WO2022085963A1 - 연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법 - Google Patents

연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법 Download PDF

Info

Publication number
WO2022085963A1
WO2022085963A1 PCT/KR2021/013006 KR2021013006W WO2022085963A1 WO 2022085963 A1 WO2022085963 A1 WO 2022085963A1 KR 2021013006 W KR2021013006 W KR 2021013006W WO 2022085963 A1 WO2022085963 A1 WO 2022085963A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
carbon
surface area
bet
untreated
Prior art date
Application number
PCT/KR2021/013006
Other languages
English (en)
French (fr)
Inventor
김정호
김준영
송가영
공낙원
이주성
남경식
박찬미
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN202180017258.0A priority Critical patent/CN115176365A/zh
Priority to US17/778,938 priority patent/US20220416259A1/en
Priority to EP21883035.4A priority patent/EP4235877A1/en
Priority to JP2022529557A priority patent/JP7416938B2/ja
Publication of WO2022085963A1 publication Critical patent/WO2022085963A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/109After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a carbon-based carrier for a fuel cell catalyst, a catalyst comprising the same, a membrane-electrode assembly comprising the same, and a method for manufacturing the same, and more specifically, has excellent durability characteristic of a solid type.
  • the present invention relates to a carbon-based carrier capable of increasing catalytic activity as well as a porous type, a catalyst including the same, a membrane-electrode assembly including the same, and a method for manufacturing the same.
  • a polymer that generates electricity using a stacked structure of unit cells composed of a Membrane-Electrode Assembly (MEA) and a separator (also referred to as a 'bipolar plate') Polymer Electrolyte Membrane Fuel Cell (PEMFC) is attracting attention as a next-generation energy source that can replace fossil energy due to its high energy efficiency and eco-friendly features.
  • the membrane-electrode assembly generally includes an anode (also called an 'fuel electrode'), a cathode (also called an 'air electrode'), and a polymer electrolyte membrane between them.
  • anode also called an 'fuel electrode'
  • cathode also called an 'air electrode'
  • polymer electrolyte membrane between them.
  • Such a carbon-based carrier may be classified into a solid-type carrier (eg, acetylene black) and a porous-type carrier (eg, furnace black).
  • a solid-type carrier eg, acetylene black
  • a porous-type carrier eg, furnace black
  • the solid type carrier has superior durability compared to the porous type carrier, but has a relatively low specific surface area.
  • the low specific surface area of the carrier limits the number of catalyst metal particles sprayed thereon, thus limiting the increase in the active surface area of the catalyst.
  • Korean Patent Application Laid-Open No. 10-2012-0021408 discloses a heat treatment of the carrier in a vapor atmosphere. is proposing However, a catalyst having a satisfactory active surface area could not be prepared with a carrier heat treated in this way.
  • the heat treatment method proposed by the prior art significantly increases the surface area and volume of both micropores and mesopores of the carrier.
  • the mesopore means a pore having a pore diameter of 2 to 50 nm
  • the micropore means a pore having a pore diameter of less than 2 nm.
  • the catalytic metal particles entering the mesopores can contribute to the catalytic activity to some extent, whereas the catalytic metal particles entering the micropores have little or very little contribution to the catalytic activity. Do.
  • mesopores may better improve the mass transfer capacity of the catalyst compared to micropores. This is the reason why a solid type carbon-based carrier that has been heat treated (ie, more micropores than mesopores) in the manner of the prior art cannot provide a catalyst with sufficient active surface area and good mass transfer ability.
  • the present invention provides a carbon-based carrier for a fuel cell catalyst capable of preventing problems due to the limitations and disadvantages of the related art, a catalyst comprising the same, a membrane-electrode assembly comprising the same, and a method for manufacturing the same it's about
  • Another aspect of the present invention is to provide a catalyst for a fuel cell that not only has excellent durability, but also has high catalytic activity by improving the dispersibility of catalytic metal particles due to the increased mesopores of the carrier.
  • Another aspect of the present invention is to provide a membrane-electrode assembly having excellent performance as well as high durability.
  • Another aspect of the present invention provides a carbon-based carrier for a fuel cell catalyst capable of increasing catalytic activity as well as a porous-type carrier thanks to mesopores of increased surface area and volume while having excellent durability characteristic of a solid-type carrier. To provide a manufacturing method.
  • the present invention is a solid-type carrier and has an external surface area of 100 to 450 m 2 /g, a mesopore volume of 0.25 to 0.65 cm 3 /g, and 0.01 to 0.05 cm 3 /g
  • a carbon-based carrier for a fuel cell catalyst having a micropore volume of Each of the external surface area, the mesopore volume, and the micropore volume is the arithmetic mean of measurements obtained using a Brunauer-Emmett-Teller (BET) analyzer (Micromeritics, ASAP-2020) from five samples taken at random. am.
  • BET Brunauer-Emmett-Teller
  • the carbon-based carrier may have a BET surface area of 150 to 600 m 2 /g.
  • the BET surface area is the arithmetic mean of measurements obtained using the BET analyzer from 5 samples taken at random.
  • the carbon-based carrier may have a d-spacing value of 3.38 to 3.62 ⁇ calculated according to Bragg's law using a (002) peak obtained through XRD analysis.
  • the carbon-based carrier may be an acetylene black carrier.
  • the carbon-based carrier According to another aspect of the present invention, the carbon-based carrier; and catalytic metal particles dispersed on the carbon-based carrier.
  • an anode anode
  • cathode a polymer electrolyte membrane between the anode and the cathode, wherein at least one of the anode and the cathode includes the catalyst, a membrane-electrode assembly is provided.
  • preparing a solid-type carbon-based raw support (carbon-based raw support); and heat-treating the untreated carrier so that the carrier activated through the heat treatment may satisfy Equations 1 to 3 below.
  • S EX_AS is the outer surface area of the activated carrier
  • S EX_RS is the outer surface area of the untreated carrier
  • V MESO_AS is the mesopore volume of the activated carrier
  • V MESO_RS is the mesopore volume of the untreated carrier
  • V MICRO_AS is the micropore volume of the activated carrier
  • V MICRO_RS is the micropore volume of the untreated carrier.
  • Each of the external surface area, the mesopore volume, and the micropore volume is an arithmetic mean of measurements obtained using a BET analyzer (Micromeritics, ASAP-2020) from 5 samples taken at random.
  • the heat treatment step may be performed so that the activated carrier may further satisfy Equation 4 below.
  • S BET_AS is the BET surface area of the activated carrier
  • S BET_RS is the BET surface area of the untreated carrier
  • the BET surface area is the arithmetic mean of measurements obtained using the BET analyzer (Micromeritics, ASAP-2020) from 5 samples taken at random.
  • the heat treatment step may be performed so that the activated carrier may further satisfy Equations 5 and 6 below.
  • DS AS is a d-spacing value calculated according to Bragg's law using the (002) peak obtained through XRD analysis of the activated carrier
  • DS RS is obtained through XRD analysis of the untreated carrier.
  • (002) is the d-spacing value calculated according to Bragg's law using the peak
  • I AS is the intensity of the (002) peak obtained through XRD analysis of the activated carrier
  • I RS is the The intensity of the (002) peak obtained through XRD analysis.
