WO2019146959A1 - 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지 - Google Patents

촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지 Download PDF

Info

Publication number
WO2019146959A1
WO2019146959A1 PCT/KR2019/000697 KR2019000697W WO2019146959A1 WO 2019146959 A1 WO2019146959 A1 WO 2019146959A1 KR 2019000697 W KR2019000697 W KR 2019000697W WO 2019146959 A1 WO2019146959 A1 WO 2019146959A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst layer
solvent
ethoxyethanol
weight
Prior art date
Application number
PCT/KR2019/000697
Other languages
English (en)
French (fr)
Inventor
길이진
김도영
김운조
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19743503.5A priority Critical patent/EP3671920B1/en
Priority to JP2020514240A priority patent/JP7152049B2/ja
Priority to CN201980004309.9A priority patent/CN111095637B/zh
Priority to US16/644,623 priority patent/US11349139B2/en
Publication of WO2019146959A1 publication Critical patent/WO2019146959A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8892Impregnation or coating of the catalyst layer, e.g. by an ionomer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a catalyst layer, a catalyst layer, a membrane-electrode assembly including the same, and a fuel cell.
  • the hydrocarbon-based membrane-electrode assembly requires a study of maintaining a certain amount of solvent in the catalyst electrode for bonding the electrolyte membrane and the catalyst electrode.
  • the solvent in the catalyst electrode plays a role of raising the transfer rate to the electrolyte membrane and has an advantage of facilitating the storage of the catalyst electrode for a long period of time and the crack and dispersion in the preparation of the electrode slurry.
  • the solvent in the catalyst electrode has a problem that acts as an element that interferes with the activity of the membrane-electrode assembly (MEA).
  • Electrode assembly acts as a residual solvent in the membrane-electrode assembly (MEA) to lower the activation speed of the membrane-electrode assembly (MEA).
  • the most commonly used solvent in the electrode is glycerol.
  • glycerol is not completely removed during membrane-electrode assembly (MEA) transfer because the boiling point is about 290 ° C., and the gas / .
  • MEA membrane-electrode assembly
  • it has a disadvantage that it is difficult to remove because it has a strong viscosity. Therefore, in order to improve the activity rate of the membrane-electrode assembly (MEA), a solvent which acts like glycerol and is easy to remove must be used.
  • the present invention relates to a catalyst layer production method, a catalyst layer, a membrane-electrode assembly including the same, and a fuel cell.
  • An embodiment of the present disclosure includes an ionomer; And a solvent comprising 2-ethoxyethanol and an alcohol-based solvent having 1 to 6 carbon atoms; Adding a carbon powder catalyst to the solution to form a catalyst slurry composition; And a step of coating the catalyst slurry composition on a substrate and drying the catalyst slurry composition to form a catalyst layer, wherein the weight ratio of the carbon powder catalyst, the alcohol solvent having 1 to 6 carbon atoms and the 2-ethoxyethanol in the catalyst slurry composition is 1: 2.5 to 2.5: 1 to 4.5: 4.5, and the content of the solvent containing 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms in the catalyst layer is 10 to 20 parts by weight
  • a method for producing a sintered catalyst layer is provided.
  • one embodiment of the present disclosure is directed to a carbon powder catalyst; Ionomers; And a solvent comprising 2-ethoxyethanol and an alcoholic solvent having 1 to 6 carbon atoms, wherein the content of the solvent comprising the 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms Based on 100 parts by weight of the catalyst layer, 10 to 20 parts by weight of the catalyst layer.
  • one embodiment of the present disclosure includes a polymer electrolyte membrane provided between the anode catalyst layer, the cathode catalyst layer, and the anode catalyst layer and the cathode catalyst layer, and at least one of the anode catalyst layer and the cathode catalyst layer includes the above- - electrode assembly.
  • one embodiment of the present invention provides a fuel cell including the above-described membrane-electrode assembly (MEA).
  • MEA membrane-electrode assembly
  • a catalyst layer is formed by forming a catalyst slurry composition to which a solvent containing 2-ethoxyethanol is added, and then performing ultrasonic treatment to re-homogenize the catalyst slurry composition, (MEA) internal activity rate as compared to a catalyst layer prepared using glycerol while improving acidity.
  • MEA ultrasonic treatment
  • the method of manufacturing a catalyst layer according to one embodiment of the present invention can reduce ionomer aggregation and cracking as compared with the conventional manufacturing method.
  • the method of manufacturing a catalyst layer according to one embodiment of the present invention reduces the bunching phenomenon and cracking phenomenon of the ionomer, thereby reducing the permeation of fuel and improving the open circuit voltage (OCV) of the fuel cell. Can be improved.
  • FIG. 1 schematically shows the structure of a membrane-electrode assembly.
  • Example 2 shows the performance of an electrode manufactured according to the method of manufacturing a membrane-electrode assembly according to Example 1, Example 2, and Comparative Example 1 of the present invention.
  • FIG. 3 shows the activity rates of the electrodes manufactured according to the method of manufacturing the membrane-electrode assembly according to Example 1, Example 2, and Comparative Example 1 of the present invention.
  • phase means not only physically abutting on one layer but also located on the position. That is, the layers located on any one layer may have other layers in between.
  • An embodiment of the present disclosure includes an ionomer; And a solvent comprising 2-ethoxyethanol and an alcohol-based solvent having 1 to 6 carbon atoms; Adding a carbon powder catalyst to the solution to form a catalyst slurry composition; And a step of coating the catalyst slurry composition on a substrate and drying the catalyst slurry composition to form a catalyst layer, wherein the weight ratio of the carbon powder catalyst, the alcohol solvent having 1 to 6 carbon atoms and the 2-ethoxyethanol in the catalyst slurry composition is 1: 2.5 to 2.5: 1 to 4.5: 4.5, and the content of the solvent containing 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms in the catalyst layer is 10 to 20 parts by weight
  • a method for producing a sintered catalyst layer is provided.
  • the boiling point of the 2-ethoxyethanol is 135 ° C, and thus a solvent having a boiling point higher than that of the conventional solvent such as glycerol (boiling point: 290 ° C ),
  • the drying process is carried out at a lower temperature and shorter drying time. Accordingly, in the process of transferring the MEA including the catalyst layer, a similar transfer rate and performance can be obtained while having an improved activation rate.
  • the solution comprises an ionomer; And a solvent comprising 2-ethoxyethanol and an alcohol-based solvent having 1 to 6 carbon atoms.
  • the carbon powder catalyst may be a catalyst in which a metal is supported on the surface of a carbon powder.
  • the carbon powder catalyst may be a catalyst (Pt / C) in which platinum is supported on the surface of carbon powder.
  • Examples of the carbon powder include, but are not limited to, graphite, carbon black, acetylene black, denka black, cane black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, Ring, carbon nanowire, fullerene (C60), and super P may be used.
  • the supported amount of platinum relative to carbon is preferably 10 parts by weight to 80 parts by weight, more preferably 30 parts by weight to 70 parts by weight, based on 100 parts by weight of carbon, Do not.
  • the thickness of the electrode in the membrane-electrode assembly may be reduced. If the thickness of the electrode is reduced, the probability of hydrogen and oxygen gas reaching the membrane directly without being oxidized / reduced in the electrode layer is increased, and the performance of the entire membrane-electrode assembly is lowered and durability may be deteriorated.
  • the ionomer is a fluorine-based polymer.
  • the ionomer may serve as a path for transferring ions generated by the reaction between the fuel and the catalyst, such as hydrogen or methanol, to the electrolyte membrane.
  • the catalyst such as hydrogen or methanol
  • the ionomer may be a perfluorosulfonic acid (PFSA) -based polymer or a perfluorocarboxylic acid (PFCA) -based polymer.
  • PFSA perfluorosulfonic acid
  • PFCA perfluorocarboxylic acid
  • Nafion (Dupont) can be used as the perfluorosulfonic acid-based polymer
  • Flemion Asahi Glass
  • the weight average molecular weight of the ionomer may be 240 g / mol to 200,000 g / mol, specifically 240 g / mol to 10,000 g / mol.
