WO2019159391A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2019159391A1
WO2019159391A1 PCT/JP2018/027937 JP2018027937W WO2019159391A1 WO 2019159391 A1 WO2019159391 A1 WO 2019159391A1 JP 2018027937 W JP2018027937 W JP 2018027937W WO 2019159391 A1 WO2019159391 A1 WO 2019159391A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor substrate
distance
contact
semiconductor device
Prior art date
Application number
PCT/JP2018/027937
Other languages
English (en)
French (fr)
Inventor
美咲 高橋
原田 祐一
浩大 横山
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201880052063.8A priority Critical patent/CN111033751B/zh
Priority to JP2020500252A priority patent/JP6947281B2/ja
Publication of WO2019159391A1 publication Critical patent/WO2019159391A1/ja
Priority to US16/773,889 priority patent/US11380784B2/en
Priority to US17/847,174 priority patent/US11949005B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0711Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body

Definitions

  • the present invention relates to a semiconductor device.
  • Patent Literature 1 International Publication No. 2017/155122
  • Patent Literature 2 International Publication No. 2016/098199
  • Patent Literature 3 JP-A-2017-135255
  • Patent Literature 4 JP-A-2017-103400
  • Patent Literature 5 Japanese Patent Laid-Open No. 2016-197678
  • Patent Document 6 Japanese Patent Laid-Open No. 2011-243694
  • Patent Document 7 International Publication No. 2017/141998
  • Patent Document 8 Japanese Patent Laid-Open No. 2017-28244
  • a semiconductor device having a transistor region and a diode region on one semiconductor substrate may have a gate runner part and a first conductivity type well region.
  • the gate runner portion may supply a gate potential to the transistor region.
  • the well region may be provided below the gate runner part.
  • the diode region may include a plurality of first contact portions, a first conductivity type anode region, and a second conductivity type cathode region.
  • the plurality of first contact portions may each extend in the first direction on the semiconductor substrate.
  • the plurality of first contact portions may be provided apart from each other in the second direction on the semiconductor substrate.
  • the second direction may be orthogonal to the first direction.
  • the anode region may be electrically connected to the emitter electrode through a plurality of first contact portions.
  • the emitter electrode may be provided above the semiconductor substrate.
  • the anode region may have a dopant concentration that is lower than a dopant concentration of the first conductivity type in the well region.
  • the cathode region may be provided in a predetermined depth range from the lower surface of the semiconductor substrate.
  • the well region may be in contact with the diode region in the first direction. The end of the well region, the end of the at least one first contact portion of the plurality of first contact portions, and the end of the cathode region are virtually projected onto the upper surface of the semiconductor substrate in the first direction.
  • the first distance that is the shortest distance between the end portion of the well region and the end portion of the cathode region is the second distance that is the shortest distance between the end portion of the well region and the end portion of at least one first contact portion. It may be larger than the distance.
  • the semiconductor substrate may include a second conductivity type drift region and a second conductivity type accumulation region.
  • the drift region may be located below the anode region in the semiconductor substrate.
  • the storage region may be provided at least in the diode region.
  • the accumulation region may be located between the anode region and the drift region in the depth direction of the semiconductor substrate.
  • the end of the accumulation region in the first direction may be located between the end of at least one first contact portion and the end of the cathode region.
  • the first distance may be larger than the depth from the upper surface of the semiconductor substrate to the bottom of the well region and smaller than the thickness from the upper surface to the lower surface of the semiconductor substrate.
  • the second distance may be not less than 40% and not more than 60% of the first distance.
  • the second distance may be less than half of the first distance.
  • the transistor region may have a plurality of second contact portions.
  • the plurality of second contact portions may extend in the first direction on the semiconductor substrate.
  • the plurality of second contact portions may be provided apart from each other in the second direction on the semiconductor substrate.
  • the second direction may be orthogonal to the first direction.
  • the semiconductor device may have a plurality of transistor regions.
  • the gate runner part may include an extended gate runner part and an annular gate runner part.
  • the extended gate runner portion may be provided between at least two transistor regions adjacent to each other in the first direction among the plurality of transistor regions.
  • the annular gate runner portion may be provided so as to surround the plurality of transistor regions.
  • the well region may be located below the extended gate runner part. The well region may be used to define the first distance and the second distance.
  • the first distance defined using the well region provided below the extended gate runner portion may be longer than the first distance defined using the well region provided below the annular gate runner portion.
  • the second distance defined using the well region provided below the extended gate runner portion may be longer than the second distance defined using the well region provided below the annular gate runner portion.
  • the semiconductor substrate may have a lifetime killer region. The lifetime killer region may be provided at least below the gate runner portion.
  • the lifetime killer region may be provided over the entire length in the first direction of the extended gate runner portion below the extended gate runner portion.
  • the lifetime killer region may be provided corresponding to a part of the length of the annular gate runner portion in the first direction below the annular gate runner portion.
  • the lifetime killer region may have a lifetime killer concentration distribution peak at a position closer to the lower surface of the semiconductor substrate than the bottom of the well region.
  • the lifetime killer region may be provided in a wider range than the cathode region.
  • the semiconductor substrate may include a second conductivity type drift region and a second conductivity type accumulation region.
  • the drift region may be located below the anode region in the semiconductor substrate.
  • the storage region may be provided at least in the diode region.
  • the accumulation region may be located between the anode region and the drift region in the depth direction of the semiconductor substrate.
  • An end portion of the well region, an end portion of at least one first contact portion of the plurality of first contact portions, an end portion of the storage region, and an end portion of the cathode region are arranged on the upper surface of the semiconductor substrate.
  • the fourth distance may be larger than the fifth distance when virtually projected onto the screen.
  • the fourth distance may be the shortest distance between the end of at least one first contact portion and the end of the accumulation region.
  • the fifth distance may be the shortest distance between the end of the storage region and the end of the cathode region.
  • the semiconductor substrate may include a second conductivity type drift region and a second conductivity type accumulation region.
  • the drift region may be located below the anode region in the semiconductor substrate.
  • the storage region may be provided at least in the diode region.
  • the accumulation region may be located between the anode region and the drift region in the depth direction of the semiconductor substrate.
  • An end portion of the well region, an end portion of at least one first contact portion of the plurality of first contact portions, an end portion of the storage region, and an end portion of the cathode region are arranged on the upper surface of the semiconductor substrate.
  • the second distance may be larger than the fifth distance.
  • the fifth distance may be the shortest distance between the end of the storage region and the end of the cathode region.
  • the transistor region may have a collector region of the second conductivity type.
  • the collector region may be provided on the lower surface side of the semiconductor substrate.
  • the first receding length of the cathode region may be greater than or equal to the first distance.
  • the first receding length of the cathode region may be a length from the lower surface side boundary to the upper surface side boundary in the second direction.
  • the lower surface side boundary may be a boundary between the collector region and the cathode region.
  • the upper surface side boundary may be a boundary between the transistor region and the diode region on the upper surface side of the semiconductor substrate.
  • the third distance may be smaller than the second distance.
  • the transistor region may include a plurality of second contact portions that extend in the first direction and are spaced apart from each other in the second direction orthogonal to the first direction on the semiconductor substrate.
  • a plurality of The end portion of the first contact portion may be disposed at a position that does not overlap the well region, and the end portion of at least one second contact portion may be disposed at a position that overlaps the well region.
  • the semiconductor substrate may include a diode region and a lifetime killer region provided in a portion adjacent to the diode region in the transistor region.
  • the sixth distance which is the shortest distance in the second direction between the end of the diode region and the second contact portion provided up to the position overlapping the well region, is the lifetime killer region in the end of the diode region and the transistor region. It may be less than or equal to the seventh distance that is the shortest distance in the second direction.
  • the semiconductor substrate may have a second conductivity type drift region located below the anode region in the semiconductor substrate.
  • the semiconductor substrate may include a second conductivity type accumulation region that is provided in the diode region and the transistor region and is located at a depth between the anode region and the drift region in the depth direction of the semiconductor substrate.
  • An end portion in the first direction of at least a part of the accumulation region in the transistor region may be located closer to the well region than an end portion in the first direction of the accumulation region in the diode region.
  • the transistor region may have first conductivity type contact regions and second conductivity type emitter regions that are exposed on the upper surface of the semiconductor substrate and are alternately arranged along the first direction.
  • the length in the first direction of the contact region disposed closest to the gate runner portion in the first direction is greater than the length of the other contact region disposed on the center side in the first direction of the transistor region than the contact region. Can be bigger.
  • a semiconductor device having a transistor region and a diode region on one semiconductor substrate.
  • the semiconductor device may include a gate runner portion that supplies a gate potential to the transistor region.
  • the semiconductor device may have a first conductivity type well region provided below the gate runner portion.
  • the diode region may include a plurality of first contact portions that extend in the first direction and are spaced apart from each other in a second direction orthogonal to the first direction on the semiconductor substrate.
  • the transistor region may include a plurality of second contact portions that extend in the first direction and are spaced apart from each other in a second direction orthogonal to the first direction on the semiconductor substrate.
  • a plurality of The end portion of the first contact portion may be disposed at a position that does not overlap the well region, and the end portion of at least one second contact portion may be disposed at a position that overlaps the well region.
  • FIG. 2 is a schematic view showing an upper surface of a semiconductor device 200.
  • FIG. It is an enlarged view of the area
  • FIG. 6 is a diagram showing a concentration distribution of recombination centers in the depth direction of the lifetime killer region 26; It is a figure which shows the destruction tolerance at the time of reverse recovery of the FWD area
  • (A) to (d) are diagrams showing the positional relationship between the contact portion 54 and the storage region 16. It is an enlarged view of the area
  • FIG. 1 in 3rd Embodiment It is an enlarged view of the area
  • FIG. FIG. 4 is a diagram illustrating a shape example of the gate trench portion 40 and the dummy trench portion 30 in a top view.
  • one side in a direction parallel to the depth direction of the semiconductor substrate 10 is referred to as “upper” and the other side is referred to as “lower”.
  • one surface is called an upper surface among the two main surfaces of a board
  • the “upper” and “lower” directions are not limited to the direction of gravity or the mounting direction when the semiconductor device is mounted on a wiring board or the like.
  • FIG. 1 is a schematic view showing the upper surface of the semiconductor device 200.
  • the semiconductor device 200 of this example is an RC-IGBT having an IGBT region 80 and an FWD region 70 on one semiconductor substrate 10.
  • the IGBT region 80 is an example of a transistor region
  • the FWD region 70 is an example of a diode region.
  • the semiconductor substrate 10 of this example has a substantially rectangular shape when viewed from above.
  • the semiconductor substrate 10 of this example has an upper surface (one main surface) parallel to the XY plane at the end in the positive direction of the Z axis, and a lower surface parallel to the XY plane at the end in the negative direction of the Z axis. (Other main surface).
  • the X axis and the Y axis are orthogonal to each other, and the Z axis is orthogonal to the XY plane.
  • the X axis, the Y axis, and the Z axis form a so-called right hand system.
  • the Y-axis direction is an example of the first direction
  • the X-axis direction is an example of the second direction.
  • the Z-axis direction is parallel to the depth direction of the semiconductor substrate 10.
  • the semiconductor device 200 of this example includes an active region 100, a gate runner portion 110, a gate pad portion 120, and an edge termination region 130.
  • the gate runner portion 110 of this example includes an annular gate runner portion 112 and an extended gate runner portion 114.
  • the annular gate runner portion 112 of this example corresponds to a rectangular shape with rounded corners.
  • the annular gate runner portion 112 may surround the plurality of IGBT regions 80 and the plurality of FWD regions 70 in the XY plane.
  • the annular gate runner portion 112 of this example surrounds the outer periphery of a group of the plurality of IGBT regions 80 and the plurality of FWD regions 70.
  • the extended gate runner portion 114 may be provided between at least two IGBT regions 80 adjacent to each other in the Y-axis direction.
  • the extending gate runner portion 114 of the present example extends in the X-axis direction through between the IGBT regions 80 adjacent in the Y-axis direction and between the FWD regions 70 adjacent in the Y-axis direction.
  • the extending gate runner portion 114 of this example extends from one side parallel to the Y-axis direction of the rectangular annular gate runner portion 112 to the other side facing the one side in the X-axis direction.
  • the gate runner part 110 may have a gate runner layer and a gate metal layer located on the gate runner layer.
  • the gate runner layer and the gate metal layer may be electrically connected to each other at a predetermined contact portion. Further, the gate runner part 110 may be electrically connected to the gate pad part 120.
  • the gate runner unit 110 may have a function of supplying a control signal (for example, gate potential) transmitted from the gate pad unit 120 to the IGBT region 80.
  • a wire may be connected to the gate pad portion 120 by bonding or the like.
  • a control signal may be input to the gate pad unit 120 from the external terminal through the wire.
  • the gate pad portion 120 may have a stacked structure of a gate runner layer and a gate metal layer. The gate pad portion 120 of this example is provided so as to cut out a part of the IGBT region 80 located at the center in the X-axis direction.
  • the active region 100 in this example is a region provided inside the gate runner portion 110.
  • the active region 100 of this example includes a first active region 100-1 and a second active region 100-2.
  • the first active region 100-1 is surrounded by the half of the annular gate runner portion 112 in the positive direction of the Y axis and the extended gate runner portion 114.
  • the second active region 100-2 is surrounded by the half of the annular gate runner portion 112 in the positive Y-axis direction, the gate pad portion 120, and the extended gate runner portion 114.
  • the active region 100 may be a range excluding the range where the extended gate runner portion 114 is provided, and may correspond to the range of the XY plane where the emitter electrode 50 is provided. In FIG. 1, the range of the XY plane in which the emitter electrode 50 is provided is indicated by a broken line.
  • each of the first active region 100-1 and the second 100-2 includes a plurality of IGBT regions 80 and a plurality of FWD regions 70.
  • the plurality of IGBT regions 80 may be provided apart from each other in the X-axis direction.
  • three IGBT regions 80 are provided with a predetermined interval in the X-axis direction.
  • IGBT regions 80-L and 80-R are provided at both ends in the X-axis direction instead of the FWD region 70.
  • an IGBT region 80-C is provided in which both sides in the X-axis direction are sandwiched between the FWD regions 70.
  • the IGBT regions 80-L and 80-R are examples of the outer transistor region, and the IGBT region 80-C is an example of the inner transistor region.
  • one FWD region 70 is provided in contact with each of the two IGBT regions 80 between two IGBT regions 80 adjacent in the X-axis direction. Therefore, in the active region 100, the number of FWD regions 70 may be smaller than the number of IGBT regions 80.
  • each of the first active region 100-1 and the second active region 100-2 has two FWD regions 70. Note that the numbers of the IGBT regions 80 and the FWD regions 70 are examples, and a larger or smaller number of the IGBT regions 80 and FWD regions 70 may be provided than in this example.
  • the edge termination region 130 may be provided between the outer peripheral end portion 66 of the semiconductor substrate 10 and the annular gate runner portion 112.
  • the edge termination region 130 may be provided in an annular shape so as to surround the gate runner portion 110 located outside the active region 100.
  • the edge termination region 130 of this example surrounds the outside of the annular gate runner portion 112.
  • the edge termination region 130 may have a function of relaxing electric field concentration on the upper surface side of the semiconductor substrate 10.
  • the edge termination region 130 has, for example, a guard ring, a field plate, a resurf, and a combination of these.
  • FIG. 2 is an enlarged view of region A in FIG. 1 in the first embodiment.
  • the region A includes a region where the upper surface side boundary 74 that is a boundary between the IGBT region 80 and the FWD region 70 on the upper surface side of the semiconductor substrate 10 intersects with the edge termination region 130.
  • the upper surface side boundary 74 is indicated by a one-dot chain line.
  • the upper surface side boundary 74 is an imaginary straight line that is located on the dummy trench portion 30 on the FWD region 70 side in the dummy trench portion 30 of the boundary mesa region 61 and is parallel to the Y-axis direction.
  • the boundary mesa region 61 is a mesa region adjacent to the mesa region 60 having the N + type emitter region 12 on the FWD region 70 side among the plurality of mesa regions 60-2 in the IGBT region 80.
  • the boundary mesa region 61 is a mesa region 60-2 that is closest to the FWD region 70 in the X-axis direction in the mesa region 60-2 of the IGBT region 80 and is adjacent to the FWD region 70. It is also a mesa region 60-2 that does not have.
  • a part in the semiconductor substrate 10 located between two trench portions adjacent in the X-axis direction and above the semiconductor substrate 10 is referred to as a mesa region 60.
  • the mesa region 60-1 of the FWD region 70 is an example of a first mesa region
  • the mesa region 60-2 of the IGBT region 80 is an example of a second mesa region.
  • the mesa region 60-1 of the FWD region 70 may include a P ⁇ type anode region 13, a P + type contact region 15, an N type storage region 16, and a P + type well region 17.
  • the mesa region 60-2 of the IGBT region 80 includes an N + type emitter region 12, a P ⁇ type base region 14, a P + type contact region 15, an N type accumulation region 16, and a P + type well region 17. You can do it.
  • the base region 14 may function as a channel formation region, and the anode region 13 may function as an anode.
  • region 14 only gave the different name according to the area
  • the anode region 13 and the base region 14 may be formed through the same dopant implantation process.
  • the anode region 13 and the base region 14 have the same P-type dopant concentration.
  • the P type in this example is an example of the first conductivity type
  • the N type is an example of the second conductivity type.
  • the P type may be the second conductivity type and the N type may be the first conductivity type.
  • N or P means that electrons or holes are majority carriers, respectively. With respect to + or ⁇ described in N or P, + means that the carrier concentration is higher than that in which it is not described, and ⁇ means that the carrier concentration is lower than that in which it is not described.
  • the semiconductor device 200 has an insulating film such as an interlayer insulating film on the upper surface of the semiconductor substrate 10, but these insulating films are omitted in FIG.
  • An insulating film such as an interlayer insulating film may have a plurality of openings at different positions in the XY plane. In FIG. 2, a plurality of openings are shown as contact portions 47, 52, 53 and 54.
  • the contact portion 47 is an opening that connects the gate metal layer 48 and the gate runner layer 46.
  • the contact part 52 is an opening provided in the IGBT region 80, and the contact part 53 is an opening provided in the FWD region 70.
  • the contact portion 52 in this example connects the island-shaped connection layer 27 and the emitter electrode 50. Further, the contact portion 53 of this example connects the island-shaped connection layer 28 extending in the X-axis direction and the emitter electrode 50.
  • the gate runner layer 46 and the connection layers 27 and 28 are polysilicon layers formed by the same deposition process and etching process.
  • the contact portion 54 of this example may connect the emitter electrode 50 and the semiconductor region exposed on the upper surface of the semiconductor substrate 10.
  • the extending direction in which the contact portion 54 extends is parallel to the Y-axis direction.
  • the contact portion 54 may have the same shape in the FWD region 70 and the IGBT region 80.
  • the contact portion 54 of this example has a strip shape having a width smaller than the length of the mesa region 60 in the X-axis direction and extending in the Y-axis direction.
  • the position of the end portion 55 in the Y-axis direction is the same in the FWD region 70 and the IGBT region 80.
  • the length from the end of the gate runner portion 110 in the negative Y-axis direction to the end 55 of the contact portion 54 is, for example, 10 ⁇ m.
  • the position of the end portion 55 in the Y-axis direction the position of the end portion 55-2 in the Y-axis direction of the contact portion 54 in the IGBT region 80 is the end portion 55 in the Y-axis direction of the contact portion 54 in the FWD region 70. You may extend
  • the semiconductor device 200 of this example includes a dummy trench portion 30 and a gate trench portion 40 provided from the upper surface of the semiconductor substrate 10 to a predetermined depth.
  • the dummy trench portion 30 and the gate trench portion 40 may be collectively referred to as a trench portion.
  • the gate potential is supplied to the gate conductive portion of the gate trench portion 40, the same potential (emitter potential) as the emitter electrode 50 is supplied to the dummy trench conductive portion of the dummy trench portion 30 instead of the gate potential.
  • the FWD region 70 of this example has a plurality of dummy trench portions 30.
  • the dummy trench portion 30 in the FWD region 70 includes two long portions and one short portion.
  • the longitudinal portion is a portion that extends parallel to the extending direction of the contact portion 54.
  • two long portions and one short portion in the dummy trench portion 30 form an inverted U shape.
  • the two longitudinal portions may face each other in the X-axis direction and extend in the Y-axis direction.
  • One short portion may connect the two long portions at the end in the Y-axis direction.
  • the longitudinal portions of the dummy trench portions 30 are arranged at a predetermined interval in the X-axis direction. Therefore, each mesa region 60-1 in this example has the same width in the X-axis direction.
  • the IGBT region 80 of this example has a plurality of dummy trench portions 30 and a plurality of gate trench portions 40.
  • the gate trench portion 40 also includes two long portions and one short portion. In FIG. 2, two long portions and one short portion in the gate trench portion 40 form an inverted U shape.
  • the two longitudinal portions may face each other in the X-axis direction and extend in the Y-axis direction.
  • One short portion may connect the two long portions at the end in the Y-axis direction.
  • the longitudinal portions of the gate trench portions 40 are arranged in the X-axis direction at a pitch twice the pitch of the longitudinal portions of the dummy trench portions 30 in the FWD region 70.
  • the longitudinal portions of the two dummy trench portions 30 are provided between the longitudinal portions of the two gate trench portions 40 adjacent in the X-axis direction.
  • the distance between the longitudinal part of the dummy trench part 30 and the longitudinal part of the gate trench part 40 in the X-axis direction is between the longitudinal parts of two dummy trench parts 30 adjacent in the X-axis direction. Is equal to the distance.
  • the width in the X-axis direction of each of the mesa region 60-1, the mesa region 60-2, and the boundary mesa region 61 is 2.3 ⁇ m.
  • the longitudinal part of the gate trench part 40 in this example is longer in the Y-axis direction than the longitudinal part of the dummy trench part 30.
  • the gate trench part 40 reaches below the gate runner part 110 in the Y-axis direction.
  • the short part of the gate trench portion 40 is located under the gate runner layer 46 and is connected to the gate runner layer 46.