  • the method for preparing a carbon-based carrier includes, before the heat treatment step, performing thermogravimetric analysis on the untreated carrier; And from the result of the thermogravimetric analysis, it may further include the step of identifying a first temperature at which a weight reduction of 20% by weight occurred, wherein the heat treatment step is a second temperature satisfying the following formula 7 in air can be performed in
  • T 1 is the first temperature
  • T 2 is the second temperature
  • the untreated carrier may comprise acetylene black.
  • a solid-type carbon-based carrier is heat-treated under specific conditions such that the surface area and volume of the mesopores, which can significantly contribute to the increase in catalytic activity, increase more than the surface area and volume of the micropores.
  • a catalyst for a fuel cell having high catalytic activity as well as excellent durability can be provided.
  • a membrane-electrode assembly having excellent performance as well as high durability can be provided.
  • thermogravimetric analysis (TGA) results of three types of untreated acetylene black carriers
  • Example 2 is an XRD graph of the untreated acetylene black carrier and Example 1,
  • FIG. 3 is a graph showing the BET isotherm curves of each of the untreated acetylene black carrier and the activated acetylene black carrier of Example 1;
  • the carbon-based carrier for a fuel cell of the present invention is basically a solid-type carrier.
  • the solid-type carbon-based carrier may have any one shape selected from the group consisting of a sphere shape, a polyhedral shape, and an egg shape.
  • a solid type carrier such as acetylene black has superior durability compared to a porous type carrier such as furnace black, but has a relatively low specific surface area.
  • solid-type carrier is defined as a carrier having an external surface area and micropore volume of 450 m 2 /g or less and 0.05 cm 3 /g or less, respectively, measured by the BET measurement method
  • porous-type carrier is defined as It is defined as a carrier having an external surface area and a micropore volume of greater than 450 m 2 /g and greater than 0.05 cm 3 /g, respectively, measured through the BET measurement method.
  • the surface area and volume of the mesopores which can significantly contribute to the increase in catalytic activity while heat-treating the solid-type carbon-based carrier, can be increased more than the surface area and volume of the micropores (or mesopores)
  • a carbon-based support capable of increasing catalytic activity as well as of a porous-type support while having excellent durability characteristic of a solid-type support will be provided.
  • the mesopore means a pore having a pore diameter of 2 to 50 nm
  • the micropore means a pore having a pore diameter of less than 2 nm.
  • the method for producing a carbon-based carrier of the present invention includes the steps of preparing a solid type carbon-based untreated carrier (eg, acetylene black) and heat-treating the untreated carrier under specific conditions.
  • a solid type carbon-based untreated carrier eg, acetylene black
  • the specific conditions are conditions that enable the carrier activated through the heat treatment to satisfy Equations 1 to 3 below.
  • S EX_AS is the outer surface area of the activated carrier
  • S EX_RS is the outer surface area of the untreated carrier
  • V MESO_AS is the mesopore volume of the activated carrier
  • V MESO_RS is the mesopore volume of the untreated carrier
  • V MICRO_AS is the micropore volume of the activated carrier
  • V MICRO_RS is the micropore volume of the untreated carrier.
  • the outer surface area (S EX ) of the carrier which is determined mainly depending on the mesopores, is increased by three times or more by the heat treatment, and the mesopore volume (V MESO ) of the carrier is increased by the heat treatment. increased by 1.2 times or more, and the micropore volume (V MICRO ) of the carrier increases only by 1.1 times or less.
  • the carbon-based carrier of the present invention heat-treated under the above specific conditions has an external surface area (S EX_AS ) of 100 to 450 m 2 /g, a mesopore volume (V MESO_AS ) of 0.25 to 0.65 cm 3 /g, and 0.01 to 0.05 cm 3 /g micropore volume (V MICRO_AS ).
  • the specific conditions for the heat treatment may be conditions that enable the carrier activated through the heat treatment to further satisfy Equation 4 below.
  • S BET_AS is the BET surface area of the activated carrier
  • S BET_RS is the BET surface area of the untreated carrier
  • the BET surface area (S BET ) of the carrier is increased by more than two times by the heat treatment, it is increased less than the degree of increase of the external surface area (S EX ) may be desirable.
  • the carbon-based carrier according to an embodiment of the present invention heat-treated under the specific conditions may have a BET surface area (S BET_AS ) of 150 to 600 m 2 /g.
  • S BET_AS BET surface area
  • each of the outer surface area (S EX ), the mesopore volume (V MESO ), the BET surface area (S BET ), and the micropore volume (V MICRO ) was obtained from five samples taken at random. It is the arithmetic mean of the measured values obtained using the BET analyzer (Micromeritics, ASAP-2020). According to the BET analysis, the physical properties of the sample are measured based on the Brunauer-Emmett-Teller (BET) theory after adsorbing a gas (generally, nitrogen) to the sample.
  • BET Brunauer-Emmett-Teller
  • the specific conditions for the heat treatment may be conditions that enable the carrier activated through the heat treatment to further satisfy Equations 5 and 6 below.
  • DS AS is a d-spacing value calculated according to Bragg's law using the (002) peak obtained through XRD analysis of the activated carrier
  • DS RS is obtained through XRD analysis of the untreated carrier.
  • (002) is the d-spacing value calculated according to Bragg's law using the peak
  • I AS is the intensity of the (002) peak obtained through XRD analysis of the activated carrier
  • I RS is the The intensity of the (002) peak obtained through XRD analysis.
  • the XRD analysis may be performed using an XRD analyzer (XRD-7000) manufactured by Shimadzu under the following conditions.
  • the d-spacing value (DS RS ) of the untreated carrier may be 3.2997 to 4.2269 ⁇ , and the d-spacing value (DS RS ) is obtained through the heat treatment.
  • An increase of only 10% at most may be desirable.
  • the carbon-based carrier of the present invention heat-treated under the specific conditions may have a d-spacing value (DS AS ) of 3.38 to 3.62 ⁇ when XRD analysis is performed under the above conditions.
  • DS AS d-spacing value
  • the heat treatment needs to be performed in air.
  • the surface area and volume of the mesopores as well as the surface area and volume of the micropores are rapidly increased.
  • the catalytic metal particles entering the mesopores can contribute to the catalytic activity to some extent, whereas the catalytic metal particles entering the micropores have little or very little contribution to the catalytic activity. Do. Therefore, the increase in the surface area and volume of the micropores offset the increase in catalytic activity due to the increase in the surface area and volume of the mesopores.
  • a catalyst having a satisfactory active surface area cannot be prepared with a carrier subjected to heat treatment in a water vapor atmosphere.
  • the heat treatment temperature is also one of the critical process factors in satisfying the above-described heat treatment condition(s), which is a process factor that must be determined depending on the type or physical properties of the untreated carrier.