  • the content of the ionomer is preferably 5 parts by weight to 150 parts by weight per 100 parts by weight of the carbon powder catalyst, but is not limited thereto.
  • the content of the ionomer is less than 5 parts by weight with respect to the carbon powder catalyst, the ion transmission to the electrolyte membrane is insufficient, and when the amount of the ionomer is more than 150 parts by weight based on the carbon powder catalyst, permeation of gas is prevented, Degrade performance.
  • the alcohol solvent having 1 to 6 carbon atoms is a solvent capable of dispersing the catalyst, and it is preferable to use a solvent capable of evaporating in the range of 30 ° C to 100 ° C. Therefore, water or an alcohol-based solvent such as methanol, ethanol and propanol is suitable.
  • a solvent having a high volatilization temperature for example, a solvent capable of evaporating at a temperature higher than 100 ° C.
  • the density of the electrode becomes dense during the production of the electrode, I am crazy.
  • 2-ethoxyethanol is used for the purpose of bonding a membrane-electrode assembly (MEA) and retaining residual solvent, it is not suitable to use it as an alcoholic solvent having 1 to 6 carbon atoms. Furthermore, since the boiling point of 2-ethoxyethanol is 135 ° C, it is out of the suitable temperature range for the alcohol solvent having 1 to 6 carbon atoms, so that it is not suitable for use as the alcohol solvent having 1 to 6 carbon atoms.
  • the alcohol solvent having 1 to 6 carbon atoms may be one or more selected from the group consisting of water, methanol, ethanol, butanol, 1-propanol and isopropanol. Preferably water or 1-propanol, but is not limited thereto.
  • the alcohol solvent having 1 to 6 carbon atoms is water.
  • the alcohol solvent having 1 to 6 carbon atoms is 1-propanol.
  • the alcohol solvents having 1 to 6 carbon atoms are water and 1-propanol.
  • the content of the alcohol solvent having 1 to 6 carbon atoms is preferably 5 parts by weight to 99 parts by weight, based on 100 parts by weight of the total catalyst slurry composition, but is not limited thereto. Specifically, it may be 5 parts by weight to 30 parts by weight, preferably 10 parts by weight to 20 parts by weight.
  • the solvent comprising the 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms may be composed of 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms.
  • the alcohol-based solvent may satisfy a weight ratio of 1: 1 to 2: 1, and preferably a weight ratio of 2: 1. When the weight ratio of 2: 1 is satisfied, it is easy to control the drying time while maintaining the dispersibility of the catalyst.
  • the solvent comprising the 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms is 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms
  • the 2- The content of ethoxyethanol is preferably 30 parts by weight to 70 parts by weight based on 100 parts by weight of the catalyst slurry composition, but is not limited thereto.
  • the catalyst slurry composition is one wherein the weight ratio of the carbon catalyst powder, the alcohol solvent having 1 to 6 carbon atoms and the 2-ethoxy ethanol is 1: 2.5: 2.5 to 1: 4.5: 4.5 .
  • the catalyst slurry composition is prepared by mixing a carbon catalyst powder, an alcohol solvent having 1 to 6 carbon atoms and 2-ethoxyethanol in a weight ratio of 1: 3: 3 to 1: 4: 4 It can be satisfied.
  • the catalyst slurry composition when the content of 2-ethoxyethanol is larger than the range of the weight ratio of the carbon catalyst powder, the alcohol solvent having 1 to 6 carbon atoms and the 2-ethoxyethanol, the catalyst slurry composition is settled So that a stable dispersion state can not be achieved.
  • the content of the 2-ethoxyethanol is smaller than that of the carbon catalyst powder, the alcohol solvent having 1 to 6 carbon atoms and the 2-ethoxyethanol, the amount of the residual solvent There is a problem that the electrode is not effectively transferred to one or both surfaces of the electrolyte membrane.
  • the residual solvent means all the solvents remaining in the catalyst layer produced through the above-mentioned method of manufacturing the catalyst layer
  • the residual solvent amount (%) means that the weight of all the solvents contained in the catalyst layer, Which percentage is included as a percentage.
  • the solvent containing 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms contained in the catalyst layer is contained in an amount of 10 to 20 parts by weight based on 100 parts by weight of the catalyst layer And preferably 10 parts by weight to 15 parts by weight.
  • the content of the solvent containing 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms in the catalyst layer is more than 20 parts by weight based on 100 parts by weight of the catalyst layer, when the catalyst layer is transferred to the electrolyte membrane, Gas trap phenomenon may occur which volatilizes and breaks the electrode structure.
  • the content of the solvent containing 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms in the catalyst layer is less than 10 parts by weight based on 100 parts by weight of the catalyst layer, the amount of the residual solvent is insufficient, There may arise a problem that it is not effectively transferred to one side or both sides.
  • the drying may be carried out at 30 ° C to 40 ° C for 30 minutes or less.
  • the content of the solvent containing 2-ethoxyethanol and the alcoholic solvent having 1 to 6 carbon atoms in the catalyst layer is measured by a drying process performed in the range of 30 ° C to 40 ° C for 30 minutes or less, To 10 parts by weight to 20 parts by weight.
  • Example 2 shows the results of a fuel cell (Examples 1 and 2) produced by using 2-ethoxyethanol as a membrane-electrode assembly (MEA) junction and a residual solvent maintenance (Examples 1 and 2), a fuel produced using glycerol (Comparative Example 1) in the case of the battery.
  • MEA membrane-electrode assembly
  • Example 3 shows the case of membrane-electrode assembly (MEA) (Examples 1 and 2) prepared by using 2-ethoxyethanol as a membrane-electrode assembly (MEA) bonding and maintenance of residual solvent, glycerol (MEA) prepared by using the membrane-electrode assembly (Comparative Example 1).
  • the step of adding a carbon powder catalyst to the solution to form a catalyst slurry composition may be sonicated to homogenize the catalyst slurry composition.
  • the ultrasonic treatment may be a tip type or a bath type.
  • the term " ultrasonic wave treatment " refers to an action of applying energy having a frequency of 20 kHz or higher to particles to disperse the energy.
  • the bath type uses relatively low and constant energy, It is possible to apply a high energy as high as about 50 times that of the mold.
  • an ionomer is aggregated in a solvent by an electrostatic attraction and exists as an aggregate having a particle size of 0.01 to 1 m, and a unit particle in which an ionomer is aggregated in a solvent is called an ionomer cluster.
  • a unit particle in which an ionomer is aggregated in a solvent is called an ionomer cluster.
  • the tip-type sonication may be performed for 10 minutes to 30 minutes, though not limited thereto.
  • the bass type ultrasonic treatment may be performed for 20 minutes to 120 minutes, preferably 30 minutes to 60 minutes.
  • the ultrasonic treatment When the ultrasonic treatment is performed within the above-described time range, it is possible to prevent the occurrence of local ionomer bunching phenomenon. If the time range is exceeded, the effect of dispersion over time may not be significant and it may be inefficient.
  • adsorption force between the ionomer and the carbon support in the catalyst is important.
  • the ionomer can be uniformly adsorbed to the carbon support in the catalyst.
  • the catalyst slurry composition itself in which the catalyst and the ionomer are dispersed in the solution is kept in a settled state, and in order to maintain a stable dispersion state, before the ultrasonic treatment, Further comprising the step of agitating the slurry composition.
  • the amount of the catalyst differs depending on the amount of the catalyst and the degree of distribution in each part, and the viscosity is increased inconsistently due to agglomeration of the particles It is difficult to obtain a uniform physical property.
  • the distribution of the catalyst particles is relatively narrowed through the stirring step, thereby preventing aggregation of the particles and maintaining the dispersion state of the catalyst slurry uniformly.
  • the catalyst slurry composition is sonicated and then homogenized to form a catalyst slurry composition on a substrate, followed by drying to form a catalyst layer.
  • the substrate is not particularly limited, but may be a fluorine-based film. Specifically, it may be selected from a polytetrafluoroethylene (PTFE) film, a polyethylene terephthalate (PET) film, a polyethylene naphthalate (PEN) film, and a polyimide (PI) film.
