WO2019163962A1 - 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板 - Google Patents

電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2019163962A1
WO2019163962A1 PCT/JP2019/006878 JP2019006878W WO2019163962A1 WO 2019163962 A1 WO2019163962 A1 WO 2019163962A1 JP 2019006878 W JP2019006878 W JP 2019006878W WO 2019163962 A1 WO2019163962 A1 WO 2019163962A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
electrolytic copper
ion secondary
copper
mpa
Prior art date
Application number
PCT/JP2019/006878
Other languages
English (en)
French (fr)
Inventor
貴大 佐々木
佐藤 章
篠崎 淳
伸 菊池
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2019523893A priority Critical patent/JP6582156B1/ja
Priority to CN201980014480.8A priority patent/CN111771015B/zh
Priority to KR1020207018615A priority patent/KR102495166B1/ko
Publication of WO2019163962A1 publication Critical patent/WO2019163962A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolytic copper foil, a negative electrode for a lithium ion secondary battery using the electrolytic copper foil, a lithium ion secondary battery, a copper clad laminate, and a printed wiring board.
  • a lithium ion secondary battery (hereinafter, simply referred to as “battery”) is composed of, for example, a positive electrode, a negative electrode, and a non-aqueous electrolyte, and is mainly used for a mobile phone, a notebook type personal computer, and the like. ing. In recent years, the demand for automobile applications has also increased rapidly.
  • a negative electrode of a lithium ion secondary battery has a negative electrode active material layer formed on the surface of a negative electrode current collector, and a copper foil is generally used for the negative electrode current collector.
  • electrolytic copper foil hereinafter sometimes simply referred to as “copper foil” that can easily achieve both conductivity and strength and can be thinned at low cost is widely used.
  • a negative electrode of a lithium ion secondary battery using such a copper foil is formed by applying carbon particles or the like as a negative electrode active material layer on the surface of the copper foil, drying, and further pressing.
  • the active material layer expands and contracts, and the stress may be applied to other members such as a copper foil and a separator.
  • a stress load causes a short circuit due to the destruction of other members such as a separator or a fire.
  • the stress load on the copper foil may cause the active material layer to peel from the copper foil, and may cause the copper foil to break down such as wrinkles and breakage, leading to a decrease in battery life.
  • the stress applied to the copper foil is further increased as the thickness and density of the active material layer are increased.
  • the copper foil has a tensile strength of a predetermined value or more, or the elongation of the copper foil is a predetermined value or more, and the elongation anisotropy is reduced.
  • a technique for improving the mechanical properties of the foil has been proposed (see Patent Documents 1 to 4).
  • Patent Document 1 simply improving the mechanical properties such as the tensile strength and elongation of the copper foil cannot sufficiently solve the above problems.
  • Patent Documents 2 and 3 the crystal grain size and orientation are controlled, or as in Patent Document 4, a ten-point average roughness including only information in the height direction with respect to the two-dimensional sectional shape of the surface Controlling Rzjis) and reducing the elongation anisotropy were insufficient to reduce the strength variation due to the location of the wide copper foil.
  • a printed wiring board (particularly a build-up wiring board) is manufactured by thermocompression bonding of the copper foil and the insulating board with the insulating resin layer side as the insulating substrate side. .
  • a printed wiring board there has been a problem that wrinkles are generated in the copper foil due to pressing when the copper foil and the insulating substrate are thermocompression bonded. Therefore, the development of a copper foil that is less likely to be wrinkled during production has been demanded for printed wiring board applications.
  • the present invention provides a battery that has high mechanical strength and heat resistance, and does not generate wrinkles, breakage, or slit end face shape even if it is wide even if a plurality of stripe coatings are applied during battery manufacture.
  • Electrolytic copper foil excellent in productivity hereinafter simply referred to as “battery productivity”
  • a negative electrode for lithium ion secondary batteries and a lithium ion secondary battery using the electrolytic copper foil For the purpose.
  • the present invention provides an electrolytic copper foil that is less likely to be wrinkled by a press during production, and a copper-clad laminate and a printed wiring board using the electrolytic copper foil, even when used as a printed wiring board. The purpose is to provide.
  • the inventors have determined that the tensile strength measured using each cut copper foil obtained by cutting the electrolytic copper foil from one end to the other end in the width direction at an interval of 100 mm has a predetermined requirement ( It has been found that by satisfying (I) to (III), an electrolytic copper foil having high mechanical strength and heat resistance and excellent in battery productivity can be obtained even if it is wide, and the present invention is completed. I came to let you. Moreover, it discovered that the above electrolytic copper foil was hard to generate
  • the gist configuration of the present invention is as follows.
  • Tensile strength measured using each cut copper foil obtained by cutting an electrolytic copper foil from one end to the other end in the width direction at an interval of 100 mm satisfies the following requirements (I) to (III): Electrolytic copper foil.
  • the average value of the tensile strength of each said cut copper foil in the state after heat-processing at 150 degreeC for 1 hour is 350 Mpa or more.
  • [5] The electrolytic copper foil according to any one of [1] to [4], wherein the development area ratio (Sdr) of the glossy surface is 12% or more and 27% or less.
  • a copper-clad laminate comprising: the electrolytic copper foil according to [9] above; and a resin substrate laminated on the roughened surface of the electrolytic copper foil.
  • a printed wiring board comprising the copper clad laminate according to [10].
  • a lithium ion secondary battery can be provided.
  • an electrolytic copper foil that is unlikely to be wrinkled by pressing during production, a copper-clad laminate using the electrolytic copper foil, and a printed wiring board can be provided.
  • FIG. 1 is an example of a production apparatus for producing the electrolytic copper foil of the present invention.
  • Embodiments of the electrolytic copper foil according to the present invention will be described in detail below.
  • the tensile strength measured using each cut copper foil obtained by cutting at 100 mm intervals from one end to the other end in the width direction satisfies the following requirements (I) to (III): It is characterized by that.
  • electrolytic copper foil refers to a copper foil produced by electrolytic treatment, and an untreated copper foil that has not been subjected to surface treatment after foil formation, and subjected to surface treatment as necessary. It means to include any copper foil (surface-treated electrolytic copper foil). Further, the foil thickness of the electrolytic copper foil is preferably 30 ⁇ m or less, more preferably 4 to 15 ⁇ m. In the following description, “copper foil” means “electrolytic copper foil” unless otherwise specified.
  • the “width direction” of the copper foil is a direction perpendicular to the transport direction (same as the peeling direction from the cathode electrode) at the time of producing the copper foil, and the copper foil wound in a roll shape
  • the longitudinal direction corresponds to the transport direction.
  • the “width direction dimension” is a dimension from one end to the other end in the width direction of the copper foil.
  • the “cut copper foil” is a copper foil obtained by cutting a copper foil at intervals of 100 mm from one end in the width direction to the other end.
  • the cut copper foil used for evaluating the characteristics of the copper foil is all of the cut copper foil having a width direction dimension of 100 mm ( ⁇ 5 mm), and the cut copper foil having a width direction dimension of less than 95 mm is a measurement object.
  • the cut copper foil having a width direction dimension of 850 mm when cutting from one end to the other end in the width direction at an interval of 100 mm, nine cut copper foils are obtained, of which the dimension to be measured is the width direction dimension. Are 8 cut copper foils of 100 mm ( ⁇ 5 mm).
  • “normal” means that the copper foil is in an unheated state as it is manufactured and does not have a heat history with heating exceeding 60 ° C., for example, at room temperature (15 to 30 ° C., even below) The same)).
  • the “state after being heat-treated at 150 ° C. for 1 hour” means a state after the copper foil has been heat-treated at 150 ° C. for 1 hour and cooled to room temperature, for example.
  • the places where the active material layer is applied and the places where the active material layer is not applied are alternately formed in the width direction of the copper foil, and the places where the load is applied in the width direction of the copper foil and the places where it is not Are alternately present.
  • the places where the load is applied in the width direction of the copper foil and the places where it is not are alternately present.
  • the tensile strength in the width direction of the copper foil it was found that slips in the width direction, tension fluctuations, etc. are likely to occur.
  • flapping on the line transport and slipping in the width direction of the copper foil cause wrinkles and breakage, and fluctuations in tension cause wrinkles and slit end face abnormalities (burrs, chips, etc.).
  • the tensile strength varies in the width direction of the copper foil, particularly compared to the conventional copper foil having high strength. It has been found that by reducing the size, the above problems can be solved, and productivity can be improved in the mass production process of the battery.
  • the present inventors have found that wrinkles occur more frequently as the variation in the tensile strength of the copper foil increases. Based on the above knowledge, the copper foil used in the printed wiring board can also reduce wrinkle defects and improve the productivity of the printed wiring board by reducing the variation in the tensile strength in the width direction as described above. I found.
  • the width direction dimension of the copper foil of the present invention is preferably 300 mm or more, more preferably 600 mm or more, still more preferably 900 mm or more, and still more preferably 1200 mm or more.
  • Such a copper foil is suitable for use in mass production of batteries and printed wiring boards.
  • the upper limit of the width direction dimension of copper foil is based also on the manufacturing equipment of copper foil, it is 2000 mm, for example, and the width direction dimension of copper foil is 1500 mm or less from a viewpoint of reducing the characteristic variation of the width direction. Is preferred.
  • the stress applied when manufacturing the battery and the printed wiring board tends to be different in the width direction of the copper foil. . Therefore, the problem as described above is particularly noticeable in the wide copper foil.
  • the above problem can be solved by reducing the variation in the tensile strength in the width direction of the copper foil. .
  • the average value of the tensile strength (Ts) of each cut copper foil in a normal state is from 400 MPa to 650 MPa, preferably from 400 MPa to 600 MPa, more preferably from 445 MPa to 600 MPa, More preferably, it is 450 MPa or more and 600 MPa or less.
  • the dispersion ⁇ 2 of the tensile strength (Ts) of each cut copper foil in a normal state is 18 [MPa] 2 or less, preferably 14 [MPa] 2 or less, more preferably 11 [MPa]. MPa] 2 or less, more preferably 10 [MPa] 2 or less.
  • the dispersion ⁇ 2 of the tensile strength of each cut copper foil is an index of variation in the tensile strength in the width direction of the copper foil, and the larger the value, the greater the variation in tensile strength.
  • the copper foil of the present invention can effectively prevent the occurrence of local wrinkles and sagging in the electrode manufacturing process because the tensile strength dispersion ⁇ 2 of each cut copper foil in the normal state is in the above range. Further, it is possible to effectively prevent the generation of wrinkles due to pressing in the printed wiring board manufacturing process.
  • the dispersion ⁇ 2 of the tensile strength of each cut copper foil in the normal state is more than 18 [MPa] 2
  • the load is applied to the copper foil in the electrode manufacturing process. Since the applied stress varies in the width direction of the copper foil, local wrinkles and sagging occur, and the productivity of the battery tends to decrease.
  • wrinkles due to pressing tend to be prominent.
  • the lower limit of the tensile strength dispersion ⁇ 2 of each cut copper foil in a normal state may be, for example, 0 [MPa] 2 .
  • the average value of the tensile strength (Ts) of each cut copper foil after being heat-treated at 150 ° C. for 1 hour is 350 MPa or more, preferably 380 MPa or more, more preferably 400 MPa or more. It is. By setting it as the said range, sufficient intensity
  • the upper limit of the average value of the tensile strength of each cut copper foil after being heat-treated at 150 ° C. for 1 hour is, for example, 550 MPa, preferably 450 MPa from the viewpoint of having an appropriate elongation even after heating. May be. Also, in the production of the printed wiring board, when the average value of the tensile strength of each cut copper foil in a state after being heat-treated at 150 ° C.
  • the etching property is improved.
  • the average value of the tensile strength is less than 350 MPa, the crystal grains tend to increase after heating in the substrate laminating step, and the copper particles are hardly dissolved by etching, so that the etching property is deteriorated.
  • the tensile strength is a value measured under the evaluation conditions described in this example.
  • the average value of the elongation (El) in the normal state of each cut copper foil is preferably 5.3% or more, more preferably 6.0% or more, and further preferably 7.5%. As mentioned above, More preferably, it is 9.0% or more. By setting it as the said range, durability with respect to the stress loaded on copper foil at the time of charging / discharging of a battery improves.
  • the upper limit of the average value of the elongation in the normal state of each cut copper foil is, for example, 13.0%, preferably 11.0% from the viewpoint of high strength.
  • the elongation is a value measured under the evaluation conditions described in this example.
  • the ten-point average roughness Rzjis is generally used as a parameter representing the surface shape of the copper foil.
  • the development area ratio (Sdr) includes three-dimensional information on the surface, so that more appropriate characteristic evaluation can be performed.
  • Developed area ratio means the ratio of the area added by the surface properties based on the ideal surface having the size of the measurement region, and is defined by the following formula (1).
  • x and y are plane coordinates
  • z is a coordinate in the height direction
  • z (x, y) indicates the coordinates of a certain point, and by differentiating this, the slope at that coordinate point is obtained.
  • A is the plane area of the measurement region.
  • the development area ratio (Sdr) is measured and evaluated for unevenness on the surface of the copper foil by, for example, a three-dimensional white interference microscope, a scanning electron microscope (SEM), an electron beam three-dimensional roughness analyzer, etc. Can be sought.
  • the development area ratio (Sdr) tends to increase as the spatial complexity of the surface texture increases, regardless of changes in the surface roughness (Sa).
  • the development area ratio (Sdr) of the glossy surface is preferably 27% or less, more preferably 20% or less, still more preferably 18.5% or less, and still more preferably. 17% or less.
  • strength of the width direction of copper foil can further be reduced, and the productivity of a battery further improves.