  • the method of the present invention may further include determining the heat treatment temperature based on the type and/or physical properties of the untreated carrier before the heat treatment step. More specifically, the method of the present invention includes, before the heat treatment step, performing a thermogravimetric analysis (TGA) on the untreated carrier and a weight reduction of 20% by weight from the result of the thermogravimetric analysis. loss) may further include the step of identifying the first temperature generated. Based on the determined first temperature, the heat treatment of the present invention may be performed at a second temperature satisfying Equation 7 below.
  • TGA thermogravimetric analysis
  • T 1 is the first temperature
  • T 2 is the second temperature
  • FIG. 1 is a graph showing the thermogravimetric analysis (TGA) results of three types of untreated acetylene black carriers.
  • TGA thermogravimetric analysis
  • the first temperature (T 1 ) of the type A untreated acetylene black carrier is about 500°C
  • the first temperature (T 1 ) of the type B untreated acetylene black carrier is about 519°C
  • the first temperature (T 1 ) of the type C untreated acetylene black carrier is about 477°C.
  • the second temperature (T 2 ), which is the heat treatment temperature of the present invention may be a temperature within the range of T 1 ⁇ 40 °C, and more specifically, a temperature within the range of T 1 ⁇ 20 °C.
  • T 1 +40° C. oxidation of carbon proceeds to rapidly increase the surface area and volume of mesopores as well as the surface area and volume of micropores.
  • the second temperature (T 2 ), which is the heat treatment temperature is less than T 1 ⁇ 40° C., the heat treatment effect is insignificant, so that a sufficient increase in the surface area and volume of the mesopores cannot be expected.
  • the heat treatment may be performed at the second temperature (T 2 ) for 0.5 to 8 hours.
  • the catalyst of the present invention can be obtained by dispersing the catalyst metal particles through a conventional method on the solid-type carbon-based carrier of the present invention obtained through the heat treatment.
  • the catalyst metal particles may include platinum or a platinum-based alloy.
  • the platinum-based alloy is (i) Pt-Co, Pt-Pd, Pt-Mn, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ir, Pt-Ru, Pt-Ni, Pt- binary alloys such as Fe, (ii) Pt-Ru-W, Pt-Ru-Ni, Pt-Ru-Mo, Pt-Ru-Ir, Pt-Co-Mn, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt- ternary alloys such as Au-Fe, Pt-Au-Ni, Pt-Ni-Ir, Pt-Cr-Ir, or (iii
  • the carbon-based support of the present invention obtained by heat treatment has excellent durability characteristic of a solid-type support and can increase catalytic activity as high as that of a porous-type support. Accordingly, the catalyst for a fuel cell of the present invention obtained by dispersing catalyst metal particles on the carbon-based carrier of the present invention may have excellent durability as well as high catalytic activity.
  • an electrode slurry is prepared by dispersing the catalyst prepared according to the present invention in a dispersion medium together with an ionomer.
  • the ionomer dispersed in the dispersion medium together with the catalyst of the present invention is for hydrogen ion transfer and also functions as a binder for improving adhesion between the electrode and the polymer electrolyte membrane.
  • the ionomer may be a fluorine-based ionomer or a hydrocarbon-based ionomer, and at least one ion conductive group selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a sulfonic acid fluoride group can have
  • the ionomer may be a fluorine-based ionomer such as poly(perfluorosulfonic acid) or poly(perfluorocarboxylic acid).
  • the ionomer is sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK) , sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene (S-PS) polyphosphazene), sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated polyether sulfone Sulfonated polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide,
  • the dispersion medium may be water, a hydrophilic solvent, an organic solvent, or a mixture of two or more thereof.
  • the hydrophilic solvent contains a linear or branched saturated or unsaturated hydrocarbon having 1 to 12 carbon atoms as a main chain, and at least one selected from the group consisting of alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers and amides. It may be a compound having a functional group.
  • the organic solvent may be N-methylpyrrolidone (NMP), dimethylsulfoxide (DMSO), tetrahydrofuran (THF), dimethylacetamide (DMAc), or a mixture of two or more thereof, but is not limited thereto.
  • NMP N-methylpyrrolidone
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • DMAc dimethylacetamide
  • the electrode slurry is coated on a substrate and the coated electrode slurry is dried.
  • the electrode may be formed on the polymer electrolyte membrane through a decal transfer method.
  • the substrate on which the electrode slurry is coated is a release film
  • the electrode formed on the release film through the drying step is applied on the polymer electrolyte membrane. It further includes the step of transferring and removing the release film.
  • the dispersion medium is removed from the electrode slurry through a subsequent drying process. Then, the release film and the electrode are laminated on the polymer electrolyte membrane so that the electrode formed through the drying process is in contact with the polymer electrolyte membrane, and then the electrode is placed on the polymer electrolyte membrane by performing a hot pressing process. and then remove the release film.
  • the anode and the cathode are respectively formed on the release films in the same manner as above, and then the anode and the cathode are simultaneously transferred to one side and the other side of the polymer electrolyte membrane. It is common.
  • the polymer electrolyte membrane may be a single membrane type formed of an ionomer or a reinforced composite membrane type including a porous support impregnated with an ionomer.
  • the ionomer of the polymer electrolyte membrane and the ionomer of the electrode slurry are preferably the same type of ionomer, but the present invention is not limited thereto, and different types of ionomers may be used for manufacturing the polymer electrolyte membrane and the electrode, respectively.
  • the electrode may be formed on the polymer electrolyte membrane through a direct coating method.
  • the substrate on which the electrode slurry is coated is a polymer electrolyte membrane.
  • a drying process for removing the dispersion medium from the electrode slurry is performed. Then, once the electrode is formed through the drying process, the mask film is removed.
  • the anode and the cathode may be sequentially formed on one surface and the other surface of the polymer electrolyte membrane.
  • the membrane-electrode assembly (MEA) of the present invention can be manufactured by forming an anode and a cathode on one side and the other side of the polymer electrolyte membrane, respectively, through a decal transfer method or a direct coating method using the electrode slurry.
  • the membrane-electrode assembly (MEA) of the present invention includes an anode, a cathode, and a polymer electrolyte membrane therebetween, and at least one of the anode and the cathode may include the catalyst of the present invention.
  • Thermogravimetric analysis was performed on the untreated acetylene black carrier, and it was found that the first temperature (T 1 ) at which a weight loss of 20% by weight occurred was 500°C. Then, the second temperature (T 2 ), which is the heat treatment temperature, was set to 500° C. within the range of T 1 ⁇ 40° C., and the untreated acetylene black carrier was heat-treated for 5 hours. Specifically, a boat containing the untreated carrier was placed in a furnace. A solid type activated acetylene black carrier was obtained by heating the untreated carrier for 5 hours after raising the temperature of the furnace to 500 °C at a rate of 5 °C/min in an air atmosphere.
  • TGA Thermogravimetric analysis
  • T 1 500 °C
  • T 2 the second temperature
  • T 1 + 50 °C the second temperature
  • T 1 500 °C
  • T 2 the heat treatment temperature
  • XRD of the untreated acetylene black carrier and the activated acetylene black carriers of Example 1 and Comparative Examples using an XRD analyzer (Shimadzu, XRD-7000) [X-ray source: Cu-K ⁇ (wavelength 1.54056 ⁇ )] Each analysis was performed.