  • the dummy trench part 30 does not reach the gate runner part 110 in the Y-axis direction.
  • the bottoms of the short sides of the gate trench portion 40 and the dummy trench portion 30 are covered with the well region 17. It should be noted that the bottom of a part of the long portion located near the short portion of each trench portion is also covered with the well region 17.
  • the P + type contact region 15 may have a higher P type dopant concentration than the anode region 13 or the base region 14.
  • the contact region 15 may function as a low resistance path for holes when extracting holes from the semiconductor substrate 10 to the emitter electrode 50.
  • the contact region 15 of the FWD region 70 is connected to the first contact portion 54-1 on the mesa region 60-1.
  • the contact region 15 of the IGBT region 80 is also connected to the second contact portion 54-2 on the mesa region 60-2.
  • the P + type well region 17 may be provided below the gate runner portion 110.
  • the well region 17 of this example is provided from the outer end 94 of the gate runner part 110 to the inner end 92 of the gate runner part 110 in the Y-axis direction.
  • the outer end portion 94 is located outside the outer end portion of the gate runner portion 110.
  • the inner end portion 92 is located between the short portion of the dummy trench portion 30 and the end portion 55 of the contact portion 54.
  • the well region 17 may also have a higher P-type dopant concentration than the anode region 13 or the base region 14.
  • the well region 17 may have a function of separating the base region 14 and the anode region 13 from the vicinity of the outer peripheral end portion 66.
  • the well region 17 may be exposed on the upper surface of the semiconductor substrate 10.
  • an insulating film is provided on the upper surface of the semiconductor substrate 10 in a range corresponding to the well region 17, the gate runner layer 46, the connection layers 27 and 28, and the well region 17 are electrically connected. Have been separated.
  • the N + type emitter region 12 may function as a low-resistance path for electrons when electrons are injected into the semiconductor substrate 10.
  • the emitter region 12 is provided only in the mesa region 60-2 of the IGBT region 80.
  • the emitter region 12 or the contact region 15 located below the contact portion 54-2 is indicated by a broken line.
  • the emitter region 12 is not provided in the boundary mesa region 61 that is the mesa region 60-2 of the IGBT region 80 adjacent to the FWD region 70 in order to reduce current interference. Thereby, the electrons injected from the emitter region 12 of the IGBT region 80 into the drift region can be reduced from flowing out to the cathode region 72 of the FWD region 70.
  • an N + type region (for example, the emitter region 12) may be provided in the boundary mesa region 61 or the mesa region 60-1 of the FWD region 70.
  • the N + type region may be adjacent to the dummy trench portion 30 and the like, but is preferably not adjacent to the gate trench portion 40.
  • the mesa region 60-2 in the IGBT region 80 has emitter regions 12 and contact regions 15 that are alternately exposed on the upper surface in the Y-axis direction.
  • the emitter region 12 and the contact region 15 are provided across two trench portions adjacent in the X-axis direction.
  • the mesa region 60-2 of the present example includes the contact region 15 immediately below the end portion 55-2 of the contact portion 54-2.
  • the contact region 15 located immediately below the end portion 55-2 may be sandwiched between the base region 14 and the emitter region 12 in the Y-axis direction.
  • the well region 17 and the base region 14 are provided in the same range as the mesa region 60-2.
  • the contact region 15 is provided in a range other than the well region 17 and the base region 14.
  • the P + type contact region 15 is mainly exposed on the upper surface in the Y-axis direction.
  • the well region 17 and the anode region 13 corresponding to the base region 14 are provided in the same range as the mesa region 60-2.
  • the contact region 15 is provided immediately below the end portion 55-1 of the contact portion 54-1.
  • the contact region 15 in the mesa region 60-1 may be provided in a range corresponding to the contact region 15 located immediately below the end portion 55-2 of the mesa region 60-2 in the X-axis direction.
  • the remaining region in the mesa region 60-1 may be the anode region 13.
  • the semiconductor device 200 of this example has the N-type accumulation region 16 in both the FWD region 70 and the IGBT region 80.
  • the accumulation region 16 is provided between the anode region 13 and the base region 14 and the drift region in the depth direction of the semiconductor substrate 10.
  • the drift region is illustrated in FIG. Thereby, the carrier injection promotion effect (Injection Enhancement effect; IE effect) in the IGBT region 80 can be enhanced, and the on-voltage (Von) of the IGBT can be reduced.
  • IE effect injection Enhancement effect
  • the accumulation region 16 may be formed by ion-implanting an N-type dopant into a predetermined depth range of the semiconductor substrate 10 through the opening region of the resist mask. Note that since the mask droops at the opening end of the resist mask (the edge of the mask is deformed from a right-angled shape to a gently inclined portion), at the position of the semiconductor substrate 10 corresponding to the opening end, The depth range is likely to deviate from the design depth. If the storage region 16 is provided in the IGBT region 80 but the storage region 16 is not provided in the FWD region 70, the storage region 16 becomes discontinuous from the IGBT region 80 to the FWD region 70.
  • the accumulation region 16 deviated from the design depth is formed.
  • the FWD is added to the IGBT region 80.
  • the storage area 16 is also provided in the area 70.
  • the N-type accumulation region 16 has a function of accumulating holes between the accumulation region 16 and the drift region in the depth direction. Therefore, the accumulation region 16 may prevent holes from being extracted from the contact portion 54. Therefore, in this example, the end portion 19 in the Y-axis positive direction of the accumulation region 16 is provided inside the end portion 55 in the Y-axis positive direction of the contact portion 54. Therefore, in this example, carriers (holes in this example) are easily extracted to the emitter electrode 50 through the contact portion 54. As a result, in the FWD region 70, the amount of carriers during the reverse recovery operation can be reduced, so that the reverse recovery tolerance can be increased as compared with the case where the first contact portion 54-1 and the storage region 16 are completely overlapped. Can be improved.
  • the FWD region 70 includes a plurality of first contact parts 54-1 which are provided apart from each other in the X-axis direction and extend in the Y-axis direction.
  • the first contact portion 54-1 provided in the FWD region 70 includes a first non-overlapping region 56-1 and a first overlapping region 58-1.
  • the first non-overlapping region 56-1 is a region where the first contact portion 54-1 and the accumulation region 16 in the Y-axis direction do not overlap in the depth direction.
  • the first overlapping region 58-1 is a region where the first contact portion 54-1 and the accumulation region 16 overlap in the depth direction in the Y-axis direction.
  • a P + type contact region 15 is provided immediately below the first non-overlapping region 56-1 in the first contact portion 54-1. Therefore, holes are easily extracted to the emitter electrode 50 through the contact region 15 immediately below the first non-overlapping region 56-1.
  • the contact region 15 is not provided immediately below the first overlapping region 58-1, but the anode region 13 is provided.
  • the end 19 in the positive direction of the Y axis of the storage area 16 in this example is parallel to the X axis direction.
  • the end portion 19 in the Y-axis positive direction of the storage region 16 includes the end portion 55-1 of the contact portion 54-1, the end portion 55-2 of the contact portion 54-2, and the end portion of the cathode region 72 ( That is, it is located between the lower surface side boundary 82).
  • the length from the end portion 55 of the contact portion 54 to the end portion 19 in the positive Y-axis direction of the accumulation region 16 is, for example, not less than several ⁇ m and not more than 20 ⁇ m. Therefore, the influence on characteristics such as the gate threshold voltage of the IGBT due to deviation from the design depth of the storage region 16 need not be taken into consideration.
  • the IGBT region 80 includes a plurality of second contact portions 54-2 that are provided apart from each other in the X-axis direction and extend in the Y-axis direction.
  • the second contact portion 54-2 provided in the IGBT region 80 has a second non-overlapping region 56-2 and a second overlapping region 58-2.
  • the second non-overlapping region 56-2 is a region where the second contact portion 54-2 and the storage region 16 in the Y-axis direction do not overlap in the depth direction.
  • the second overlapping region 58-2 is a region where the second contact portion 54-2 and the accumulation region 16 overlap in the depth direction in the Y-axis direction.
  • the first non-overlapping region 56-1 and the second non-overlapping region 56-2 are only provided in the vicinity of the end portions 55-1 and 55-2 of the contact portion 54 in the Y-axis direction.
  • the majority of the contact portion 54 is a first overlapping region 58-1 and a second overlapping region 58-2. Therefore, a sufficient IE effect can be obtained in the IGBT region 80 while improving the reverse recovery tolerance in the FWD region 70.
  • the gate metal layer 48 may be electrically connected to the gate runner layer 46 through the contact portion 47.
  • the gate runner layer 46 may be a conductive layer made of polysilicon containing a dopant.
  • the gate runner layer 46 may be formed in a process of forming a gate conductive portion, a dummy trench conductive portion, a connection layer 27, and a connection layer 28, each made of the same polysilicon.
  • the emitter electrode 50 may be provided on the entire active region 100.
  • the emitter electrode 50 of this example is provided apart from the gate metal layer 48 in the Y-axis direction so as not to be short-circuited with the gate metal layer 48.
  • the emitter electrode 50 may be electrically connected to one or more of the emitter region 12, the anode region 13, the base region 14, and the contact region 15 of the mesa region 60 through the contact portion 54.
  • the emitter electrode 50 of this example is electrically connected to the anode region 13 and the contact region 15 of the FWD region 70 via the first contact portion 54-1, and is connected to the IGBT region via the second contact portion 54-2. Electrically connected to 80 emitter regions 12 and contact regions 15.
  • the emitter electrode 50 may be electrically connected to the dummy trench conductive part of the dummy trench part 30 through the contact parts 52 and 53.
  • the connection layer 27 and the connection layer 28 in this example are connected to the dummy trench conductive part of the dummy trench part 30.
  • an insulating film such as an oxide film is provided between the connection layer 27 and the connection layer 28 and the upper surface of the semiconductor substrate 10. .
  • Each of the emitter electrode 50 and the gate metal layer 48 may be a metal layer.
  • each metal layer is formed of aluminum (Al), aluminum (Al) -silicon (Si) alloy, or aluminum (Al) -silicon (Si) -copper (Cu) alloy.
  • Each metal layer may have a barrier metal formed of titanium (Ti), a titanium compound, or the like below a region formed of aluminum or the like. Further, a plug formed of tungsten (W) or the like may be provided in the contact portions 47, 52, and 54.
  • the range in which the N + type cathode region 72 exposed on the lower surface side of the semiconductor substrate 10 is provided is indicated by a broken line.
  • the end of the cathode region 72 in the positive Y-axis direction is provided inside the end 19 of the storage region 16 in the positive Y-axis direction.
  • the length from the end part of the gate runner part 110 in the negative Y-axis direction to the end part of the cathode region 72 is, for example, 50 ⁇ m.
  • the length from the end portion 55 of the contact portion 54 to the end portion of the cathode region 72 is, for example, 20 ⁇ m or more and 40 ⁇ m or less.
  • the end of the cathode region 72 in the negative X-axis direction coincides with the upper surface side boundary 74.
  • the lower surface side boundary 82 and the upper surface side boundary 74 that overlap in the Y axis direction are shown shifted in the X axis direction.
  • the end portion 19 of the storage region 16 is preferably provided at a position closer to the end portion of the cathode region 72 in the positive Y-axis direction than the end portion 55 of the contact portion 54.
  • the end in the positive Y-axis direction of the cathode region 72 is located closer to the annular gate runner part 112 than the extended gate runner part 114 in the Y-axis direction, and extends on the lower surface side in parallel with the X-axis direction. 82 may be meant.
  • the P + type collector region may be provided in the entire region other than the region where the cathode region 72 is exposed on the lower surface side of the semiconductor substrate 10. Therefore, the range of the collector region is omitted in FIG.
  • the collector region in this example is provided in the entire IGBT region 80.
  • FIG. 3 is a diagram showing an AA cross section in FIG.
  • the AA cross section is parallel to the XZ plane and passes through the upper surface 62 and the lower surface 64 of the semiconductor substrate 10.
  • the AA cross section is a cross section in the Y-axis positive direction rather than the end of the cathode region 72 in the Y-axis positive direction, and passes through the emitter region 12, the accumulation region 16, the cathode region 72, and the like.
  • the semiconductor substrate 10, the insulating film 36 and the interlayer insulating film 38, the emitter electrode 50, and the collector electrode 24 are shown.
  • the insulating film 36 and the interlayer insulating film 38 of this example are oxide films provided by being stacked on the upper part of the trench portion.
  • the insulating film 36 may be a silicon dioxide (SiO 2 ) film.
  • the insulating film 36 may be formed in the same process as the dummy trench insulating film 32 and the gate insulating film 42 in each trench portion.
  • the interlayer insulating film 38 may be formed of one or more materials among BPSG (Boro-Phospho Silicate Glass), PSG (Phosphorus Silicate Glass), and BSG (Borosisilicate Glass).
  • the emitter electrode 50 of this example is provided across the IGBT region 80 and the FWD region 70 in contact with the upper surface 62 and the interlayer insulating film 38.
  • the collector electrode 24 is provided on the entire lower surface 64 in contact with the lower surface 64.
  • the material of the collector electrode 24 may be the same as that of the emitter electrode 50.
  • the semiconductor substrate 10 in the AA cross section has a dummy trench portion 30 and a gate trench portion 40.
  • the semiconductor substrate 10 in the AA cross section includes an N + type emitter region 12, a P ⁇ type anode region 13, a P ⁇ type base region 14, a P + type contact region 15, and an N type storage.
  • the region 16 includes an N ⁇ type drift region 18, an N type buffer region 20, a P + type collector region 22, and an N + type cathode region 72.
  • the N-type, N + -type, and N--type regions may be formed by ion implantation of phosphorus (P) or arsenic (As) as a dopant.
  • the buffer region 20 may be formed by ion implantation of either or both of proton (H + ) and selenium (Se) as a dopant.
  • the P-type, P + -type, and P--type regions may be formed by ion implantation of boron (B) as a dopant.
  • the mesa region 60-2 of the IGBT region 80 includes the emitter region 12, the base region 14, and the storage region 16.
  • the boundary mesa region 61 has a base region 14, a contact region 15, and a storage region 16.
  • the contact region 15 is provided from the upper surface 62 to a position deeper than the emitter region 12.
  • the base region 14 is in contact with the bottoms of the emitter region 12 and the contact region 15.
  • the accumulation region 16 is located between the base region 14 and the drift region 18 in the depth direction of the semiconductor substrate 10.
  • the mesa region 60-1 of the FWD region 70 includes the anode region 13 and the accumulation region 16.
  • the accumulation region 16 is in contact with the bottom of the anode region 13.
  • the accumulation region 16 is located between the anode region 13 and the drift region 18 in the depth direction of the semiconductor substrate 10.
  • the gate trench portion 40 of this example includes a gate insulating film 42, a gate conductive portion 43, and a gate trench 44.
  • the gate trench 44 may be formed by selectively etching the upper surface 62.
  • the gate insulating film 42 may be provided in contact with the inner wall of the gate trench 44.
  • the gate insulating film 42 may be formed by oxidizing or nitriding the semiconductor on the inner wall of the gate trench 44.
  • the gate conductive portion 43 of this example is provided in contact with the gate insulating film 42 and inside the gate insulating film 42.
  • the gate insulating film 42 may insulate the gate conductive portion 43 from the semiconductor substrate 10.
  • the gate conductive portion 43 may be formed of a conductive material such as polysilicon.
  • the dummy trench portion 30 of this example includes a dummy trench insulating film 32, a dummy trench conductive portion 33, and a dummy trench 34.
  • the dummy trench insulating film 32 and the dummy trench conductive portion 33 may be formed in the same manner as the gate insulating film 42 and the gate conductive portion 43.
  • Each trench portion may penetrate the anode region 13, the base region 14, and the accumulation region 16 and reach the drift region 18.
  • the drift region 18 in this example is located below the anode region 13 and the base region 14 in the semiconductor substrate 10.
  • the drift region 18 and the buffer region 20 are provided over the FWD region 70 and the IGBT region 80.
  • the drift region 18 and the buffer region 20 in the FWD region 70 may be regarded as the cathode of the FWD together with the cathode region 72.
  • the buffer region 20 may be located below the drift region 18.
  • the buffer region 20 of this example is located between the drift region 18 and the collector region 22 and the cathode region 72 in the Z-axis direction.
  • the buffer region 20 may have a function of preventing a depletion layer extending from the bottom of the base region 14 to the lower surface 64 of the IGBT region 80 from reaching the collector region 22 when the semiconductor device 200 is turned off.
  • the buffer region 20 may be a field stop region where the N-type doping concentration distribution has a discrete peak value in the depth direction.
  • the collector region 22 and the cathode region 72 may be provided in a predetermined depth range from the lower surface 64 of the semiconductor substrate 10.
  • the position of the end portion in the X-axis negative direction of the lower surface side boundary 82 that is the boundary between the collector region 22 and the cathode region 72 coincides with the position of the upper surface side boundary 74 in the X axis direction.
  • the collector region 22 is provided on the lower surface 64 side of the IGBT region 80 in the cross section (AA cross section) parallel to the XZ plane inside the end portion of the cathode region 72 in the positive Y-axis direction.
  • a cathode region 72 is provided on the lower surface 64 side of the region 70.
  • the collector region 22 and the cathode region 72 are provided below the buffer region 20. However, even if the end of the cathode region 72 in the negative X-axis direction (the lower surface side boundary 82) does not coincide with the upper surface side boundary 74, the end of the cathode region 72 in the negative X-axis direction retreats toward the FWD region 70. Good.
  • the collector region 22 is provided on the lower surface 64 side of the IGBT region 80 and the lower surface 64 of the FWD region 70 in a cross section parallel to the XZ plane inside the end portion of the cathode region 72 in the positive Y-axis direction. On the side, a collector region 22 and a cathode region 72 are provided.
  • the end of the cathode region 72 in the negative X-axis direction may extend to the IGBT region 80 side.
  • the collector region 22 and the cathode region 72 are provided on the lower surface 64 side of the IGBT region 80 in the cross section parallel to the XZ plane inside the positive end of the cathode region 72 in the Y-axis direction.
  • a cathode region 72 is provided on the lower surface 64 side of the 70.
  • the IGBT region 80 of this example has an upper surface side boundary 74 in the positive direction of the X axis.
  • the IGBT region 80 may have an upper surface side boundary 74 with the FWD region 70 even in the X-axis negative direction.
  • the range of the IGBT region 80 in the X-axis direction is a range between two adjacent upper surface side boundaries 74.
  • the FWD region 70 may be regarded as a region other than the IGBT region 80 in the active region 100.
  • FIG. 4 is a view showing a BB cross section in FIG.
  • the BB cross section is parallel to the XZ plane and passes between the end portion 55 of the contact portion 54 and the end portion 19 of the accumulation region 16 in the Y-axis direction.
  • the BB cross section passes through the contact region 15 in the FWD region 70 and the IGBT region 80.
  • the BB cross section is located in the Y axis positive direction from the end of the cathode region 72 in the Y axis positive direction. Therefore, the cathode region 72 and the lower surface side boundary 82 do not exist in the BB cross section.
  • FIG. 5 is a view showing a CC cross section in FIG.
  • the CC cross section is parallel to the YZ plane and passes through the FWD region 70 and the gate runner portion 110.
  • the CC cross section particularly passes through the first contact portion 54-1 in the FWD region 70.
  • the well region 17 located below the gate runner part 110 may be in contact with the FWD region 70 in the Y-axis direction.
  • the end of the well region 17 in the Y-axis direction and the end opposite to the edge termination region 130 is the inner end 92.
  • the area inside the end 92 inside the well region 17 is defined as the FWD region 70.
  • a well region 17 is also provided below the extended gate runner portion 114.
  • a range sandwiched between the well region 17 below the annular gate runner portion 112 and the well region 17 below the extended gate runner portion 114 in the Y-axis direction may be regarded as the FWD region 70.
  • the inner end portion 92 of the well region 17, the end portion 55-1 of the first contact portion 54-1, the end portion 19 of the accumulation region 16, and the end portion of the cathode region 72 ( That is, each position with the lower surface side boundary 82) is projected on the upper surface 62 and indicated by a broken line.
  • the inner end portion 92 of the well region 17, the lower surface side boundary 82 corresponding to the end portion of the cathode region 72, the end portion 19 of the accumulation region 16, and the end portion 55 of the contact portion 54 are Opposite to each other in the Y-axis direction.
  • Holes can be accumulated in the well region 17. For example, holes injected from the collector region 22 of the IGBT region 80 to the drift region 18 during the operation of the IGBT are accumulated near the bottom 96 of the well region 17 adjacent to the IGBT region 80.
  • a semiconductor module equipped with an RC-IGBT usually has an upper RC-IGBT that constitutes an upper arm connected in series and a lower RC-IGBT that constitutes a lower arm.
  • the upper RC-IGBT and the lower RC-IGBT are turned on and off, respectively, depending on the operation mode. Due to this operation, the RC-IGBT FWD area 70 is in a reverse recovery state after a forward state for a predetermined time. In the reverse recovery state, a current flows in the direction opposite to the forward current. That is, in the reverse recovery state, the holes almost flow in the direction from the lower surface 64 toward the upper surface 62.
  • holes accumulated near the bottom 96 of the well region 17 can be extracted from the first contact portion 54-1 when the FWD region 70 is in the reverse recovery state. At this time, holes tend to concentrate near the end portion 55-1 of the first contact portion 54-1. At the time of reverse recovery, the hole current concentrates in the vicinity of the end portion 55-1, so that the breakdown tolerance of the FWD region 70 may be reduced.
  • the lower surface side boundary 82 is retracted from the inner end portion 92 of the well region 17.
  • the amount of holes accumulated near the bottom 96 of the well region 17 can be reduced, thereby reducing the concentration of hole current in the vicinity of the end portion 55-1 of the first contact portion 54-1. be able to.
  • the shortest distance when the end 92 inside the well region 17 and the lower surface side boundary 82 are projected onto the upper surface 62 is defined as the first distance L1.
  • the first distance L1 may be larger than the depth Dp from the upper surface 62 of the semiconductor substrate 10 to the bottom 96 of the well region 17 and smaller than the thickness Tsub from the upper surface 62 to the lower surface 64 of the semiconductor substrate 10.