  • production of the wrinkle by a press is suppressed also in the manufacturing process of a printed wiring board.
  • the lower limit of the development area ratio (Sdr) of the glossy surface may be, for example, 12% from the viewpoint of the coatability of the active material layer.
  • the development area ratio (Sdr) of the rough surface is preferably 92% or less, more preferably 90% or less, still more preferably 80% or less, and still more preferably. 70% or less.
  • the lower limit of the development area ratio (Sdr) of the rough surface may be 62%, for example.
  • the development area ratio (Sdr) of the glossy surface and the roughened surface is a value measured under the evaluation conditions described in this example.
  • the glossy surface (sometimes referred to as “S (shiny) surface”) refers to the surface on the side that is in contact with the cathode drum during the production of the electrolytic copper foil, and is a rough surface (referred to as “M (matte) surface”). Sometimes refers to the surface opposite the glossy surface.
  • a glossy surface and a rough surface it refers to an untreated copper foil surface that has not been subjected to a surface treatment after foil production, and a roughening treatment was performed on the glossy surface and the rough surface. It shall be distinguished from the roughened surface.
  • the copper foil of the present invention may have a roughened surface on at least one surface of the copper foil, and the developed area ratio (Sdr) of the roughened surface is preferably 20% or more and 200% or less. More preferably, it is 25% or more and 197% or less.
  • a copper foil is particularly suitable for use as a printed wiring board.
  • the development area ratio (Sdr) of the roughened surface is less than 20%, the adhesiveness when adhering the adhesive resin to the surface tends to decrease, and when it exceeds 200% In some cases, the etching factor is lowered and it is difficult to form fine wiring.
  • the development area ratio (Sdr) of the roughened surface is a value measured under the evaluation conditions described in this example.
  • the copper foil of the present invention has a conductivity of preferably 88% IACS or more, more preferably 90% IACS or more, still more preferably 91% IACS or more, and still more preferably 92% IACS or more. .
  • the conductivity is a value measured under the evaluation conditions described in this example.
  • the electrolytic copper foil of the present invention supplies, for example, an electrolytic solution between an insoluble anode made of titanium coated with a platinum group element or an oxide element thereof and a titanium cathode drum provided to face the anode, While the cathode drum is rotated at a constant speed, a direct current is passed between both electrodes to deposit copper on the surface of the cathode drum, and the deposited copper is peeled off from the cathode drum surface and continuously wound.
  • the apparatus which performs such manufacture is an example.
  • a sulfuric acid-copper sulfate aqueous solution having a copper concentration of 50 to 100 g / L and a sulfuric acid concentration of 40 to 120 g / L can be preferably used.
  • an organic or inorganic additive may be added to an electrolyte solution from a viewpoint of the strengthening of copper foil.
  • organic additives include thiourea (CH 4 N 2 S) or water-soluble thiourea derivatives (such as ethylene thiourea), glue, gelatin, polyethylene glycol, starch, and cellulose-based water-soluble polymers (carboxyl methyl cellulose, hydroxy).
  • Polymeric polysaccharides such as ethyl cellulose
  • water-soluble polymer compounds such as polyethyleneimine and polyacrylamide can be used.
  • sodium tungstate, ammonium tungstate, etc. can be used as a supply source of a trace amount of metal elements in addition to NaCl and HCl as a supply source of chloride ions.
  • the strength of the copper foil is generally increased by adding an additive to the electrolytic solution.
  • the effect of the additive is mainly to control the incorporation of impurities into the foil, or the crystal orientation and the crystal grain size, by adsorbing the additive to the crystal nucleus of the copper surface layer during electrodeposition.
  • the rate at which nucleation and nucleation occur varies depending on the manufacturing conditions such as the concentration of the electrolytic solution, the current density, the liquid temperature, the type and concentration of the additive.
  • the nuclear growth is often dominant.
  • the additive is adsorbed on the copper crystal grains and taken into the copper foil, so that the strength of the copper foil can be increased.
  • the fact that the nucleus growth is dominant that is, the adsorption point of the additive is sparse. It means that it is easy to become. High-strength copper foil produced under such conditions tends to vary in strength.
  • the adsorption point of the additive can be made uniform in the surface direction of the copper foil. It was found that the variation in tensile strength in the direction can be reduced. Specifically, it is preferable to use PR (Periodic Reverse) pulse electrolysis only at the time of initial electrodeposition in addition to the conventional foil forming process.
  • PR Period Reverse
  • Suitable conditions for PR pulse electrolysis are, for example, as follows. Positive pulse current density I on : 20 to 80 A / dm 2 Positive pulse energization time t on : 50 to 200 milliseconds (ms) Negative pulse current density I rev : ⁇ 80 to ⁇ 20 A / dm 2 Negative pulse energization time t rev : 50 to 200 milliseconds (ms) Pulse stop time t off : 50 to 200 milliseconds (ms) Number of repetitions of positive pulse-negative pulse: 10-30 times
  • a minimum necessary and extremely thin and uniform initial electrodeposition layer can be formed, thereby obtaining a uniform deposited layer in the thickness direction of the copper foil in a later step. It is done. Therefore, the additive is uniformly adsorbed on both the surface direction and the thickness direction of the copper foil, and a high-strength electrolytic copper foil having a small strength variation in the width direction is obtained.
  • FIG. 1 shows a schematic diagram of a manufacturing apparatus.
  • the manufacturing apparatus 1 mainly includes a cathode drum 11, a PR pulse electrode 12, an anode 13, and a bathtub 14.
  • the PR pulse electrode 12 and the anode 13 are provided to face the cathode drum 11, and the electrolytic solution 20 is supplied therebetween.
  • the cathode drum 11 rotates at a constant speed in the direction of the arrow 11a, and the PR pulse and the direct current are energized between the electrodes of the PR pulse electrode 12 and the anode 13, respectively. Copper precipitates on the surface.
  • the copper deposited on the surface of the cathode drum 11 is finally peeled off in the direction of the arrow 30 a to be made as a copper foil 30.
  • the outside of the bathtub 14 and various pipes are not shown, but the electrolytic solution 20 is continuously supplied from the outside of the bathtub 14 in the direction of the arrow 20 a, and the cathode drum 11 and the electrolyte solution 20 after passing between the PR pulse electrode 12 and the anode 13 are discharged to the outside of the bathtub 14 through a discharge pipe.
  • the electrolytic copper foil of the present invention may be further subjected to a surface treatment on at least one of the surfaces of the copper foil as necessary.
  • a surface treatment for example, chromate treatment, or Ni or Ni alloy plating, Co or Co alloy plating, Zn or Zn alloy plating, Sn or Sn alloy plating, and further chromate treatment was performed on the above various plating layers.
  • examples thereof include inorganic rust preventive treatments such as those, organic rust preventive treatments such as benzotriazole, and silane coupling agent treatments.
  • these surface treatments increase the adhesion strength with the active material when used as a negative electrode current collector of a lithium ion secondary battery, and further prevent the charge / discharge cycle efficiency of the battery from decreasing. Fulfill.
  • These rust prevention treatments are generally performed at a very thin thickness relative to the copper foil thickness. Therefore, there is almost no effect on the tensile strength.
  • a roughening treatment on the surface of the copper foil as necessary before the surface treatment is applied to the copper foil.
  • a plating method or an etching method can be suitably employed.
  • These roughening treatments play a role of further improving the adhesiveness and the like with the active material when the copper foil is used as the negative electrode current collector of the lithium ion secondary battery.
  • a roughening process plays the role which improves the adhesiveness with an insulated substrate.
  • the roughening treatment is performed so as to obtain a roughening treatment surface having a desired surface property, particularly a desired development area ratio (Sdr). It is desirable to be controlled.
  • the roughening treatment is also generally performed with a very thin thickness with respect to the copper foil thickness. Therefore, there is almost no effect on the tensile strength.
  • an electrolytic plating method and an electroless plating method can be employed as the roughening by the plating method.
  • Roughened particles can be formed by metal plating made of one kind of metal among Cu, Co and Ni, or alloy plating containing two or more kinds of metals among these.
  • a method by physical etching or chemical etching is preferable.
  • physical etching a method of etching by sandblasting or the like can be mentioned.
  • chemical etching a method of etching with a processing solution or the like can be mentioned.
  • a known treatment liquid containing an inorganic or organic acid, an oxidizing agent, and an additive can be used as the treatment liquid.
  • the roughening treatment is performed by sequentially performing roughening plating treatment 1 and roughening plating treatment 2 on at least one surface of a copper foil serving as a base (hereinafter sometimes simply referred to as “copper foil base”). It can be carried out.
  • the preferable conditions for the roughening plating treatment 1 and the roughening plating treatment 2 are as follows. The following conditions are preferred examples, and the types and amounts of additives and electrolysis conditions can be appropriately changed and adjusted as necessary within the range not impeding the effects of the present invention.
  • Copper sulfate 18-23g / L as copper concentration (This means “copper sulfate containing copper metal in an amount corresponding to 18 to 23 g / L”. The same shall apply hereinafter.)
  • Sulfuric acid 96-105 g / L
  • Cobalt (II) sulfate heptahydrate cobalt concentration of 2.8 to 4.2 g / L Liquid temperature: 32-40 ° C
  • Current density 32 to 36 A / dm 2 Time: 1 second to 2 minutes
  • the development area ratio on the roughened surface of the copper foil from the viewpoint of achieving both adhesion to the insulating substrate and formation of a good fine circuit. It is effective to control (Sdr) within a range of 20% to 200%.
  • Sar smoothened surface having such a desired surface property can be produced by satisfying the conditions for the roughening treatment.
  • the surface treatment such as the rust prevention treatment is performed with a very thin thickness, so that the development area ratio (Sdr) of the roughening treatment surface is reduced. There is almost no influence. Therefore, the development area ratio (Sdr) of the roughened surface adjusted by the above-mentioned roughening treatment is maintained even after the surface treatment such as the rust prevention treatment.
  • the copper foil according to the present invention is preferably used as a negative electrode current collector of a lithium ion secondary battery.
  • a negative electrode current collector of a lithium ion secondary battery.
  • the negative electrode for a lithium ion secondary battery using the copper foil according to the present invention as a negative electrode current collector has high strength and high heat resistance, durability during battery manufacture and charge / discharge is improved.
  • the lithium ion secondary battery using such a negative electrode has a good yield at the time of manufacture, and is excellent in battery characteristics (for example, cycle characteristics).
  • the negative electrode for a lithium ion secondary battery can be formed by a known method using the copper foil of the present invention.
  • a negative electrode for a lithium ion secondary battery is formed by applying a slurry containing carbon particles or the like as a negative electrode active material layer on the surface of a copper foil, drying, and pressing.
  • the lithium ion secondary battery can be formed by a known method using the negative electrode.
  • the copper foil which concerns on this invention can also be used as a copper clad laminated board and a printed wiring board provided with this.
  • the copper foil according to the present invention it is possible to suppress the occurrence of wrinkles due to the press at the time of thermocompression bonding of the copper foil and the insulating substrate during the production of the printed wiring board, and the productivity of the printed wiring board can be reduced. It can be improved.
  • the copper foil of the present invention used for the production of a printed wiring board has a roughened surface on at least one surface of the copper foil, and the developed area ratio (Sdr) of the roughened surface is 20% or more and 200% or less. It is preferable that According to such a copper foil, it is possible to suppress the occurrence of wrinkle defects due to pressing, and it is possible to achieve both good fine wiring formation.
  • the copper-clad laminate preferably includes the copper foil of the present invention and a resin substrate laminated on the roughened surface of the copper foil.
  • a copper-clad laminate can be formed by a known method using the copper foil of the present invention.
  • a copper foil having a roughened surface on at least one surface and an insulating substrate (resin base material) are arranged such that the roughened surface (sticking surface) and the resin base material face each other. It is manufactured by laminating and sticking.
  • the insulating substrate include a flexible resin substrate and a rigid resin substrate.
  • the copper foil of the present invention is particularly suitable in combination with a rigid resin substrate.
  • a copper clad laminated board when manufacturing a copper clad laminated board, what is necessary is just to manufacture by bonding the surface treatment copper foil which has a silane coupling agent layer, and an insulated substrate by a hot press. It is produced by applying a silane coupling agent on an insulating substrate, and bonding the insulating substrate coated with the silane coupling agent and a surface-treated copper foil having a rust-proofing layer on the outermost surface by a hot press.
  • the copper-clad laminate also has the same effect as the present invention.
  • the printed wiring board preferably includes the copper-clad laminate.
  • Such a printed wiring board can be formed by a known method using the copper-clad laminate.
  • the build-up wiring board is required to highly integrate various electronic components.
  • the wiring pattern is required to have a high density, and the fine line width and line
  • An inter-pitch wiring pattern that is, a so-called fine pattern printed wiring board has been demanded.
  • multilayer boards used for servers, routers, communication base stations, in-vehicle boards, etc. and multilayer boards for smartphones require printed wiring boards with high density and extremely fine wiring (hereinafter referred to as “high density wiring boards”).
  • high density wiring boards has been.
  • High-layer wiring boards of AnyLayer are mainly used for the main board of smartphones.
  • Wiring with a pitch (hereinafter referred to as “L & S”) of 30 ⁇ m or less is required.
  • High-density wiring boards are conventionally manufactured by a subtractive method using a photoresist at a printed wiring board manufacturer, and it is effective to reduce the thickness of the copper foil to make the L & S finer. It has been known. However, when molding a high-density wiring board with a large area exceeding 500 mm square, if the copper foil has a thickness of 9 ⁇ m or less, there is a problem that the copper foil is wrinkled after pressing the insulating resin and the copper foil. there were.
