at a discharge rate of 0.5C and CC25s charge at a charge rate of 0.2C.
- the second battery was discharged at a discharge rate of 1C for CC10s and charged at a charge rate of 0.2C for CC50s.
- the second battery was discharged at a discharge rate of 2C for CC10s and charged at a charge rate of 0.2C for CC100s.
- a third battery was thus obtained.
- the third battery was subjected to the following high-temperature storage treatment to obtain a fourth battery.
- the third battery was charged at a constant current of 4.2 V at a charge rate of 0.2 C in a temperature environment of 25°C. Then, the charged battery was allowed to stand in an atmosphere of 60° C. for 14 days. Thus, a fourth battery was obtained.
- the fourth battery was radiated in a temperature environment of 25°C, and after the first discharge, the first charge was performed, and the second discharge was performed.
- the first discharge indicates constant current discharge (1C-CC) to 2.5V at a discharge rate of 1C.
- the first charge indicates constant current constant voltage charge (0.2C-CCCV) up to 4.2V at a charge rate of 0.2C.
- the second discharge indicates constant current discharge (1C-CC) to 2.5V at a discharge rate of 1C.
- the DC resistance was measured by the following method.
- the fifth battery was subjected to the same DC resistance evaluation process as the DC resistance evaluation process described above.
- the DC resistance ( ⁇ ) of the fifth battery was obtained based on each current value equivalent to ).
- the resistance increase rate is obtained by dividing the direct current resistance ( ⁇ ) of the fourth battery by the direct current resistance ( ⁇ ) of the second battery.
- Each of the direct current resistance ( ⁇ ) of the fourth battery and the direct current resistance ( ⁇ ) of the second battery is the same as the method of measuring the direct current resistance ( ⁇ ) of the fifth battery in the method of measuring resistance after high temperature storage described above. .
- the relative value of the DC resistance of the fifth battery after the high-temperature storage test corresponds to the DC resistance increase rate (%) due to storage (hereinafter also simply referred to as "resistance increase rate").
- the increase rate here is expressed as 100% when there is no increase or decrease, when it increases as more than 100%, and when it decreases as less than 100%.
- the reason for focusing on the resistance increase rate is that while a low resistance value itself is an important performance in terms of battery performance, it is also extremely important to reduce the resistance increase rate caused by deterioration during storage. Because there is
- “-” in Table 4 means that the corresponding component is not contained.
- “Content of each additive” indicates the content (% by mass) of the additive with respect to the total amount of the non-aqueous electrolyte for lithium secondary batteries.
- “(I)” represents a lithium (N-carbonyl)sulfonamide compound (I).
- “(II)” represents a lithium fluorophosphate compound (II).
- (C-1) represents lithium trifluoromethylcarbonyltrifluoromethylsulfonamide (C-1).
- “(III)” represents a cyclic dicarbonyl compound (III).
- “(IV)” represents a cyclic sulfur-containing ester compound (IV).
- (I-1) represents lithium methoxycarbonyl tosylamide (I-1).
- (I-2) represents lithium ethoxycarbonyltosylamide (I-2).
- (I-4) represents lithium isopropoxycarbonyltosylamide (I-4).
- (I-5) represents lithium butoxycarbonyl tosylamide (I-5).
- (I-10) represents lithium methoxycarbonyltrifluoromethylsulfonamide (I-10).
- (I-11) represents lithium ethoxycarbonyltrifluoromethylsulfonamide (I-11).
- (I-12) represents lithium propoxycarbonyltrifluoromethylsulfonamide (I-12).
- (I-13) represents lithium isopropoxycarbonyltrifluoromethylsulfonamide (I-13).
- (I-14) represents lithium butoxycarbonyltrifluoromethylsulfonamide (I-14).
- (I-16) represents lithium methoxycarbonylmethylsulfonamide (I-16).
- (I-23) represents lithium benzoylethoxysulfonamide (I-23).
- (I-27) represents lithium ethoxycarbonyl-2,2,2-trifluoroethoxysulfonamide (I-27).
- (I-28) represents lithium-(2,2,2-trifluoroethoxy)carbonyl-(2,2,2-trifluoroethoxy)sulfonamide (I-28).
- (I-30) represents lithium ethoxycarbonyl-p-tolyloxysulfonamide (I-30).
- (I-34) represents lithium-4-methoxyphenoxycarbonyltrifluoromethylsulfonamide (I-34).
- (I-37) represents lithium allyloxycarbonyltrifluoromethylsulfonamide (I-37).
- (I-39) represents lithium methoxycarbonyl-4-trifluoromethylphenylsulfonamide (I-39).
- (I-42) represents lithium fluorosulfonylmethoxycarbonylamide (I-42).
- (I-43) represents lithium fluorosulfonylethoxycarbonylamide (I-43).
- (I-44) represents lithium fluorosulfonylpropoxycarbonylamide (I-44).
- (I-45) represents lithium fluorosulfonylbutoxycarbonylamide (I-45).
- (I-46) represents lithium fluorosulfonylbenzyloxycarbonylamide (I-46).
- (II-1) represents lithium difluorophosphate (II-1).
- (III-1) represents lithium bisoxalate borate (III-1).
- (IV-1) represents a cyclic sulfur-containing ester compound (IV-1).
- the nonaqueous electrolyte solutions of Examples 1 to 49 contained the lithium (N-carbonyl)sulfonamide compound (I)
- the lithium secondary batteries of Examples 1 to 49 had a capacity after high temperature storage. 100% or more, the resistance after high temperature storage was 100% or less, and the resistance increase rate was 100% or less. That is, it was found that the lithium secondary batteries of Examples 1 to 49 were able to suppress an increase in DC resistance and a decrease in discharge capacity even when stored in a high-temperature environment.
- the nonaqueous electrolytic solution of Comparative Example 2 contained lithium trifluoromethylcarbonyltrifluoromethylsulfonamide (C-1) and did not contain lithium (N-carbonyl)sulfonamide compound (I).
- the lithium secondary battery of Comparative Example 2 had a capacity after high temperature storage of 100%, a resistance after high temperature storage of 106%, and a resistance increase rate of 102%. That is, it was found that when the lithium secondary battery of Comparative Example 2 was stored in a high-temperature environment, the increase in DC resistance and the decrease in discharge capacity could not be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
R1及びR2の各々は、炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルケニル基(前記アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(前記アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、又はアリール基(前記アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表す。
L1及びL2の各々は、単結合又は-O-を表す。但し、L1及びL2の各々が単結合である場合を除く。〕
<2> 下記式(I)で表されるリチウム(N-カルボニル)スルホンアミド化合物(I)を含むリチウム二次電池用添加剤。
R1及びR2の各々は、炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。但し、トリフルオロメチル基を除く。)、炭素数2~10のアルケニル基(前記アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(前記アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、又はアリール基(前記アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表す。
L1及びL2の各々は、単結合又は-O-を表す。〕
<3> 前記<2>に記載のリチウム二次電池用添加剤において、
前記R1及び前記R2の各々は、
前記アルキル基、前記アルケニル基、前記アルキニル基、又は前記アリール基に代えて、
炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、前記アルケニル基、前記アルキニル基、前記アリール基、炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又はハロゲン原子を表し、
R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とが除かれた、リチウム二次電池用添加剤。
<4> 下記式(I)で表されるリチウム(N-カルボニル)スルホンアミド化合物(I)を含むリチウム二次電池用非水電解液。
R1及びR2の各々は、炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。但し、トリフルオロメチル基を除く。)、炭素数2~10のアルケニル基(前記アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(前記アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、又はアリール基(前記アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表す。
L1及びL2の各々は、単結合又は-O-を表す。〕
<5> 前記<4>に記載のリチウム二次電池用非水電解液において、
前記R1及び前記R2の各々は、
前記アルキル基、前記アルケニル基、前記アルキニル基、又は前記アリール基に代えて、
炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、前記アルケニル基、前記アルキニル基、前記アリール基、炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又はハロゲン原子を表し、
R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とが除かれた、リチウム二次電池用非水電解液。
<6> 電解質を更に含有し、
前記電解質は、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化タンタル酸リチウム(LiTaF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CF3SO2)2N)、及びリチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(C2F5SO2)2N)からなる群から選択される少なくとも1種である、前記<4>又は<5>に記載のリチウム二次電池用非水電解液。
<7> 前記リチウム(N-カルボニル)スルホンアミド化合物(I)は、
前記R1が前記アリール基を表し、
前記L1が単結合を表し、
前記R2が前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、又は前記アラルキル基を表し、
前記L2が-O-を表す、前記<4>~<6>のいずれか1つに記載のリチウム二次電池用非水電解液。
<8> 前記リチウム(N-カルボニル)スルホンアミド化合物(I)は、
前記R1が、前記アルキル基を表し、
前記L1が、単結合を表し、
前記R2が、前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、又は前記アラルキル基を表し、
前記L2が、-O-を表す、前記<4>~<6>のいずれか1つに記載のリチウム二次電池用非水電解液。
<9> 前記リチウム(N-カルボニル)スルホンアミド化合物(I)は、
前記R1が、フッ素原子を表し、
前記L1が、単結合を表し、
前記R2が、前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、又は前記アラルキル基を表し、
前記L2が、-O-を表す、前記<4>~<6>のいずれか1つに記載のリチウム二次電池用非水電解液。
<10> モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群より選ばれる少なくとも1種である化合物(II)を含む、前記<4>~<9>のいずれか1つに記載のリチウム二次電池用非水電解液。
<11> 下記式(III)で表される化合物(III)を含む、前記<4>~<10>のいずれか1つに記載のリチウム二次電池用非水電解液。
Mは、アルカリ金属であり、
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素であり、
bは、1~3の整数であり、
mは、1~4の整数であり、
nは、0~8の整数であり、
qは、0又は1であり、
R3は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、qが1でmが2~4の場合にはm個のR3はそれぞれが結合していてもよい。)であり、
R4は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、nが2~8の場合はn個のR4はそれぞれが結合して環を形成していてもよい。)であり、
Q1、及びQ2は、それぞれ独立に、酸素原子、又は炭素原子である。〕
<12> 下記式(IV)で表される化合物(IV)を含む、前記<4>~<11>のいずれか1つに記載のリチウム二次電池用非水電解液。
R5は、酸素原子、炭素数1~6のアルキレン基、又は炭素数2~6のアルケニレン基であり、
R6は、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、式(iv-1)で表される基、又は式(iv-2)で表される基であり、
*は、結合位置を示し、
式(iv-1)中、R61は、酸素原子、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、又はオキシメチレン基であり、
式(iv-2)中、R62は、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基である。〕
<13> 前記リチウム(N-カルボニル)スルホンアミド化合物(I)の含有量が、リチウム二次電池用非水電解液の全量に対し、0.01質量%以上5質量%以下である前記<4>~<12>のいずれか1つに記載のリチウム二次電池用非水電解液。
<14> ケースと、
前記ケースに収容された、正極、負極、セパレータ、及び電解液と、
を備え、
前記正極が、リチウムイオンを吸蔵及び放出可能な正極であり、
前記負極が、リチウムイオンを吸蔵及び放出可能な負極であり、
前記電解液が、前記<4>~<13>のいずれか1つに記載のリチウム二次電池用非水電解液である、リチウム二次電池前駆体。
<15> 前記正極が、正極活物質として、下記式(C1)で表されるリチウム含有複合酸化物を含む、前記<14>に記載のリチウム二次電池前駆体。
LiNiaCobMncO2 … 式(C1)
〔式(C1)中、a、b及びcは、それぞれ独立に、0超1未満であり、かつ、a、b及びcの合計は、0.99以上1.00以下である。〕
<16> 前記<14>又は<15>に記載のリチウム二次電池前駆体を準備する工程と、
前記リチウム二次電池前駆体に対して、充電及び放電を施す工程と
を含む、リチウム二次電池の製造方法。
<17> 前記<14>又は<15>に記載のリチウム二次電池前駆体に対して、充電及び放電を施して得られたリチウム二次電池。
本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本明細書において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
(化合物(A))
本開示のリチウム(N-カルボニル)スルホンアミド化合物について説明する。
L1及びL2の各々は、単結合又はエーテル結合(-O-)を表す。但し、L1及びL2の各々が単結合である場合を除く。
リチウム二次電池の詳細については、図1及び図2を参照して後述する。