  • the d-spacing values (DS) calculated according to Bragg's law using the (002) peak are shown in Table 1 below.
  • XRD graphs of the untreated acetylene black carrier and the activated acetylene black carrier of Example 1 are shown in FIG. 2 .
  • Example 1 As shown in Table 1, in Example 1, the external surface area (S EX ) and the mesopore volume (V MESO ) corresponding to the mesopores were significantly increased, but the micropore surface area (S MICRO ) and the micropore volume (V MICRO ) were There was little increase (ie, the surface area and volume of the mesopores increased significantly but the surface area and volume of the micropores hardly increased).
  • the d-spacing values (DS) of the activated acetylene black carriers of Example 1 and Comparative Example 2 were not significantly different from the d-spacing values (DS) of the untreated acetylene black carrier [for example, Example 1 In the case of , the d-spacing value (DS) increased by only about 0.6% through heat treatment], the d-spacing values (DS) of the activated acetylene black carriers of Comparative Examples 1 and 3 were the d-spacing values of the untreated acetylene black carrier.
  • the -spacing value (DS) is significantly larger than the -spacing value (DS) (that is, the d-spacing value (DS) is significantly increased through heat treatment).
  • a significant increase (eg, greater than 10%) of this d-spacing value (DS) indicates that a significant change in the crystal structure of carbon was caused.
  • the (002) peak intensity (I) of Example 1 was 50% or more of the (002) peak intensity (I) of the untreated acetylene black carrier [ie, (002) due to activation)
  • the peak intensity (I) decrease was less than or equal to 50%].
  • activated acetylene black carriers obtained by heat-treating the untreated acetylene black carrier at temperatures within the range of T 1 ⁇ 40 °C (ie, 460 °C, 480 °C, 520 °C, and 540 °C) are also described above. The results were similar to those of the activated acetylene black carrier of Example 1.
  • BET isotherms and pore distribution curves of the untreated acetylene black carrier and the activated acetylene black carrier of Example 1 were obtained using a BET analyzer (Micromeritics, ASAP-2020), respectively, and these are shown in FIGS. 3 and 4, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

솔리드 타입 특유의 우수한 내구성을 가지면서도 다공성 타입에 못지않게 촉매 활성을 증가시킬 수 있는 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법이 개시된다. 본 발명의 연료전지 촉매용 탄소계 담체는, 솔리드 타입의 담체이고, 100 내지 450 m2/g의 외표면적, 0.25 내지 0.65 cm3/g의 메조세공 부피, 및 0.01 내지 0.05 cm3/g의 마이크로세공 부피를 갖는다.

Description

연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법
본 발명은 연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법에 관한 것으로서, 더욱 구체적으로는, 솔리드 타입(solid type) 특유의 우수한 내구성을 가지면서도 다공성 타입(porous type)에 못지않게 촉매 활성을 증가시킬 수 있는 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법에 관한 것이다.
막-전극 어셈블리(Membrane-Electrode Assembly: MEA)와 세퍼레이터(separator)['바이폴라 플레이트(bipolar plate)'라고 지칭되기도 함]로 이루어진 단위 셀(unit cell)들의 적층 구조를 이용하여 전기를 발생시키는 고분자 전해질막 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)는 높은 에너지 효율성과 친환경적 특징으로 인해 화석 에너지를 대체할 수 있는 차세대 에너지원으로 주목받고 있다.
상기 막-전극 어셈블리는 일반적으로 애노드(anode)('연료극'이라고도 지칭됨), 캐소드(cathode)('공기극'이라고도 지칭됨), 및 이들 사이의 고분자 전해질막(polymer electrolyte membrane)을 포함한다.
수소 가스와 같은 연료가 애노드에 공급되면, 애노드에서는 수소의 산화반응에 의해 수소 이온(H+)과 전자(e-)가 생성된다. 생성된 수소 이온은 고분자 전해질막을 통해 캐소드로 전달되고, 생성된 전자는 외부 회로를 통해 캐소드에 전달된다. 캐소드에 공급되는 산소가 상기 수소이온 및 상기 전자와 결합하여 환원됨으로써 물이 생성된다.
막-전극 어셈블리의 전극 형성을 위해 사용되는 촉매의 활성 표면적을 증가시키기 위한 노력의 일환으로, 전기 전도성을 갖는 탄소계 담체의 표면 상에 촉매 금속 입자들(catalytic metal particles)을 분산시킨 촉매가 개발되었다.
이러한 탄소계 담체는 솔리드 타입의 담체[예를 들어, 아세틸렌 블랙(acetylene black)]와 다공성 타입의 담체[예를 들어, 퍼니스 블랙(furnace black)]로 분류될 수 있다.
솔리드 타입의 담체는 다공성 타입의 담체에 비해 우수한 내구성을 갖는 반면 상대적으로 낮은 비표면적으로 갖는다. 담체의 낮은 비표면적은 그 위에 분사되는 촉매 금속 입자들의 개수를 제한하고, 따라서 촉매의 활성 표면적을 증가시키는데 한계가 있다.
이러한 한계를 극복하기 위해, 솔리드 타입의 탄소계 담체의 비표면적을 증가시키기 위한 연구가 진행되고 있다. 예를 들어, 솔리드 타입의 탄소계 담체의 비표면적을 증가시키기 위한 하나의 방안으로서, 대한민국 공개특허공보 제10-2012-0021408호(이하, "선행기술")는 상기 담체를 수증기 분위기에서 열처리하는 것을 제안하고 있다. 그러나, 이러한 방식으로 열처리된 담체로는 만족할만한 활성 표면적을 갖는 촉매를 제조할 수 없었다.
선행기술의 기술적 한계의 원인을 밝혀내기 위한 연구를 거듭한 결과, 상기 선행기술에 의해 제안된 열처리 방식은 담체의 마이크로세공들(micropores)과 메조세공들(mesopores) 모두의 표면적 및 부피를 상당히 증가시킬 수는 있으나, 메조세공들(mesopores)의 표면적 및 부피만을 선택적으로 증가시킬 수는 없다는 것을 발견하였다. 여기서, 상기 메조세공은 2 내지 50 nm의 공경을 갖는 세공을 의미하고, 상기 마이크로세공은 2 nm 미만의 공경을 갖는 세공을 의미한다.
그러나, 일반적으로, 촉매 금속 입자들을 담체 상에 분산시킬 때 메조세공에 들어간 촉매 금속 입자는 촉매 활성에 어느 정도 공헌할 수 있는 반면 마이크로세공에 들어간 촉매 금속 입자는 촉매 활성에 공헌도가 거의 없거나 극히 미미하다. 또한, 마이크로세공에 비해 메조세공이 촉매의 물질 전달 능력을 더 잘 개선시킬 수 있다. 이것이, 상기 선행기술의 방식으로 열처리된(즉, 메조세공들보다는 마이크로세공들이 더 증가된) 솔리드 타입의 탄소계 담체가 충분한 활성 표면적 및 우수한 물질 전달 능력을 갖는 촉매를 제공할 수 없는 이유이다.