  • the depth Dp may be larger than the depth Dt from the upper surface 62 to the bottom of the trench portion, and may be smaller than half of the thickness Tsub of the semiconductor substrate 10.
  • the depth Dp is not less than 10 ⁇ m and not more than 20 ⁇ m.
  • the thickness Tsub of the semiconductor substrate 10 may be determined according to the withstand voltage, but is, for example, 100 ⁇ m or more and 200 ⁇ m or less.
  • the thickness Tsub in this example is 110 ⁇ m.
  • the end portion 55-1 of the first contact portion 54-1 Since holes tend to concentrate in the vicinity of the end portion 55-1 of the first contact portion 54-1, the end portion 55-1 of the first contact portion 54-1 is separated from the end portion 92 inside the well region 17. It may be separated. Thus, the holes move in the anode region 13 having a higher resistance than the well region 17 from the bottom 96 to the vicinity of the end 55-1. Therefore, the concentration of holes in the vicinity of the end portion 55-1 can be reduced as compared with the case where the end portion 55 and the inner end portion 92 coincide with each other in the Y-axis direction. Thereby, the fall of the destruction tolerance in the FWD area
  • the end portion 55-1 of the first contact portion 54-1 is located between the inner end portion 92 of the well region 17 and the lower surface side boundary 82. More specifically, the end portion 55-1 is located between the inner end portion 92 and the end portion 19 of the accumulation region 16.
  • the second distance L2 which is the shortest distance when the end portion 92 inside the well region 17 and the end portion 55-1 of the first contact portion 54-1 are projected onto the upper surface 62, is smaller than the first distance L1. It's okay.
  • the first distance L1 may be larger than the second distance L2.
  • the second distance L2 may be not less than 40% and not more than 60% of the first distance L1, and may be smaller than half of the first distance L1.
  • the second distance L2 is several ⁇ m to 10 ⁇ m
  • the first distance L1 is several tens ⁇ m to 50 ⁇ m.
  • the fourth distance L4 which is the shortest distance when the end portion 55-1 of the first contact portion 54-1 and the end portion 19 of the storage region 16 are projected onto the upper surface 62, is the end distance 19 between the end portion 19 of the storage region 16 and the cathode. It may be larger than the fifth distance L5 which is the shortest distance when the end of the region 72 is projected onto the upper surface 62. This prevents the accumulation region 16 from preventing holes from being extracted from the contact portion 54, and facilitates the extraction of carriers (holes in this example) to the emitter electrode 50 through the contact portion 54. It becomes possible.
  • the second distance L2 may be greater than the fifth distance L5. As a result, the concentration of hole current in the vicinity of the end portion 55-1 of the first contact portion 54-1 can be reduced, and the breakdown tolerance can be ensured.
  • FIG. 6A is a diagram showing a DD cross section in FIG.
  • the DD cross section is parallel to the YZ plane and passes through the IGBT region 80 and the gate runner portion 110.
  • the DD cross-section particularly passes through the second contact portion 54-2 in the IGBT region 80.
  • Well region 17 may be in contact with IGBT region 80 in the Y-axis direction.
  • an area inside the end portion 92 inside the well region 17 is defined as an IGBT region 80.
  • a range sandwiched between the well region 17 below the annular gate runner portion 112 and the well region 17 below the extended gate runner portion 114 may be regarded as the IGBT region 80.
  • the DD cross-section passes through the short part of the gate trench part 40 and the short part of the dummy trench part 30. Therefore, the gate trench portion 40 and the dummy trench portion 30 exist in the well region 17 in the DD cross section.
  • the positions of the inner end portion 92 of the well region 17 and the end portion 55-2 of the second contact portion 54-2 are projected on the upper surface 62 and indicated by broken lines.
  • the shortest distance when the inner end portion 92 and the end portion 55-2 are projected onto the upper surface 62 is defined as a third distance L3.
  • the third distance L3 is equal to the second distance L2, but in other examples, the third distance L3 may be smaller than the second distance L2.
  • the cathode region 72 is not provided on the lower surface 64 side of the IGBT region 80, and the collector region 22 is provided.
  • FIG. 6B is a diagram showing another example of the DD cross section.
  • the accumulation region 16 is provided to the well region 17 side rather than the outermost emitter region 12 (that is, the emitter region 12 closest to the well region 17) in the Y-axis direction.
  • Other configurations are the same as those described in FIG. 6A. Thereby, the accumulation region 16 can be provided below all the emitter regions 12.
  • FIG. 7 is a diagram showing an EE cross section in FIG.
  • the EE cross section is parallel to the YZ plane and passes through the annular gate runner portion 112, the FWD region 70, and the extended gate runner portion 114.
  • the EE cross section passes through the first contact part 54-1 of the FWD region 70 in the active region 100-1.
  • the well region 17 provided below the extended gate runner portion 114 is designated 17-A, and provided below the annular gate runner portion 112.
  • Well region 17 is designated 17-E.
  • the first distance L1 and the second distance L2 defined by the well region 17-A are L1-A and L2-A, respectively.
  • the shortest distance when the end portion 98 of the well region 17-A in the positive Y-axis direction and the lower surface side boundary 82 are projected onto the upper surface 62 is L1-A
  • the end portion 98 of the well region 17-A and the contact portion The shortest distance when the end portion 55-1 of the negative direction of the Y-axis 54-1 is projected on the upper surface 62 is L2-A.
  • the first distance L1 and the second distance L2 defined by the well region 17-E be L1-E and L2-E, respectively.
  • the first distance L1-A in the vicinity of the extended gate runner portion 114 may be longer than the first distance L1-E in the vicinity of the annular gate runner portion 112 (L1-E ⁇ L1-A).
  • the second distance L2-A may be longer than the second distance L2-E (L2-E ⁇ L2-A).
  • FIG. 8 is an enlarged top view of the vicinity of the annular gate runner portion 112 in the first modification.
  • the third distance L3-E is different from the second distance L2-E.
  • the characteristics of the semiconductor device can be adjusted by making the third distance L3-E different from the second distance L2-E.
  • the third distance L3-E is smaller than the second distance L2-E. That is, in this example, the end portion 55-1 of the first contact portion 54-1 in the FWD region 70 is compared with the end portion 55-2 of the second contact portion 54-2 in the IGBT region 80. Separate from 17-E.
  • the third distance L3-E may be less than half of the second distance L2-E and may be less than 1 ⁇ 4. The smaller the third distance L3-E, the wider the effective area that operates as the IGBT.
  • the lower boundary 82 in this example is located closer to the FWD region 70 than the upper boundary 74 in the X-axis direction. That is, in this example, the end portion of the cathode region 72 in the negative X-axis direction is separated from the upper surface side boundary 74 by the first retraction length Lx.
  • the first retraction length Lx is a length from the lower surface side boundary 82 to the upper surface side boundary 74 in the X-axis direction.
  • the first receding length Lx may be equal to or greater than the first distance L1-E from the inner end 92 of the well region 17 to the end of the cathode region 72 closest to the outer peripheral end 66 in the Y-axis direction.
  • the first receding length Lx of the cathode region 72 may be several tens ⁇ m to several hundreds ⁇ m. In this example, the first receding length Lx is 100 ⁇ m.
  • the breakdown resistance can be further improved by retracting the cathode region 72 not only in the Y-axis direction but also in the X-axis direction.
  • the first receding length Lx is a length from the lower surface side boundary 82 to the upper surface side boundary 74 in the X-axis direction, and the upper surface side boundary 74 is located in the active region 100.
  • the first distance L1-E is the length from the inner end 92 of the well region 17 to the end of the cathode region 72 closest to the outer peripheral end 66 in the Y-axis direction.
  • the end 92 is located at the end of the active region 100. Due to the difference in position in the active region 100, the first retraction length Lx is set to be equal to or greater than the first distance L1-E as the retraction amount.
  • the semiconductor substrate 10 of this example has a lifetime killer region 26 in the FWD region 70.
  • the lifetime killer region 26 may be a point defect (hole, double hole, dangling bond, etc.) region formed in the semiconductor substrate 10 by introducing an impurity such as helium (He).
  • the lifetime killer region 26 may include impurities introduced to form point defects.
  • the lifetime killer region 26 may have carrier recombination centers formed in the semiconductor substrate 10 by at least one of point defects and impurities. Thereby, compared with the case where the lifetime killer area
  • the lifetime killer region 26 of this example is provided in a wider range than the cathode region 72 in a top view.
  • the end of the lifetime killer region 26 in the negative X-axis direction coincides with the upper surface side boundary 74.
  • the end of the lifetime killer area 26 in the positive Y-axis direction is provided below the gate runner part 110 beyond the end of the FWD area 70 in the positive Y-axis direction.
  • the lifetime killer region 26 may be provided below the annular gate runner portion 112 so as to correspond to a part of the length of the annular gate runner portion 112 in the Y-axis direction.
  • the end in the Y-axis positive direction of the lifetime killer region 26 is located between the inner end 92 and the outer end 94 in the well region 17-E.
  • the lifetime killer region 26 of the present example can effectively reduce the concentration of holes accumulated in the well region 17-E in the first contact portion 54-1. Therefore, the breakdown tolerance in the FWD region 70 can be improved.
  • the lifetime killer area 26 may be provided in the IGBT area 80 in addition to the FWD area 70.
  • the lifetime killer region 26 extends from the FWD region 70 in the X-axis direction, and may be provided up to the boundary mesa region 61 of the IGBT region 80 and the mesa region 60-2 on the boundary mesa region 61 side.
  • FIG. 9 is an enlarged top view of the vicinity of the extended gate runner portion 114 in the first modification.
  • the third distance L3-A is smaller than the second distance L2-A.
  • the third distance L3-A may be less than half of the second distance L2-A and may be less than 1 ⁇ 4.
  • the lifetime killer region 26 may be provided over the entire length of the extended gate runner portion 114 in the Y-axis direction. .
  • the leakage current at the outer peripheral edge 66 of the semiconductor substrate 10 is reliably prevented, and the first well region 17-A in the boundary region between the active regions 100-1 and 100-2 is first The amount of carriers toward the contact portion 54-1 can be reduced.
  • the end 19 in the negative Y-axis direction of the accumulation region 16 may be separated from the end 55 of the contact part 54 by a length of several ⁇ m or more and 20 ⁇ m or less.
  • the end portion 19 in the Y-axis negative direction of the accumulation region 16 is located below the contact region 15 that is secondly located at the end portion in the Y-axis negative direction in the active region 100-1.
  • the lifetime killer region 26 may be provided so as to overlap the entire P + type well region 17 provided below the gate pad portion 120. However, as described above, it is desirable that the lifetime killer region 26 does not reach the outer peripheral end 66 in order to prevent leakage current. By making the well region 17 and the lifetime killer region 26 overlap in the depth direction as much as possible, the breakdown tolerance of the FWD region 70 can be improved.
  • FIG. 10 is a diagram illustrating the concentration distribution of the recombination centers in the depth direction of the lifetime killer region 26.
  • a part of the AA cross section in the FWD region 70 is shown in the center of FIG. 10, and a part of the CC cross section in the FWD region 70 is shown on the left side of FIG.
  • the right side of FIG. 10 shows the concentration distribution (cm ⁇ 3 ) of the recombination center in the depth direction.
  • the concentration of recombination centers may be read as the concentration of lifetime killer.
  • the lifetime killer region 26 may have a lifetime killer concentration distribution peak at a position closer to the lower surface 64 of the semiconductor substrate 10 than the bottom 96 of the well region 17.
  • a lifetime killer concentration distribution having a peak depth position Dpk of 18 ⁇ m from the upper surface 62 and a half width of 10 ⁇ m can be formed.
  • the depth Dp from the upper surface 62 to the bottom 96 of the well region 17 is, for example, 10 ⁇ m.
  • FIG. 11 is a diagram showing the breakdown tolerance at the time of reverse recovery of the FWD region 70 with respect to the first distance L1.
  • the vertical axis represents the breakdown tolerance (kW) during reverse recovery.
  • the horizontal axis is the first distance L1 ( ⁇ m) from the inner end portion 92 of the well region 17 to the lower surface side boundary 82 in the FWD region 70 (see the CC section in FIG. 5). As shown in FIG. 11, it was confirmed that the greater the first distance L1, the higher the breakdown tolerance during reverse recovery.
  • the current peak that flows during reverse recovery (reverse-recovery peak current: in the following, Irp) in the FWD region 70 is changed for a predetermined first distance L1, and the semiconductor device 200 is destroyed.
  • Irp reverse-recovery peak current: in the following, Irp
  • Table 1 “ ⁇ ” means that the semiconductor device 200 was not destroyed (non-destructive), and “x” means that the semiconductor device 200 was destroyed.
  • FIGS. 12A to 12D are views showing the positional relationship between the contact portion 54 and the storage region 16.
  • FIG. 12 shows the FWD region 70 and the IGBT region 80 in the vicinity of the annular gate runner portion 112.
  • the positional relationship between the first contact portion 54-1 of the FWD region 70 and the end portion 19 of the storage region 16 is shown on the right side, and the IGBT region 80 is shown on the right side.
  • the positional relationship between the second contact portion 54-2 and the end portion 19 of the storage region 16 is shown.
  • FIG. 12 corresponds to the first embodiment shown in FIG.
  • FIGS. 12B to 12D the position of the end 19 of the accumulation region 16 is different between the FWD region 70 and the IGBT region 80. Therefore, in the Y-axis direction, the length of the first non-overlapping region 56-1 is different from the length of the second non-overlapping region 56-2.
  • the length in the Y-axis direction of the non-overlapping region 56 corresponds to the difference between the first distance L1 and the second distance L2 shown in the CC cross section.
  • the length of the first non-overlapping region 56-1 in the Y-axis direction is smaller than the length of the second non-overlapping region 56-2 in the Y-axis direction.
  • the length of the first non-overlapping region 56-1 in the Y-axis direction is the length of the second non-overlapping region 56-2 in the Y-axis direction. Bigger than that.
  • the range in which the FWD region 70 can secure the breakdown tolerance at the time of reverse recovery and can obtain the IE effect in the IGBT region 80 is compared with the examples of (a) and (b). Can be further expanded.
  • the IGBT region 80 is an IGBT region 80-C corresponding to the inner transistor region.
  • the end portion 19 in the Y-axis direction of the accumulation region 16 in the IGBT region 80-C is closer to the outer peripheral end portion 66 of the semiconductor substrate 10 than the end portion 55-2 in the Y-axis direction of the second contact portion 54-2. It's okay.
  • the accumulation region 16 is provided in a wider range than the second contact portion 54-2. Thereby, compared with the example of FIG.12 (c), the still higher IE effect in the IGBT area
  • region 80 can be acquired.
  • FIG. 13 is an enlarged view of region B in FIG.
  • the region B is a region including the vicinity of the end portions in the positive direction of the X axis and the Y axis in the IGBT region 80-R.
  • four second contact portions 54-2 close to the outer peripheral end portion 66 of the semiconductor substrate 10 in the IGBT region 80-R are shown as 54-2a to 54-2d.
  • the second contact portion 54-2a is closest to the outer peripheral end portion 66 of the semiconductor substrate 10 in the X-axis direction.
  • the IGBT region 80-R is an example of an outer transistor region at the end of the active region 100 in the X-axis direction.
  • Each of the second contact portions 54-2 in the IGBT region 80-R also has a second non-overlapping region 56-2, similarly to the IGBT region 80-C.
  • the length of the second non-overlapping region 56-2 in the Y-axis direction is longer as it is closer to the outer peripheral end portion 66 of the semiconductor substrate 10 in the X-axis direction.
  • the accumulation region 16 in the IGBT region 80-R includes a corner having a curvature.
  • the curved portion of the end portion 19 of the accumulation region 16 crosses the second contact portions 54-2b, 54-2c, and 54-2d. Therefore, the length in the Y-axis direction of the second non-overlapping region 56-2 is equal to the second non-overlapping region 56 at the end portion 55-2 in the X-axis positive direction in each of the second contact portions 54-2.
  • the length in the Y-axis direction may be ⁇ 2.
  • the length in the Y-axis direction of the second non-overlapping region 56-2 at the end portion 55-2 in the X-axis negative direction in each of the second contact portions 54-2 may be used.
  • the length in the Y-axis direction of the second non-overlapping region 56-2 at the center in the X-axis direction in each of the contact portions 54-2 may be used.
  • the length of the second non-overlapping region 56-2 in the Y-axis direction is equal to the second non-overlapping regions 56-2a, 56-2b, 56-2c and It is large in order of 56-2d.
  • the entire second contact portion 54-2a does not overlap the accumulation region 16.
  • holes accumulated in the well region 17 located below the annular gate runner portion 112 can be extracted from the second contact portion 54-2a. Therefore, compared to the case where the second contact portion 54-2a and the storage region 16 are overlapped in the Z-axis direction, the amount of holes that go from the IGBT region 80 to the FWD region 70 can be reduced.
  • FIG. 14 is an enlarged view of region A in FIG. 1 in the second embodiment.
  • at least one mesa region 60-1 is a P + type at a position where the end portion 55-1 in the Y-axis direction of the first contact portion 54-1 and the mesa region 60-1 overlap.
  • the contact region 15 is not provided. This is different from the first embodiment. Other points may be the same as those in the first embodiment and its modifications. In particular, in this example, all the mesa regions 60-1 in the FWD region 70 do not have the P + type contact region 15 below the end portion 55-1.
  • the contact region 15 having a predetermined length in the Y-axis direction is provided in the mesa region 60-1 as in the first embodiment, carrier concentration at the end portion 55-1 of the contact portion 54-1 is prevented to some extent. Can do.
  • the anode-side carriers are locally increased, so that Irp can be increased. Therefore, in this example, the contact region 15 in the mesa region 60-1 is not provided in at least one mesa region 60-1. Thereby, Irp can be suppressed compared to the first embodiment.
  • the IGBT region 80 has a parasitic thyristor structure (NPNP structure).
  • the NPNP structure of this example includes an N + type emitter region 12, a P ⁇ type base region 14 and a P + type contact region 15, an N type accumulation region 16, and an N ⁇ type drift region. 18 and an N type buffer region 20 and a P + type collector region 22.
  • the P + type contact region 15 is the P ⁇ type base region 14, there is a problem that latch-up is likely to occur.
  • the contact region 15 located in the vicinity of the end of the mesa region 60-2 in the positive direction of the Y-axis is intentionally left. That is, in the IGBT region 80 of this example, at least one mesa region 60-2 is located at a position where the end portion 55-2 of the second contact portion 54-2 in the Y-axis direction and at least one mesa region 60-2 overlap. -2 has a contact region 15; In particular, in this example, all the mesa regions 60-2 in the IGBT region 80 have the P + type contact region 15 below the end 55-2. Thereby, the occurrence of latch-up in the IGBT region can be suppressed.
  • FIG. 15 is a simulation result showing temporal changes in the anode-cathode voltage (V AK ) and current (I F ) in the FWD region 70.
  • the vertical axis represents the anode-cathode voltage (V AK ) and current (I F ).
  • the horizontal axis indicates time.
  • a plurality of FWD regions 70 in one RC-IGBT will be collectively referred to as FWD as one functional element, and similarly, a plurality of IGBT regions 80 will be collectively referred to as IGBT as one functional element.
  • the emitter electrode 50 of the IGBT is common with the anode electrode of the FWD, and the collector electrode 24 of the IGBT is common with the cathode electrode of the FWD.
  • FIG. 16 is an enlarged view of region A in FIG. 1 in the third embodiment.
  • the storage region 16 and the cathode region 72 shown in FIG. 2 are omitted in FIG. 16 in consideration of the visibility of the drawing, but the storage region 16 and the cathode region described in the above-described embodiments and modifications are omitted. 72 may be applied as appropriate.
  • the boundary mesa region 61 of the IGBT region 80 does not have the contact region 15 but has the base region 14. That is, the X-axis and Y-axis directions of the FWD region 70 are surrounded by the P ⁇ type base region 14. With this configuration, the amount of holes that move from the IGBT region 80 to the FWD region 70 can be further reduced as compared to the second embodiment. Therefore, compared to the second embodiment, the breakdown tolerance at the time of reverse recovery of the FWD region 70 can be further improved.
  • the mesa region 60-1 of the FWD region 70 adjacent to the IGBT region 80 may have the contact region 15 at a position where the end portion 55-1 of the contact portion 54-1 and the mesa region 60-1 overlap.
  • the three mesa regions 60-1 on the IGBT region 80 side in the FWD region 70 have the contact region 15. Therefore, since holes can be extracted to the emitter electrode 50 by the three mesa regions 60-1 in the vicinity of the upper surface side boundary 74, the FWD region can be compared with the case where no contact region 15 is provided in the mesa region 60-1. The amount of holes during reverse recovery at 70 can be reduced.
  • At least one mesa region 60-1 that is not adjacent to the IGBT region 80 has the contact region 15 at a position where the end portion 55-1 in the Y-axis direction of the contact portion 54-1 and the mesa region 60-1 overlap. You don't have to.
  • the contact region 15 is not provided in the mesa region 60-1 other than the three mesa regions 60-1 on the IGBT region 80 side. Accordingly, in the FWD region 70, the holes are extracted by the plurality of mesa regions 60-1 on the IGBT region 80 side, and the mesa regions 60-1 other than the plurality of mesa regions 60-1 "on the IGBT region 80 side are used. Hole injection from the well region 17 to the FWD region 70 can be suppressed. Also in this example, the first embodiment and its modifications may be adopted as appropriate.
  • FIG. 17 is an enlarged view of region A in FIG. 1 in the fourth embodiment.
  • the dummy trench part 30 of the IGBT region 80 of this example has only a long part without having a short part. That is, in this example, the dummy trench portion 30 in the IGBT region 80 has a linear shape.
  • the dummy trench portions 30 and the gate trench portions 40 are alternately provided in the X-axis direction.
  • This example is different from the first to third embodiments mainly in the points described above. Further, for the sake of space, the storage region 16 and the cathode region 72 are omitted in FIG. However, it is needless to say that the technical ideas according to the first to third embodiments and the modified examples may be applied to this example.