  • Japanese Patent No. 6158573 discloses a technique for forming fine wiring by refining the average crystal grain size of the bulk of an ultrathin copper layer. Since it was not taken, when copper foil was thin, the defect occurred frequently in the press process.
  • the copper foil of the present invention has a small variation in the tensile strength in the width direction as described above. Generation can be suppressed, and productivity can be improved in the production of high-density wiring boards.
  • an electrolytic solution 20 is supplied between a titanium cathode drum 11 (width: 1200 mm, diameter: 2100 mm) and a PR pulse electrode 12 and an insoluble anode 13 provided to face the cathode drum 11. Then, while rotating the cathode drum 11 at a constant speed, a PR pulse and a direct current were passed between the two poles to deposit copper on the surface of the cathode drum 11 to produce a copper foil 30 having a thickness of 10 ⁇ m. Thereafter, the copper foil 30 was peeled off from the cathode drum 11, both ends were cut, and wound into a roll to obtain a copper foil having a width direction dimension of 1100 mm.
  • the electrolytic solution 20 was prepared to have a copper concentration of 80 g / L, a sulfuric acid concentration of 100 g / L, and a chloride ion concentration of 20 mg / L.
  • a sulfuric acid-copper sulfate electrolyte was used.
  • the temperature of the electrolytic solution was adjusted to 55 ° C., the average current density was 45 A / dm 2 , and the liquid flow rate was adjusted to 1.0 m / s.
  • the types of additives added to the electrolytic solution, the concentration of the additives, and the electrolysis conditions for PR pulse electrolysis were adjusted as shown in Table 1 for each of Production Examples 1 to 9 and Comparative Production Examples 1 to 4. did.
  • the rotational speed of the cathode drum 11 was suitably adjusted according to electrolysis conditions so that the thickness of the copper foil 30 might be 10 micrometers.
  • both “thiourea” and “ethylenethiourea” were manufactured by Tokyo Chemical Industry Co., Ltd.
  • Comparative Production Example 5 a copper foil 30 was obtained in the same manner as in Production Example 1 except that copper was deposited on the surface of the cathode drum 11 without applying a PR pulse between both electrodes.
  • Comparative Production Example 6 a copper foil 30 was obtained in the same manner as in Production Example 2 except that copper was deposited on the surface of the cathode drum 11 without applying a PR pulse between both electrodes.
  • ⁇ Tensile test> The tensile test was performed using an IPC-TM-650 using a tensile tester (type 1122, manufactured by Instron) with two types of cut copper foils in a normal state and a state after heat treatment at 150 ° C. for 1 hour as measurement targets. It was performed in accordance with the provisions of First, a test piece (0.5 inch ⁇ 6 inch) having a width direction dimension of 0.5 inch from a position 10 mm from one end (cut end) in the width direction of one cut copper foil is spaced approximately 5 mm in the width direction. 5 were cut out.
  • tensile strength and elongation were measured under conditions of a distance between chucks of 70 mm and a tensile speed of 50 mm / min.
  • the elongation refers to the elongation rate when the test piece is broken.
  • the average value of tensile strength and the average value of elongation were determined. This measurement was carried out for two types of copper foils in a normal state and a state after heat treatment at 150 ° C. for 1 hour. In addition, about normal copper foil, dispersion
  • ⁇ Development area ratio (Sdr)> The development area ratio (Sdr) is measured by measuring the surface shape using a white light interference optical microscope (Wyko ContourGT-K, manufactured by BRUKER) with a normal cut copper foil as the measurement object, and further analyzing the shape. Was done.
  • Shape analysis is VSI measurement method using a high resolution CCD camera, light source is white light, measurement magnification is 50 times, measurement area is 96.1 ⁇ m ⁇ 72.1 ⁇ m, Lateral Sampling is 0.075 ⁇ m, speed is 1, Backscan is The test was performed under the conditions of 10 ⁇ m, Length of 10 ⁇ m, and Threshold of 3%, and data processing was performed after filtering of TermsRemoval (Cylinderand Tilt) and DataRestore (Method: legacy, iterations 5). Specifically, it was performed as follows. First, the surface shape was measured at the center of one of the cut copper foils, and the shape analysis was performed to obtain the development area ratio (Sdr).
  • LiCoO 2 powder, graphite powder, and polyvinylidene fluoride powder are mixed at a mass ratio of 90: 7: 3, and N-methylpyrrolidone and ethanol are added as solvents to the mixture, and kneaded.
  • a positive electrode paste was prepared.
  • the obtained positive electrode agent paste was uniformly applied onto an aluminum foil having a thickness of 15 ⁇ m.
  • the aluminum foil coated with the positive electrode paste was dried in a nitrogen atmosphere to volatilize the solvent, and then roll-rolled to produce a sheet having a total thickness of 150 ⁇ m.
  • the sheet was cut into a width of 43 mm and a length of 285 mm, and then an aluminum foil lead terminal was attached to one end thereof by ultrasonic welding to form a positive electrode.
  • the copper foil used for the negative electrode current collector is a normal copper foil produced in Production Examples and Comparative Production Examples.
  • the copper foil was cut into a band shape (the width direction of the band shape was parallel to the width direction of the copper foil) so as to have a width direction dimension of 720 mm.
  • natural graphite powder average particle size of 10 ⁇ m
  • polyvinylidene fluoride powder are mixed at a mass ratio of 90:10, and N-methylpyrrolidone and ethanol are added as solvents to the mixture and kneaded.
  • a negative electrode paste was prepared.
  • the obtained negative electrode paste was applied on both sides of the strip-shaped copper foil in a double stripe shape with a width of 300 mm along the longitudinal direction of the copper foil.
  • the copper foil coated with the negative electrode paste was dried in a nitrogen atmosphere, the solvent was volatilized, and then roll-rolled to compress the entire thickness to 150 ⁇ m. Thereafter, the coated part was cut into a width of 43 mm and a length of 280 mm.
  • a nickel foil lead terminal was attached to one end by ultrasonic welding to form a negative electrode. Finally, it was visually confirmed whether or not abnormalities such as wrinkles in the copper foil and burrs in the cut portion were observed, and evaluated as battery productivity.
  • a lid was attached to the safety valve, and a sealed structure type lithium ion secondary battery having an outer diameter of 14 mm and a height of 50 mm was assembled.
  • a charge / discharge cycle test was performed in which the assembled battery was charged at a charging current of 100 mA to 4.2 V and discharged at a discharge current of 100 mA until it reached 2.4 V.
  • the battery characteristics were evaluated with the number of cycles when the discharge capacity of the battery was below 800 mAh as the cycle life (cycle characteristics). The results are shown in Table 2.
  • the cycle life was evaluated as “excellent ( ⁇ )” for 500 times or more, “good ( ⁇ )” for 300 times or more and less than 500 times, and “impossible ( ⁇ )” for less than 300 times.
  • a copper foil whose evaluation is “impossible ( ⁇ )” indicates that the copper foil is not suitable for this application. “Good ( ⁇ )” indicates that the copper foil is suitable, and among them, “Excellent ( ⁇ ⁇ ⁇ )” indicates that the copper foil has better battery characteristics.
  • the copper foils produced in Production Examples 1 to 9 have a predetermined tensile strength in a normal state, and at this time, there is little variation in the tensile strength in the width direction, which is long, and after the heat treatment Even in this state, high tensile strength is maintained (Examples 1 to 9). It was confirmed that the copper foils of Examples 1 to 9 were excellent in both productivity during production of lithium ion secondary batteries and battery characteristics as lithium ion secondary batteries.
  • the copper foil produced in Comparative Production Example 1 has too high a tensile strength in a normal state and is poor in elongation (Comparative Example 1).
  • the copper foil of comparative manufacture example 2 has low tensile strength in the normal state and the state after heat processing (comparative example 2). Therefore, it was confirmed that the electrolytic copper foils of Comparative Examples 1 and 2 were inferior in battery characteristics as a lithium ion secondary battery.
  • the copper foils produced in Comparative Production Examples 3 to 6 vary in the normal tensile strength in the width direction (Comparative Examples 3 to 6). Therefore, it was confirmed that the copper foils of Comparative Examples 3 to 6 were inferior in productivity when producing lithium ion secondary batteries.
  • Example 11 to 19 and Comparative Examples 13, 15 and 16 [Evaluation of printed wiring board applications]
  • the copper foils produced in the above production examples 1 to 10 and comparative production examples 3, 5 and 6 were used as copper foil bases, and the surface treatment was performed on one surface of each copper foil under the conditions shown below.
  • a copper foil (thickness 12 ⁇ m) was obtained.
  • the evaluation conditions for each characteristic are as follows, and each measurement was performed at room temperature unless otherwise specified. The results are shown in Table 3.
  • the copper foil used for the copper foil substrate is a normal copper foil (width direction dimension: 1100 mm) produced in Production Examples 1 to 10 and Comparative Production Examples 3, 5 and 6.
  • the roughening plating process 1 and the roughening plating process 2 which were shown below were performed in order with respect to the surface shown in Table 3 of a copper foil base
  • the copper layer on which the roughened layer was formed was subjected to electrolytic plating under the Ni plating conditions shown below to obtain a nickel layer (Ni adhesion amount 0.23 mg / dm 2 ).
  • the plating solution used for nickel plating contains nickel sulfate, ammonium persulfate ((NH 4 ) 2 S 2 O 8 ), boric acid (H 3 BO 3 ), and the nickel concentration is 5.3 g / L, ammonium persulfate.
  • the concentration is 28.0 g / L and the boric acid concentration is 19.5 g / L.
  • the temperature of the plating solution is 23.5 ° C.
  • the pH is 3.9
  • the current density is 2.6 A / dm 2
  • the plating time is 1 to 30 seconds.
  • Zinc layer further formation of (heat-resistant layer), by electrolytic plating with Zn plating under the following conditions on the nickel layer to form a zinc layer (adhesion amount 0.05 mg / dm 2 of Zn).
  • the plating solution used for zinc plating contains zinc sulfate heptahydrate and sodium hydroxide, and the zinc concentration is 10 g / L and the sodium hydroxide concentration is 29 g / L.
  • the temperature of the plating solution is 30 ° C.
  • the current density is 5 A / dm 2
  • the plating time is 1 to 30 seconds.
  • chromate treatment layer (rust prevention treatment layer) Further, a chromate treatment layer (Cr adhesion amount 0.05 mg / dm 2 ) was formed on the zinc layer by electrolytic plating under the Cr plating conditions shown below. .
  • the plating solution used for chromium plating contains chromic anhydride (CrO 3 ), and the chromium concentration is 3.1 g / L.
  • the temperature of the plating solution is 20 ° C.
  • the pH is 2.1
  • the current density is 0.6 A / dm 2
  • the plating time is 1 to 30 seconds.
  • silane coupling agent layer was formed on the chromate treatment layer. That is, methanol or ethanol was added to the silane coupling agent aqueous solution and adjusted to a predetermined pH to obtain a treatment liquid. This treatment liquid was applied to the chromate treatment layer of the surface-treated copper foil, held for a predetermined time, and then dried with warm air to form a silane coupling agent layer.
  • silane coupling agent 3-mercaptopropyltrimethoxysilane (KBM-803, manufactured by Shin-Etsu Chemical Co., Ltd.) was used, and an aqueous silane coupling agent solution was prepared under the conditions of a concentration of 1.0% and pH 4.0. .
  • the surface-treated copper foil obtained above was cut into a size of 200 mm ⁇ 200 mm, and the roughened surface of the surface-treated copper foil was treated with an FR4 resin substrate (EI-6765, manufactured by Sumitomo Bakelite Co., Ltd.) Then, heating and pressure bonding were performed for 1 hour under the conditions of 170 ° C. and surface pressure of 1.5 MPa to produce a copper-clad laminate. With this method, 30 copper-clad laminates were produced and visually checked for wrinkles. About the copper clad laminated board by which the wrinkle was confirmed, it counted as the number of wrinkle defects.
  • the evaluation of the wrinkle defect is “excellent ( ⁇ )” when the number of wrinkle defects is 0 to 1, “good” when the number of wrinkle defects is 2 to 4, and the number of wrinkle defects is In the case of 5 or more, it was evaluated as “impossible ( ⁇ )”.
  • Table 3 shows the number of wrinkle defects and the evaluation results.
  • the surface-treated copper foil obtained above was cut into a size of 200 mm ⁇ 200 mm, and a resist pattern having an L & S of 30/30 ⁇ m was formed on the roughened surface of the surface-treated copper foil by a subtractive method. . Etching was then performed to form a wiring pattern. A dry resist film was used as the resist, and a mixed solution containing copper chloride and hydrochloric acid was used as the etching solution. Then, the etching factor (Ef) of the obtained wiring pattern was measured.
  • the etching factor is expressed by the following equation, where H is the thickness ( ⁇ m) of the copper foil, B is the bottom width ( ⁇ m) of the formed wiring pattern, and T is the top width ( ⁇ m) of the formed wiring pattern. This is the value indicated by.
  • the foil thickness H of the copper foil was the thickness of the surface-treated copper foil.
  • the dimensions of the bottom width B and the top width T were measured using a microscope with respect to the wiring pattern when the just etch position (the position of the resist end and the position of the bottom of the wiring pattern were aligned). .
  • Ef 2H / (BT)
  • the evaluation of the etching factor is “excellent ())” when the Ef value is 3.5 or more, and “good ( ⁇ )” when the Ef value is 2.6 or more and less than 3.5.
  • the value of Ef was less than 2.6, it was evaluated as “impossible ( ⁇ )”.
  • Table 3 shows the value of Ef and the evaluation results.
  • the value of Ef is small, the verticality of the side wall in the wiring pattern is broken, and when forming a fine wiring pattern with a narrow line width, unmelted copper foil occurs between adjacent wiring patterns, There is a risk of short-circuiting and risk of disconnection.
  • the surface-treated copper foil obtained above was cut into a size of 200 mm ⁇ 200 mm, and the roughened surface of the surface-treated copper foil was layered on the FR4 resin base material (same as above), 170 ° C., surface pressure Heating and pressure bonding were performed for 2 hours under conditions of 1.5 MPa to produce a copper-clad laminate.
  • the copper foil was etched to form a circuit wiring having a width of 1 mm, and a test piece was prepared.
  • the resin substrate side of the test piece is fixed to a stainless steel plate with a double-sided tape, and the circuit wiring portion (copper foil portion) is peeled off by pulling at a speed of 50 mm / min in the 90 ° direction, and the peel strength ( kN / m).
  • the peel strength was measured using a Tensilon universal material testing machine (manufactured by A & D Co., Ltd.). Evaluation of adhesion is “good ( ⁇ )” when the peel strength (kN / m) is 0.6 kN / m or more, and when the peel strength (kN / m) is less than 0.6 kN / m. Was evaluated as “impossible ( ⁇ )”.
  • the evaluation results are shown in Table 3.
  • substrate shown by Table 3 is the same data as dispersion
  • the copper foils of Examples 1 to 9 produced in Production Examples 1 to 9 have small variations in tensile strength particularly in the width direction.
  • it was confirmed that the generation of wrinkles due to pressing during production can be effectively suppressed (Examples 11 to 19). .
  • the surface of the copper foils of Examples 1 to 9 is subjected to surface treatment so that the developed surface area ratio (Sdr) of the roughened surface is within a predetermined range, so that the adhesion is good and the etching factor is large. It was confirmed that printed wiring boards were obtained (Examples 11 to 19).