本開示のリチウム(N-カルボニル)スルホンアミド化合物(すなわち、化合物(A))が添加された非水電解液を用いてリチウム二次電池を製造する場合、その製造過程(例えば、後述するエージング工程)において、リチウム二次電池の負極の表面近傍において、反応生成物が生成され、更に、反応生成物の分解物である成分が生成されると考えられる。反応生成物は、リチウム(N-カルボニル)スルホンアミド化合物と、電解質から生じた化合物(例えば、LiF)との反応による生成物を示す。このような反応生成物等は、負極表面に付着してSEI(Solid Electrolyte Interphase)膜(以下、「負極SEI膜」という。)を形成する。この成分は、製造過程において、正極表面近傍に移動し、正極表面に付着して、SEI膜(以下、「正極SEI膜」という。)を形成すると考えられる。これにより、高温環境下でのリチウム二次電池の安定性が高められる。例えば、正極活物質中の金属元素の溶出が抑制される。その結果、リチウム二次電池が高温環境下で保存されても、リチウム二次電池の直流抵抗の増加は、抑制されると考えられる。
正極SEI膜の形成は、リチウム二次電池を保存する場合の保存期間中においてもなお進行すると考えられる。このため、リチウム二次電池を保存する場合における、リチウム二次電池の保存期間に対するリチウム二次電池の直流抵抗の上昇率は低減されると考えられる。
「炭素数1~10のアルキル基」の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が特に好ましい。
「炭素数1~10のアルキル基」において、ハロゲン原子に置換される水素原子の数は、特に限定されず、アルキル基の炭素数に応じて適宜選択され、1個~7個が好ましい。
「炭素数2~10のアルケニル基」の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が特に好ましい。
「炭素数2~10のアルケニル基」において、ハロゲン原子に置換される水素原子の数は、特に限定されず、アルケニル基の炭素数に応じて適宜選択され、1個~7個が好ましい。
「炭素数2~10のアルキニル基」の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が特に好ましい。
「炭素数2~10のアルキニル基」において、ハロゲン原子に置換される水素原子の数は、特に限定されず、アルキニル基の炭素数に応じて適宜選択され、1個~7個が好ましい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が特に好ましい。「アリール基」において、ハロゲン原子に置換される水素原子の数は、特に限定されず、1個~5個が好ましい。
炭素数1~6のアルコキシ基は、アルキル基が直鎖、分岐、及び環状のいずれでもよい。炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基、ペンチルオキシ基等が挙げられる。これらの中でも、炭素数1~6のアルコキシ基は、炭素数1~3のアルコキシ基が好ましく、メトキシ基、及びエトキシ基がより好ましい。「アリール基」において、炭素数1~6のアルコキシ基に置換される水素原子の数は、特に限定されず、1個~3個が好ましい。
炭素数1~6のアルキル基は、直鎖、分岐、及び環状のいずれでもよい。炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。これらの中でも、炭素数1~6のアルキル基は、炭素数1~3のアルキル基が好ましく、メチル基、及びエチル基がより好ましい。「アリール基」において、炭素数1~6のアルキル基に置換される水素原子の数は、特に限定されず、1個~3個が好ましい。
本開示のリチウム(N-カルボニル)スルホンアミド化合物は、
上述したリチウム(N-カルボニル)スルホンアミド化合物(すなわち、化合物(A))において、
前記R1及び前記R2の各々が、
前記アルキル基、前記アルケニル基、前記アルキニル基、又は前記アリール基に代えて、
前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又はハロゲン原子を表し、
L1及びL2の各々が単結合である場合を除くの代わりに、
R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とが除かれた、リチウム(N-カルボニル)スルホンアミド化合物であってもよい。
L1及びL2の各々は、単結合又は-O-を表す。但し、R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とを除く。
上記効果が奏される理由は、化合物(A)が非水電解液に添加されて使用されると、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は抑制され得る理由と同様であると推測される。
化合物(B)において、式(I)中、R1及びR2にの各々で表される「炭素数2~10のアルケニル基」は、化合物(A)における「炭素数2~10のアルケニル基」として例示したものと同様である。
化合物(B)において、式(I)中、R1及びR2にの各々で表される「炭素数2~10のアルキニル基」は、化合物(A)における「炭素数2~10のアルキニル基」として例示したものと同様である。
化合物(B)において、式(I)中、R1及びR2にの各々で表される「アリール基」は、化合物(A)における「アリール基」として例示したものと同様である。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が特に好ましい。「アラルキル基」において、ハロゲン原子に置換される水素原子の数は、特に限定されず、1個~5個が好ましい。
炭素数1~6のアルコキシ基は、アルキル基が直鎖、分岐、及び環状のいずれでもよい。炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基、ペンチルオキシ基等が挙げられる。これらの中でも、炭素数1~6のアルコキシ基は、炭素数1~3のアルコキシ基が好ましく、メトキシ基、及びエトキシ基がより好ましい。「アラルキル基」において、炭素数1~6のアルコキシ基に置換される水素原子の数は、特に限定されず、1個~3個が好ましい。
炭素数1~6のアルキル基は、直鎖、分岐、及び環状のいずれでもよい。炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。これらの中でも、炭素数1~6のアルキル基は、炭素数1~3のアルキル基が好ましく、メチル基、及びエチル基がより好ましい。「アラルキル基」において、炭素数1~6のアルキル基に置換される水素原子の数は、特に限定されず、1個~3個が好ましい。
炭素数7~16のアラルキル基としては、炭素数1~6のアルキレン基に置換されたアリール基からなるアラルキル基が好ましい。炭素数1~6のアルキレン基に置換しされたアリール基としては、炭素数6~10のアリール基が好ましい。
「炭素数7~16のアラルキル基」の具体例としては、ベンジル基、フェニルエチル基、又はナフチルメチル基が挙げられる。
なかでも、L1は、単結合を表すことが好ましく、L2は、-O-を表すことが好ましい。
(添加剤(A))
本開示のリチウム二次電池用添加剤(以下、単に「添加剤」という場合がある。)について説明する。
L1及びL2の各々は、単結合又は-O-を表す。
上記効果が奏される理由は、本開示のリチウム(N-カルボニル)スルホンアミド化合物(I)(すなわち、化合物(A))が非水電解液に添加されて使用されると、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は抑制され得る理由と同様であると推測される。
本開示の添加剤は、上述したリチウム二次電池用添加剤(すなわち、添加剤(A))において、
前記R1及び前記R2の各々は、
前記アルキル基、前記アルケニル基、前記アルキニル基、又は前記アリール基に代えて、
炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、前記アルケニル基、前記アルキニル基、前記アリール基、炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又はハロゲン原子を表し、
R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とが除かれた、リチウム二次電池用添加剤であってもよい。
L1及びL2の各々は、単結合又は-O-を表す。但し、R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とを除く。
上記効果が奏される理由は、添加剤(A)が非水電解液に添加されて使用されると、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は抑制され得る理由と同様であると推測される。
(非水電解液(A))
本開示のリチウム二次電池用非水電解液について説明する。
L1及びL2の各々は、単結合又は-O-を表す。
上記効果が奏される理由は、本開示のリチウム(N-カルボニル)スルホンアミド化合物(I)(すなわち、化合物(A))が非水電解液に添加されて使用されると、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は抑制され得る理由と同様であると推測される。
本開示の非水電解液は、
上述したリチウム二次電池用非水電解液(すなわち、非水電解液(A))において、
前記R1及び前記R2の各々が、
前記アルキル基、前記アルケニル基、前記アルキニル基、又は前記アリール基に代えて、
炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、前記アルケニル基、前記アルキニル基、前記アリール基、炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又はハロゲン原子を表し、
R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とが除かれた、リチウム二次電池用非水電解液であってもよい。
L1及びL2の各々は、単結合又は-O-を表す。但し、R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とを除く。
上記効果が奏される理由は、非水電解液(A)が非水電解液に添加されて使用されると、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は抑制され得る理由と同様であると推測される。
以下、添加剤(A)又は添加剤(B)を単に「添加剤」という。
以下、非水電解液(A)又は非電解液(B)を単に「非水電解液」という。
リチウム(N-カルボニル)スルホンアミド化合物(I)は、アリール基含有化合物であることが好ましい。
本開示の非水電解液がアリール基含有化合物であることで、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は、より抑制され得る。
R1がアリール基(アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表し、
L1が単結合を表し、
R2が炭素数1~10のアルキル基(アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルケニル基(アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、アリール基(アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又は炭素数7~16のアラルキル基(アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表し、
L2が-O-を表す。
リチウム(N-カルボニル)スルホンアミド化合物(I)は、アルキル基含有化合物であることが好ましい。
本開示の非水電解液がアルキル基含有化合物であることで、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は、より抑制され得る。
R1が、炭素数1~10のアルキル基(アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)を表し、
L1が、単結合を表し、
R2が、炭素数1~10のアルキル基(アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルケニル基(アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、アリール基(アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又は炭素数7~16のアラルキル基(アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表し、
L2が、-O-を表す。
リチウム(N-カルボニル)スルホンアミド化合物(I)は、フッ素原子含有化合物であることが好ましい。
本開示の非水電解液がフッ素原子含有化合物を含むことで、高温環境下でリチウム二次電池が保存されても、直流抵抗の増加、及び放電容量の低下は、より抑制され得る。
R1が、フッ素原子を表し、
L1が、単結合を表し、
R2が、炭素数1~10のアルキル基(アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルケニル基(アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、アリール基(アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又は炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表し、
L2が、-O-を表す。
リチウム(N-カルボニル)スルホンアミド化合物(I)の含有量が上記範囲内であれば、SEI膜がリチウムカチオンの伝導度を損なうことなく、リチウム二次電池は動作し得る。さらに、SEI膜がリン酸構造を含むことに伴い、リチウム二次電池の電池特性は向上する。
リチウム(N-カルボニル)スルホンアミド化合物(I)の含有量が上記範囲内であれば、SEI膜はリチウム(N-カルボニル)スルホンアミド化合物(I)由来の構造を十分量含む。これにより、熱的及び化学的に安定な無機塩又は高分子構造は、形成されやすくなる。そのため、高温下において、SEI膜の耐久性を損なうSEI膜の成分の溶出、及びSEI膜の変質などは起こりにくくなる。その結果、SEI膜の耐久性及びリチウム二次電池の高温保存後特性は向上する。
本開示の非水電解液は、モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群より選ばれる少なくとも1種である化合物(II)(以下、「フルオロリン酸リチウム化合物(II)」という場合がある。)を含むことが好ましい。
ジフルオロリン酸リチウムは、下記式(II-1)で表され、モノフルオロリン酸リチウムは、下記式(II-2)で表される。
フルオロリン酸リチウム化合物(II)の含有量が上記範囲内であれば、フルオロリン酸リチウムの非水溶媒への溶解性を確保することができるとともに、リチウム二次電池の直流抵抗をさらに下げることができる。
Mは、アルカリ金属であり、
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素であり、
bは、1~3の整数であり、
mは、1~4の整数であり、
nは、0~8の整数であり、
qは、0又は1であり、
R3は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、qが1でmが2~4の場合にはm個のR3はそれぞれが結合していてもよい。)であり、
R4は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、nが2~8の場合はn個のR4はそれぞれが結合して環を形成していてもよい。)であり、
Q1、及びQ2は、それぞれ独立に、酸素原子、又は炭素原子である。
この効果は、以下の理由によると推測される。
非水電解液は、リチウム(N-カルボニル)スルホンアミド化合物(I)に加えて、環状ジカルボニル化合物(III)を含むことにより、SEI膜等は、その内部に、上述した反応生成物等に加えて、環状ジカルボニル化合物(III)由来の結合を含み得る。これにより、熱的及び化学的に安定な無機塩又は高分子構造は、形成されやすくなる。そのため、高温下において、SEI膜等の耐久性を損なうSEI膜等の成分の溶出、及びSEI膜等の変質などは、起こりにくい。その結果、高温環境下で長期に保存された後の充放電サイクルにおいても、リチウム二次電池の放電容量の低下及び直流抵抗の増加は、より抑制される。
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素である。Yとしては、Al、B、V、Ti、Si、Zr、Ge、Sn、Cu、Y、Zn、Ga、Nb、Ta、Bi、P、As、Sc、Hf又はSbであることが好ましく、Al、B又はPであることがより好ましい。YがAl、B又はPの場合、アニオン化合物の合成が比較的容易になり、製造コストを抑えることができる。
bは、アニオンの価数及びカチオンの個数を表す。bは、1~3の整数であり、1であることが好ましい。bが3以下であれば、アニオン化合物の塩が混合有機溶媒に溶解しやすい。
m及びnの各々は、配位子の数に関係する値である。m及びnの各々は、Mの種類によって決まる。mは、1~4の整数である。nは、0~8の整数である。
qは、0又は1である。qが0の場合、キレートリングが五員環となり、qが1の場合、キレートリングが六員環となる。
R3は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基を表す。これらのアルキレン基、ハロゲン化アルキレン基、アリーレン基又はハロゲン化アリーレン基は、その構造中に置換基、ヘテロ原子を含んでいてもよい。具体的には、これらの基の水素原子の代わりに、置換基を含んでもよい。置換基としては、ハロゲン原子、鎖状又は環状のアルキル基、アリール基、アルケニル基、アルコキシ基、アリーロキシ基、スルホニル基、アミノ基、シアノ基、カルボニル基、アシル基、アミド基、又は水酸基が挙げられる。これらの基の炭素元素の代わりに、窒素原子、硫黄原子、又は酸素原子が導入された構造であってもよい。qが1でmが2~4である場合、m個のR3はそれぞれが結合していてもよい。そのような例としては、エチレンジアミン四酢酸のような配位子を挙げることができる。
R4は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基を表す。これらのアルキル基、ハロゲン化アルキル基、アリール基又はハロゲン化アリール基は、R3と同様に、その構造中に置換基、ヘテロ原子を含んでいてもよく、nが2~8のときにはn個のR4は、それぞれ結合して環を形成してもよい。R4としては、電子吸引性の基が好ましく、特にフッ素原子が好ましい。
Q1、及びQ2は、それぞれ独立に、O、又はSを表す。つまり、配位子はこれらヘテロ原子を介してYに結合することになる。
以下、式(III-1)で表される化合物を「リチウムビスオキサレートボラート(III-1)」という場合がある。
環状ジカルボニル化合物(III)の含有量が上記範囲内であれば、SEI膜等がリチウムカチオンの伝導度を損なうことなく、リチウム二次電池は動作し得る。さらにSEI膜等が環状ジカルボニル構造を含むことに伴い、リチウム二次電池の電池特性は、向上する。
環状ジカルボニル化合物(III)の含有量が上記範囲内であれば、SEI膜等は、環状ジカルボニル構造を主体とする構造を十分量含む。これにより、熱的及び化学的に安定な無機塩又は高分子構造は形成されやすくなる。そのため、高温下において、SEI膜等の耐久性を損なうSEI膜等の成分の溶出、及びSEI膜等の変質などは起こりにくい。その結果、SEI膜等の耐久性、及びリチウム二次電池の高温保存後特性は、向上する。
R5は、酸素原子、炭素数1~6のアルキレン基、又は炭素数2~6のアルケニレン基であり、
R6は、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、式(iv-1)で表される基、又は式(iv-2)で表される基であり、
*は、結合位置を示し、
式(iv-1)中、R61は、酸素原子、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、又はオキシメチレン基であり、
式(iv-2)中、R62は、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基である。
この効果は、以下の理由によると推測される。
本開示の非水電解液を用いてリチウム二次電池を製造する場合、その製造過程(例えば、後述するエージング工程)において、反応生成物は、環状含硫黄エステル化合物(IV)と、電解質から生じた化合物(例えば、LiF)との反応による生成物を含む。これにより、高温環境下でのリチウム二次電池の安定性がより高められる。その結果、リチウム二次電池が高温環境下で保存されても、リチウム二次電池の直流抵抗の増加は、より抑制されると考えられる。更に、非水電解液の分解反応の進行はより抑制される。その結果、リチウム二次電池が高温環境下で保存されても、リチウム二次電池は、放電容量がより低下しにくくなったと考えられる。
式(iv-1)中、R61は、炭素数1~3のアルキレン基、炭素数1~3のアルケニレン基、又はオキシメチレン基であることが好ましく、オキシメチレン基であることがより好ましい。
式(iv-2)中、R62は、炭素数1~3のアルキル基、又は炭素数2~3のアルケニル基であることが好ましく、プロピル基であることがより好ましい。
以下、式(IV-1)で表される化合物を「環状含硫黄エステル化合物(IV-1)」という場合がある。
環状含硫黄エステル化合物(IV)の含有量が上記範囲内であれば、SEI膜等がリチウムイオンの伝導度を損なうことなく、リチウム二次電池は動作し得る。さらに、SEI膜等が環状含硫黄エステル構造を含むことに伴い、リチウム二次電池の電池特性は向上する。
環状含硫黄エステル化合物(IV)の含有量が上記範囲内であれば、SEI膜等は、十分量の環状含硫黄エステル構造を含む。これにより、熱的及び化学的に安定な無機塩又は高分子構造は形成されやすくなる。そのため、高温下において、SEI膜等の耐久性を損なうSEI膜等の成分の溶出、及びSEI膜等の変質などは起こりにくい。その結果、SEI膜等の耐久性、及びリチウム二次電池の電池特性は向上する。
本開示の非水電解液は、その他の添加剤を含んでもよい。
その他の添加剤としては、特に制限はなく、公知のものを任意に用いることができる。
その他の添加剤としては、例えば、特開2019-153443号公報の段落0042~0055に記載の添加剤を用いることができる。
非水電解液は、一般的に、非水溶媒を含有する。非水溶媒としては種々公知のものを適宜選択することができる。非水溶媒は1種のみであってもよく、2種以上であってもよい。
環状カーボネート類としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、などが挙げられる。
含フッ素環状カーボネート類としては、例えば、フルオロエチレンカーボネート(FEC)、などが挙げられる。
鎖状カーボネート類としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)、ジプロピルカーボネート(DPC)、などが挙げられる。
脂肪族カルボン酸エステル類としては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸メチル、酪酸メチル、イソ酪酸メチル、トリメチル酪酸メチル、ギ酸エチル、酢酸エチル、プロピオン酸エチル、酪酸エチル、イソ酪酸エチル、トリメチル酪酸エチル、などが挙げられる。
