WO2014038717A1 - 表面処理銅箔及びそれを用いた積層板 - Google Patents

表面処理銅箔及びそれを用いた積層板 Download PDF

Info

Publication number
WO2014038717A1
WO2014038717A1 PCT/JP2013/074439 JP2013074439W WO2014038717A1 WO 2014038717 A1 WO2014038717 A1 WO 2014038717A1 JP 2013074439 W JP2013074439 W JP 2013074439W WO 2014038717 A1 WO2014038717 A1 WO 2014038717A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
printed wiring
wiring board
carrier
Prior art date
Application number
PCT/JP2013/074439
Other languages
English (en)
French (fr)
Inventor
新井 英太
敦史 三木
康修 新井
嘉一郎 中室
友太 永浦
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014534445A priority Critical patent/JP5855259B2/ja
Publication of WO2014038717A1 publication Critical patent/WO2014038717A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a surface-treated copper foil and a laminate using the surface-treated copper foil, and in particular, a surface-treated copper foil suitable for a field where transparency of the remaining resin after etching the copper foil is required, and a laminate using the same. Regarding the board.
  • FPCs flexible printed wiring boards
  • the signal transmission speed has been increased, and impedance matching has become an important factor in FPC.
  • a resin insulation layer for example, polyimide
  • processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer
  • the visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.
  • a copper clad laminate that is a laminate of a copper foil and a resin insulating layer can be manufactured using a rolled copper foil having a roughened plating surface.
  • This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.
  • Patent Document 1 a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value.
  • An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
  • Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more.
  • the electrolytic copper foil includes a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 ⁇ m, and the specular gloss at an incident angle of 60 ° is 250 or more.
  • Patent Document 3 discloses a method for treating a copper foil for a printed circuit, in which a cobalt-nickel alloy plating layer is formed on the surface of the copper foil after a roughening treatment by copper-cobalt-nickel alloy plating, and further zinc-nickel.
  • An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.
  • JP 2004-98659 A WO2003 / 096776 Japanese Patent No. 2849059
  • Patent Document 1 a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency. Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF. Further, in the treatment method described in Patent Document 3, it was possible to finely process the copper foil with Cu—Co—Ni, but the resin after bonding the copper foil to the resin and removing it by etching was excellent. Transparency is not realized.
  • the present invention provides a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same.
  • the inventors have placed a printed matter with a mark on the polyimide substrate from which the copper foil has been bonded and removed, and the mark portion taken by the CCD camera through the polyimide substrate. Paying attention to the slope of the brightness curve near the mark edge drawn in the observation point-brightness graph obtained from the image of the image, controlling the slope of the brightness curve affects the resin transparency after the copper foil is etched away Found to affect.
  • the present invention completed on the basis of the above knowledge, in one aspect, is a surface-treated copper foil in which roughened particles are formed by roughening treatment on at least one surface, Etching after bonding the copper foil to both surfaces of a substrate having a thickness of 50 ⁇ m from the surface of the roughening treatment (polyimide having the following ⁇ B (PI) of 50 to 65 or less for the polyimide before being bonded to the copper foil).
  • PI ⁇ B
  • the mark is measured from the end of the mark.
  • the ratio of ⁇ B / ⁇ B (PI) is 0.7 or more
  • the slope (angle) k1 of the brightness curve in the depth range of 0.4 ⁇ B to 0.6 ⁇ B with respect to Bt is 65 ° or more and 87 °
  • the surface-treated copper foil is as follows.
  • the depth from the intersection of the lightness curve and Bt in the observation point-brightness graph produced from the image obtained by the photographing, the depth from the intersection of the lightness curve and Bt to 0.1 ⁇ B on the basis of Bt.
  • the slope (angle) k2 of the brightness curve in the range is 30 ° or more.
  • ⁇ B is 48 or more in the observation point-brightness graph prepared from the image obtained by the photographing.
  • the slope (angle) k1 of the brightness curve is 75 ° or more and 87 ° or less.
  • the brightness curve has an inclination (angle) k2 of 35 ° or more.
  • the TD average roughness Rz of the roughened surface is 0.20 to 0.80 ⁇ m, and the roughened surface MD has a 60 ° gloss.
  • the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side is 1.90-2. .40.
  • the 60 degree glossiness of the MD is 90 to 250%.
  • the average roughness Rz of the TD is 0.30 to 0.60 ⁇ m.
  • the A / B is 2.00 to 2.20.
  • the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.
  • the present invention it is possible to provide a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same.
  • FIGS. 8A to 8C are schematic views of a cross section of a wiring board in a process up to circuit plating and resist removal according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • D to F are schematic views of the cross section of the wiring board in the process from the lamination of the resin and the second-layer copper foil with a carrier to the laser drilling according to a specific example of the method for manufacturing a printed wiring board using the copper foil with a carrier of the present invention. It is.
  • GI are schematic views of the cross section of the wiring board in the steps from via fill formation to first layer carrier peeling, according to a specific example of the method for producing a printed wiring board using the copper foil with carrier of the present invention.
  • J to K are schematic views of a cross section of a wiring board in steps from flash etching to bump / copper pillar formation according to a specific example of a method of manufacturing a printed wiring board using the carrier-attached copper foil of the present invention.
  • the copper foil used in the present invention is useful for a copper foil used by making a laminate by bonding to a resin substrate and removing it by etching.
  • the copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil.
  • the surface of the copper foil that adheres to the resin substrate that is, the roughened surface, has a fist-like electric surface on the surface of the copper foil after degreasing in order to improve the peel strength of the copper foil after lamination.
  • a roughening process is carried out to wear.
  • the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment.
  • this roughening treatment is performed by alloy plating such as copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or nickel-zinc alloy plating.
  • alloy plating such as copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or nickel-zinc alloy plating.
  • copper alloy plating bath for example, a plating bath containing one or more elements other than copper and copper, more preferably any selected from the group consisting of copper and cobalt, nickel, arsenic, tungsten, chromium, zinc, phosphorus, manganese and molybdenum It is preferable to use a plating bath containing at least one kind.
  • the said roughening process makes a current density higher than the conventional roughening process, and shortens roughening processing time.
  • Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off.
  • the content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil.
  • the rolled copper foil according to the present invention includes a copper alloy foil containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, and V. It is.
  • the conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.
  • the copper alloy foil may contain a total of elements other than copper of 0 mass% or more and 50 mass% or less, may contain 0.0001 mass% or more and 40 mass% or less, may contain 0.0005 mass% or more and 30 mass% or less, and 0.001 mass%. More than 20 mass% may be included.
  • middle layer, and an ultra-thin copper layer in this order may be sufficient as the copper foil used in this invention. When using copper foil with a carrier in this invention, the said roughening process is performed to the ultra-thin copper layer surface. In addition, another embodiment of the copper foil with a carrier will be described later.
  • Copper as roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, coating weight is to be a 15 ⁇ 40mg / dm 2 of copper -100 ⁇ 3000 ⁇ g / dm 2 of cobalt -50 ⁇ 1500 ⁇ g / dm 2 of nickel
  • a ternary alloy layer can be formed, and the adhesion amount is 15 to 40 mg / dm 2 of copper—100 to 3000 ⁇ g / dm 2 of cobalt—100 to 1500 ⁇ g / dm 2 of nickel. It is preferable to carry out so as to form a ternary alloy layer.
  • the heat resistance may deteriorate and the etching property may deteriorate.
  • the amount of Co deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate.
  • the Ni adhesion amount is less than 50 ⁇ g / dm 2 , the heat resistance may deteriorate.
  • the Ni adhesion amount exceeds 1500 ⁇ g / dm 2 , the etching residue may increase.
  • a preferable Co adhesion amount is 1000 to 2500 ⁇ g / dm 2
  • a preferable nickel adhesion amount is 500 to 1200 ⁇ g / dm 2
  • the etching stain means that Co remains without being dissolved when etched with copper chloride
  • the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
  • the plating bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating are as follows: Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 25 to 50 A / dm 2 Plating time: 0.3 to 3 seconds Note that the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased. By performing the roughening treatment under a condition in which the plating time is shortened and the current density is increased as compared with the conventional case, finer roughened particles are formed on the copper foil surface than in the conventional case.
  • the copper-nickel-phosphorus alloy plating conditions as the roughening treatment of the present invention are shown below.
  • Plating bath composition Cu 10-50 g / L, Ni 3-20 g / L, P1-10 g / L pH: 1 to 4 Temperature: 30-40 ° C
  • Current density D k 30 to 50 A / dm 2
  • Plating time 0.3 to 3 seconds Note that the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased.
  • finer roughened particles are formed on the copper foil surface than in the conventional case.
  • the copper-nickel-cobalt-tungsten alloy plating conditions as the roughening treatment of the present invention are shown below.
  • Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Co 5-20 g / L, W 1-10 g / L pH: 1-5
  • Temperature 30-50 ° C
  • Current density D k 30 to 50
  • Plating time 0.3 to 3 seconds
  • the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased.
  • the copper-nickel-molybdenum-phosphorus alloy plating conditions as the roughening treatment of the present invention are shown below.
  • Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Mo 1-10 g / L, P 1-10 g / L pH: 1-5
  • Temperature 30-50 ° C
  • Current density D k 30 to 50
  • Plating time 0.5 to 3 seconds
  • the surface-treated copper foil according to one embodiment of the present invention is subjected to a roughening treatment under conditions where the plating time is shorter than before and the current density is increased.
  • each layer may be a plurality of layers such as two layers, three layers, and the order of stacking the layers may be any order, and the layers may be stacked alternately.
  • a known heat-resistant layer can be used as the heat-resistant layer. Further, for example, the following surface treatment can be used.
  • the heat-resistant layer and the rust-proof layer known heat-resistant layers and rust-proof layers can be used.
  • the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum
  • it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like.
  • the heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • An oxide, nitride, or silicide containing one or more elements selected from the above may be included.
  • the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy.
  • the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities.
  • the total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 .
  • the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
  • the heat-resistant layer and / or rust prevention layer is a layer containing a nickel-zinc alloy, the interface between the copper foil and the resin substrate is eroded by the desmear liquid when the inner wall of a through hole or via hole comes into contact with the desmear liquid. It is difficult to improve the adhesion between the copper foil and the resin substrate.
  • the rust prevention layer may be a chromate treatment layer. A known chromate treatment layer can be used for the chromate treatment layer.
  • a chromate treatment layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
  • Specific examples of the chromate treatment layer include a pure chromate treatment layer and a zinc chromate treatment layer.
  • a chromate treatment layer treated with an anhydrous chromic acid or potassium dichromate aqueous solution is referred to as a pure chromate treatment layer.
  • a chromate treatment layer treated with a treatment liquid containing chromic anhydride or potassium dichromate and zinc is referred to as a zinc chromate treatment layer.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2.
  • a tin layer of ⁇ 80 mg / m 2 , preferably 5 mg / m 2 ⁇ 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these.
  • the heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable.
  • the carrier-clad copper foil is processed into a printed wiring board, and the subsequent circuit peeling strength, the chemical resistance deterioration rate of the peeling strength, and the like are improved.
  • coating weight of cobalt 200 ⁇ 2000 ⁇ g / dm 2 of cobalt -50 ⁇ 700 [mu] g / dm 2 of nickel - can form a nickel alloy plating layer.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered.
  • the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable.
  • cobalt nickel cobalt -100 ⁇ 700 ⁇ g / dm 2 weight deposited on the roughened surface is 200 ⁇ 3000 ⁇ g / dm 2 - can form a nickel alloy plating layer.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • the treated surface becomes reddish, which is not preferable.
  • the amount of cobalt deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate.
  • a preferable cobalt adhesion amount is 500 to 2500 ⁇ g / dm 2 .
  • the nickel adhesion amount is less than 100 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • nickel exceeds 1300 microgram / dm ⁇ 2 > alkali etching property will worsen.
  • a preferable nickel adhesion amount is 200 to 1200 ⁇ g / dm 2 .
  • Plating bath composition Co 1-20 g / L, Ni 1-20 g / L pH: 1.5 to 3.5 Temperature: 30-80 ° C Current density D k : 1.0 to 20.0 A / dm 2 Plating time: 0.5-4 seconds
  • a zinc plating layer having an adhesion amount of 30 to 250 ⁇ g / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 ⁇ g / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 ⁇ g / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated.
  • the zinc coating weight is 30 ⁇ 240 ⁇ g / dm 2, more preferably 80 ⁇ 220 ⁇ g / dm 2.
  • Plating bath composition Zn 100 to 300 g / L pH: 3-4 Temperature: 50-60 ° C Current density D k : 0.1 to 0.5 A / dm 2 Plating time: 1 to 3 seconds
  • a zinc alloy plating layer such as zinc-nickel alloy plating may be formed instead of the zinc plating layer, and a rust prevention layer and a weather resistance layer are applied to the outermost surface by chromate treatment or application of a silane coupling agent. It may be formed.
  • a known weathering layer can be used as the weathering layer.
  • a well-known silane coupling process layer can be used, for example, The silane coupling process layer formed using the following silanes can be used.
  • a known silane coupling agent may be used.
  • an amino silane coupling agent, an epoxy silane coupling agent, or a mercapto silane coupling agent may be used.
  • Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and ⁇ -aminopropyl.
  • Triethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, ⁇ -mercaptopropyltrimethoxysilane or the like may be used.
  • the silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • you may use 2 or more types of such silane coupling agents in mixture.
  • it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
  • the amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl
  • the silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the base resin and the surface-treated copper foil can be further improved.
  • the surface-treated copper foil of the present invention it is preferable that roughened particles are formed on the surface of the copper foil by a roughening treatment, and that the average roughness Rz of TD on the roughened surface is 0.20 to 0.80 ⁇ m. .
  • the peel strength is increased and the resin is satisfactorily bonded to the resin, and the transparency of the resin after the copper foil is removed by etching is increased.
  • alignment and the like when mounting an IC chip through a positioning pattern that is visible through the resin can be made easier.
  • the average roughness Rz of TD is less than 0.20 ⁇ m, there may be a concern about manufacturing costs for producing an ultra-smooth surface.
  • the average roughness Rz of TD is more than 0.80 ⁇ m, the unevenness of the resin surface after the copper foil is removed by etching may increase, resulting in a problem that the transparency of the resin becomes poor. There is a fear.
  • the TD average roughness Rz of the roughened surface is more preferably 0.30 to 0.70 ⁇ m, still more preferably 0.35 to 0.60 ⁇ m, still more preferably 0.35 to 0.55 ⁇ m, and Even more preferred is 35 to 0.50 ⁇ m.
  • the average roughness Rz of TD of the roughening surface of the surface-treated copper foil of this invention is 0.20.
  • the term “roughened surface” means that when the surface treatment for providing a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. is performed after the roughening treatment, It means the surface of the surface-treated copper foil after the treatment.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the “roughened surface” means that a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. are provided after the roughening treatment.
  • the surface treatment is performed, the surface of the ultrathin copper layer after the surface treatment is performed.
  • the surface-treated copper foil of the present invention preferably has a roughened surface having a glossiness of 76 to 350%, preferably 80 to 350%, more preferably 90 to 300%, It is still more preferably 90 to 250%, and even more preferably 100 to 250%.
  • the surface on the treatment side of the copper foil before the surface treatment (if the surface-treated copper foil is an ultrathin copper layer of the copper foil with carrier, an intermediate layer is formed.
  • TD direction perpendicular to the rolling direction (width direction of the copper foil) of the surface on the side where the intermediate layer of the previous carrier is provided or the surface of the ultrathin copper layer.
  • Rz roughness
  • the TD surface roughness (Rz) of the copper foil before the surface treatment is preferably 0.20 to 0.80 ⁇ m, more preferably 0.30 to 0.80 ⁇ m, and more preferably 0.30 to 0.
  • the glossiness at an incident angle of 60 degrees in the rolling direction (MD) is 350 to 800%, more preferably 500 to 800%, and the current density is higher than that of the conventional roughening treatment. If the roughening treatment time is shortened, the glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the surface-treated copper foil after the surface treatment is 90 to 350%.
  • Such a copper foil can be produced by adjusting the oil film equivalent of rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution.
  • the surface roughness (Rz) and the surface area of the copper foil after the treatment by setting the TD surface roughness (Rz) and the glossiness of the copper foil before the treatment within the above range. Can do.
  • the TD roughness (Rz) of the treated side surface of the copper foil before the surface treatment is set. 0.18 to 0.80 ⁇ m, preferably 0.25 to 0.50 ⁇ m
  • the glossiness at an incident angle of 60 degrees in the rolling direction (MD) is 350 to 800%, preferably 500 to 800%.
  • the copper foil before the roughening treatment preferably has a 60 degree gloss of MD of 500 to 800%, more preferably 501 to 800%, and still more preferably 510 to 750%. . If the 60 degree glossiness of MD of the copper foil before the roughening treatment is less than 500%, the transparency of the resin may be poorer than the case of 500% or more. The problem that it becomes difficult may arise.
  • the high gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 to 24000 or less.
  • Oil film equivalent ⁇ (rolling oil viscosity [cSt]) ⁇ (sheet feeding speed [mpm] + roll peripheral speed [mpm]) ⁇ / ⁇ (roll biting angle [rad]) ⁇ (yield stress of material [kg / mm 2 ]) ⁇
  • the rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
  • a known method such as using a low viscosity rolling oil or slowing a sheet passing speed may be used.
  • Chemical polishing is performed with an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a lower concentration than usual and for a long time.
  • the surface-treated copper foil of the present invention is bonded to both surfaces of a substrate having a thickness of 50 ⁇ m from the surface of the roughened surface (polyimide having the following ⁇ B (PI) of 50 to 65 or less for the polyimide before being bonded to the copper foil). Then, the copper foil on both sides is removed by etching, and the printed matter on which the line-shaped mark is printed is laid under the exposed polyimide substrate, and when the printed matter is photographed with a CCD camera through the polyimide substrate, In the observation point-brightness graph, the mark was drawn from the end of the mark, which was created by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends.
  • PI ⁇ B
  • FIG. 1 shows a schematic diagram defining Bt and Bb.
  • the “mark” in FIG. 1 indicates a line-like mark (width of about 1.3 mm) of the printed matter observed in an image obtained by photographing with the CCD camera.
  • a curve drawn so as to overlap the mark indicates a lightness curve generated from the end of the mark to a portion where no mark is drawn in the observation point-lightness graph.
  • the “top average value Bt of the lightness curve” is an average of lightness values measured at 5 points (a total of 10 points on both sides) at 30 ⁇ m intervals from a position 100 ⁇ m away from the end positions on both sides of the mark. Indicates the value.
  • the “bottom average value Bb of the lightness curve” indicates an average value of lightness when 11 positions are measured at intervals of 100 ⁇ m from a position inside 100 ⁇ m from the end position of the mark.
  • FIG. 2 shows a schematic diagram defining k1 and k2.
  • One pixel on the horizontal axis corresponds to a length of 10 ⁇ m.
  • the value of k1 (°) was calculated in the lightness curve graph of 5: 5).
  • k2 is measured on both sides of the mark, and a value with a small inclination (angle) is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted.
  • ⁇ B (PI) represents the difference between the top average value Bt and the bottom average value Bb of the brightness curve for the polyimide before being bonded to the copper foil. In the image taken by the CCD camera, the brightness is high at the portion where the mark is not attached, but the brightness decreases as soon as the end of the mark is reached. If the visibility of the polyimide substrate is good, such a lowered state of brightness is clearly observed.
  • the present invention is based on such a polyimide substrate from which the surface-treated copper foil of the present invention is bonded and removed, and a mark printed matter is placed under the polyimide substrate and photographed with a CCD camera over the polyimide substrate. The inclination of the lightness curve near the mark end drawn in the observation point-lightness graph obtained from the image is controlled.
  • ⁇ B is preferably 48 or more, and k1 is preferably 75 ° or more and 87 ° or less.
  • the upper limit of ⁇ B is not particularly limited, but is, for example, 100 or less, 60 or less, or 50 or less, or 40 or less.
  • the upper limit of k1 is preferably 87 ° or less, more preferably 85 ° or less, and even more preferably 83 ° or less. When k1 exceeds 87 °, the peel strength may be reduced.
  • the upper limit of ⁇ B / ⁇ B (PI) need not be specified, but is, for example, 1.70 or less, or 1.50 or less, or 1.40 or less.
  • the slope k2 of the lightness curve in a depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt is 30 ° or more. Is preferred. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.
  • k2 is more preferably 35 ° or more.
  • the upper limit of k2 is not particularly limited, but is, for example, 87 ° or less, alternatively 82 ° or less, alternatively 77 ° or less, or 72 ° or less.
  • the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side greatly affects the transparency of the resin. That is, if the surface roughness Rz is the same, the smaller the ratio A / B, the better the transparency of the resin. For this reason, in the surface-treated copper foil of the present invention, the ratio A / B is preferably 1.90 to 2.40, and more preferably 2.00 to 2.20.
  • the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan view from the copper foil surface side is controlled to 1.90 to 2.40.
  • the roughness of the roughened surface is controlled to 0.20 to 0.80 ⁇ m to eliminate extremely rough portions, while the glossiness of the roughened surface is increased. It can be as high as 76 to 350%.
  • the particle size of the roughened particles on the roughened surface can be reduced.
  • the particle size of the roughened particles affects the resin transparency after the copper foil is removed by etching, but such control means that the particle size of the roughened particles is reduced within an appropriate range. Therefore, the resin transparency after removing the copper foil by etching becomes better, and the peel strength becomes better.