  • PTFE polytetrafluoroethylene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • the application may be accomplished by spray coating, screen printing, tape casting, brushing, slot die casting, ), Bar-casting, and ink-jetting.
  • the thickness of the catalyst layer is 5 mu m to 15 mu m.
  • a carbon powder catalyst Ionomers; And 2-ethoxyethanol, wherein the content of the solvent containing 2-ethoxyethanol is 10 parts by weight to 20 parts by weight, based on 100 parts by weight of the carbon powder catalyst in the catalyst layer, .
  • a carbon powder catalyst contained in the catalyst layer The definition of a solvent containing an ionomer 2-ethoxyethanol is as described above.
  • one embodiment of the present disclosure includes a membrane-electrode assembly, a cathode catalyst layer, and a polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer, wherein at least one of the anode catalyst layer and the cathode catalyst layer includes the catalyst layer. Electrode assembly.
  • the membrane electrode assembly further includes a cathode gas diffusion layer provided on a surface of the cathode catalyst layer opposite to a surface provided with an electrolyte membrane and an anode gas diffusion layer provided on a surface of the anode catalyst layer opposite to a surface provided with an electrolyte membrane can do.
  • the anode gas diffusion layer and the cathode gas diffusion layer are provided on one surface of the catalyst layer, respectively, and serve as a current conductor and have a porous structure as a reaction gas and a water passage.
  • the gas diffusion layer is not particularly limited as long as it is a conductive substrate generally having conductivity and a porosity of 80% or more, and may include a conductive substrate selected from the group consisting of carbon paper, carbon cloth and carbon felt.
  • the thickness of the conductive base may be between 30 ⁇ m and 500 ⁇ m. If the value is within the above range, the balance between the mechanical strength and the diffusion property of gas and water can be appropriately controlled.
  • the gas diffusion layer may further include a microporous layer formed on one surface of the conductive substrate, and the microporous layer may include a carbon-based material and a fluororesin. The microporous layer promotes the discharge of excess water present in the catalyst layer, thereby suppressing the occurrence of flooding.
  • Examples of the carbon-based material include graphite, carbon black, acetylene black, denka black, cacao black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon nano ring, Fullerene (C60), and super P may be used, but are not limited thereto.
  • fluororesin examples include polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyvinyl alcohol, cellulose acetate, copolymers of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) and styrene-butadiene (SBR) may be used.
  • PVdF polyvinylidene fluoride
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene
  • SBR styrene-butadiene
  • the catalyst slurry composition can be formed on the gas diffusion layer and dried. At this time, a plurality of catalyst layers may be formed by sequentially coating and drying the catalyst slurry composition having different ionomer contents.
  • the method of applying the catalyst slurry composition on the gas diffusion layer may include printing, tape casting, slot die casting, spraying, rolling, blade coating blade coating, spin coating, inkjet coating, or brushing, but the present invention is not limited thereto.
  • the catalyst slurry composition may be used to form a membrane by casting, or the ion conductive polymer may be impregnated into the pores of the porous support to form a reinforced membrane.
  • the average thickness of the gas diffusion layer may be 200 ⁇ ⁇ or more and 500 ⁇ ⁇ or less. In this case, there is an advantage that the reactant gas transfer resistance through the gas diffusion layer is minimized and the optimum state is obtained from the viewpoint of proper water content in the gas diffusion layer.
  • FIG. 1 schematically shows the structure of a membrane-electrode assembly.
  • the membrane-electrode assembly includes an electrolyte membrane 10, a cathode 50 disposed opposite to the electrolyte membrane 10 and an anode 51).
  • the cathode includes a cathode catalyst layer 20 and a cathode gas diffusion layer 40 sequentially provided from the electrolyte membrane 10
  • the anode includes an anode catalyst layer 21 sequentially provided from the electrolyte membrane 10, And a gas diffusion layer 41.
  • one embodiment of the present invention provides a fuel cell including the above-described membrane-electrode assembly.
  • a 3M 825 ionomer was added to the mixed solution of 1-propanol and 2-ethoxyethanol in a weight ratio of 3: 4. Thereafter, a TEC 10V50E carbon powder catalyst sold by Tanaka Co. was added to the ionomer and the carbon powder catalyst in a mass ratio of 0.66: 1 to prepare a catalyst slurry composition . At this time, in the catalyst slurry composition, the weight ratio of the carbon powder catalyst: 1-propanol: 2-ethoxyethanol was 1: 3: 4.
  • the mixture was stirred at room temperature for 1 hour with a magnetic stirrer, dispersed with a bath type ultrasonic dispersing machine at room temperature for 1 hour, then cooled to 50 ° C or less, and dispersed for 15 minutes using a tip type ultrasonic dispersing machine.
  • a catalyst layer was cast on a PTFE film with a doctor blade on a horizontal plate of an applicator in a clean bench, followed by drying at 35 ° C for 30 minutes to finally prepare a catalyst layer.
  • Carbon powder catalyst, 1-propanol and 2-ethoxyethanol were mixed in a weight ratio of 1: 3: 3.
  • glycerol was used instead of 2-ethoxyethanol and the weight ratio of carbon powder catalyst, 1-propanol and glycerol was 1: 6.4: 0.5. .
  • a catalyst layer was cast on a PTFE film with a doctor blade on a horizontal plate of an applicator in a clean bench, and then dried at 35 ° C for 30 minutes and at 140 ° C for 30 minutes to finally prepare a catalyst layer.
  • a catalyst layer was prepared in the same manner as in Example 2, except that the electrode catalyst layer was cast on the PTPE film and then dried at 35 DEG C for 45 minutes.
  • Carbon powder catalyst, 1-propanol, and 2-ethoxyethanol were mixed in a weight ratio of 1: 1: 5.
  • the electrode was dried overnight in a 140 ° C oven to remove any remaining solvent. Thereafter, the electrode was removed from the substrate, and the substrate was weighed. The amount of residual solvent (%) was found through the following formula (1).
  • Table 1 below shows the transfer state and residual solvent amount (%) of the catalyst layers according to Example 1, Example 2 and Comparative Examples 1 to 3.
  • the electrolyte membrane used was a sPEEK hydrocarbon-based polymer membrane
  • the GDL (gas diffusion layer) used was SGB 10BB
  • the thickness thereof was in the range of 380 ⁇ m to 420 ⁇ m.
  • the compression ratio of GDL was set at 25% and glass fiber sheet was used to maintain it.
  • the active area of the membrane electrode assembly was made to be 25 cm 2, and the evaluation of the unit cell was carried out. Proceeding with the same example electrode for anode and cathode.
  • the evaluation equipment was a Scribner PEMFC station equipment. The temperature of the cell was maintained at 70 ° C and the humidification condition was maintained at 50% RH. The results are shown in FIG.
  • the evaluation of the activity rate of the membrane electrode assembly (MEA) to which the electrode catalyst layers of Examples 1 and 2 and Comparative Example 1 were applied was conducted at 0.6 V for 5 minutes and 0.3 V for 10 seconds.
  • the electrolyte membrane used was a sPEEK hydrocarbon-based polymer membrane
  • the GDL (gas diffusion layer) used was SGB 10BB
  • the thickness thereof was in the range of 380 ⁇ m to 420 ⁇ m.
  • the compression ratio of GDL was set at 25% and glass fiber sheet was used to maintain it.
  • the active area of the membrane electrode assembly was 25 cm 2 and the activity rate was evaluated. Proceeding with the same example electrode for anode and cathode.
  • the evaluation equipment was a Scribner PEMFC station equipment.
  • the temperature of the cell was maintained at 70 ⁇ ⁇ , and the humidification condition was maintained at 100% RH to evaluate the activity rate.
  • the results are shown in Fig.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 이오노머(ionomer); 및 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매;를 포함하는 용액을 준비하는 단계; 상기 용액에 탄소분말 촉매를 첨가하여 촉매 슬러리 조성물을 형성하는 단계; 및 상기 촉매 슬러리 조성물을 기재 상에 도포 후 건조하여 촉매층을 형성하는 단계를 포함하고, 상기 촉매 슬러리 조성물 내 탄소분말 촉매, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비는 1:2.5:2.5 내지 1:4.5:4.5이며, 상기 촉매층 내 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량은, 상기 촉매층 100 중량부를 기준으로, 10 중량부 내지 20 중량부인 촉매층의 제조방법, 촉매층을 포함한 막-전극 접합체 및 이를 포함한 연료전지에 관한 것이다.