γ-ラクトン類としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、などが挙げられる。
環状エーテル類としては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、などが挙げられる。
鎖状エーテル類としては、例えば、1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジブトキシエタン、などが挙げられる。
ニトリル類としては、例えば、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、などが挙げられる。
アミド類としては、例えば、N,N-ジメチルホルムアミド、などが挙げられる。
ラクタム類としては、例えば、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N'-ジメチルイミダゾリジノン、などが挙げられる。
この場合、環状カーボネート類、含フッ素環状カーボネート類、鎖状カーボネート類、及び含フッ素鎖状カーボネート類の合計の割合は、非水溶媒の全量に対して、好ましくは50質量%以上100質量%以下、より好ましくは60質量%以上100質量%以下、更に好ましくは80質量%以上100質量%以下である。
この場合、非水溶媒中に占める、環状カーボネート類及び鎖状カーボネート類の合計の割合は、非水溶媒の全量に対して、好ましくは50質量%以上100質量%以下、より好ましくは60質量%以上100質量%以下、更に好ましくは80質量%以上100質量%以下である。
非水電解液は、一般的に、電解質を含有する。
無機酸陰イオン塩としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化タンタル酸リチウム(LiTaF6)、などが挙げられる。
有機酸陰イオン塩としては、例えば、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CF3SO2)2N)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(C2F5SO2)2N)などが挙げられる。
中でも、含フッ素リチウム塩は、式(I)で表されるリチウム(N-カルボニル)スルホンアミド化合物(I)以外のリチウム塩であることが好ましい。換言すると、含フッ素リチウム塩は、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化タンタル酸リチウム(LiTaF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CF3SO2)2N)、及びリチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(C2F5SO2)2N)からなる群から選択される少なくとも1種であることが好ましい。含フッ素リチウム塩は、六フッ化リン酸リチウム(LiPF6)が特に好ましい。
含フッ素リチウム塩が六フッ化リン酸リチウム(LiPF6)を含む場合、六フッ化リン酸リチウム(LiPF6)の含有割合は、電解質の全量に対して、好ましくは50質量%以上100質量%以下、より好ましくは60質量%以上100質量%以下、更に好ましくは80質量%以上100質量%以下である。
非水電解液は、必要に応じて、その他の成分を含有してもよい。
その他の成分としては、酸無水物などが挙げられる。
次に、本開示のリチウム二次電池前駆体について、説明する。
ケースの形状などは、特に限定はなく、本開示のリチウム二次電池前駆体の用途などに応じて、適宜選択される。ケースとしては、ラミネートフィルムを含むケース、電池缶と電池缶蓋とからなるケース、などが挙げられる。
正極は、リチウムイオンを吸蔵及び放出可能な正極である。正極は、リチウムイオンを吸蔵及び放出可能な正極活物質を少なくとも1種含むことが好ましい。
LiNiaCobMncO2 … 式(C1)
式(C1)中、a、b及びcは、それぞれ独立に、0超1未満であり、a、b及びcの合計は、0.99以上1.00以下である。
NCMの具体例としては、LiNi0.33Co0.33Mn0.33O2、LiNi0.5Co0.3Mn0.2O2、LiNi0.5Co0.2Mn0.3O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.8Co0.1Mn0.1O2などが挙げられる。
LitNi1-x-yCoxAlyO2 … 式(C2)
式(C2)中、tは、0.95以上1.15以下であり、xは、0以上0.3以下であり、yは、0.1以上0.2以下であり、x及びyの合計は、0.5未満である。
NCAの具体例としては、LiNi0.8Co0.15Al0.05O2などが挙げられる。
正極合材層中におけるバインダーの含有量は、正極合材層の物性(例えば、電解液浸透性、剥離強度、など)と電池性能との両立の観点から、正極合材層の全量に対し、好ましくは0.1質量%以上4質量%以下である。バインダーの含有量が0.1質量%以上であると、正極集電体に対する正極合材層の接着性、及び、正極活物質同士の結着性がより向上する。バインダーの含有量が4質量%以下であると、正極合材層中における正極活物質の量をより多くすることができるので、放電容量がより向上する。
導電助剤の材質としては、公知の導電助剤を用いることができる。公知の導電助剤としては、導電性を有する炭素材料が好ましい。導電性を有する炭素材料としては、グラファイト、カーボンブラック、導電性炭素繊維、フラーレンなどが挙げられる。これらは、単独で、もしくは2種類以上を併せて使用することができる。導電性炭素繊維としては、カーボンナノチューブ、カーボンナノファイバー、カーボンファイバーなどが挙げられる。グラファイトとしては、例えば、人造黒鉛、天然黒鉛などが挙げられる。天然黒鉛としては、例えば、燐片状黒鉛、塊状黒鉛、土状黒鉛などが挙げられる。
導電助剤の材質は、市販品であってもよい。カーボンブラックの市販品としては、例えば、トーカブラック#4300、#4400、#4500、#5500など(東海カーボン社製、ファーネスブラック)、プリンテックスLなど(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRAなど、Conductex SC ULTRA、Conductex 975ULTRAなど、PUER BLACK100、115、205など(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400Bなど(三菱ケミカル社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000、LITX-50、LITX-200など(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、Super-P(TIMCAL社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラック、デンカブラックHS-100、FX-35(デンカ社製、アセチレンブラック)などが挙げられる。
負極は、リチウムイオンを吸蔵及び放出可能な負極である。負極は、好ましくは、リチウムイオンを吸蔵及び放出可能な負極活物質を少なくとも1種含む。
非晶質炭素材料として、例えば、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが挙げられる。
黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが挙げられる。黒鉛材料は、ホウ素を含有してもよい。黒鉛材料は、金属又は非晶質炭素で被覆されていてもよい。黒鉛材料を被覆する金属の材質としては、金、白金、銀、銅、スズなどが挙げられる。黒鉛材料は、非晶質炭素と黒鉛との混合物であってもよい。
セパレータとしては、例えば、多孔質の樹脂平板が挙げられる。多孔質の樹脂平板の材質としては、樹脂、この樹脂を含む不織布などが挙げられる。樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリエステル、セルロース、ポリアミドなどが挙げられる。
なかでも、セパレータは、単層又は多層構造の多孔性樹脂シートであることが好ましい。多孔性樹脂シートの材質は、一種又は二種以上のポリオレフィン樹脂を主体とする。セパレータの厚みは、好ましくは5μm以上30μm以下である。セパレータは、好ましくは、正極と負極との間に配置される。
図1を参照して、本開示の実施形態に係るリチウム二次電池前駆体1の一例について具体的に説明する。図1は、本開示の実施形態に係るリチウム二次電池前駆体1の断面図である。
図2は、本開示のリチウム二次電池前駆体の別の一例であるコイン型電池の一例を示す概略斜視図である。
図2に示すコイン型電池では、円盤状負極42、非水電解液を注入したセパレータ45、円盤状正極41、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板47、48が、この順序に積層された状態で、正極缶43(以下、「電池缶」ともいう)と封口板44(以下、「電池缶蓋」ともいう)との間に収納される。正極缶43と封口板44とはガスケット46を介してかしめ密封する。
この一例では、セパレータ45に注入される非水電解液として、本開示の非水電解液を用いる。
次に、本開示の実施形態に係るリチウム二次電池について説明する。
次に、本開示のリチウム(N-カルボニル)スルホンアミド化合物の製造方法について説明する。
第一工程では、スルホンアミド化合物とカルボン酸塩化物、又はカルボン酸無水物とを溶媒中で反応させ、生成した塩を除去して、カラムクロマトグラフィーにより、(N-カルボニル)スルホンアミド化合物を得る。
スルホンアミド化合物としては、例えば、トリフルオロメタンスルホンアミド、メタンスルホンアミド、フェノキシメチルスルホンアミド、エチルスルファメート、2,2,2-トリフルオロエチルスルファメート等が挙げられる。
カルボン酸塩化物としては、例えば、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸プロピル、クロロギ酸イソプロピル、クロロギ酸ブチル、クロロギ酸フェニル、アセチルクロリド等が挙げられる。
カルボン酸無水物としては、例えば、無水トリフルオロ酢酸、無水酢酸、無水トリクロロ酢酸、二炭酸ジ-tert-ブチル、無水コハク酸、無水マレイン酸、無水シトラコン酸、無水イタコン酸、無水グルタル酸、無水1,2-シクロヘキセンジカルボン酸、無水n-オクタデシルコハク酸、無水5-ノルボルネン-2,3-ジカルボン酸、無水フタル酸、トリメリット酸無水物、ピロメリット酸無水物、無水ナフタル酸等が挙げられる。
溶媒としては、非水溶媒が挙げられる。非水溶媒としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメトキシエタン、1,4-ジオキサン、アセトン、酢酸エチル、アセトニトリル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トルエン、キシレン、エチルベンゼン、ブチルベンゼン、ペンチルベンゼン、ヘキシルベンゼン、ヘプチルベンゼン、プロピルベンゼン、イソプロピルベンゼン(別名:キュメン)、シクロヘキシルベンゼン、テトラリン、メシチレン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナンなどが挙げられる。キシレンは、オルトキシレン、メタキシレン、又はパラキシレンを含む。
第一工程における反応温度は、好ましくは-20℃以上60℃以下、より好ましくは0℃以上40℃以下、さらに好ましくは10℃以上30℃以下である。反応温度が60℃以下であると、原料のスルホンアミドと反応剤のカルボン酸塩化物、又はカルボン酸無水物の分解が抑制され、(N-カルボニル)スルホンアミド化合物の生成率が向上しやすい。
第一工程における反応時間は、反応を効率よく進行させる観点から、好ましくは30分以上12時間以内、より好ましくは1時間以上6時間以内である。
第二工程では、(N-カルボニル)スルホンアミド化合物に、リチウム塩化合物を溶媒中で反応させる。これにより、リチウム(N-カルボニル)スルホンアミド化合物が得られる。
第二工程における反応温度は、好ましくは-20℃以上60℃以下、より好ましくは0℃以上40℃以下、さらに好ましくは10℃以上30℃以下である。
第二工程における反応時間は、反応を効率よく進行させる観点から、好ましくは30分以上12時間以内、より好ましくは1時間以上6時間以内である。
次に、本開示のリチウム(N-カルボニル)スルホンアミド化合物(I)の製造方法について説明する。
次に、本開示の非水電解液の製造方法について説明する。
合成工程は、上述したリチウム(N-カルボニル)スルホンアミド化合物(I)の製造方法と同様にして実行され得る。
次に、本開示のリチウム二次電池前駆体の製造方法について、説明する。
正極を準備する方法としては、例えば、正極合材スラリーを正極集電体の表面に塗布し、乾燥させる方法などが挙げられる。正極合材スラリーは、正極活物質及びバインダーを含む。
正極合材スラリーに含まれる溶媒としては、有機溶媒が好ましい。有機溶媒としては、N-メチル-2-ピロリドン(NMP)などが挙げられる。
正極合材スラリーの塗布方法は、特に限定されず、例えば、スロットダイコーティング、スライドコーティング、カーテンコーティング、グラビアコーティングなどが挙げられる。正極合材スラリーの乾燥方法は、特に限定されず、温風、熱風、低湿風による乾燥;真空乾燥;赤外線(例えば遠赤外線)照射による乾燥;などが挙げられる。乾燥時間は、特に限定されず、好ましくは1分以上30分以内である。乾燥温度は、特に限定されず、好ましくは40℃以上80℃以下である。
正極集電体上に正極合材スラリーを塗布し、乾燥させた乾燥物は、加圧処理が施されることが好ましい。これにより、正極活物質層の空隙率は低減する。加圧処理の方法としては、例えば、金型プレス、ロールプレスなどが挙げられる。
負極を準備する方法としては、例えば、負極合材スラリーを負極集電体の表面に塗布し、乾燥させる方法などが挙げられる。負極合材スラリーは、負極活物質及びバインダーを含む。
負極合材スラリーに含まれる溶媒としては、例えば、水、水と相溶する液状媒体などが挙げられる。負極合材スラリーに含まれる溶媒が水と相溶する液状媒体を含むと、負極集電体への塗工性向上させることができる。水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類などが挙げられる。
負極合材スラリーの塗布方法、乾燥方法、及び加圧処理は、正極合材スラリーの塗布方法、乾燥方法、及び加圧処理として例示した方法と同様の方法が挙げられる。
例えば、収容工程では、正極、負極、及びセパレータで電池素子を作成する。次いで、正極の正極集電体と正極リードとを電気的に接続するとともに、負極の負極集電体と負極リードとを電気的に接続する。次いで、電池素子をケース内に収容して、固定する。
正極集電体と正極リードとを電気的に接続する方法は、特に限定されず、例えば、超音波溶接、抵抗溶接などが挙げられる。負極集電体と負極リードとを電気的に接続する方法は、特に限定されず、例えば、超音波溶接や抵抗溶接などが挙げられる。
次に、本開示のリチウム二次電池の製造方法について説明する。
エージング処理は、リチウム二次電池前駆体に対し、25℃以上70℃以下の環境下で、充電及び放電を施すことを含む。詳しくは、エージング処理は、第1充電フェーズと、第1保持フェーズと、第2充電フェーズと、第2保持フェーズと、充放電フェーズとを含む。
第1充電フェーズでは、リチウム二次電池前駆体を、25℃以上70℃以下の環境下で充電する。第1保持フェーズでは、第1充電フェーズ後のリチウム二次電池前駆体を、25℃以上70℃以下の環境下で保持する。第2充電フェーズでは、第1保持フェーズ後のリチウム二次電池前駆体を、25℃以上70℃以下の環境下で充電する。第2保持フェーズでは、第2充電フェーズ後のリチウム二次電池前駆体を、25℃以上70℃以下の環境下で保持する。充放電フェーズでは、第2保持フェーズ後のリチウム二次電池前駆体に対し、25℃以上70℃以下の環境下で、充電及び放電の組み合わせを1回以上施す。
下記式(I)で表される合成化合物(I-1)~合成化合物(I-48)を、以下のようにして合成した。
合成化合物(I-1)~合成化合物(I-48)の各々の式(I)中のR1、R2、L1、及びL2を、表1及び表2に示す。
下記の構造式で表されるリチウムブトキシカルボニルトシルアミド[合成化合物(I-5)]を、下記のようにして合成した。
窒素置換したジムロート冷却管に接続された200mLの四つ口フラスコに、イソシアン酸p-トルエンスルホニル(3.94g、20mmol)、ジブチルスズジラウリレート(0.126g、0.2mmol)、及び溶媒としてジクロロメタン(100mL)を装入し、室温に保ち、n-ブタノール(1.78g、24mmol)を加え、還流温度(40℃)にて撹拌反応させた。4時間後、反応を止めて室温まで冷却した。
その後、得られた反応生成物を洗浄した。すなわち反応液に対し、蒸留水100mLを加え、酢酸エチル10mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。ヘキサン/酢酸エチル溶剤は、ヘキサン及び酢酸エチルからなる。
これにより、第1白色固体のブトキシカルボニルトシルアミド(5.27g、19.42mmol、収率97%)を得た。
第1白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.82(t,J=7.2Hz,3H)、1.10-1.30(m,2H)、1.38-1.53(m,2H)、2.40(s,3H)、3.97(t,J=6.5Hz,2H)、7.44(d,J=8.1Hz,2H)、7.78(d,J=8.4Hz,2H)、11.89(br,1H)
窒素置換した200mLの四つ口フラスコに、ブトキシカルボニルトシルアミド(3.11g、11.46mmol)、及び溶媒としてテトラヒドロフラン(50mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M、1.3mol/dm3)、及びテトラヒドロフラン溶液(8.8mL、11.46mmol)を5分間かけて加えた後、室温に戻し、6時間撹拌反応させると、反応溶液から第2白色固体が析出した。その反応溶液を減圧ろ過し得られた第2白色固体の残溶媒を減圧留去した。
これにより、第2白色固体のリチウムブトキシカルボニルトシルアミド(2.17g、7.83mmol、収率68%)を得た。
第2白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.84(t,J=7.3Hz,3H)、1.16-1.45(m,4H)、2.31(s,3H)、3.64(t,J=6.5Hz,2H)、7.15(d,J=8.4Hz,2H)、7.58(d,J=8.1Hz,2H)
下記の構造式で表されるリチウムメトキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-10)]を、下記のようにして合成した。
窒素置換した200mLの四つ口フラスコに、トリフルオロメタンスルホンアミド(5.01g、33.6mmol)、ピリジン(6.38g、81mmol)、4-ジメチルアミノピリジン(0.99g、8.1mmol)、及び溶媒としてテトラヒドロフラン(50mL)を装入し、0℃に保ち、クロロギ酸メチル(7.62g、81mmol)を5分間かけて加えた後、室温に戻し、6時間撹拌反応させた。その後、得られた反応溶液をろ過することで塩酸塩を除き、得られた溶液を洗浄した。すなわち濾液に対し、蒸留水100mLを加え、酢酸エチル100mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第3白色固体のメトキシカルボニルトリフルオロメチルスルホンアミド(3.12g、33.6mmol、収率44.8%)を得た。
第3白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.51(s,3H)、10.00(br,2H)
窒素置換した200mLの四つ口フラスコに、メトキシカルボニルトリフルオロメチルスルホンアミド(1.90g、9.17mmol)、及び溶媒としてジエチルエーテル(50mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.1mL、9.17mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、室温にてn-ヘキサン(50mL)を加え反応溶液から第4白色固体が析出させた。その反応溶液を減圧ろ過し得られた第4白色固体の残溶媒を減圧留去した。
これにより、第4白色固体のリチウムメトキシカルボニルトリフルオロメチルスルホン
アミド(0.99g、4.65mmol、収率51%)を得た。
第4白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.40(s,3H)
下記の構造式で表されるリチウムメトキシカルボニルトシルアミド[合成化合物(I-1)]を、下記のようにして合成した。
合成例1(合成化合物(I-5))における第一工程においてn-ブタノールをメタノール(1.28g、40mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した。
これにより、第5白色固体のメトキシカルボニルトシルアミド(4.33g、18.89mmol、収率94%)を得た。
第5白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.31(s,3H)、3.24(s,3H)、7.15(d,J=7.8Hz,2H)、7.59(d,J=7.8Hz,2H)
合成例1(合成化合物5)における第二工程と同様の方法で、メトキシカルボニルトシルアミド(1.52g、6.63mmol)、溶媒としてテトラヒドロフラン(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(5.1mL、6.63mmol)を用い、反応を行った。
これにより、第6白色固体のリチウムメトキシカルボニルトシルアミド(0.99g、4.20mmol、収率63%)を得た。
第6白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.31(s,3H)、3.25(s,3H)、7.16(d,J=7.8Hz,2H)、7.59(d,J=7.8Hz,2H)
下記の構造式で表されるリチウムエトキシカルボニルトシルアミド[合成化合物(I-2)]を、下記のようにして合成した。
合成例1(合成化合物(I-5))における第一工程において、n-ブタノールをエタノール(1.84g、40mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した。
これにより、第7白色固体のエトキシカルボニルトシルアミド(4.47g、18.37mmol、収率92%)を得た。
第7白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.00(t,J=7.0Hz, 3H)、2.23(s, 3H)、3.68(q,J=7.0Hz, 2H)、7.15(d,J=8.1Hz, 2H)、7.58(d,J=7.8Hz, 2H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、エトキシカルボニルトシルアミド(3.24g、13.32mmol)、溶媒としてテトラヒドロフラン(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(10.2mL、13.32mmol)を用い、反応を行った。
これにより、第8白色固体のリチウムエトキシカルボニルトシルアミド(1.14g、4.56mmol、収率34%)を得た。