따라서, 마이크로세공들보다는 메조세공들만을 선택적으로 증가시킬 수 있는 솔리드 타입의 탄소계 담체의 열처리 조건을 찾아내는 것이 무엇보다 중요하다.
따라서, 본 발명은 위와 같은 관련 기술의 제한 및 단점들에 기인한 문제점들을 방지할 수 있는 연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법에 관한 것이다.
본 발명의 일 관점은, 솔리드 타입 담체 특유의 우수한 내구성을 가지면서도 증가된 표면적 및 부피의 메조세공들 덕분에 다공성 타입 담체에 못지않게 촉매 활성을 증가시킬 수 있는 연료전지 촉매용 탄소계 담체를 제공하는 것이다.
본 발명의 다른 관점은, 우수한 내구성을 가질 뿐만 아니라, 담체의 증가된 메조세공 덕분에 촉매 금속 입자들의 분산도가 향상됨으로써 높은 촉매 활성을 갖는 연료전지용 촉매를 제공하는 것이다.
본 발명의 또 다른 관점은, 높은 내구성은 물론이고 우수한 성능을 갖는 막-전극 어셈블리를 제공하는 것이다.
본 발명의 또 다른 관점은, 솔리드 타입 담체 특유의 우수한 내구성을 가지면서도 증가된 표면적 및 부피의 메조세공들 덕분에 다공성 타입 담체에 못지않게 촉매 활성을 증가시킬 수 있는 연료전지 촉매용 탄소계 담체를 제조하는 방법을 제공하는 것이다.
위에서 언급된 본 발명의 관점 외에도, 본 발명의 다른 특징 및 이점들이 이하에서 설명되거나, 그러한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
위와 같은 본 발명의 일 관점에 따라, 솔리드 타입(solid type)의 담체이고 100 내지 450 m2/g의 외표면적, 0.25 내지 0.65 cm3/g의 메조세공 부피, 및 0.01 내지 0.05 cm3/g의 마이크로세공 부피를 갖는 연료전지 촉매용 탄소계 담체가 제공된다. 상기 외표면적, 상기 메조세공 부피, 및 상기 마이크로세공 부피 각각은 무작위로 취하여진 5개 샘플들로부터 BET(Brunauer-Emmett-Teller) 분석기(Micromeritics, ASAP-2020)를 이용하여 얻어진 측정값들의 산술평균이다.
상기 탄소계 담체는 150 내지 600 m2/g의 BET 표면적을 가질 수 있다. 상기 BET 표면적은 무작위로 취하여진 5개 샘플들로부터 상기 BET 분석기를 이용하여 얻어진 측정값들의 산술평균이다.
상기 탄소계 담체는 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙(Bragg's law)에 따라 산출되는 d-spacing 값이 3.38 내지 3.62 Å일 수 있다.
상기 탄소계 담체는 아세틸렌 블랙 담체일 수 있다.
본 발명의 다른 관점에 따라, 상기 탄소계 담체; 및 상기 탄소계 담체 상에 분산되어 있는 촉매 금속 입자들(catalytic metal particles)을 포함하는, 촉매가 제공된다.
본 발명의 또 다른 관점에 따라, 애노드(anode); 캐소드(cathode); 및 상기 애노드와 상기 캐소드 사이의 고분자 전해질막을 포함하고, 상기 애노드와 상기 캐소드 중 적어도 하나는 상기 촉매를 포함하는, 막-전극 어셈블리가 제공된다.
본 발명의 또 다른 관점에 따라, 솔리드 타입의 탄소계 미처리 담체(carbon-based raw support)를 준비하는 단계; 및 상기 미처리 담체를 열처리하되, 상기 열처리를 통해 활성화된 담체가 하기의 식 1 내지 3을 만족할 수 있도록 열처리하는 단계를 포함하는, 탄소계 담체 제조방법이 제공된다.
[식 1]
SEX_AS ≥ SEX_RS × 3
[식 2]
VMESO_AS ≥ VMESO_RS × 1.2
[식 3]
VMICRO_AS ≤ VMICRO_RS × 1.1
여기서, SEX_AS는 상기 활성화된 담체의 외표면적이고, SEX_RS는 상기 미처리 담체의 외표면적이고, VMESO_AS는 상기 활성화된 담체의 메조세공 부피이고, VMESO_RS는 상기 미처리 담체의 메조세공 부피이고, VMICRO_AS는 상기 활성화된 담체의 마이크로세공 부피이고, VMICRO_RS는 상기 미처리 담체의 마이크로세공 부피이다.
상기 외표면적, 상기 메조세공 부피, 및 상기 마이크로세공 부피 각각은 무작위로 취하여진 5개 샘플들로부터 BET 분석기(Micromeritics, ASAP-2020)를 이용하여 얻어진 측정값들의 산술평균이다.
상기 열처리 단계는 상기 활성화된 담체가 하기의 식 4를 더 만족할 수 있도록 수행될 수 있다.
[식 4]
SBET_AS ≥ SBET_RS × 2
여기서, SBET_AS는 상기 활성화된 담체의 BET 표면적이고, SBET_RS는 상기 미처리 담체의 BET 표면적이다.
상기 BET 표면적은 무작위로 취하여진 5개 샘플들로부터 상기 BET 분석기(Micromeritics, ASAP-2020)를 이용하여 얻어진 측정값들의 산술평균이다.
상기 열처리 단계는 상기 활성화된 담체가 하기의 식 5 및 식 6을 더 만족할 수 있도록 수행될 수 있다.
[식 5]
DSAS ≤ DSRS × 1.1
[식 6]
IAS ≥ IRS × 0.5
여기서, DSAS는 상기 활성화된 담체의 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙(Bragg's law)에 따라 산출되는 d-spacing 값이고, DSRS는 상기 미처리 담체의 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙에 따라 산출되는 d-spacing 값이고, IAS는 상기 활성화된 담체의 XRD 분석을 통해 얻어지는 (002) 피크의 강도(intensity)이고, IRS는 상기 미처리 담체의 XRD 분석을 통해 얻어지는 (002) 피크의 강도이다.
탄소계 담체 제조방법은, 상기 열처리 단계 전에, 상기 미처리 담체에 대한 열중량 분석(Thermogravimetric analysis)을 수행하는 단계; 및 상기 열중량 분석의 결과로부터, 20 중량%의 중량 감소가 발생한 제1 온도를 파악하는 단계를 더 포함할 수 있고, 상기 열처리 단계는 공기(air) 중에서 하기의 식 7을 만족시키는 제2 온도에서 수행될 수 있다.
[식 7]
T1 - 40℃ ≤ T2 ≤ T1 + 40℃
여기서, T1은 상기 제1 온도이고, T2는 상기 제2 온도이다.
상기 미처리 담체는 아세틸렌 블랙을 포함할 수 있다.
위와 같은 본 발명에 대한 일반적 서술은 본 발명을 예시하거나 설명하기 위한 것일 뿐으로서, 본 발명의 권리범위를 제한하지 않는다.