Description

촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지
본 출원은 2018년 01월 26일에 한국 특허청에 제출된 한국 특허 출원 제10-2018-0009860호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지에 관한 것이다.
탄화수소계 막-전극 접합체(MEA)는 불소계 막-전극 접합체(MEA)와 달리 전해질막과 촉매 전극의 접합을 위하여 촉매 전극 내에 일정양의 용매를 유지시키는 연구가 필요하다. 이 촉매 전극 내 용매는 크게 전해질막으로의 전사율을 상승시키는 역할을 함과 동시에 촉매 전극의 장기간 보관 및 전극 슬러리 제조시 crack 및 분산 조절이 용이하게 해주는 장점을 가지고 있다. 하지만, 촉매 전극 내 용매는 막-전극 접합체(MEA)의 활성을 방해하는 요소로 작용하는 문제점을 가지고 있다. 막-전극 접합체 활성과정(activation, aging)은 크게 촉매 전극의 활성화, 막-전극 접합체(MEA) 내 물 공급, 막-전극 접합체(MEA) 내 잔존 용매 제거를 위해 진행되는데, 이때 촉매 전극 내 용매는 막-전극 접합체(MEA) 내 잔존 용매로 작용하여 막-전극 접합체(MEA) 활성 속도를 저하 시키게 된다.
현재 전극 내 용매로 가장 많이 사용하고 있는 용매는 글리세롤(glycerol)이다. 막-전극 접합체(MEA) 활성 측면에서 보았을 때, 글리세롤(glycerol)은 boiling point가 약 290℃이기 때문에 막-전극 접합체(MEA) 전사 중에 완벽하게 제거되지 않으며, 활성 과정 중에 가스/물의 흐름과 반응에 따라서 천천히 된다. 특히 강한 점성을 가지고 있기 때문에 제거가 힘들다는 단점을 가지고 있다. 따라서 막-전극 접합체(MEA) 활성 속도를 개선하기 위해서 글리세롤(glycerol)과 같은 작용을 하면서 제거가 용이한 용매를 사용해야 한다.
본 명세서는 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지를 제공하고자 한다.
본 명세서의 일 실시상태는 이오노머(ionomer); 및 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매;를 포함하는 용액을 준비하는 단계; 상기 용액에 탄소분말 촉매를 첨가하여 촉매 슬러리 조성물을 형성하는 단계; 및 상기 촉매 슬러리 조성물을 기재 상에 도포 후 건조하여 촉매층을 형성하는 단계를 포함하고, 상기 촉매 슬러리 조성물 내 탄소분말 촉매, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비는 1:2.5:2.5 내지 1:4.5:4.5이며, 상기 촉매층 내 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량은, 상기 촉매층 100 중량부를 기준으로, 10 중량부 내지 20 중량부인 촉매층의 제조방법을 제공한다.
또한, 본 명세서의 일 실시상태는 탄소분말 촉매; 이오노머(ionomer); 및 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매;를 포함하는 촉매층으로서, 상기 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량은, 상기 촉매층 100 중량부를 기준으로, 10 중량부 내지 20 중량부인 촉매층을 제공한다.
또한, 본 명세서의 일 실시상태는 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 전술한 촉매층을 포함하는 것인 막-전극 접합체를 제공한다.
또한, 본 명세서의 일 실시상태는 전술한 막-전극 접합체(MEA)를 포함하는 연료전지를 제공한다.
본 명세서의 일 실시상태에 따른 촉매층의 제조방법은 2-에톡시 에탄올을 포함하는 용매를 첨가한 촉매 슬러리 조성물을 형성한 후 이를 초음파 처리하여 재균일화하는 단계를 거쳐 촉매층을 형성함으로써, 이오노머의 분산성을 향상시킴과 동시에 글리세롤(glycerol)을 사용하여 제조된 촉매층과 대비하여 우수한 막-전극 접합체(MEA) 내부 활성 속도를 가질 수 있다.
또한, 본 명세서의 일 실시상태에 따른 촉매층의 제조방법은 기존의 제조방법에 비하여 이오노머 뭉침 현상 및 크랙 현상을 감소시킬 수 있다.
또한, 본 명세서의 일 실시상태에 따른 촉매층의 제조방법은 이오노머의 뭉침현상 및 크랙 현상을 감소시킴으로써, 연료의 투과가 감소하여 연료전지의 개회로 전압(OCV, Open Circuit Voltage)이 향상되므로 연료전지의 성능을 향상 시킬 수 있다.
도 1은 막-전극 접합체의 구조를 개략적으로 나타낸 도면이다.
도 2는 본 명세서의 실시예 1, 실시예 2 및 비교예 1에 따른 막-전극 접합체의 제조방법에 따라 제조된 전극의 성능을 나타낸 것이다.
도 3은 본 명세서의 실시예 1, 실시예 2 및 비교예 1에 따른 막-전극 접합체의 제조방법에 따라 제조된 전극의 활성 속도를 나타낸 것이다.
10: 전해질막
20: 캐소드 촉매층
21: 애노드 촉매층
40: 캐소드 기체확산층
41: 애노드 기체확산층
50: 캐소드
51: 애노드
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서에서, "상"은 하나의 층 위에 물리적으로 접하여 위치하는 것만을 의미하는 것이 아니라, 위치상 위에 위치하는 것을 의미한다. 즉, 어느 하나의 층 상에 위치하는 층은 사이에 다른 층이 있을 수도 있다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서의 일 실시상태는 이오노머(ionomer); 및 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매;를 포함하는 용액을 준비하는 단계; 상기 용액에 탄소분말 촉매를 첨가하여 촉매 슬러리 조성물을 형성하는 단계; 및 상기 촉매 슬러리 조성물을 기재 상에 도포 후 건조하여 촉매층을 형성하는 단계를 포함하고, 상기 촉매 슬러리 조성물 내 탄소분말 촉매, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비는 1:2.5:2.5 내지 1:4.5:4.5이며, 상기 촉매층 내 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량은, 상기 촉매층 100 중량부를 기준으로, 10 중량부 내지 20 중량부인 촉매층의 제조방법을 제공한다.
상기 2-에톡시 에탄올을 포함하는 용매를 사용하여 촉매층을 제조하는 경우, 2-에톡시 에탄올은 끓는점이 135℃ 이므로, 기존에 사용되었던 끓는점이 이보다 높은 용매, 예컨대 글리세롤(glycerol, 끓는점: 290℃)과 같은 용매를 사용하는 것 보다 낮은 온도와 짧은 건조 시간 하에서 건조 공정이 수행된다. 따라서, 상기 촉매층을 포함하는 막-전극 접합체(MEA)의 전사 과정에 있어서, 향상된 활성 속도를 가지면서 비슷한 전사율 및 성능을 얻을 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 용액은 이오노머(inomer); 및 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매;를 포함할 수 있다.
본 명세서에 있어서, 상기 탄소분말 촉매는 탄소 분말의 표면에 금속이 담지된 촉매를 사용할 수 있다.
본 명세서에 있어서, 상기 탄소분말 촉매는 탄소 분말의 표면에 백금이 담지된 촉매(Pt/C)를 사용할 수 있다.
상기 탄소 분말로는, 이에 한정되는 것은 아니나, 흑연(그라파이트), 카본블랙, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 및 수퍼P로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 백금이 담지된 탄소분말 촉매(Pt/C)에 있어서, 탄소 대비 백금 담지량은 탄소 100 중량부 대비 10 중량부 내지 80 중량부가 바람직하고 30 중량부 내지 70 중량부가 더욱 바람직하나, 이에 한정되지는 않는다.
상기 탄소 대비 백금 담지량이 80 중량부 초과인 경우, 막-전극 접합체에 있어서 전극의 두께가 얇아지는 문제점이 발생할 수 있다. 전극 두께가 얇아지면, 수소 및 산소 기체가 전극층에서 산화/환원되지 않고 직접적으로 막으로 도달할 확률이 높아져 전체 막-전극 접합체 성능이 낮아지며, 내구성이 떨어지는 문제점이 발생할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 이오노머 (ionomer)는 불소계 고분자이다.
구체적으로, 상기 이오노머 (ionomer)는 수소나 메탄올과 같은 연료와 촉매 간의 반응에 의하여 생성된 이온이 전해질 막으로 이동하기 위한 통로를 제공하는 역할을 할 수 있다.
본 명세서에 있어서, 상기 이오노머 (ionomer)는 퍼플루오로설폰산(perfluorosulfonic acid: PFSA)계 고분자 또는 퍼플루오로카복실산(perfluorocarboxylic acid: PFCA)계 고분자일 수 있다. 퍼플루오로설폰산계 고분자로는 나피온(Nafion, Dupont 社)을, 퍼플루오로카복실산계 고분자로는 플레미온(Flemion, Asahi Glass 社)을 사용할 수 있다.
본 명세서의 일 실시 상태에 따르면, 상기 이오노머 (ionomer)의 중량평균분자량은 240 g/mol 내지 200,000 g/mol, 구체적으로 240 g/mol 내지 10,000 g/mol 일 수 있다.
본 명세서에 있어서, 상기 이오노머 (ionomer)의 함량은 탄소분말 촉매 100 중량부 대비 5 중량부 내지 150 중량부가 바람직하나, 이에 한정되지는 않는다.
상기 이오노머 (ionomer)의 함량이 탄소분말 촉매 대비 5 중량부 미만인 경우, 전해질막으로의 이온 전달이 제대로 되지 않고, 탄소분말 촉매 대비 150 중량부 초과인 경우, 가스의 투과를 막아 막-전극 접합체의 성능을 저하시킨다.
본 명세서의 일 실시상태에 있어서, 상기 탄소수 1 내지 6의 알코올계 용매는 촉매를 분산시킬 수 있는 용매로서, 30℃ 내지 100℃의 범위에서 증발이 가능한 용매를 사용하는 것이 바람직하다. 따라서, 물 이나 메탄올, 에탄올 및 프로판올과 같은 알코올 계열의 용매가 적합하다.
휘발 온도가 높은 용매, 예컨대 100℃ 초과의 온도에서 증발이 가능한 용매를 상기 탄소수 1 내지 6의 알코올계 용매로 사용하면, 전극 제조 시 전극의 밀도가 치밀해져서 기공 형성이 어려워지므로 성능 하락에 영향을 미치게 된다.