第8白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.01(t,J=7.0Hz,3H)、2.31(s,3H)、3.68(q,J=7.3Hz,2H)、7.15(d,J=7.8Hz,2H)、7.58(d,J=8.1Hz,2H)
下記の構造式で表されるリチウムプロポキシカルボニルトシルアミド[合成化合物(I-3)]を、下記のようにして合成した。
合成例1(合成化合物(I-5)における第一工程においてイソシアン酸-p-トルエンスルホニル(4.75g、24.09mmol)を用い、n-ブタノールをn-プロパノール(1.74g、28.9mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した。
これにより、第9白色固体のプロピルカルボニルトシルアミド(5.70g、22.15mmol、収率92%)を得た。
第9白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.79(t,J=7.4Hz, 3H)、1.32-1.48(m, 2H)、2.40(s, 3H)、3.92(t,J=6.8Hz, 2H)、7.43(d,J=8.6Hz, 2H)、7.78(d,J=8.4Hz, 2H)、11.88(br, 1H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、プロピルカルボニルトシルアミド(5.70g、22.15mmol)、溶媒としてテトラヒドロフラン(50mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(17.0mL、22.15mmol)を用い、反応を行った。
これにより、第10白色固体のリチウムプロポキシカルボニルトシルアミド(3.66g、13.90mmol、収率63%)を得た。
第10白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.79(t,J=7.4Hz,3H)、1.32-1.48(m,2H)、2.30(s,3H)、3.58(t,J=6.8Hz,2H)、7.15(d,J=8.1Hz,2H)、7.58(d,J=8.4Hz,2H)
下記の構造式で表されるリチウムイソプロポキシカルボニルトシルアミド[合成化合物(I-4)]を、下記のようにして合成した。
合成例1(合成化合物(I-5))における第一工程においてnーブタノールをイソプロパノール(2.40g、40mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した。
これにより、第11白色固体のイソプロピルカルボニルトシルアミド(4.55g、17.68mmol、収率88%)を得た。
第11白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.10(d,J=5.94Hz,6H)、2.40(s,3H)、4.72(sept,J=6.2Hz,1H)、7.43(d,J=8.4Hz,2H)、7.78(d,J=8.1Hz,2H)、11.77(br,1H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、イソプロポキシカルボニルトシルアミド(5.55g、21.57mmol)、溶媒としてテトラヒドロフラン(50mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(16.6mL、21.57mmol)を用い、反応を行った。
これにより、第12白色固体のリチウムイソプロポキシカルボニルトシルアミド(5.46g、20.74mmol、収率96%)を得た。
第12白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.00(d,J=6.2Hz,3H)、2.31(s,3H)、4.44(sept,J=6.1Hz,1H)、7.15(d,J=7.8Hz,2H)、7.58(d,J=8.4Hz,2H)
下記の構造式で表されるリチウム-t-ブトキシカルボニルトシルアミド[合成化合物(I-6)]を、下記のようにして合成した。
合成例1(合成化合物(I-5))における第一工程においてn-ブタノールをt-ブチルブチルアルコール(1.78g、24mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した。
これにより、第13白色固体のt-ブチルカルボニルトシルアミド(4.53g、16.70mmol、収率83%)を得た。
第13白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.29(s,9H)、2.41(s,3H)、7.44(d,J=8.4Hz,2H)、7.76(d,J=8.1Hz,2H)、11.53(br,1H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、t-ブチルカルボニルトシルアミド(2.06g、7.59mmol)、溶媒としてテトラヒドロフラン(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(5.8mL、7.59mmol)を用い、反応を行った。
これにより、第14白色固体のリチウム-t-ブトキシカルボニルトシルアミド(2.0g、7.21mmol、収率95%)を得た。
第14白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.20(s,9H)、2.30(s,3H)、7.14(d,J=8.1Hz,2H)、7.56(d,J=8.1Hz,2H)
下記の構造式で表されるリチウム-2,2,2-トリフルオロエトキシカルボニルトシルアミド[合成化合物(I-7)]を、下記のようにして合成した。
合成例1(合成化合物(I-5))における第一工程においてイソシアン酸-p-トルエンスルホニル(4.73g、24.0mmol)を用い、n-ブタノールを2,2,2-トリフルオロエタノール(2.40g、24.0mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した
これにより、第15白色固体の2,2,2-トリフルオロエトキシカルボニルトシルアミド(5.12g、17.22mmol、収率72%)を得た。
第15白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.41(s,3H)、4.71(q,J=9.2Hz,2H)、7.45(d,J=8.4Hz,2H)、7.79(d,J=8.4Hz,2H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、2,2,2-トリフルオロエトキシカルボニルトシルアミド(5.80g、19.51mmol)、溶媒としてテトラヒドロフラン(50mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(15.0mL、19.51mmol)を用い、反応を行った。
これにより、第16白色固体のリチウム-(2,2,2-トリフルオロエトキシ)カルボニルトシルアミド(4.98g、16.43mmol、収率84%)を得た。
第16白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.31(s,3H)、4.29(q,J=9.5Hz,2H)、7.18(d,J=8.1Hz,2H)、7.60(d,J=8.1Hz,2H)
下記の構造式で表されるリチウムフェノキシカルボニルトシルアミド[合成化合物(I-8)]を、下記のようにして合成した。
合成例1(合成化合物(I-5))における第一工程において、イソシアン酸-p-トルエンスルホニル(8.32g、42.2mmol)を用い、n-ブタノールをフェノール(4.40g、46.7mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した。
これにより、第17白色固体のフェノキシカルボニルトシルアミド(10.33g、35.50mmol、収率84%)を得た。
第17白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.41(s,3H)、7.05(d,J=8.6Hz,2H)、7.20-7.30(m,1H)、7.36(d,J=7.6Hz,2H)、7.46(d,J=7.8Hz,2H)、7.83(d,J=7.8Hz,2H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、フェノキシカルボニルトシルアミド(2.70g、9.27mmol)、溶媒としてテトラヒドロフラン(50mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.1mL、9.27mmol)を用い、反応を行った。
これにより、第18白色固体のリチウムフェノキシカルボニルトシルアミド(2.0g、6.80mmol、収率73%)を得た。
第18白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.32(s,3H)、6.88(d,J=8.1Hz,2H)、7.03(t,J=4.1,1H)、7.10-7.30(m,4H)、7.63(d,J=8.1Hz,2H)
下記の構造式で表されるリチウム2-メトキシエチルカルボニルトシルアミド[合成化合物(I-9)]を、下記のようにして合成した。
合成例1(合成化合物(I-5))における第一工程においてイソシアン酸-p-トルエンスルホニル(4.14g、21.0mmol)を用い、n-ブタノールを2-メトキシエタノール(1.60g、21.0mmol)に変えたこと以外は、合成例1の第一工程と同じ方法で合成した。
これにより、第19白色固体の2-メトキシエチルカルボニルトシルアミド(5.63g、20.60mmol、収率98%)を得た。
第19白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.40(s,3H)、3.35-3.50(m,2H)、4.00-4.15(m,2H)、7.43(d,J=8.1Hz,2H)、7.78(d,J=8.4Hz,2H)、11.99(br,1H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、2-メトキシエチルカルボニルトシルアミド(5.63g、20.60mmol)、溶媒としてテトラヒドロフラン(100mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(15.8mL、20.60mmol)を用い、反応を行った。
これにより、第20白色固体のリチウム2-メトキシエチルカルボニルトシルアミド(5.45g、19.52mmol、収率95%)を得た。
第20白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.31(s,3H)、3.21(s,3H)、3.30-3.40(m,2H)、3.70-3.80(m,2H)、7.16(d,J=8.1Hz,2H)、7.59(d,J=7.8Hz,2H)
下記の構造式で表されるリチウムエトキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-11)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてクロロギ酸メチルをクロロギ酸エチル(8.56g、79mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第21白色固体のエトキシカルボニルトリフルオロメチルスルホンアミド(3.12g、33.6mmol、収率45%)を得た。
第21白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.28(t,J=4.2Hz,3H)、4.32(q,J=4.3Hz,2H)、12.04(br,2H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、エトキシカルボニルトリフルオロメチルスルホンアミド(2.01g、9.04mmol)、溶媒としてジエチルエーテル(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.0mL、9.04mmol)を用い、反応を行った。
これにより、第22白色固体のリチウムエトキシカルボニルトリフルオロメチルスルホンアミド(1.43g、6.30mmol、収率70%)を得た。
第22白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.10(t,J=7.0Hz,3H)、3.83(q,J=7.0Hz,2H)
下記の構造式で表されるリチウムプロポキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-12)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(4.30g、28.8mmol)、ピリジン(4.56g、57.7mmol)、4-ジメチルアミノピリジン(0.71g、5.8mmol)、溶媒としてテトラヒドロフラン(50mL)を用い、クロロギ酸メチルをクロロギ酸プロピル(7.07g、57.7mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第23白色固体のプロポキシカルボニルトリフルオロメチルスルホンアミド(6.40g、27.2mmol、収率94%)を得た。
第23白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.87(t,J=7.3Hz,3H)、1.30-1.55(m,2H)、3.86(t,J=6.3Hz,2H)
の合成>
合成例2(合成化合物(I-10))における第二工程と同様の方法で、プロポキシカルボニルトリフルオロメチルスルホンアミド(3.28g、13.95mmol)、溶媒としてジエチルエーテル(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(10.7mL、13.95mmol)を用い、反応を行った。
これにより、第24白色固体のリチウムプロポキシカルボニルトリフルオロメチルスルホンアミド(2.13g、8.83mmol、収率63%)を得た。
第24白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.85(t,J=7.3Hz,3H)、1.35-1.60(m,2H)、3.75(t,J=6.6Hz,2H)
下記の構造式で表されるリチウムイソプロポキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-13)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(4.30g、28.8mmol)、ピリジン(4.56g、57.7mmol)、4-ジメチルアミノピリジン(0.71g、5.8mmol)、溶媒としてテトラヒドロフラン(50mL)を用い、クロロギ酸メチルをクロロギ酸イソプロピル(7.07g、57.7mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第25白色固体のイソプロポキシカルボニルトリフルオロメチルスルホンアミド(5.56g、23.6mmol、収率82%)を得た。
第25白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.14(d,J=4.3Hz,3H)、1.16(d,J=4.3Hz,3H)、4.60-4.80(m,1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、イソプロポキシカルボニルトリフルオロメチルスルホンアミド(3.38g、14.37mmol)、溶媒としてジエチルエーテル(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(11.0mL、14.37mmol)を用い、反応を行った。
これにより、第26白色固体のリチウムイソプロポキシカルボニルトリフルオロメチルスルホンアミド(2.55g、10.58mmol、収率74%)を得た。
第26白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.10(d,J=6.2Hz,6H)
下記の構造式で表されるリチウムブトキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-14)]を、下記のように合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(5.0g、33.5mmol)、ピリジン(5.31g、67.1mmol)、4-ジメチルアミノピリジン(0.82g、6.7mmol)、及び溶媒としてテトラヒドロフラン(50mL)を用い、クロロギ酸メチルをクロロギ酸ブチル(9.16g、67.1mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第27白色固体のブトキシカルボニルトリフルオロメチルスルホンアミド(7.32g、29.4mmol、収率88%)を得た。
第27白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.88(t,J=4.6Hz,3H)、1.12-1.14(m,2H)、1.40-1.60(m,2H)、3.88(t,J=6.6Hz,2H)、8.94(br,1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、ブトキシカルボニルトリフルオロメチルスルホンアミド(2.50g、10.03mmol)、溶媒としてジエチルエーテル(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.7mL、10.03mmol)を用い、反応を行った。
これにより、第28白色固体のリチウムブトキシカルボニルトリフルオロメチルスルホンアミド(2.21g、8.66mmol、収率86%)を得た。
第28白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.87(t,J=7.2Hz,3H)、1.15-1.55(m,4H)、3.79(t,J=6.6Hz,2H)
下記の構造式で表されるリチウムフェノキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-15)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(3.0g、20.1mmol)、ピリジン(3.18g、40.2mmol)、4-ジメチルアミノピリジン(0.49g、4.0mmol)、溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸メチルをクロロギ酸フェニル(3.15g、20.1mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第29白色固体のフェノキシカルボニルトリフルオロメチルスルホンアミド(1.83g、6.8mmol、収率34%)を得た。
第29白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ6.70-6.85(m,3H)、7.16(t,J=7.8Hz, 2H)、9.33(br, 1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、フェノキシカルボニルトリフルオロメチルスルホンアミド(1.73g、6.43mmol)、溶媒としてジエチルエーテル(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(4.9mL、6.43mmol)を用い、反応を行った。
これにより、第30白色固体のリチウムフェノキシカルボニルトリフルオロメチルスルホンアミド(0.78g、2.83mmol、収率44%)を得た。
第30白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ5.98(t,J=6.9Hz,1H)、6.23(d,J=7.6Hz,2H)、6.76(t,J=7.4Hz,2H)
下記の構造式で表されるリチウムメトキシカルボニルメチルスルホンアミド[合成化合物(I-16)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてクロロギ酸メチル(19.87g、210mmol)、トリエチルアミン(21.28g、210mmol)、4-ジメチルアミノピリジン(2.57g、21mmol)、及び溶媒としてテトラヒドロフラン(200mL)を用い、トリフルオロメタンスルホンアミドをメタンスルホンアミド(10g、105mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第31白色固体のメトキシカルボニルメチルスルホンアミド(0.65g、4.24mmol、収率4%)を得た。
第31白色固体の1H-NMR(CD3OD-d4)による測定結果を以下に示す。
1H-NMR:δ3.24(s,3H)、3.77(s,3H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、メトキシカルボニルメチルスルホンアミド(0.50g、3.25mmol)、溶媒としてテトラヒドロフラン(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(2.5mL、3.25mmol)を用い、反応を行った。
これにより、第32白色固体のリチウムメトキシカルボニルメチルスルホンアミド(0.31g、1.96mmol、収率60%)を得た。
第32白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.61(s,3H)、3.27(s,3H)
下記の構造式で表されるリチウム-t-ブトキシカルボニルメチルスルホンアミド[合成化合物(I-17)]を、下記のようにして合成した。
合成例16(合成化合物(I-16))における第一工程においてメタンスルホンアミド(4.0g、42.1mmol)、トリエチルアミン(5.11g、210mmol)、4-ジメチルアミノピリジン(0.62g、5.1mmol)、及び溶媒としてテトラヒドロフラン(50mL)を用い、クロロギ酸メチルを二酸化ジ-t-ブチル(9.18g、42.1mmol)に変えたこと以外は、合成例16の第一工程と同じ方法で合成した。
これにより、第33白色固体のt-ブトキシカルボニルメチルスルホンアミド(5.22g、26.7mmol、収率64%)を得た。
第33白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.44(s,9H)、3.20(s,3H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、t-ブトキシカルボニルメチルスルホンアミド(5.0g、25.6mmol)、溶媒としてテトラヒドロフラン(50mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(19.7mL、25.6mmol)を用い、反応を行った。
これにより、第34白色固体のリチウム-t-ブトキシカルボニルトリフルオロメチルスルホンアミド(4.91g、24.5mmol、収率95%)を得た。
第34白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.30(s,9H)、2.64(s,3H)