  • the etching factor is preferably 1.8 or more, preferably 2.0 or more, preferably 2.2 or more, and 2.3 or more. Preferably, it is 2.4 or more.
  • the above-mentioned particle area ratio (A / B), glossiness, and surface roughness Rz are obtained for the copper circuit or copper foil surface by dissolving and removing the resin. Can be measured.
  • Transmission loss When the transmission loss is small, attenuation of the signal when performing signal transmission at a high frequency is suppressed, so that a stable signal transmission can be performed in a circuit that transmits the signal at a high frequency. Therefore, a smaller transmission loss value is preferable because it is suitable for use in a circuit for transmitting a signal at a high frequency.
  • the transmission loss at a frequency of 20 GHz is preferably less than 5.0 dB / 10 cm, more preferably less than 4.1 dB / 10 cm. Even more preferred is less than 0.7 dB / 10 cm.
  • the carrier-attached copper foil according to another embodiment of the present invention includes a carrier, an intermediate layer, and an ultrathin copper layer in this order. And the said ultra-thin copper layer is the surface treatment copper foil which is one embodiment of the above-mentioned this invention.
  • the carrier that can be used in the present invention is typically a metal foil or a resin film, for example, copper foil, copper alloy foil, nickel foil, nickel alloy foil, iron foil, iron alloy foil, stainless steel foil, aluminum foil, aluminum It is provided in the form of alloy foil, insulating resin film (for example, polyimide film, liquid crystal polymer (LCP) film, polyethylene terephthalate (PET) film, polyamide film, polyester film, fluororesin film, etc.). It is preferable to use a copper foil as a carrier that can be used in the present invention. This is because the copper foil has a high electrical conductivity, so that subsequent formation of an intermediate layer and an ultrathin copper layer is facilitated.
  • insulating resin film for example, polyimide film, liquid crystal polymer (LCP) film, polyethylene terephthalate (PET) film, polyamide film, polyester film, fluororesin film, etc.
  • the carrier is typically provided in the form of rolled copper foil or electrolytic copper foil.
  • the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll.
  • the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used.
  • the thickness of the carrier that can be used in the present invention is not particularly limited, but may be appropriately adjusted to a thickness suitable for serving as a carrier, for example, 5 ⁇ m or more. However, if it is too thick, the production cost becomes high, so generally it is preferably 35 ⁇ m or less. Accordingly, the thickness of the carrier is typically 12-70 ⁇ m, more typically 18-35 ⁇ m.
  • the carrier used in the present invention needs to control the surface roughness Rz and the glossiness on the side where the intermediate layer is formed. This is to control the glossiness of the roughened surface of the ultrathin copper layer after the surface treatment and the size and number of roughened particles.
  • An intermediate layer is provided on the carrier. Another layer may be provided between the carrier and the intermediate layer.
  • the ultrathin copper layer is hardly peeled off from the carrier before the copper foil with the carrier is laminated on the insulating substrate, while the ultrathin copper layer is separated from the carrier after the lamination step on the insulating substrate.
  • the intermediate layer of the copper foil with a carrier of the present invention is Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, alloys thereof, hydrates thereof, oxides thereof, One or two or more selected from the group consisting of organic substances may be included.
  • the intermediate layer may be a plurality of layers. Further, for example, the intermediate layer is a single metal layer composed of one kind of element selected from the element group composed of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn from the carrier side. Or forming an alloy layer composed of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, A layer made of a hydrate or oxide of one or more elements selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn. It can comprise by forming.
  • a well-known organic substance can be used for the intermediate
  • specific nitrogen-containing organic compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H, which are triazole compounds having a substituent. It is preferable to use -1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like.
  • the sulfur-containing organic compound it is preferable to use mercaptobenzothiazole, 2-mercaptobenzothiazole sodium, thiocyanuric acid, 2-benzimidazolethiol and the like.
  • the carboxylic acid it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like.
  • the intermediate layer can be constituted by laminating nickel, a nickel-phosphorus alloy or a nickel-cobalt alloy, and chromium in this order on a carrier.
  • the adhesive strength between nickel and copper is higher than the adhesive strength between chromium and copper, when the ultrathin copper layer is peeled off, it peels at the interface between the ultrathin copper layer and chromium. Further, the nickel of the intermediate layer is expected to have a barrier effect that prevents the copper component from diffusing from the carrier into the ultrathin copper layer.
  • Adhesion amount of nickel in the intermediate layer is preferably 100 [mu] g / dm 2 or more 40000 ⁇ g / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 4000 ⁇ g / dm 2 or less, more preferably 100 [mu] g / dm 2 or more 2500 g / dm 2 or less, more Preferably, it is 100 ⁇ g / dm 2 or more and less than 1000 ⁇ g / dm 2 , and the amount of chromium deposited on the intermediate layer is preferably 5 ⁇ g / dm 2 or more and 100 ⁇ g / dm 2 or less.
  • the intermediate layer When the intermediate layer is provided only on one side, it is preferable to provide a rust preventive layer such as a Ni plating layer on the opposite side of the carrier. If the thickness of the intermediate layer becomes too large, the thickness of the intermediate layer may affect the glossiness of the roughened surface of the ultrathin copper layer after the surface treatment and the size and number of roughened particles.
  • the thickness of the intermediate layer on the roughened surface of the thin copper layer is preferably 1 to 1000 nm, preferably 1 to 500 nm, preferably 2 to 200 nm, and preferably 2 to 100 nm. More preferably, it is 3 to 60 nm.
  • the ultra-thin copper layer having the carrier is a surface-treated copper foil that is one embodiment of the present invention.
  • the thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the carrier, for example, 12 ⁇ m or less. Typically 0.5 to 12 ⁇ m, more typically 1.5 to 5 ⁇ m.
  • strike plating with a copper-phosphorus alloy may be performed in order to reduce pinholes in the ultrathin copper layer. Examples of the strike plating include a copper pyrophosphate plating solution.
  • the ultra-thin copper layer of the present application is formed under the following conditions. This is for controlling the size and number of particles of the roughening treatment and the glossiness after the roughening treatment by forming a smooth ultrathin copper layer.
  • Electrolyte composition Copper 80 to 120 g / L Sulfuric acid: 80-120 g / L Chlorine: 30-100ppm
  • Leveling agent 1 bis (3sulfopropyl) disulfide): 10 to 30 ppm
  • Leveling agent 2 (amine compound) 10 to 30 ppm
  • As the amine compound an amine compound having the following chemical formula can be used.
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • a resin layer may be provided on the roughened surface of the surface-treated copper foil of the present invention.
  • the resin layer may be an insulating resin layer.
  • the resin layer may be provided on part or all of the roughened surface of the surface-treated copper foil of the present invention.
  • the term “roughened surface” means that when the surface treatment for providing a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. is performed after the roughening treatment, It means the surface of the surface-treated copper foil after the treatment.
  • the “roughened surface” means that a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. are provided after the roughening treatment.
  • the surface treatment is performed, the surface of the ultrathin copper layer after the surface treatment is performed.
  • the resin layer may be an adhesive or an insulating resin layer in a semi-cured state (B stage state) for bonding.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may be an adhesive resin, that is, an adhesive, or may be a semi-cured (B-stage) insulating resin layer for adhesion.
  • the semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.
  • the resin layer may contain a thermosetting resin or a thermoplastic resin.
  • the resin layer may include a thermoplastic resin.
  • the resin layer may contain a known resin, resin curing agent, compound, curing accelerator, dielectric, reaction catalyst, crosslinking agent, polymer, prepreg, skeleton material, and the like.
  • the resin layer may be, for example, International Publication No. WO2008 / 004399, International Publication No. WO2008 / 053878, International Publication No. WO2009 / 084533, JP-A-11-5828, JP-A-11-140281, Patent 3184485, International Publication. No. WO 97/02728, Japanese Patent No. 3676375, Japanese Patent Application Laid-Open No.
  • Japanese Patent No. 3612594 Japanese Patent Application Laid-Open No. 2002-179721, Japanese Patent Application Laid-Open No. 2002-309444, Japanese Patent Application Laid-Open No. 2003-302068, Japanese Patent No. 3992225, Japanese Patent Application Laid-Open No. -249739, Japanese Patent No. 4136509, Japanese Patent Application Laid-Open No. 2004-82687, Japanese Patent No. 4025177, Japanese Patent Application Laid-Open No. 2004-349654, Japanese Patent No. 4286060, Japanese Patent Application Laid-Open No. 2005-262506, Japanese Patent No. 4570070, and Japanese Patent Application Laid-Open No. 4570070. No. 5-53218, Japanese Patent No.
  • WO 2008/114858 International Publication Number WO 2009/008471, JP 2011-14727, International Publication Number WO 2009/001850, International Publication Number WO 2009/145179, International Publication Number Nos. WO2011 / 068157 and JP2013-19056 (resins, resin curing agents, compounds, curing accelerators, dielectrics, reaction catalysts, crosslinking agents, polymers, prepregs, skeletal materials, etc.) and / or You may form using the formation method and formation apparatus of a resin layer.
  • the type of the resin layer is not particularly limited.
  • epoxy resin polyimide resin, polyfunctional cyanate ester compound, maleimide compound, polymaleimide compound, maleimide resin, aromatic maleimide resin , Polyvinyl acetal resin, urethane resin, acrylic resin, polyethersulfone (also referred to as polyethersulfone or polyethersulfone), polyethersulfone (also referred to as polyethersulfone or polyethersulfone) resin, aromatic polyamide resin , Aromatic polyamide resin polymer, rubber resin, polyamine, aromatic polyamine, polyamideimide resin, rubber modified epoxy resin, phenoxy resin, carboxyl group-modified acrylonitrile-butadiene resin, polyphenylene oxide, bismale Midtriazine resin, thermosetting polyphenylene oxide resin, cyanate ester resin, carboxylic acid anhydride, polyvalent carboxylic acid anhydride, linear polymer having crosslinkable functional group, polyphenylene ether resin, 2,2-bis
  • the epoxy resin has two or more epoxy groups in the molecule and can be used without any problem as long as it can be used for electric / electronic materials.
  • the epoxy resin is preferably an epoxy resin epoxidized using a compound having two or more glycidyl groups in the molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, brominated (brominated) epoxy Resin, phenol novolac type epoxy resin, naphthalene type epoxy resin, brominated bisphenol A type epoxy resin, orthocresol novolac type epoxy resin, rubber modified bisphenol A type epoxy resin, glycidylamine type epoxy resin, triglycidyl isocyanurate, N, N -Glycidyl amine compounds such as diglycidyl aniline, glycidyl ester compounds such as diglycidyl tetrahydrophthalate, phosphorus-containing epoxy resins, biphenyl type epoxy resins, One or two or more types selected from the group of phenyl novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylethane type epoxy resin can be used, or
  • the phosphorus-containing epoxy resin a known epoxy resin containing phosphorus can be used.
  • the phosphorus-containing epoxy resin is, for example, an epoxy resin obtained as a derivative from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide having two or more epoxy groups in the molecule. Is preferred.
  • the resin layer may include a dielectric (dielectric filler).
  • a dielectric (dielectric filler) is included in any of the above resin layers or resin compositions, it can be used for the purpose of forming the capacitor layer and increase the capacitance of the capacitor circuit.
  • the dielectric (dielectric filler) includes a composite oxide having a perovskite structure such as BaTiO3, SrTiO3, Pb (Zr-Ti) O3 (commonly called PZT), PbLaTiO3 / PbLaZrO (commonly known as PLZT), SrBi2Ta2O9 (commonly known as SBT), and the like.
  • Dielectric powder is used.
  • the dielectric (dielectric filler) may be in powder form.
  • the powder characteristics of the dielectric (dielectric filler) are such that the particle size is in the range of 0.01 ⁇ m to 3.0 ⁇ m, preferably 0.02 ⁇ m to 2.0 ⁇ m. It is preferable that.
  • SEM scanning electron microscope
  • the length of the longest straight line across the dielectric particle is The length of the dielectric particle is defined as the diameter of the dielectric particle.
  • an average value of the diameters of the dielectric particles in the measurement visual field is defined as the dielectric particle size.
  • methyl ethyl ketone MLK
  • cyclopentanone dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene, methanol, ethanol, propylene glycol monomethyl ether
  • the surface-treated copper foil is coated on the roughened surface by, for example, a roll coater method, and then heated and dried as necessary to remove the solvent to obtain a B-stage state.
  • a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C., preferably 130 to 200 ° C.
  • the resin layer composition is dissolved using a solvent, and the resin solid content is 3 wt% to 70 wt%, preferably 3 wt% to 60 wt%, preferably 10 wt% to 40 wt%, more preferably 25 wt% to 40 wt%. It is good also as a resin liquid.
  • the resin layer is preferably a semi-cured resin film having a resin flow in the range of 5% to 35% when measured according to MIL-P-13949G in the MIL standard. In this specification, the resin flow is based on MIL-P-13949G in the MIL standard. Four 10 cm square samples were sampled from a surface-treated copper foil with resin with a resin thickness of 55 ⁇ m.
  • the surface-treated copper foil (resin-treated surface-treated copper foil) provided with the resin layer is obtained by superposing the resin layer on a substrate and then thermocompressing the whole to thermally cure the resin layer, and then the surface-treated copper foil.
  • the carrier is peeled off to expose the ultra-thin copper layer (of course, the surface on the intermediate layer side of the ultra-thin copper layer is exposed)
  • the surface-treated copper foil is used in a form in which a predetermined wiring pattern is formed from the surface opposite to the surface subjected to the roughening treatment.
  • this surface-treated copper foil with resin makes it possible to reduce the number of prepreg materials used when manufacturing a multilayer printed wiring board.
  • the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used.
  • the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.
  • the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous.
  • the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 ⁇ m or less can be manufactured.
  • the thickness of this resin layer is preferably 0.1 to 120 ⁇ m.
  • the thickness of the resin layer becomes thinner than 0.1 ⁇ m, the adhesive strength is reduced, and when this surface-treated copper foil with resin is laminated on the base material provided with the inner layer material without interposing the prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.
  • the thickness of the resin layer is greater than 120 ⁇ m, it is difficult to form a resin layer having a target thickness in a single coating process, which may be economically disadvantageous because of extra material costs and man-hours.
  • the thickness of the resin layer is 0.1 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m, More preferably, the thickness is 1 ⁇ m to 5 ⁇ m in order to reduce the thickness of the multilayer printed wiring board.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier
  • a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor
  • the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.
  • a step of preparing the copper foil with carrier and the insulating substrate according to the present invention the copper foil with carrier and the insulating substrate Laminating the copper foil with carrier and the insulating substrate, then peeling off the carrier of the copper foil with carrier, etching the exposed ultrathin copper layer with a corrosive solution such as an acid.
  • Removing all by a method such as plasma or plasma providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching, a region including the through hole or / and the blind via
  • a step of performing a desmear treatment on the resin and the through-hole or / and a blind via A step of providing an electroless plating layer for a region to be removed, a step of providing a plating resist on the electroless plating layer, a step of exposing the plating resist, and then removing the plating resist in a region where a circuit is formed, A step of providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed, a step of removing the plating resist, and a flash etching of an electroless plating layer in a region other than the region where the circuit is formed And the like.
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention the copper foil with a carrier and the insulating substrate Laminating the copper foil with carrier and the insulating substrate, then peeling off the carrier of the copper foil with carrier, etching the exposed ultrathin copper layer with a corrosive solution such as an acid.
  • Removing all by a method such as plasma or plasma providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching, and providing a plating resist on the electroless plating layer
  • a step of exposing the plating resist, and then removing the plating resist in a region where a circuit is formed, the plating resist The step of providing an electrolytic plating layer in the region where the removed circuit is formed, the step of removing the plating resist, and flushing the electroless plating layer and the ultrathin copper layer in the region other than the region where the circuit is formed Removing by etching or the like.
  • the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulation A step of laminating the substrate, a step of peeling the carrier of the copper foil with carrier and the insulating substrate after laminating the carrier-attached copper foil, a through-hole or / and in the insulating substrate and the ultrathin copper layer exposed by peeling the carrier
  • a step of providing a blind via, a step of performing a desmear process on the region including the through hole or / and the blind via, a step of providing an electroless plating layer on the region including the through hole or / and the blind via, and exposing the substrate by peeling off the carrier The step of providing a plating resist on the surface of the ultrathin copper layer, the plating resist After digits, including the step of forming a circuit by electroplating, removing the plating resist, a step
  • the step of forming a circuit on the resin layer includes bonding another copper foil with a carrier on the resin layer from the ultrathin copper layer side, and using the copper foil with a carrier bonded to the resin layer. It may be a step of forming a circuit.
  • the copper foil with a carrier of the present invention may be another copper foil with a carrier to be bonded onto the resin layer.
  • the step of forming a circuit on the resin layer may be performed by any one of a semi-additive method, a subtractive method, a partial additive method, or a modified semi-additive method.
  • the copper foil with a carrier which forms a circuit on the said surface may have a board
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulation A step of laminating the substrate, a step of laminating the carrier-attached copper foil and an insulating substrate, a step of peeling the carrier of the copper foil with carrier, a step of providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier, Exposing the plating resist and then removing the plating resist in a region where a circuit is formed; providing an electrolytic plating layer in a region where the circuit where the plating resist is removed; Step of removing resist, flash etching of electroless plating layer and ultrathin copper layer in regions other than the region where the circuit is formed, etc. A step of further removing including,.
  • the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.
  • a step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulating substrate Laminating the carrier-attached copper foil and the insulating substrate, then peeling the carrier of the carrier-attached copper foil, peeling the carrier and exposing the ultrathin copper layer and the insulating substrate through holes or / and blinds A step of providing a via; a step of performing a desmear process on a region including the through hole or / and a blind via; a step of applying a catalyst nucleus in a region including the through hole or / and a blind via; and an electrode exposed by peeling off the carrier Providing an etching resist on the surface of the thin copper layer; A step of forming a circuit pattern, removing the ultrathin copper layer and the catalyst nuclei by a method such as etching or plasma using a corrosive solution such as
  • the subtractive method refers to a method of selectively removing unnecessary portions of the copper foil on the copper clad laminate by etching or the like to form a conductor pattern.
  • the step of preparing the copper foil with carrier and the insulating substrate according to the present invention, the copper foil with carrier and the insulating substrate, Laminating the carrier-attached copper foil and the insulating substrate, then peeling the carrier of the carrier-attached copper foil, peeling the carrier and exposing the ultrathin copper layer and the insulating substrate through holes or / and blinds A step of providing a via, a step of performing a desmear process on a region including the through hole or / and the blind via, a step of providing an electroless plating layer on the region including the through hole or / and the blind via, a surface of the electroless plating layer
  • a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention the copper foil with a carrier and the insulating substrate Laminating the carrier-attached copper foil and the insulating substrate, then peeling the carrier of the carrier-attached copper foil, peeling the carrier and exposing the ultrathin copper layer and the insulating substrate through holes or / and blinds
  • a step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer, a step of exposing the etching resist to form a circuit pattern, the ultrathin copper layer and the electroless plating includes a step of forming a circuit by removing the layer by a method such as etching using a corrosive solution such as acid or plasma, and a step of removing the etching resist.
  • ⁇ Through holes and / or blind vias and subsequent desmear steps may not be performed.
  • the specific example of the manufacturing method of the printed wiring board using the copper foil with a carrier of this invention is demonstrated in detail using drawing.
  • the carrier-attached copper foil having an ultrathin copper layer on which a roughened layer is formed will be described as an example.
  • the present invention is not limited thereto, and the carrier has an ultrathin copper layer on which a roughened layer is not formed.
  • the following method for producing a printed wiring board can be similarly performed using an attached copper foil.
  • a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • FIG. 5-A a copper foil with a carrier (first layer) having an ultrathin copper layer having a roughened layer formed on the surface is prepared.
  • a resist is applied on the roughened layer of the ultrathin copper layer, exposed and developed, and etched into a predetermined shape.
  • the resist is removed to form circuit plating having a predetermined shape.
  • an embedded resin is provided on the ultrathin copper layer so as to cover the circuit plating (so that the circuit plating is buried), and then the resin layer is laminated, followed by another carrier attachment.
  • a copper foil (second layer) is bonded from the ultrathin copper layer side.
  • the carrier is peeled off from the second layer of copper foil with carrier.
  • the other carrier-attached copper foil may be the carrier-attached copper foil of the present invention, a conventional carrier-attached copper foil, or a normal copper foil.
  • one or more circuits may be formed on the second layer circuit shown in FIG. 7-H, and these circuits may be formed by a semi-additive method, a subtractive method, a partial additive method, or a modified semi-conductor method. You may carry out by any method of an additive method.
  • the copper foil with a carrier according to the present invention is preferably controlled so that the color difference on the surface of the ultrathin copper layer satisfies the following (1).