또한, 2-에톡시 에탄올은 막-전극 접합체(MEA) 접합 및 잔존 용매 유지의 용도로 사용되기 때문에 상기 탄소수 1 내지 6의 알코올계 용매로 사용되는 것은 적합하지 않다. 게다가, 2-에톡시 에탄올의 끓는점은 135℃ 이므로 상기 탄소수 1 내지 6의 알코올계 용매에 적합한 온도범위를 벗어나므로 상기 탄소수 1 내지 6의 알코올계 용매로 사용되는 것은 적합하지 않다.
상기 탄소수 1 내지 6의 알코올계 용매는 물, 메탄올, 에탄올, 부탄올, 1-프로판올 및 이소프로판올로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있다. 바람직하게는 물 또는 1-프로판올 일 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 탄소수 1 내지 6의 알코올계 용매는 물이다.
본 명세서의 일 실시상태에 있어서, 상기 탄소수 1 내지 6의 알코올계 용매는 1-프로판올이다.
본 명세서의 일 실시상태에 있어서, 상기 탄소수 1 내지 6의 알코올계 용매는 물 및 1-프로판올이다.
본 명세서에 있어서, 상기 탄소수 1 내지 6의 알코올계 용매의 함량은 전체 촉매 슬러리 조성물 100 중량부를 기준으로, 5 중량부 내지 99 중량부가 바람직하나, 이에 한정되지는 않는다. 구체적으로 5 중량부 내지 30 중량부 일 수 있고, 바람직하게는 10 중량부 내지 20 중량부 일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매는 2-에톡시 에탄올과 탄소수 1 내지 6의 알코올계 용매로 이루어진 것일 수 있다.
상기 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매가 2-에톡시 에탄올과 탄소수 1 내지 6의 알코올계 용매로 이루어진 경우, 2-에톡시 에탄올과 상기 탄소수 1 내지 6의 알코올계 용매는 1:1 내지 2:1의 중량비를 만족할 수 있으며, 바람직하게는 2:1의 중량비를 만족할 수 있다. 2:1의 중량비를 만족하는 경우, 촉매의 분산성을 유지하면서 건조시간을 제어하기 용이하다.
본 명세서의 일 실시상태에 있어서, 상기 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매가 2-에톡시 에탄올과 탄소수 1 내지 6의 알코올계 용매로 이루어진 경우, 상기 2-에톡시 에탄올의 함량은 상기 촉매 슬러리 조성물 100 중량부를 기준으로, 30 중량부 내지 70 중량부가 바람직하나, 이에 한정되지는 않는다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 슬러리 조성물은 탄소촉매 분말, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비가 1:2.5:2.5 내지 1:4.5:4.5를 만족하는 것일 수 있다.
본 명세서의 또 하나의 일 실시상태에 있어서, 상기 촉매 슬러리 조성물은 탄소촉매 분말, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비가 1:3:3 내지 1:4:4를 만족하는 것일 수 있다.
상기 촉매 슬러리 조성물에 있어서, 상기 2-에톡시 에탄올의 함량이 전술한 탄소촉매 분말, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비의 범위보다 큰 경우에는, 촉매 슬러리 조성물이 침강 상태가 되어 안정한 분산상태를 이루지 못하게 된다. 또한, 상기 2-에톡시 에탄올의 함량이 전술한 탄소촉매 분말, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비의 범위보다 작은 경우에는 전극 제조 후 건조 과정에서 상기 잔존 용매의 양이 부족하여, 전극이 전해질막의 일면 또는 양면에 효과적으로 전사되지 않는 문제가 발생할 수 있다.
본 명세서에 있어서, 상기 잔존 용매는 상기 촉매층의 제조방법을 거쳐 제조된 촉매층 내에 잔존하는 모든 용매를 의미하며, 잔존 용매량(%)은 상기 촉매층 내 포함되는 모든 용매의 중량이, 상기 촉매층 100 중량부를 기준으로, 어떤 백분율로 포함되는지를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 촉매층 내 포함되는 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매는, 상기 촉매층 100 중량부를 기준으로, 10 중량부 내지 20 중량부 일 수 있고, 바람직하게는 10 중량부 내지 15 중량부일 수 있다.
상기 촉매층 내 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량이 상기 촉매층 100 중량부를 기준으로, 20 중량부 초과인 경우, 촉매층을 전해질막에 전사 시, 용매가 갑자기 휘발되어 전극 구조를 망가뜨리는 gas trap 현상이 나타날 수 있다.
상기 촉매층 내 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량이 상기 촉매층 100 중량부를 기준으로, 10 중량부 미만인 경우, 잔존 용매의 양이 부족하여, 전극이 전해질막의 일면 또는 양면에 효과적으로 전사되지 않는 문제가 발생할 수 있다.
본 명세서의 상기 촉매 슬러리 조성물을 기재 상에 도포 후 건조하여 촉매층을 형성하는 단계에 있어서, 상기 건조는 30℃ 내지 40℃ 범위에서 30분 이하로 수행되는 것일 수 있다.
상기 30℃ 내지 40℃ 범위에서 30분 이하로 수행되는 건조 과정을 통해, 상기 촉매층 내 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량을, 상기 촉매층 100 중량부를 기준으로, 10 중량부 내지 20 중량부 범위 내로 조절할 수 있다.
도 2에 2-에톡시 에탄올을 막-전극 접합체(MEA) 접합 및 잔존 용매 유지의 용도로 사용하여 제조된 연료 전지의 경우(실시예 1 및 2), 글리세롤(glycerol)을 사용하여 제조된 연료 전지의 경우(비교예 1)와 대비하여 유사한 성능을 나타내는 결과를 나타내었다.
또한, 도 3에 2-에톡시 에탄올을 막-전극 접합체(MEA) 접합 및 잔존 용매 유지의 용도로 사용하여 제조된 막-전극 접합체(MEA)의 경우(실시예 1 및 2), 글리세롤(glycerol)을 사용하여 제조된 막-전극 접합체(MEA)의 경우(비교예 1)보다 활성 속도와 포화되는 속도가 향상된 것을 나타내었다.
본 명세서의 일 실시상태에 있어서, 상기 용액에 탄소분말 촉매를 첨가하여 촉매 슬러리 조성물을 형성하는 단계를 통해 형성된 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계를 수행할 수 있다.
본 명세서에 있어서, 상기 초음파 처리는 팁 형(tip type) 또는 배스형(bath type)으로 이루어질 수 있다.
본 명세서에서 초음파 처리란, 20kHz 이상의 주파수를 갖는 에너지를 입자에 가하여 분산시키는 행위를 의미하는데, 상기 배스형(bath type)은 비교적 낮고 일정한 크기의 에너지가 사용되며, 상기 팁형(tip type)은 배스형의 약 50배에 달하는 높은 에너지를 가변적으로 가할 수 있다.
일반적으로, 이오노머 (ionomer)는 용매 내에서 서로 정전기적 인력으로 뭉쳐져 입경이 0.01 ㎛ 내지 1 ㎛인 응집체로 존재하며, 이렇게 용매 내에서 이오노머가 뭉쳐져 형성된 단위 입자를 이오노머 클러스터(Cluster)라고 한다. 이들을 초음파 처리, 구체적으로, 상기 팁형(tip type) 또는 배스형(bath type) 초음파 처리를 통해 분산시키게 되면, 상기 이오노머 클러스터의 대부분은 10 nm 내지 500 nm, 바람직하게는 10 nm 내지 300 nm의 평균 입경을 갖도록 균일하게 분산된다.
상기 팁형 초음파 처리는 이로 제한되는 것은 아니나, 10분 내지 30분 동안 수행될 수 있다. 상기 배스형 초음파 처리는 20분 내지 120분, 바람직하게는 30분 내지 60분 동안 수행될 수 있다.
초음파 처리가 상기 시간 범위 내에서 이루어지는 경우, 국부적인 이오노머 뭉침 현상의 발생을 방지할 수 있다. 상기 시간 범위를 초과하여 수행될 경우, 시간 대비 분산 효과가 크지 않아 비효율적일 수 있다.
균일한 구조의 촉매층을 형성하기 위해서는 이오노머와 촉매 내 탄소 지지체 간의 충분한 흡착력이 중요한데, 이러한 초음파 처리를 통하여 이오노머의 입경을 작게 조절하면, 이오노머가 촉매 내 탄소 지지체에 균일하게 흡착될 수 있다.
본 명세서의 일 실시상태에 있어서, 용액 중에 촉매 및 이오노머가 분산된 형태의 촉매 슬러리 조성물 자체는 침강상태를 유지하고 있어, 안정한 분산상태를 유지할 수 있도록 하기 위하여, 상기 초음파 처리 단계 이전에, 상기 촉매 슬러리 조성물을 교반하는 단계를 추가적으로 수행하는 단계를 포함한다.
촉매 슬러리 조성물이 침강 상태가 되어 안정한 분산상태를 이루지 못하는 경우, 촉매의 분포량이 달라 각 부분에서의 촉매량 및 분포도에 차이가 발생하게 되며, 하부에 가라앉은 입자들의 응집에 의해 점도가 일관성 없이 증가하여 일정한 물성을 얻기가 어려운 점이 있었으나, 상기 교반하는 단계를 통해 상대적으로 촉매입자의 분포도를 좁게 하여 입자들의 응집 현상을 방지하고, 촉매 슬러리의 분산상태를 균일하게 유지할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계를 거친 촉매 슬러리 조성물을 기재 상에 도포 후 건조하여 촉매층을 형성하는 단계를 수행한다.
상기 기재는 특별히 한정하지 않으나, 불소계 필름일 수 있다. 구체적으로, 폴리테트라 플루오로에틸렌(PTFE) 필름, 폴리에틸렌 테레프탈레이트(PET)필름, 폴리에틸렌 나프탈레이트(PEN) 필름 및 폴리이미드(PI) 필름 중에서 선택될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 도포는 스프레이 코팅법(spray coating), 스크린 프린팅법(screen printing), 테잎 캐스팅법(tape casting), 붓칠법(brushing), 슬롯 다이 캐스팅법(slot die casting), 바캐스팅법(bar-casting) 및 잉크젯팅(inkjetting)으로 이루어진 군에서 선택되는 하나의 방법을 통해 이루어질 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 촉매층의 두께는 5 ㎛ 내지 15 ㎛이다.
본 명세서의 일 실시상태에 있어서, 탄소분말 촉매; 이오노머(ionomer); 및 2-에톡시 에탄올을 포함하는 용매를 포함하는 촉매층으로서, 상기 2-에톡시 에탄올을 포함하는 용매의 함량은, 상기 촉매층 내 탄소분말 촉매 100 중량부를 기준으로, 10 중량부 내지 20중량부인 촉매층을 제공한다.