下記の構造式で表されるリチウムフェノキシカルボニルメチルスルホンアミド[合成化合物(I-18)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程において、メタンスルホンアミド(3.0g、31.5mmol)、ピリジン(4.99g、63.1mmol)、4-ジメチルアミノピリジン(0.77g、6.3mmol)、及び溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸メチルをクロロギ酸フェニル(5.93g、37.8mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第35白色固体のフェノキシカルボニルメチルスルホンアミド(3.25g、15.1mmol、収率48%)を得た。
第35白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.31(s,3H)、7.22(d,J=8.4Hz,2H)、7.25-7.50(m,3H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、フェノキシカルボニルメチルスルホンアミド(2.11g、9.8mmol)、溶媒としてテトラヒドロフラン(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.5mL、9.8mmol)を用い、反応を行った。
これにより、第36白色固体のリチウムフェノキシカルボニルメチルスルホンアミド(1.96g、8.9mmol、収率90%)を得た。
第36白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.31(s,3H)、6.97(d,J=8.6Hz,2H)、7.06(t,J=7.3Hz,1H)、7.28(t,J=7.8Hz,2H)
下記の構造式で表されるリチウムアセチルエトキシスルホンアミド[合成化合物(I-19)]を、下記のようにして合成した。
特許文献(国際公開2017/156179号)に倣い、アセチルエトキシスルホンアミドエチルを合成した。
窒素置換した200mLの四つ口フラスコに、イソシアン酸クロロスルホニル(7.08g、50mmol)、溶媒としてジクロロメタン(100mL)を装入し、0℃に保ち、酢酸(3.0g、50mmol)を加え、室温に戻し6時間撹拌反応させた。反応終了後、溶媒を濃縮除去し、白色固体を得た。この四つ口フラスコにテトラヒドロフラン(50mL)を装入することで第1反応溶液を調製し、0℃に保った。
別途、エタノール(2.92g、63.5mmol)、ピリジン(5.02g、63.5mmol)、及び4-ジメチルアミノピリジン(0.78g、6.4mmol)をテトラヒドロフラン(50mL)に加え、第2反応溶液を調製した。この第2反応溶液を第1反応溶液が装入されている四つ口フラスコに0℃で10分間かけて加えた後、室温に戻し、6時間撹拌反応させた。その後、得られた反応溶液をろ過することで塩酸塩を除き、得られた溶液を洗浄した。すなわち濾液に対し、蒸留水100mLを加え、酢酸エチル100mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第37白色固体のアセチルエトキシスルホンアミド(2.87g、17.2mmol、収率56%)を得た。
第37白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.28(d,J=4.3Hz,3H)、2.02(s,3H)、4.27(q,J=4.3Hz,2H)、12.04(br,1H)
窒素置換した200mLの四つ口フラスコに、アセチルエトキシスルホンアミド(1.74g、10.4mmol)、及び溶媒としてテトラヒドロフラン(30mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(8.0mL、10.4mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(30mL)を加え反応溶液から第38白色固体が析出させた。その反応溶液を減圧ろ過し得られた第38白色固体の残溶媒を減圧留去した。
これにより、第38白色固体のリチウムアセチルエトキシスルホンアミド(0.22g、1.27mmol、収率12%)を得た。
第38白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.13(t,J=7.2Hz,3H)、1.71(s,3H)、3.86(q,J=7.3Hz,2H)
下記の構造式で表されるリチウムエトキシスルホニル-2,2,2-トリフルオロアセチルアミド[合成化合物(I-20)]を、下記のようにして合成した。
非特許文献(Journal of the Chemical Society. Perkin transactions I,1982, p.677-680)に倣い、エチルスルファメート(6.45g、51.5mmol、収率62%)を合成した。
窒素置換した200mLの四つ口フラスコに、エチルスルファメート(2.05g、16.4mmol)、ピリジン(1.56g、19.7mmol)、4-ジメチルアミノピリジン(0.24g、2.0mmol)、及び溶媒としてテトラヒドロフラン(30mL)を装入し、0℃に保ち、無水トリフルオロ酢酸(4.13g、19.7mmol)を10分間かけて加えた後、室温に戻し、6時間撹拌反応させた。その後得られた反応溶液をろ過することで塩酸塩を除き、得られた溶液を洗浄した。すなわち、濾液に対し、蒸留水100mLを加え、酢酸エチル100mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第39白色固体のエトキシスルホニル-(2,2,2-トリフルオロアセチル)アミド(1.22g、5.52mmol、収率34%)を得た。
第39白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.18(t,J=4.5Hz,3H)、3.98(q,J=7.0Hz,2H)、8.38(br,1H)
窒素置換した200mLの四つ口フラスコに、エトキシスルホニル-(2,2,2-トリフルオロアセチル)アミド(1.0g、4.5mmol)、及び溶媒としてテトラヒドロフラン(20mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(3.5mL、4.5mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(20mL)を加え反応溶液から白色固体が析出させた。その反応溶液を減圧ろ過し得られた固体の残溶媒を減圧留去した。
これにより、第40白色固体のリチウムエトキシスルホニル-(2,2,2-トリフルオロアセチル)アミド(0.12g、0.53mmol、収率12%)を得た。
第40白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.08(dt,J=7.0Hz,1.1Hz,H)、3.68(dq,J=7.0Hz,1.1Hz,2H)
下記の構造式で表されるリチウムプロピオニル-(2,2,2-トリフルオロエトキシ)スルホンアミド[合成化合物(I-21)]を、下記のようにして合成した。
特許文献(国際公開2017/156179号)に倣い、プロピオニル-(2,2,2-トリフルオロエトキシ)スルホンアミドを合成した。
窒素置換した200mLの四つ口フラスコに、イソシアン酸クロロスルホニル(14.15g、100mmol)、及び溶媒としてジクロロメタン(100mL)を装入し、0℃に保ち、プロピオン酸(7.41g、100mmol)を加え、室温に戻し6時間撹拌反応させた。反応終了後、溶媒を濃縮除去し、白色固体を得た。この四つ口フラスコにテトラヒドロフラン(100mL)を装入することで第3反応溶液を調製し、0℃に保った。
別途、2,2,2-トリフルオロエタノール(12.0g、120mmol)、トリエチルアミン(20.24g、200mmol)、及び4-ジメチルアミノピリジン(2.44g、20mmol)をテトラヒドロフラン(100mL)に加え、第4反応溶液を調製した。この第4反応溶液を第3反応溶液が装入されている四つ口フラスコに0℃で10分間かけて加えた後、室温に戻し、6時間撹拌反応させた。その後、得られた反応溶液をろ過することで塩酸塩を除き、得られた溶液を洗浄した。すなわち濾液に対し、蒸留水100mLを加え、酢酸エチル100mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第41白色固体のプロピオニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(11.63g、49.5mmol、収率50%)を得た。
第41白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.00(t,J=7.4Hz,3H)、2.32(q,J=7.8Hz,2H)、4.93(q,J=8.6Hz,2H)
窒素置換した200mLの四つ口フラスコに、プロピオニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.75g、7.4mmol)、及び溶媒としてテトラヒドロフラン(30mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(5.7mL、7.4mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(30mL)を加え反応溶液から第42白色固体が析出させた。その反応溶液を減圧ろ過し得られた第42白色固体の残溶媒を減圧留去した。
これにより、第42白色固体のリチウムプロピオニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(0.79g、3.28mmol、収率44%)を得た。
第42白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.91(t,J=7.6Hz,3H)、1.98(q,J=7.6Hz,2H)、4.44(q,J=6.5Hz,2H)
下記の構造式で表されるリチウムベンゾイル-(2,2,2-トリフルオロエトキシ)スルホンアミド[合成化合物(I-22)]を、下記のようにして合成した。
非特許文献(Journal of the Chemical Society. Perkin transactions I,1982, p.677-680)に倣い、2,2,2-トリフルオロエチルスルファメート(12.4g、69.2mmol、収率69%)を合成した。
窒素置換した200mLの四つ口フラスコに、2,2,2―トリフルオロエチルエチルスルファメート(2.50g、14.0mmol)、トリエチルアミン(2.82g、27.9mmol)、4-ジメチルアミノピリジン(0.34g、2.8mmol)、及び溶媒としてテトラヒドロフラン(50mL)を装入し、0℃に保ち、ベンゾイルクロライド(2.35g、16.8mmol)を5分間かけて加えた後、室温に戻し、6時間撹拌反応させた。その後、得られた反応溶液をろ過することで塩酸塩を除き、得られた溶液を洗浄した。すなわち、濾液に対し、蒸留水100mLを加え、酢酸エチル100mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第43白色固体のベンゾイル-(2,2,2-トリフルオロエトキシ)スルホンアミド(3.22g、11.37mmol、収率81%)を得た。
第43白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ5.01(q,J=8.6Hz,2H)、7.52(t,J=7.8Hz,2H)、7.65(t,J=7.0Hz,1H)、7.94(d,J=8.4Hz,2H)
窒素置換した200mLの四つ口フラスコに、ベンゾイル-(2,2,2-トリフルオロエトキシ)スルホンアミド(2.06g、7.3mmol)、及び溶媒としてテトラヒドロフラン(20mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(5.6mL、7.3mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(20mL)を加え反応溶液から第44白色固体が析出させた。その反応溶液を減圧ろ過し得られた第44白色固体の残溶媒を減圧留去した。
これにより、第44白色固体のリチウムベンゾイル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.13g、3.9mmol、収率54%)を得た。
第44白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ4.58(q,J=8.9Hz,2H)、7.52(t,J=7.8Hz,2H)、7.25-7.50(m,3H)、7.93(d,J=7.6Hz,2H)
下記の構造式で表されるリチウムベンゾイルエトキシスルホンアミド[合成化合物(I-23)]を、下記のようにして合成した。
合成例20(合成化合物(I-20))における第一工程において、エチルスルファメート(2.02g、16.1mmol)、4-ジメチルアミノピリジン(0.39g、3.2mmol)、及び溶媒としてテトラヒドロフラン(30mL)を用い、無水トリフルオロ酢酸をベンゾイルクロライド(2.72g、19.4mmol)、ピリジンをトリエチルアミン(3.27g、32.3mmol)に変えたこと以外は、合成例20の第一工程と同じ方法で合成した。
これにより、第45白色固体のベンゾイルエトキシスルホンアミド(1.95g、16.14mmol、収率53%)を得た。
第45白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.32(t,J=7.2Hz,2H)、4.38(q,J=7.3Hz,2H)、7.53(t,J=7.6Hz,2H)、7.60(t,J=7.4Hz,2H)、7.92(d,J=7.4Hz,2H)、12.48(br,1H)
窒素置換した200mLの四つ口フラスコに、ベンゾイルエトキシスルホンアミド(1.74g、7.6mmol)、及び溶媒としてテトラヒドロフラン(20mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(5.8mL、7.6mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(20mL)を加え反応溶液から第46白色固体が析出させた。その反応溶液を減圧ろ過し得られた第46白色固体の残溶媒を減圧留去した。
これにより、第46白色固体のリチウムベンゾイルエトキシスルホンアミド(1.29g、5.5mmol、収率72%)を得た。
第46白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.17(t,J=7.2Hz,2H)、3.96(t,J=7.0Hz,2H)、7.25-7.45(m,3H)、7.91(d,J=7.0Hz,2H)
下記の構造式で表されるリチウムアセチルフェノキシスルホンアミド[合成化合物(I-24)]を、下記のようにして合成した。
非特許文献(Journal of the Chemical Society. Perkin transactions I,1982, p.677-680)に倣い、スルファモイルクロライドを合成した。
窒素置換した200mLの四つ口フラスコに、スルファモイルクロライド(32.1g、278mmol)、及び溶媒としてテトラヒドロフラン(300mL)を装入することで第5反応溶液を調製し、0℃に保った。
別途、フェノール(26.2g、278mmol)、及び水素化ナトリウム(6.67g、278mmol)を0℃にてテトラヒドロフラン(100mL)に加え、第6反応溶液を調製した。この第6反応溶液を第5反応溶液が調製されている四つ口フラスコに0℃で30分間かけて加えた後、室温に戻し、6時間撹拌反応させた。その後、得られた反応溶液をろ過することで塩を除き、得られた溶液を洗浄した。すなわち濾液に対し、蒸留水100mLを加え、酢酸エチル100mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第47白色固体のフェニルスルファメート(18.5g、107mmol、収率38%)を得た。
第47白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.41(t,J=7.0Hz,3H)、4.29(q,J=7.3Hz,2H)、4.91(br,2H)
合成例2(合成化合物(I-10))における第一工程において、ピリジン(4.99g、63.1mmol)、4-ジメチルアミノピリジン(0.77g、6.3mmol)、及び溶媒としてテトラヒドロフラン(30mL)を用い、メタンスルホンアミドをフェニルスルファメート(2.68g、15.5mmol)、及びクロロギ酸メチルをアセチルクロライド(1.46g、18.6mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、黒色固体のアセチルフェノキシスルホンアミド(2.11g、9.8mmol、収率63%)を得た。
黒色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.05(s,3H)、7.27(t,J=8.6Hz,2H)、7.35-7.60(m,3H)、12.44(br,1H)
窒素置換した200mLの四つ口フラスコに、アセチルフェノキシスルホンアミド(2.11g、9.8mmol)、及び溶媒としてテトラヒドロフラン(20mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.5mL、9.8mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(20mL)を加え反応溶液から第48白色固体が析出させた。その反応溶液を減圧ろ過し得られた第48白色固体の残溶媒を減圧留去した。
これにより、第48白色固体のリチウムアセチルフェノキシスルホンアミド(1.83g、8.27mmol、収率84%)を得た。
第48白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.72(s, 3H)、7.05-7.20(m, 3H)、7.30(t,J=5.1Hz, 2H)
下記の構造式で表されるリチウムベンゾイルフェノキシスルホンアミド[合成化合物(I-25)]を、下記のようにして合成した。
合成例24(合成化合物(I-24))の第一工程と同様の方法で、フェニルスルファメートを得た。
合成例24(合成化合物(I-24))における第二工程と同様の方法で、フェニルスルファメート(4.10g、23.7mmol)、4-ジメチルアミノピリジン(0.58g、5.8mmol)、及び溶媒としてテトラヒドロフラン(50mL)を用い、アセチルクロライドをベンゾイルクロライド(3.99g、28.4mmol)に、ピリジンをトリエチルアミン(4.79g、47.3mmol)変えたこと以外は合成例24の第一工程と同じ方法で、第49白色固体を合成した。
これにより、第49白色固体のベンゾイルフェノキシスルホンアミド(4.93g、17.8mmol、収率75%)を得た。
第49白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ7.29(d,J=8.4Hz,2H)、7.30-7.70(m,6H)、7.89(d,J=7.3Hz,2H)
窒素置換した200mLの四つ口フラスコに、ベンゾイルフェノキシスルホンアミド(3.12g、11.25mmol)、及び溶媒としてテトラヒドロフラン(30mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(8.7mL、11.25mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(30mL)を加え反応溶液から第50白色固体が析出させた。その反応溶液を減圧ろ過し得られた第50白色固体の残溶媒を減圧留去した。
これにより、第50白色固体のリチウムベンゾイルフェノキシスルホンアミド(2.04g、7.20mmol、収率64%)を得た。
第50白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ7.05-7.45(m,8H)、7.90(d,J=7.6Hz,2H)
下記の構造式で表されるリチウムエトキシカルボニルエトキシスルホンアミド[合成化合物(I-26)]を、下記のようにして合成した。
窒素置換したジムロート冷却管に接続された500mLの四つ口フラスコに、イソシアン酸クロロスルホニル(4.00g、28.3mmol)、及び溶媒としてジクロロメタン(100mL)を装入し、室温に保ち、エタノール(3.26g、70.8mmol)、及びトリエチルアミン(2.86g、28.3mmol)を加え、還流温度にて撹拌反応させた。4時間後、反応を止めて室温まで冷却した。その後、得られた反応生成物を洗浄した。すなわち反応液に対し、蒸留水100mLを加え、酢酸エチル100mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第51白色固体のエトキシカルボニルエトキシスルホンアミド(5.27g、11.3mmol、収率40%)を得た。
第51白色固体の1H-NMR(CDCl3)による測定結果を以下に示す。
1H-NMR:δ1.32(t,J=7.0Hz,3H)、1.44(t,J=7.0Hz,3H)、4.28(q,J=7.0Hz, 3H)、4.47(q,J=7.0Hz,3H)、7.53(br,1H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、エトキシカルボニルエトキシスルホンアミド(1.02g、5.17mmol)、溶媒としてテトラヒドロフラン(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(3.50mL、4.55mmol)を用い、反応を行った。
これにより、第52白色固体のリチウムエトキシカルボニルエトキシスルホンアミド(258mg、1.29mmol、収率25%)を得た。
第52白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.07(t,J=7.3Hz,3H)、1.13(t,J=7.3Hz,3H)、3.77(q, J=7.3Hz,3H)、3.85(q, J=7.3Hz,3H)
下記の構造式で表されるリチウムエトキシカルボニル-2,2,2-トリフルオロエトキシスルホンアミド[合成化合物(I-27)]を、下記のようにして合成した。
非特許文献(Journal of the Chemical Society. Perkin transactions I,1982, p.677-680)に倣い、2,2,2-トリフルオロエチルスルファメート(12.4g、69.2mmol、収率69%)を合成した。
合成例22(合成化合物(I-22))における第一工程において、2,2,2-トリフルオロエチルスルファメート(2.55g、14.2mmol)、4-ジメチルアミノピリジン(0.35g、2.85mmol)溶媒としてテトラヒドロフラン(30mL)を用い、ベンゾイルクロライドをクロロギ酸エチル(3.09g、28.5mmol)に変えたこと、トリエチルアミンをピリジン(2.25g、28.5mmol)に変えたこと以外は合成例22の第一工程と同じ方法で第53白色固体を合成した。
これにより、第53白色固体のエトキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(2.28g、9.08mmol、収率64%)を得た。
第53白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.22(t,J=7.0Hz,3H)、4.17(q,J=6.8Hz,2H)、4.93(q,J=8.4Hz,2H)