  • FIG. 18 is an enlarged view of region A in FIG. 1 in the fifth embodiment.
  • the gate metal layer 48, the edge termination region 130, and the like are omitted.
  • the structure of the second contact portion 54-2 is different from those of the first to fourth embodiments.
  • the configuration other than the second contact portion 54-2 is the same as any one of the configurations described in the first to fourth embodiments.
  • At least a portion of the second contact portion 54-2 is provided to extend to a position overlapping the well region 17 in a top view.
  • all the first contact parts 54-1 do not extend to a position overlapping the well region 17 in a top view.
  • the well region 17, the end portions 55-1 in the Y-axis direction of the plurality of first contact portions 54-1 and the end portions 55 in the Y-axis direction of the plurality of second contact portions 54-2. -2 is virtually projected onto the upper surface of the semiconductor substrate 10 to show the positional relationship between them.
  • the end portions 55-1 of the plurality of first contact portions 54-1 are disposed at positions not overlapping the well region 17, and the end portions 55-2 of at least one second contact portion 54-2 are: It is arranged at a position overlapping the well region 17.
  • the effective region in the IGBT region 80 can be increased by extending the second contact portion 54-2 to a position overlapping the well region 17.
  • the second contact portion 54-2 may be disposed so as not to overlap the gate runner portion 110 (the gate runner layer 46 in FIG. 18).
  • All the second contact parts 54-2 provided in the IGBT region 80 may be provided so as to overlap the well region 17.
  • one or more second contact parts 54-2 arranged closest to the FWD region 70 among the plurality of second contact parts 54-2 are well-connected. It may be arranged so as not to overlap with the region 17.
  • the portion that does not overlap the well region 17 is referred to as a second contact portion 54-2a, and the portion that overlaps the well region 17 is referred to as a second contact portion 54-2b. Yes.
  • the second contact portion 54-2 in the vicinity of the FWD region 70 is a second contact portion 54-2a having a relatively large third distance L3 from the well region 17. Thereby, it is possible to suppress the concentration of holes at the end portion of the second contact portion 54-2a during the reverse recovery operation of the FWD region 70. For this reason, the destruction tolerance in the vicinity of the FWD region 70 can be improved.
  • FIG. 19 is an enlarged view of region A in FIG. 1 in the sixth embodiment.
  • the respective trench portions, the gate metal layer 48, the edge termination region 130, and the like are omitted.
  • the structure of the second contact portion 54-2a is different from that of the fifth embodiment.
  • the configuration other than the second contact portion 54-2a is the same as any of the configurations described in the fifth embodiment.
  • the third distance L3 between the second contact portion 54-2a and the well region 17 in the fifth embodiment is constant. Further, the third distance L3 changes in a step shape between the second contact portion 54-2a and the second contact portion 54-2b. In contrast, in the second contact portion 54-2a in the sixth embodiment, the third distance L3 from the well region 17 becomes smaller as the second contact portion 54-2a approaches the second contact portion 54-2b in the X-axis direction.
  • the third distance L3 between the second contact portion 54-2a and the well region 17 may change in two or more steps according to the distance from the second contact portion 54-2b.
  • Such a configuration can also suppress the concentration of holes at the end of the second contact portion 54-2a. For this reason, the destruction tolerance in the vicinity of the FWD region 70 can be improved.
  • the shortest distance in the X-axis direction between the second contact portion 54-2b disposed closest to the FWD region 70 and the end portion (upper surface side boundary 74) of the FWD region 70 Is the sixth distance L6.
  • the lifetime killer region 26 may be provided in the semiconductor substrate 10 in the FWD region 70 and the portion adjacent to the FWD region 70 in the IGBT region 80.
  • the shortest distance in the X-axis direction between the end portion (upper surface side boundary 74) of the FWD region 70 and the end portion 25 of the lifetime killer region 26 in the IGBT region 80 is defined as a seventh distance L7.
  • the sixth distance L6 may be the same as or smaller than the seventh distance L7.
  • the sixth distance L6 may be less than or equal to half of the seventh distance L7.
  • the sixth distance L6 is not less than half of the thickness of the semiconductor substrate 10 and may be not more than the thickness.
  • the sixth distance L6 may be 50 ⁇ m or more, and may be 80 ⁇ m or more.
  • the sixth distance L6 may be 150 ⁇ m or less and may be 100 ⁇ m or less.
  • the length L15 in the Y-axis direction of the contact region 15 disposed closest to the gate runner layer 46 in the Y-axis direction may be 10 ⁇ m or more, and may be 15 ⁇ m or more.
  • the length L15 of the contact region 15 may be larger than the length L16 of the other contact region 15 disposed on the center side of the IGBT region 80 than the contact region 15.
  • the resist mask used for forming the emitter region 12 varies in size, so that impurities may not be accurately implanted into some of the emitter regions 12. is there. If the impurity implantation varies, the threshold voltage of the transistor varies. As described above, by increasing the length of the contact region 15 arranged on the outermost side in the Y-axis direction, a sufficient distance between the emitter region 12 and the gate runner layer 46 can be secured, and each emitter region 12 can be accurately obtained. Impurities can be implanted.
  • the structure of the contact region 15 may be applied to any embodiment.
  • the second contact portion 54-2 is extended more than the first contact portion 54-1. Specifically, the second contact portion 54-2 is extended to a position overlapping the well region 17. As a result, the second contact portion 54-2 has the first contact portion 54-2 in order to increase the total emitter length of the total number of cells in the length of the portion where the emitter region 12 contacts the gate trench portion 40.
  • the emitter region 12 is preferably provided in a range extending beyond -1. Even in this case, the length L15 of the contact region 15 arranged closest to the gate runner layer 46 in the Y-axis direction is other contact arranged at the center side of the IGBT region 80 than the contact region 15. It may be larger than the length L16 of the region 15.
  • FIG. 20 is a diagram showing a positional relationship between each contact portion 54 and the end portion 19 of the storage region 16 in the fifth embodiment.
  • the position of the end portion 19 of the accumulation region 16 in the Y-axis direction changes according to the position of the end portion of each contact portion 54 in the Y-axis direction.
  • the end portion 19 of at least a part of the accumulation region 16 in the IGBT region 80 is located closer to the well region 17 than the end portion 19 of the accumulation region 16 in the FWD region 70.
  • the effective area provided with the accumulation area 16 can be increased.
  • the position of the end portion 19 in the Y-axis direction changes in a step shape between the second contact portion 54-2b and the second contact portion 54-2a.
  • the accumulation region 16 is provided at a position that does not overlap the well region 17.
  • FIG. 21 is a diagram showing a positional relationship between each contact portion 54 and the end portion 19 of the storage region 16 in the sixth embodiment.
  • the position of the end portion 19 of the accumulation region 16 in the Y-axis direction changes according to the position of the end portion of each contact portion 54 in the Y-axis direction.
  • the position of the end portion 19 in the Y-axis direction continuously changes in the region where the second contact portion 54-2a is provided. That is, in the region where the second contact portion 54-2a is provided, the distance between the end portion 19 and the well region 17 decreases as the distance from the second contact portion 54-2b increases.
  • region 16 in 5th Embodiment and 6th Embodiment may be the same as that of the example shown in FIG. That is, the distance between the end portion 19 of the accumulation region 16 and the well region 17 may be constant regardless of the position of the end portion of the contact portion 54.
  • the end portion 19 of the accumulation region 16 is disposed so as to overlap the contact region 15 disposed on the outermost side in the Y-axis direction. In each example, the end portion 19 of the accumulation region 16 may be disposed closer to the center of the active region 100 than the end portion of each contact portion 54 in the Y-axis direction.
  • FIG. 22 is an enlarged view of the tip 41 of the gate trench portion 40.
  • the two gate trench portions 40 provided linearly along the Y-axis direction are connected to each other by a tip 41.
  • the tip 41 is at least partially curved when viewed from above.
  • r be the radius of curvature of the tip 41.
  • the curvature radius r is preferably 1.15 ⁇ m or more.
  • the curvature radius r may be 2.0 ⁇ m or more.
  • P be the pitch of the gate trench portions 40 provided in a straight line along the Y-axis direction.
  • the pitch P of the gate trench portions 40 may be a distance between the X-axis positive side edges of the respective gate trench portions 40.
  • the curvature radius r may be half or more of the pitch P and may be 3/4 or more.
  • the gate insulating film 42 of the gate trench portion 40 may become thin.
  • the etching accuracy is deteriorated, and the trench width at the tip 41 may be reduced.
  • the film thickness of the gate insulating film 42 can be maintained, and the trench width can be maintained.
  • the dummy trench portion 30 is disposed between the two gate trench portions 40 connected by the tip 41. Thereby, the curvature of the tip 41 can be easily increased without increasing the width of the mesa region 60.
  • FIG. 23 is a diagram showing a shape example of the gate trench portion 40 and the dummy trench portion 30 in a top view.
  • two dummy trench portions 30 are provided between the two gate trench portions 40 connected at the tip 41.
  • the two dummy trench portions 30 are connected to each other by a curved tip 31. Even with such a configuration, the curvature of the tip 41 can be easily increased.
  • the gate trench portion 40 and the dummy trench portion 30 shown in FIGS. 22 and 23 may be applied to any embodiment.

Abstract

ゲートランナー部と、ゲートランナー部の下方に設けられた第1導電型のウェル領域とを有し、ダイオード領域は、半導体基板上において複数の第1のコンタクト部と、第1導電型のアノード領域と、半導体基板の下面から予め定められた深さ範囲に設けられた、第2導電型のカソード領域とを有し、ウェル領域は、第1方向においてダイオード領域に接し、第1方向において互いに対向するウェル領域の端部と複数の第1のコンタクト部の少なくとも1つの第1のコンタクト部の端部とカソード領域の端部とを半導体基板の上面に仮想的に投影した場合に、ウェル領域の端部とカソード領域の端部との最短距離である第1距離は、ウェル領域の端部と少なくとも1つの第1のコンタクト部の端部との最短距離である第2距離よりも大きい半導体装置を提供する。

Description

半導体装置
 本発明は、半導体装置に関する。
 1つの半導体基板にIGBT(Insulated Gate Bipolar Transistor)領域とFWD(Free Wheeling Diode)領域とを有する逆導通型IGBT(Reverse Conducting IGBT。以下、RC‐IGBTと記載する。)が知られている(例えば、特許文献1から8参照)。
[先行技術文献]
[特許文献]
 [特許文献1] 国際公開2017/155122号公報
 [特許文献2] 国際公開2016/098199号公報
 [特許文献3] 特開2017-135255号公報
 [特許文献4] 特開2017-103400号公報
 [特許文献5] 特開2016-197678号公報
 [特許文献6] 特開2011-243694号公報
 [特許文献7] 国際公開2017/141998号公報