Abstract

電解銅箔をその幅方向の一方端から他方端まで100mm間隔で裁断して得た各裁断銅箔を用いて測定した引張強度が、下記要件(I)から(III)を満たす。 ・要件(I):常態における前記各裁断銅箔の引張強度の平均値が400MPa以上650MPa以下である。 ・要件(II):常態における前記各裁断銅箔の引張強度の分散σが18[MPa]以下である。 ・要件(III):150℃で1時間熱処理された後の状態における前記各裁断銅箔の引張強度の平均値が350MPa以上である。

Description

電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板
 本発明は、電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板に関する。
 リチウムイオン二次電池(以下、単に「電池」ということがある。)は、例えば、正極と、負極と、非水電解質とで構成されており、主に携帯電話やノートタイプパソコン等に使用されている。また、近年では、自動車用途への需要も、急速に増加してきている。
 リチウムイオン二次電池の負極は、負極集電体の表面に負極活物質層が形成されてなり、負極集電体には、一般的に銅箔が使用されている。特に、圧延銅箔に比べて、導電率と強度との両立がし易く、また低コストに薄箔化できる、電解銅箔(以下、単に「銅箔」ということがある。)が広く用いられている。
 このような銅箔を用いたリチウムイオン二次電池の負極は、銅箔の表面に、負極活物質層としてカーボン粒子等を塗布し、乾燥し、さらにプレスすることで、形成される。
 近年、リチウムイオン二次電池は、その市場拡大に伴い、以前にも増して、電池特性の向上と同時に、生産性の向上も要求されてきている。これらの要求に対し、例えば、電池の高容量化のためには、活物質層の厚みの増加やプレス圧力の増加等が行われており、生産性の向上のためには、銅箔の広幅化や、活物質層のストライプ塗工の多本数化等が行われている。また、リチウムイオン二次電池は、電池の軽量化も望まれており、銅箔の薄箔化も進められている。
 しかし、上記のような各種要求に対応する製造条件では、活物質層の塗工時や、プレス時、スリット時等に、銅箔にシワや亀裂、スリット端面の形状不良等が発生し易くなり、電池の生産性の低下を招く場合があった。
 また、リチウムイオン二次電池の充放電時には、活物質層が膨張収縮し、銅箔や、セパレータ等の他の部材に、その応力が負荷されることがある。このような応力の負荷は、セパレータ等の他の部材の破壊による短絡や、発火の原因になる。また、銅箔への応力負荷は、銅箔から活物質層が剥離する原因となる他、銅箔にシワや破断等の破壊を生じる原因にもなり、電池寿命の低下を招く要因にもなる。通常、銅箔に負荷される応力は、活物質層の厚みや密度の増加に伴い、さらに大きくなる。
 上述のような様々な問題に対して、従来技術では、銅箔の引張強度を所定値以上とする、或いは銅箔の伸びを所定値以上とする、伸び異方性を低減させる等の、銅箔の機械的特性を改良させる手法が提案されていた(特許文献1~4参照)。
 しかしながら、実際の電池製造時においては、単に、特許文献1のように、銅箔の引張強度や伸び等の機械的特性を改良させるだけでは十分に上記のような問題を解決できない。また、特許文献2及び3のように、結晶粒径や配向性を制御する、或いは特許文献4のように、表面の二次元断面形状に対する高さ方向の情報しか含まない十点平均粗さ(Rzjis)を制御し、伸び異方性を低減させるだけでは、広幅の銅箔の場所による強度バラつきを低減させるのに不十分であった。特に、最近では、広幅(例えば600mm以上)の銅箔に、活物質層を複数層塗工することも増えてきており、こうした広幅の銅箔に複数本の活物質層をストライプ塗工する際には、活物質層の厚みや密度を大きくするほど、銅箔にかかる負荷も大きくなる傾向にある。
 また、最近では、粗化処理面を有する銅箔を用いて、該銅箔の粗化処理面に予めエポキシ樹脂等の接着用樹脂を貼着し、該接着用樹脂を半硬化状態(Bステージ)の絶縁樹脂層とし、該絶縁樹脂層の側を絶縁基板側にして銅箔と絶縁基板とを熱圧着して、プリント配線板(とりわけビルドアップ配線板)を製造することが行われている。
 このようなプリント配線板の製造では、銅箔と、絶縁基板とを熱圧着する際のプレスにより、銅箔にシワが発生する問題があった。
 そのため、プリント配線板用途においても、製造時にシワが発生し難い銅箔の開発が求められていた。
特許第5588607号公報 特許第5074611号公報 特許第5718476号公報 特許第6248233号公報
 そこで本発明は、高い機械的強度及び耐熱性を有し、且つ、広幅であっても電池製造時において複数本のストライプ塗工を行ってもシワや破断、スリット端面の形状不良が発生しない電池の生産性(以下、単に「電池の生産性」ということがある。)に優れた電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを目的とする。また、本発明は、プリント配線板用途として用いた場合であっても、製造時のプレスによりシワが発生し難い電解銅箔、並びに該電解銅箔を用いた銅張積層板、プリント配線板を提供することを目的とする。
 本発明者らは、鋭意検討した結果、電解銅箔をその幅方向の一方端から他方端まで100mm間隔で裁断して得た各裁断銅箔を用いて測定した引張強度が、所定の要件(I)から(III)を満たすことにより、高い機械的強度及び耐熱性を有し、且つ、広幅であっても電池の生産性に優れた電解銅箔が得られることを見出し、本発明を完成させるに至った。また上記のような電解銅箔は、プリント配線板用途で使用しも、プレス時のシワが発生し難いことを見出した。
 すなわち、本発明の要旨構成は、以下のとおりである。
 [1] 電解銅箔をその幅方向の一方端から他方端まで100mm間隔で裁断して得た各裁断銅箔を用いて測定した引張強度が、下記要件(I)から(III)を満たす、電解銅箔。
・要件(I):常態における前記各裁断銅箔の引張強度の平均値が400MPa以上650MPa以下である。
・要件(II):常態における前記各裁断銅箔の引張強度の分散σが18[MPa]以下である。
・要件(III):150℃で1時間熱処理された後の状態における前記各裁断銅箔の引張強度の平均値が350MPa以上である。
 [2] 幅方向寸法が600mm以上である、上記[1]に記載の電解銅箔。
 [3] 前記各裁断銅箔の常態における伸びの平均値が5.3%以上である、上記[1]又は[2]に記載の電解銅箔。
 [4] 導電率が88%IACS以上である、上記[1]~[3]のいずれか1項に記載の電解銅箔。
 [5] 光沢面の展開面積比(Sdr)が12%以上27%以下である、上記[1]~[4]のいずれか1項に記載の電解銅箔。
 [6] リチウムイオン二次電池の負極集電体として用いる、上記[1]~[5]のいずれか1項に記載の電解銅箔。
 [7] 上記[6]に記載の電解銅箔を用いた、リチウムイオン二次電池用負極。
 [8] 上記[7]に記載のリチウムイオン二次電池用負極を用いた、リチウムイオン二次電池。
 [9] 上記[1]~[5]のいずれか1項に記載の電解銅箔の少なくとも一方の表面に粗化処理面を有し、
 前記粗化処理面の展開面積比(Sdr)が20%以上200%以下である、電解銅箔。
 [10] 上記[9]に記載の電解銅箔と、該電解銅箔の粗化処理面に積層された樹脂製基板と、を備える銅張積層板。
 [11] 上記[10]に記載の銅張積層板を備えるプリント配線板。
 本発明によれば、高い機械的強度及び耐熱性を有し、且つ、広幅であっても電池の生産性に優れた電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することができる。また、本発明によれば、プリント配線板用途として用いた場合であっても、製造時のプレスによりシワが発生し難い電解銅箔、該電解銅箔を用いた銅張積層板、プリント配線板を提供することができる。
図1は、本発明の電解銅箔を製造するための製造装置の一例である。
 本発明に従う電解銅箔の実施形態について、以下で詳細に説明する。
 本発明の電解銅箔は、その幅方向の一方端から他方端まで100mm間隔で裁断して得た各裁断銅箔を用いて測定した引張強度が、下記要件(I)から(III)を満たすことを特徴とする。
・要件(I):常態における前記各裁断銅箔の引張強度の平均値が400MPa以上650MPa以下である。
・要件(II):常態における前記各裁断銅箔の引張強度の分散σが18[MPa]以下である。
・要件(III):150℃で1時間熱処理された後の状態における前記各裁断銅箔の引張強度の平均値が350MPa以上である。
 なお、本明細書において、「電解銅箔」は、電解処理によって作製された銅箔を指し、製箔後に表面処理を施していない未処理の銅箔と、必要に応じて表面処理を施した銅箔(表面処理電解銅箔)のいずれをも含む意味である。また、電解銅箔の箔厚は、好ましくは30μm以下であり、より好ましくは4~15μmである。なお、以下において、特記しない限り、「銅箔」は「電解銅箔」を意味する。
 また、銅箔の「幅方向」とは、銅箔の製造時における搬送方向(カソード電極からの引き剥がし方向と同じ)に対して垂直な方向であり、ロール状に巻き取られた銅箔の場合、その長手方向が搬送方向に対応する。また、「幅方向寸法」は、銅箔の幅方向の一端から他方端までの寸法である。
 また、「裁断銅箔」とは、銅箔をその幅方向の一方端から他方端まで100mm間隔で裁断して得られた銅箔である。ここで、銅箔の特性を評価するために使用する裁断銅箔は、幅方向寸法が100mm(±5mm)の裁断銅箔の全てであり、幅方向寸法が95mm未満の裁断銅箔は測定対象とはしない。例えば、幅方向寸法が850mmの銅箔の場合、その幅方向の一方端から他方端まで100mm間隔で裁断すると、9枚の裁断銅箔が得られるが、そのうち測定対象となるのは幅方向寸法が100mm(±5mm)の8枚の裁断銅箔である。
 また、「常態」とは、銅箔が、製造されたままの未加熱の状態にある他、60℃超の加熱を伴う熱履歴を持たない状態、例えば室温(15~30℃、以下においても同じ。)に置かれたままの状態を指す。また、「150℃で1時間熱処理された後の状態」とは、銅箔が、150℃において1時間熱処理され、例えば室温まで、冷却された後の状態を指す。
 従来の高強度銅箔では、広幅の銅箔上に、複数本のストライプ塗工を行う場合、シワや破断、スリット端面の形状不良等が発生し易い問題があった。このような問題に対し、本発明者らは鋭意研究を行った結果、上記のような問題の発生には、銅箔の幅方向における引張強度のバラつきの度合いが関係していることを突き止めた。
 通常、ストライプ塗工では、活物質層が塗工してある箇所とそうでない箇所とが、銅箔の幅方向に交互に形成され、銅箔の幅方向に荷重がかかる箇所とそうでない箇所とが交互に存在する構成となる。このようなストライプ塗工後の銅箔に対し、製造ラインにてプレスやスリットの処理を行う場合、銅箔の幅方向に引張強度のバラつきがあると、ライン搬送上のばたつきや、銅箔の幅方向へのスリップ、張力変動等が生じ易くなることがわかった。特に、ライン搬送上のばたつきや、銅箔の幅方向へのスリップは、シワや破断の原因となり、張力変動は、シワやスリット端面の異常(バリや欠け等)の原因になることがわかった。
 上記のような知見に基づき、本発明では、高強度であり、且つ耐熱性に優れる銅箔において、特に、従来の高強度化した銅箔と比べ、銅箔の幅方向における引張強度のバラつきを小さくすることにより、上記のような問題を解決でき、電池の量産工程において生産性を向上できることを見出した。
 さらに、本発明者らは、プリント配線板のプレス工程の不良についても鋭意調査した結果、銅箔の引張強度のバラつきが大きい程、シワが多発することをつきとめた。
 上記のような知見に基づき、プリント配線板に用いる銅箔についても、上記の様に幅方向の引張強度のバラつきを小さくすることにより、シワ不良が抑制され、プリント配線板の生産性を向上できることを見出した。
 本発明の銅箔の幅方向寸法は、好ましくは300mm以上、より好ましくは600mm以上であり、さらに好ましく900mm以上であり、より更に好ましくは1200mm以上である。このような銅箔は、電池やプリント配線板の量産製造に用いる際に好適である。また、銅箔の幅方向寸法の上限は、銅箔の製造設備にもよるが、例えば2000mmであり、幅方向の特性バラつきを低減する観点では、銅箔の幅方向寸法は1500mm以下であることが好ましい。
 銅箔の幅方向寸法は、大きいほど、電池やプリント配線板を量産化できる点で好適であるが、電池やプリント配線板の製造時に負荷される応力は銅箔の幅方向に異なる構成となり易い。そのため、特に広幅の銅箔は、上述のような問題点が顕著となるが、本発明では、銅箔の幅方向における引張強度のバラつきを小さくすることで、上述のような問題点を解決できる。
 本発明では、特に銅箔の幅方向における特性のバラつきを適切に評価するため、銅箔を、その幅方向の一方端から他方端まで100mm間隔で裁断して得た各裁断銅箔を用いて、各種測定を行い、最終的に銅箔全体として評価するものとする。以下、要件毎に詳しく説明する。
<要件(I)>
 本発明の銅箔は、常態における各裁断銅箔の引張強度(Ts)の平均値が、400MPa以上650MPa以下であり、好ましくは400MPa以上600MPa以下であり、より好ましくは445MPa以上600MPa以下であり、さらに好ましくは450MPa以上600MPa以下である。上記範囲とすることにより、電池の生産性を向上でき、良好な電池特性を有する電池を製造できる。一方、常態における各裁断銅箔の引張強度の平均値が400MPa未満である場合には、電池の高容量化に伴う電極材による負荷の増大の影響に耐えられず、銅箔にシワが発生する傾向にある。また、常態における各裁断銅箔の引張強度の平均値が650MPaを超える場合には、銅箔の伸びが低下し、銅箔の箔切れが発生し易くなる傾向にある。
 また、プリント配線板に用いる場合にも、銅箔の常態における引張強度が400MPa未満である場合には、薄箔シート品の搬送時にシワが発生することでハンドリング性が悪化する。また、銅箔の常態における引張強度が、650MPaを超える場合には、ドラムによる析出製造時に箔切れが発生し易くなり、生産性が悪化する。
<要件(II)>