상기 촉매층에 포함되는 탄소분말 촉매; 이오노머(ionomer) 2-에톡시 에탄올을 포함하는 용매의 정의는 전술한 바와 같다.
또한, 본 명세서의 일 실시상태는 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며, 상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 상기 촉매층을 포함하는 것인 막-전극 접합체를 제공한다.
상기 막 전극 접합체는 상기 캐소드 촉매층의 면 중 전해질막이 구비된 면의 반대면에 구비된 캐소드 기체확산층, 및 상기 애노드 촉매층의 면 중 전해질막이 구비된 면의 반대면에 구비된 애노드 기체확산층을 더 포함할 수 있다.
상기 애노드 기체확산층 및 캐소드 기체확산층은 촉매층의 일면에 각각 구비되며, 전류전도체로서의 역할과 함께 반응 가스와 물의 이동 통로가 되는 것으로, 다공성의 구조를 가진다.
상기 기체확산층은 일반적으로 도전성 및 80% 이상의 다공도를 갖는 도전성 기재라면 특별한 제한이 없으며, 탄소페이퍼, 탄소천 및 탄소펠트로 이루어진 군에서 선택되는 도전성 기재를 포함하여 이루어질 수 있다. 상기 도전성 기재의 두께는 30 ㎛ 내지 500 ㎛일 수 있다. 상기 범위 내의 값이면 기계적 강도와 가스 및 물의 확산성과의 균형이 적절하게 제어될 수 있다. 상기 기체확산층은 상기 도전성 기재의 일면에 형성되는 미세 기공층을 더 포함하여 형성될 수 있으며, 상기 미세 기공층은 탄소계 물질 및 불소계 수지를 포함하여 형성될 수 있다. 상기 미세 기공층은 촉매층에 존재하는 과잉 수분의 배출을 촉진시켜서 플러딩(flooding) 현상의 발생을 억제할 수 있다.
상기 탄소계 물질로는 흑연(그라파이트), 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 및 수퍼P로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용될 수 있으나, 이에 한정되지는 않는다.
상기 불소계 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐알코올, 셀룰로오스 아세테이트, 폴리비닐리덴플루오라이드-헥 사플루오로프로필렌의 코폴리머(PVdF-HFP) 및 스티렌-부타디엔고무(SBR)로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물이 사용될 수 있으나, 이에 한정되지는 않는다.
상기 촉매 슬러리 조성물을 이용하여 촉매층을 형성하는 방법은 당해 기술분야에 알려져 있는 통상적인 방법을 사용할 수 있으며, 예를 들면, 상기 촉매 슬러리 조성물을 기체확산층 위에 도포 및 건조함으로써 형성할 수 있다. 이 때, 이오노머의 함량을 달리한 촉매 슬러리 조성물을 차례로 도포 및 건조함으로써 복수의 촉매층을 형성할 수도 있다.
이 때, 상기 촉매 슬러리 조성물을 기체확산층 위에 도포하는 방법으로는 프린팅(printing), 테이프 캐스팅(tape casting), 슬롯 다이 캐스팅(slot die casting), 분무(spray), 롤링(rolling), 블레이드 코팅(blade coating), 스핀 코팅(spin coating), 잉크젯 코팅(inkjet coating) 또는 브러싱(brushing) 등의 방법이 있으나, 이에 한정되지는 않는다. 바람직하게는, 상기 촉매 슬러리 조성물을 이용하여 캐스팅법으로 막을 형성하거나, 다공성 지지체의 기공 내에 이온 전도성 고분자를 함침시켜 강화막으로 제조할 수 있다.
상기 기체확산층의 평균두께는 200㎛ 이상 500㎛ 이하일 수 있다. 이 경우 가스확산층을 통한 반응물가스 전달 저항 최소화와 가스확산층 내 적정수분 함유 관점에서 최적의 상태가 되는 장점이 있다.
도 1은 막-전극 접합체의 구조를 개략적으로 나타낸 도면으로서, 막-전극 접합체는 전해질막(10)과, 이 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 캐소드(50) 및 애노드(51)를 구비할 수 있다. 구체적으로, 캐소드에는 전해질막(10)으로부터 순차적으로 구비된 캐소드 촉매층(20)과 캐소드 기체확산층(40)을 포함하고, 애노드에는 전해질막(10)으로부터 순차적으로 구비된 애노드 촉매층(21)과 애노드 기체확산층 (41)을 포함할 수 있다.
또한, 본 명세서의 일 실시상태는 전술한 막-전극 접합체를 포함하는 연료전지를 제공한다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될수 있으며, 본 명세서의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석 되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
< 실시예 >
< 실시예 1>
3M 825 이오노머 (ionomer)를 1-프로판올과 2-에톡시 에탄올이 3:4의 중량비로 혼합된 용액에 첨가하였다. 그 후, Tanaka사에서 판매하는 TEC 10V50E 탄소 분말촉매를 상기 이오노머와 상기 탄소분말 촉매의 질량비율을 0.66:1에 맞추어 첨가하여 촉매 슬러리 조성물을 제조하였다. 이때 상기 촉매 슬러리 조성물에 있어서, 탄소분말 촉매:1-프로판올:2-에톡시 에탄올의 중량비는 1:3:4이다. 상온에서 1시간동안 마그네틱 교반기로 교반한 다음, 상온에서 1 시간 동안 bath형 초음파 분산기로 분산을 한 후, 50℃ 이하의 상태로 감온하여 tip형 초음파 분산기를 이용하여 15분동안 분산시켰다. 그리고, 상기 촉매 슬러리 조성물을 이용하여, clean bench 내 applicator의 수평판 위에서 닥터 블레이드로 PTFE 필름 위에 촉매층을 캐스팅한 후 35℃에서 30분 동안 건조하여 최종적으로 촉매층을 제조하였다.
< 실시예 2>
탄소분말 촉매, 1-프로판올 및 2-에톡시 에탄올을 중량비 1:3:3으로 혼합한 것을 제외하고는 실시예 1과 동일하게 촉매층을 제조하였다.
< 비교예 1>
2-에톡시 에탄올 대신 글리세롤(glycerol)을 사용하고, 탄소분말 촉매, 1-프로판올 및 글리세롤(glycerol)의 중량비를 1:6.4:0.5로 혼합한 것을 제외하고는 실시예 1과 동일하게 촉매 슬러리 조성물을 제조하였다. 제조된 촉매 슬러리 조성물을 이용하여, clean bench 내 applicator의 수평판 위에서 닥터 블레이드로 PTFE 필름 위에 촉매층을 캐스팅한 후 35℃에서 30분, 140℃에서 30분 동안 건조하여 최종적으로 촉매층을 제조하였다.
< 비교예 2>
PTPE 필름 위에 전극 촉매층을 캐스팅한 후 35℃에서 45분 동안 건조한 것을 제외하고는 실시예 2와 동일하게 촉매층을 제조하였다.
< 비교예 3>
탄소분말 촉매, 1-프로판올 및 2-에톡시 에탄올을 중량비 1:1:5로 혼합한 것을 제외하고는 실시예 1과 동일하게 전극을 제조하였다.
잔존용매량(%)을 확인 하기 위해, 제조된 전극의 무게를 잰 후, 상기 전극을 140℃ 오븐에서 overnight 건조하여 잔존용매를 모두 제거하였다. 이후, 전극을 기재에서 제거한 후 기재의 무게를 재었다. 하기 식 1을 통해 잔존용매량(%)를 알 수 있었다.
[식 1]
Figure PCTKR2019000697-appb-I000001
하기 표 1에 실시예 1, 실시예 2 및 비교예 1 내지 3에 따른 촉매층의 전사 상태 및 잔존용매량(%)를 나타내었다.
Figure PCTKR2019000697-appb-I000002
상기 표 1에서 알 수 있듯이, 본 명세서의 촉매층의 제조방법에 따라 제조된 촉매층의 경우, 탄소분말 촉매, 1-프로판올 및 2-에톡시 에탄올의 특정 중량비를 만족함으로써, 2-에톡시 에탄올 대신 글리세롤(glycerol)을 사용한 비교예 1에 비하여, 보다 적은 건조시간으로 잔존 용매의 양을 10% 내지 20%내로 맞추어 안정적으로 촉매층을 제조할 수 있었다.
잔존 용매의 양이 5%인 비교예 2의 촉매층의 경우, 전해질막의 일면에 효과적으로 전사되지 않았으며, 촉매 슬러리 조성물 내 탄소분말 촉매, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비 1:2.5:2.5 내지 1:4.5:4.5를 만족하지 않는 비교예 3의 경우, 촉매 슬러리 조성물이 침강 상태가 되어 안정한 분산 상태를 이루지 못했다.
<실험예 1>
실시예 1, 실시예 2 및 비교예 1의 전극촉매층을 적용한 막전극 접합체(MEA)의 평가를 진행하였다. 전해질막은 sPEEK계 탄화수소계 고분자막을 사용하였으며, GDL(가스확산층)은 SGL사 10BB를 사용하였고, 두께는 380 ㎛ 내지 420 ㎛의 범위를 가지는 것을 사용하였다. GDL의 압축률은 25%로 설정하였고 이를 유지시키기 위해 glass fiber sheet를 사용하였다. 막전극 접합체의 활성 면적은 25cm2으로 제조하여 단위전지셀평가를 진행하였다. 애노드와 캐소드에 동일한 예의 전극을 사용하여 진행하였다. 평가 장비는 Scribner사의 PEMFC station장비를 사용했고, 셀의 온도는 70℃로 유지하고 가습조건을 RH 50%를 유지하여 성능 평가를 진행하였고, 그 결과를 도 2에 나타내었다.
도 2에 따르면, 본 명세서의 막-전극 접합체(MEA)의 제조방법에 따라 제조된 전극(실시예 1 및 실시예 2)의 경우, 2-에톡시 에탄올 대신 글리세롤(glycerol)을 사용한 비교예 1과 성능의 차이가 거의 나지 않음을 알 수 있다.
<실험예 2>
실시예 1, 실시예 2 및 비교예 1의 전극촉매층을 적용한 막전극 접합체(MEA)의 활성 속도 평가를 0.6V에서 5분 간격, 0.3V에서 10초 간격으로 측정하여 진행하였다. 전해질막은 sPEEK계 탄화수소계 고분자막을 사용하였으며, GDL(가스확산층)은 SGL사 10BB를 사용하였고, 두께는 380 ㎛ 내지 420 ㎛의 범위를 가지는 것을 사용하였다. GDL의 압축률은 25%로 설정하였고 이를 유지시키기 위해 glass fiber sheet를 사용하였다. 막전극 접합체의 활성 면적은 25 cm2으로 제조하여 활성 속도 평가를 진행하였다. 애노드와 캐소드에 동일한 예의 전극을 사용하여 진행하였다. 평가 장비는 Scribner사의 PEMFC station장비를 사용했고, 셀의 온도는 70℃로 유지하고 가습조건을 RH 100%를 유지하여 활성 속도 평가를 진행하였고, 그 결과를 도 3에 나타내었다.
도 3에 따르면, 본 명세서의 막-전극 접합체(MEA)의 제조방법에 따라 제조된 전극(실시예 1 및 실시예 2)의 경우, 2-에톡시 에탄올 대신 글리세롤(glycerol)을 사용한 비교예 1에 비하여, 초기 활성 속도가 빠르며, 포화되는 속도 또한 현저히 빨라짐을 알 수 있다.