 [特許文献8] 特開2017-28244号公報
解決しようとする課題
 RC‐IGBTにおいては、FWD領域における破壊耐量の低下を防ぐことが望ましい。
一般的開示
 本発明の第1の態様においては、1つの半導体基板にトランジスタ領域とダイオード領域とを有する半導体装置を提供する。半導体装置は、ゲートランナー部と、第1導電型のウェル領域とを有してよい。ゲートランナー部は、トランジスタ領域にゲート電位を供給してよい。ウェル領域は、ゲートランナー部の下方に設けられてよい。ダイオード領域は、複数の第1のコンタクト部と、第1導電型のアノード領域と、第2導電型のカソード領域とを有してよい。複数の第1のコンタクト部は、半導体基板上において、第1方向に各々延伸してよい。複数の第1のコンタクト部は、半導体基板上において、第2方向において互いに離間して設けられてよい。第2方向は、第1方向と直交してよい。アノード領域は、複数の第1のコンタクト部を介してエミッタ電極と電気的に接続してよい。エミッタ電極は、半導体基板の上方に設けられてよい。アノード領域は、ウェル領域における第1導電型のドーパント濃度よりも低いドーパント濃度を有してよい。カソード領域は、半導体基板の下面から予め定められた深さ範囲に設けられてよい。ウェル領域は、第1方向においてダイオード領域に接してよい。第1方向において互いに対向するウェル領域の端部と複数の第1のコンタクト部の少なくとも1つの第1のコンタクト部の端部とカソード領域の端部とを半導体基板の上面に仮想的に投影した場合に、ウェル領域の端部とカソード領域の端部との最短距離である第1距離は、ウェル領域の端部と少なくとも1つの第1のコンタクト部の端部との最短距離である第2距離よりも大きくてよい。
 半導体基板は、第2導電型のドリフト領域と、第2導電型の蓄積領域とを有してよい。ドリフト領域は、半導体基板中においてアノード領域よりも下方に位置してよい。蓄積領域は、少なくともダイオード領域に設けられてよい。蓄積領域は、半導体基板の深さ方向においてアノード領域とドリフト領域との間に位置してよい。蓄積領域の第1方向の端部は、少なくとも1つの第1のコンタクト部の端部とカソード領域の端部との間に位置してよい。
 第1距離は、半導体基板の上面からウェル領域の底部までの深さより大きく、且つ、半導体基板の上面から下面までの厚さよりも小さくてよい。第2距離は、第1距離の40%以上60%以下であってよい。第2距離は、第1距離の半分よりも小さくてよい。
 トランジスタ領域は、複数の第2のコンタクト部を有してよい。複数の第2のコンタクト部は、半導体基板上において、第1方向に各々延伸してよい。複数の第2のコンタクト部は、半導体基板上において、第2方向において互いに離間して設けられてよい。第2方向は、第1方向と直交してよい。第1方向において互いに対向するウェル領域の端部と複数の第2のコンタクト部の少なくとも1つの第2のコンタクト部の端部とを半導体基板の上面に仮想的に投影した場合に、ウェル領域の端部と少なくとも1つの第2のコンタクト部の端部との最短距離である第3距離は、第2距離とは異なっていてよい。
 半導体装置は、複数のトランジスタ領域を有してよい。ゲートランナー部は、延伸ゲートランナー部と、環状ゲートランナー部とを含んでよい。延伸ゲートランナー部は、複数のトランジスタ領域のうち、第1方向において互いに隣接する少なくとも2つのトランジスタ領域の間に設けられてよい。環状ゲートランナー部は、複数のトランジスタ領域を囲む様に設けられてよい。ウェル領域は、延伸ゲートランナー部の下方に位置してよい。ウェル領域は、第1距離および第2距離を規定するのに用いられてよい。
 延伸ゲートランナー部の下方に設けられたウェル領域を用いて規定される第1距離は、環状ゲートランナー部の下方に設けられた前記ウェル領域を用いて規定される第1距離よりも長くてよい。延伸ゲートランナー部の下方に設けられたウェル領域を用いて規定される第2距離は、環状ゲートランナー部の下方に設けられたウェル領域を用いて規定される第2距離よりも長くてよい。半導体基板は、ライフタイムキラー領域を有してよい。ライフタイムキラー領域は、少なくともゲートランナー部の下方に設けられてよい。
 ライフタイムキラー領域は、延伸ゲートランナー部の下方において、延伸ゲートランナー部の第1方向における長さ全体にわたって設けられてよい。ライフタイムキラー領域は、環状ゲートランナー部の下方において、環状ゲートランナー部の第1方向における長さの一部に対応して設けられてよい。
 ライフタイムキラー領域は、ウェル領域の底部よりも半導体基板の下面に近い位置にライフタイムキラーの濃度分布のピークを有してよい。ライフタイムキラー領域は、カソード領域よりも広い範囲に設けられてよい。
 半導体基板は、第2導電型のドリフト領域と、第2導電型の蓄積領域とを有してよい。ドリフト領域は、半導体基板中においてアノード領域よりも下方に位置してよい。蓄積領域は、少なくともダイオード領域に設けられてよい。蓄積領域は、半導体基板の深さ方向においてアノード領域とドリフト領域との間に位置してよい。第1方向において互いに対向するウェル領域の端部と複数の第1のコンタクト部の少なくとも1つの第1のコンタクト部の端部と蓄積領域の端部とカソード領域の端部とを半導体基板の上面に仮想的に投影した場合に、第4距離は、第5距離よりも大きくてよい。第4距離は、少なくとも1つの第1のコンタクト部の端部と蓄積領域の端部との最短距離であってよい。第5距離は、蓄積領域の端部とカソード領域の端部との最短距離であってよい。
 半導体基板は、第2導電型のドリフト領域と、第2導電型の蓄積領域とを有してよい。ドリフト領域は、半導体基板中においてアノード領域よりも下方に位置してよい。蓄積領域は、少なくともダイオード領域に設けられてよい。蓄積領域は、半導体基板の深さ方向においてアノード領域とドリフト領域との間に位置してよい。第1方向において互いに対向するウェル領域の端部と複数の第1のコンタクト部の少なくとも1つの第1のコンタクト部の端部と蓄積領域の端部とカソード領域の端部とを半導体基板の上面に仮想的に投影した場合に、第2距離は、第5距離よりも大きくてよい。第5距離は、蓄積領域の端部とカソード領域の端部との最短距離であってよい。
 トランジスタ領域は、第2導電型のコレクタ領域を有してよい。コレクタ領域は、半導体基板の下面側に設けられてよい。カソード領域の第1の後退長さは、第1距離以上であってよい。カソード領域の第1の後退長さは、第2方向における下面側境界から上面側境界までの長さであってよい。下面側境界は、コレクタ領域とカソード領域との境界であってよい。上面側境界は、半導体基板の上面側におけるトランジスタ領域とダイオード領域との境界であってよい。
 第3距離は、第2距離よりも小さくてよい。
 トランジスタ領域は、半導体基板上において、第1方向に各々延伸し且つ第1方向とは直交する第2方向において互いに離間して設けられた、複数の第2のコンタクト部を有してよい。ウェル領域と、複数の第1のコンタクト部の第1方向における端部と、複数の第2のコンタクト部の第1方向における端部とを半導体基板の上面に仮想的に投影した場合に、複数の第1のコンタクト部の端部は、ウェル領域と重ならない位置に配置されており、少なくとも一つの第2のコンタクト部の端部は、ウェル領域と重なる位置に配置されていてよい。
 半導体基板は、ダイオード領域と、トランジスタ領域においてダイオード領域と隣接する部分とに設けられたライフタイムキラー領域を有してよい。ダイオード領域の端部と、ウェル領域と重なる位置まで設けられた第2のコンタクト部との第2方向における最短距離である第6距離は、ダイオード領域の端部と、トランジスタ領域におけるライフタイムキラー領域の端部との、第2方向における最短距離である第7距離以下であってよい。
 半導体基板は、半導体基板中においてアノード領域よりも下方に位置する第2導電型のドリフト領域を有してよい。半導体基板は、ダイオード領域およびトランジスタ領域に設けられ、半導体基板の深さ方向においてアノード領域とドリフト領域との間の深さに位置する、第2導電型の蓄積領域を有してよい。トランジスタ領域における少なくとも一部の蓄積領域の第1方向の端部は、ダイオード領域における蓄積領域の第1方向の端部よりも、ウェル領域の近くに位置してよい。
 トランジスタ領域は、半導体基板の上面に露出し、且つ、第1方向に沿って交互に配置された第1導電型のコンタクト領域と第2導電型のエミッタ領域とを有してよい。第1方向において最もゲートランナー部の近くに配置されたコンタクト領域の第1方向における長さは、当該コンタクト領域よりもトランジスタ領域の第1方向における中心側に配置された他のコンタクト領域の長さよりも大きくてよい。
 本発明の第2の態様においては、1つの半導体基板にトランジスタ領域とダイオード領域とを有する半導体装置を提供する。半導体装置は、トランジスタ領域にゲート電位を供給するゲートランナー部を備えてよい。半導体装置は、ゲートランナー部の下方に設けられた第1導電型のウェル領域を有してよい。ダイオード領域は、半導体基板上において、第1方向に各々延伸し且つ第1方向とは直交する第2方向において互いに離間して設けられた、複数の第1のコンタクト部を有してよい。トランジスタ領域は、半導体基板上において、第1方向に各々延伸し且つ第1方向とは直交する第2方向において互いに離間して設けられた、複数の第2のコンタクト部を有してよい。ウェル領域と、複数の第1のコンタクト部の第1方向における端部と、複数の第2のコンタクト部の第1方向における端部とを半導体基板の上面に仮想的に投影した場合に、複数の第1のコンタクト部の端部は、ウェル領域と重ならない位置に配置されており、少なくとも一つの第2のコンタクト部の端部は、ウェル領域と重なる位置に配置されていてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
半導体装置200の上面を示す概略図である。 第1実施形態における図1の領域Aの拡大図である。 図2におけるA‐A断面を示す図である。 図2におけるB‐B断面を示す図である。 図2におけるC‐C断面を示す図である。 図2におけるD‐D断面を示す図である。 D-D断面の他の例を示す図である。 図1におけるE‐E断面を示す図である。 第1変形例における環状ゲートランナー部112近傍の上面拡大図である。 第1変形例における延伸ゲートランナー部114近傍の上面拡大図である。 ライフタイムキラー領域26の深さ方向における再結合中心の濃度分布を示す図である。 第1距離L1に対するFWD領域70の逆回復時の破壊耐量を示す図である。 (a)から(d)は、コンタクト部54と蓄積領域16との位置関係を示す図である。 図1における領域Bの拡大図である。 第2実施形態における図1の領域Aの拡大図である。 FWD領域70における、アノード‐カソード間電圧(VAK)及び電流(I)の時間変化を示すシミュレーション結果である。 第3実施形態における図1の領域Aの拡大図である。 第4実施形態における図1の領域Aの拡大図である。 第5実施形態における図1の領域Aの拡大図である。 第6実施形態における図1の領域Aの拡大図である。 第5実施形態における、それぞれのコンタクト部54と、蓄積領域16の端部19との位置関係を示す図である。 第6実施形態における、それぞれのコンタクト部54と、蓄積領域16の端部19との位置関係を示す図である。 ゲートトレンチ部40の先端41の拡大図である。 ゲートトレンチ部40およびダミートレンチ部30の上面視における形状例を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 本明細書においては半導体基板10の深さ方向と平行な方向における一方の側を「上」、他方の側を「下」と称する。また、本明細書においては、基板、領域、層またはその他の部材の2つの主要な面のうち、一方の面を上面、他方の面を下面と称する。「上」および「下」の方向は、重力方向、または、半導体装置を配線基板等に取り付けるときの取り付け方向に限定されない。
 図1は、半導体装置200の上面を示す概略図である。本例の半導体装置200は、1つの半導体基板10にIGBT領域80とFWD領域70とを有するRC‐IGBTである。なお、IGBT領域80はトランジスタ領域の一例であり、FWD領域70はダイオード領域の一例である。本例の半導体基板10は、上面視において、概略矩形形状を有する。本例の半導体基板10は、Z軸正方向の端部にX‐Y平面と平行な上面(一の主面)を有し、Z軸負方向の端部にX‐Y平面と平行な下面(他の主面)を有する。
 本例において、X軸とY軸とは互いに直交し、Z軸はX‐Y平面に直交する。X軸、Y軸及びZ軸は、いわゆる右手系を成す。本例において、Y軸方向は第1方向の一例であり、X軸方向は第2方向の一例である。Z軸方向は、半導体基板10の深さ方向と平行である。
 本例の半導体装置200は、活性領域100と、ゲートランナー部110と、ゲートパッド部120と、エッジ終端領域130とを有する。本例のゲートランナー部110は、環状ゲートランナー部112と、延伸ゲートランナー部114とを含む。本例の環状ゲートランナー部112は、角が丸い矩形形状に対応する。環状ゲートランナー部112は、X‐Y平面において、複数のIGBT領域80及び複数のFWD領域70を囲んでよい。本例の環状ゲートランナー部112は、複数のIGBT領域80及び複数のFWD領域70のまとまりの外周を囲む。
 延伸ゲートランナー部114は、Y軸方向において互いに隣接する少なくとも2つのIGBT領域80の間に設けられてよい。本例の延伸ゲートランナー部114は、Y軸方向において隣接するIGBT領域80の間と、Y軸方向において隣接するFWD領域70の間とを通ってX軸方向に延伸する。本例の延伸ゲートランナー部114は、矩形環状の環状ゲートランナー部112のY軸方向に平行な一辺から、この一辺に対してX軸方向に対向する他の一辺まで延伸する。
 ゲートランナー部110は、ゲートランナー層と、当該ゲートランナー層上に位置するゲート金属層とを有してよい。ゲートランナー層とゲート金属層とは、所定のコンタクト部において互いに電気的に接続してよい。また、ゲートランナー部110は、ゲートパッド部120と電気的に接続してよい。
 ゲートランナー部110は、ゲートパッド部120から伝達される制御信号(例えば、ゲート電位)をIGBT領域80に供給する機能を有してよい。ゲートパッド部120には、ボンディング等によりワイヤが接続されてよい。外部端子から当該ワイヤを通じて、制御信号がゲートパッド部120に入力されてよい。ゲートパッド部120も、ゲートランナー部110と同様に、ゲートランナー層とゲート金属層との積層構造を有してよい。本例のゲートパッド部120は、X軸方向の中央に位置するIGBT領域80の一部を切り欠くように設けられる。
 本例の活性領域100は、ゲートランナー部110の内側に設けられる領域である。本例の活性領域100は、第1の活性領域100‐1と第2の活性領域100‐2とを有する。第1の活性領域100‐1は、環状ゲートランナー部112のY軸正方向の半分と延伸ゲートランナー部114とにより囲まれる。これに対して、第2の活性領域100‐2は、環状ゲートランナー部112のY軸正方向の半分と、ゲートパッド部120と、延伸ゲートランナー部114とにより囲まれる。なお、活性領域100は、延伸ゲートランナー部114が設けられる範囲を除く範囲であって、エミッタ電極50が設けられるX‐Y平面の範囲に対応するとしてもよい。図1においては、エミッタ電極50が設けられるX‐Y平面の範囲を破線により示す。
 本例において、第1の活性領域100‐1及び第2の100‐2の各々は、複数のIGBT領域80及び複数のFWD領域70を含む。複数のIGBT領域80は、X軸方向において互いに離間して設けられてよい。本例においては、3個のIGBT領域80がX軸方向において所定間隔だけ離間して設けられる。また、第1の活性領域100‐1及び第2の100‐2の各々において、X軸方向の両端部にはFWD領域70ではなくIGBT領域80‐L及び80‐Rが設けられる。さらに、X軸方向の中央部においては、X軸方向の両側をFWD領域70に挟まれたIGBT領域80‐Cが設けられる。なお、IGBT領域80‐L及び80‐Rは、外側トランジスタ領域の一例であり、IGBT領域80‐Cは、内側トランジスタ領域の一例である。
 本例において、1個のFWD領域70は、X軸方向に隣接する2個のIGBT領域80の間において、当該2個のIGBT領域80の各々に接して設けられる。それゆえ、活性領域100において、FWD領域70の数はIGBT領域80の数よりも少なくてよい。本例において、第1の活性領域100‐1及び第2の活性領域100‐2の各々は、2個のFWD領域70を有する。なお、IGBT領域80及びFWD領域70の数は例示であり、本例よりも多い数または少ない数のIGBT領域80及びFWD領域70が設けられてもよい。
 エッジ終端領域130は、半導体基板10の外周端部66と環状ゲートランナー部112との間に設けられてよい。エッジ終端領域130は、活性領域100の外側に位置するゲートランナー部110を囲むように環状に設けられてよい。本例のエッジ終端領域130は、環状ゲートランナー部112の外側を囲む。エッジ終端領域130は、半導体基板10の上面側の電界集中を緩和する機能を有してよい。エッジ終端領域130は、例えばガードリング、フィールドプレート、リサーフ及びこれらを組み合わせた構造を有する。
 図2は、第1実施形態における図1の領域Aの拡大図である。領域Aは、半導体基板10の上面側におけるIGBT領域80とFWD領域70との境界である上面側境界74と、エッジ終端領域130とが交わる領域を含む。図2においては、上面側境界74を一点鎖線にて示す。本明細書において、上面側境界74とは、境界メサ領域61のダミートレンチ部30のうちFWD領域70側のダミートレンチ部30上に位置し、Y軸方向に平行な仮想的な直線である。また、境界メサ領域61とは、IGBT領域80における複数のメサ領域60‐2のうち、N+型のエミッタ領域12を有するメサ領域60に対してFWD領域70側に隣接するメサ領域である。境界メサ領域61は、IGBT領域80のメサ領域60‐2のうちX軸方向において最もFWD領域70に近く且つFWD領域70に隣接するメサ領域60‐2であって、N+型のエミッタ領域12を有さないメサ領域60‐2でもある。
 本明細書においては、X軸方向において隣接する2個のトレンチ部の間に位置し且つ半導体基板10の上方における半導体基板10中の一部を、メサ領域60と称する。本例において、FWD領域70のメサ領域60‐1は第1のメサ領域の一例であり、IGBT領域80のメサ領域60‐2は第2のメサ領域の一例である。FWD領域70のメサ領域60‐1は、P-型のアノード領域13、P+型のコンタクト領域15、N型の蓄積領域16及びP+型のウェル領域17を有してよい。また、IGBT領域80のメサ領域60‐2は、N+型のエミッタ領域12、P-型のベース領域14、P+型のコンタクト領域15、N型の蓄積領域16及びP+型のウェル領域17を有してよい。
 ベース領域14はチャネル形成領域として機能してよく、アノード領域13はアノードとして機能してよい。なお、アノード領域13とベース領域14とは、設けられる領域に応じて異なる名称を付けたに過ぎずない。アノード領域13とベース領域14とは、同一のドーパント注入工程を経て形成されてよい。本例において、アノード領域13とベース領域14とは、同じP型のドーパント濃度を有する。本例のP型は第1導電型の例であり、N型は第2導電型の例である。ただし、他の例においては、P型を第2導電型とし、N型を第1導電型としてもよい。また、NまたはPは、それぞれ電子または正孔が多数キャリアであることを意味する。NまたはPに記載した+または-について、+はそれが記載されていないものよりもキャリア濃度が高く、-はそれが記載されていないものよりもキャリア濃度が低いことを意味する。
 半導体装置200は、半導体基板10の上面上に層間絶縁膜等の絶縁膜を有するが、図2においてはこれらの絶縁膜を省略する。層間絶縁膜等の絶縁膜は、X‐Y平面の異なる位置に複数の開口を有してよい。図2において、複数の開口をコンタクト部47、52、53及び54として示す。コンタクト部47は、ゲート金属層48とゲートランナー層46とを接続する開口部である。
 コンタクト部52はIGBT領域80に設けられた開口部であり、コンタクト部53はFWD領域70に設けられた開口部である。本例のコンタクト部52は、島状の接続層27とエミッタ電極50とを接続する。また、本例のコンタクト部53は、X軸方向に延伸する島状の接続層28とエミッタ電極50とを接続する。本例において、ゲートランナー層46並びに接続層27及び28は、同一の堆積工程及びエッチング工程により形成されたポリシリコン層である。
 本例のコンタクト部54は、エミッタ電極50と半導体基板10の上面に露出する半導体領域とを接続してよい。本例においては、コンタクト部54が延伸する延伸方向はY軸方向と平行である。コンタクト部54は、FWD領域70及びIGBT領域80において、同じ形状を有してよい。本例のコンタクト部54は、メサ領域60のX軸方向長さよりも小さい幅を有し且つY軸方向に延伸する、短冊形状を有する。本例のコンタクト部54においては、Y軸方向における端部55位置がFWD領域70及びIGBT領域80において同じである。図2において、ゲートランナー部110のY軸負方向の端部からコンタクト部54の端部55までの長さは、例えば10μmである。なお、Y軸方向における端部55の位置に関しては、IGBT領域80のコンタクト部54のY軸方向の端部55‐2の位置が、FWD領域70のコンタクト部54のY軸方向の端部55‐1の位置よりも外側の位置まで延伸してもよい。
 本例の半導体装置200は、半導体基板10の上面から予め定められた深さまで各々設けられたダミートレンチ部30及びゲートトレンチ部40を有する。なお、本明細書においては、ダミートレンチ部30及びゲートトレンチ部40を総称してトレンチ部と称する場合がある。ゲートトレンチ部40のゲート導電部にはゲート電位が供給されるが、ダミートレンチ部30のダミートレンチ導電部には、ゲート電位ではなくエミッタ電極50と同じ電位(エミッタ電位)が供給される。
 本例のFWD領域70は、複数のダミートレンチ部30を有する。FWD領域70におけるダミートレンチ部30は、2つの長手部と1つの短手部とを含む。本例において、長手部とは、コンタクト部54の延伸方向と平行に延伸する部分である。図2において、ダミートレンチ部30における2つの長手部と1つの短手部とは逆U字形状を成す。2つの長手部は、X軸方向において互いに対向し且つ各々Y軸方向に延伸してよい。1つの短手部は、当該2つの長手部をY軸方向の端部において接続してよい。本例において、ダミートレンチ部30の長手部は、X軸方向において所定の間隔で配列される。それゆえ、本例における各メサ領域60‐1は、X軸方向の幅が同じである。
 本例のIGBT領域80は、複数のダミートレンチ部30と複数のゲートトレンチ部40を有する。ゲートトレンチ部40も、2つの長手部と1つの短手部とを含む。図2において、ゲートトレンチ部40における2つの長手部と1つの短手部とは逆U字形状を成す。2つの長手部は、X軸方向において互いに対向し且つ各々Y軸方向に延伸してよい。1つの短手部は、当該2つの長手部をY軸方向の端部において接続してよい。
 本例において、ゲートトレンチ部40の長手部は、FWD領域70におけるダミートレンチ部30の長手部のピッチの2倍のピッチで、X軸方向において配列される。また、IGBT領域80においては、X軸方向に隣接する2つのゲートトレンチ部40の長手部の間に、2つのダミートレンチ部30の長手部が設けられる。
 本例のIGBT領域80においては、X軸方向における、ダミートレンチ部30の長手部とゲートトレンチ部40の長手部との距離が、X軸方向において隣接する2つのダミートレンチ部30の長手部間の距離と等しい。本例において、メサ領域60‐1、メサ領域60‐2及び境界メサ領域61のX軸方向の幅は、それぞれ2.3μmである。
 本例のゲートトレンチ部40の長手部は、ダミートレンチ部30の長手部よりもY軸方向において長い。ゲートトレンチ部40は、Y軸方向においてゲートランナー部110の下方に達する。ゲートトレンチ部40の短手部は、ゲートランナー層46の下に位置し、ゲートランナー層46と接続する。これに対して、ダミートレンチ部30は、Y軸方向においてゲートランナー部110に達しない。本例において、ゲートトレンチ部40及びダミートレンチ部30の短手部の底は、ウェル領域17に覆われる。なお、各トレンチ部の短手部近傍に位置する長手部の一部の底もウェル領域17に覆われる。
 P+型のコンタクト領域15は、アノード領域13またはベース領域14よりも高いP型のドーパント濃度を有してよい。コンタクト領域15は、半導体基板10からエミッタ電極50へ正孔を引き抜く場合において正孔にとって低抵抗な経路として機能してよい。本例において、FWD領域70のコンタクト領域15は、メサ領域60‐1上の第1のコンタクト部54‐1に接続する。同様に、IGBT領域80のコンタクト領域15も、メサ領域60‐2上の第2のコンタクト部54‐2に接続する。
 P+型のウェル領域17は、ゲートランナー部110の下方に設けられてよい。本例のウェル領域17は、Y軸方向においてゲートランナー部110の外側の端部94から、ゲートランナー部110の内側の端部92まで設けられる。本例において、外側の端部94は、ゲートランナー部110の外側端部よりも外側に位置する。また、内側の端部92は、ダミートレンチ部30の短手部とコンタクト部54の端部55との間に位置する。
 ウェル領域17も、アノード領域13またはベース領域14よりも高いP型のドーパント濃度を有してよい。ウェル領域17は、ベース領域14及びアノード領域13と、外周端部66近傍とを分離する機能を有してよい。ウェル領域17は半導体基板10の上面に露出してよい。但し、本例において、ウェル領域17に対応する範囲における半導体基板10の上面には、絶縁膜が設けられているので、ゲートランナー層46並びに接続層27及び28と、ウェル領域17とは電気的に分離されている。
 N+型のエミッタ領域12は、半導体基板10へ電子を注入する場合において電子にとっての低抵抗な経路として機能してよい。本例においてエミッタ領域12は、IGBT領域80のメサ領域60‐2のみに設けられる。コンタクト部54‐2の下方に位置するエミッタ領域12又はコンタクト領域15を破線で示す。本例において、FWD領域70に隣接するIGBT領域80のメサ領域60‐2である境界メサ領域61には、電流の干渉を低減するべくエミッタ領域12を設けない。これにより、IGBT領域80のエミッタ領域12からドリフト領域へ注入された電子が、FWD領域70のカソード領域72に流出することを低減することができる。なお、他の例においては、N+型の領域(例えば、エミッタ領域12)が境界メサ領域61やFWD領域70のメサ領域60‐1に設けられてもよい。ただし、この場合、このN+型の領域は、ダミートレンチ部30などと隣接してよいが、ゲートトレンチ部40には隣接しないことが好ましい。