  • the “color difference on the surface of the ultrathin copper layer” means the color difference on the surface of the ultrathin copper layer, or the color difference on the surface of the surface treatment layer when various surface treatments such as roughening treatment are applied. . That is, it is preferable that the copper foil with a carrier according to the present invention is controlled so that the color difference of the roughened surface of the ultrathin copper layer satisfies the following (1).
  • the term “roughened surface” means that when the surface treatment for providing a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. is performed after the roughening treatment, It means the surface of the surface-treated copper foil (ultra thin copper layer) after the treatment.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the “roughened surface” means that a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. are provided after the roughening treatment.
  • the surface treatment is performed, the surface of the ultrathin copper layer after the surface treatment is performed.
  • the color difference ⁇ E * ab based on JISZ8730 is 45 or more.
  • the color differences ⁇ L, ⁇ a, and ⁇ b are respectively measured with a color difference meter, and are shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. It is a comprehensive index and is expressed as ⁇ L: black and white, ⁇ a: reddish green, ⁇ b: yellow blue.
  • ⁇ E * ab is expressed by the following formula using these color differences.
  • the above-described color difference can be adjusted by increasing the current density when forming the ultrathin copper layer, decreasing the copper concentration in the plating solution, and increasing the linear flow rate of the plating solution.
  • the above-mentioned color difference can also be adjusted by performing a roughening process on the surface of an ultra-thin copper layer and providing a roughening process layer.
  • the current density is higher than that in the past (for example, 40 to 60 A) using an electrolytic solution containing copper and one or more elements selected from the group consisting of nickel, cobalt, tungsten, and molybdenum. / Dm2), and can be adjusted by shortening the processing time (for example, 0.1 to 1.3 seconds).
  • Ni alloy plating (for example, Ni—W alloy plating, Ni—Co—P alloy plating, Ni—Zn alloy plating) is applied to the surface of the treatment layer or the silane coupling treatment layer at a lower current density (0.1 to 1.. 3A / dm 2 ), and the processing time can be set long (20 to 40 seconds).
  • the color difference ⁇ E * ab based on JISZ8730 is 45 or more when the formula difference on the surface of the ultrathin copper layer is 45 or more, for example, when forming a circuit on the surface of the ultrathin copper layer of the copper foil with carrier, As a result, the visibility is improved and the circuit alignment can be performed with high accuracy.
  • the color difference ⁇ E * ab based on JISZ8730 on the surface of the ultrathin copper layer is preferably 50 or more, more preferably 55 or more, and even more preferably 60 or more.
  • the contrast with the circuit plating becomes clear and the visibility becomes good. Accordingly, in the manufacturing process of the printed wiring board as described above, for example, as shown in FIG. 5C, it is possible to form the circuit plating at a predetermined position with high accuracy. Further, according to the printed wiring board manufacturing method as described above, since the circuit plating is embedded in the resin layer, the ultrathin copper layer is removed by flash etching as shown in FIG. 8J, for example. At this time, the circuit plating is protected by the resin layer and the shape thereof is maintained, thereby facilitating the formation of a fine circuit.
  • the circuit plating is protected by the resin layer, the migration resistance is improved, and the continuity of the circuit wiring is satisfactorily suppressed. For this reason, formation of a fine circuit becomes easy. Also, as shown in FIGS. 8J and 8K, when the ultrathin copper layer is removed by flash etching, the exposed surface of the circuit plating is recessed from the resin layer, so that bumps are formed on the circuit plating. In addition, copper pillars can be easily formed thereon, and the production efficiency is improved.
  • a known resin or prepreg can be used as the embedding resin (resin).
  • a prepreg that is a glass cloth impregnated with BT (bismaleimide triazine) resin or BT resin, an ABF film or ABF manufactured by Ajinomoto Fine Techno Co., Ltd. can be used.
  • the resin layer and / or resin and / or prepreg as described in this specification can be used for the embedding resin (resin).
  • the carrier-attached copper foil used in the first layer may have a substrate or a resin layer on the surface of the carrier-attached copper foil.
  • substrate or resin layer By having the said board
  • any substrate or resin layer can be used as long as it has an effect of supporting the copper foil with carrier used in the first layer.
  • the surface-treated copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to produce a laminate.
  • the resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like.
  • a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. are used, polyester film, polyimide film, liquid crystal polymer (LCP) film, fluorine for FPC A resin film or the like can be used.
  • the peel strength between the film and the surface-treated copper foil tends to be smaller than when a polyimide film is used. Therefore, when a liquid crystal polymer (LCP) film or a fluororesin film is used, the surface-treated copper foil is etched to form a copper circuit, and then the copper circuit is covered with a cover lay to cover the film and the copper The circuit is difficult to peel off, and peeling of the film and the copper circuit due to a decrease in peel strength can be prevented.
  • Resins with good dielectric properties low dielectric loss tangent (for example, dielectric loss tangent is 0.008 or less) and / or low relative dielectric constant (for example, 3 or less when the signal frequency is 25 GHz)) or low dielectric resin (Resin having a small relative dielectric constant (for example, 3 or less when the signal frequency is 25 GHz)) has a small dielectric loss. Therefore, copper-clad laminates, printed wiring boards, and printed circuit boards using a resin, low dielectric resin or low dielectric loss resin with good dielectric properties and the surface-treated copper foil according to the present invention are high frequency circuits (signals at high frequencies). Suitable for transmission circuit).
  • the low dielectric loss resin refers to a resin having a dielectric loss smaller than that of polyimide conventionally used for a copper clad laminate.
  • the surface-treated copper foil according to the present invention has a small surface roughness Rz and a high glossiness, so that the surface is smooth and suitable for high-frequency circuit applications.
  • the resin having good dielectric characteristics, the low dielectric resin, or the low dielectric loss resin include a liquid crystal polymer (LCP) film and a fluororesin film.
  • the surface-treated copper foil of this invention can be used suitably for all the uses. For example, it can be used for printed wiring boards, printed circuit boards, printed wiring boards for high frequency circuits, printed circuit boards, semiconductor package substrates, secondary batteries, capacitor electrodes, and the like.
  • a prepreg in which a base material such as glass cloth is impregnated with a resin and the resin is cured to a semi-cured state is prepared. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing.
  • FPC it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc.
  • a laminated board can be manufactured by performing.
  • the laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited.
  • PWB printed wiring boards
  • the single-sided PWB, the double-sided PWB, and the multilayer PWB 3
  • rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.
  • a laminate of a surface-treated copper foil and a resin substrate is prepared.
  • a specific example of the laminate of the surface-treated copper foil and the resin substrate according to the present invention at least one of a main substrate, an attached circuit substrate, and a resin substrate such as polyimide used for electrically connecting them.
  • a laminated board manufactured by accurately positioning the flexible printed circuit board and crimping it to the wiring ends of the main circuit board and the attached circuit board Is mentioned.
  • the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding.
  • the laminated board has a mark formed of a part of the copper wiring and a separate material.
  • the position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminated plate.
  • the mark refers to a mark used to detect, position, or align the position of a laminated board, printed wiring board, or the like.
  • the position of the mark when the above-mentioned mark is photographed by the photographing means through the resin, the position of the mark can be detected well. And the position of the said mark can be detected in this way, and based on the position of the said detected mark, the positioning of the laminated board of surface-treated copper foil and a resin substrate can be performed favorably.
  • the photographing means can detect the position of the mark well by such a positioning method, and the printed wiring board can be positioned more accurately.
  • the connection failure is reduced and the yield is improved.
  • a method for connecting one printed wiring board and another printed wiring board soldering, connection through an anisotropic conductive film (Anisotropic Conductive Film, ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used.
  • the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted.
  • a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention.
  • One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board.
  • “copper circuit” includes copper wiring.
  • the printed wiring board of the present invention may be connected to a component to produce a printed wiring board.
  • at least one printed wiring board of the present invention is connected to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention.
  • a printed wiring board in which two or more printed wiring boards are connected may be manufactured by connecting two or more printed wiring boards and components.
  • “components” include connectors, LCDs (Liquid Crystal Display), electronic components such as glass substrates used in LCDs, ICs (Integrated Circuits), LSIs (Large Scale Integrated Circuits), VLSIs (Very Large Circuits). ), Electronic components including semiconductor integrated circuits such as ULSI (Ultra-Large Scale Integration) (for example, IC chips, LSI chips, VLSI chips, ULSI chips), components for shielding electronic circuits and covers on printed wiring boards Examples include parts necessary for fixing.
  • the positioning method according to the embodiment of the present invention may include a step of moving a laminated board (including a laminated board of copper foil and a resin substrate and a printed wiring board).
  • a laminated board including a laminated board of copper foil and a resin substrate and a printed wiring board.
  • it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device provided with an arm mechanism, or may be moved by floating a laminated plate using gas.
  • a moving means a moving device or moving means (including a roller or a bearing) that moves a laminated plate by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means. In the step of moving the laminated plate, the laminated plate can be moved for alignment.
  • the positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
  • the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated board of the surface treatment copper foil and the resin board which are positioned in this invention. In that case, the mark may be the circuit.
  • positioning includes “detecting the position of a mark or an object”.
  • alignment includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
  • Examples 1 to 24 and Comparative Examples 1 to 13 various copper foils were prepared, and plating treatment was performed on one surface under the conditions described in Tables 1 to 8 as a roughening treatment.
  • Examples 25 to 28 various carriers shown in Table 9 were prepared, an intermediate layer was formed on the surface of the carrier, and an ultrathin copper layer was formed on the surface of the intermediate layer under the following conditions. And it plated on the conditions of Table 1 and Table 2 as a roughening process on the surface of an ultra-thin copper layer.
  • Ni layer (Ni plating) A Ni layer having an adhesion amount of 1000 ⁇ g / dm 2 was formed on the carrier by electroplating with a roll-to-roll type continuous plating line under the following conditions. Specific plating conditions are described below. Nickel sulfate: 270 to 280 g / L Nickel chloride: 35 to 45 g / L Nickel acetate: 10-20g / L Boric acid: 30-40g / L Brightener: Saccharin, butynediol, etc.
  • Leveling agent 1 bis (3sulfopropyl) disulfide): 10 to 30 ppm
  • Leveling agent 2 (amine compound): 10 to 30 ppm
  • the following amine compound was used as the leveling agent 2.
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • Electrolyte temperature 50-80 ° C
  • Current density 100 A / dm 2
  • Electrolyte linear velocity 1.5-5m / sec
  • the surface roughness of TD on the surface of the ultrathin copper layer was 0.55 ⁇ m, and the 60 ° glossiness of MD was 519%.
  • Ni-Mo layer (nickel molybdenum alloy plating) A Ni—Mo layer having an adhesion amount of 3000 ⁇ g / dm 2 was formed on the carrier by electroplating on a roll-to-roll continuous plating line under the following conditions. Specific plating conditions are described below.
  • Example 27 ⁇ Intermediate layer> (1) Ni layer (Ni plating) A Ni layer was formed under the same conditions as in Example 25. (2) Organic layer (organic layer formation treatment) Next, the surface of the Ni layer formed in (1) is washed with water and pickled, and subsequently contains carboxybenzotriazole (CBTA) at a concentration of 1 to 30 g / L with respect to the Ni layer surface under the following conditions. An organic layer was formed by spraying an aqueous solution of 40 ° C. and pH 5 by spraying for 20 to 120 seconds. ⁇ Ultra thin copper layer> An ultrathin copper layer was formed on the organic layer formed in (2).
  • CBTA carboxybenzotriazole
  • An ultrathin copper layer was formed under the same conditions as in Example 25 except that the thickness of the ultrathin copper layer was 2 ⁇ m.
  • the surface roughness of TD on the surface of the ultrathin copper layer was 0.40 ⁇ m, and the 60 ° glossiness of MD was 528%.
  • Example 28 ⁇ Intermediate layer> (1) Co-Mo layer (cobalt molybdenum alloy plating) A Co—Mo layer having an adhesion amount of 4000 ⁇ g / dm 2 was formed on the carrier by electroplating on a roll-to-roll continuous plating line under the following conditions. Specific plating conditions are described below.
  • Examples 1 to 13, 15 to 20, 22 to 24, 26 to 28, and Comparative Examples 2, 4, and 7 to 10 were used for forming the following heat-resistant layer and rust-preventing layer.
  • the plating process was performed.
  • the conditions for forming the heat-resistant layer 1 are shown below.
  • Liquid composition Nickel 5-20 g / L, Cobalt 1-8 g / L pH: 2-3
  • Coulomb amount 10-20 As / dm 2
  • a heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1.
  • the conditions for forming the heat-resistant layer 2 are shown below.
  • Liquid composition Nickel 2-30 g / L, Zinc 2-30 g / L pH: 3-4
  • Liquid temperature 30-50 ° C
  • Current density 1 to 2 A / dm 2
  • Coulomb amount 1 to 2 As / dm 2
  • the conditions for forming the rust preventive layer are shown below.
  • Liquid composition potassium dichromate 1-10 g / L, zinc 0-5 g / L pH: 3-4 Liquid temperature: 50-60 ° C Current density: 0-2A / dm 2 (for immersion chromate treatment) Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
  • the weathering layer was further formed. The formation conditions are shown below.
  • silane coupling agent having an amino group N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Example 17), N-2- (aminoethyl) -3-aminopropyltriethoxysilane (Example) Examples 1 to 13, 15, 16, 24, 26 to 28), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Example 18), 3-aminopropyltrimethoxysilane (Example 19) 3-aminopropyltriethoxysilane (Example 20), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example 22), N-phenyl-3-aminopropyltrimethoxysilane In (Example 23), coating and drying were performed to form a weather resistant layer.
  • These silane coupling agents can be used in combination of two or
  • the rolled copper foil was manufactured as follows. A copper ingot having the composition shown in Table 9 was manufactured and hot-rolled, and then the annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled plate having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 9 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 9 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020.
  • “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper. Except for Example 28, electrolytic copper foil HLP foil manufactured by JX Nippon Mining & Metals was used as the electrolytic copper foil. For Example 28, electrolytic copper foil JTC foil manufactured by JX Nippon Mining & Metals was used as the electrolytic copper foil. When electrolytic polishing or chemical polishing was performed, the plate thickness after electrolytic polishing or chemical polishing was described. Table 9 shows the points of the copper foil or carrier production process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent.
  • “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described.
  • “Chemical polishing” and “electropolishing” mean the following conditions. “Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour. “Electropolishing” is a condition of phosphoric acid 67% + sulfuric acid 10% + water 23%, voltage 10 V / cm 2 , and the time shown in Table 9 (when electropolishing for 10 seconds, the polishing amount is 1 to 2 ⁇ m. ).
  • the surface roughness (Rz) was similarly determined for the surface on the side where the carrier intermediate layer is provided and the surface of the ultrathin copper layer.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier
  • the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the glossiness was calculated
  • the glossiness of the surface of the copper foil before the surface treatment, the surface on which the carrier intermediate layer is provided, and the surface of the ultrathin copper layer were also obtained in the same manner.
  • the surface-treated copper foil is bonded to both sides of a roughened surface of the surface-treated copper foil on a polyimide film with a thermosetting adhesive for lamination (Kaneka thickness 50 ⁇ m), and the copper foil is etched.
  • a sample film was prepared by removing with (ferric chloride aqueous solution).
  • surface treatment is performed to provide a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. after roughening the surface of the copper foil or without performing the roughening treatment, the heat-resistant layer, rust-proof
  • the surface-treated copper foil after the surface treatment of the layer, weather resistant layer, etc.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the carrier-attached copper foil is bonded to both surfaces of the polyimide film from the roughened surface side of the ultrathin copper layer, and then the carrier is peeled off. Later, the ultrathin copper layer was removed by etching (ferric chloride aqueous solution) to prepare a sample film.
  • FIG. 3 is a schematic diagram showing the configuration of the photographing apparatus used at this time and the method of measuring the inclination of the brightness curve. Further, ⁇ B and each inclination were measured as shown in FIG.
  • the photographing device has a CCD camera, a stage (white) on which a polyimide substrate is placed with a marked paper underneath, an illumination power source that irradiates light onto the photographing portion of the polyimide substrate, and a paper with a mark to be photographed.
  • a transporter (not shown) for transporting the evaluation polyimide substrate placed below onto the stage is provided.
  • the main specifications of the camera are as follows: ⁇ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits) ⁇ Power supply for lighting: High frequency lighting power supply (power supply unit x 2) ⁇ Lighting: Fluorescent lamp (30W) For the lightness shown in FIG. 3, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display.
  • the surface-treated copper foil is an ultrathin copper layer of a copper foil with a carrier
  • the carrier-attached copper foil is bonded to both surfaces of the polyimide film from the roughened surface side of the ultrathin copper layer, and then the carrier is peeled off. Later, the ultrathin copper layer was removed by etching (ferric chloride aqueous solution) to prepare a sample film.
  • a printed material (black circle with a diameter of 6 cm) was attached to one surface of the obtained resin layer, and the visibility of the printed material was judged from the opposite surface through the resin layer.
  • indicates that the outline of the black circle of the printed material is clear when the length is 90% or more of the circumference
  • “Clear” indicates that the outline of the black circle is clear when the length is 80% or more and less than 90% of the circumference.
  • “O” passeded above, a black circle with a clear outline of 0 to less than 80% of the circumference and a broken outline were evaluated as “x” (failed).
  • Peel strength (adhesive strength); After the surface-treated surface of the surface-treated copper foil was laminated on a polyimide film (Kaneka thickness 50 ⁇ m), the normal peel strength was measured with a tensile tester Autograph 100 according to IPC-TM-650. A normal peel strength of 0.7 kg / cm or more can be used for laminated substrates. In Examples 25 to 28, the surface-treated surface of the surface-treated copper foil was laminated on a polyimide film (Kaneka thickness 50 ⁇ m), the carrier was peeled off, and the electrode laminated with the polyimide film. The peel strength was measured after copper plating was performed so that the thickness of the thin copper layer was 12 ⁇ m.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • solder heat resistance evaluation The surface-treated surface of the surface-treated copper foil was bonded to both surfaces of a polyimide film with a thermosetting adhesive for laminate (Kaneka thickness 50 ⁇ m). About the obtained double-sided laminated board, the test coupon based on JISC6471 was created. The prepared test coupon was exposed to high temperature and high humidity of 85 ° C. and 85% RH for 48 hours, and then floated in a solder bath at 300 ° C. to evaluate solder heat resistance.
  • the area where the interface discolored due to blistering in an area of 5% or more of the copper foil area in the test coupon is x (failed), area
  • the color change was less than 5% the case was evaluated as ⁇
  • the case where no color change occurred was evaluated as ⁇ .
  • surface treatment is performed to provide a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the heat-resistant layer, rust-proof Said evaluation was performed about the surface of the surface treatment copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the circuit width was set such that the bottom width of the circuit cross section was 20 ⁇ m.
  • Equipment Spray type small etching equipment
  • Spray pressure 0.2 MPa
  • Etching solution Ferric chloride aqueous solution (specific gravity 40 Baume)
  • Liquid temperature 50 ° C
  • the photosensitive resist film was peeled off by dipping in a 45 ° C. NaOH aqueous solution for 1 minute.
  • the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer.
  • the thickness of the copper foil was thicker than 18 ⁇ m, the thickness was reduced to 18 ⁇ m by electrolytic polishing. On the other hand, when the thickness was thinner than 18 ⁇ m, the thickness was increased to 18 ⁇ m by copper plating.
  • ⁇ ⁇ less than 3.7 dB / 10 cm, ⁇ 3.7 dB / 10 cm or more and less than 4.1 dB / 10 cm, ⁇ 4 4.1 dB / 10 cm or more and less than 5.0 dB / 10 cm, ⁇ , 5.0 dB / 10 cm or more was defined as x.
  • the surface treatment copper foil which has a printed wiring board, a copper clad laminated board, or a resin layer
  • it is (1) surface roughness (Rz) mentioned above about a copper circuit or copper foil surface by melt
  • surface treatment is performed to provide a heat-resistant layer, a rust-proof layer, a weather-resistant layer, etc. after roughening the surface of the copper foil or without performing the roughening treatment, the heat-resistant layer, rust-proof Said measurement was performed about the surface of the surface-treated copper foil after surface-treating a layer, a weather resistance layer, etc.
  • the surface-treated copper foil was an ultrathin copper layer of a copper foil with a carrier, the above measurement was performed on the roughened surface of the ultrathin copper layer. The conditions and evaluation of each test are shown in Tables 1-12.
  • Examples 1 to 28 all had good visibility, peel strength, solder heat resistance evaluation, and yield. Examples 1 to 28 were all good because of a large etching factor and a small transmission loss. Comparative Examples 1-2, 4, 7-11, and 13 had poor visibility because one or more values of ⁇ B, ⁇ B / ⁇ B (PI), and k1 were out of the scope of the present invention. In Comparative Examples 3, 5, 6, and 12, the visibility was excellent, but since the value of k1 exceeded 87 °, the substrate adhesion was poor. In Comparative Examples 1 to 13, the solder heat resistance evaluation was poor.
  • FIG. 4 shows (a) Comparative Example 1, (b) Comparative Example 2, (c) Comparative Example 3, (d) Comparative Example 4, (e) Example 1, and (f) in the Rz evaluation.
  • the SEM observation photograph of the copper foil surface of Example 2 is shown, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供する。表面処理銅箔は、銅箔を、粗化処理表面側から厚さ50μmのポリイミド基板の両面に貼り合わせた後、エッチングで両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出したポリイミド基板の下に敷いて、印刷物をポリイミド基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上であり、ΔB/ΔB(PI)からなる比率が0.7以上であり、Btを基準に0.4ΔB~0.6ΔBの深さ範囲における明度曲線の傾き(角度)k1が65°以上87°以下となる。