 本発明の銅箔は、常態における各裁断銅箔の引張強度(Ts)の分散σが、18[MPa]以下であり、好ましくは14[MPa]以下であり、より好ましくは11[MPa]以下であり、さらに好ましくは10[MPa]以下である。ここで、各裁断銅箔の引張強度の分散σは、銅箔の幅方向の引張強度のバラつきの指標であり、その値が大きいほど引張強度のバラつきが大きいことを意味する。本発明の銅箔は、常態における各裁断銅箔の引張強度の分散σが上記範囲であることにより、電極の製造工程において局所的なシワやたるみの発生を有効に防止できる。また、プリント配線板の製造工程においてもプレスによるシワの発生を有効に防止できる。一方、常態における各裁断銅箔の引張強度の分散σが18[MPa]超である場合には、銅箔の幅方向の引張強度のバラつきが大きく、電極の製造工程において銅箔に負荷される応力が銅箔の幅方向にバラつくため、局所的なシワやたるみが発生し、電池の生産性が低下する傾向にある。また、プリント配線板の製造工程においても、プレスによるシワの発生が顕著になる傾向にある。なお、常態における各裁断銅箔の引張強度の分散σの下限は、例えば0[MPa]であってもよい。
<要件(III)>
 本発明の銅箔は、150℃で1時間熱処理された後の状態における各裁断銅箔の引張強度(Ts)の平均値が350MPa以上であり、好ましくは380MPa以上であり、より好ましくは400MPa以上である。上記範囲とすることにより、電池への加工時に十分な強度を維持でき、電池の充放電時の負荷への耐久性に優れ、電池のサイクル寿命が向上する。一方、150℃で1時間熱処理された後の状態における各裁断銅箔の引張強度の平均値が350MPa未満であると、電池への加工時に強度が低下し、また電池の充放電時には、負荷に耐えきれず銅箔の破断が発生し易くなり、電池のサイクル寿命の低下を招く傾向にある。なお、150℃で1時間熱処理された後の状態における各裁断銅箔の引張強度の平均値の上限は、加熱後においても適度な伸びを有する観点で、例えば550MPaであり、好ましくは450MPaであってもよい。
 また、プリント配線板の製造においても、150℃で1時間熱処理された後の状態における各裁断銅箔の引張強度の平均値が350MPa以上の場合には、基板の積層工程で加熱した後も、結晶粒が細かく維持されるため、エッチング性が良好となる。一方、上記引張強度の平均値が350MPa未満である場合には、基板の積層工程で加熱した後に結晶粒が大きくなる傾向にあり、エッチングで銅粒子が溶け難くなる為、エッチング性が悪化する。
 なお、上記要件(I)~(III)において、引張強度は、本実施例に記載された評価条件の下で測定された値とする。
<伸び(El)>
 本発明の銅箔は、各裁断銅箔の常態における伸び(El)の平均値が、好ましくは5.3%以上であり、より好ましく6.0%以上であり、さらに好ましくは7.5%以上、より更に好ましくは9.0%以上である。上記範囲とすることにより、電池の充放電時に銅箔に負荷される応力に対する耐久性が向上する。なお、各裁断銅箔の常態における伸びの平均値の上限は、高強度の観点で、例えば13.0%であり、好ましくは11.0%であってもよい。
 また、150℃で1時間熱処理された後の状態における各裁断銅箔の伸びの平均値についても、常態の場合と同様の範囲であることが好ましい。
 なお、伸びは、本実施例に記載された評価条件の下で測定された値とする。
<展開面積比(Sdr)>
 従来、銅箔の表面形状を表すパラメータとしては、十点平均粗さRzjisを用いるのが一般的であったが、十点平均粗さRzjisでは、表面の二次元断面形状に対する高さ方向の情報しか含まれておらず、正しい評価が行えていなかった。これに対し、展開面積比(Sdr)には、表面の三次元の情報が含まれるため、より適切な特性評価が可能となる。
 展開面積比(Sdr)とは、測定領域のサイズを持つ理想面を基準として、表面性状によって加わる面積の割合を意味しており、下記式(1)で定義される。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)中、x及びyは、平面座標であり、zは高さ方向の座標である。z(x,y)は、ある点の座標を示し、これを微分することで、その座標点における傾きとなる。また、Aは、測定領域の平面積である。
 また、展開面積比(Sdr)は、例えば3次元白色干渉型顕微鏡、走査型電子顕微鏡(SEM)、電子線3次元粗さ解析装置等により、銅箔表面の凹凸差を測定、評価して、求めることができる。一般に、展開面積比(Sdr)は、表面粗さ(Sa)の変化に関わらず、表面性状の空間的な複雑性が増すと大きくなる傾向にある。
 本発明の銅箔は、光沢面の展開面積比(Sdr)が、好ましくは27%以下であり、より好ましくは20%以下であり、さらに好ましくは18.5%以下であり、より更に好ましくは17%以下である。上記範囲とすることにより、銅箔の幅方向の強度のバラつきをさらに低減でき、電池の生産性がさらに向上する。また、上記範囲とすることにより、プリント配線板の製造工程においても、プレスによるシワの発生が抑制される。なお、光沢面の展開面積比(Sdr)の下限は、活物質層の塗工性の観点で、例えば12%であってもよい。
 また、本発明の銅箔は、粗面の展開面積比(Sdr)が、好ましくは92%以下であり、より好ましくは90%以下であり、さらに好ましくは80%以下であり、より更に好ましくは70%以下である。上記範囲とすることにより、電極製造時に活物質層の塗工が均一になされることで銅箔への応力負荷が均一に起こるためシワやたるみが減少し、生産性が向上する。また、上記範囲とすることにより、プリント配線板の製造工程においても、プレスによるシワの発生が抑制される。なお、粗面の展開面積比(Sdr)の下限は、例えば62%であってもよい。
 ここで、光沢面及び粗化面の展開面積比(Sdr)は、本実施例に記載された評価条件の下で測定された値とする。
 なお、光沢面(「S(シャイニー)面」ということもある)とは、電解銅箔の製箔時にカソードドラムに接していた側の面をいい、粗面(「M(マット)面」ということもある)とは、光沢面と反対側の面をいう。なお、本願明細書において、光沢面及び粗面と称する場合は、製箔後に表面処理を施していない未処理の銅箔表面を指し、光沢面及び粗面上に、粗化処理を施した、粗化処理面とは区別するものとする。
 本発明の銅箔は、該銅箔の少なくとも一方の表面に粗化処理面を有していてもよく、該粗化処理面の展開面積比(Sdr)が、好ましくは20%以上200%以下であり、より好ましくは25%以上197%以下である。このような銅箔は、特にプリント配線板として用いる場合に好適である。例えば、粗化処理面の展開面積比(Sdr)が20%未満である場合、該表面に接着用樹脂を貼着する際の密着性が低下する傾向にあり、また、200%超である場合エッチングファクターが低下し、微細配線の形成が困難になる場合がある。
 粗化処理面の展開面積比(Sdr)は、本実施例に記載された評価条件の下で測定された値とする。
<導電率>
 本発明の銅箔は、導電率が、好ましくは88%IACS以上であり、より好ましくは90%IACS以上であり、さらに好ましくは91%IACS以上であり、より更に好ましくは92%IACS以上である。上記範囲とすることにより、電池を作製した際に負極電極の内部抵抗が低下し、電池のサイクル特性が向上する。また、上記範囲であれば、銅箔をプリント配線板として用いる場合にも好適である。
 ここで、導電率は、本実施例に記載された評価条件の下で測定された値とする。
<電解銅箔の製造方法>
 次に、本発明の電解銅箔の好ましい製造方法について説明する。
 本発明の電解銅箔は、例えば、白金族元素又はその酸化物元素で被覆したチタンからなる不溶性アノードと該アノードに対向させて設けられたチタン製カソードドラムとの間に電解液を供給し、カソードドラムを一定速度で回転させながら、両極間に直流電流を通電することによりカソードドラム表面上に銅を析出させ、析出した銅をカソードドラム表面から引き剥がし、連続的に巻き取る方法により製造することができる。なお、このような製造を行う装置は一例である。
 電解液としては、例えば、銅濃度が50~100g/L、硫酸濃度が40~120g/Lの硫酸-硫酸銅水溶液を好適に用いることができる。
 また、電解液には、銅箔の高強度化の観点から、有機又は無機添加剤の少なくとも1種を添加してもよい。
 有機添加剤としては、例えば、チオ尿素(CHS)又は水溶性チオ尿素誘導体(エチレンチオ尿素等)や、ニカワ、ゼラチン、ポリエチレングリコール、デンプン、セルロース系水溶性高分子(カルボキシルメチルセルロース、ヒドロキシエチルセルロース等)等の高分子多糖類、ポリエチレンイミン、ポリアクリルアミド等の水溶性高分子化合物等を用いることができる。
 また、無機添加剤としては、塩化物イオンの供給源としてNaClやHClの他、ごく微量の金属元素の供給源としてタングステン酸ナトリウムやタングステン酸アンモニウム等を用いることができる。
 電解液には、無機添加剤として塩化物イオンを1~30mg/L添加することが好ましく、さらに有機添加剤としてチオ尿素又は水溶性チオ尿素誘導体を、3~19mg/L添加することが好ましい。
 また、電解液の液温は40~60℃、カソード電極面での平均電流密度は40~60A/dmに調節することが好ましい。
 ところで、通常銅箔の高強度化は、電解液に添加剤を加えることにより行われるのが一般的である。添加剤の効果は、主に、電析中の銅表層の結晶核に添加剤を吸着させることにより、不純物の箔中への取り込み、あるいは結晶方位及び結晶粒径を制御させることである。
 しかしながら、核発生と核成長の起こる割合は、電解液の濃度や、電流密度、液温、添加剤の種類とその濃度等の製造条件により変動する。殊に高強度化を目的とした条件の場合、核成長が支配的になることが多い。
 添加剤が銅結晶粒に吸着し、また銅箔中に取り込まれることにより、銅箔の強度を高めることができるが、核成長が支配的であることは、すなわち添加剤の吸着点は疎らになり易いことを意味する。そういった条件で作製された高強度銅箔は、強度にバラつきが生じ易い。
 本発明では、例えば以下のような手法により、銅の初期電着層を微細化、平滑化することにより、添加剤の吸着点を銅箔の面方向に均一化でき、これにより銅箔の幅方向における引張強度のバラつきを低減できることを見出した。
 具体的には、従来の製箔工程に加え、初期電着時においてのみPR(Periodic Reverse)パルス電解を使用することが好ましい。
 従来の直流電流を用いた製箔の場合、カソード基板上に銅の核が発生し、その核を起点に銅が成長する。
 しかし、初期電着時にPRパルス電解を用いることで、銅の結晶核発生時において銅の析出工程(正パルス通電時)と溶解工程(負パルス通電時)が繰り返される。析出工程で発生した銅の結晶核は、後の溶解工程によってその形状が小型化する。溶解工程の次の析出工程においては、小さくなった銅の結晶核上に加えて、さらにカソード基板上にも新たに銅の結晶核が発生する。それらの繰り返しによって、微細な核発生が得られ、初期電着層が微細化、平滑化する。その結果、添加剤の吸着点が均一に得られると考えられる。
 PRパルス電解の好適な条件は、例えば以下のとおりである。
正パルス電流密度Ion:20~80A/dm
正パルス通電時間ton:50~200ミリ秒(ms)
負パルス電流密度Irev:-80~-20A/dm
負パルス通電時間trev:50~200ミリ秒(ms)
パルス停止時間toff:50~200ミリ秒(ms)
正パルス-負パルスの繰り返し回数:10~30回
 上記のようなPRパルス電解において、特に、均質な初期電着層を得る観点からは、正パルス電流密度Ion(A/dm)と正パルス通電時間ton(ミリ秒)の積により算出される正パルス積算電流値Q1(=Ion×ton)と、負パルス電流密度Irev(A/dm)と負パルス通電時間trev(ミリ秒)の積により算出される負パルス積算電流値Q2(=Irev×trev)とが、下記式(i)の関係を満たすことが好ましい。
 0.5≦|Q2/Q1|≦0.9  ・・・(i)
 正パルス積算電流値Q1に対する負パルス積算電流値Q2の比の絶対値|Q2/Q1|が、0.9よりも大きい場合には、溶解工程の寄与が大きく、銅の析出核総量が不十分となる傾向があり、また0.5よりも小さい場合には、析出工程の寄与が大きく、微細な核発生が得られ難い傾向がある。
 上記のような手法によれば、必要最小限のごく薄い、均質な初期電着層を形成することができ、これにより、後の工程で、銅箔の厚さ方向に均一な析出層が得られる。そのため、添加剤は、銅箔の面方向及び厚さ方向の両面に均一に吸着し、幅方向に強度のバラつきが小さい、高強度の電解銅箔が得られる。
 なお、上記のような手法の銅箔製造に適した装置としては、例えば図1のような製造装置が挙げられる。図1に製造装置の概略図を示す。
 図1に示されるように、製造装置1は、カソードドラム11と、PRパルス用電極12と、アノード13と、浴槽14とで主に構成されている。PRパルス用電極12及びアノード13は、カソードドラム11に対向するように設けられ、その間に電解液20が供給される。カソードドラム11は、矢印11aの方向に一定速度で回転し、PRパルス用電極12及びアノード13との各両極間で、PRパルス及び直流電流のそれぞれが通電されることにより、カソードドラム11の表面に銅が析出する。カソードドラム11の表面に析出した銅は、最後に矢印30aの方向に引き剥がされ、銅箔30として製箔される。なお、製造装置1において、浴槽14の外側及び各種配管等は図示を省略しているが、電解液20は、浴槽14の外側から、矢印20aの方向に連続的に供給され、また、カソードドラム11と、PRパルス用電極12及びアノード13との間を通過した後の電解液20は、排出用の配管を通って浴槽14の外側に排出される。
 本発明の電解銅箔は、必要に応じて、銅箔の表面の少なくとも一方に、さらに表面処理を施していてもよい。
 銅箔の表面処理としては、例えば、クロメート処理、あるいはNi又はNi合金めっき、Co又はCo合金めっき、Zn又はZn合金めっき、Sn又はSn合金めっき、上記各種めっき層上にさらにクロメート処理を施したもの等の無機防錆処理、あるいは、ベンゾトリアゾール等の有機防錆処理、シランカップリング剤処理等が挙げられる。これらの表面処理は、防錆に加えて、例えばリチウムイオン二次電池の負極集電体として用いる場合には活物質との密着強度を高め、さらに電池の充放電サイクル効率の低下を防ぐ役割を果たす。これらの防錆処理は一般的に銅箔厚さに対してごく薄い厚さで処理される。そのため引張強度等にはほぼ影響が無い。