 IGBT領域80におけるメサ領域60‐2は、Y軸方向において交互に上面に露出するエミッタ領域12及びコンタクト領域15を有する。メサ領域60‐2において、エミッタ領域12及びコンタクト領域15は、X軸方向に隣接する2つのトレンチ部間に渡って設けられる。本例のメサ領域60‐2は、コンタクト部54‐2の端部55‐2の直下に、コンタクト領域15を有する。端部55‐2の直下に位置するコンタクト領域15は、Y軸方向において、ベース領域14とエミッタ領域12に挟まれてよい。
 IGBT領域80の境界メサ領域61においては、メサ領域60‐2と同じ範囲にウェル領域17及びベース領域14が設けられる。ただし、境界メサ領域61において、ウェル領域17及びベース領域14以外の範囲にはコンタクト領域15が設けられる。本例の境界メサ領域61においては、Y軸方向において主としてP+型のコンタクト領域15が上面に露出する。
 また、FWD領域70のメサ領域60‐1においても、メサ領域60‐2と同じ範囲にウェル領域17とベース領域14に対応するアノード領域13とが設けられる。また、メサ領域60‐1においても、コンタクト部54‐1の端部55‐1の直下に、コンタクト領域15が設けられる。メサ領域60‐1におけるコンタクト領域15は、X軸方向において、メサ領域60‐2の端部55‐2の直下に位置するコンタクト領域15に対応する範囲に設けられてよい。メサ領域60‐1における残りの領域は、アノード領域13であってよい。
 本例の半導体装置200は、FWD領域70及びIGBT領域80の両方にN型の蓄積領域16を有する。本例においては、半導体基板10の深さ方向において、アノード領域13及びベース領域14とドリフト領域との間に蓄積領域16を設ける。なお、ドリフト領域については、図3において図示する。これにより、IGBT領域80におけるキャリア注入促進効果(Injection Enhancement効果;IE効果)を高めて、IGBTのオン電圧(Von)を低減することができる。
 他のドーパント注入領域と同様に、蓄積領域16も、レジストマスクの開口領域を介して半導体基板10の所定深さ範囲にN型ドーパントをイオン注入することにより形成してよい。なお、レジストマスクの開口端部ではマスク垂れ(マスクの縁部が直角形状から緩やかな傾斜部へ変形すること)が生じるので、開口端部に対応する半導体基板10の位置では、蓄積領域16の深さ範囲が設計深さからずれ易くなる。仮に、IGBT領域80には蓄積領域16を設けるがFWD領域70には全く蓄積領域16を設けない場合、IGBT領域80からFWD領域70にかけて蓄積領域16が不連続になる。この不連続部分に、設計深さからずれた蓄積領域16が形成されることとなる。本例においては、設計深さからずれた蓄積領域16がメサ領域60‐2に形成されることによりIGBTにおけるゲート閾値電圧等の特性に影響を与えることを防ぐべく、IGBT領域80に加えてFWD領域70にも蓄積領域16を設ける。
 N型の蓄積領域16は、深さ方向において蓄積領域16とドリフト領域との間に正孔を蓄積する機能を有する。それゆえ、蓄積領域16は、正孔がコンタクト部54から引き抜かれることを妨げる可能性がある。そこで、本例においては、コンタクト部54のY軸正方向の端部55よりも内側に、蓄積領域16のY軸正方向の端部19を設ける。それゆえ、本例においては、コンタクト部54を通じてキャリア(本例では、正孔)がエミッタ電極50へ引き抜かれやすくなる。これにより、FWD領域70においては、逆回復動作時のキャリアの量を低減することができるので、第1のコンタクト部54‐1と蓄積領域16とを完全に重ねる場合に比べて逆回復耐量を向上させることができる。
 FWD領域70は、X軸方向において互いに離間して設けられ且つY軸方向に各々延伸する複数の第1のコンタクト部54‐1を有する。本例において、FWD領域70に設けられた第1のコンタクト部54‐1は、第1の非重複領域56‐1と、第1の重複領域58‐1とを有する。第1の非重複領域56‐1は、Y軸方向における第1のコンタクト部54‐1と蓄積領域16とが深さ方向において重ならない領域である。これに対して、第1の重複領域58‐1は、Y軸方向における第1のコンタクト部54‐1と蓄積領域16とが深さ方向において重なる領域である。
 本例において、第1のコンタクト部54‐1における第1の非重複領域56‐1の直下には、P+型のコンタクト領域15が設けられる。それゆえ、正孔は、第1の非重複領域56‐1直下のコンタクト領域15を通じてエミッタ電極50へ引き抜かれやすくなる。これに対して、本例において、第1の重複領域58‐1の直下には、コンタクト領域15は設けられず、アノード領域13が設けられる。
 本例の蓄積領域16のY軸正方向の端部19は、X軸方向と平行である。本例において、蓄積領域16のY軸正方向の端部19は、コンタクト部54‐1の端部55‐1およびコンタクト部54‐2の端部55‐2と、カソード領域72の端部(即ち、下面側境界82)との間に位置する。コンタクト部54の端部55から、蓄積領域16のY軸正方向の端部19までの長さは、例えば数μm以上20μm以下である。それゆえ、蓄積領域16の設計深さからずれたことに起因するIGBTのゲート閾値電圧等の特性への影響は考慮に入れなくてよい。
 IGBT領域80は、X軸方向において互いに離間して設けられ且つY軸方向に各々延伸する複数の第2のコンタクト部54‐2を有する。本例において、IGBT領域80に設けられた第2のコンタクト部54‐2は、第2の非重複領域56‐2と、第2の重複領域58‐2とを有する。第2の非重複領域56‐2は、Y軸方向における第2のコンタクト部54‐2と蓄積領域16とが深さ方向において重ならない領域である。これに対して、第2の重複領域58‐2は、Y軸方向における第2のコンタクト部54‐2と蓄積領域16とが深さ方向において重なる領域である。
 本例においては、第1の非重複領域56‐1及び第2の非重複領域56‐2は、コンタクト部54のY軸方向の端部55‐1及び55‐2近傍に設けられるのみであり、コンタクト部54の大部分は、第1の重複領域58‐1及び第2の重複領域58‐2である。それゆえ、FWD領域70においては逆回復耐量を向上させつつ、IGBT領域80においては十分なIE効果を得ることができる。
 ゲート金属層48は、コンタクト部47を介して、ゲートランナー層46と電気的に接続してよい。ゲートランナー層46は、ドーパントを含むポリシリコン(poly‐silicon)から成る導電層であってよい。ゲートランナー層46は、各々これと同じポリシリコンから成る、ゲート導電部、ダミートレンチ導電部、接続層27及び接続層28を形成するプロセスにおいて形成されてよい。
 エミッタ電極50は、活性領域100の全体に設けられてよい。本例のエミッタ電極50は、ゲート金属層48と短絡しないように、Y軸方向においてゲート金属層48から離間して設けられる。エミッタ電極50は、コンタクト部54を通じてメサ領域60のエミッタ領域12、アノード領域13、ベース領域14及びコンタクト領域15の一以上に電気的に接続してよい。本例のエミッタ電極50は、第1のコンタクト部54‐1を介してFWD領域70のアノード領域13及びコンタクト領域15と電気的に接続し、第2のコンタクト部54‐2を介してIGBT領域80のエミッタ領域12及びコンタクト領域15と電気的に接続する。
 また、エミッタ電極50は、コンタクト部52及び53を通じ、ダミートレンチ部30のダミートレンチ導電部に電気的に接続してよい。本例の接続層27及び接続層28は、ダミートレンチ部30のダミートレンチ導電部と接続する。但し、接続層27及び接続層28とダミートレンチ部30とが重ならない領域においては、接続層27及び接続層28と半導体基板10の上面との間には、酸化膜等の絶縁膜が設けられる。
 エミッタ電極50及びゲート金属層48の各々は、金属層であってよい。例えば、各金属層は、アルミニウム(Al)、アルミニウム(Al)‐シリコン(Si)合金、またはアルミニウム(Al)‐シリコン(Si)‐銅(Cu)合金で形成される。各金属層は、アルミニウム等で形成された領域の下層にチタン(Ti)またはチタン化合物等で形成されたバリアメタルを有してよい。また、コンタクト部47、52及び54内においてタングステン(W)等で形成されたプラグを有してもよい。
 図2においては、半導体基板10の下面側に露出するN+型のカソード領域72が設けられる範囲を破線で示す。本例においては、蓄積領域16のY軸正方向の端部19よりも内側に、カソード領域72のY軸正方向の端部を設ける。ゲートランナー部110のY軸負方向の端部からカソード領域72の端部までの長さは、例えば50μmである。また、コンタクト部54の端部55からカソード領域72の端部までの長さは、例えば20μm以上40μm以下である。なお、本例において、カソード領域72のX軸負方向の端部(即ち、下面側境界82)は上面側境界74に一致する。ただし、理解を容易にするべく、Y軸方向において重なる下面側境界82及び上面側境界74は、X軸方向においてずらして示す。
 蓄積領域16の端部19は、コンタクト部54の端部55よりもカソード領域72のY軸正方向の端部に近い位置に設けられるとよい。なお、カソード領域72のY軸正方向の端部は、Y軸方向において延伸ゲートランナー部114よりも環状ゲートランナー部112の近くに位置し、且つ、X軸方向に平行に延伸する下面側境界82を意味してよい。
 P+型のコレクタ領域は、半導体基板10の下面側において、カソード領域72が露出する領域以外の全領域に設けられてよい。それゆえ、図2においては、コレクタ領域の範囲を省略する。本例のコレクタ領域は、IGBT領域80の全体に設けられる。
 図3は、図2におけるA‐A断面を示す図である。A‐A断面は、X‐Z平面に平行であり、半導体基板10の上面62及び下面64を通る。また、A‐A断面は、カソード領域72のY軸正方向の端部よりもY軸正方向における断面であり、エミッタ領域12、蓄積領域16及びカソード領域72等を通る。A‐A断面においては、半導体基板10と、絶縁膜36及び層間絶縁膜38と、エミッタ電極50と、コレクタ電極24とを示す。
 本例の絶縁膜36及び層間絶縁膜38は、トレンチ部の上部に積層して設けられた酸化膜である。絶縁膜36は、二酸化シリコン(SiO)膜であってよい。絶縁膜36は、各トレンチ部のダミートレンチ絶縁膜32及びゲート絶縁膜42と同じ工程で形成されてよい。層間絶縁膜38は、BPSG(Boro‐Phospho Silicate Glass)、PSG(Phosphorus Silicate Glass)およびBSG (Borosilicate Glass)のうち、一種類以上の材料で形成されてよい。
 本例のエミッタ電極50は、上面62および層間絶縁膜38に接して、IGBT領域80及びFWD領域70に渡って設けられる。コレクタ電極24は、下面64に接して、下面64の全体に設けられる。コレクタ電極24の材料は、エミッタ電極50と同じであってよい。
 A‐A断面における半導体基板10は、ダミートレンチ部30及びゲートトレンチ部40を有する。また、A‐A断面における半導体基板10は、N+型のエミッタ領域12と、P-型のアノード領域13と、P-型のベース領域14と、P+型のコンタクト領域15と、N型の蓄積領域16と、N-型のドリフト領域18と、N型のバッファ領域20と、P+型のコレクタ領域22と、N+型のカソード領域72とを有する。
 なお、N型、N+型及びN-型の領域は、ドーパントとしてリン(P)またはヒ素(As)をイオン注入することにより形成してよい。ただし、バッファ領域20は、ドーパントとしてプロトン(H)及びセレン(Se)のいずれかまたは両方をイオン注入することにより形成してよい。また、P型、P+型及びP-型の領域は、ドーパントとしてホウ素(B)をイオン注入することにより形成してよい。
 A‐A断面において、IGBT領域80のメサ領域60‐2は、エミッタ領域12、ベース領域14及び蓄積領域16を有する。ただし、境界メサ領域61は、ベース領域14、コンタクト領域15及び蓄積領域16を有する。コンタクト領域15は、上面62からエミッタ領域12よりも深い位置まで設けられる。ベース領域14は、エミッタ領域12及びコンタクト領域15の底部に接する。蓄積領域16は、半導体基板10の深さ方向においてベース領域14とドリフト領域18との間に位置する。FWD領域70のメサ領域60‐1は、アノード領域13及び蓄積領域16を有する。蓄積領域16は、アノード領域13の底部に接する。蓄積領域16は、半導体基板10の深さ方向においてアノード領域13とドリフト領域18との間に位置する。
 本例のゲートトレンチ部40は、ゲート絶縁膜42、ゲート導電部43及びゲートトレンチ44を有する。ゲートトレンチ44は、上面62を選択的にエッチングすることにより形成してよい。ゲート絶縁膜42は、ゲートトレンチ44の内壁に接して設けられてよい。ゲート絶縁膜42は、ゲートトレンチ44の内壁の半導体を酸化または窒化することにより形成してよい。本例のゲート導電部43は、ゲート絶縁膜42に接してゲート絶縁膜42よりも内側に設けられる。ゲート絶縁膜42は、ゲート導電部43と半導体基板10とを絶縁してよい。ゲート導電部43は、ポリシリコン等の導電材料で形成されてよい。
 本例のダミートレンチ部30は、ダミートレンチ絶縁膜32、ダミートレンチ導電部33及びダミートレンチ34を有する。ダミートレンチ絶縁膜32及びダミートレンチ導電部33は、ゲート絶縁膜42およびゲート導電部43と同様の手法で形成されてよい。各トレンチ部は、アノード領域13、ベース領域14及び蓄積領域16を貫通し、ドリフト領域18に達してよい。
 本例のドリフト領域18は、半導体基板10中においてアノード領域13及びベース領域14よりも下方に位置する。ドリフト領域18及びバッファ領域20は、FWD領域70及びIGBT領域80に渡って設けられる。FWD領域70におけるドリフト領域18及びバッファ領域20は、カソード領域72とともに、FWDのカソードと見なしてよい。
 バッファ領域20は、ドリフト領域18の下方に位置してよい。本例のバッファ領域20は、Z軸方向において、ドリフト領域18と、コレクタ領域22及びカソード領域72との間に位置する。バッファ領域20は、半導体装置200のターン・オフ時に、IGBT領域80のベース領域14の底部から下面64へ広がる空乏層がコレクタ領域22に到達することを防ぐ機能を有してよい。バッファ領域20は、深さ方向において、N型のドーピング濃度分布が離散的なピーク値を有するフィールドストップ(Field Stop)領域であってよい。
 コレクタ領域22及びカソード領域72は、半導体基板10の下面64から予め定められた深さ範囲に設けられてよい。本例において、コレクタ領域22とカソード領域72との境界である下面側境界82のX軸負方向の端部の位置は、上面側境界74のX軸方向の位置と一致する。したがって、カソード領域72のY軸正方向の端部よりも内側のX‐Z平面に平行な断面(A‐A断面)では、IGBT領域80の下面64側にはコレクタ領域22が設けられ、FWD領域70の下面64側にはカソード領域72が設けられる。コレクタ領域22及びカソード領域72は、バッファ領域20よりも下方に設けられる。ただし、カソード領域72のX軸負方向の端部(下面側境界82)が上面側境界74に一致せず、カソード領域72のX軸負方向の端部がFWD領域70側に後退してもよい。この場合、カソード領域72のY軸正方向の端部よりも内側のX‐Z平面に平行な断面では、IGBT領域80の下面64側にはコレクタ領域22が設けられ、FWD領域70の下面64側にはコレクタ領域22及びカソード領域72が設けられる。また、カソード領域72のX軸負方向の端部がIGBT領域80側まで延伸してもよい。この場合、カソード領域72のY軸正方向の端部よりも内側のX‐Z平面に平行な断面では、IGBT領域80の下面64側にはコレクタ領域22及びカソード領域72が設けられ、FWD領域70の下面64側にはカソード領域72が設けられる。
 本例のIGBT領域80は、X軸正方向において上面側境界74を有する。IGBT領域80は、X軸負方向においてもFWD領域70との上面側境界74を有してよい。本例において、X軸方向におけるIGBT領域80の範囲は、隣接する2つの上面側境界74の間の範囲である。FWD領域70は、活性領域100におけるIGBT領域80以外の領域と見なしてよい。
 図4は、図2におけるB‐B断面を示す図である。B‐B断面は、X‐Z平面に平行であり、Y軸方向においてコンタクト部54の端部55と蓄積領域16の端部19との間を通る。また、B‐B断面は、FWD領域70及びIGBT領域80におけるコンタクト領域15を通る。B‐B断面は、カソード領域72のY軸正方向の端部よりもY軸正方向に位置する。それゆえ、B‐B断面において、カソード領域72及び下面側境界82は存在しない。
 図5は、図2におけるC‐C断面を示す図である。C‐C断面は、Y‐Z平面に平行であり、FWD領域70及びゲートランナー部110を通る。C‐C断面は、特に、FWD領域70における第1のコンタクト部54‐1を通る。ゲートランナー部110の下方に位置するウェル領域17は、Y軸方向においてFWD領域70に接してよい。C‐C断面においては、ウェル領域17におけるY軸方向の端部であって、エッジ終端領域130とは反対側の端部が内側の端部92である。
 本明細書においては、ウェル領域17の内側の端部92よりも内側の範囲をFWD領域70とする。なお、延伸ゲートランナー部114の下方にもウェル領域17が設けられる。Y軸方向において、環状ゲートランナー部112の下方のウェル領域17と、延伸ゲートランナー部114の下方のウェル領域17とに挟まれる範囲をFWD領域70と見なしてよい。
 C‐C断面においては、ウェル領域17の内側の端部92と、第1のコンタクト部54‐1の端部55‐1と、蓄積領域16の端部19と、カソード領域72の端部(即ち、下面側境界82)との各位置を上面62に投影して破線にて示す。図示する様に、ウェル領域17の内側の端部92と、カソード領域72の端部に対応する下面側境界82と、蓄積領域16の端部19と、コンタクト部54の端部55とは、Y軸方向において互いに対向する。
 ウェル領域17には、正孔が蓄積され得る。例えば、IGBTの動作時にIGBT領域80のコレクタ領域22からドリフト領域18へ注入された正孔が、IGBT領域80に隣接するウェル領域17の底部96近傍に蓄積される。
 また、FWD領域70の順方向動作時において、正孔電流がアノード領域13から下面64に向かって流れる。これにより、ドリフト領域18へ供給された正孔の一部が正孔電流として下面64に向かって流れ、ウェル領域17の底部96近傍に正孔が蓄積され得る。ただし、本例においては、下面側境界82をウェル領域17の内側の端部92から離間させる。これにより、下面側境界82がウェル領域17の内側の端部92の直下に位置する場合に比べて、FWD領域70に隣接するウェル領域17の底部96近傍に蓄積される正孔の量を低減することができる。
 RC‐IGBTを搭載した半導体モジュールは、通常、直列に接続された上アームを構成する上側のRC‐IGBTと、下アームを構成する下側のRC‐IGBTとを有する。そして、上側のRC‐IGBTと下側のRC‐IGBTとは、動作モードに応じて、それぞれ、オンおよびオフ状態となる。この動作に起因して、RC‐IGBTのFWD領域70は、所定時間の順方向状態の後、逆回復状態となる。逆回復状態では、順方向電流と逆向きに電流が流れる。つまり、逆回復状態において、正孔は、下面64から上面62に向かう方向へほぼ流れる。特に、ウェル領域17の底部96近傍に蓄積された正孔は、FWD領域70が逆回復状態であるときに、第1のコンタクト部54‐1から引き抜かれ得る。このとき、第1のコンタクト部54‐1の端部55‐1近傍において正孔が集中しやすい。逆回復時に、端部55‐1近傍に正孔電流が集中することにより、FWD領域70の破壊耐量が低下する恐れがある。
 そこで、本例においては、下面側境界82をウェル領域17の内側の端部92から後退させる。これにより、ウェル領域17の底部96近傍に蓄積される正孔の量を低減することができるので、第1のコンタクト部54‐1の端部55‐1近傍における正孔電流の集中を低減することができる。本例においては、ウェル領域17の内側の端部92と下面側境界82とを上面62に投影した場合の最短距離を第1距離L1とする。第1距離L1は、半導体基板10の上面62からウェル領域17の底部96までの深さDpより大きく、且つ、半導体基板10の上面62から下面64までの厚さTsubよりも小さくてよい。
 深さDpは、上面62からトレンチ部の底部までの深さDtよりも大きくてよく、半導体基板10の厚さTsubの半分よりも小さくてよい。例えば、深さDpは、10μm以上20μm以下である。半導体基板10の厚さTsubは、耐圧に応じて定めてよいが、例えば、100μm以上200μm以下である。本例の厚さTsubは、110μmである。
 第1のコンタクト部54‐1の端部55‐1近傍においては正孔が集中しやすいので、第1のコンタクト部54‐1の端部55‐1をウェル領域17の内側の端部92から離間させてよい。これにより、正孔は、底部96から端部55‐1近傍に至るまでにおいて、ウェル領域17よりも抵抗の高いアノード領域13中を移動することとなる。それゆえ、端部55及び内側の端部92がY軸方向において一致する場合に比べて、端部55‐1近傍における正孔の集中を低減することができる。これにより、FWD領域70における破壊耐量の低下を防ぐことができる。
 本例において、第1のコンタクト部54‐1の端部55‐1は、ウェル領域17の内側の端部92と下面側境界82との間に位置する。より具体的には、端部55‐1は、内側の端部92と蓄積領域16の端部19との間に位置する。ウェル領域17の内側の端部92と第1のコンタクト部54‐1の端部55‐1とを上面62に投影した場合の最短距離である第2距離L2は、第1距離L1よりも小さくてよい。換言すれば、第1距離L1は、第2距離L2よりも大きくてよい。第2距離L2は、第1距離L1の40%以上60%以下であってよく、第1距離L1の半分よりも小さくてよい。例えば、第2距離L2は数μm以上10μm以下であり、第1距離L1は数十μm以上50μm以下である。
 第1のコンタクト部54‐1の端部55‐1と蓄積領域16の端部19とを上面62に投影した場合の最短距離である第4距離L4は、蓄積領域16の端部19とカソード領域72の端部とを上面62に投影した場合の最短距離である第5距離L5よりも大きくてよい。これにより、正孔がコンタクト部54から引き抜かれることを蓄積領域16が妨げることを防止し、コンタクト部54を通じてキャリア(本例では、正孔)のエミッタ電極50への引き抜きをより促進することが可能となる。なお、第2距離L2は、第5距離L5より大きくてよい。これにより、第1のコンタクト部54‐1の端部55‐1近傍における正孔電流の集中を低減することができ、破壊耐量を確保することが可能となる。
 図6Aは、図2におけるD‐D断面を示す図である。D‐D断面は、Y‐Z平面に平行であり、IGBT領域80及びゲートランナー部110を通る。D‐D断面は、特に、IGBT領域80における第2のコンタクト部54‐2を通る。ウェル領域17は、Y軸方向においてIGBT領域80に接してよい。本明細書においては、ウェル領域17の内側の端部92よりも内側の範囲をIGBT領域80とする。なお、Y軸方向において、環状ゲートランナー部112の下方のウェル領域17と、延伸ゲートランナー部114の下方のウェル領域17とに挟まれる範囲をIGBT領域80と見なしてよい。
 D‐D断面は、ゲートトレンチ部40の短手部と、ダミートレンチ部30の短手部とを通る。それゆえ、D‐D断面において、ゲートトレンチ部40及びダミートレンチ部30が、ウェル領域17中に存在する。D‐D断面においては、ウェル領域17の内側の端部92と、第2のコンタクト部54‐2の端部55‐2との各位置を上面62に投影して破線にて示す。内側の端部92と端部55‐2とを上面62に投影した場合の最短距離を第3距離L3とする。本例において、第3距離L3は第2距離L2と等しいが、他の例において、第3距離L3は第2距離L2より小さくてもよい。なお、IGBT領域80の下面64側において、カソード領域72は設けられず、コレクタ領域22が設けられる。
 図6Bは、D-D断面の他の例を示す図である。本例においては、蓄積領域16が、Y軸方向において最も外側のエミッタ領域12(すなわち、最もウェル領域17に近いエミッタ領域12)よりも、ウェル領域17側まで設けられている。他の構成は、図6Aにおいて説明した例と同一である。これにより、全てのエミッタ領域12の下方に蓄積領域16を設けることができる。
 図7は、図1におけるE‐E断面を示す図である。E‐E断面は、Y‐Z平面に平行であり、環状ゲートランナー部112と、FWD領域70と、延伸ゲートランナー部114とを通る。E‐E断面は、特に、活性領域100‐1におけるFWD領域70の第1のコンタクト部54‐1を通る。
 なお、理解を容易にすることを目的として、E‐E断面においては、延伸ゲートランナー部114の下方に設けられたウェル領域17を17‐Aとし、環状ゲートランナー部112の下方に設けられたウェル領域17を17‐Eと示す。また、ウェル領域17‐Aによって規定される第1距離L1及び第2距離L2をそれぞれL1‐A及びL2‐Aとする。即ち、ウェル領域17‐AのY軸正方向の端部98と下面側境界82とを上面62に投影した場合の最短距離をL1‐Aとし、ウェル領域17‐Aの端部98とコンタクト部54‐1のY軸負方向の端部55‐1とを上面62に投影した場合の最短距離をL2‐Aとする。同様に、ウェル領域17‐Eによって規定される第1距離L1及び第2距離L2をそれぞれL1‐E及びL2‐Eとする。
 RC‐IGBTにおいては、IGBT領域80よりもFWD領域70において、電流集中に起因する破壊が生じやすい。さらに、エッジ終端領域130に接する環状ゲートランナー部112の近傍よりも、延伸ゲートランナー部114の近傍におけるFWD領域70において破壊が生じやすい傾向にある。そこで、延伸ゲートランナー部114近傍の第1距離L1‐Aを、環状ゲートランナー部112近傍の第1距離L1‐Eよりも長くしてよい(L1‐E<L1‐A)。さらに、第2距離L2‐Aを、第2距離L2‐Eよりも長くてしよい(L2‐E<L2‐A)。これにより、相対的に破壊が生じやすい延伸ゲートランナー部114近傍における第1のコンタクト部54‐1の端部55‐1において、電流集中による破壊を防止することができる。