Description

表面処理銅箔及びそれを用いた積層板
 本発明は、表面処理銅箔及びそれを用いた積層板に関し、特に、銅箔をエッチングした後の残部の樹脂の透明性が要求される分野に好適な表面処理銅箔及びそれを用いた積層板に関する。
 スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。
 また、銅箔と樹脂絶縁層との積層板である銅張積層板は、表面に粗化めっきが施された圧延銅箔を使用しても製造できる。この圧延銅箔は、通常タフピッチ銅(酸素含有量100~500重量ppm)又は無酸素銅(酸素含有量10重量ppm以下)を素材として使用し、これらのインゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。
 このような技術として、例えば、特許文献1には、ポリイミドフィルムと低粗度銅箔とが積層されてなり、銅箔エッチング後のフィルムの波長600nmでの光透過率が40%以上、曇価(HAZE)が30%以下であって、接着強度が500N/m以上である銅張積層板に係る発明が開示されている。
 また、特許文献2には、電解銅箔による導体層を積層された絶縁層を有し、当該導体層をエッチングして回路形成した際のエッチング領域における絶縁層の光透過性が50%以上であるチップオンフレキ(COF)用フレキシブルプリント配線板において、前記電解銅箔は、絶縁層に接着される接着面にニッケル-亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)は0.05~1.5μmであるとともに入射角60°における鏡面光沢度が250以上であることを特徴とするCOF用フレキシブルプリント配線板に係る発明が開示されている。
 また、特許文献3には、印刷回路用銅箔の処理方法において、銅箔の表面に銅-コバルト-ニッケル合金めっきによる粗化処理後、コバルト-ニッケル合金めっき層を形成し、更に亜鉛-ニッケル合金めっき層を形成することを特徴とする印刷回路用銅箔の処理方法に係る発明が開示されている。
特開2004-98659号公報 WO2003/096776 特許第2849059号公報
 特許文献1において、黒化処理又はめっき処理後の有機処理剤により接着性が改良処理されて得られる低粗度銅箔は、銅張積層板に屈曲性が要求される用途では、疲労によって断線することがあり、樹脂透視性に劣る場合がある。
 また、特許文献2では、粗化処理がなされておらず、COF用フレキシブルプリント配線板以外の用途においては銅箔と樹脂との密着強度が低く不十分である。
 さらに、特許文献3に記載の処理方法では、銅箔へのCu-Co-Niによる微細処理は可能であったが、当該銅箔を樹脂と接着させてエッチングで除去した後の樹脂について、優れた透明性を実現できていない。
 本発明は、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供する。
 本発明者らは鋭意研究を重ねた結果、銅箔を貼り合わせて除去したポリイミド基板に対し、マークを付した印刷物を下に置き、当該印刷物をポリイミド基板越しにCCDカメラで撮影した当該マーク部分の画像から得られる観察地点-明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きに着目し、当該明度曲線の傾きを制御することが、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすことを見出した。
 以上の知見を基礎として完成された本発明は一側面において、少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔であって、
 前記銅箔を、粗化処理表面側から厚さ50μmのポリイミド(銅箔に張り合わせ前のポリイミドについての下記ΔB(PI)が50以上65以下であるポリイミド)基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上であり、ΔB/ΔB(PI)からなる比率が0.7以上であり、Btを基準に0.4ΔB~0.6ΔBの深さ範囲における前記明度曲線の傾き(角度)k1が65°以上87°以下となる表面処理銅箔である。
 本発明に係る表面処理銅箔の一実施形態においては、前記撮影によって得られた画像から作製した観察地点-明度グラフにおいて、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲における前記明度曲線の傾き(角度)k2が30°以上となる。
 本発明に係る表面処理銅箔の別の実施形態においては、前記撮影によって得られた画像から作製した観察地点-明度グラフにおいて、ΔBが48以上となる。
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記明度曲線の傾き(角度)k1が75°以上87°以下となる。
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記明度曲線の傾き(角度)k2が35°以上となる。
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記粗化処理表面のTDの平均粗さRzが0.20~0.80μmであり、粗化処理表面のMDの60度光沢度が76~350%であり、前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90~2.40である。
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記MDの60度光沢度が90~250%である。
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記TDの平均粗さRzが0.30~0.60μmである。
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記A/Bが2.00~2.20である。
 本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80~1.40である。
 本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.90~1.35である。
 本発明は更に別の側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した積層板である。
 本発明によれば、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供することができる。
Bt及びBbを定義する模式図である。 k1及びk2を定義する模式図である。 明度曲線の傾き評価の際の、撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図である。 Rz評価の際の、(a)比較例1の銅箔表面のSEM観察写真である。 Rz評価の際の、(b)比較例2の銅箔表面のSEM観察写真である。 Rz評価の際の、(c)比較例3の銅箔表面のSEM観察写真である。 Rz評価の際の、(d)比較例4の銅箔表面のSEM観察写真である。 Rz評価の際の、(e)実施例1の銅箔表面のSEM観察写真である。 Rz評価の際の、(f)実施例2の銅箔表面のSEM観察写真である。 A~Cは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、回路めっき・レジスト除去までの工程における配線板断面の模式図である。 D~Fは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、樹脂及び2層目キャリア付銅箔積層からレーザー穴あけまでの工程における配線板断面の模式図である。 G~Iは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、ビアフィル形成から1層目のキャリア剥離までの工程における配線板断面の模式図である。 J~Kは、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例に係る、フラッシュエッチングからバンプ・銅ピラー形成までの工程における配線板断面の模式図である。
 〔表面処理銅箔の形態及び製造方法〕
 本発明において使用する銅箔は、樹脂基板と接着させて積層体を作製し、エッチングにより除去することで使用される銅箔に有用である。
 本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔の、樹脂基板と接着する面、即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施される。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくする。本発明においては、この粗化処理は銅-コバルト-ニッケル合金めっきや銅-ニッケル-りん合金めっき、ニッケル-亜鉛合金めっき等の合金めっきにより行う。また、好ましくは銅合金めっきにより行うことができる。銅合金めっき浴としては例えば銅と銅以外の元素を一種以上含むめっき浴、より好ましくは銅とコバルト、ニッケル、砒素、タングステン、クロム、亜鉛、リン、マンガンおよびモリブデンからなる群から選択されたいずれか1種以上とを含むめっき浴を用いることが好ましい。そして、本発明においては、当該粗化処理を従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮する。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後の仕上げ処理として電着物の脱落を防止するために通常の銅めっき等が行なわれることもある。圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある。
 なお、本願発明に係る圧延銅箔にはAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、V等の元素を一種以上含む銅合金箔も含まれる。上記元素の濃度が高くなる(例えば合計で10質量%以上)と、導電率が低下する場合がある。圧延銅箔の導電率は、好ましくは50%IACS以上、より好ましくは60%IACS以上、更に好ましくは80%IACS以上である。前記銅合金箔は銅以外の元素を合計で0mass%以上50mass%以下含んでもよく、0.0001mass%以上40mass%以下含んでもよく、0.0005mass%以上30mass%以下含んでもよく、0.001mass%以上20mass%以下含んでもよい。
 また、本発明において使用する銅箔は、キャリア、中間層、極薄銅層をこの順で有するキャリア付銅箔であってもよい。本発明においてキャリア付銅箔を使用する場合、極薄銅層表面に前記粗化処理を行う。なお、キャリア付銅箔の別の実施の形態については後述する。
 粗化処理としての銅-コバルト-ニッケル合金めっきは、電解めっきにより、付着量が15~40mg/dm2の銅-100~3000μg/dm2のコバルト-50~1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができ、付着量が15~40mg/dm2の銅-100~3000μg/dm2のコバルト-100~1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することが好ましい。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が50μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000~2500μg/dm2であり、好ましいニッケル付着量は500~1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。
 このような3元系銅-コバルト-ニッケル合金めっきを形成するためのめっき浴及びめっき条件は次の通りである:
 めっき浴組成:Cu10~20g/L、Co1~10g/L、Ni1~10g/L
 pH:1~4
 温度:30~50℃
 電流密度Dk:25~50A/dm2
 めっき時間:0.3~3秒
 なお、本発明の一実施形態に係る表面処理銅箔は、従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われる。従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われることにより、従来よりも微細な粗化粒子が銅箔表面に形成される。
 また、本発明の粗化処理としての銅-ニッケル-りん合金めっき条件を以下に示す。
 めっき浴組成:Cu10~50g/L、Ni3~20g/L、P1~10g/L
 pH:1~4
 温度:30~40℃
 電流密度Dk:30~50A/dm2
 めっき時間:0.3~3秒
 なお、本発明の一実施形態に係る表面処理銅箔は、従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われる。従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われることにより、従来よりも微細な粗化粒子が銅箔表面に形成される。
 また、本発明の粗化処理としての銅-ニッケル-コバルト-タングステン合金めっき条件を以下に示す。
 めっき浴組成:Cu5~20g/L、Ni5~20g/L、Co5~20g/L、W1~10g/L
 pH:1~5
 温度:30~50℃
 電流密度Dk:30~50A/dm2
 めっき時間:0.3~3秒
 なお、本発明の一実施形態に係る表面処理銅箔は、従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われる。従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われることにより、従来よりも微細な粗化粒子が銅箔表面に形成される。
 また、本発明の粗化処理としての銅-ニッケル-モリブデン-リン合金めっき条件を以下に示す。
 めっき浴組成:Cu5~20g/L、Ni5~20g/L、Mo1~10g/L、P1~10g/L
 pH:1~5
 温度:30~50℃
 電流密度Dk:30~50A/dm2
 めっき時間:0.5~3秒
 なお、本発明の一実施形態に係る表面処理銅箔は、従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われる。従来よりもめっき時間を短くし、電流密度を高くした条件下で粗化処理が行われることにより、従来よりも微細な粗化粒子が銅箔表面に形成される。
 粗化処理後、粗化処理面上に耐熱層、防錆層および耐候性層の群から選択される層の内1種以上を設けてもよい。また、各層は2層、3層等、複数の層であってもよく、各層を積層する順はいかなる順であってもよく、各層を交互に積層してもよい。
 ここで、耐熱層としては公知の耐熱層を用いることが出来る。また、例えば以下の表面処理を用いることが出来る。
 耐熱層、防錆層としては公知の耐熱層、防錆層を用いることができる。例えば、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む層であってもよく、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素からなる金属層または合金層であってもよい。また、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む酸化物、窒化物、珪化物を含んでもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金を含む層であってもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金層であってもよい。前記ニッケル-亜鉛合金層は、不可避不純物を除き、ニッケルを50wt%~99wt%、亜鉛を50wt%~1wt%含有するものであってもよい。前記ニッケル-亜鉛合金層の亜鉛及びニッケルの合計付着量が5~1000mg/m2、好ましくは10~500mg/m2、好ましくは20~100mg/m2であってもよい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量と亜鉛の付着量との比(=ニッケルの付着量/亜鉛の付着量)が1.5~10であることが好ましい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。耐熱層および/または防錆層がニッケル-亜鉛合金を含む層である場合、スルーホールやビアホール等の内壁部がデスミア液と接触したときに銅箔と樹脂基板との界面がデスミア液に浸食されにくく、銅箔と樹脂基板との密着性が向上する。防錆層はクロメート処理層であってもよい。クロメート処理層には公知のクロメート処理層を用いることが出来る。例えばクロメート処理層とは無水クロム酸、クロム酸、二クロム酸、クロム酸塩または二クロム酸塩を含む液で処理された層のことをいう。クロメート処理層はコバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素およびチタン等の元素(金属、合金、酸化物、窒化物、硫化物等どのような形態でもよい)を含んでもよい。クロメート処理層の具体例としては、純クロメート処理層や亜鉛クロメート処理層等が挙げられる。本発明においては、無水クロム酸または二クロム酸カリウム水溶液で処理したクロメート処理層を純クロメート処理層という。また、本発明においては無水クロム酸または二クロム酸カリウムおよび亜鉛を含む処理液で処理したクロメート処理層を亜鉛クロメート処理層という。
 例えば耐熱層および/または防錆層は、付着量が1mg/m2~100mg/m2、好ましくは5mg/m2~50mg/m2のニッケルまたはニッケル合金層と、付着量が1mg/m2~80mg/m2、好ましくは5mg/m2~40mg/m2のスズ層とを順次積層したものであってもよく、前記ニッケル合金層はニッケル-モリブデン、ニッケル-亜鉛、ニッケル-モリブデン-コバルトのいずれか一種により構成されてもよい。また、耐熱層および/または防錆層は、ニッケルまたはニッケル合金とスズとの合計付着量が2mg/m2~150mg/m2であることが好ましく、10mg/m2~70mg/m2であることがより好ましい。また、耐熱層および/または防錆層は、[ニッケルまたはニッケル合金中のニッケル付着量]/[スズ付着量]=0.25~10であることが好ましく、0.33~3であることがより好ましい。当該耐熱層および/または防錆層を用いるとキャリア付銅箔をプリント配線板に加工して以降の回路の引き剥がし強さ、当該引き剥がし強さの耐薬品性劣化率等が良好になる。
 また、耐熱層および/または防錆層として、付着量が200~2000μg/dm2のコバルト-50~700μg/dm2のニッケルのコバルト-ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト-ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm2未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。
 粗化処理後、粗化面上に付着量が200~3000μg/dm2のコバルト-100~700μg/dm2のニッケルのコバルト-ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト-ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm2未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。コバルト付着量が3000μg/dm2を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じる場合があり、また、耐酸性及び耐薬品性の悪化することがある。好ましいコバルト付着量は500~2500μg/dm2である。一方、ニッケル付着量が100μg/dm2未満では耐熱剥離強度が低下し耐酸化性及び耐薬品性が悪化することがある。ニッケルが1300μg/dm2を超えると、アルカリエッチング性が悪くなる。好ましいニッケル付着量は200~1200μg/dm2である。
 また、コバルト-ニッケル合金めっきの条件の一例は次の通りである:
 めっき浴組成:Co1~20g/L、Ni1~20g/L
 pH:1.5~3.5
 温度:30~80℃
 電流密度Dk:1.0~20.0A/dm2
 めっき時間:0.5~4秒
 本発明に従えば、コバルト-ニッケル合金めっき上に更に付着量の30~250μg/dm2の亜鉛めっき層が形成される。亜鉛付着量が30μg/dm2未満では耐熱劣化率改善効果が無くなることがある。他方、亜鉛付着量が250μg/dm2を超えると耐塩酸劣化率が極端に悪くなることがある。好ましくは、亜鉛付着量は30~240μg/dm2であり、より好ましくは80~220μg/dm2である。
 上記亜鉛めっきの条件の一例は次の通りである:
 めっき浴組成:Zn100~300g/L
 pH:3~4
 温度:50~60℃
 電流密度Dk:0.1~0.5A/dm2
 めっき時間:1~3秒
 なお、亜鉛めっき層の代わりに亜鉛-ニッケル合金めっき等の亜鉛合金めっき層を形成してもよく、さらに最表面にはクロメート処理やシランカップリング剤の塗布等によって防錆層や耐候性層を形成してもよい。
 耐候性層としては公知の耐候性層を用いることが出来る。また、耐候性層としては例えば公知のシランカップリング処理層を用いることができ、また以下のシランを用いて形成するシランカップリング処理層を用いることが出来る。
 シランカップリング処理に用いられるシランカップリング剤には公知のシランカップリング剤を用いてよく、例えばアミノ系シランカップリング剤又はエポキシ系シランカップリング剤、メルカプト系シランカップリング剤を用いてよい。また、シランカップリング剤にはビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ‐メタクリロキシプロピルトリメトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、4‐グリシジルブチルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N‐3‐(4‐(3‐アミノプロポキシ)プトキシ)プロピル‐3‐アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ‐メルカプトプロピルトリメトキシシラン等を用いてもよい。
 前記シランカップリング処理層は、エポキシ系シラン、アミノ系シラン、メタクリロキシ系シラン、メルカプト系シランなどのシランカップリング剤などを使用して形成してもよい。なお、このようなシランカップリング剤は、2種以上混合して使用してもよい。中でも、アミノ系シランカップリング剤又はエポキシ系シランカップリング剤を用いて形成したものであることが好ましい。
 ここで言うアミノ系シランカップリング剤とは、N‐(2‐アミノエチル)‐3‐アミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、3‐アミノプロピルトリエトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、N‐(3‐アクリルオキシ‐2‐ヒドロキシプロピル)‐3‐アミノプロピルトリエトキシシラン、4‐アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリス(2‐エチルヘキソキシ)シラン、6‐(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3‐(1‐アミノプロポキシ)‐3,3‐ジメチル‐1‐プロペニルトリメトキシシラン、3‐アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3‐アミノプロピルトリエトキシシラン、3‐アミノプロピルトリメトキシシラン、ω‐アミノウンデシルトリメトキシシラン、3‐(2‐N‐ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、(N,N‐ジエチル‐3‐アミノプロピル)トリメトキシシラン、(N,N‐ジメチル‐3‐アミノプロピル)トリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシランからなる群から選択されるものであってもよい。
 シランカップリング処理層は、ケイ素原子換算で、0.05mg/m2~200mg/m2、好ましくは0.15mg/m2~20mg/m2、好ましくは0.3mg/m2~2.0mg/m2の範囲で設けられていることが望ましい。前述の範囲の場合、基材樹脂と表面処理銅箔との密着性をより向上させることができる。
 〔表面粗さRz〕