Claims (9)

  1. 이오노머(ionomer); 및 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매;를 포함하는 용액을 준비하는 단계;
    상기 용액에 탄소분말 촉매를 첨가하여 촉매 슬러리 조성물을 형성하는 단계; 및
    상기 촉매 슬러리 조성물을 기재 상에 도포 후 건조하여 촉매층을 형성하는 단계를 포함하고,
    상기 촉매 슬러리 조성물 내 탄소분말 촉매, 탄소수 1 내지 6의 알코올계 용매 및 2-에톡시 에탄올의 중량비는 1:2.5:2.5 내지 1:4.5:4.5이며,
    상기 촉매층 내 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량은, 상기 촉매층 100 중량부를 기준으로, 10 중량부 내지 20중량부인 촉매층의 제조방법.
  2. 청구항 1에 있어서,
    상기 탄소수 1 내지 6의 알코올계 용매는 물, 메탄올, 에탄올, 부탄올, 1-프로판올 및 이소프로판올로 이루어진 군에서 선택된 1종 또는 2종 이상의 혼합물인 것인 촉매층의 제조방법.
  3. 청구항 1에 있어서,
    상기 건조는 30℃ 내지 40℃ 범위에서 30분 이하로 수행되는 것인 촉매층의 제조방법.
  4. 청구항 1에 있어서,
    상기 촉매 슬러리 조성물을 형성하는 단계 이후 및 상기 촉매층을 형성하는 단계 이전에, 상기 촉매 슬러리 조성물을 초음파(sonication) 처리하여 균일화(homogenizing)하는 단계를 수행하는 것인 촉매층의 제조방법.
  5. 청구항 1에 있어서,
    상기 이오노머(ionomer)는 불소계 고분자인 촉매층의 제조방법.
  6. 청구항 1에 있어서,
    상기 촉매층의 두께는 5 ㎛ 내지 15 ㎛인 것인 촉매층의 제조방법.
  7. 탄소분말 촉매; 이오노머(ionomer); 및 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매;를 포함하는 촉매층으로서,
    상기 2-에톡시 에탄올 및 탄소수 1 내지 6의 알코올계 용매를 포함하는 용매의 함량은, 상기 촉매층 100중량부를 기준으로, 10 중량부 내지 20 중량부인 촉매층.
  8. 애노드 촉매층, 캐소드 촉매층 및 상기 애노드 촉매층 및 캐소드 촉매층 사이에 구비된 고분자 전해질막을 포함하며,
    상기 애노드 촉매층 및 캐소드 촉매층 중 적어도 하나는 청구항 7에 따른 촉매층을 포함하는 것인 막-전극 접합체.
  9. 청구항 8에 따른 막-전극 접합체를 포함하는 연료전지.
PCT/KR2019/000697 2018-01-26 2019-01-17 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지 WO2019146959A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19743503.5A EP3671920B1 (en) 2018-01-26 2019-01-17 Method for preparing catalyst layer, catalyst layer, and membrane-electrode assembly comprising same and fuel cell
JP2020514240A JP7152049B2 (ja) 2018-01-26 2019-01-17 触媒層の製造方法、触媒層、およびそれを含む膜-電極接合体、並びに燃料電池
CN201980004309.9A CN111095637B (zh) 2018-01-26 2019-01-17 制备催化剂层的方法、催化剂层和包括该催化剂层的膜电极组件及燃料电池
US16/644,623 US11349139B2 (en) 2018-01-26 2019-01-17 Method for preparing catalyst layer, catalyst layer, and membrane-electrode assembly comprising same and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0009860 2018-01-26
KR1020180009860A KR102230982B1 (ko) 2018-01-26 2018-01-26 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지