본 발명에 의하면, 솔리드 타입의 탄소계 담체를 열처리하되 촉매 활성 증가에 유의미한 공헌을 할 수 있는 메조세공들의 표면적 및 부피가 마이크로세공들의 표면적 및 부피보다 더 많이 증가될 수 있도록 하는 특정 조건들 하에서 열처리함으로써, 솔리드 타입 담체 특유의 우수한 내구성을 가지면서도 다공성 타입 담체에 못지않게 촉매 활성을 증가시킬 수 있는 탄소계 담체가 제공될 수 있다.
또한, 본 발명에 의하면, 우수한 내구성은 물론이고 높은 촉매 활성을 갖는 연료전지용 촉매가 제공될 수 있다.
또한, 본 발명에 의하면, 높은 내구성은 물론이고 우수한 성능을 갖는 막-전극 어셈블리가 제공될 수 있다.
첨부된 도면은 본 발명의 이해를 돕고 본 명세서의 일부를 구성하기 위한 것으로서, 본 발명의 실시예들을 예시하며, 발명의 상세한 설명과 함께 본 발명의 원리들을 설명한다.
도 1은 3 종류의 미처리 아세틸렌 블랙 담체들의 열중량 분석(TGA) 결과를 보여주는 그래프이고,
도 2는 미처리 아세틸렌 블랙 담체 및 실시예 1의 XRD 그래프들이고,
도 3은 미처리 아세틸렌 블랙 담체 및 실시예 1의 활성화된 아세틸렌 블랙 담체 각각의 BET 등온곡선을 보여주는 그래프이고,
도 4는 미처리 아세틸렌 블랙 담체 및 실시예 1의 활성화된 아세틸렌 블랙 담체 각각의 세공 분포 곡선을 보여주는 그래프이며,
도 5의 (a) 및 (b)는 실시예 1의 활성화된 아세틸렌 블랙 담체로 제조된 촉매의 투과전자현미경(TEM) 사진 및 고해상도-투과전자현미경(HR-TEM) 사진이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 아래에서 설명되는 실시예들은 본 발명의 명확한 이해를 돕기 위한 예시적 목적으로 제시되는 것일 뿐, 본 발명의 범위를 제한하지 않는다.
본 발명의 연료전지용 탄소계 담체는 기본적으로 솔리드 타입의 담체이다. 본 발명의 일 실시예에 의하면, 상기 솔리드 타입의 탄소계 담체는 구형(sphere shape), 다면형(polyhedral shape), 및 계란형(egg shape)으로 이루어진 그룹으로부터 선택되는 어느 한 형태를 가질 수 있다.
전술한 바와 같이, 아세틸렌 블랙과 같은 솔리드 타입의 담체는 퍼니스 블랙과 같은 다공성 타입의 담체에 비해 우수한 내구성을 갖는 반면 상대적으로 낮은 비표면적을 갖는다.
여기에서, “솔리드 타입의 담체”는 BET 측정방법을 통해 측정한 외표면적 및 마이크로세공 부피가 각각 450 m2/g 이하 및 0.05 cm3/g 이하인 담체로 정의되며, “다공성 타입의 담체”는 BET 측정방법을 통해 측정한 외표면적 및 마이크로세공 부피가 각각 450 m2/g 초과 및 0.05 cm3/g 초과인 담체로 정의된다.
본 발명에 의하면, 솔리드 타입의 탄소계 담체를 열처리하되 촉매 활성 증가에 유의미한 공헌을 할 수 있는 메조세공들의 표면적 및 부피가 마이크로세공들의 표면적 및 부피보다 더 많이 증가될 수 있도록 하는(또는, 메조세공들의 표면적 및 부피만을 선택적으로 실질적으로 증가시킬 수 있는) 특정 조건들 하에서 열처리함으로써, 솔리드 타입 담체 특유의 우수한 내구성을 가지면서도 다공성 타입 담체에 못지않게 촉매 활성을 증가시킬 수 있는 탄소계 담체가 제공될 수 있다. 전술한 바와 같이, 상기 메조세공은 2 내지 50 nm의 공경을 갖는 세공을 의미하고, 상기 마이크로세공은 2 nm 미만의 공경을 갖는 세공을 의미한다.
구체적으로, 본 발명의 탄소계 담체 제조방법은, 솔리드 타입의 탄소계 미처리 담체(예를 들어, 아세틸렌 블랙)를 준비하는 단계 및 상기 미처리 담체를 특정 조건들 하에 열처리하는 단계를 포함한다.
상기 특정 조건들은 상기 열처리를 통해 활성화된 담체가 하기의 식 1 내지 3을 만족할 수 있도록 하는 조건들이다.
[식 1]
SEX_AS ≥ SEX_RS × 3
[식 2]
VMESO_AS ≥ VMESO_RS × 1.2
[식 3]
VMICRO_AS ≤ VMICRO_RS × 1.1
여기서, SEX_AS는 상기 활성화된 담체의 외표면적이고, SEX_RS는 상기 미처리 담체의 외표면적이고, VMESO_AS는 상기 활성화된 담체의 메조세공 부피이고, VMESO_RS는 상기 미처리 담체의 메조세공 부피이고, VMICRO_AS는 상기 활성화된 담체의 마이크로세공 부피이고, VMICRO_RS는 상기 미처리 담체의 마이크로세공 부피이다.
즉, 본 발명의 제조방법에 의하면, 메조세공에 주로 의존하여 결정되는 담체의 외표면적(SEX)이 상기 열처리에 의해 3배 이상 증가하고, 담체의 메조세공 부피(VMESO)는 상기 열처리에 의해 1.2배 이상 증가하며, 담체의 마이크로세공 부피(VMICRO)는 1.1배 이하로만 증가한다.
구체적으로, 상기 특정 조건들 하에 열처리된 본 발명의 탄소계 담체는 100 내지 450 m2/g의 외표면적(SEX_AS), 0.25 내지 0.65 cm3/g의 메조세공 부피(VMESO_AS), 및 0.01 내지 0.05 cm3/g의 마이크로세공 부피(VMICRO_AS)를 갖는다.
상기 열처리를 위한 특정 조건들은 상기 열처리를 통해 활성화된 담체가 하기의 식 4를 더 만족할 수 있도록 하는 조건들일 수 있다.
[식 4]
SBET_AS ≥ SBET_RS × 2
여기서, SBET_AS는 상기 활성화된 담체의 BET 표면적이고, SBET_RS는 상기 미처리 담체의 BET 표면적이다.
즉, 본 발명의 일 실시예에 따른 제조방법에 의하면, 담체의 BET 표면적(SBET)은 상기 열처리에 의해 2배 이상 증가하기는 하지만 상기 외표면적(SEX)의 증가 정도보다는 덜 증가하는 것이 바람직할 수 있다.
예를 들어, 상기 특정 조건들 하에 열처리된 본 발명의 일 실시예에 따른 탄소계 담체는 150 내지 600 m2/g의 BET 표면적(SBET_AS)을 가질 수 있다.
본 발명에서, 상기 외표면적(SEX), 상기 메조세공 부피(VMESO), 상기 BET 표면적(SBET), 및 상기 마이크로세공 부피(VMICRO) 각각은, 무작위로 취하여진 5개 샘플들로부터 BET 분석기(Micromeritics, ASAP-2020)를 이용하여 얻어진 측정값들의 산술평균이다. 상기 BET 분석에 의하면, 샘플에 가스(일반적으로, 질소)를 흡착시킨 후 BET(Brunauer-Emmett-Teller) 이론에 기초하여 상기 샘플의 상기 물리적 특성들을 측정한다.