 上記の表面処理を銅箔に施す前に、必要に応じて銅箔表面に粗化処理を行うことも可能である。粗化処理としては、例えば、めっき法、エッチング法等が好適に採用できる。これらの粗化処理は、銅箔をリチウムイオン二次電池の負極集電体として用いた場合の活物質との密着性等を、さらに向上させる役割を果たす。また、銅箔をプリント配線板の作製に用いる場合にも、粗化処理は絶縁基板との密着性を高める役割を果たす。なお、プリント配線板の作製においては、微細回路の形成を良好に行う観点から、粗化処理は、所望の表面性状、とりわけ所望の展開面積比(Sdr)を有する粗化処理面となるように制御されることが望ましい。なお、粗化処理もまた、一般的に銅箔厚さに対してごく薄い厚さで処理される。そのため引張強度等にはほぼ影響が無い。
 めっき法による粗化としては、電解めっき法及び無電解めっき法を採用することができる。Cu、Co及びNiのうち1種の金属からなる金属めっき、又はこれらのうち2種類以上の金属を含む合金めっきにより、粗化粒子を形成することができる。
 また、エッチング法による粗化としては、例えば、物理エッチングや化学エッチングによる方法が好ましい。例えば、物理エッチングとしては、サンドブラスト等でエッチングする方法が挙げられる。また、化学エッチングとしては、処理液等でエッチングする方法が挙げられる。特に化学エッチングの場合には、処理液として、無機又は有機酸と、酸化剤と、添加剤とを含有する、公知の処理液を用いることができる。
 以下、めっき法による粗化処理の好ましい一例を具体的に説明する。
 粗化処理は、基体となる銅箔(以下、単に「銅箔基体」ということがある。)の少なくとも一方の表面に対し、粗化めっき処理1及び粗化めっき処理2を順次施すことによって、行うことができる。粗化めっき処理1及び粗化めっき処理2の好ましい条件は、下記の通りである。なお、下記条件は好ましい一例であり、本発明の効果を妨げない範囲で、必要に応じて添加剤の種類や量、電解条件を適宜変更、調整することができる。
・粗化めっき処理1
  硫酸銅:           銅濃度として 18~23g/L
(「銅金属として、18~23g/Lに相当する量を含有する硫酸銅」を意味する。以下においても同様とする。)
  硫酸:            96~105g/L
  硫酸コバルト(II)七水和物: コバルト濃度として 2.8~4.2g/L
  液温:            32~40℃
  電流密度:          32~36A/dm
  時間:            1秒~2分
・粗化めっき処理2
  硫酸銅:  銅濃度として 45~55g/L
  硫酸:          112~121g/L
  液温:          59~64℃
  電流密度:        6~12A/dm
  時間:          1秒~2分
 特に、本発明の銅箔をプリント配線板用途に用いる場合には、絶縁基板との密着性と、良好な微細回路の形成とを両立する観点から、銅箔の粗化処理面における展開面積比(Sdr)を20%以上200%以下の範囲に制御することが有効である。このような所望の表面性状を有する粗化処理面は、上記粗化処理の条件を満たすことにより、作製することができる。
 なお、粗化処理後に上述の表面処理を施した場合であっても、防錆処理等の表面処理はごく薄い厚さで処理されるため、粗化処理面の展開面積比(Sdr)への影響はほぼ無い。そのため、上述の粗化処理により調整された粗化処理面の展開面積比(Sdr)は、防錆処理等の表面処理後も維持される。
<リチウムイオン二次電池用負極及びリチウムイオン二次電池>
 本発明に係る銅箔は、リチウムイオン二次電池の負極集電体として用いることが好ましい。本発明に係る銅箔を用いることにより、電池製造時において、複数本のストライプ塗工を行ってもシワや破断、スリット端面の形状不良等が発生し難く、電池の生産性を向上できる。
 このような本発明に係る銅箔を負極集電体として用いたリチウムイオン二次電池用負極は、高強度、高耐熱であるために、電池製造時、及び充放電時の耐久性が向上する。また、このような負極を用いたリチウムイオン二次電池は、製造時の歩留まりがよく、また電池特性(例えばサイクル特性)にも優れている。
 リチウムイオン二次電池用負極は、本発明の銅箔を用いて、公知の方法により形成することができる。例えば、リチウムイオン二次電池用負極は、銅箔の表面に、負極活物質層としてカーボン粒子等を含むスラリーを塗布し、乾燥し、さらにプレスすることで、形成される。
 また、リチウムイオン二次電池は、上記負極を用いて、公知の方法により形成することができる。
<銅張積層板及びプリント配線板>
 本発明に係る銅箔は、銅張積層板及びこれを備えるプリント配線板として用いることもできる。本発明に係る銅箔を用いることにより、プリント配線板の製造時において、銅箔と、絶縁基板とを熱圧着する際のプレスによりシワが発生することを抑制でき、プリント配線板の生産性を向上できる。
 プリント配線板の製造に用いる本発明の銅箔は、該銅箔の少なくとも一方の表面に粗化処理面を有し、該粗化処理面の展開面積比(Sdr)が20%以上200%以下であることが好ましい。このような銅箔によれば、プレスによるシワ不良の発生を抑制でき、更に良好な微細配線の形成も両立させることができる。
 銅張積層板は、本発明の銅箔と、該銅箔の粗化処理面に積層された樹脂製基板と、を備えることが好ましい。このような銅張積層板は、本発明の銅箔を用いて、公知の方法により形成することができる。例えば、銅張積層板は、少なくとも一方の表面に粗化処理面を有する銅箔と絶縁基板(樹脂基材)とを、該粗化処理面(貼着面)と樹脂基材とが向かい合うように、積層貼着することにより製造される。絶縁基板としては、例えば、フレキシブル樹脂基板又はリジット樹脂基板等が挙げられるが、本発明の銅箔は、リジット樹脂基板との組み合わせにおいて特に好適である。
 また、銅張積層板を製造する場合には、シランカップリング剤層を有する表面処理銅箔と、絶縁基板とを加熱プレスによって貼り合わせることにより製造すればよい。なお、絶縁基板上にシランカップリング剤を塗布し、シランカップリング剤が塗布された絶縁基板と、最表面に防錆処理層を有する表面処理銅箔とを加熱プレスによって貼り合わせることにより作製された銅張積層板も、本発明と同等の効果を有する。
 また、プリント配線板は、上記銅張積層板を備えることが好ましい。このようなプリント配線板は、上記銅張積層板を用いて、公知の方法により形成することができる。
 ところで、プリント配線板の中でもビルドアップ配線板については、各種電子部品を高度に集積化することが要望され、これに対応して、配線パターンも高密度化が要求され、微細な線幅、線間ピッチの配線パターン、いわゆるファインパターンのプリント配線板が求められるようになってきている。例えば、サーバー、ルーター、通信基地局、車載基板等に使用される多層基板やスマートフォン用多層基板では、高密度極微細配線を有するプリント配線板(以下、「高密度配線板」と記す)が要求されている。
 AnyLayer(配置の自由度が高いレーザービアで層間を接続)の高密度配線板は、主にスマートフォンのメインボードに使用されているが、近年微細配線化が進んでおり、線幅及び線間のピッチ(以下、「L&S」と記す)がそれぞれ30μm以下という配線が要求されている。高密度配線板は、従来、プリント配線板メーカーにおいてフォトレジストを用いたサブトラクティブ工法で製造されており、L&Sを微細化する為には銅箔の厚さを薄くすることが効果的であることが、知られている。しかし、500mm角を超えるような大面積で高密度配線板を一括成型する場合は、厚さが9μm以下の銅箔だと絶縁樹脂と銅箔のプレス後に、銅箔にシワが発生する問題があった。
 このような問題に対し、例えば特許第6158573号公報には、極薄銅層のバルクの平均結晶粒径を微細化することで微細配線を形成する技術が開示されているが、シワに対する対策が取られていない為、銅箔が薄い場合、プレス工程で不良が多発していた。
 これに対し、本発明の銅箔は、上記の様に幅方向の引張強度のバラつきが小さいため、薄層化して、高密度配線板を一括成形する場合であっても、プレス工程によるシワ不良の発生を抑制でき、高密度配線板の製造において生産性を向上できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の一例に過ぎない。本発明は、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
 以下、実施例を挙げて本発明を更に詳細に説明するが、以下は本発明の一例である。
(製造例1~9及び比較製造例1~4)
 図1に示すように、チタン製カソードドラム11(幅1200mm、径2100mm)と、該カソードドラム11に対向させて設けられたPRパルス用電極12及び不溶性アノード13との間に電解液20を供給し、カソードドラム11を一定速度で回転させながら、両極間にPRパルス及び直流電流を通電することにより、カソードドラム11の表面上に銅を析出させ、厚さ10μmの銅箔30を作製した。その後、銅箔30をカソードドラム11から引き剥がし、両端を切断して、ロール状に巻き取って、幅方向寸法1100mmの銅箔を得た。
 なお、製造例1~9及び比較製造例1~4のいずれについても、電解液20は、銅濃度が80g/L、硫酸濃度が100g/L、塩化物イオン濃度が20mg/Lに調製された硫酸-硫酸銅系電解液を用いた。また該電解液の温度は55℃、平均電流密度は45A/dm、液流速は1.0m/sにそれぞれ調整した。
 また、該電解液に添加した添加剤の種類及びその添加濃度、並びにPRパルス電解の電解条件については、製造例1~9及び比較製造例1~4のそれぞれについて、表1に示すように調整した。なお、カソードドラム11の回転速度は、銅箔30の厚さが10μmとなるように、電解条件に応じて適宜調整した。
 また、表1に記載された添加剤の種類のうち、「チオ尿素」及び「エチレンチオ尿素」は、いずれも東京化成工業株式会社の製品を用いた。
(比較製造例5)
 比較例製造5では、両極間にPRパルスを通電せずにカソードドラム11の表面上に銅を析出させた以外は、製造例1と同様に銅箔30を得た。
(比較製造例6)
 比較製造例6では、両極間にPRパルスを通電せずにカソードドラム11の表面上に銅を析出させた以外は、製造例2と同様に銅箔30を得た。
Figure JPOXMLDOC01-appb-T000002
(実施例1~9及び比較例1~6)
[特性評価]
 上記製造例及び比較製造例で作製した銅箔について、下記に示す特性評価を行った。各特性の評価条件は下記の通りであり、特に断らない限り、各測定は室温にて行った。結果を表2に示す。
<裁断銅箔の作製>
 常態の銅箔としては、製造されたままの未加熱の状態の銅箔を使用した。
 また、150℃で1時間熱処理した後の状態の銅箔は、常態の銅箔を、イナートガスオーブン(INH-21CD-S、光洋サーモシステム株式会社製)で、150℃で1時間加熱した後、室温まで冷却されたものを使用した。
 それぞれの銅箔について、その幅方向の一方端から他方端まで100mm間隔で裁断し、各状態に対応する11枚の裁断銅箔(100mm×200mm、厚さ10μm)を得た。
<引張試験>
 引張試験は、常態と、150℃で1時間熱処理した後の状態との2種類の裁断銅箔を測定対象として、引張試験機(1122型、インストロン社製)用いて、IPC-TM-650の規定に従って行った。
 まず、一の裁断銅箔の幅方向の一端(切断端部)から10mmの位置を始点として、幅方向寸法が0.5inchの試験片(0.5inch×6inch)を、幅方向に約5mm間隔で5本切り出した。得られた試験片を用いて、チャック間距離70mm、引張速度50mm/minの条件で、引張強度及び伸びを測定した。ここで、伸びは、試験片が破断した際の伸び率を指す。そして、得られた測定値(各々N=5)から算出した平均値を、該一の裁断銅箔の引張強度及び伸びとした。さらに、他の裁断銅箔10枚についても同様に、引張強度及び伸び率をそれぞれ求め、最後に、11枚の各裁断銅箔の引張強度及び伸び率(各々N=11)を各々平均して、引張強度の平均値及び伸びの平均値を求めた。
 この測定を、常態と、150℃で1時間熱処理した後の状態との2種類の銅箔について、それぞれ行った。
 なお、常態の銅箔については、11枚の各裁断銅箔の引張強度から、引張強度の分散σを求めた。
<展開面積比(Sdr)>
 展開面積比(Sdr)の測定は、常態の裁断銅箔を測定対象として、白色光干渉型光学顕微鏡(Wyko ContourGT-K、BRUKER社製)を用いて表面形状の測定を行い、さらに形状解析することにより行った。形状解析はVSI測定方式でハイレゾリューションCCDカメラを使用し、光源は白色光、測定倍率が50倍、測定領域が96.1μm×72.1μm、LateralSamplingが0.075μm、speedが1、Backscanが10μm、Lengthが10μm、Thresholdが3%の条件により行い、TermsRemoval(Cylinderand Tilt)、DataRestore(Method:legacy、iterations 5)のフィルタ処理をしたあと、データ処理して行なった。具体的には次のように行った。
 まず、一の裁断銅箔の中心部で、表面形状を測定し、形状解析して展開面積比(Sdr)を求めた。さらに、他の裁断銅箔10枚についても同様に展開面積比(Sdr)を測定し、最後に、11枚の各裁断銅箔の展開面積比(Sdr)の測定値(N=11)を平均して、その平均値を銅箔の展開面積比(Sdr)とした。結果を表2に示す。
<導電率>
 導電率の測定は、常態の裁断銅箔を測定対象として、Agilent 4338B ミリオームメータ(アジレント・テクノロジー株式会社製)を用いて、JISH0505-1975の規定に従って行った。具体的には次のように行った。
 一の裁断銅箔から試験片(0.5inch×6inch)を1本切り出し、該試験片を用い、端子間距離を100mmとして4端子法にて、導電率を3回測定した。得られた測定値(N=3)から算出した平均値を、該一の裁断銅箔の導電率とした。さらに、他の裁断銅箔10枚についても同様に導電率を求め、最後に、11枚の各裁断銅箔の導電率(N=11)を平均して、その平均値を銅箔の導電率とした。結果を表2に示す。