Publications (1)

Publication Number Publication Date
WO2019146959A1 true WO2019146959A1 (ko) 2019-08-01

Family

ID=67394714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000697 WO2019146959A1 (ko) 2018-01-26 2019-01-17 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지

Country Status (6)

Country Link
US (1) US11349139B2 (ko)
EP (1) EP3671920B1 (ko)
JP (1) JP7152049B2 (ko)
KR (1) KR102230982B1 (ko)
CN (1) CN111095637B (ko)
WO (1) WO2019146959A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230171817A (ko) * 2022-06-14 2023-12-21 코오롱인더스트리 주식회사 막-전극 어셈블리 및 이를 포함하는 연료전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070116083A (ko) * 2005-03-30 2007-12-06 우미코레 아게 운트 코 카게 촉매층 생산용 잉크
KR20100038543A (ko) * 2008-10-06 2010-04-15 현대자동차주식회사 고분자전해질 연료전지용 전극 및 막전극접합체의 제조 방법
KR20160128140A (ko) * 2015-04-28 2016-11-07 단국대학교 천안캠퍼스 산학협력단 이오노머 나노 입자 분산액의 제조방법
KR20170069783A (ko) * 2015-12-11 2017-06-21 주식회사 엘지화학 고분자 전해질 연료전지용 촉매 슬러리 조성물, 막-전극 접합체, 및 막 -전극 접합체의 제조방법
KR20170089486A (ko) * 2016-01-27 2017-08-04 코오롱인더스트리 주식회사 혼합 촉매를 포함하는 연료전지 전극 형성용 조성물, 연료전지용 전극 및 이의 제조방법
KR20180009860A (ko) 2016-07-19 2018-01-30 주식회사 경신 차량용 정션박스

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576108B2 (ja) 2001-02-14 2004-10-13 株式会社東芝 電極、それを用いた燃料電池、および電極の製造方法
JP3651799B2 (ja) 2002-08-21 2005-05-25 株式会社東芝 燃料電池用触媒材料、燃料電池用触媒材料の製造方法及び燃料電池
JP2004311163A (ja) * 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd 燃料電池の触媒層膜とその製造方法
JP4861025B2 (ja) 2006-03-02 2012-01-25 東芝燃料電池システム株式会社 固体高分子電解質型燃料電池用電極及びその製造方法
JP2008041375A (ja) 2006-08-04 2008-02-21 Hitachi Ltd 電解質,電解質膜、それを用いた膜電極接合体,燃料電池電源及び燃料電池電源システム
JP2008065986A (ja) 2006-09-04 2008-03-21 Toshiba Corp 直接メタノール型燃料電池
JP5017007B2 (ja) * 2007-07-25 2012-09-05 株式会社東芝 触媒、触媒の製造方法、膜電極複合体及び燃料電池
JP5196988B2 (ja) * 2007-12-21 2013-05-15 スリーエム イノベイティブ プロパティズ カンパニー インク組成物、その製造方法、そのインク組成物を用いて形成した電極触媒層及びこれらの用途
JP5672645B2 (ja) 2008-03-13 2015-02-18 凸版印刷株式会社 燃料電池用電極触媒インク
KR101267786B1 (ko) 2010-05-06 2013-05-31 주식회사 엘지화학 촉매층 형성용 파우더를 이용한 연료전지용 막전극 접합체, 이의 제조방법 및 이를 포함하는 연료전지
KR101272514B1 (ko) 2010-12-03 2013-06-11 현대자동차주식회사 연료전지 전극용 소수성 고분자-탄소지지체 복합체의 제조방법
JP2012134138A (ja) 2010-12-03 2012-07-12 Sumitomo Chemical Co Ltd 触媒層、積層体及び膜−電極接合体の製造方法
JP2014135229A (ja) * 2013-01-11 2014-07-24 Ne Chemcat Corp 燃料電池用触媒インク
CN105814722B (zh) * 2013-12-27 2019-12-06 昭和电工株式会社 电极催化剂油墨组合物
JP6364855B2 (ja) 2014-03-24 2018-08-01 凸版印刷株式会社 膜電極接合体の製造方法
US20170066892A1 (en) * 2014-03-31 2017-03-09 Toray Industries, Inc. Substrate film, catalyst transfer sheet, method for producing membrane electrode assembly, and method for producing catalyst layer-coated electrolyte membrane
CN111704731B (zh) 2015-04-28 2023-07-07 檀国大学天安校区产学合作团 离聚物纳米粒子分散液的制造方法
KR20170079591A (ko) 2015-12-30 2017-07-10 코오롱인더스트리 주식회사 연료전지용 전극 형성용 조성물, 연료전지용 전극, 막-전극 접합체와 이의 제조방법, 그리고 이를 포함하는 연료전지
CN107437628B (zh) * 2017-07-20 2019-09-24 河南豫氢动力有限公司 一种燃料电池膜电极组件的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070116083A (ko) * 2005-03-30 2007-12-06 우미코레 아게 운트 코 카게 촉매층 생산용 잉크
KR20100038543A (ko) * 2008-10-06 2010-04-15 현대자동차주식회사 고분자전해질 연료전지용 전극 및 막전극접합체의 제조 방법
KR20160128140A (ko) * 2015-04-28 2016-11-07 단국대학교 천안캠퍼스 산학협력단 이오노머 나노 입자 분산액의 제조방법
KR20170069783A (ko) * 2015-12-11 2017-06-21 주식회사 엘지화학 고분자 전해질 연료전지용 촉매 슬러리 조성물, 막-전극 접합체, 및 막 -전극 접합체의 제조방법
KR20170089486A (ko) * 2016-01-27 2017-08-04 코오롱인더스트리 주식회사 혼합 촉매를 포함하는 연료전지 전극 형성용 조성물, 연료전지용 전극 및 이의 제조방법
KR20180009860A (ko) 2016-07-19 2018-01-30 주식회사 경신 차량용 정션박스

Also Published As

Publication number Publication date
US20210083308A1 (en) 2021-03-18
EP3671920B1 (en) 2023-10-11
CN111095637A (zh) 2020-05-01
JP2020533750A (ja) 2020-11-19
EP3671920A4 (en) 2020-12-02
EP3671920A1 (en) 2020-06-24
JP7152049B2 (ja) 2022-10-12
KR102230982B1 (ko) 2021-03-22
CN111095637B (zh) 2022-07-01
US11349139B2 (en) 2022-05-31
KR20190090985A (ko) 2019-08-05

Similar Documents

Publication Publication Date Title
WO2017052248A1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2017175891A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2020138800A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
WO2020138799A1 (ko) 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지
WO2017116113A2 (ko) 전극과 전극의 제조방법, 그리고 이를 포함하는 연료전지
WO2019059570A1 (ko) 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
WO2019146959A1 (ko) 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지
WO2018101591A1 (ko) 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
WO2020263004A1 (ko) 연료전지용 촉매, 그 제조방법, 및 그것을 포함하는 막 전극 어셈블리
WO2017175892A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2021137513A1 (ko) 고내구성을 갖는 연료전지용 전극, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
KR20110110600A (ko) 연료전지용 막-전극 접합체의 제조방법
WO2021137517A1 (ko) 연료전지의 역전압 내구성을 향상시킬 수 있는 막-전극 어셈블리, 그 제조방법, 및 그것을 포함하는 연료전지
WO2023101333A1 (ko) 연료전지용 촉매, 이의 제조방법 및 이를 포함하는 연료전지
WO2021137514A1 (ko) 연료전지용 촉매, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
WO2022145771A1 (ko) 연료전지용 촉매층, 이의 제조 방법, 이를 포함하는 막-전극 접합체 및 연료전지
KR20190019520A (ko) 전기분무방사를 이용한 고분자 연료전지 전극의 제조방법 및 그를 이용하여 제조한 고분자 연료전지 전극
WO2022225246A1 (ko) 나노분산된 이오노머 바인더를 이용한 막-전극 접합체의 제조 방법 및 이에 의해 제조된 막-전극 접합체
WO2024101800A1 (ko) 연료 전지용 막-전극 어셈블리, 및 이의 제조 방법
WO2022085963A1 (ko) 연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법
KR20180052905A (ko) 연료전지용 전극 촉매층 형성을 위한 촉매 잉크의 제조 방법
WO2023191396A1 (ko) 연료전지용 촉매 및 이의 제조 방법
WO2023096230A1 (ko) 판상의 다공성 실리카를 포함하는 연료전지용 막-전극 어셈블리 및 이를 포함하는 연료전지
WO2023113218A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514240

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019743503

Country of ref document: EP

Effective date: 20200317

NENP Non-entry into the national phase

Ref country code: DE