상기 열처리를 위한 특정 조건들은 상기 열처리를 통해 활성화된 담체가 하기의 식 5 및 식 6을 더 만족할 수 있도록 하는 조건들일 수 있다.
[식 5]
DSAS ≤ DSRS × 1.1
[식 6]
IAS ≥ IRS × 0.5
여기서, DSAS는 상기 활성화된 담체의 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙(Bragg's law)에 따라 산출되는 d-spacing 값이고, DSRS는 상기 미처리 담체의 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙에 따라 산출되는 d-spacing 값이고, IAS는 상기 활성화된 담체의 XRD 분석을 통해 얻어지는 (002) 피크의 강도(intensity)이고, IRS는 상기 미처리 담체의 XRD 분석을 통해 얻어지는 (002) 피크의 강도이다.
예를 들어, 상기 XRD 분석은 아래의 조건들 하에서 Shimadzu사의 XRD 분석기(XRD-7000)를 이용하여 수행될 수 있다.
- X-ray 소스: Cu-Kα (파장 = 1.54056 Å)
- 전압: 40 kV
- 전류: 30 mA
즉, 본 발명의 일 실시예에 따른 제조방법에 의하면, 상기 미처리 담체의 d-spacing 값(DSRS)은 3.2997 내지 4.2269 Å일 수 있으며, 상기 d-spacing 값(DSRS)은 상기 열처리를 통해 기껏해야 10% 정도만 증가되는 것이 바람직할 수 있다. 또한, 상기 미처리 담체의 (002) 피크 강도(IRS)는 상기 열처리를 통해 기껏해야 50% 정도만 감소하는 것이 바람직할 수 있다.
예를 들어, 상기 특정 조건들 하에 열처리된 본 발명의 탄소계 담체는 상기 조건으로 XRD 분석을 수행할 경우 3.38 내지 3.62 Å의 d-spacing 값(DSAS)을 가질 수 있다.
상술한 열처리 조건(들)을 만족시키기 위해서는, 무엇보다도 상기 열처리가 공기(air) 중에서 수행될 필요가 있다.
전술한 바와 같이, 만약 수증기 분위기에서 열처리가 수행되면, 메조세공들의 표면적 및 부피는 물론이고 마이크로세공들의 표면적 및 부피도 급격히 증가하게 된다. 전술한 바와 같이, 촉매 금속 입자들을 담체 상에 분산시킬 때 메조세공에 들어간 촉매 금속 입자는 촉매 활성에 어느 정도 공헌할 수 있는 반면 마이크로세공에 들어간 촉매 금속 입자는 촉매 활성에 공헌도가 거의 없거나 극히 미미하다. 따라서, 이와 같은 마이크로세공들의 표면적 및 부피 증가는 메조세공들의 표면적 및 부피 증가로 인한 촉매 활성 증가를 상쇄시킨다. 결과적으로, 수증기 분위기에서 열처리되는 담체로는 만족할만한 활성 표면적을 갖는 촉매를 제조할 수 없다.
한편, 비활성 기체 분위기에서 열처리가 수행되는 경우에는, 담체의 세공을 활성화시키는 효과가 미미하다는 문제가 있다. 따라서, 비활성 기체 분위기에서 열처리되는 담체 역시도 충분한 외표면적(SEX) 및 메조세공 부피(VMESO)를 가질 수 없다.
상술한 열처리 조건(들)을 만족시키는데 있어서 열처리 온도 역시도 중요한(critical) 공정 인자들 중 하나인데, 이것은 상기 미처리 담체의 종류 또는 물성에 의존하여 결정되어야 하는 공정 인자이다.
따라서, 본 발명의 방법은 상기 열처리 단계 전에 상기 미처리 담체의 종류 및/또는 물성에 기초하여 열처리 온도를 결정하는 단계를 더 포함할 수 있다. 더욱 구체적으로, 본 발명의 방법은, 상기 열처리 단계 전에, 상기 미처리 담체에 대한 열중량 분석(Thermogravimetric analysis)(TGA)을 수행하는 단계 및 상기 열중량 분석의 결과로부터 20 중량%의 중량 감소(weight loss)가 발생한 제1 온도를 파악하는 단계를 더 포함할 수 있다. 이렇게 파악된 상기 제1 온도를 기초로 하기의 식 7을 만족시키는 제2 온도에서 본 발명의 열처리가 수행될 수 있다.
[식 7]
T1 - 40℃ ≤ T2 ≤ T1 + 40℃
여기서, T1은 상기 제1 온도이고, T2는 상기 제2 온도이다.
3 종류의 미처리 아세틸렌 블랙 담체들의 열중량 분석(TGA) 결과를 보여주는 그래프인 도 1에 나타난 바와 같이, 20 중량%의 중량 감소가 발생하는 지점(point)부터 급격한 중량 감소가 관찰되며, 20 중량%의 중량 감소가 나타나는 제1 온도(T1)는 미처리 아세틸렌 블랙 담체의 종류 별로 확연한 차이가 난다. 즉, 도 1의 예에서, A 타입의 미처리 아세틸렌 블랙 담체의 제1 온도(T1)는 약 500℃이고, B 타입의 미처리 아세틸렌 블랙 담체의 제1 온도(T1)는 약 519℃이며, C 타입의 미처리 아세틸렌 블랙 담체의 제1 온도(T1)는 약 477℃이다.
전술한 바와 같이, 본 발명의 열처리 온도인 상기 제2 온도(T2)는 T1±40℃의 범위 내의 온도일 수 있고, 더욱 구체적으로는 T1±20℃의 범위 내의 온도일 수 있다. 열처리 온도인 상기 제2 온도(T2)가 T1+40℃를 초과하면, 탄소의 산화가 진행되어 메조세공의 표면적 및 부피는 물론이고 마이크로세공의 표면적 및 부피도 급격히 증가한다. 반면, 열처리 온도인 상기 제2 온도(T2)가 T1-40℃ 미만이면, 열처리 효과가 미미하여 메조세공 표면적 및 부피의 충분한 증가를 기대할 수 없다.
본 발명의 일 실시예에 의하면, 상기 열처리는 상기 제2 온도(T2)에서 0.5 내지 8 시간 동안 수행될 수 있다.
상기 열처리를 통해 얻어지는 본 발명의 솔리드 타입의 탄소계 담체 상에 촉매 금속 입자들을 통상의 방법을 통해 분산시킴으로써 본 발명의 촉매가 얻어질 수 있다.
상기 촉매 금속 입자들은 백금 또는 백금계 합금을 포함할 수 있다. 상기 백금계 합금은 (i) Pt-Co, Pt-Pd, Pt-Mn, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ir, Pt-Ru, Pt-Ni, Pt-Fe 등의 2원 합금(binary alloy), (ii) Pt-Ru-W, Pt-Ru-Ni, Pt-Ru-Mo, Pt-Ru-Ir, Pt-Co-Mn, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni-Ir, Pt-Cr-Ir 등의 3원 합금(ternary alloy), 또는 (iii) Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Ru-Ir-Ni 등의 4원 합금(quaternary alloy)일 수 있으나, 이들로 한정되는 것은 아니다.