[リチウムイオン二次電池用途の評価]
 上記製造例及び比較製造例で作製した銅箔を負極集電体として用いて、リチウムイオン二次電池を作製し、下記に示す特性評価を行った。各特性の評価条件は下記の通りであり、特に断らない限り、各測定は室温にて行った。結果を表2に示す。
(正極の製造)
 まず、LiCoO粉末と、黒鉛粉末と、ポリフッ化ビニリデン粉末とを、質量比で90:7:3の割合で混合し、これに溶剤としてN-メチルピロリドン及びエタノールを添加し、混練して、正極剤ペーストを調製した。
 次に、得られた正極剤ペーストを、厚み15μmのアルミニウム箔上に均一に塗着した。正極剤ペーストを塗着したアルミニウム箔を、窒素雰囲気中で乾燥し、上記溶剤を揮散させ、次いでロール圧延を行って、全体の厚みが150μmであるシートを作製した。このシートを、巾43mm、長さ285mmに切断した後、その一端にアルミニウム箔のリード端子を超音波溶接で取り付け、正極とした。
(負極の製造及び生産性の評価)
 負極集電体に用いる銅箔は、製造例及び比較製造例で作製した常態の銅箔である。
 まず、銅箔を、幅方向寸法720mmとなるように、帯形状(帯形状の幅方向が銅箔の幅方向に平行)に裁断した。
 次に、天然黒鉛粉末(平均粒径10μm)と、ポリフッ化ビニリデン粉末とを、質量比で90:10の割合で混合し、これに溶剤としてN-メチルピロリドン及びエタノールを添加し、混練して、負極剤ペーストを調製した。
 次いで、得られた負極剤ペーストを、上記帯形状の銅箔上に、巾300mmで、該銅箔の長手方向に沿って二重ストライプ状に両面塗着した。負極剤ペーストを塗着した銅箔を、窒素雰囲気中で乾燥し、上記溶剤を揮散させ、次いでロール圧延を行って、全体の厚みが150μmになるよう圧縮形成した。その後、塗着部を巾43mm、長さ280mmに切断した。その一端にニッケル箔のリード端子を超音波溶接で取り付け、負極とした。
 最後に、銅箔にシワ、切断部にバリ等の異常が見られるかどうかを目視で確認し、電池の生産性として評価した。銅箔にシワ又は破断が発生しない場合を「優(◎)」、銅箔に軽微なシワ又はバリのいずれかが発生しているが、実用上問題ないものを「良(○)」、シワ及びバリの少なくとも一方が発生し、後の電池特性の評価に影響が出ると予想されるものを「不可(×)」として評価した。
(電池の作製及び電池特性の評価)
 製造した正極と負極の間に、厚み25μmのポリプロピレン製のセパレータを挟んで全体を巻き、これを軟鋼表面にニッケルめっきした電池缶に収容して、負極のリード端子を缶底にスポット溶接した。ついで、絶縁材の上蓋を置き、ガスケットを挿入後、正極のリード端子とアルミニウム製安全弁とを超音波溶接して接続し、炭酸プロピレンと炭酸ジエチルと炭酸エチレンからなる非水電解液を電池缶の中に注入した。その後、前記安全弁に蓋を取り付け、外形14mm、高さ50mmの密閉構造型リチウムイオン二次電池を組み立てた。
 組み立てた電池を、充電電流100mAで4.2Vになるまで充電し、放電電流100mAで2.4Vになるまで放電するサイクルを1サイクルとカウントする、充放電サイクル試験を行った。電池の放電容量が800mAhを割り込んだときのサイクル数を、サイクル寿命(サイクル特性)として、電池特性を評価した。結果を表2に示す。
 サイクル寿命は、500回以上を「優(◎)」、300回以上500回未満を「良(○)」、300回未満を「不可(×)」として評価した。評価が「不可(×)」の銅箔は、本用途に適さない銅箔であることを示す。「良(○)」は適している銅箔であることを示し、中でも「優(◎)」はより電池特性が良好である銅箔であることを示す。
(総合評価)
 下記評価基準に基づき総合評価を行った。なお、本実施例では、総合評価でA及びBを合格レベルとした。
 A(優):上記の生産性及び電池特性の両方が「優(◎)」評価である。
 B(合格):上記の生産性及び電池特性の両方に「不可(×)」評価がなく、上記の生産性及び電池特性の少なくとも一方が「良(○)」評価である。
 C(不合格):上記の生産性及び電池特性の少なくとも一方が「不可(×)」評価である。
Figure JPOXMLDOC01-appb-T000003
 表2に示されるように、製造例1~9で作製された銅箔は、常態において所定の引張強度を有し、このとき長尺である幅方向における引張強度のバラつきが小さく、さらに熱処理後の状態でも高い引張強度を維持している(実施例1~9)。このような実施例1~9の銅箔は、リチウムイオン二次電池の生産時の生産性及びリチウムイオン二次電池としての電池特性の両方が優れていることが確認された。
 これに対し、比較製造例1で作製された銅箔は、常態における引張強度が高すぎて、伸びが劣る(比較例1)。また、比較製造例2の銅箔は、常態及び熱処理後の状態において引張強度が低い(比較例2)。そのため、このような比較例1及び2の電解銅箔は、リチウムイオン二次電池としての電池特性が劣っていることが確認された。
 また、比較製造例3~6で作製された銅箔は、常態における引張強度が、幅方向においてばらついている(比較例3~6)。そのため、このような比較例3~6の銅箔は、リチウムイオン二次電池の生産時の生産性が劣っていることが確認された。
(実施例11~19並びに比較例13、15及び16)
[プリント配線板用途の評価]
 上記製造例1~10並びに比較製造例3、5及び6で作製した銅箔を銅箔基体とし、各銅箔の一方の表面に以下に示す条件で粗化処理及び表面処理を施し、表面処理銅箔(厚さ12μm)を得た。
 得られた表面処理銅箔について、下記に示す特性評価を行った。各特性の評価条件は下記の通りであり、特に断らない限り、各測定は室温にて行った。結果を表3に示す。
(粗化処理層の形成)
 まず、銅箔基体に用いる銅箔は、上記製造例1~10並びに比較製造例3、5及び6で作製した常態の銅箔(幅方向寸法1100mm)である。
 次に、銅箔基体の表3に示す面に対し、下記に示す粗化めっき処理1及び粗化めっき処理2を順次行い、粗化処理層を形成した。
・粗化めっき処理1
  硫酸銅:  銅濃度として   21g/L
  硫酸:            97g/L
  硫酸コバルト(II)七水和物: コバルト濃度として 3.6g/L
  液温:            36℃
  電流密度:          32A/dm
  時間:            1~30秒
・粗化めっき処理2
  硫酸銅:  銅濃度として 50g/L
  硫酸:          120g/L
  液温:          62℃
  電流密度:        10A/dm
  時間:          1~30秒
(表面処理層の形成)
 次に、粗化処理層を形成した銅箔の粗化処理面に対し、下記に示すニッケル層、亜鉛層、クロメート処理層、シランカップリング剤層を、順次形成した。
・ニッケル層(下地層)の形成
 粗化処理層を形成した銅箔の粗化処理面に対し、下記に示すNiメッキ条件で電解メッキすることにより、ニッケル層(Niの付着量0.23mg/dm)を形成した。ニッケルメッキに用いるメッキ液は、硫酸ニッケル、過硫酸アンモニウム((NH)、ホウ酸(HBO)を含有しており、ニッケル濃度は5.3g/L、過硫酸アンモニウム濃度は28.0g/L、ホウ酸濃度は19.5g/Lである。また、メッキ液の温度は23.5℃、pHは3.9であり、電流密度は2.6A/dm、メッキ処理時間は1~30秒間である。
・亜鉛層(耐熱処理層)の形成
 更に、ニッケル層の上に下記に示すZnメッキ条件で電解メッキすることにより、亜鉛層(Znの付着量0.05mg/dm)を形成した。亜鉛メッキに用いるメッキ液は、硫酸亜鉛七水和物、水酸化ナトリウムを含有しており、亜鉛濃度は10g/L、水酸化ナトリウム濃度は29g/Lである。また、メッキ液の温度は30℃であり、電流密度は5A/dm、メッキ処理時間は1~30秒間である。
・クロメート処理層(防錆処理層)の形成
 更に、亜鉛層の上に下記に示すCrメッキ条件で電解メッキすることにより、クロメート処理層(Crの付着量0.05mg/dm)を形成した。クロムメッキに用いるメッキ液は、無水クロム酸(CrO)を含有しており、クロム濃度は3.1g/Lである。また、メッキ液の温度は20℃、pHは2.1であり、電流密度は0.6A/dm、メッキ処理時間は1~30秒間である。
・シランカップリング剤層の形成
 更に、下記に示す処理を行い、クロメート処理層の上にシランカップリング剤層を形成した。すなわち、シランカップリング剤水溶液にメタノール又はエタノールを添加し、所定のpHに調整して、処理液を得た。この処理液を表面処理銅箔のクロメート処理層に塗布し、所定の時間保持してから温風で乾燥させることにより、シランカップリング剤層を形成した。シランカップリング剤は、3‐メルカプトプロピルトリメトキシシラン(KBM-803、信越化学工業株式会社製)を用い、濃度1.0%、pH4.0の条件で、シランカップリング剤水溶液を調液した。
<粗化処理面の展開面積比(Sdr)>
 上記で得られた表面処理銅箔の粗化処理面について、展開面積比(Sdr)の測定を行った。測定は、上記裁断銅箔に対する測定と同様にして行った。結果を表3に示す。
(銅張積層板の製造及びプレス不良の評価)
 上記で得られた表面処理銅箔を、200mm×200mmの大きさに切断し、該表面処理銅箔の粗化処理面を、FR4系樹脂基材(EI-6765、住友ベークライト株式会社製、)に重ねて、170℃、面圧1.5MPaの条件で1時間、加熱、加圧接合し、銅張積層板を作製した。この方法で、30枚の銅張積層板を作製し、目視でシワの有無を確認した。
 シワが確認された銅張積層板についてはシワ不良数1枚としてカウントした。また、シワ不良の評価は、シワ不良数が0~1枚である場合は「優(◎)」、シワ不良数が2~4枚である場合は「良(○)」、シワ不良数が5枚以上場合は「不可(×)」として評価した。シワ不良数と評価結果を表3に示す。
(エッチングファクターの評価)
 上記で得られた表面処理銅箔を、200mm×200mmの大きさに切断し、該表面処理銅箔の粗化処理面上に、サブトラクティブ工法により、L&Sが30/30μmのレジストパターンを形成した。そして、エッチングを行って配線パターンを形成した。レジストとしてはドライレジストフィルムを使用し、エッチング液としては塩化銅と塩酸を含有する混合液を使用した。そして、得られた配線パターンのエッチングファクター(Ef)を測定した。エッチングファクターとは、銅箔の箔厚(μm)をH、形成された配線パターンのボトム幅(μm)をB、形成された配線パターンのトップ幅(μm)をTとするときに、次式で示される値である。なお、銅箔の箔厚Hは表面処理銅箔の厚さとした。また、ボトム幅B及びトップ幅Tの各寸法は、ジャストエッチ位置(レジストの端部の位置と配線パターンのボトムの位置が揃う)となったときの配線パターンについて、マイクロスコープを用いて測定した。
    Ef=2H/(B-T)
 エッチングファクターの評価は、上記Efの値が3.5以上である場合は「優(◎)」、上記Efの値が2.6以上3.5未満である場合は「良(○)」、上記Efの値が2.6未満である場合は「不可(×)」として評価した。上記Efの値と評価結果を表3に示す。
 なお、Efの値が小さい場合は、配線パターンにおける側壁の垂直性が崩れて、線幅が狭い微細な配線パターンを形成する場合に、隣接する配線パターンの間で銅箔の溶け残りが生じ、短絡する危険性や、断線に結び付く危険性がある。
(密着性の評価)
 上記で得られた表面処理銅箔を、200mm×200mmの大きさに切断し、該表面処理銅箔の粗化処理面を、FR4系樹脂基材(同上)に重ねて、170℃、面圧1.5MPaの条件で2時間、加熱、加圧接合し、銅張積層板を作製した。
 作製した銅張積層板を測定用サンプルとして、銅箔をエッチング加工して幅1mmの回路配線を形成し、試験片を作成した。次に試験片の樹脂基材側を両面テープによりステンレス板に固定し、回路配線部分(銅箔部分)を90度方向に50mm/分の速度で引っ張って剥離し、剥離した際の剥離強度(kN/m)を測定した。剥離強度の測定は、テンシロン万能材料試験機(株式会社エー・アンド・デイ製)を用いて行った。
 密着性の評価は、上記剥離強度(kN/m)が0.6kN/m以上である場合は「良(○)」、記剥離強度(kN/m)が0.6kN/m未満である場合は「不可(×)」として評価した。評価結果を表3に示す。
(総合評価)
 下記評価基準に基づき総合評価を行った。なお、本実施例では、総合評価でA及びBを合格レベルとした。
 A(優):上記のシワ不良及びエッチングファクターの両方が「優(◎)」評価であり、密着性が「良(○)」である。
 B(合格):上記のシワ不良、エッチングファクター及び密着性のいずれにも「不可(×)」評価がなく、シワ不良及びエッチングファクターの少なくとも一方が「良(○)」評価である。
 C(不合格):上記のシワ不良、エッチングファクター及び密着性の少なくとも1つが「不可(×)」評価である。
 なお、表3に示される銅箔基体の常態における引張強度(Ts)の分散σは、表2に示される電解銅箔の常態における引張強度(Ts)の分散σと同じデータである。
Figure JPOXMLDOC01-appb-T000004
 表3に示されるように、製造例1~9で作製された実施例1~9の銅箔は、特に長尺である幅方向における引張強度のバラつきが小さい。このような実施例1~9の銅箔を用いて銅張積層板を作製した場合には、作製時のプレスによるシワの発生が効果的に抑制できることが確認された(実施例11~19)。
 更に、実施例1~9の銅箔の表面に、粗化処理面の展開表面積比(Sdr)が所定の範囲となるように表面処理を施すことにより、密着性が良好で、エッチングファクターが大きいプリント配線板が得られることが確認された(実施例11~19)。
 これに対し、比較製造例3、5及び6で作製された比較例3、5及び6の銅箔は、常態における引張強度が、幅方向においてバラついている。そのため、このような比較例3、5及び6の銅箔を用いて銅張積層板を作製した場合は、プレスによるシワが多発することが確認された(比較例13、15及び16)。
1 製造装置
11 カソードドラム
 11a ドラム回転方向
12 PRパルス用電極
13 アノード
14 浴槽
20 電解液
 20a 電解液供給方向
30 銅箔
 30a 引き剥がし方向