 本発明の表面処理銅箔は、銅箔表面に粗化処理により粗化粒子が形成され、且つ、粗化処理表面のTDの平均粗さRzが0.20~0.80μmであるのが好ましい。このような構成により、ピール強度が高くなって樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性が高くなる。この結果、当該樹脂を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等がより容易となる。TDの平均粗さRzが0.20μm未満であると、超平滑表面を作製するための製造コストの懸念を生じるおそれがある。一方、TDの平均粗さRzが0.80μm超であると、銅箔をエッチングで除去した後の樹脂表面の凹凸が大きくなるおそれがあり、その結果樹脂の透明性が不良となる問題が生じるおそれがある。粗化処理表面のTDの平均粗さRzは、0.30~0.70μmがより好ましく、0.35~0.60μmが更により好ましく、0.35~0.55μmが更により好ましく、0.35~0.50μmが更により好ましい。
 なお、Rzを小さくすることが必要な用途に本発明の表面処理銅箔が用いられる場合には、本発明の表面処理銅箔の粗化処理表面のTDの平均粗さRzは、0.20~0.70μmが好ましく、0.25~0.60μmがより好ましく、0.30~0.60μmが更により好ましく、0.30~0.55μmが更により好ましく、0.30~0.50μmが更により好ましい。
 なお本発明の表面処理銅箔において「粗化処理表面」とは、粗化処理の後、耐熱層、防錆層、耐候性層などを設けるための表面処理を行った場合には、当該表面処理を行った後の表面処理銅箔の表面のことをいう。また、表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、「粗化処理表面」とは、粗化処理の後、耐熱層、防錆層、耐候性層などを設けるための表面処理を行った場合には、当該表面処理を行った後の極薄銅層の表面のことをいう。
 〔光沢度〕
 表面処理銅箔の粗化面の圧延方向(MD)の入射角60度での光沢度は、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、粗化面の光沢度が大きい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、粗化面の光沢度が76~350%であるのが好ましく、80~350%であるのが好ましく、90~300%であるのがより好ましく、90~250%であるのが更により好ましく、100~250%であるのが更により好ましい。
 ここで、本発明の視認性の効果を得るために、表面処理前の銅箔の処理側の表面(表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、中間層形成前のキャリアの中間層を設ける側の表面または極薄銅層表面)のTD(圧延方向に垂直の方向(銅箔の幅方向)、電解銅箔にあっては電解銅箔製造装置における銅箔の通箔方向に垂直の方向)の粗さ(Rz)及び光沢度を制御する必要がある。具体的には、表面処理前の銅箔のTDの表面粗さ(Rz)が好ましくは0.20~0.80μm、より好ましくは0.30~0.80μm、より好ましくは0.30~0.50μmであり、圧延方向(MD)の入射角60度での光沢度は350~800%、より好ましくは500~800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮すれば、表面処理を行った後の、表面処理銅箔の圧延方向(MD)の入射角60度での光沢度が90~350%となる。このような銅箔としては、圧延油の油膜当量を調整して圧延を行う(高光沢圧延)、或いは、ケミカルエッチングのような化学研磨やリン酸溶液中の電解研磨により作製することができる。このように、処理前の銅箔のTDの表面粗さ(Rz)と光沢度とを上記範囲にすることで、処理後の銅箔の表面粗さ(Rz)及び表面積を制御しやすくすることができる。
 なお、表面処理後の銅箔の表面粗さ(Rz)をより小さく(例えばRz=0.20μm)したい場合には、表面処理前の銅箔の処理側表面のTDの粗さ(Rz)を0.18~0.80μm、好ましくは0.25~0.50μmとし、圧延方向(MD)の入射角60度での光沢度が350~800%、好ましくは500~800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮する。
 また、粗化処理前の銅箔は、MDの60度光沢度が500~800%であるのが好ましく、501~800%であるのがより好ましく、510~750%であるのが更により好ましい。粗化処理前の銅箔のMDの60度光沢度が500%未満であると500%以上の場合よりも上述の樹脂の透明性が不良となるおそれがあり、800%を超えると、製造することが難しくなるという問題が生じるおそれがある。
 なお、高光沢圧延は以下の式で規定される油膜当量を13000~24000以下とすることで行うことが出来る。なお、表面処理後の銅箔の表面粗さ(Rz)をより小さく(例えばRz=0.20μm)したい場合には、高光沢圧延を以下の式で規定される油膜当量を12000以上24000以下とすることで行う。
 油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
 圧延油粘度[cSt]は40℃での動粘度である。
 油膜当量を12000~24000とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
 化学研磨は硫酸-過酸化水素-水系またはアンモニア-過酸化水素-水系等のエッチング液で、通常よりも濃度を低くして、長時間かけて行う。
 粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80~1.40であるのが好ましい。粗化処理表面のMDの60度光沢度とTDの60度光沢度との比Cが0.80未満であると、0.80以上である場合よりも樹脂の透明性が低下するおそれがある。また、当該比Cが1.40超であると、1.40以下である場合よりも樹脂の透明性が低下するおそれがある。当該比Cは、0.90~1.35であるのがより好ましく、1.00~1.30であるのが更により好ましい。
 〔明度曲線の傾き〕
 本発明の表面処理銅箔は、粗化処理表面側から厚さ50μmのポリイミド(銅箔に張り合わせ前のポリイミドについての下記ΔB(PI)が50以上65以下であるポリイミド)基板の両面に貼り合わせた後、エッチングで両面の銅箔を除去し、ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上であり、ΔB/ΔB(PI)からなる比率が0.7以上であり、Btを基準に0.4ΔB~0.6ΔBの深さ範囲における明度曲線の傾きk1が65以上87°以下となる。
 ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、「明度曲線の傾きk1」、及び、後述の「明度曲線の傾きk2」について、図を用いて説明する。
 図1に、Bt及びBbを定義する模式図を示す。図1の「マーク」は、上記CCDカメラによる撮影で得られた画像に観察された印刷物のライン状のマーク(幅約1.3mm)を示している。当該マークに重なるように描かれた曲線が上記観察地点-明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線を示している。図1に示すように、「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から100μm離れた位置から30μm間隔で5箇所(両側で合計十箇所)測定したときの明度の平均値を示す。「明度曲線のボトム平均値Bb」は、マークの端部位置から100μm内側に入った位置から100μm間隔で11箇所測定したときの明度の平均値を示す。
 図2に、k1及びk2を定義する模式図を示す。「明度曲線の傾き(角度)k1」は、Btを基準に0.4ΔB~0.6ΔB〔ΔBは、明度曲線のトップ平均値Btとボトム平均値Bbとの差(ΔB=Bt-Bb)〕の深さ範囲における明度曲線の傾き(角度)を示す(k1(°)=tan-1(b(階調)/a(ピクセル)))。なお、横軸の1ピクセルは10μm長さに相当する。そして、明度曲線のグラフにおける1ピクセルと1階調の長さの比率を3.5:5(明度曲線のグラフにおける1ピクセルの長さ:明度曲線のグラフにおける1階調の長さ=3.5:5)とした明度曲線のグラフにおいてk1(°)の値を算出した。また、k1は、マークの両側を測定し、傾き(角度)の小さい値を採用する。「明度曲線の傾き(角度)k2」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲における明度曲線の傾き(角度)を示す(k2(°)=tan-1(d(階調)/c(ピクセル)))。なお、横軸の1ピクセルは10μm長さに相当する。そして、明度曲線のグラフにおける1ピクセルと1階調の長さの比率を3.5:5(明度曲線のグラフにおける1ピクセルの長さ:明度曲線のグラフにおける1階調の長さ=3.5:5)とした明度曲線のグラフにおいてk1(°)の値を算出した。また、k2は、マークの両側を測定し、傾き(角度)の小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最もマークに近い交点を採用する。
 ΔB(PI)は、銅箔に張り合わせ前のポリイミドについての明度曲線のトップ平均値Btとボトム平均値Bbとの差を示す。
 CCDカメラで撮影した上記画像において、マークが付されていない部分では高い明度となるが、マーク端部に到達したとたんに明度が低下する。ポリイミド基板の視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、ポリイミド基板の視認性が不良であれば、明度がマーク端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。
 本発明はこのような知見に基づき、本発明の表面処理銅箔を貼り合わせて除去したポリイミド基板に対し、マークを付した印刷物を下に置き、ポリイミド基板越しにCCDカメラで撮影した上記マーク部分の画像から得られる観察地点-明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きを制御している。より詳細には、明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)を40以上とし、ΔB/ΔB(PI)からなる比率が0.7以上とし、Btを基準に0.4ΔB~0.6ΔBの深さ範囲における明度曲線の傾き(角度)k1が65°以上87°以下となるように制御する。このような構成によれば、CCDカメラによるポリイミド越しのマークの識別力が向上する。このため、視認性に優れるポリイミド基板を作製することができ、電子基板製造工程等でポリイミド基板に所定の処理を行う場合のマーキングによる位置決め精度が向上し、これによって歩留まりが向上する等の効果が得られる。ΔBは好ましくは48以上であり、k1は好ましくは75°以上87°以下である。ΔBの上限は特に限定する必要は無いが、例えば100以下、あるいは60以下、あるいは50以下、あるいは40以下である。また、k1の上限は87°以下であることが好ましく、85°以下であることが更に好ましく、83°以下であることが更により好ましい。k1が87°を超えるとピール強度が小さくなる場合がある。ΔB/ΔB(PI)の上限は特に規定する必要は無いが例えば、1.70以下、あるいは1.50以下、あるいは1.40以下である。
 また、撮影によって得られた画像から作製した観察地点-明度グラフにおいて、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲における明度曲線の傾きk2が30°以上となるのが好ましい。このような構成によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。k2は、より好ましくは35°以上である。k2の上限は特に限定する必要は無いが例えば87°以下、あるいは82°以下、あるいは77°以下、あるいは72°以下である。
 〔粒子の表面積〕
 粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bは、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、表面粗さRzが同じであれば、比A/Bが小さい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、当該比A/Bが1.90~2.40であるのが好ましく、2.00~2.20であるのがより好ましい。
 粒子形成時の電流密度とメッキ時間とを制御することで、粒子の形態や形成密度が決まり、上記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)、ΔB/ΔB(PI)からなる比率、0.4ΔB~0.6ΔBの深さ範囲における前記明度曲線の傾き(角度)k1、表面粗さRz、光沢度及び粒子の面積比A/Bを制御することができる。
 上述のように、粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bを1.90~2.40に制御して表面の凹凸を大きくし、粗化処理表面のTDの平均粗さRzを0.20~0.80μmに制御して表面に極端に粗い部分を無くし、その一方で、粗化処理表面の光沢度を76~350%と高くすることができる。このような制御を行うことで、本発明の表面処理銅箔において、粗化処理表面における粗化粒子の粒径を小さくすることができる。この粗化粒子の粒径は、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすが、このような制御することは、粗化粒子の粒径を適切な範囲で小さくすることを意味しており、このため銅箔をエッチング除去した後の樹脂透明性がより良好となると共に、ピール強度もより良好となる。
 〔エッチングファクター〕
 銅箔を用いて回路を形成する際のエッチングファクターの値が大きい場合、エッチング時に生じる回路のボトム部のすそ引きが小さくなるため、回路間のスペースを狭くすることができる。そのため、エッチングファクターの値は大きい方が、ファインパターンによる回路形成に適しているため好ましい。本発明の表面処理銅箔は、例えば、エッチングファクターの値は1.8以上であることが好ましく、2.0以上であることが好ましく、2.2以上であることが好ましく、2.3以上であることが好ましく、2.4以上であることがより好ましい。
 なお、プリント配線板または銅張積層板においては、樹脂を溶かして除去することで、銅回路または銅箔表面について、前述の粒子の面積比(A/B)、光沢度、表面粗さRzを測定することができる。
 〔伝送損失〕
 伝送損失が小さい場合、高周波で信号伝送を行う際の、信号の減衰が抑制されるため、高周波で信号の伝送を行う回路において、安定した信号の伝送を行うことができる。そのため、伝送損失の値が小さい方が、高周波で信号の伝送を行う回路用途に用いることに適するため好ましい。表面処理銅箔を、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ-50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωのとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzでの伝送損失を求めた場合に、周波数20GHzにおける伝送損失が、5.0dB/10cm未満が好ましく、4.1dB/10cm未満がより好ましく、3.7dB/10cm未満が更により好ましい。
 〔キャリア付銅箔〕
 本発明の別の実施の形態であるキャリア付銅箔は、キャリア、中間層、極薄銅層をこの順で備える。そして、前記極薄銅層が前述の本発明の一つの実施の形態である表面処理銅箔である。
 <キャリア>
 本発明に用いることのできるキャリアは典型的には金属箔または樹脂フィルムであり、例えば銅箔、銅合金箔、ニッケル箔、ニッケル合金箔、鉄箔、鉄合金箔、ステンレス箔、アルミニウム箔、アルミニウム合金箔、絶縁樹脂フィルム(例えばポリイミドフィルム、液晶ポリマー(LCP)フィルム、ポリエチレンテレフタラート(PET)フィルム、ポリアミドフィルム、ポリエステルフィルム、フッ素樹脂フィルム等)の形態で提供される。
 本発明に用いることのできるキャリアとしては銅箔を使用することが好ましい。銅箔は電気伝導度が高いため、その後の中間層、極薄銅層の形成が容易となるからである。キャリアは典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。
 本発明に用いることのできるキャリアの厚さについても特に制限はないが、キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば5μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、キャリアの厚みは典型的には12~70μmであり、より典型的には18~35μmである。
 また、本発明に用いるキャリアは前述した通り、中間層が形成される側の表面粗さRzならびに光沢度が制御されている必要がある。表面処理した後の極薄銅層の粗化処理表面の光沢度ならびに粗化粒子の大きさと個数を制御するためである。
 <中間層>
 キャリア上には中間層を設ける。キャリアと中間層との間に他の層を設けてもよい。本発明で用いる中間層は、キャリア付銅箔が絶縁基板への積層工程前にはキャリアから極薄銅層が剥離し難い一方で、絶縁基板への積層工程後にはキャリアから極薄銅層が剥離可能となるような構成であれば特に限定されない。例えば、本発明のキャリア付銅箔の中間層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Zn、これらの合金、これらの水和物、これらの酸化物、有機物からなる群から選択される一種又は二種以上を含んでも良い。また、中間層は複数の層であっても良い。
 また、例えば、中間層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種の元素からなる単一金属層、或いは、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素からなる合金層を形成し、その上にCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znで構成された元素群から選択された一種又は二種以上の元素の水和物または酸化物からなる層を形成することで構成することができる。
 また、中間層は前記有機物として公知の有機物を用いることが出来、また、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸のいずれか一種以上を用いることが好ましい。例えば、具体的な窒素含有有機化合物としては、置換基を有するトリアゾール化合物である1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等を用いることが好ましい。
 硫黄含有有機化合物には、メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールナトリウム、チオシアヌル酸及び2-ベンズイミダゾールチオール等を用いることが好ましい。
 カルボン酸としては、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。
 また、例えば、中間層は、キャリア上に、ニッケル、ニッケル-リン合金又はニッケル-コバルト合金と、クロムとがこの順で積層されて構成することができる。ニッケルと銅との接着力はクロムと銅の接着力よりも高いので、極薄銅層を剥離する際に、極薄銅層とクロムとの界面で剥離するようになる。また、中間層のニッケルにはキャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果が期待される。中間層におけるニッケルの付着量は好ましくは100μg/dm2以上40000μg/dm2以下、より好ましくは100μg/dm2以上4000μg/dm2以下、より好ましくは100μg/dm2以上2500μg/dm2以下、より好ましくは100μg/dm2以上1000μg/dm2未満であり、中間層におけるクロムの付着量は5μg/dm2以上100μg/dm2以下であることが好ましい。中間層を片面にのみ設ける場合、キャリアの反対面にはNiめっき層などの防錆層を設けることが好ましい。
 中間層の厚みが大きくなりすぎると、中間層の厚みが表面処理した後の極薄銅層の粗化処理表面の光沢度ならびに粗化粒子の大きさと個数に影響を及ぼす場合があるため、極薄銅層の粗化処理表面の中間層の厚みは1~1000nmであることが好ましく、1~500nmであることが好ましく、2~200nmであることが好ましく、2~100nmであることが好ましく、3~60nmであることがより好ましい。
 <極薄銅層>
 中間層の上には極薄銅層を設ける。中間層と極薄銅層の間には他の層を設けてもよい。当該キャリアを有する極薄銅層は、本発明の一つの実施の形態である表面処理銅箔である。極薄銅層の厚みは特に制限はないが、一般的にはキャリアよりも薄く、例えば12μm以下である。典型的には0.5~12μmであり、より典型的には1.5~5μmである。また、中間層の上に極薄銅層を設ける前に、極薄銅層のピンホールを低減させるために銅-リン合金によるストライクめっきを行ってもよい。ストライクめっきにはピロリン酸銅めっき液などが挙げられる。
 また、本願の極薄銅層は下記の条件で形成する。平滑な極薄銅層を形成することにより、粗化処理の粒子の大きさならびに個数、ならびに粗化処理後の光沢度を制御するためである。
 ・電解液組成
 銅:80~120g/L
 硫酸:80~120g/L
 塩素:30~100ppm
 レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10~30ppm
 レベリング剤2(アミン化合物):10~30ppm
 上記のアミン化合物には以下の化学式のアミン化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000001
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。)
 ・製造条件
 電流密度:70~100A/dm2
 電解液温度:50~65℃
 電解液線速:1.5~5m/sec
 電解時間:0.5~10分間(析出させる銅厚、電流密度により調整)
 〔粗化処理表面上の樹脂層〕
 本発明の表面処理銅箔の粗化処理表面の上に樹脂層を備えても良い。前記樹脂層は絶縁樹脂層であってもよい。前記樹脂層は本発明の表面処理銅箔の粗化処理表面の一部または全部に設けられても良い。なお本発明の表面処理銅箔において「粗化処理表面」とは、粗化処理の後、耐熱層、防錆層、耐候性層などを設けるための表面処理を行った場合には、当該表面処理を行った後の表面処理銅箔の表面のことをいう。また、表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、「粗化処理表面」とは、粗化処理の後、耐熱層、防錆層、耐候性層などを設けるための表面処理を行った場合には、当該表面処理を行った後の極薄銅層の表面のことをいう。
 前記樹脂層は接着剤であってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。
 前記樹脂層は接着用樹脂、すなわち接着剤であってもよく、接着用の半硬化状態(Bステージ状態)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。
 また前記樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記樹脂層は熱可塑性樹脂を含んでもよい。前記樹脂層は公知の樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等を含んでよい。また、前記樹脂層は例えば国際公開番号WO2008/004399号、国際公開番号WO2008/053878、国際公開番号WO2009/084533、特開平11-5828号、特開平11-140281号、特許第3184485号、国際公開番号WO97/02728、特許第3676375号、特開2000-43188号、特許第3612594号、特開2002-179772号、特開2002-359444号、特開2003-304068号、特許第3992225、特開2003-249739号、特許第4136509号、特開2004-82687号、特許第4025177号、特開2004-349654号、特許第4286060号、特開2005-262506号、特許第4570070号、特開2005-53218号、特許第3949676号、特許第4178415号、国際公開番号WO2004/005588、特開2006-257153号、特開2007-326923号、特開2008-111169号、特許第5024930号、国際公開番号WO2006/028207、特許第4828427号、特開2009-67029号、国際公開番号WO2006/134868、特許第5046927号、特開2009-173017号、国際公開番号WO2007/105635、特許第5180815号、国際公開番号WO2008/114858、国際公開番号WO2009/008471、特開2011-14727号、国際公開番号WO2009/001850、国際公開番号WO2009/145179、国際公開番号WO2011/068157、特開2013-19056号に記載されている物質(樹脂、樹脂硬化剤、化合物、硬化促進剤、誘電体、反応触媒、架橋剤、ポリマー、プリプレグ、骨格材等)および/または樹脂層の形成方法、形成装置を用いて形成してもよい。