窒素置換した200mLの四つ口フラスコに、エトキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(2.0g、7.96mmol)、及び溶媒としてテトラヒドロフラン(30mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)、及びテトラヒドロフラン溶液(6.1mL、7.96mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(30mL)を加え反応溶液から第54白色固体が析出させた。その反応溶液を減圧ろ過し得られた第54白色固体の残溶媒を減圧留去した。
これにより、第54白色固体のリチウムエトキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.95g、7.58mmol、収率95%)を得た。
第54白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.08(t,J=4.5Hz,3H)、3.81(q,J=6.8Hz,2H)、4.40(q,J=9.2Hz,2H)
下記の構造式で表されるリチウム-(2,2,2-トリフルオロエトキシ)カルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド[合成化合物(I-28)]を、下記のようにして合成した。
窒素置換したジムロート冷却管に接続された100mLの四つ口フラスコに、2,2,2-トリフルオロエタノール(5.73g、57.3mmol)、及び溶媒としてクロロベンゼン(13mL)を装入し、室温に保ち、イソシアン酸クロロスルホニル(4.05g、28.6mmol)を加え、還流温度にて撹拌反応させた。12時間後、反応を止めて室温まで冷却した。その反応溶液を減圧下で濃縮し、得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第1無色透明オイルの2,2,2-トリフルオロエトキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(7.34g、24.1mmol、収率84%)を得た。
第1無色透明オイルの1H-NMR(CDCl3)による測定結果を以下に示す。
1H-NMR:δ4.59(d,J=8.1Hz,2H)、4.73(d,J=7.6Hz,2H)、8.28(br、1H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、2,2,2-トリフルオロエトキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.50g、4.92mmol)、溶媒としてテトラヒドロフラン(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(3.75mL、4.88mmol)を用い、反応を行った。
これにより、第55白色固体のリチウム-(2,2,2-トリフルオロエトキシ)カルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.51g、4.85mmol、収率99%)を得た。
第55白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ4.43(q,J=9.5Hz,2H)、4.44(q,J=9.0Hz,2H)
下記の構造式で表されるリチウムベンゾイル-(2,2,2-トリフルオロエトキシ)スルホンアミド[合成化合物(I-29)]を、下記のようにして合成した。
非特許文献(Journal of the Chemical Society. Perkin transactions I,1982, p.677-680)に倣い、2,2,2-トリフルオロエチルスルファメート(12.4g、69.2mmol、収率69%)を合成した。
合成例27(合成化合物(I-27))における第一工程において、2,2,2-トリフルオロエチルスルファメート(3.19g、17.81mmol)、ピリジン(2.82g、35.6mmol)、4-ジメチルアミノピリジン(0.44g、3.56mmol)、及び溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸エチルをクロロギ酸フェニル(3.35g、21.4mmol)に変えたこと以外は、合成例27の第一工程と同じ方法で、第56白色固体を合成した。
これにより、第56白色固体のフェノキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.97g、6.58mmol、収率37%)を得た。
第56白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ4.66(q,J=8.6Hz,2H)、6.75(d,J=8.6Hz,2H)、7.00-7.40(m,3H)、8.00(br,1H)
窒素置換した200mLの四つ口フラスコに、フェノキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.97g、6.58mmol)、及び溶媒としてテトラヒドロフラン(30mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(5.1mL、6.58mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(30mL)を加え反応溶液から第57白色固体が析出させた。その反応溶液を減圧ろ過し得られた第57白色固体の残溶媒を減圧留去した。
これにより、第57白色固体のリチウムフェノキシカルボニル-(2,2,2-トリフルオロエトキシ)スルホンアミド(1.71g、5.60mmol、収率85%)を得た。
第57白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ4.47(q,J=8.9Hz, 2H)、6.99(d,J=8.4Hz, 2H)、7.11(t,J=7.6Hz, 2H)、7.31(t,J=5.0Hz, 2H)
下記の構造式で表されるリチウムエトキシカルボニル-p-トリルオキシスルホンアミド[合成化合物(I-30)]を、下記のようにして合成した。
非特許文献(Picard,J.A.etal.,J.Med.Chem.,1996, 39, 1243.)を参考に、p-トリルオキシカルボニルクロロスルホンアミドを合成した。
窒素置換したジムロート冷却管に接続された100mLの四つ口フラスコに、p-クレゾール(7.04g、65.1mmol)、及び溶媒としてクロロベンゼン(20mL)を装入し、室温に保ち、イソシアン酸クロロスルホニル(9.21g、65.1mmol)を加え、室温にて1時間攪拌反応させると、反応溶液から第58白色固体が析出した。その反応溶液を減圧ろ過し得られた第58白色固体の残溶媒を減圧留去した。
これにより、第58白色固体のp-トリルオキシカルボニルクロロスルホンアミド(14.6g、58.5mmol、収率90%)を得た。
第58白色固体の1H-NMR(CDCl3)による測定結果を以下に示す。
1H-NMR:δ2.37(s, 3H)、7.09(d, J=8.5Hz, 2H)、7.22(d, J=8.5Hz, 2H)
非特許文献(Picard,J.A.etal.,J.Med.Chem.,1996,39,1243.)を参考に、エトキシカルボニル-p-トリルオキシスルホンアミドを合成した。
窒素置換したジムロート冷却管に接続された100mLの四つ口フラスコに、トリルオキシカルボニルクロロスルホンアミド(5.00g、20.0mmol)、及び溶媒としてクロロベンゼン(30mL)を装入し、還流温度にて12時間撹拌反応させた。その後、室温まで冷却し、エタノール(1.85g、40.2mmol)を加え、室温にて撹拌反応させた。2時間後反応を止め、得られた反応生成物を洗浄した。すなわち、反応液に対し、蒸留水30mLを加え、酢酸エチル30mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、得られた有機層に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。
得られた粗生成物を、ヘキサン/酢酸エチル溶剤を用いたフラッシュカラムクロマトグラフィーにて分離精製した。
これにより、第2無色透明オイルのエトキシカルボニル-p-トリルオキシスルホンアミド(4.03g、15.5mmol、収率78%)を得た。
第2無色透明オイルの1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.23(t,J=7.0Hz,3H)、2.32(s,3H)、4.20(q,J=7.0Hz,2H)、7.14(d,J=8.4Hz,2H)、7.30(d,J=8.4Hz,2H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、エトキシカルボニル-p-トリルオキシスルホンアミド(2.54g、9.80mmol)、溶媒としてテトラヒドロフラン(50mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.30mL、9.49mmol)を用い、反応を行った。
これにより、第59白色固体のリチウムエトキシカルボニル-p-トリルオキシスルホンアミド(1.11g、4.19mmol、収率43%)を得た。
第59白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.07(t,J=7.0Hz,3H)、2.26(s,3H)、3.80(q,J=7.0Hz,2H)、7.02(d,J=8.6Hz,2H)、7.09(d,J=8.6Hz,2H)
下記の構造式で表されるリチウム-p-トリルオキシスルホニル-(2,2,2-トリフルオロエトキシ)カルボニルアミド[合成化合物(I-31)]を、下記のようにして合成した。
合成例30(合成化合物(I-30))における第一工程と同様の方法で、p-トリルオキシカルボニルクロロスルホンアミドを合成した。
合成例30(合成化合物(I-30))における第二工程と同様の方法で、p-トリルオキシカルボニルクロロスルホンアミド(1.50g、6.01mmol)、溶媒としてクロロベンゼン(10mL)、及び2,2,2-トリフルオロエタノール(0.60g、6.00mmol)を用い、反応を行った。
これにより、第3無色透明オイルのp-トリルオキシスルホニル-(2,2,2-トリフルオロエトキシ)カルボニルアミド(1.01g、3.22mmol、収率54%)を得た。
第3無色透明オイルの1H-NMR(CDCl3)による測定結果を以下に示す。
1H-NMR:δ2.37(s,3H)、4.62(q,J=8.1Hz,2H)、7.20(m,4H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、p-トリルオキシスルホニル-(2,2,2-トリフルオロエトキシ)カルボニルアミド(1.01g、3.22mmol)、溶媒としてテトラヒドロフラン(15mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(2.30mL、2.99mmol)を用い、反応を行った。
これにより、第60白色固体のリチウム-p-トリルオキシスルホニル-(2,2,2-トリフルオロエトキシ)カルボニルアミド(350mg、1.10mmol、収率34%)を得た。
第60白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.26(s,3H)、4.43(q,J=9.2Hz,2H)、7.03(d,J=8.6Hz,2H)、7.10(d,J=8.6Hz,2H)
下記の構造式で表されるリチウム-p-トリルオキシカルボニル-p-トリルオキシスルホンアミド[合成化合物(I-32)]を、下記のようにして合成した。
合成例28(合成化合物(I-28))における第一工程において、トリフルオロエタノールをp-クレゾール(6.20g、57.3mmol)に変えたこと以外は、合成例28の第一工程と同様の方法で第4無色透明オイルを合成した。
これにより、第4無色透明オイルのp-トリルオキシカルボニル-p-トリルオキシスルホンアミド(9.10g、28.3mmol、収率99%)を得た。
第4無色透明オイルの1H-NMR(CDCl3)による測定結果を以下に示す。
1H-NMR:δ2.37(s,3H)、2.38(s,3H)、7.05(d,J=6.8Hz,2H)、7.21(m,6H)
合成例1(合成化合物(I-5))における第二工程と同様の方法で、p-トリルオキシカルボニル-p-トリルオキシスルホンアミド(1.20g、3.73mmol)、溶媒としてテトラヒドロフラン(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)、及びテトラヒドロフラン溶液(2.60mL、3.38mmol)を用い、反応を行った。
これにより、第61白色固体のリチウム-p-トリルオキシカルボニル-p-トリルオキシスルホンアミド(798mg、2.42mmol、収率65%)を得た。
第61白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.27(s,3H)、2.28(s,3H)、6.82(d,J=8.6Hz,2H)、7.10(m,6H)
下記の構造式で表されるリチウム-4-メチルフェノキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-33)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(2.0g、13.4mmol)、ピリジン(2.12g、26.8mmol)、4-ジメチルアミノピリジン(0.33g、2.7mmol)、溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸メチルをクロロギ酸4-メチルフェニル(2.52g、14.8mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第5無色透明オイルの4-メチルフェノキシカルボニルトリフルオロメチルスルホンアミド(1.02g、3.6mmol、収率27%)を得た。
第5無色透明オイルの1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ6.61-6.66(m,2H)、6.92-6.97(m,2H)、9.06(br, 1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、4-メチルフェノキシカルボニルトリフルオロメチルスルホンアミド(1.02g、3.60mmol)、溶媒としてジエチルエーテル(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(2.8mL、3.60mmol)を用い、反応を行った。
これにより、第62白色固体のリチウム-4-メチルフェノキシカルボニルトリフルオロメチルスルホンアミド(0.76g、2.63mmol、収率73%)を得た。
第62白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ6.18-6.34(m,2H)、6.58-6.66(m,2H)
下記の構造式で表されるリチウム-4-メトキシフェノキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-34)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(1.60g、10.7mmol)、ピリジン(1.70g、21.5mmol)、4-ジメチルアミノピリジン(0.26g、2.1mmol)、溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸メチルをクロロギ酸4-メトキシフェニル(2.40g、12.9mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第63白色固体の4-メトキシフェノキシカルボニルトリフルオロメチルスルホンアミド(1.55g、5.2mmol、収率48%)を得た。
第63白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.65(s,3H)、6.55-6.78(m,4H)、8.86(br, 1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、4-メトキシフェノキシカルボニルトリフルオロメチルスルホンアミド(0.95g、3.16mmol)、溶媒としてジエチルエーテル(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(2.4mL、3.16mmol)を用い、反応を行った。
これにより、第64白色固体のリチウム-4-メトキシフェノキシカルボニルトリフルオロメチルスルホンアミド(0.79g、2.58mmol、収率82%)を得た。
第64白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.55(s,3H)、6.13-6.28(m,2H)、6.43-6.52(m,2H)
下記の構造式で表されるリチウム-4-クロロフェノキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-35)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(2.0g、13.4mmol)、ピリジン(2.12g、26.8mmol)、4-ジメチルアミノピリジン(0.33g、2.7mmol)、溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸メチルをクロロギ酸4-クロロフェニル(3.07g、16.1mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第6無色透明オイルの4-クロロフェノキシカルボニルトリフルオロメチルスルホンアミド(1.54g、5.1mmol、収率38%)を得た。
第6無色透明オイルの1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ6.74-6.79(m,2H)、7.17-7.22(m,2H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、4-クロロフェノキシカルボニルトリフルオロメチルスルホンアミド(1.54g、5.07mmol)、溶媒としてジエチルエーテル(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(3.9mL、5.07mmol)を用い、反応を行った。
これにより、第65黄色固体のリチウム-4-クロロフェノキシカルボニルトリフルオロメチルスルホンアミド(0.65g、2.10mmol、収率41%)を得た。
第65黄色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ6.40-6.46(m,2H)、6.84-6.90(m,2H)
下記の構造式で表されるリチウム-4-フルオロフェノキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-36)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(1.94g、13.0mmol)、ピリジン(2.06g、26.0mmol)、4-ジメチルアミノピリジン(0.32g、2.6mmol)、溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸メチルをクロロギ酸4-フルオロフェニル(2.50g、14.3mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成
した。
これにより、第7無色透明オイルの4-フルオロフェノキシカルボニルトリフルオロメチルスルホンアミド(2.02g、7.0mmol、収率54%)を得た。
第7無色透明オイルの1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ6.71-6.76(m,2H)、6.94-7.01(m,2H)、9.34(br, 1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、4-フルオロフェノキシカルボニルトリフルオロメチルスルホンアミド(2.02g、7.03mmol)、溶媒としてジエチルエーテル(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(5.4mL、7.03mmol)を用い、反応を行った。
これにより、第66白色固体のリチウム-4-フルオロフェノキシカルボニルトリフルオロメチルスルホンアミド(0.91g、3.10mmol、収率44%)を得た。
第66白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ6.21-6.31(m,2H)、6.58-6.68(m,2H)
下記の構造式で表されるリチウムアリルオキシカルボニルトリフルオロメチルスルホンアミド[合成化合物(I-37)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてトリフルオロメタンスルホンアミド(2.50g、16.8mmol)、ピリジン(2.65g、33.5mmol)、4-ジメチルアミノピリジン(0.41g、3.4mmol)、溶媒としてテトラヒドロフラン(30mL)を用い、クロロギ酸メチルをクロロギ酸アリル(2.43g、20.1mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第67白色固体のアリルオキシカルボニルトリフルオロメチルスルホンアミド(2.46g、10.6mmol、収率63%)を得た。
第67白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ4.25-4.50(m,2H)、4.95-5.32(m,2H)、5.70-5.98(m,1H)、9.66(br, 1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、アリルオキシカルボニルトリフルオロメチルスルホンアミド(2.20g、9.44mmol)、溶媒としてジエチルエーテル(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.3mL、9.44mmol)を用い、反応を行った。
これにより、第68白色固体のリチウムアリルオキシカルボニルトリフルオロメチルスルホンアミド(1.58g、6.63mmol、収率70%)を得た。
第68白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ4.25-4.40(m,2H)、5.00-5.30(m,2H)、5.85-5.96(m,1H)
下記の構造式で表されるリチウムブトキシカルボニル-4-フルオロフェニルスルホンアミド[合成化合物(I-38)]を、下記のようにして合成した。
合成例14(合成化合物(I-14))における第一工程においてクロロギ酸ブチル(2.34g、17.1mmol)、4-ジメチルアミノピリジン(0.41g、3.4mmol)、溶媒としてテトラヒドロフラン(30mL)を用い、トリフルオロメタンスルホンアミドを4-フルオロベンゼンスルホンアミド(2.50g、14.3mmol)に、ピリジンをトリエチルアミン(2.89g、28.5mmol)変えたこと以外は、合成例14の第一工程と同じ方法で合成した。
これにより、第69白色固体のブトキシカルボニル-4-フルオロフェニルスルホンアミド(1.13g、4.1mmol、収率29%)を得た。