Claims (11)

  1.  電解銅箔をその幅方向の一方端から他方端まで100mm間隔で裁断して得た各裁断銅箔を用いて測定した引張強度が、下記要件(I)から(III)を満たす、電解銅箔。
    ・要件(I):常態における前記各裁断銅箔の引張強度の平均値が400MPa以上650MPa以下である。
    ・要件(II):常態における前記各裁断銅箔の引張強度の分散σが18[MPa]以下である。
    ・要件(III):150℃で1時間熱処理された後の状態における前記各裁断銅箔の引張強度の平均値が350MPa以上である。
  2.  幅方向寸法が600mm以上である、請求項1に記載の電解銅箔。
  3.  前記各裁断銅箔の常態における伸びの平均値が5.3%以上である、請求項1又は2に記載の電解銅箔。
  4.  導電率が88%IACS以上である、請求項1~3のいずれか1項に記載の電解銅箔。
  5.  光沢面の展開面積比(Sdr)が12%以上27%以下である、請求項1~4のいずれか1項に記載の電解銅箔。
  6.  リチウムイオン二次電池の負極集電体として用いる、請求項1~5のいずれか1項に記載の電解銅箔。
  7.  請求項6に記載の電解銅箔を用いた、リチウムイオン二次電池用負極。
  8.  請求項7に記載のリチウムイオン二次電池用負極を用いた、リチウムイオン二次電池。
  9.  請求項1~5のいずれか1項に記載の電解銅箔の少なくとも一方の表面に粗化処理面を有し、
     前記粗化処理面の展開面積比(Sdr)が20%以上200%以下である、電解銅箔。
  10.  請求項9に記載の電解銅箔と、該電解銅箔の粗化処理面に積層された樹脂製基板と、を備える銅張積層板。
  11.  請求項10に記載の銅張積層板を備えるプリント配線板。
PCT/JP2019/006878 2018-02-23 2019-02-22 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板 WO2019163962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019523893A JP6582156B1 (ja) 2018-02-23 2019-02-22 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板
CN201980014480.8A CN111771015B (zh) 2018-02-23 2019-02-22 电解铜箔以及使用该电解铜箔的锂离子二次电池用负极、锂离子二次电池、覆铜层叠板和印刷布线板
KR1020207018615A KR102495166B1 (ko) 2018-02-23 2019-02-22 전해 동박, 그리고 당해 전해 동박을 이용한 리튬 이온 2차 전지용 부극, 리튬 이온 2차 전지, 동 클래드 적층판 및 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-031284 2018-02-23
JP2018031284 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163962A1 true WO2019163962A1 (ja) 2019-08-29

Family

ID=67688378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006878 WO2019163962A1 (ja) 2018-02-23 2019-02-22 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板

Country Status (5)

Country Link
JP (1) JP6582156B1 (ja)
KR (1) KR102495166B1 (ja)
CN (1) CN111771015B (ja)
TW (1) TWI791776B (ja)
WO (1) WO2019163962A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006662A (ja) * 2019-06-27 2021-01-21 長春石油化學股▲分▼有限公司 電解銅箔
JP7014884B1 (ja) 2020-12-23 2022-02-01 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
JP2022061301A (ja) * 2020-10-06 2022-04-18 東洋インキScホールディングス株式会社 金属板用接合剤、プリント配線板用補強部材及びその製造方法、並びに、配線板及びその製造方法
WO2022085371A1 (ja) * 2020-10-22 2022-04-28 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697574B (zh) * 2019-11-27 2020-07-01 長春石油化學股份有限公司 電解銅箔、電極及包含其之鋰離子電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053362A (ja) * 2011-09-06 2013-03-21 Mitsubishi Materials Corp エッチング性に優れた回路形成用銅箔、この銅箔を使用した銅張積層板及びプリント配線板
JP2014037582A (ja) * 2012-08-17 2014-02-27 Jx Nippon Mining & Metals Corp 電解銅箔
WO2015104999A1 (ja) * 2014-01-07 2015-07-16 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池、プリント配線板並びに電磁波シールド材
JP2016125120A (ja) * 2015-01-07 2016-07-11 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池並びにリジッドプリント配線板及びフレキシブルプリント配線板
JP2016537514A (ja) * 2013-11-08 2016-12-01 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 電解銅箔、並びにこれを含む電気部品及び電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176488A (ja) 1974-12-26 1976-07-02 Takeda Chemical Industries Ltd Koseibutsushitsunoseizoho
JPS54115246A (en) 1978-02-28 1979-09-07 Ricoh Co Ltd Toner concentration detector
JP5588607B2 (ja) 2007-10-31 2014-09-10 三井金属鉱業株式会社 電解銅箔及びその電解銅箔の製造方法
EP2544282A1 (en) * 2010-03-01 2013-01-09 Furukawa Electric Co., Ltd. Surface treatment method for copper foil, surface treated copper foil and copper foil for negative electrode collector of lithium ion secondary battery
CN103221583B (zh) * 2010-11-22 2015-05-13 三井金属矿业株式会社 表面处理铜箔
JP5074611B2 (ja) 2011-03-30 2012-11-14 Jx日鉱日石金属株式会社 二次電池負極集電体用電解銅箔及びその製造方法
WO2013002279A1 (ja) * 2011-06-30 2013-01-03 古河電気工業株式会社 電解銅箔、該電解銅箔の製造方法及び該電解銅箔を集電体とするリチウムイオン二次電池
CN103718346A (zh) * 2011-07-29 2014-04-09 古河电气工业株式会社 有被覆层金属箔及其制造方法、二次电池用电极及其制造方法、以及锂离子二次电池
KR101632852B1 (ko) * 2012-06-27 2016-06-22 후루카와 덴키 고교 가부시키가이샤 리튬 이온 이차 전지용 전해 구리박, 리튬 이온 이차 전지의 부극 전극 및 리튬 이온 이차 전지
WO2014038717A1 (ja) * 2012-09-10 2014-03-13 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板
JP6030401B2 (ja) * 2012-10-12 2016-11-24 三井金属鉱業株式会社 表面処理銅箔の製造方法
JP6166614B2 (ja) * 2013-07-23 2017-07-19 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、基材、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法
KR101680592B1 (ko) * 2014-09-05 2016-11-29 주식회사 아모그린텍 플렉서블 배터리 및 그 제조방법과 플렉서블 배터리를 포함하는 보조배터리
US9287566B1 (en) * 2015-04-17 2016-03-15 Chang Chun Petrochemical Co., Ltd. Anti-curl copper foil
JP2017014608A (ja) * 2015-07-06 2017-01-19 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池、プリント配線板並びに電磁波シールド材
JP6067910B1 (ja) * 2015-11-04 2017-01-25 古河電気工業株式会社 電解銅箔、その電解銅箔を用いたリチウムイオン二次電池
JP6248233B1 (ja) * 2016-06-14 2017-12-13 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極およびリチウムイオン二次電池ならびにプリント配線板
KR102218889B1 (ko) * 2016-06-14 2021-02-22 후루카와 덴키 고교 가부시키가이샤 전해 동박, 리튬 이온 2차 전지용 부극 전극 및 리튬 이온 2차 전지 그리고 프린트 배선판
JP6440656B2 (ja) * 2016-07-12 2018-12-19 古河電気工業株式会社 電解銅箔
JP6462961B2 (ja) * 2016-12-14 2019-01-30 古河電気工業株式会社 表面処理銅箔および銅張積層板
WO2020031721A1 (ja) * 2018-08-10 2020-02-13 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
TWI764170B (zh) * 2019-06-19 2022-05-11 金居開發股份有限公司 微粗糙電解銅箔以及銅箔基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053362A (ja) * 2011-09-06 2013-03-21 Mitsubishi Materials Corp エッチング性に優れた回路形成用銅箔、この銅箔を使用した銅張積層板及びプリント配線板
JP2014037582A (ja) * 2012-08-17 2014-02-27 Jx Nippon Mining & Metals Corp 電解銅箔
JP2016537514A (ja) * 2013-11-08 2016-12-01 イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. 電解銅箔、並びにこれを含む電気部品及び電池
WO2015104999A1 (ja) * 2014-01-07 2015-07-16 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池、プリント配線板並びに電磁波シールド材
JP2016125120A (ja) * 2015-01-07 2016-07-11 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池並びにリジッドプリント配線板及びフレキシブルプリント配線板

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006662A (ja) * 2019-06-27 2021-01-21 長春石油化學股▲分▼有限公司 電解銅箔
JP2022061301A (ja) * 2020-10-06 2022-04-18 東洋インキScホールディングス株式会社 金属板用接合剤、プリント配線板用補強部材及びその製造方法、並びに、配線板及びその製造方法
JP7107344B2 (ja) 2020-10-06 2022-07-27 東洋インキScホールディングス株式会社 金属板用接合剤、プリント配線板用補強部材及びその製造方法、並びに、配線板及びその製造方法
WO2022085371A1 (ja) * 2020-10-22 2022-04-28 古河電気工業株式会社 電解銅箔、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7014884B1 (ja) 2020-12-23 2022-02-01 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
JP2022100020A (ja) * 2020-12-23 2022-07-05 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板

Also Published As

Publication number Publication date
TWI791776B (zh) 2023-02-11
JP6582156B1 (ja) 2019-09-25
TW201937002A (zh) 2019-09-16
KR20200121287A (ko) 2020-10-23
CN111771015B (zh) 2022-03-29
CN111771015A (zh) 2020-10-13
KR102495166B1 (ko) 2023-02-06
JPWO2019163962A1 (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
JP6582156B1 (ja) 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板
JP5916904B1 (ja) 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池並びにリジッドプリント配線板及びフレキシブルプリント配線板
JP5810249B1 (ja) 電解銅箔、リチウムイオン二次電池用負極電極及びリチウムイオン二次電池、プリント配線板並びに電磁波シールド材
JP6190980B2 (ja) 電解銅箔、その電解銅箔を用いた各種製品
TWI609995B (zh) 電解銅箔、鋰離子二次電池用負極電極及鋰離子二次電池、印刷電路板及電磁波遮蔽材
WO2013018773A1 (ja) 電解銅合金箔、その製造方法、それの製造に用いる電解液、それを用いた二次電池用負極集電体、二次電池及びその電極
JP3910623B1 (ja) 電解銅箔の製造方法及びその製造方法で得られた電解銅箔、その電解銅箔を用いて得られた表面処理電解銅箔、その表面処理電解銅箔を用いた銅張積層板及びプリント配線板
TWI704048B (zh) 表面處理銅箔及使用其製成的覆銅積層板
US20120205146A1 (en) Heat-resistant copper foil and method of producing the same, circuit board, and copper-clad laminate and method of producing the same
JP2007217791A (ja) 電解銅箔、その電解銅箔を用いて得られた表面処理電解銅箔、その表面処理電解銅箔を用いた銅張積層板及びプリント配線板
TWI532592B (zh) Surface treatment of copper foil and the use of its laminated board
JP2020532653A (ja) 電解銅箔、その製造方法及びそれを含む高容量Li二次電池用陰極
KR20140097208A (ko) 전해 구리 합금박 및 캐리어박 부착 전해 구리 합금박
JP6067910B1 (ja) 電解銅箔、その電解銅箔を用いたリチウムイオン二次電池
CN110504453B (zh) 电解铜箔和使用电解铜箔的二次电池
JP6861304B1 (ja) 電解銅箔、電解銅箔を含む電極および電解銅箔を含む銅張積層板
KR20170126775A (ko) 낮은 표면조도를 갖는 전해동박, 그 제조방법, 그것을 포함하는 연성동박적층필름, 그것을 포함하는 음극, 및 그것을 포함하는 이차전지
JPWO2020246467A1 (ja) 表面処理銅箔、銅張積層板、及びプリント配線板
TWI792449B (zh) 電解銅箔、包含其的電極和覆銅積層板
TWI805902B (zh) 表面處理銅箔、覆銅積層板及印刷線路板
JP2927968B2 (ja) 高密度多層プリント回路内層用銅箔および該銅箔を内層回路用に用いた高密度多層プリント回路基板
JP2008091596A (ja) 表面平滑性を有する銅被覆ポリイミド基板とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019523893

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756712

Country of ref document: EP

Kind code of ref document: A1