 また、前記樹脂層は、その種類は格別限定されるものではないが、例えば、エポキシ樹脂、ポリイミド樹脂、多官能性シアン酸エステル化合物、マレイミド化合物、ポリマレイミド化合物、マレイミド系樹脂、芳香族マレイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリル樹脂、ポリエーテルスルホン(ポリエーテルサルホン、ポリエーテルサルフォンともいう)、ポリエーテルスルホン(ポリエーテルサルホン、ポリエーテルサルフォンともいう)樹脂、芳香族ポリアミド樹脂、芳香族ポリアミド樹脂ポリマー、ゴム性樹脂、ポリアミン、芳香族ポリアミン、ポリアミドイミド樹脂、ゴム変成エポキシ樹脂、フェノキシ樹脂、カルボキシル基変性アクリロニトリル-ブタジエン樹脂、ポリフェニレンオキサイド、ビスマレイミドトリアジン樹脂、熱硬化性ポリフェニレンオキサイド樹脂、シアネートエステル系樹脂、カルボン酸の無水物、多価カルボン酸の無水物、架橋可能な官能基を有する線状ポリマー、ポリフェニレンエーテル樹脂、2,2-ビス(4-シアナトフェニル)プロパン、リン含有フェノール化合物、ナフテン酸マンガン、2,2-ビス(4-グリシジルフェニル)プロパン、ポリフェニレンエーテル-シアネート系樹脂、シロキサン変性ポリアミドイミド樹脂、シアノエステル樹脂、フォスファゼン系樹脂、ゴム変成ポリアミドイミド樹脂、イソプレン、水素添加型ポリブタジエン、ポリビニルブチラール、フェノキシ、高分子エポキシ、芳香族ポリアミド、フッ素樹脂、ビスフェノール、ブロック共重合ポリイミド樹脂およびシアノエステル樹脂の群から選択される一種以上を含む樹脂を好適なものとして挙げることができる。
 また前記エポキシ樹脂は、分子内に2個以上のエポキシ基を有するものであって、電気・電子材料用途に用いることのできるものであれば、特に問題なく使用できる。また、前記エポキシ樹脂は分子内に2個以上のグリシジル基を有する化合物を用いてエポキシ化したエポキシ樹脂が好ましい。また、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ブロム化(臭素化)エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ゴム変性ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリグリシジルイソシアヌレート、N,N-ジグリシジルアニリン等のグリシジルアミン化合物、テトラヒドロフタル酸ジグリシジルエステル等のグリシジルエステル化合物、リン含有エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、の群から選ばれる1種又は2種以上を混合して用いることができ、又は前記エポキシ樹脂の水素添加体やハロゲン化体を用いることができる。
 前記リン含有エポキシ樹脂として公知のリンを含有するエポキシ樹脂を用いることができる。また、前記リン含有エポキシ樹脂は例えば、分子内に2以上のエポキシ基を備える9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイドからの誘導体として得られるエポキシ樹脂であることが好ましい。
(樹脂層が誘電体(誘電体フィラー)を含む場合)
 前記樹脂層は誘電体(誘電体フィラー)を含んでもよい。
 上記いずれかの樹脂層または樹脂組成物に誘電体(誘電体フィラー)を含ませる場合には、キャパシタ層を形成する用途に用い、キャパシタ回路の電気容量を増大させることができるのである。この誘電体(誘電体フィラー)には、BaTiO3、SrTiO3、Pb(Zr-Ti)O3(通称PZT)、PbLaTiO3・PbLaZrO(通称PLZT)、SrBi2Ta2O9(通称SBT)等のペブロスカイト構造を持つ複合酸化物の誘電体粉を用いる。
 誘電体(誘電体フィラー)は粉状であってもよい。誘電体(誘電体フィラー)が粉状である場合、この誘電体(誘電体フィラー)の粉体特性は、粒径が0.01μm~3.0μm、好ましくは0.02μm~2.0μmの範囲のものであることが好ましい。なお、誘電体を走査型電子顕微鏡(SEM)で写真撮影し、当該写真上の誘電体の粒子の上に直線を引いた場合に、誘電体の粒子を横切る直線の長さが最も長い部分の誘電体の粒子の長さをその誘電体の粒子の径とする。そして、測定視野における誘電体の粒子の径の平均値を、誘電体の粒径とする。
 前述の樹脂層に含まれる樹脂および/または樹脂組成物および/または化合物を例えばメチルエチルケトン(MEK)、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、トルエン、メタノール、エタノール、プロピレングリコールモノメチルエーテル、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、エチルセロソルブ、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミドなどの溶剤に溶解して樹脂液(樹脂ワニス)とし、これを前記表面処理銅箔の粗化処理表面の上に、例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100~250℃、好ましくは130~200℃であればよい。前記樹脂層の組成物を、溶剤を用いて溶解し、樹脂固形分3wt%~70wt%、好ましくは、3wt%~60wt%、好ましくは10wt%~40wt%、より好ましくは25wt%~40wt%の樹脂液としてもよい。なお、メチルエチルケトンとシクロペンタノンとの混合溶剤を用いて溶解することが、環境的な見地より現段階では最も好ましい。なお、溶剤には沸点が50℃~200℃の範囲である溶剤を用いることが好ましい。
 また、前記樹脂層はMIL規格におけるMIL-P-13949Gに準拠して測定したときのレジンフローが5%~35%の範囲にある半硬化樹脂膜であることが好ましい。
 本件明細書において、レジンフローとは、MIL規格におけるMIL-P-13949Gに準拠して、樹脂厚さを55μmとした樹脂付表面処理銅箔から10cm角試料を4枚サンプリングし、この4枚の試料を重ねた状態(積層体)でプレス温度171℃、プレス圧14kgf/cm2、プレス時間10分の条件で張り合わせ、そのときの樹脂流出重量を測定した結果から数1に基づいて算出した値である。
Figure JPOXMLDOC01-appb-M000002
 前記樹脂層を備えた表面処理銅箔(樹脂付き表面処理銅箔)は、その樹脂層を基材に重ね合わせたのち全体を熱圧着して該樹脂層を熱硬化せしめ、ついで表面処理銅箔がキャリア付銅箔の極薄銅層である場合にはキャリアを剥離して極薄銅層を表出せしめ(当然に表出するのは該極薄銅層の中間層側の表面である)、表面処理銅箔の粗化処理されている側とは反対側の表面から所定の配線パターンを形成するという態様で使用される。
 この樹脂付き表面処理銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張積層板を製造することができる。またこのとき、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。
 なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。
 この樹脂層の厚みは0.1~120μmであることが好ましい。
 樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付き表面処理銅箔を内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。一方、樹脂層の厚みを120μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる場合がある。
 なお、樹脂層を有する表面処理銅箔が極薄の多層プリント配線板を製造することに用いられる場合には、前記樹脂層の厚みを0.1μm~5μm、より好ましくは0.5μm~5μm、より好ましくは1μm~5μmとすることが、多層プリント配線板の厚みを小さくするために好ましい。
 以下に、本発明に係るキャリア付銅箔を用いたプリント配線板の製造工程の例を幾つか示す。
 本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。
 本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。
 従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、前記無電解めっき層の上にめっきレジストを設ける工程、前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、前記めっきレジストを除去する工程、前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、を含む。
 セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、前記無電解めっき層の上にめっきレジストを設ける工程、前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、前記めっきレジストを除去する工程、前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、を含む。
 本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。
 従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、前記めっきレジストを除去する工程、前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、を含む。
 また、前記樹脂層上に回路を形成する工程が、前記樹脂層上に別のキャリア付銅箔を極薄銅層側から貼り合わせ、前記樹脂層に貼り合わせたキャリア付銅箔を用いて前記回路を形成する工程であってもよい。また、前記樹脂層上に貼り合わせる別のキャリア付銅箔が、本発明のキャリア付銅箔であってもよい。また、前記樹脂層上に回路を形成する工程が、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行われてもよい。また、前記表面に回路を形成するキャリア付銅箔が、当該キャリア付銅箔のキャリアの表面に基板または樹脂層を有してもよい。
 モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、前記めっきレジストを除去する工程、前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、を含む。
 本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。
 従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、前記エッチングレジストに対して露光し、回路パターンを形成する工程、前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、前記エッチングレジストを除去する工程、前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、を含む。
 本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。
 従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、前記無電解めっき層の表面に、電解めっき層を設ける工程、前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、前記エッチングレジストに対して露光し、回路パターンを形成する工程、前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、前記エッチングレジストを除去する工程、を含む。
 サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、前記無電解めっき層の表面にマスクを形成する工程、マスクが形成されいない前記無電解めっき層の表面に電解めっき層を設ける工程、前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、前記エッチングレジストに対して露光し、回路パターンを形成する工程、前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、前記エッチングレジストを除去する工程、を含む。
 スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。
 ここで、本発明のキャリア付銅箔を用いたプリント配線板の製造方法の具体例を図面を用いて詳細に説明する。なお、ここでは粗化処理層が形成された極薄銅層を有するキャリア付銅箔を例に説明するが、これに限られず、粗化処理層が形成されていない極薄銅層を有するキャリア付銅箔を用いても同様に下記のプリント配線板の製造方法を行うことができる。
 まず、図5-Aに示すように、表面に粗化処理層が形成された極薄銅層を有するキャリア付銅箔(1層目)を準備する。
 次に、図5-Bに示すように、極薄銅層の粗化処理層上にレジストを塗布し、露光・現像を行い、レジストを所定の形状にエッチングする。
 次に、図5-Cに示すように、回路用のめっきを形成した後、レジストを除去することで、所定の形状の回路めっきを形成する。
 次に、図6-Dに示すように、回路めっきを覆うように(回路めっきが埋没するように)極薄銅層上に埋め込み樹脂を設けて樹脂層を積層し、続いて別のキャリア付銅箔(2層目)を極薄銅層側から接着させる。
 次に、図6-Eに示すように、2層目のキャリア付銅箔からキャリアを剥がす。
 次に、図6-Fに示すように、樹脂層の所定位置にレーザー穴あけを行い、回路めっきを露出させてブラインドビアを形成する。
 次に、図7-Gに示すように、ブラインドビアに銅を埋め込みビアフィルを形成する。
 次に、図7-Hに示すように、ビアフィル上に、上記図5-B及び図5-Cのようにして回路めっきを形成する。
 次に、図7-Iに示すように、1層目のキャリア付銅箔からキャリアを剥がす。
 次に、図8-Jに示すように、フラッシュエッチングにより両表面の極薄銅層を除去し、樹脂層内の回路めっきの表面を露出させる。
 次に、図8-Kに示すように、樹脂層内の回路めっき上にバンプを形成し、当該はんだ上に銅ピラーを形成する。このようにして本発明のキャリア付銅箔を用いたプリント配線板を作製する。
 上記別のキャリア付銅箔(2層目)は、本発明のキャリア付銅箔を用いてもよく、従来のキャリア付銅箔を用いてもよく、さらに通常の銅箔を用いてもよい。また、図7-Hに示される2層目の回路上に、さらに回路を1層或いは複数層形成してもよく、それらの回路形成をセミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって行ってもよい。
 本発明に係るキャリア付銅箔は、極薄銅層表面の色差が以下(1)を満たすように制御されていることが好ましい。本発明において「極薄銅層表面の色差」とは、極薄銅層の表面の色差、又は、粗化処理等の各種表面処理が施されている場合はその表面処理層表面の色差を示す。すなわち、本発明に係るキャリア付銅箔は、極薄銅層の粗化処理表面の色差が以下(1)を満たすように制御されていることが好ましい。なお本発明の表面処理銅箔において「粗化処理表面」とは、粗化処理の後、耐熱層、防錆層、耐候性層などを設けるための表面処理を行った場合には、当該表面処理を行った後の表面処理銅箔(極薄銅層)の表面のことをいう。また、表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、「粗化処理表面」とは、粗化処理の後、耐熱層、防錆層、耐候性層などを設けるための表面処理を行った場合には、当該表面処理を行った後の極薄銅層の表面のことをいう。
(1)極薄銅層表面の式差はJISZ8730に基づく色差ΔE*abが45以上である。
 ここで、色差ΔL、Δa、Δbは、それぞれ色差計で測定され、黒/白/赤/緑/黄/青を加味し、JIS Z8730に基づくL*a*b表色系を用いて示される総合指標であり、ΔL:白黒、Δa:赤緑、Δb:黄青として表される。また、ΔE*abはこれらの色差を用いて下記式で表される。
Figure JPOXMLDOC01-appb-M000003
 上述の色差は、極薄銅層形成時の電流密度を高くし、メッキ液中の銅濃度を低くし、メッキ液の線流速を高くすることで調整することができる。
 また上述の色差は、極薄銅層の表面に粗化処理を施して粗化処理層を設けることで調整することもできる。粗化処理層を設ける場合には銅およびニッケル、コバルト、タングステン、モリブデンからなる群から選択される一種以上の元素とを含む電解液を用いて、従来よりも電流密度を高く(例えば40~60A/dm2)し、処理時間を短く(例えば0.1~1.3秒)することで調整することができる。極薄銅層の表面に粗化処理層を設けない場合には、Niの濃度をその他の元素の2倍以上としたメッキ浴を用いて、極薄銅層または耐熱層または防錆層またはクロメート処理層またはシランカップリング処理層の表面にNi合金メッキ(例えばNi-W合金メッキ、Ni-Co-P合金メッキ、Ni-Zn合金めっき)を従来よりも低電流密度(0.1~1.3A/dm2)で処理時間を長く(20秒~40秒)設定して処理することで達成できる。
 極薄銅層表面の式差がJISZ8730に基づく色差ΔE*abが45以上であると、例えば、キャリア付銅箔の極薄銅層表面に回路を形成する際に、極薄銅層と回路とのコントラストが鮮明となり、その結果、視認性が良好となり回路の位置合わせを精度良く行うことができる。極薄銅層表面のJISZ8730に基づく色差ΔE*abは、好ましくは50以上であり、より好ましくは55以上であり、更により好ましくは60以上である。
 極薄銅層表面の色差が上記のようの制御されている場合には、回路めっきとのコントラストが鮮明となり、視認性が良好となる。従って、上述のようなプリント配線板の例えば図5-Cに示すような製造工程において、回路めっきを精度良く所定の位置に形成することが可能となる。また、上述のようなプリント配線板の製造方法によれば、回路めっきが樹脂層に埋め込まれた構成となっているため、例えば図8-Jに示すようなフラッシュエッチングによる極薄銅層の除去の際に、回路めっきが樹脂層によって保護され、その形状が保たれ、これにより微細回路の形成が容易となる。また、回路めっきが樹脂層によって保護されるため、耐マイグレーション性が向上し、回路の配線の導通が良好に抑制される。このため、微細回路の形成が容易となる。また、図8-J及び図8-Kに示すようにフラッシュエッチングによって極薄銅層を除去したとき、回路めっきの露出面が樹脂層から凹んだ形状となるため、当該回路めっき上にバンプが、さらにその上に銅ピラーがそれぞれ形成しやすくなり、製造効率が向上する。
 なお、埋め込み樹脂(レジン)には公知の樹脂、プリプレグを用いることができる。例えば、BT(ビスマレイミドトリアジン)レジンやBTレジンを含浸させたガラス布であるプリプレグ、味の素ファインテクノ株式会社製ABFフィルムやABFを用いることができる。また、前記埋め込み樹脂(レジン)には本明細書に記載の樹脂層および/または樹脂および/またはプリプレグを使用することができる。
 また、前記一層目に用いられるキャリア付銅箔は、当該キャリア付銅箔の表面に基板または樹脂層を有してもよい。当該基板または樹脂層を有することで一層目に用いられるキャリア付銅箔は支持され、しわが入りにくくなるため、生産性が向上するという利点がある。なお、前記基板または樹脂層には、前記一層目に用いられるキャリア付銅箔を支持する効果するものであれば、全ての基板または樹脂層を用いることが出来る。例えば前記基板または樹脂層として本願明細書に記載のキャリア、プリプレグ、樹脂層や公知のキャリア、プリプレグ、樹脂層、金属板、金属箔、無機化合物の板、無機化合物の箔、有機化合物の板、有機化合物の箔を用いることができる。
 本発明の表面処理銅箔を、粗化処理面側から樹脂基板に貼り合わせて積層体を製造することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、フッ素樹脂フィルム等を使用する事ができる。なお、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムを用いた場合、ポリイミドフィルムを用いた場合よりも、当該フィルムと表面処理銅箔とのピール強度が小さくなる傾向にある。よって、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムを用いた場合には、当該表面処理銅箔をエッチングして銅回路を形成後、当該銅回路をカバーレイで覆うことによって、当該フィルムと当該銅回路とが剥がれにくくし、ピール強度の低下による当該フィルムと当該銅回路との剥離を防止することができる。
 なお、誘電特性が良い樹脂(誘電正接が小さく(例えば誘電正接が0.008以下)および/または、比誘電率が小さい(例えば、信号周波数が25GHzの場合に3以下)樹脂)や低誘電樹脂(比誘電率が小さい(例えば、信号周波数が25GHzの場合に3以下)樹脂)は誘電損失が小さい。そのため、当該誘電特性が良い樹脂または低誘電樹脂または低誘電損失樹脂と本願発明に係る表面処理銅箔とを用いた銅張積層板、プリント配線板、プリント回路板は高周波回路(高周波で信号の伝送を行う回路)用途に適する。ここで、低誘電損失樹脂とは従来一般に銅張積層板に用いられてきたポリイミドよりも誘電損失が小さい樹脂のことをいう。また、本願発明に係る表面処理銅箔は表面粗さRzが小さく、光沢度が高いため表面が平滑であり、高周波回路用途に適する。誘電特性が良い樹脂または低誘電樹脂または低誘電損失樹脂としては例えば、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムが挙げられる。
 なお、本発明の表面処理銅箔は全ての用途に好適に用いることができる。例えば、プリント配線板やプリント回路板、高周波回路用のプリント配線板やプリント回路板、半導体パッケージ基板、2次電池やキャパシターの電極などに用いることができる。
 貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。
 本発明の積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。
 〔積層板及びそれを用いたプリント配線板の位置決め方法〕
 本発明の表面処理銅箔と樹脂基板との積層板の位置決めをする方法について説明する。まず、表面処理銅箔と樹脂基板との積層板を準備する。本発明の表面処理銅箔と樹脂基板との積層板の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の樹脂基板の少なくとも一方の表面に銅配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層板が挙げられる。すなわち、この場合であれば、積層板は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層板となる。積層板は、当該銅配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層板を構成する樹脂越しにCCDカメラ等の撮影手段で撮影可能な位置であれば特に限定されない。ここで、マークとは積層板やプリント配線板等の位置を検出し、または、位置決めをし、または、位置合わせをするために用いられる印(しるし)のことをいう。
 このように準備された積層板において、上述のマークを樹脂越しに撮影手段で撮影すると、前記マークの位置を良好に検出することができる。そして、このようにして前記マークの位置を検出して、前記検出されたマークの位置に基づき表面処理銅箔と樹脂基板との積層板の位置決めを良好に行うことができる。また、積層板としてプリント配線板を用いた場合も同様に、このような位置決め方法によって撮影手段がマークの位置を良好に検出し、プリント配線板の位置決めをより正確に行うことが出来る。
 そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、一つのプリント配線板ともう一つのプリント配線板を接続する方法としては半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法を用いることができる。なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。また、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造することができ、また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続することができ、このようなプリント配線板を用いて電子機器を製造することもできる。なお、本発明において、「銅回路」には銅配線も含まれることとする。さらに、本発明のプリント配線板を、部品と接続してプリント配線板を製造してもよい。また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続し、さらに、本発明のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続することで、プリント配線板が2つ以上接続したプリント配線板を製造してもよい。ここで、「部品」としては、コネクタやLCD(Liquid Cristal Display)、LCDに用いられるガラス基板などの電子部品、IC(Integrated Circuit)、LSI(Large scale integrated circuit)、VLSI(Very Large scale integrated circuit)、ULSI (Ultra-Large Scale Integration)などの半導体集積回路を含む電子部品(例えばICチップ、LSIチップ、VLSIチップ、ULSIチップ)、電子回路をシールドするための部品およびプリント配線板にカバーなどを固定するために必要な部品等が挙げられる。
 なお、本発明の実施の形態に係る位置決め方法は積層板(銅箔と樹脂基板との積層板やプリント配線板を含む)を移動させる工程を含んでいてもよい。移動工程においては例えばベルトコンベヤーやチェーンコンベヤーなどのコンベヤーにより移動させてもよく、アーム機構を備えた移動装置により移動させてもよく、気体を用いて積層板を浮遊させることで移動させる移動装置や移動手段により移動させてもよく、略円筒形などの物を回転させて積層板を移動させる移動装置や移動手段(コロやベアリングなどを含む)、油圧を動力源とした移動装置や移動手段、空気圧を動力源とした移動装置や移動手段、モーターを動力源とした移動装置や移動手段、ガントリ移動型リニアガイドステージ、ガントリ移動型エアガイドステージ、スタック型リニアガイドステージ、リニアモーター駆動ステージなどのステージを有する移動装置や移動手段などにより移動させてもよい。また、公知の移動手段による移動工程を行ってもよい。上記、積層板を移動させる工程において、積層板を移動させて位置合わせをすることができる。そして、位置合わせをすることで、一つのプリント配線板ともう一つのプリント配線板や部品を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。
 なお、本発明の実施の形態に係る位置決め方法は表面実装機やチップマウンターに用いてもよい。
 また、本発明において位置決めされる表面処理銅箔と樹脂基板との積層板が、樹脂板及び前記樹脂板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
 本発明において「位置決め」とは「マークや物の位置を検出すること」を含む。また、本発明において、「位置合わせ」とは、「マークや物の位置を検出した後に、前記検出した位置に基づいて、当該マークや物を所定の位置に移動すること」を含む。
 実施例1~24及び比較例1~13として、各種銅箔を準備し、一方の表面に、粗化処理として表1~8に記載の条件にてめっき処理を行った。
 また、実施例25~28については表9に記載の各種キャリアを準備し、下記条件で、キャリアの表面に中間層を形成し、中間層の表面に極薄銅層を形成した。そして、極薄銅層の表面に粗化処理として表1、表2に記載の条件でめっきを行った。
・実施例25
<中間層>
(1)Ni層(Niめっき)
 キャリアに対して、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより1000μg/dm2の付着量のNi層を形成した。具体的なメッキ条件を以下に記す。
  硫酸ニッケル:270~280g/L
  塩化ニッケル:35~45g/L
  酢酸ニッケル:10~20g/L
  ホウ酸:30~40g/L
  光沢剤:サッカリン、ブチンジオール等
  ドデシル硫酸ナトリウム:55~75ppm
  pH:4~6
  浴温:55~65℃
  電流密度:10A/dm2
(2)Cr層(電解クロメート処理)
 次に、(1)にて形成したNi層表面を水洗及び酸洗後、引き続き、ロール・トウ・ロール型の連続メッキライン上でNi層の上に11μg/dm2の付着量のCr層を以下の条件で電解クロメート処理することにより付着させた。
   重クロム酸カリウム1~10g/L、亜鉛0g/L
   pH:7~10
   液温:40~60℃
   電流密度:2A/dm2
<極薄銅層>
 次に、(2)にて形成したCr層表面を水洗及び酸洗後、引き続き、ロール・トウ・ロール型の連続メッキライン上で、Cr層の上に厚み1.5μmの極薄銅層を以下の条件で電気メッキすることにより形成し、キャリア付極薄銅箔を作製した。
   銅濃度:90~110g/L
   硫酸濃度:90~110g/L
   塩化物イオン濃度:50~90ppm
   レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10~30ppm
   レベリング剤2(アミン化合物):10~30ppm
 なお、レべリング剤2として下記のアミン化合物を用いた。
Figure JPOXMLDOC01-appb-C000004
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。)
   電解液温度:50~80℃
   電流密度:100A/dm2
   電解液線速:1.5~5m/sec
 極薄銅層表面のTDの表面粗さは0.55μm、MDの60度光沢度は519%であった。
・実施例26
<中間層>
(1)Ni-Mo層(ニッケルモリブデン合金めっき)
 キャリアに対して、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより3000μg/dm2の付着量のNi-Mo層を形成した。具体的なメッキ条件を以下に記す。
 (液組成)硫酸Ni六水和物:50g/dm3、モリブデン酸ナトリウム二水和物:60g/dm3、クエン酸ナトリウム:90g/dm3
 (液温)30℃
 (電流密度)1~4A/dm2
 (通電時間)3~25秒
<極薄銅層>
 (1)で形成したNi-Mo層の上に極薄銅層を形成した。極薄銅層の厚みを3μmとした以外は実施例25と同様の条件で極薄銅層を形成した。極薄銅層表面のTDの表面粗さは0.26μm、MDの60度光沢度は770%であった。
・実施例27
<中間層>
(1)Ni層(Niめっき)
実施例25と同じ条件でNi層を形成した。
(2)有機物層(有機物層形成処理)
 次に、(1)にて形成したNi層表面を水洗及び酸洗後、引き続き、下記の条件でNi層表面に対して濃度1~30g/Lのカルボキシベンゾトリアゾール(CBTA)を含む、液温40℃、pH5の水溶液を、20~120秒間シャワーリングして噴霧することにより有機物層を形成した。
<極薄銅層>
 (2)で形成した有機物層の上に極薄銅層を形成した。極薄銅層の厚みを2μmとした以外は実施例25と同様の条件で極薄銅層を形成した。極薄銅層表面のTDの表面粗さは0.40μm、MDの60度光沢度は528%であった。
・実施例28
<中間層>
(1)Co-Mo層(コバルトモリブデン合金めっき)
 キャリアに対して、以下の条件でロール・トウ・ロール型の連続メッキラインで電気メッキすることにより4000μg/dm2の付着量のCo-Mo層を形成した。具体的なメッキ条件を以下に記す。
 (液組成)硫酸Co:50g/dm3、モリブデン酸ナトリウム二水和物:60g/dm3、クエン酸ナトリウム:90g/dm3
 (液温)30℃
 (電流密度)1~4A/dm2
 (通電時間)3~25秒
<極薄銅層>
 (1)で形成したCo-Mo層の上に極薄銅層を形成した。極薄銅層の厚みを8μmとした以外は実施例25と同様の条件で極薄銅層を形成した。極薄銅層表面のTDの表面粗さは0.75μm、MDの60度光沢度は453%であった。
 上述の粗化めっき処理を行った後、実施例1~13、15~20、22~24、26~28、比較例2、4、7~10について次の耐熱層および防錆層形成のためのめっき処理を行った。
耐熱層1の形成条件を以下に示す。
  液組成  :ニッケル5~20g/L、コバルト1~8g/L
  pH   :2~3
  液温   :40~60℃
  電流密度 :5~20A/dm2
  クーロン量:10~20As/dm2
 上記耐熱層1を施した銅箔上に、耐熱層2を形成した。比較例3、5、6については、粗化めっき処理は行わず、準備した銅箔に、この耐熱層2を直接形成した。耐熱層2の形成条件を以下に示す。
  液組成  :ニッケル2~30g/L、亜鉛2~30g/L
  pH   :3~4
  液温   :30~50℃
  電流密度 :1~2A/dm2
  クーロン量:1~2As/dm2
 上記耐熱層1及び2を施した銅箔上に、さらに防錆層を形成した。防錆層の形成条件を以下に示す。
  液組成  :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
  pH   :3~4
  液温   :50~60℃
  電流密度 :0~2A/dm2(浸漬クロメート処理のため)
  クーロン量:0~2As/dm2(浸漬クロメート処理のため)
 上記耐熱層1、2及び防錆層を施した銅箔上に、さらに耐候性層を形成した。形成条件を以下に示す。
 アミノ基を有するシランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(実施例17)、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(実施例1~13、15、16、24、26~28)、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(実施例18)、3-アミノプロピルトリメトキシシラン(実施例19)、3-アミノプロピルトリエトキシシラン(実施例20)、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(実施例22)、N-フェニル-3-アミノプロピルトリメトキシシラン(実施例23)で、塗布・乾燥を行い、耐候性層を形成した。これらのシランカップリング剤を2種以上の組み合わせで用いることもできる。
 なお、圧延銅箔は以下のように製造した。表9に示す組成の銅インゴットを製造し、熱間圧延を行った後、300~800℃の連続焼鈍ラインの焼鈍と冷間圧延を繰り返して1~2mm厚の圧延板を得た。この圧延板を300~800℃の連続焼鈍ラインで焼鈍して再結晶させ、表9の厚みまで最終冷間圧延し、銅箔を得た。表9の「種類」の欄の「タフピッチ銅」はJIS H3100 C1100に規格されているタフピッチ銅を、「無酸素銅」はJIS H3100 C1020に規格されている無酸素銅を示す。また、「タフピッチ銅+Ag:100ppm」はタフピッチ銅にAgを100質量ppm添加したことを意味する。
 電解銅箔は実施例28を除いてJX日鉱日石金属社製電解銅箔HLP箔を用いた。実施例28については電解銅箔としてJX日鉱日石金属社製電解銅箔JTC箔を用いた。電解研磨又は化学研磨を行った場合には、電解研磨又は化学研磨後の板厚を記載した。
 なお、表9に表面処理前の銅箔またはキャリアの作製工程のポイントを記載した。「高光沢圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「通常圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「化学研磨」、「電解研磨」は、以下の条件で行ったことを意味する。
 「化学研磨」はH2SO4が1~3質量%、H22が0.05~0.15質量%、残部水のエッチング液を用い、研磨時間を1時間とした。
 「電解研磨」はリン酸67%+硫酸10%+水23%の条件で、電圧10V/cm2、表9に記載の時間(10秒間の電解研磨を行うと、研磨量は1~2μmとなる。)で行った。
 上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。
(1)表面粗さ(Rz)の測定;
 株式会社小阪研究所製接触粗さ計Surfcorder SE-3Cを使用してJIS B0601-1994に準拠して十点平均粗さを粗化面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で圧延方向と垂直に(TDに、電解銅箔の場合は通箔方向に垂直に)測定位置を変えて10回行い、10回の測定での値を求めた。
 なお、表面処理前の銅箔についても、同様にして表面粗さ(Rz)を求めておいた。
 また、キャリアの中間層を設けられる側の表面および極薄銅層の表面についても、同様にして表面粗さ(Rz)を求めておいた。
 なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の測定を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
(2)粒子の面積比(A/B);
 粗化粒子の表面積はレーザー顕微鏡による測定法を使用した。株式会社キーエンス製レーザーマイクロスコープVK8500を用いて粗化処理面の倍率2000倍における100×100μm相当面積B(実データでは9982.52μm2)における三次元表面積Aを測定して、三次元表面積A÷二次元表面積B=面積比(A/B)とする手法により設定を行った。
 なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の測定を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
(3)光沢度;
 JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG-1を使用し、圧延方向(MD、電解銅箔の場合は通箔方向)及び圧延方向に直角な方向(TD、電解銅箔の場合は通箔方向に直角な方向)のそれぞれの入射角60度で粗化面について測定した。
 なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の測定を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
 なお、表面処理前の銅箔についても、同様にして光沢度を求めておいた。
 また、表面処理前の銅箔の表面処理される側の表面およびキャリアの中間層を設けられる側の表面および極薄銅層の表面についても、同様にして光沢度を求めておいた。
(4)明度曲線の傾き
 表面処理銅箔を当該表面処理銅箔の粗化処理表面側からラミネート用熱硬化性接着剤付きポリイミドフィルム(カネカ製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作製した。なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔を、当該表面処理をした面側から、ポリイミドフィルムの両面に貼り合わせ、表面処理銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、キャリア付銅箔を極薄銅層の粗化処理表面側からポリイミドフィルムの両面に貼り合わせ、その後、キャリアを剥離した後に、極薄銅層をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作製した。続いて、ライン状の黒色マークを印刷した印刷物を、サンプルフィルムの下に敷いて、印刷物をサンプルフィルム越しにCCDカメラで撮影し、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線の傾き(角度)を測定した。このとき用いた撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図を図3に示す。また、ΔB及び各傾きは、図2で示すように測定した。なお、横軸の1ピクセルは10μm長さに相当する。そして、明度曲線のグラフにおける1ピクセルと1階調の長さの比率を3.5:5(明度曲線のグラフにおける1ピクセルの長さ:明度曲線のグラフにおける1階調の長さ=3.5(mm):5(mm))とした明度曲線のグラフにおいてk1、k2(°)の値を算出した。
 撮影装置は、CCDカメラ、マークを付した紙を下に置いたポリイミド基板を置くステージ(白色)、ポリイミド基板の撮影部に光を照射する照明用電源、撮影対象のマークが付された紙を下に置いた評価用ポリイミド基板をステージ上に搬送する搬送機(不図示)を備えている。当該撮影装置の主な仕様を以下に示す:
・撮影装置:株式会社ニレコ製シート検査装置Mujiken
・CCDカメラ:8192画素(160MHz)、1024階調ディジタル(10ビット)
・照明用電源:高周波点灯電源(電源ユニット×2)
・照明:蛍光灯(30W)
 なお、図3に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
(5)視認性(樹脂透明性);
 表面処理銅箔の表面処理された側の表面をラミネート用熱硬化性接着剤付きポリイミドフィルム(カネカ製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔を、当該表面処理をした面側から、ポリイミドフィルムの両面に貼り合わせ、表面処理銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、キャリア付銅箔を極薄銅層の粗化処理表面側からポリイミドフィルムの両面に貼り合わせ、その後、キャリアを剥離した後に、極薄銅層をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作製した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0~80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
(6)ピール強度(接着強度);
 表面処理銅箔の表面処理された側の表面をポリイミドフィルム(カネカ製厚み50μm)に積層した後、IPC-TM-650に準拠し、引張り試験機オートグラフ100で常態ピール強度を測定し、上記常態ピール強度が0.7kg/cm以上を積層基板用途に使用できるものとした。なお、実施例25~28については、表面処理銅箔の表面処理された側の表面をポリイミドフィルム(カネカ製厚み50μm)に積層した後、キャリアを剥離し、前記ポリイミドフィルムと積層されている極薄銅層の厚みが12μm厚みとなるように銅めっきを行ってからピール強度を測定した。なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の測定を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
(7)はんだ耐熱評価;
 表面処理銅箔の表面処理された側の表面をラミネート用熱硬化性接着剤付きポリイミドフィルム(カネカ製厚み50μm)の両面に貼り合わせた。得られた両面積層板について、JIS C6471に準拠したテストクーポンを作成した。作成したテストクーポンを85℃、85%RHの高温高湿下で48時間暴露した後に、300℃のはんだ槽に浮かべて、はんだ耐熱特性を評価した。はんだ耐熱試験後に、銅箔粗化処理面とポリイミド樹脂接着面の界面において、テストクーポン中の銅箔面積の5%以上の面積において、膨れにより界面が変色したものを×(不合格)、面積が5%未満の膨れ変色の場合を○、全く膨れ変色が発生しなかったものを◎として評価した。
 なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の測定を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
(8)歩留まり
 表面処理銅箔の表面処理された側の表面をラミネート用熱硬化性接着剤付きポリイミドフィルム(カネカ製厚み50μm)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)して、L/Sが30μm/30μmの回路幅のFPCを作成した。その後、20μm×20μm角のマークをポリイミド越しにCCDカメラで検出することを試みた。10回中9回以上検出できた場合には「◎」、7~8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした。
 なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の評価を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
(9)エッチングによる回路形状(ファインパターン特性);
 表面処理銅箔の表面処理された側の表面をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせた。ファインパターン回路形成性を評価するために銅箔厚みを同じにする必要があり、ここでは12μm銅箔厚みを基準とした。すなわち、12μmよりも厚みが厚い場合には、電解研磨により12μm厚みまで減厚した。一方で12μmより厚みが薄い場合には、銅めっき処理により12μm厚みまで増厚した。得られた両面積層板の片面側について、積層板の銅箔光沢面側に感光性レジスト塗布及び露光工程により、ファインパターン回路を印刷し、銅箔の不要部分を下記条件でエッチング処理を行い、L/S=20/20μmとなるようなファインパターン回路を形成した。ここで回路幅は回路断面のボトム幅が20μmとなるようにした。
(エッチング条件)
装置:スプレー式小型エッチング装置
スプレー圧:0.2MPa
エッチング液:塩化第二鉄水溶液(比重40ボーメ)
液温度:50℃
ファインパターン回路形成後に、45℃のNaOH水溶液に1分間浸漬させて感光性レジスト膜を剥離した。
(10)エッチングファクター(Ef)の算出;
 上記にて得られたファインパターン回路サンプルを、日立ハイテクノロジーズ社製走査型電子顕微鏡写真S4700を用いて、2000倍の倍率で回路上部から観察を行い、回路上部のトップ幅(Wa)と回路底部のボトム幅(Wb)を測定した。銅箔厚み(T)は12μmとした。エッチングファクター(Ef)は、下記式により算出した。
  エッチングファクター(Ef) = (2×T)/(Wb-Wa)
 なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の測定を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
(11)伝送損失の測定;
 各サンプルについて、表面処理銅箔の表面処理された側の面を、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ-50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωのとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzおよび周波数40GHzでの伝送損失を求めた。なお、評価条件をできるだけ揃えるため、表面処理銅箔と液晶ポリマー樹脂とを貼り合わせた後に、銅箔厚みを18μmとした。すなわち、18μmよりも銅箔の厚みが厚い場合には、電解研磨により18μm厚みまで減厚した。一方で18μmより厚みが薄い場合には、銅めっき処理により18μm厚みまで増厚した。周波数20GHzにおける伝送損失の評価として、3.7dB/10cm未満を◎、3.7dB/10cm以上且つ4.1dB/10cm未満を○、4.1dB/10cm以上且つ5.0dB/10cm未満を△、5.0dB/10cm以上を×とした。
 なお、プリント配線板または銅張積層板または樹脂層を有する表面処理銅箔においては、樹脂を溶かして除去することで、銅回路または銅箔表面について、前述の(1)表面粗さ(Rz)、(2)粒子の面積比(A/B)、(3)光沢度、(4)明度曲線の傾きを測定することができる。
 なお、銅箔表面に粗化処理をした後に、または粗化処理をしないで耐熱層、防錆層、耐候性層等を設けるために表面処理を行った場合には、当該耐熱層、防錆層、耐候性層等の表面処理をした後の表面処理銅箔の表面について上記の測定を行った。表面処理銅箔がキャリア付銅箔の極薄銅層である場合には、極薄銅層の粗化処理表面について上記の測定を行った。
 上記各試験の条件及び評価を表1~12に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 (評価結果)
 実施例1~28は、いずれも視認性、ピール強度、はんだ耐熱評価及び歩留まりが良好であった。また、実施例1~28は、いずれもエッチングファクターが大きく、ならびに伝送損失が小さく、良好であった。
 比較例1~2、4、7~11、13は、ΔB、ΔB/ΔB(PI)およびk1の1つ以上の値が本願発明の範囲から外れているため、視認性が不良であった。
 比較例3、5、6、12は、視認性は優れていたが、k1の値が87°を超えたため、基板密着性が不良であった。また、比較例1~13ははんだ耐熱評価が不良であった。
 なお、実施例8~10、20、25、28の表面処理銅箔について、粗化処理表面に厚み1μmのアクリル樹脂を塗布して、上述の評価を行った。その結果、実施例8~10、20、25、28の表面処理銅箔と同じ評価結果となった。
 図4に、上記Rz評価の際の、(a)比較例1、(b)比較例2、(c)比較例3、(d)比較例4、(e)実施例1、(f)実施例2の銅箔表面のSEM観察写真をそれぞれ示す。