第69白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.82(t,J=7.0Hz,3H)、1.05-1.30(m,2H)、1.35-1.55(m,2H)、3.98(t,J=6.6Hz,2H)、7.38-7.58(m,2H)、7.84-8.04(m,2H)、12.06(br, 1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、ブトキシカルボニル-4-フルオロフェニルスルホンアミド(1.01g、3.67mmol)、溶媒としてジエチルエーテル(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(2.8mL、3.67mmol)を用い、反応を行った。
これにより、第70白色固体のリチウムブトキシカルボニル-4-フルオロフェニルスルホンアミド(0.77g、2.72mmol、収率74%)を得た。
第70白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.84(t,J=7.2Hz,3H)、1.15-1.30(m,2H)、1.30-1.45(m,2H)、3.65(t,J=6.6Hz,2H)、7.10-7.25(m,2H)、7.65-7.80(m,2H)
下記の構造式で表されるリチウムメトキシカルボニル-4-トリフルオロメチルフェニルスルホンアミド[合成化合物(I-39)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてクロロギ酸メチル(2.64g、28.0mmol)、4-ジメチルアミノピリジン(0.61g、5.0mmol)、及び溶媒としてテトラヒドロフラン(100mL)を用い、トリフルオロメタンスルホンアミドを4-(トリフルオロメチル)ベンゼンスルホンアミド(5.24g、23.3mmol)に、ピリジンをトリエチルアミン(2.82g、28.0mmol)に変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第71白色固体のメトキシカルボニル-4-(トリフルオロメチル)フェニルスルホンアミド(5.30g、18.7mmol、収率80%)を得た。
第71白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.65(s,3H)、8.04(d,J=9.1Hz,2H)、8.18(d,J=9.1Hz,2H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、メトキシカルボニル-4-(トリフルオロメチル)フェニルスルホンアミド(1.80g、6.36mmol)、溶媒としてテトラヒドロフラン(30mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(4.64mL、6.03mmol)を用い、反応を行った。
これにより、第72白色固体のリチウムメトキシカルボニル-4-(トリフルオロメチル)フェニルスルホンアミド(0.44g、1.52mmol、収率24%)を得た。
第72白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.31(s,3H)、7.65(d,J=8.9Hz,2H)、7.70(d,J=8.9Hz,2H)
下記の構造式で表されるリチウムメトキシカルボニル-4-(トリフルオロメトキシ)フェニルスルホンアミド[合成化合物(I-40)]を、下記のようにして合成した。
合成例2(合成化合物(I-10))における第一工程においてクロロギ酸メチル(1.18g、12.5mmol)、4-ジメチルアミノピリジン(0.13g、1.0mmol)、及び溶媒としてテトラヒドロフラン(50mL)を用い、トリフルオロメタンスルホンアミドを4-(トリフルオロメトキシ)ベンゼンスルホンアミド(2.50g、10.4mmol)に、ピリジンをトリエチルアミン(1.26g、12.5mmol)変えたこと以外は、合成例2の第一工程と同じ方法で合成した。
これにより、第73白色固体のメトキシカルボニル-4-(トリフルオロメトキシ)フェニルスルホンアミド(3.10g、10.4mmol、収率100%)を得た。
第73白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ3.65(s,3H)、7.63(d,J=9.3Hz,2H)、8.10(d,J=9.3Hz,2H)、8.32(br、1H)
合成例2(合成化合物(I-10))における第二工程と同様の方法で、メトキシカルボニル-4-(トリフルオロメトキシ)フェニルスルホンアミド(3.10g、10.4mmol)、溶媒としてテトラヒドロフラン(40mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(7.57mL、9.84mmol)を用い、反応を行った。
これにより、第74白色固体のリチウムメチルカルボニル4-(トリフルオロメトキシ)フェニルアミド(0.40g、1.31mmol、収率13%)を得た。
第74白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ2.36(s,3H)、7.42(d,J=9.0Hz,2H)、7.74(d,J=9.0Hz,2H)
下記の構造式で表されるリチウムフェノキシカルボニルエトキシスルホンアミド[合成化合物(I-41)]を、下記のようにして合成した。
合成例20(合成化合物(I-20))における第一工程において、エチルスルファメート(1.80g、14.4mmol)、4-ジメチルアミノピリジン(0.39g、3.2mmol)、及び溶媒としてテトラヒドロフラン(30mL)を用い、無水トリフルオロ酢酸をクロロギ酸フェニル(2.70g、17.3mmol)、ピリジンをトリエチルアミン(2.91g、28.8mmol)に変えたこと以外は、合成例20の第一工程と同じ方法で合成した。
これにより、第75白色固体のフェノキシカルボニルエトキシスルホンアミド(2.19g、8.93mmol、収率62%)を得た。
第75白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.43(t,J=7.2Hz,3H)、4.52(q,J=7.2Hz,2H)、7.12-7.46(m,5H)
窒素置換した200mLの四つ口フラスコに、フェノキシカルボニルエトキシスルホンアミド(2.19g、8.9mmol)、及び溶媒としてテトラヒドロフラン(20mL)を装入し、-20度に保ち、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(6.9mL、8.9mmol)を5分間かけて加えた後、室温に戻し、3時間撹拌反応させた。その後、n-ヘキサン(20mL)を加え反応溶液から第76白色固体が析出させた。その反応溶液を減圧ろ過し得られた第76白色固体の残溶媒を減圧留去した。
これにより、第76白色固体のリチウムフェノキシカルボニルエトキシスルホンアミド(2.11g、8.4mmol、収率94%)を得た。
第76白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.16(t,J=7.0Hz,3H)、3.93(q,J=7.3Hz,2H)、6.92-7.12(m,3H)、7.24-7.34(m,2H)
下記の構造式で表されるリチウムフルオロスルホニルメトキシカルボニルアミド[合成化合物(I-42)]を、下記のようにして合成した。
窒素置換したジムロート冷却管に接続された100mLの四つ口フラスコに、クロロスルホニルイソシアネート(9.72g、68.7mmol)及び溶媒としてアセトニトリル(25mL)を装入し、0℃に冷却した。これにメタノール(2.00g、62.4mmol)を加え、室温にて1時間撹拌反応させた後、二フッ化水素カリウム(5.85g、74.9mmol)を加え、さらに攪拌反応させた。2時間後、反応を止めた。
その後、得られた反応生成物を洗浄した。すなわち反応液に対し、蒸留水50mLを加え、ヘキサン/酢酸エチル50mLを加え、分液ロートで抽出洗浄した。
上記の水洗浄を2回繰り返し、全ての有機相を合わせて飽和食塩水(20mL)で洗浄した。得られた有機相に硫酸マグネシウムを添加して乾燥させた後、減圧下で濃縮した。これにより、粗生成物フルオロスルホニルメトキシカルボニルアミド(9.63g)を得た。
窒素置換した100mLの四つ口フラスコに、粗生成物フルオロスルホニルメトキシカルボニルアミド(4.50g)、及び溶媒としてメタノール(25mL)を装入し、炭酸リチウム(2.33g、31.5mmol)加えた後、1時間撹拌反応させた。その反応溶液を減圧下で濃縮し、酢酸エチル(20mL)を加えて懸濁液とした。その懸濁液をセライトでろ過し、ろ液を減圧下で濃縮した。ジクロロメタン(20mL)を加え、室温で1時間攪拌させると、第77白色固体が析出した。その溶液を減圧ろ過し、得られた第77白色固体の残溶媒を減圧留去した。これにより、第77白色固体のリチウムフルオロスルホニルメトキシカルボニルアミド(3.30g、20.2mmol、2工程収率70%)を得た。
以下に、第77白色固体の1H-NMR(DMSO-d6)による測定結果を示す。
1H-NMR:δ3.41(s,3H)
下記の構造式で表されるリチウムフルオロスルホニルエトキシカルボニルアミド[合成化合物(I-43)]を、下記のようにして合成した。
合成例42(合成化合物(I-42))における第一工程においてクロロスルホニルイソシアネート(8.45g、59.7mmol)、二フッ化水素カリウム(5.09g、65.2mmol)、及び溶媒としてアセトニトリル(25mL)を用い、メタノールをエタノール(2.50g、54.3mmol)に変えたこと以外は、合成例42と同じ方法で合成した。これにより、粗生成物フルオロスルホニルエトキシカルボニルアミド(9.29g)を得た。
合成例42(合成化合物(I-42))における第二工程と同様の方法で、粗生成物フルオロスルホニルエトキシカルボニルアミド(4.50g)、炭酸リチウム(2.14g、29.0mmol)、及び溶媒としてメタノール(25mL)を用い、反応を行った。
これにより、第78白色固体のリチウムフルオロスルホニルエトキシカルボニルアミド(2.29g、12.9mmol、2工程収率49%)を得た。
第78白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ1.10(t,J=6.8Hz,3H)、3.84(q,J=6.8Hz,2H)
下記の構造式で表されるリチウムフルオロスルホニルプロポキシカルボニルアミド[合成化合物(I-44)]を、下記のようにして合成した。
合成例42(合成化合物(I-42))における第一工程においてクロロスルホニルイソシアネート(7.77g、54.9mmol)、二フッ化水素カリウム(4.68g、59.9mmol)、及び溶媒としてアセトニトリル(25mL)を用い、メタノールをn-プロパノール(3.00g、49.9mmol)に変えたこと以外は、合成例42と同じ方法で合成した。これにより、粗生成物フルオロスルホニルプロポキシカルボニルアミド(9.24g)を得た。
合成例42(合成化合物(I-42))における第二工程と同様の方法で、第一工程で得た粗生成物フルオロスルホニルプロポキシカルボニルアミド(4.00g)、炭酸リチウム(1.76g、23.8mmol)、及び溶媒としてメタノール(20mL)を用い、反応を行った。
これにより、第79白色固体のリチウムフルオロスルホニルプロポキシカルボニルアミド(1.76g、9.21mmol、2工程収率43%)を得た。
第79白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.88(t, J=7.6Hz,3H)、1.46-1.55(m,2H)、3.76(t,J=6.8Hz,2H)
下記の構造式で表されるリチウムフルオロスルホニルブトキシカルボニルアミド[合成化合物(I-45)]を、下記のようにして合成した。
合成例42(合成化合物(I-42))における第一工程においてクロロスルホニルイソシアネート(5.11g、36.1mmol)、二フッ化水素カリウム(3.08g、39.4mmol)、及び溶媒としてアセトニトリル(15mL)を用い、メタノールをn-ブタノール(2.43g、32.8mmol)に変えたこと以外は、合成例42と同じ方法で合成した。これにより、粗生成物フルオロスルホニルブトキシカルボニルアミド(6.53g)を得た。
合成例42(合成化合物(I-42))における第二工程と同様の方法で、粗生成物フルオロスルホニルブトキシカルボニルアミド(3.39g)、炭酸リチウム(1.38g、18.7mmol)、及び溶媒としてメタノール(15mL)を用い、反応を行った。
これにより、第80白色固体のリチウムフルオロスルホニルブトキシカルボニルアミド(2.50g、12.2mmol、2工程収率72%)を得た。
第80白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.88(t, J=7.6Hz,3H)、1.26-1.35(m,2H)、1.43-1.50(m,2H)、3.80(t, J=6.4Hz,3H)
下記の構造式で表されるリチウムフルオロスルホニルベンジルオキシカルボニルアミド[合成化合物(I-46)]、下記のようにして合成した。
合成例42(合成化合物(I-42))における第一工程においてクロロスルホニルイソシアネート(3.97g、28.1mmol)、二フッ化水素カリウム(2.34g、30.0mmol)、及び溶媒としてアセトニトリル(15mL)を用い、メタノールをベンジルアルコール(2.70g、25.0mmol)に変えたこと以外は、合成例42と同じ方法で合成した。これにより、粗生成物フルオロスルホニルベンジルオキシカルボニルアミド(5.82g)を得た。
合成例42(合成化合物(I-42))における第二工程と同様の方法で、粗生成物フルオロスルホニルベンジルオキシカルボニルアミド(3.52g)、炭酸リチウム(2.03g、27.5mmol)、及び溶媒としてメタノール(15mL)を用い、反応を行った
。
これにより、第81白色固体のリチウムフルオロスルホニルベンジルオキシカルボニルアミド(2.67g、11.2mmol、2工程収率74%)を得た。
第81白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ4.91(s,2H)、7.25-7.37(m,5H)
下記の構造式で表されるリチウムブトキシカルボニル-4-トリフルオロメチルフェニルスルホンアミド[合成化合物(I-47)]を、下記のようにして合成した。
合成例39(合成化合物(I-39))における第一工程において4-(トリフルオロメチル)ベンゼンスルホンアミド(2.40g、10.7mmol)、トリエチルアミン(1.30g、12.79mmol)、4-ジメチルアミノピリジン(0.16g、1.28mmol)、及び溶媒としてテトラヒドロフラン(50mL)を用い、クロロギ酸メチルをクロロギ酸ブチル(1.46g、10.7mmol)に変えたこと以外は、合成例39の第一工程と同じ方法で合成した。
これにより、第82白色固体のブトキシカルボニル-4-(トリフルオロメチル)フェニルスルホンアミド(1.80g、5.53mmol、収率52%)を得た。
第82白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.80(t,J=7.4Hz,3H)、1.15-1.21(m,2H)、1.40-1.50(m,2H)、4.00(t,J=6.6Hz,3H)、8.02-8.15(m,4H)
合成例39(合成化合物(I-39))における第二工程と同様の方法で、ブトキシカルボニル-4-(トリフルオロメチル)フェニルスルホンアミド(1.64g、5.03mmol)、溶媒としてテトラヒドロフラン(20mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(3.87mL、5.03mmol)を用い、反応を行った。
これにより、第83白色固体のリチウムブトキシカルボニル-4-(トリフルオロメチル)フェニルスルホンアミド(1.22g、3.68mmol、収率73%)を得た。
第83白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.82(d,J=7.2Hz,3H)、1.15-1.28(m,2H)、1.32-1.41(m,2H)、3.65(t,J=6.6Hz,2H)、7.72-7.78(m,2H)、7.87-7.93(m,2H)
下記の構造式で表されるリチウムブトキシカルボニル-4-(トリフルオロメトキシ)フェニルスルホンアミド[合成化合物(I-48)]を、下記のようにして合成した。
合成例47(合成化合物(I-47))における第一工程においてクロロギ酸ブチル(1.59g、11.6mmol)、トリエチルアミン(1.41g、13.9mmol)、4-ジメチルアミノピリジン(0.17g、1.40mmol)、及び溶媒としてテトラヒドロフラン(30mL)を用い、4-(トリフルオロメチル)ベンゼンスルホンアミドを4-(トリフルオロメトキシ)ベンゼンスルホンアミド(2.80g、11.6mmol)に変えたこと以外は、合成例47の第一工程と同じ方法で合成した。
これにより、第84白色固体のブトキシカルボニル-4-(トリフルオロメトキシ)フェニルスルホンアミド(3.06g、8.97mmol、収率77%)を得た。
第84白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.81(d,J=7.2Hz,3H)、1.12-1.24(m,2H)、1.40-1.50(m,2H)、3.99(t,J=6.6Hz,2H)、7.62-7.68(m,2H)、8.00-8.06(m,2H)
合成例47(合成化合物(I-47))における第二工程と同様の方法で、ブトキシカルボニル-4-(トリフルオロメトキシ)フェニルスルホンアミド(3.06g、8.97mmol)、溶媒としてテトラヒドロフラン(50mL)、リチウムビス(トリメチルシリル)アミド(1.3M)テトラヒドロフラン溶液(6.90mL、8.97mmol)を用い、反応を行った。
これにより、第85白色固体のリチウムブチルカルボニル4-(トリフルオロメトキシ)フェニルアミド(2.66g、7.66mmol、収率85%)を得た。
第85白色固体の1H-NMR(DMSO-d6)による測定結果を以下に示す。
1H-NMR:δ0.83(d,J=7.4Hz,3H)、1.17-1.27(m,2H)、1.32-1.42(m,2H)、3.65(t,J=6.6Hz,2H)、7.32-7.38(m,2H)、7.78-7.85(m,2H)
下記のようにして、非水電解液を得た。
エチレンカーボネート(以下、EC)と、ジメチルカーボネート(以下、DMC)と、エチルメチルカーボネート(EMC)とを、EC:DMC:EMC=30:35:35(体積比)で混合した。これにより、非水溶媒として混合溶媒を得た。
電解質としてのLiPF6を、得られた混合溶媒に対し、最終的に得られる非水電解液中の濃度が1モル/リットルとなるように溶解させ、電解液を得た。
正極活物質としてLi(Ni0.5Co0.2Mn0.3O2)(94質量%)、導電助剤としてカーボンブラック(3質量%)、及び結着材としてポリフッ化ビニリデン(PVdF)(3質量%)を添加した混合物を得た。得られた混合物を、N-メチルピロリドン溶媒中に分散させ、正極合材スラリーを得た。
正極集電体として厚さ20μmのアルミニウム箔を準備した。
得られた正極合材スラリーをアルミニウム箔上に塗布し、乾燥後、プレス機で圧延し、シート状の正極を得た。正極は、正極集電体と、正極活物質層とからなる。
負極活物質としてグラファイト(96質量%)、導電助剤としてカーボンブラック(1質量%)、増粘剤として純水中で分散したカルボキシメチルセルロースナトリウムを固形分で1質量%、及び結着材として純水中で分散したスチレン-ブタジエンゴムの(SBR)を固形分で2質量%を混合し、負極合材スラリーを得た。
負極集電体として厚さ10μmの銅箔を準備した。
得られたスラリーを銅箔上に塗布し、乾燥後、プレス機で圧延し、シート状の負極を得た。負極は、負極集電体と、負極活物質層とからなる。
負極を直径14mmで、正極を直径13mmで、セパレータを直径17mmで、それぞれ円盤状に打ち抜いた。これにより、コイン状の負極、コイン状の正極、及びコイン状のセパレータをそれぞれ得た。
得られたコイン状の負極、コイン状のセパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(サイズ:2032サイズ)内に積層した。次いで、この電池缶内に非水電解液20μLを注入し、セパレータと正極と負極とを非水電解液に含漬させた。
次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより、電池を密封した。
以上により、図2で示す構成を有するコイン型のリチウム二次電池前駆体を得た。リチウム二次電池前駆体のサイズは、直径20mm、高さ3.2mmであった。
上述した非水電解液の作製において、表4に記載の添加剤を最終的に得られる非水電解液の全量に対する含有量が表4に記載の含有量(質量%)となるように添加した他は、実施例1と同様にして、リチウム二次電池前駆体を得た。
得られたリチウム二次電池前駆体に、下記のエージング処理を施し、第1電池を得た。得られた第1電池に、下記の初期充放電処理を施し、第2電池を得た。得られた第2電池に、下記の直流抵抗評価用処理を施し、第3電池を得た。得られた第3電池に、高温保存処理を施し、第4電池を得た。得られた第4電池に、下記の後期充放電処理を施し、第5電池を得た。
得られた第1電池~第5電池を用いて、下記の測定方法により、高温保存後容量、高温保存後抵抗、及び抵抗増加率の各々を測定した。これらの測定結果を表4に示す。
リチウム二次電池前駆体に、下記のエージング処理を施し、第1電池を得た。
第1電池に、下記の初期充放電処理を施し、第2電池を得た。
第2電池に、下記の直流抵抗評価用処理を施し、第3電池を得た。
第3電池に、下記の高温保存処理を施し、第4電池を得た。
第4電池に、下記の後期充放電処理を施し、第5電池を得た。
下記式(X1)に示すように、比較例1の第4電池の放電容量に対する、各実施例の第4電池の放電容量の相対値を、「高温保存後容量[%]」とした。高温保存後容量は、上述した後期充放電処理において、第2放電をした際に、得られた容量を示す。
下記式(X2)に示すように、比較例1の第5電池の直流抵抗(DCIR:Direct current internal resistance)に対する第5電池の直流抵抗の相対値を、「高温保存後抵抗[%]」とした。
下記式(X3)に示すように、比較例1の抵抗増加率に対する抵抗増加率の相対値を、「抵抗増加率[%]」とした。
一方、比較例2の非水電解液は、リチウムトリフルオロメチルカルボニルトリフルオロメチルスルホンアミド(C-1)を含有し、リチウム(N-カルボニル)スルホンアミド化合物(I)を含有しなかった。そのため、比較例2のリチウム二次電池は、高温保存後容量が100%、高温保存後抵抗が106%、抵抗増加率が102%であった。すなわち、比較例2のリチウム二次電池は、高温環境下で保存されると、直流抵抗の増加、及び放電容量の低下を抑制することができないことがわかった。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (17)
- 下記式(I)で表されるリチウム(N-カルボニル)スルホンアミド化合物。
〔式(I)中、
R1及びR2の各々は、炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルケニル基(前記アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(前記アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、又はアリール基(前記アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表す。