 図8は、第1変形例における環状ゲートランナー部112近傍の上面拡大図である。本例において、第3距離L3‐Eは第2距離L2‐Eとは異なる。第3距離L3‐Eと第2距離L2‐Eとを異ならせることで、半導体装置の特性を調整できる。一例として第3距離L3‐Eは第2距離L2‐Eよりも小さい。つまり、本例では、FWD領域70における第1のコンタクト部54‐1の端部55‐1を、IGBT領域80における第2のコンタクト部54‐2の端部55‐2に比べて、ウェル領域17‐Eから離間させる。これにより、FWD領域70においては破壊耐量を向上させつつ、IGBT領域80においてはIGBTとして動作する有効領域を第1実施形態に比べて広くすることができる。第3距離L3‐Eは第2距離L2‐Eの半分以下であってよく、1/4以下であってもよい。第3距離L3-Eを小さくするほど、IGBTとして動作する有効領域を広げることができる。
 本例の下面側境界82は、X軸方向において、上面側境界74よりもFWD領域70の側に位置する。つまり、本例において、カソード領域72のX軸負方向の端部は、第1の後退長さLxだけ上面側境界74から離間する。第1の後退長さLxは、X軸方向における下面側境界82から上面側境界74までの長さである。第1の後退長さLxは、Y軸方向におけるウェル領域17の内側の端部92から外周端部66に最も近いカソード領域72の端部までの第1距離L1‐E以上であってよい。カソード領域72の第1の後退長さLxは、数十μm以上数百μmであってよい。本例において、第1の後退長さLxは、100μmである。FWD領域70において、Y軸方向に加えてX軸方向においてもカソード領域72を後退させることにより、さらに破壊耐量を向上させることができる。なお、第1の後退長さLxは、X軸方向における下面側境界82から上面側境界74までの長さであって、上面側境界74は活性領域100内に位置する。これに対し、第1距離L1‐Eは、Y軸方向におけるウェル領域17の内側の端部92から外周端部66に最も近いカソード領域72の端部までの長さであって、Pウェルの端部92は活性領域100の端部に位置する。この活性領域100内の位置の違いから、後退量としては第1の後退長さLxを第1距離L1‐E以上とする。
 また、本例の半導体基板10は、FWD領域70にライフタイムキラー領域26を有する。ライフタイムキラー領域26とは、ヘリウム(He)等の不純物を導入することにより半導体基板10の内部に形成された点欠陥(空孔、複空孔およびダングリングボンド等)領域であってよい。ライフタイムキラー領域26は、点欠陥を形成するために導入された不純物そのものを有してよい。ライフタイムキラー領域26は、半導体基板10において点欠陥および不純物の少なくともいずれかによって形成された、キャリアの再結合中心を有してよい。これにより、ライフタイムキラー領域26を設けない場合と比較して、逆回復時における単位時間当たりのキャリア(例えば、正孔)の数を低減することができる。それゆえ、FWD領域70の破壊耐量を向上させることができる。
 本例のライフタイムキラー領域26は、上面視においてカソード領域72よりも広い範囲に設けられる。本例において、ライフタイムキラー領域26のX軸負方向の端部は上面側境界74と一致する。これに対して、ライフタイムキラー領域26のY軸正方向の端部は、FWD領域70のY軸正方向の端部を超えて、ゲートランナー部110の下方にも設けられる。
 ただし、ライフタイムキラー領域26が半導体基板10の外周端部66にまで達すると、ライフタイムキラー領域26を介して漏れ電流が流れる恐れがある。そこで、ライフタイムキラー領域26は、環状ゲートランナー部112の下方において、環状ゲートランナー部112のY軸方向における長さの一部に対応して設けられてよい。本例において、ライフタイムキラー領域26のY軸正方向の端部は、ウェル領域17‐Eにおける内側の端部92と外側の端部94との間に位置する。本例のライフタイムキラー領域26は、ウェル領域17‐Eに蓄積された正孔が第1のコンタクト部54‐1に集中することを有効に低減し得る。それゆえ、FWD領域70における破壊耐量を向上させることができる。
 なお、ライフタイムキラー領域26は、FWD領域70に加えて、IGBT領域80にも設けられてよい。ライフタイムキラー領域26は、FWD領域70からX軸方向に延伸し、IGBT領域80の境界メサ領域61や境界メサ領域61側のメサ領域60‐2まで設けられてもよい。
 図9は、第1変形例における延伸ゲートランナー部114近傍の上面拡大図である。本例においても、第3距離L3‐Aは第2距離L2‐Aよりも小さい。図8の例と同様に、第3距離L3‐Aは第2距離L2‐Aの半分以下であってよく、1/4以下であってもよい。活性領域100‐1と100‐2との間に位置する延伸ゲートランナー部114の下方においては、ライフタイムキラー領域26は、延伸ゲートランナー部114のY軸方向における長さ全体にわたって設けられてよい。これにより、本例においては、半導体基板10の外周端部66における漏れ電流を確実に防止しつつ、活性領域100‐1と100‐2との境界領域におけるウェル領域17‐A全体から第1のコンタクト部54‐1へ向かうキャリアの量を低減することができる。
 蓄積領域16のY軸負方向の端部19は、コンタクト部54の端部55から数μm以上20μm以下の長さ離間してよい。本例において、蓄積領域16のY軸負方向の端部19は、活性領域100‐1において2番目にY軸負方向の端部に位置するコンタクト領域15の下方に位置する。なお、図示はしないが、ライフタイムキラー領域26は、ゲートパッド部120の下方に設けられるP+型のウェル領域17の全体と重なるように設けられてよい。ただし、上述のように、漏れ電流を防ぐべく、ライフタイムキラー領域26は、外周端部66まで到達しないことが望ましい。ウェル領域17とライフタイムキラー領域26とが可能な限り深さ方向に重なるようにすることにより、FWD領域70の破壊耐量を向上させることができる。
 図10は、ライフタイムキラー領域26の深さ方向における再結合中心の濃度分布を示す図である。図10の中央にはFWD領域70におけるA‐A断面の一部を示し、図10の左側にはFWD領域70におけるC‐C断面の一部を示す。図10の右側には、深さ方向における再結合中心の濃度分布(cm-3)を示す。再結合中心の濃度は、ライフタイムキラーの濃度と読み替えてもよい。図示するように、ライフタイムキラー領域26は、ウェル領域17の底部96よりも半導体基板10の下面64に近い位置にライフタイムキラーの濃度分布のピークを有してよい。
 例えば、上面62から加速得エネルギー24MeVでHeをイオン注入することにより、ピーク深さ位置Dpkが上面62から18μm、及び、半値幅10μmであるライフタイムキラーの濃度分布を形成することができる。この場合に、上面62からウェル領域17の底部96までの深さDpは、例えば10μmである。このように、ライフタイムキラー領域26をウェル領域17よりも深く形成することにより、FWD領域70の順方向状態時にウェル領域17に蓄積される正孔の量を低減することができる。これにより、FWD領域70の逆回復時の破壊耐量を向上させることができる。
 図11は、第1距離L1に対するFWD領域70の逆回復時の破壊耐量を示す図である。縦軸は、逆回復時の破壊耐量(kW)である。横軸は、ウェル領域17の内側の端部92からFWD領域70における下面側境界82までの第1距離L1(μm)である(図5のC‐C断面を参照されたい)。図11に示す様に、第1距離L1が大きくなるほど逆回復時の破壊耐量が高くなることが確認された。
 表1は、電源電圧Vcc=800V、半導体基板10のジャンクション温度=150℃、半導体基板10の厚さTsub=110μm、FWD領域70のX軸方向の幅=200μmとした場合の他の実験結果である。本実験においては、所定の第1距離L1に対して、FWD領域70において逆回復時に流れる電流のピーク(reverse‐recovery peak current:以下において、Irp)を変えて、半導体装置200に破壊が生じるIrpを測定した。表1において、"○"は半導体装置200が破壊されなかったこと(非破壊)を意味し、"×"は半導体装置200が破壊されたことをそれぞれ意味する。距離L1=10μmおよび30μmの各々について欄が2つあるのは、各々2回ずつ測定を行ったことを意味する。本実験においても、第1距離L1が大きくなるほど逆回復時の破壊耐量が高くなることが確認された。
Figure JPOXMLDOC01-appb-T000001
 図12の(a)から(d)は、コンタクト部54と蓄積領域16との位置関係を示す図である。図12は、環状ゲートランナー部112近傍におけるFWD領域70及びIGBT領域80を示す。図12の(a)から(d)の各々においては、右側にFWD領域70の第1のコンタクト部54‐1と蓄積領域16の端部19との位置関係を示し、右側にIGBT領域80の第2のコンタクト部54‐2と蓄積領域16の端部19との位置関係を示す。
 図12の(a)は、図2に示した第1実施形態に対応する。これに対して、図12の(b)から(d)においては、蓄積領域16の端部19の位置が、FWD領域70とIGBT領域80とで異なる。それゆえ、Y軸方向において、第1の非重複領域56‐1の長さは、第2の非重複領域56‐2の長さと異なる。なお、非重複領域56のY軸方向の長さは、C‐C断面に示す第1距離L1と第2距離L2との差に相当する。
 図12の(b)において、Y軸方向における第1の非重複領域56‐1の長さは、Y軸方向における第2の非重複領域56‐2の長さよりも小さい。これに対して、図12の(c)及び(d)において、Y軸方向における第1の非重複領域56‐1の長さは、Y軸方向における第2の非重複領域56‐2の長さよりも大きい。これにより、(c)及び(d)においては、FWD領域70において逆回復時の破壊耐量を確保し、IGBT領域80においてIE効果を得ることができる範囲を(a)及び(b)の例よりもさらに広げることができる。
 なお、図12の(d)の例において、IGBT領域80は、内側トランジスタ領域に対応するIGBT領域80‐Cである。IGBT領域80‐Cにおける蓄積領域16のY軸方向の端部19は、第2のコンタクト部54‐2のY軸方向の端部55‐2よりも、半導体基板10の外周端部66に近くてよい。図12の(d)において、蓄積領域16は第2のコンタクト部54‐2よりも広い範囲に設けられる。これにより、図12の(c)の例に比べて、IGBT領域80におけるさらに高いIE効果を得ることができる。
 図13は、図1における領域Bの拡大図である。領域Bは、IGBT領域80‐RにおけるX軸及びY軸の各正方向の端部近傍を含む領域である。図13では、IGBT領域80‐Rにおいて半導体基板10の外周端部66に近い4つの第2のコンタクト部54‐2を、54‐2aから54‐2dとして示す。第2のコンタクト部54‐2aは、X軸方向において半導体基板10の外周端部66に最も近い。なお、IGBT領域80‐Rは、活性領域100のX軸方向の端部における外側トランジスタ領域の一例である。
 IGBT領域80‐Rにおける第2のコンタクト部54‐2の各々も、IGBT領域80‐Cと同様に、第2の非重複領域56‐2を有する。ただし、IGBT領域80‐Rにおいて、Y軸方向における第2の非重複領域56‐2の長さは、X軸方向において半導体基板10の外周端部66に近いほど長い。
 なお、本例において、IGBT領域80‐Rにおける蓄積領域16は、曲率を有する角部を含む。本例においては、蓄積領域16の端部19の曲線部分が、第2のコンタクト部54‐2b、54‐2c及び54‐2dを横切る。それゆえ、第2の非重複領域56‐2のY軸方向の長さは、第2のコンタクト部54‐2の各々におけるX軸正方向の端部55‐2における第2の非重複領域56‐2のY軸方向の長さとしてよい。
 これに代えて、第2のコンタクト部54‐2の各々におけるX軸負方向の端部55‐2における第2の非重複領域56‐2のY軸方向の長さとしてもよく、第2のコンタクト部54‐2の各々におけるX軸方向の中央における第2の非重複領域56‐2のY軸方向の長さとしてもよい。いずれの定義に従ったとしても、本例においては、第2の非重複領域56‐2のY軸方向の長さは、第2の非重複領域56‐2a、56‐2b、56‐2c及び56‐2dの順に大きい。
 特に、第2のコンタクト部54‐2aの全体は、蓄積領域16と重ならない。これにより、環状ゲートランナー部112の下方に位置するウェル領域17に蓄積された正孔を、第2のコンタクト部54‐2aから引き抜くことができる。それゆえ、第2のコンタクト部54‐2aと蓄積領域16とをZ軸方向に重ねる場合に比べて、IGBT領域80からFWD領域70へ回り込む正孔の量を低減することができる。
 図14は、第2実施形態における図1の領域Aの拡大図である。本例のFWD領域70においては、第1のコンタクト部54‐1のY軸方向の端部55‐1とメサ領域60‐1とが重なる位置において、少なくとも1つのメサ領域60‐1がP+型のコンタクト領域15を有しない。係る点が第1実施形態と異なる。他の点は、第1実施形態及びその変形例と同じであってよい。特に、本例においては、FWD領域70における全てのメサ領域60‐1が、端部55‐1の下方にP+型のコンタクト領域15を有しない。
 第1実施形態の様に、メサ領域60‐1においてY軸方向に所定長さを有するコンタクト領域15を設ける場合、コンタクト部54‐1の端部55‐1におけるキャリアの集中をある程度防止することができる。しかしながら、メサ領域60‐1にコンタクト領域15を設けることにより局所的にアノード側のキャリアが増加するので、Irpが増加し得る。そこで、本例においては、メサ領域60‐1におけるコンタクト領域15を、少なくとも1つのメサ領域60‐1において設けないこととした。これにより、第1実施形態に比べてIrpを抑制することができる。
 ただし、IGBT領域80は、寄生サイリスタ構造(N‐P‐N‐P構造)を有する。本例のN‐P‐N‐P構造は、N+型のエミッタ領域12と、P-型のベース領域14及びP+型のコンタクト領域15と、N型の蓄積領域16、N-型のドリフト領域18及びN型のバッファ領域20と、P+型のコレクタ領域22とから成る。ここで、仮に、P+型のコンタクト領域15をP-型のベース領域14とする場合、ラッチアップが生じ易くなるという問題がある。
 そこで、本例のIGBT領域80においては、メサ領域60‐2のY軸正方向の端部近傍に位置するコンタクト領域15をあえて残す。つまり、本例のIGBT領域80においては、第2のコンタクト部54‐2のY軸方向の端部55‐2と少なくとも1つのメサ領域60‐2とが重なる位置において、少なくとも1つのメサ領域60‐2がコンタクト領域15を有する。特に、本例においては、IGBT領域80における全てのメサ領域60‐2が、端部55‐2の下方にP+型のコンタクト領域15を有する。これにより、IGBT領域におけるラッチアップの発生を抑制することができる。
 図15は、FWD領域70における、アノード‐カソード間電圧(VAK)及び電流(I)の時間変化を示すシミュレーション結果である。縦軸は、アノード‐カソード間電圧(VAK)と、電流(I)とを示す。横軸は、時間を示す。以下では、1つのRC‐IGBTにおける複数のFWD領域70をまとめて1つの機能素子であるFWDとし、同様に、複数のIGBT領域80をまとめて1つの機能素子であるIGBTとして説明する。なお、IGBTのエミッタ電極50はFWDのアノード電極と共通であり、IGBTのコレクタ電極24はFWDのカソード電極と共通である。
 時刻T0からT1までにおいて、FWDには順方向(アノードからカソードに向かう方向)に還流電流が流れる。その後、時刻T2においてFWDのIは逆回復し始め、時刻T3においてFWDのIはIrpとなる。その後、時刻T4においてIはほぼゼロに漸近し、時刻T5においてゼロとなる。図15においては、第1実施形態のIを破線で示し、第2実施形態のIを実線で示す。第1実施形態に比べて第2実施形態の方が、Irpを抑制できることが確認された。なお、第1実施形態(破線)及び第2実施形態(実線)の両方において、時刻T0からT5までの間におけるVAKは同じである。
 図16は、第3実施形態における図1の領域Aの拡大図である。なお、図面の見易さを考慮して、図2にて示した蓄積領域16及びカソード領域72を図16においては省略するが、上述の実施形態及び変形例において述べた蓄積領域16及びカソード領域72を適宜適用してよい。本例において、IGBT領域80の境界メサ領域61は、コンタクト領域15を有せず、ベース領域14を有する。つまり、FWD領域70のX軸及びY軸方向をP-型のベース領域14により囲む。当該構成により、IGBT領域80からFWD領域70へ移動する正孔の量を第2実施形態に比べてより低減することができる。それゆえ、第2実施形態に比べて、FWD領域70の逆回復時の破壊耐量をさらに向上させることができる。
 ただし、IGBT領域80に隣接するFWD領域70のメサ領域60‐1は、コンタクト部54‐1の端部55‐1とメサ領域60‐1とが重なる位置にコンタクト領域15を有してよい。本例においては、FWD領域70におけるIGBT領域80側の3つのメサ領域60‐1がコンタクト領域15を有する。それゆえ、上面側境界74近傍の3つのメサ領域60‐1により正孔をエミッタ電極50へ引き抜くことができるので、メサ領域60‐1に全くコンタクト領域15を設けない場合に比べて、FWD領域70における逆回復時の正孔の量を低減することができる。
 ただし、IGBT領域80に隣接していない少なくとも1つのメサ領域60‐1は、コンタクト部54‐1のY軸方向の端部55‐1とメサ領域60‐1とが重なる位置にコンタクト領域15を有しなくてよい。本例においては、IGBT領域80側の3つのメサ領域60‐1以外のメサ領域60‐1にはコンタクト領域15を設けない。これにより、FWD領域70においては、IGBT領域80側の複数のメサ領域60‐1により正孔を引き抜きつつ、IGBT領域80側の複数のメサ領域60‐1"以外"のメサ領域60‐1によりウェル領域17からFWD領域70への正孔の注入を抑制することができる。本例においても、第1実施形態及びその変形例を適宜採用してもよい。
 図17は、第4実施形態における図1の領域Aの拡大図である。本例のIGBT領域80のダミートレンチ部30は、短手部を有せず長手部のみを有する。つまり、本例において、IGBT領域80のダミートレンチ部30は、直線形状である。また、IGBT領域80において、ダミートレンチ部30及びゲートトレンチ部40は、X軸方向において交互に設けられる。本例は、主として上述の点で第1から第3実施形態とは異なる。また、紙面の都合上、図17においては、蓄積領域16およびカソード領域72を省略している。但し、第1から第3実施形態及びこれらの変形例に係る技術的思想を本例に適用してよいのは勿論である。
 図18は、第5実施形態における図1の領域Aの拡大図である。図18においては、ゲート金属層48およびエッジ終端領域130等を省略している。第5実施形態においては、第2のコンタクト部54-2の構造が、第1から第4実施形態と異なる。第2のコンタクト部54-2以外の構成については、第1から第4実施形態において説明したいずれかの形態と同一である。
 第5実施形態においては、少なくとも一部の第2のコンタクト部54‐2が、上面視においてウェル領域17と重なる位置まで延伸して設けられている。一方で、全ての第1のコンタクト部54-1は、上面視においてウェル領域17と重なる位置までは延伸していない。図18においては、ウェル領域17と、複数の第1のコンタクト部54-1のY軸方向における端部55-1と、複数の第2のコンタクト部54-2のY軸方向における端部55-2とを、半導体基板10の上面に仮想的に投影した場合の、それぞれの位置関係を示している。複数の第1のコンタクト部54-1の端部55-1は、ウェル領域17と重ならない位置に配置されており、少なくとも一つの第2のコンタクト部54-2の端部55-2は、ウェル領域17と重なる位置に配置されている。
 第2のコンタクト部54-2を、ウェル領域17と重なる位置まで延伸させることで、IGBT領域80における有効領域を増大させることができる。第2のコンタクト部54-2は、ゲートランナー部110(図18においてはゲートランナー層46)とは重ならないように配置されてよい。
 IGBT領域80に設けられる全ての第2のコンタクト部54-2が、ウェル領域17と重なるように設けられてよい。他の例では、図18に示すように、複数の第2のコンタクト部54-2のうち、最もFWD領域70の近くに配置された1つ以上の第2のコンタクト部54-2は、ウェル領域17とは重ならないように配置されてよい。図18においては、第2のコンタクト部54-2のうち、ウェル領域17と重ならないものを第2のコンタクト部54-2aとし、ウェル領域17と重なるものを第2のコンタクト部54-2bとしている。
 FWD領域70の逆回復動作時に、エッジ終端領域130等からFWD領域70に向けて正孔が流れる場合がある。本例では、FWD領域70の近傍における第2のコンタクト部54-2を、ウェル領域17からの第3距離L3が比較的に大きい第2のコンタクト部54-2aとしている。これにより、FWD領域70の逆回復動作時に、第2のコンタクト部54-2aの端部に正孔が集中することを抑制できる。このため、FWD領域70の近傍における破壊耐量を向上できる。
 図19は、第6実施形態における図1の領域Aの拡大図である。図19においては、各トレンチ部、ゲート金属層48およびエッジ終端領域130等を省略している。第6実施形態においては、第2のコンタクト部54-2aの構造が、第5実施形態と異なる。第2のコンタクト部54-2a以外の構成については、第5実施形態において説明したいずれかの形態と同一である。
 第5実施形態における第2のコンタクト部54-2aは、ウェル領域17との第3距離L3は一定である。また、第2のコンタクト部54-2aと、第2のコンタクト部54-2bとの間で、第3距離L3がステップ状に変化している。これに対して第6実施形態における第2のコンタクト部54-2aは、X軸方向において第2のコンタクト部54-2bに近づくほど、ウェル領域17との第3距離L3が小さくなる。第2のコンタクト部54-2aとウェル領域17との第3距離L3は、第2のコンタクト部54-2bからの距離に応じて2段階以上で変化してよい。このような構成によっても、第2のコンタクト部54-2aの端部に正孔が集中することを抑制できる。このため、FWD領域70の近傍における破壊耐量を向上できる。
 第2のコンタクト部54-2bのうち、最もFWD領域70側に配置された第2のコンタクト部54-2bと、FWD領域70の端部(上面側境界74)とのX軸方向における最短距離を第6距離L6とする。上述したように、半導体基板10には、FWD領域70と、IGBT領域80においてFWD領域70と隣接する部分とに、ライフタイムキラー領域26が設けられてよい。FWD領域70の端部(上面側境界74)と、IGBT領域80におけるライフタイムキラー領域26の端部25とのX軸方向における最短距離を第7距離L7とする。第6距離L6は、第7距離L7と同一か、または、小さくてよい。第6距離L6は、第7距離L7の半分以下であってもよい。
 第6距離L6は、半導体基板10の厚みの半分以上であり、且つ、当該厚み以下であってもよい。第6距離L6は、50μm以上であってよく、80μm以上であってもよい。第6距離L6は、150μm以下であってよく、100μm以下であってもよい。第6距離L6を適切に設定することで、第2コンタクト部54-2bの先端に正孔が集中することを抑制しつつ、IGBT領域80の有効領域を最大化できる。
 なお、Y軸方向において最もゲートランナー層46の近くに配置されたコンタクト領域15の、Y軸方向における長さL15は、10μm以上であってよく、15μm以上であってよい。当該コンタクト領域15の長さL15は、当該コンタクト領域15よりもIGBT領域80の中心側に配置された他のコンタクト領域15の長さL16よりも大きくてよい。ゲートランナー層46の近傍に配置されたコンタクト領域15の長さL15を大きくすることで、エミッタ領域12とゲートランナー層46との距離を確保できる。
 ゲートランナー層46の近傍ではゲートランナー層46の段差の影響で、フォトエッチング工程において形成するレジストマスクの出来栄えにばらつきが発生しやすい。そのため、エミッタ領域12とゲートランナー層46との距離が小さいと、エミッタ領域12を形成するために用いるレジストマスクの寸法ばらつきが生じるため、一部のエミッタ領域12に精度よく不純物を注入できない場合がある。不純物の注入にバラツキが生じると、トランジスタの閾値電圧等にバラツキが生じてしまう。上述したように、Y軸方向において最も外側に配置されたコンタクト領域15の長さを大きくすることで、エミッタ領域12とゲートランナー層46の距離を十分確保でき、それぞれのエミッタ領域12に精度よく不純物を注入できる。当該コンタクト領域15の構造は、いずれの実施形態に適用してもよい。
 なお、本例では、第2のコンタクト部54-2を、第1のコンタクト部54-1よりも延伸させている。詳細には、第2のコンタクト部54-2をウェル領域17と重なる位置まで延伸させている。これにより、エミッタ領域12がゲートトレンチ部40と接触する部分の長さについて全セル数を合計した総エミッタ長さを増大させるために、第2のコンタクト部54-2が第1のコンタクト部54-1よりも延伸する範囲に、エミッタ領域12を設けるとよい。この場合であっても、Y軸方向において最もゲートランナー層46の近くに配置されたコンタクト領域15の長さL15が、当該コンタクト領域15よりもIGBT領域80の中心側に配置された他のコンタクト領域15の長さL16よりも大きくてよい。
 図20は、第5実施形態における、それぞれのコンタクト部54と、蓄積領域16の端部19との位置関係を示す図である。本例では、それぞれのコンタクト部54の端部のY軸方向における位置に応じて、蓄積領域16の端部19のY軸方向における位置が変化している。このため、IGBT領域80における少なくとも一部の蓄積領域16の端部19は、FWD領域70における蓄積領域16の端部19よりも、ウェル領域17の近くに位置する。これにより、蓄積領域16が設けられた有効領域を増加させることができる。本例では、第2のコンタクト部54-2bと、第2のコンタクト部54-2aとの間において、端部19のY軸方向における位置がステップ状に変化している。なお、蓄積領域16は、ウェル領域17とは重ならない位置に設けられている。