Claims (23)

  1.  少なくとも一方の表面に粗化処理により粗化粒子が形成された表面処理銅箔であって、
     前記銅箔を、粗化処理表面側から厚さ50μmのポリイミド(銅箔に張り合わせ前のポリイミドについての下記ΔB(PI)が50以上65以下であるポリイミド)基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、
     ライン状のマークを印刷した印刷物を、露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上であり、
     ΔB/ΔB(PI)からなる比率が0.7以上であり、
     Btを基準に0.4ΔB~0.6ΔBの深さ範囲における前記明度曲線の傾き(角度)k1が65°以上87°以下となる表面処理銅箔。
  2.  前記撮影によって得られた画像から作製した観察地点-明度グラフにおいて、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲における前記明度曲線の傾き(角度)k2が30°以上となる請求項1に記載の表面処理銅箔。
  3.  前記撮影によって得られた画像から作製した観察地点-明度グラフにおいて、ΔBが48以上となる請求項1又は2に記載の表面処理銅箔。
  4.  前記明度曲線の傾き(角度)k1が75°以上87°以下となる請求項1~3のいずれかに記載の表面処理銅箔。
  5.  前記明度曲線の傾き(角度)k2が35°以上となる請求項2~4のいずれかに記載の表面処理銅箔。
  6.  前記粗化処理表面のTDの平均粗さRzが0.20~0.80μmであり、粗化処理表面のMDの60度光沢度が76~350%であり、
     前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90~2.40である請求項1~5のいずれかに記載の表面処理銅箔。
  7.  前記MDの60度光沢度が90~250%である請求項6に記載の表面処理銅箔。
  8.  前記TDの平均粗さRzが0.30~0.60μmである請求項6又は7に記載の表面処理銅箔。
  9.  前記A/Bが2.00~2.20である請求項6~8のいずれかに記載の表面処理銅箔。
  10.  粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80~1.40である請求項6~9のいずれかに記載の表面処理銅箔。
  11.  粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.90~1.35である請求項10に記載の表面処理銅箔。
  12.  前記粗化処理表面に樹脂層を備える請求項1~11のいずれか一項に記載の表面処理銅箔。
  13.  前記樹脂層が誘電体を含む請求項12に記載の表面処理銅箔。
  14.  キャリア、中間層、極薄銅層をこの順に有するキャリア付銅箔であって、前記極薄銅層が請求項1~13のいずれか一項に記載の表面処理銅箔であるキャリア付銅箔。
  15.  請求項1~13のいずれかに記載の表面処理銅箔と樹脂基板とを積層して構成した積層板。
  16.  請求項1~13のいずれか一項に記載の表面処理銅箔を用いたプリント配線板。
  17.  請求項16に記載のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法。
  18.  請求項16に記載のプリント配線板を少なくとも1つと、もう一つの請求項16に記載のプリント配線板又は請求項16に記載のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。
  19.  請求項17又は18に記載のプリント配線板が少なくとも1つ接続したプリント配線板、又は、請求項16に記載のプリント配線板を1つ以上用いた電子機器。
  20.  請求項17又は18に記載のプリント配線板が少なくとも1つ接続したプリント配線板又は請求項16に記載のプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板を製造する方法。
  21.  請求項16に記載のプリント配線板を少なくとも1つと、もう一つの請求項16に記載のプリント配線板又は請求項16に記載のプリント配線板に該当しないプリント配線板とを接続する工程、および、
     請求項16に記載のプリント配線板又は請求項17に記載のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続する工程
    を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。
  22.  請求項14に記載のキャリア付銅箔と絶縁基板とを準備する工程、
     前記キャリア付銅箔と絶縁基板とを積層する工程、
     前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、
    その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。
  23.  請求項14に記載のキャリア付銅箔の前記極薄銅層側表面に回路を形成する工程、
     前記回路が埋没するように前記キャリア付銅箔の前記極薄銅層側表面に樹脂層を形成する工程、
     前記樹脂層上に回路を形成する工程、
     前記樹脂層上に回路を形成した後に、前記キャリアを剥離させる工程、及び、
     前記キャリアを剥離させた後に、前記極薄銅層を除去することで、前記極薄銅層側表面に形成した、前記樹脂層に埋没している回路を露出させる工程
    を含むプリント配線板の製造方法。
PCT/JP2013/074439 2012-09-10 2013-09-10 表面処理銅箔及びそれを用いた積層板 WO2014038717A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014534445A JP5855259B2 (ja) 2012-09-10 2013-09-10 表面処理銅箔及びそれを用いた積層板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012198839 2012-09-10
JP2012-198839 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014038717A1 true WO2014038717A1 (ja) 2014-03-13

Family

ID=50237320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074439 WO2014038717A1 (ja) 2012-09-10 2013-09-10 表面処理銅箔及びそれを用いた積層板

Country Status (3)

Country Link
JP (1) JP5855259B2 (ja)
TW (1) TWI532592B (ja)
WO (1) WO2014038717A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695253B1 (ja) * 2014-06-23 2015-04-01 株式会社Shカッパープロダクツ 銅張積層板および該銅張積層板を用いたフレキシブルプリント配線板
JP5732181B1 (ja) * 2015-02-05 2015-06-10 株式会社Shカッパープロダクツ 銅張積層板および該銅張積層板を用いたフレキシブルプリント配線板
KR20150124388A (ko) * 2014-04-28 2015-11-05 가부시키가이샤 에스에이치 카퍼프로덕츠 표면처리 동박 및 적층판
KR20160099439A (ko) * 2015-02-12 2016-08-22 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 처리 동박 및 그 처리 동박을 사용한 구리 피복 적층판 그리고 프린트 배선판
JP2017088961A (ja) * 2015-11-10 2017-05-25 Jx金属株式会社 キャリア付銅箔、プリント配線板、積層体、電子機器、キャリア付銅箔の製造方法、及び、プリント配線板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038923A1 (ja) * 2014-09-09 2016-03-17 古河電気工業株式会社 プリント配線板用銅箔及び銅張積層板
WO2019163962A1 (ja) * 2018-02-23 2019-08-29 古河電気工業株式会社 電解銅箔、並びに該電解銅箔を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、銅張積層板及びプリント配線板
KR102349377B1 (ko) * 2019-12-19 2022-01-12 일진머티리얼즈 주식회사 표면처리 동박, 이의 제조방법, 이를 포함한 동박적층판, 및 이를 포함한 프린트 배선판

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (ja) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk 印刷回路用銅箔の処理方法
JP2011240625A (ja) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp 銅張積層板
WO2012133565A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 電解銅箔及び電解銅箔の製造方法
WO2012133564A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 二次電池負極集電体用電解銅箔及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (ja) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk 印刷回路用銅箔の処理方法
JP2011240625A (ja) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp 銅張積層板
WO2012133565A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 電解銅箔及び電解銅箔の製造方法
WO2012133564A1 (ja) * 2011-03-30 2012-10-04 Jx日鉱日石金属株式会社 二次電池負極集電体用電解銅箔及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150124388A (ko) * 2014-04-28 2015-11-05 가부시키가이샤 에스에이치 카퍼프로덕츠 표면처리 동박 및 적층판
CN105034478A (zh) * 2014-04-28 2015-11-11 株式会社Sh铜业 表面处理铜箔及层叠板
KR101974687B1 (ko) * 2014-04-28 2019-05-02 장 춘 페트로케미컬 컴퍼니 리미티드 표면처리 동박 및 적층판
CN105034478B (zh) * 2014-04-28 2020-01-21 长春石油化学股份有限公司 表面处理铜箔及层叠板
JP5695253B1 (ja) * 2014-06-23 2015-04-01 株式会社Shカッパープロダクツ 銅張積層板および該銅張積層板を用いたフレキシブルプリント配線板
JP5732181B1 (ja) * 2015-02-05 2015-06-10 株式会社Shカッパープロダクツ 銅張積層板および該銅張積層板を用いたフレキシブルプリント配線板
KR20160099439A (ko) * 2015-02-12 2016-08-22 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 처리 동박 및 그 처리 동박을 사용한 구리 피복 적층판 그리고 프린트 배선판
KR102097843B1 (ko) 2015-02-12 2020-04-06 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 처리 동박 및 그 처리 동박을 사용한 구리 피복 적층판 그리고 프린트 배선판
JP2017088961A (ja) * 2015-11-10 2017-05-25 Jx金属株式会社 キャリア付銅箔、プリント配線板、積層体、電子機器、キャリア付銅箔の製造方法、及び、プリント配線板の製造方法

Also Published As

Publication number Publication date
TW201422422A (zh) 2014-06-16
JPWO2014038717A1 (ja) 2016-08-12
TWI532592B (zh) 2016-05-11
JP5855259B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5885790B2 (ja) 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP5885791B2 (ja) 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP5758035B2 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP5855259B2 (ja) 表面処理銅箔及びそれを用いた積層板
JP5651811B1 (ja) キャリア付銅箔、銅張積層板、プリント配線板、電子機器、及び、プリント配線板の製造方法
US10791631B2 (en) Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
WO2015087941A1 (ja) 表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法
WO2014073694A1 (ja) 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器
JP6343204B2 (ja) 表面処理銅箔及びそれを用いたキャリア付銅箔、積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
WO2014038718A1 (ja) 表面処理銅箔及びそれを用いた積層板、銅張積層板、プリント配線板並びに電子機器
JP5758033B2 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP5758034B2 (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP6343205B2 (ja) キャリア付銅箔及びそれを用いた積層板の製造方法、プリント配線板、電子機器、プリント配線板の製造方法、並びに、電子機器の製造方法
JP2015061757A (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP6449587B2 (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2015061758A (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2015062222A (ja) キャリア付銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びにプリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835730

Country of ref document: EP

Kind code of ref document: A1