L1及びL2の各々は、単結合又は-O-を表す。但し、L1及びL2の各々が単結合である場合を除く。〕 - 下記式(I)で表されるリチウム(N-カルボニル)スルホンアミド化合物(I)を含むリチウム二次電池用添加剤。
〔式(I)中、
R1及びR2の各々は、炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。但し、トリフルオロメチル基を除く。)、炭素数2~10のアルケニル基(前記アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(前記アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、又はアリール基(前記アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表す。
L1及びL2の各々は、単結合又は-O-を表す。〕 - 請求項2に記載のリチウム二次電池用添加剤において、
前記R1及び前記R2の各々は、
前記アルキル基、前記アルケニル基、前記アルキニル基、又は前記アリール基に代えて、
炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、前記アルケニル基、前記アルキニル基、前記アリール基、炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又はハロゲン原子を表し、
R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とが除かれた、リチウム二次電池用添加剤。 - 下記式(I)で表されるリチウム(N-カルボニル)スルホンアミド化合物(I)を含むリチウム二次電池用非水電解液。
〔式(I)中、
R1及びR2の各々は、炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。但し、トリフルオロメチル基を除く。)、炭素数2~10のアルケニル基(前記アルケニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、炭素数2~10のアルキニル基(前記アルキニル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、又はアリール基(前記アリール基の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)を表す。
L1及びL2の各々は、単結合又は-O-を表す。〕 - 請求項4に記載のリチウム二次電池用非水電解液において、
前記R1及び前記R2の各々は、
前記アルキル基、前記アルケニル基、前記アルキニル基、又は前記アリール基に代えて、
炭素数1~10のアルキル基(前記アルキル基の少なくとも1つの水素原子は、ハロゲン原子で置換されてもよい。)、前記アルケニル基、前記アルキニル基、前記アリール基、炭素数7~16のアラルキル基(前記アラルキル基中の芳香環の少なくとも1つの水素原子は、ハロゲン原子、炭素数1~6のアルコキシ基、又は炭素数1~6のアルキル基で置換されてもよい。)、又はハロゲン原子を表し、
R1がハロゲン原子であり、かつL1が-O-である場合と、R2がハロゲン原子であり、かつL2が-O-である場合と、R1及びR2の各々が前記アルキル基又は前記アリール基であり、かつL1及びL2の各々が単結合である場合とが除かれた、リチウム二次電池用非水電解液。 - 電解質を更に含有し、
前記電解質は、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化タンタル酸リチウム(LiTaF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CF3SO2)2N)、及びリチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(C2F5SO2)2N)からなる群から選択される少なくとも1種である、請求項4又は請求項5に記載のリチウム二次電池用非水電解液。 - 前記リチウム(N-カルボニル)スルホンアミド化合物(I)は、
前記R1が前記アリール基を表し、
前記L1が単結合を表し、
前記R2が前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、又は前記アラルキル基を表し、
前記L2が-O-を表す、請求項4~請求項6のいずれか1項に記載のリチウム二次電池用非水電解液。 - 前記リチウム(N-カルボニル)スルホンアミド化合物(I)は、
前記R1が、前記アルキル基を表し、
前記L1が、単結合を表し、
前記R2が、前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、又は前記アラルキル基を表し、
前記L2が、-O-を表す、請求項4~請求項6のいずれか1項に記載のリチウム二次電池用非水電解液。 - 前記リチウム(N-カルボニル)スルホンアミド化合物(I)は、
前記R1が、フッ素原子を表し、
前記L1が、単結合を表し、
前記R2が、前記アルキル基、前記アルケニル基、前記アルキニル基、前記アリール基、又は前記アラルキル基を表し、
前記L2が、-O-を表す、請求項4~請求項6のいずれか1項に記載のリチウム二次電池用非水電解液。 - モノフルオロリン酸リチウム及びジフルオロリン酸リチウムからなる群より選ばれる少なくとも1種である化合物(II)を含む、請求項4~請求項9のいずれか1項に記載のリチウム二次電池用非水電解液。
- 下記式(III)で表される化合物(III)を含む、請求項4~請求項10のいずれか1項に記載のリチウム二次電池用非水電解液。
〔式(III)中、
Mは、アルカリ金属であり、
Yは、遷移元素、周期律表の13族元素、14族元素、又は15族元素であり、
bは、1~3の整数であり、
mは、1~4の整数であり、
nは、0~8の整数であり、
qは、0又は1であり、
R3は、炭素数1~10のアルキレン基、炭素数1~10のハロゲン化アルキレン基、炭素数6~20のアリーレン基、又は炭素数6~20のハロゲン化アリーレン基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、qが1でmが2~4の場合にはm個のR3はそれぞれが結合していてもよい。)であり、
R4は、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数6~20のハロゲン化アリール基(これらの基は、構造中に置換基、又はヘテロ原子を含んでいてもよく、nが2~8の場合はn個のR4はそれぞれが結合して環を形成していてもよい。)であり、
Q1、及びQ2は、それぞれ独立に、酸素原子、又は炭素原子である。〕 - 下記式(IV)で表される化合物(IV)を含む、請求項4~請求項11のいずれか1項に記載のリチウム二次電池用非水電解液。
〔式(IV)中、
R5は、酸素原子、炭素数1~6のアルキレン基、又は炭素数2~6のアルケニレン基であり、
R6は、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、式(iv-1)で表される基、又は式(iv-2)で表される基であり、
*は、結合位置を示し、
式(iv-1)中、R61は、酸素原子、炭素数1~6のアルキレン基、炭素数2~6のアルケニレン基、又はオキシメチレン基であり、
式(iv-2)中、R62は、炭素数1~6のアルキル基、又は炭素数2~6のアルケニル基である。〕 - 前記リチウム(N-カルボニル)スルホンアミド化合物(I)の含有量が、リチウム二次電池用非水電解液の全量に対し、0.01質量%以上5質量%以下である請求項4~請求項12のいずれか1項に記載のリチウム二次電池用非水電解液。
- ケースと、
前記ケースに収容された、正極、負極、セパレータ、及び電解液と、
を備え、
前記正極が、リチウムイオンを吸蔵及び放出可能な正極であり、
前記負極が、リチウムイオンを吸蔵及び放出可能な負極であり、
前記電解液が、請求項4~請求項13のいずれか1項に記載のリチウム二次電池用非水電解液である、リチウム二次電池前駆体。 - 前記正極が、正極活物質として、下記式(C1)で表されるリチウム含有複合酸化物を含む、請求項14に記載のリチウム二次電池前駆体。
LiNiaCobMncO2 … 式(C1)
〔式(C1)中、a、b及びcは、それぞれ独立に、0超1未満であり、かつ、a、b及びcの合計は、0.99以上1.00以下である。〕 - 請求項14又は請求項15に記載のリチウム二次電池前駆体を準備する工程と、
前記リチウム二次電池前駆体に対して、充電及び放電を施す工程と
を含む、リチウム二次電池の製造方法。 - 請求項14又は請求項15に記載のリチウム二次電池前駆体に対して、充電及び放電を施して得られたリチウム二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22770989.6A EP4310073A1 (en) | 2021-03-17 | 2022-02-16 | Lithium (n-carbonyl)sulfonamide compound, additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery, lithium secondary battery precursor, lithium secondary battery, and method for producing lithium secondary battery |
JP2023506885A JPWO2022196230A1 (ja) | 2021-03-17 | 2022-02-16 | |
US18/550,487 US20240186580A1 (en) | 2021-03-17 | 2022-02-16 | Lithium (n-carbonyl)sulfonamide compound, additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery, lithium secondary battery precursor, lithium secondary battery, and method for producing lithium secondary battery |
CN202280021052.XA CN116981656A (zh) | 2021-03-17 | 2022-02-16 | 锂(n-羰基)磺酰胺化合物、锂二次电池用添加剂、锂二次电池用非水电解液、锂二次电池前体、锂二次电池、及锂二次电池的制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-044154 | 2021-03-17 | ||
JP2021044154 | 2021-03-17 | ||
JP2021-143890 | 2021-09-03 | ||
JP2021143890 | 2021-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022196230A1 true WO2022196230A1 (ja) | 2022-09-22 |
Family
ID=83322284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006194 WO2022196230A1 (ja) | 2021-03-17 | 2022-02-16 | リチウム(n-カルボニル)スルホンアミド化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240186580A1 (ja) |
EP (1) | EP4310073A1 (ja) |
JP (1) | JPWO2022196230A1 (ja) |
WO (1) | WO2022196230A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023149556A1 (ja) * | 2022-02-04 | 2023-08-10 | セントラル硝子株式会社 | 非水電解液、非水電解液電池、非水電解液電池の製造方法、化合物、及び非水電解液用添加剤 |
WO2024167007A1 (ja) * | 2023-02-09 | 2024-08-15 | 三井化学株式会社 | 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及び、リチウム二次電池の製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210022A (ja) * | 2005-01-25 | 2006-08-10 | Toyota Motor Corp | 電解質およびその利用 |
JP2011134459A (ja) * | 2009-12-22 | 2011-07-07 | Konica Minolta Holdings Inc | 電解質組成物、二次電池、および化合物 |
WO2017126701A1 (ja) * | 2016-01-19 | 2017-07-27 | パイオトレック株式会社 | 高効率イオン電導型リチウムイオン電池またはリチウムイオンキャパシタ |
WO2017156179A1 (en) | 2016-03-09 | 2017-09-14 | Raze Therapeutics, Inc. | 3-phosphoglycerate dehydrogenase inhibitors and uses thereof |
WO2018176134A1 (en) * | 2017-03-27 | 2018-10-04 | HYDRO-QUéBEC | Salts for use in electrolyte compositions or as electrode additives |
JP2019153443A (ja) | 2018-03-02 | 2019-09-12 | 三井化学株式会社 | 電池用非水電解液及びリチウム二次電池 |
WO2020121850A1 (ja) * | 2018-12-13 | 2020-06-18 | 三井化学株式会社 | 電池用非水電解液及びリチウム二次電池 |
JP2021044154A (ja) | 2019-09-11 | 2021-03-18 | 三洋化成工業株式会社 | リチウムイオン電池用電極の製造装置 |
JP2021143890A (ja) | 2020-03-11 | 2021-09-24 | 株式会社東芝 | 故障検出回路及び半導体装置 |
-
2022
- 2022-02-16 WO PCT/JP2022/006194 patent/WO2022196230A1/ja active Application Filing
- 2022-02-16 US US18/550,487 patent/US20240186580A1/en active Pending
- 2022-02-16 EP EP22770989.6A patent/EP4310073A1/en active Pending
- 2022-02-16 JP JP2023506885A patent/JPWO2022196230A1/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210022A (ja) * | 2005-01-25 | 2006-08-10 | Toyota Motor Corp | 電解質およびその利用 |
JP2011134459A (ja) * | 2009-12-22 | 2011-07-07 | Konica Minolta Holdings Inc | 電解質組成物、二次電池、および化合物 |
WO2017126701A1 (ja) * | 2016-01-19 | 2017-07-27 | パイオトレック株式会社 | 高効率イオン電導型リチウムイオン電池またはリチウムイオンキャパシタ |
WO2017156179A1 (en) | 2016-03-09 | 2017-09-14 | Raze Therapeutics, Inc. | 3-phosphoglycerate dehydrogenase inhibitors and uses thereof |
WO2018176134A1 (en) * | 2017-03-27 | 2018-10-04 | HYDRO-QUéBEC | Salts for use in electrolyte compositions or as electrode additives |
JP2020515558A (ja) | 2017-03-27 | 2020-05-28 | ハイドロ−ケベック | 電解質組成物中でまたは電極の添加剤として使用される塩 |
JP2019153443A (ja) | 2018-03-02 | 2019-09-12 | 三井化学株式会社 | 電池用非水電解液及びリチウム二次電池 |
WO2020121850A1 (ja) * | 2018-12-13 | 2020-06-18 | 三井化学株式会社 | 電池用非水電解液及びリチウム二次電池 |
JP2021044154A (ja) | 2019-09-11 | 2021-03-18 | 三洋化成工業株式会社 | リチウムイオン電池用電極の製造装置 |
JP2021143890A (ja) | 2020-03-11 | 2021-09-24 | 株式会社東芝 | 故障検出回路及び半導体装置 |
Non-Patent Citations (3)
Title |
---|
"Perkin transactions I", JOURNAL OF THE CHEMICAL SOCIETY, 1982, pages 677 - 680 |
PICARD, J.A. ET AL., J. MED. CHEM., vol. 39, 1996, pages 1243 |
PICARD, J.A. ET AL.: "39", J. MED. CHEM., 1996, pages 1243 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023149556A1 (ja) * | 2022-02-04 | 2023-08-10 | セントラル硝子株式会社 | 非水電解液、非水電解液電池、非水電解液電池の製造方法、化合物、及び非水電解液用添加剤 |
WO2024167007A1 (ja) * | 2023-02-09 | 2024-08-15 | 三井化学株式会社 | 電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及び、リチウム二次電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022196230A1 (ja) | 2022-09-22 |
EP4310073A1 (en) | 2024-01-24 |
US20240186580A1 (en) | 2024-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2763231B1 (en) | Electrolyte solution for nonaqueous secondary batteries, and secondary battery | |
WO2022196230A1 (ja) | リチウム(n-カルボニル)スルホンアミド化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JP2010503974A (ja) | 非水電解液添加剤及びこれを用いた二次電池 | |
CN108140887B (zh) | 非水电解液及非水电解液二次电池 | |
WO2018025621A1 (ja) | 非水電解液及びリチウムイオン二次電池 | |
US10069166B2 (en) | Cyclic sulfonic acid ester compound, non-aqueous electrolyte solution, and lithium ion secondary battery using same | |
KR20160109663A (ko) | 유기전해액 및 이를 포함하는 리튬 전지 | |
JP4968614B2 (ja) | 二次電池用電解液およびそれを用いた二次電池 | |
JP7194281B2 (ja) | 電解液組成物及びこれを利用した二次電池 | |
CA3028614A1 (en) | Secondary battery with anode including a titanium-containing compound, and method of manufacturing the same | |
JP7209805B2 (ja) | ホウ酸リチウム化合物、リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、及びリチウム二次電池の製造方法 | |
JP3428910B2 (ja) | 電解質の製造方法及び二次電池の製造方法 | |
CN110546807A (zh) | 用于锂二次电池的电解液和包括该电解液的锂二次电池 | |
JP2008234838A (ja) | 非水電解液および非水電解液二次電池 | |
JP2023137680A (ja) | リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、リチウムスルファート化合物及びリチウム二次電池の製造方法 | |
JP2023112560A (ja) | リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、及びリチウム二次電池の製造方法 | |
TW202240963A (zh) | 鋰二次電池用非水電解液、鋰二次電池前驅物、鋰二次電池、及鋰二次電池之製造方法 | |
CN110915052A (zh) | 用于锂电池的电解质组合物的杂环磺酰氟添加剂 | |
JP2008258031A (ja) | ポリマー二次電池 | |
JP2013038029A (ja) | 非水電解質およびその利用 | |
CN116981656A (zh) | 锂(n-羰基)磺酰胺化合物、锂二次电池用添加剂、锂二次电池用非水电解液、锂二次电池前体、锂二次电池、及锂二次电池的制造方法 | |
JP2023094173A (ja) | リチウム二次電池用添加剤、非水電解液、リチウム二次電池前駆体、リチウム二次電池、アンモニウムスルホネート化合物及びリチウム二次電池の製造方法 | |
JP2023094174A (ja) | リチウム二次電池用添加剤、リチウム二次電池用非水電解液、リチウム二次電池前駆体、リチウム二次電池、リチウムスルホネート化合物及びリチウム二次電池の製造方法 | |
JP6575519B2 (ja) | 電解液及び二次電池 | |
TWI772486B (zh) | 添加劑的用途及鋰離子電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22770989 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280021052.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18550487 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023506885 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022770989 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022770989 Country of ref document: EP Effective date: 20231017 |