 図21は、第6実施形態における、それぞれのコンタクト部54と、蓄積領域16の端部19との位置関係を示す図である。本例においても、それぞれのコンタクト部54の端部のY軸方向における位置に応じて、蓄積領域16の端部19のY軸方向における位置が変化している。本例では、第2のコンタクト部54-2aが設けられた領域において、端部19のY軸方向における位置が連続的に変化している。つまり、第2のコンタクト部54-2aが設けられた領域において、第2のコンタクト部54-2bに近づくほど、端部19とウェル領域17との距離が小さくなっている。
 なお、第5実施形態および第6実施形態における蓄積領域16の端部19は、図19に示した例と同様であってもよい。つまり、蓄積領域16の端部19とウェル領域17との距離は、コンタクト部54の端部の位置によらず一定であってもよい。図19の例では、蓄積領域16の端部19は、Y軸方向において最も外側に配置されたコンタクト領域15と重なって配置されている。各例において、蓄積領域16の端部19は、それぞれのコンタクト部54のY軸方向の端部よりも、活性領域100の中心側に配置されていてよい。
 図22は、ゲートトレンチ部40の先端41の拡大図である。図22に示すように、Y軸方向に沿って直線状に設けられた2本のゲートトレンチ部40は、先端41により互いに接続されている。先端41は、上面視において少なくとも一部が曲線形状である。先端41の曲率半径をrとする。先端41の曲率半径は、先端41の外側エッジの曲率半径を用いてよい。曲率半径rは、1.15μm以上であることが好ましい。曲率半径rは、2.0μm以上であってもよい。また、Y軸方向に沿って直線状に設けられるゲートトレンチ部40のピッチをPとする。ゲートトレンチ部40のピッチPは、それぞれのゲートトレンチ部40のX軸正側エッジ間の距離であってよい。曲率半径rは、ピッチPの半分以上であってよく、3/4以上であってもよい。
 曲率半径rが小さいと、ゲートトレンチ部40のゲート絶縁膜42が薄くなる場合がある。また、曲率半径rが小さいと、エッチング精度が悪くなり、先端41におけるトレンチ幅が小さくなる場合がある。曲率半径rを大きくすることで、ゲート絶縁膜42の膜厚を維持し、また、トレンチ幅を維持することができる。
 先端41の曲率半径を大きくすべく、先端41で接続される2本のゲートトレンチ部40の間には、ダミートレンチ部30が配置されていることが好ましい。これにより、メサ領域60の幅を大きくしないで、先端41の曲率を容易に大きくできる。
 図23は、ゲートトレンチ部40およびダミートレンチ部30の上面視における形状例を示す図である。本例では、先端41で接続される2本のゲートトレンチ部40の間に、2本のダミートレンチ部30が設けられている。2本のダミートレンチ部30は、曲線状の先端31で互いに接続されている。このような構成によっても、先端41の曲率を容易に大きくできる。図22および図23に示したゲートトレンチ部40およびダミートレンチ部30は、いずれの実施形態に適用してもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。
 10・・半導体基板、12・・エミッタ領域、13・・アノード領域、14・・ベース領域、15・・コンタクト領域、16・・蓄積領域、17・・ウェル領域、18・・ドリフト領域、19・・端部、20・・バッファ領域、22・・コレクタ領域、24・・コレクタ電極、25・・・端部、26・・ライフタイムキラー領域、27、28・・接続層、30・・ダミートレンチ部、31・・・先端、32・・ダミートレンチ絶縁膜、33・・ダミートレンチ導電部、34・・ダミートレンチ、36・・絶縁膜、38・・層間絶縁膜、40・・ゲートトレンチ部、41・・・先端、42・・ゲート絶縁膜、43・・ゲート導電部、44・・ゲートトレンチ、46・・ゲートランナー層、47・・コンタクト部、48・・ゲート金属層、50・・エミッタ電極、52、53、54・・コンタクト部、55・・端部、56・・非重複領域、58・・重複領域、60・・メサ領域、61・・境界メサ領域、62・・上面、64・・下面、66・・外周端部、70・・FWD領域、72・・カソード領域、74・・上面側境界、80・・IGBT領域、82・・下面側境界、92・・端部、94・・端部、96・・底部、98・・端部、100・・活性領域、110・・ゲートランナー部、112・・環状ゲートランナー部、114・・延伸ゲートランナー部、120・・ゲートパッド部、130・・エッジ終端領域、200・・半導体装置

Claims (21)

  1.  1つの半導体基板にトランジスタ領域とダイオード領域とを有する半導体装置であって、
     前記半導体装置は、
     前記トランジスタ領域にゲート電位を供給するゲートランナー部と、
     前記ゲートランナー部の下方に設けられた第1導電型のウェル領域と
    を有し、
     前記ダイオード領域は、
     前記半導体基板上において、第1方向に各々延伸し且つ前記第1方向とは直交する第2方向において互いに離間して設けられた、複数の第1のコンタクト部と、
     前記複数の第1のコンタクト部を介して前記半導体基板の上方に設けられたエミッタ電極と電気的に接続し、且つ、前記ウェル領域における第1導電型のドーパント濃度よりも低いドーパント濃度を有する、第1導電型のアノード領域と、
     前記半導体基板の下面から予め定められた深さ範囲に設けられた、第2導電型のカソード領域と
    を有し、
     前記ウェル領域は、前記第1方向において前記ダイオード領域に接し、
     前記第1方向において互いに対向する前記ウェル領域の端部と前記複数の第1のコンタクト部の少なくとも1つの第1のコンタクト部の端部と前記カソード領域の端部とを前記半導体基板の上面に仮想的に投影した場合に、前記ウェル領域の前記端部と前記カソード領域の前記端部との最短距離である第1距離は、前記ウェル領域の前記端部と前記少なくとも1つの第1のコンタクト部の前記端部との最短距離である第2距離よりも大きい
    半導体装置。
  2.  前記半導体基板は、
     前記半導体基板中において前記アノード領域よりも下方に位置する第2導電型のドリフト領域と、
     少なくとも前記ダイオード領域に設けられ、前記半導体基板の深さ方向において前記アノード領域と前記ドリフト領域との間に位置する、第2導電型の蓄積領域と
    を有し、
     前記蓄積領域の前記第1方向の端部は、前記少なくとも1つの第1のコンタクト部の前記端部と前記カソード領域の前記端部との間に位置する
    請求項1に記載の半導体装置。
  3.  前記第1距離は、前記半導体基板の前記上面から前記ウェル領域の底部までの深さより大きく、且つ、前記半導体基板の前記上面から前記下面までの厚さよりも小さい
    請求項1または2に記載の半導体装置。
  4.  前記第2距離は、前記第1距離の40%以上60%以下である
    請求項1から3のいずれか一項に記載の半導体装置。
  5.  前記第2距離は、前記第1距離の半分よりも小さい
    請求項1から3のいずれか一項に記載の半導体装置。
  6.  前記トランジスタ領域は、
     前記半導体基板上において、第1方向に各々延伸し且つ前記第1方向とは直交する第2方向において互いに離間して設けられた、複数の第2のコンタクト部
    を有し、
     前記第1方向において互いに対向する前記ウェル領域の前記端部と前記複数の第2のコンタクト部の少なくとも1つの第2のコンタクト部の端部とを前記半導体基板の前記上面に仮想的に投影した場合に、前記ウェル領域の前記端部と前記少なくとも1つの第2のコンタクト部の前記端部との最短距離である第3距離は、前記第2距離とは異なる
    請求項1から5のいずれか一項に記載の半導体装置。
  7.  前記半導体装置は、複数のトランジスタ領域を有し、
     前記ゲートランナー部は、
     前記複数のトランジスタ領域のうち、前記第1方向において互いに隣接する少なくとも2つのトランジスタ領域の間に設けられた延伸ゲートランナー部と、
     前記複数のトランジスタ領域を囲む様に設けられた、環状ゲートランナー部と
    を含み、
     前記第1距離および前記第2距離を規定するのに用いられる前記ウェル領域は、前記延伸ゲートランナー部の下方に位置する
    請求項1から6のいずれか一項に記載の半導体装置。
  8.  前記延伸ゲートランナー部の下方に設けられた前記ウェル領域を用いて規定される前記第1距離は、前記環状ゲートランナー部の下方に設けられた前記ウェル領域を用いて規定される前記第1距離よりも長く、
     前記延伸ゲートランナー部の下方に設けられた前記ウェル領域を用いて規定される前記第2距離は、前記環状ゲートランナー部の下方に設けられた前記ウェル領域を用いて規定される前記第2距離よりも長い
    請求項7に記載の半導体装置。
  9.  前記半導体基板は、少なくとも前記ゲートランナー部の下方に設けられたライフタイムキラー領域を有する
    請求項7または8に記載の半導体装置。
  10.  前記ライフタイムキラー領域は、
     前記延伸ゲートランナー部の下方において、前記延伸ゲートランナー部の前記第1方向における長さ全体にわたって設けられ、
     前記環状ゲートランナー部の下方において、前記環状ゲートランナー部の前記第1方向における長さの一部に対応して設けられる
    請求項9に記載の半導体装置。
  11.  前記ライフタイムキラー領域は、前記ウェル領域の底部よりも前記半導体基板の下面に近い位置にライフタイムキラーの濃度分布のピークを有する
    請求項9または10に記載の半導体装置。
  12.  前記ライフタイムキラー領域は、前記カソード領域よりも広い範囲に設けられる
    請求項9から11のいずれか一項に記載の半導体装置。
  13.  前記半導体基板は、
     前記半導体基板中において前記アノード領域よりも下方に位置する第2導電型のドリフト領域と、
     少なくとも前記ダイオード領域に設けられ、前記半導体基板の深さ方向において前記アノード領域と前記ドリフト領域との間に位置する、第2導電型の蓄積領域と
    を有し、
     前記第1方向において互いに対向する前記ウェル領域の前記端部と前記複数の第1のコンタクト部の少なくとも1つの第1のコンタクト部の前記端部と前記蓄積領域の前記端部と前記カソード領域の前記端部とを前記半導体基板の上面に仮想的に投影した場合に、
     前記少なくとも1つの第1のコンタクト部の前記端部と前記蓄積領域の前記端部との最短距離である第4距離は、前記蓄積領域の前記端部と前記カソード領域の前記端部との最短距離である第5距離よりも大きい
    請求項1から12のいずれか一項に記載の半導体装置。
  14.  前記半導体基板は、
     前記半導体基板中において前記アノード領域よりも下方に位置する第2導電型のドリフト領域と、
     少なくとも前記ダイオード領域に設けられ、前記半導体基板の深さ方向において前記アノード領域と前記ドリフト領域との間に位置する、第2導電型の蓄積領域と
    を有し、
     前記第1方向において互いに対向する前記ウェル領域の前記端部と前記複数の第1のコンタクト部の少なくとも1つの第1のコンタクト部の前記端部と前記蓄積領域の前記端部と前記カソード領域の前記端部とを前記半導体基板の前記上面に仮想的に投影した場合に、
     前記第2距離は、前記蓄積領域の前記端部と前記カソード領域の前記端部との最短距離である第5距離よりも大きい
    請求項1から13のいずれか一項に記載の半導体装置。
  15.  前記トランジスタ領域は、前記半導体基板の下面側に設けられた第2導電型のコレクタ領域を有し、
     前記第2方向における前記コレクタ領域と前記カソード領域との境界である下面側境界から、前記半導体基板の上面側における前記トランジスタ領域と前記ダイオード領域との境界である上面側境界までの長さである前記カソード領域の第1の後退長さは、前記第1距離以上である
    請求項1から14のいずれか一項に記載の半導体装置。
  16.  前記第3距離は、前記第2距離よりも小さい
     請求項6に記載の半導体装置。
  17.  前記トランジスタ領域は、前記半導体基板上において、第1方向に各々延伸し且つ前記第1方向とは直交する第2方向において互いに離間して設けられた、複数の第2のコンタクト部を有し、
     前記ウェル領域と、前記複数の第1のコンタクト部の前記第1方向における端部と、前記複数の第2のコンタクト部の前記第1方向における端部とを前記半導体基板の前記上面に仮想的に投影した場合に、前記複数の第1のコンタクト部の端部は、前記ウェル領域と重ならない位置に配置されており、少なくとも一つの第2のコンタクト部の端部は、前記ウェル領域と重なる位置に配置されている
     請求項1に記載の半導体装置。
  18.  前記半導体基板は、前記ダイオード領域と、前記トランジスタ領域において前記ダイオード領域と隣接する部分とに設けられたライフタイムキラー領域を有し、
     前記ダイオード領域の端部と、前記ウェル領域と重なる位置まで設けられた前記第2のコンタクト部との前記第2方向における最短距離である第6距離は、前記ダイオード領域の端部と、前記トランジスタ領域における前記ライフタイムキラー領域の端部との、前記第2方向における最短距離である第7距離以下である
     請求項17に記載の半導体装置。
  19.  前記半導体基板は、
     前記半導体基板中において前記アノード領域よりも下方に位置する第2導電型のドリフト領域と、
     前記ダイオード領域および前記トランジスタ領域に設けられ、前記半導体基板の深さ方向において前記アノード領域と前記ドリフト領域との間の深さに位置する、第2導電型の蓄積領域と
    を有し、
     前記トランジスタ領域における少なくとも一部の前記蓄積領域の前記第1方向の端部は、前記ダイオード領域における前記蓄積領域の前記第1方向の端部よりも、前記ウェル領域の近くに位置する
     請求項17または18に記載の半導体装置。
  20.  前記トランジスタ領域は、前記半導体基板の上面に露出し、且つ、前記第1方向に沿って交互に配置された第1導電型のコンタクト領域と第2導電型のエミッタ領域とを有し、
     前記第1方向において最も前記ゲートランナー部の近くに配置された前記コンタクト領域の前記第1方向における長さは、当該コンタクト領域よりも前記トランジスタ領域の前記第1方向における中心側に配置された他の前記コンタクト領域の長さよりも大きい
     請求項1から19のいずれか一項に記載の半導体装置。
  21.  1つの半導体基板にトランジスタ領域とダイオード領域とを有する半導体装置であって、
     前記半導体装置は、
     前記トランジスタ領域にゲート電位を供給するゲートランナー部と、
     前記ゲートランナー部の下方に設けられた第1導電型のウェル領域と
    を有し、
     前記ダイオード領域は、前記半導体基板上において、第1方向に各々延伸し且つ前記第1方向とは直交する第2方向において互いに離間して設けられた、複数の第1のコンタクト部を有し、
     前記トランジスタ領域は、前記半導体基板上において、第1方向に各々延伸し且つ前記第1方向とは直交する第2方向において互いに離間して設けられた、複数の第2のコンタクト部を有し、
     前記ウェル領域と、前記複数の第1のコンタクト部の前記第1方向における端部と、前記複数の第2のコンタクト部の前記第1方向における端部とを前記半導体基板の上面に仮想的に投影した場合に、前記複数の第1のコンタクト部の端部は、前記ウェル領域と重ならない位置に配置されており、少なくとも一つの第2のコンタクト部の端部は、前記ウェル領域と重なる位置に配置されている半導体装置。
PCT/JP2018/027937 2018-02-14 2018-07-25 半導体装置 WO2019159391A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880052063.8A CN111033751B (zh) 2018-02-14 2018-07-25 半导体装置
JP2020500252A JP6947281B2 (ja) 2018-02-14 2018-07-25 半導体装置
US16/773,889 US11380784B2 (en) 2018-02-14 2020-01-27 Semiconductor device
US17/847,174 US11949005B2 (en) 2018-02-14 2022-06-23 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024211 2018-02-14
JP2018-024211 2018-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/773,889 Continuation US11380784B2 (en) 2018-02-14 2020-01-27 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019159391A1 true WO2019159391A1 (ja) 2019-08-22

Family

ID=67619247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027937 WO2019159391A1 (ja) 2018-02-14 2018-07-25 半導体装置

Country Status (4)

Country Link
US (2) US11380784B2 (ja)
JP (1) JP6947281B2 (ja)
CN (1) CN111033751B (ja)
WO (1) WO2019159391A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437140A (zh) * 2020-03-23 2021-09-24 株式会社东芝 半导体装置
JPWO2022009582A1 (ja) * 2020-07-07 2022-01-13
WO2023002767A1 (ja) * 2021-07-21 2023-01-26 ローム株式会社 半導体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814694B (zh) 2014-10-03 2019-03-08 富士电机株式会社 半导体装置以及半导体装置的制造方法
CN110603645B (zh) * 2017-05-08 2023-09-19 罗姆股份有限公司 半导体装置
US11069770B2 (en) * 2018-10-01 2021-07-20 Ipower Semiconductor Carrier injection control fast recovery diode structures
JP7085975B2 (ja) * 2018-12-17 2022-06-17 三菱電機株式会社 半導体装置
JP7403386B2 (ja) * 2020-05-27 2023-12-22 三菱電機株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103400A (ja) * 2015-12-03 2017-06-08 富士電機株式会社 半導体装置
WO2017155122A1 (ja) * 2016-03-10 2017-09-14 富士電機株式会社 半導体装置
JP2017224685A (ja) * 2016-06-14 2017-12-21 株式会社デンソー 半導体装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217419A (ja) 2000-02-03 2001-08-10 Denso Corp 半導体装置
JP4639431B2 (ja) 2000-05-24 2011-02-23 富士電機システムズ株式会社 トレンチゲート型半導体装置
EP2103641B1 (en) 2006-12-12 2014-04-02 Toyobo Co., Ltd. Polyamide-imide resin, colorless transparent flexible metal laminate made of the same, and wiring board
JP5045733B2 (ja) * 2008-12-24 2012-10-10 株式会社デンソー 半導体装置
JP4905559B2 (ja) * 2009-01-27 2012-03-28 株式会社デンソー 半導体装置
JP5672766B2 (ja) 2010-05-17 2015-02-18 株式会社デンソー 半導体装置
JP5126335B2 (ja) 2010-10-18 2013-01-23 富士電機株式会社 トレンチゲート型半導体装置
JP5321669B2 (ja) 2010-11-25 2013-10-23 株式会社デンソー 半導体装置
DE112014007266T5 (de) 2014-12-17 2017-09-07 Mitsubishi Electric Corporation Halbleitervorrichtung
JP6335829B2 (ja) * 2015-04-06 2018-05-30 三菱電機株式会社 半導体装置
US10332990B2 (en) * 2015-07-15 2019-06-25 Fuji Electric Co., Ltd. Semiconductor device
JP6668798B2 (ja) 2015-07-15 2020-03-18 富士電機株式会社 半導体装置
US10056370B2 (en) * 2015-07-16 2018-08-21 Fuji Electric Co., Ltd. Semiconductor device
JP6531589B2 (ja) * 2015-09-17 2019-06-19 株式会社デンソー 半導体装置
JP6414090B2 (ja) * 2016-01-27 2018-10-31 株式会社デンソー 半導体装置
CN107851666B (zh) 2016-02-15 2021-11-23 富士电机株式会社 半导体装置
JP6668804B2 (ja) 2016-02-16 2020-03-18 富士電機株式会社 半導体装置
DE102016116019B4 (de) * 2016-08-29 2023-11-23 Infineon Technologies Ag Verfahren zum Bilden eines Halbleiterbauelements
JP2018092968A (ja) * 2016-11-30 2018-06-14 ルネサスエレクトロニクス株式会社 半導体装置、rc−igbt及び半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103400A (ja) * 2015-12-03 2017-06-08 富士電機株式会社 半導体装置
WO2017155122A1 (ja) * 2016-03-10 2017-09-14 富士電機株式会社 半導体装置
JP2017224685A (ja) * 2016-06-14 2017-12-21 株式会社デンソー 半導体装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437140A (zh) * 2020-03-23 2021-09-24 株式会社东芝 半导体装置
JP2021150565A (ja) * 2020-03-23 2021-09-27 株式会社東芝 半導体装置
JP7335190B2 (ja) 2020-03-23 2023-08-29 株式会社東芝 半導体装置
JPWO2022009582A1 (ja) * 2020-07-07 2022-01-13
WO2022009582A1 (ja) * 2020-07-07 2022-01-13 富士電機株式会社 半導体モジュール
JP7294540B2 (ja) 2020-07-07 2023-06-20 富士電機株式会社 半導体モジュール
WO2023002767A1 (ja) * 2021-07-21 2023-01-26 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
JPWO2019159391A1 (ja) 2020-07-27
CN111033751B (zh) 2023-08-18
US20220328664A1 (en) 2022-10-13
JP6947281B2 (ja) 2021-10-13
US11380784B2 (en) 2022-07-05
CN111033751A (zh) 2020-04-17
US20200161457A1 (en) 2020-05-21
US11949005B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2019159391A1 (ja) 半導体装置
WO2019159657A1 (ja) 半導体装置
JP6645594B2 (ja) 半導体装置
US10741547B2 (en) Semiconductor device
US11139291B2 (en) Semiconductor device
US11810914B2 (en) Semiconductor device
JPWO2018220879A1 (ja) 半導体装置
EP3340311B1 (en) Trench gate igbt
CN111146197A (zh) 半导体装置及制造方法
JP7346889B2 (ja) 半導体装置
JP2019186312A (ja) 半導体装置
JP2023139265A (ja) 半導体装置
US11715776B2 (en) Semiconductor device and semiconductor circuit
US20240047541A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906094

Country of ref document: EP

Kind code of ref document: A1