전술한 바와 같이, 솔리드 타입의 미처리 탄소계 담체를 열처리하되 촉매 활성 증가에 유의미한 공헌을 할 수 있는 메조세공들의 표면적 및 부피가 마이크로세공들의 표면적 및 부피보다 더 많이 증가될 수 있도록 하는 특정 조건들 하에서 열처리함으로써 얻어지는 본 발명의 탄소계 담체는, 솔리드 타입 담체 특유의 우수한 내구성을 가지면서도 다공성 타입 담체에 못지않게 촉매 활성을 증가시킬 수 있다. 따라서, 이러한 본 발명의 탄소계 담체 상에 촉매 금속 입자들을 분산시킴으로써 얻어지는 본 발명의 연료전지용 촉매는 우수한 내구성은 물론이고 높은 촉매 활성을 가질 수 있다.
이하에서는, 본 발명의 촉매를 이용하여 전극 및 이를 포함하는 막-전극 어셈블리를 형성하는 방법을 구체적으로 설명한다.
먼저, 본 발명에 따라 제조된 촉매를 이오노머와 함께 분산매에 분산시켜 전극 슬러리를 준비한다.
본 발명의 촉매와 함께 분산매에 분산되는 이오노머는 수소 이온 전달을 위한 것이며 전극과 고분자 전해질막 사이의 접착력 향상을 위한 바인더로서의 기능도 수행한다. 상기 이오노머는 불소계 이오노머 또는 탄화수소계 이오노머일 수 있고, 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기, 및 술폰산 플루오라이드기로 이루어진 그룹으로부터 선택되는 하나 이상의 이온 전도성기를 가질 수 있다.
예를 들어, 상기 이오노머는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산) 등과 같은 불소계 이오노머일 수 있다.
대안적으로, 상기 이오노머는 술폰화된 폴리이미드(sulfonated polyimide: S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone: S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone: SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole: SPBI), 술폰화된 폴리술폰(sulfonated polysulfone: S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene: S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone) 등과 같은 탄화수소계 이오노머일 수 있다.
상기 분산매는 물, 친수성 용매, 유기용매, 또는 이들 중 2 이상의 혼합물일 수 있다.
상기 친수성 용매는 탄소수 1 내지 12의 선형 또는 분지형의 포화 또는 불포화 탄화수소를 주쇄로서 포함하고 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 화합물일 수 있다.
상기 유기 용매는 N-메틸피롤리돈(NMP), 디메틸술폭사이드(DMSO), 테트라하이드로퓨란(THF), 디메틸아세트아미드(DMAc) 또는 이들 중 2 이상의 혼합물일 수 있으나, 이들로 제한되지 않는다.
이어서, 상기 전극 슬러리를 기재(substrate) 상에 코팅하고 상기 코팅된 전극 슬러리를 건조시킨다.
본 발명의 일 실시예에 의하면, 상기 전극은 데칼 전사법(decal transfer method)을 통해 고분자 전해질막 상에 형성될 수 있다.
데칼 전사법에 의하면, 상기 전극 슬러리가 코팅되는 상기 기재는 이형필름(release film)이고, 본 발명의 전극 형성방법은, 상기 건조 단계를 통해 상기 이형필름 상에 형성된 전극을 상기 고분자 전해질막 상에 전사하는 단계 및 상기 이형필름을 제거하는 단계를 더 포함한다.
구체적으로, 마스크 필름을 이용하여 상기 이형필름 상에 상기 전극 슬러리를 소정 형태 및 크기로 코팅한 후 후속의 건조 공정을 통해 상기 전극 슬러리로부터 상기 분산매를 제거한다. 이어서, 상기 건조 공정을 통해 형성된 전극이 고분자 전해질막에 접촉하도록 상기 이형필름과 상기 전극을 상기 고분자 전해질막 상에 적층한 후 열압착(hot pressing) 공정을 수행함으로써 상기 전극을 상기 고분자 전해질막 상에 전사하고, 이어서 상기 이형필름을 제거한다.
데칼 전사법을 이용하여 막-전극 어셈블리를 제조할 경우, 애노드와 캐소드 각각을 위와 같은 방법으로 이형필름들 상에 각각 형성한 후 고분자 전해질막의 일면 및 타면에 상기 애노드와 상기 캐소드를 동시에 전사하는 것이 일반적이다.
상기 고분자 전해질막은 이오노머로 형성된 단일막 타입(single membrane type) 또는 이오노머로 함침된 다공성 지지체를 포함하는 강화 복합막 타입(reinforced composite membrane type)일 수 있다. 상기 고분자 전해질막의 이오노머와 상기 전극 슬러리의 이오노머는 동일한 종류의 이오노머인 것이 바람직하지만 본 발명이 이것으로 제한되는 것은 아니며 상이한 종류의 이오노머들이 상기 고분자 전해질막 및 상기 전극의 제조에 각각 사용될 수도 있다.
본 발명의 다른 실시예에 의하면, 상기 전극은 직접 코팅법(direct coating method)을 통해 고분자 전해질막 상에 형성될 수 있다.
직접 코팅법에 의하면, 상기 전극 슬러리가 코팅되는 상기 기재가 고분자 전해질막이다. 예를 들어, 마스크 필름을 이용하여 상기 고분자 전해질막 상에 상기 전극 슬러리를 소정 형태 및 크기로 코팅한 후 상기 전극 슬러리로부터 상기 분산매를 제거하기 위한 건조 공정을 수행한다. 이어서, 상기 건조 공정을 통해 전극이 일단 형성되면, 상기 마스크 필름을 제거한다.
직접 코팅법을 이용하여 막-전극 어셈블리를 제조할 경우, 애노드와 캐소드가 고분자 전해질막의 일면 및 타면에 순차적으로 형성될 수 있다.
상술한 바와 같이, 상기 전극 슬러리를 이용하여 데칼 전사법 또는 직접 코팅법을 통해 고분자 전해질막의 일면 및 타면에 애노드 및 캐소드를 각각 형성함으로써 본 발명의 막-전극 어셈블리(MEA)를 제조할 수 있다.
예를 들어, 본 발명의 막-전극 어셈블리(MEA)는 애노드, 캐소드, 및 이들 사이의 고분자 전해질막을 포함하되, 상기 애노드와 상기 캐소드 중 적어도 하나는 본 발명의 촉매를 포함할 수 있다.
이하, 구체적 실시예들을 통해 본 발명을 구체적으로 설명한다. 다만, 하기의 실시예들은 본 발명의 이해를 돕기 위한 것일 뿐으로 이것에 의해 본 발명의 권리범위가 제한되어서는 안된다.
실시예 1
미처리 아세틸렌 블랙 담체에 대한 열중량 분석(TGA)을 수행하였고, 20 중량%의 중량 감소가 발생한 제1 온도(T1)가 500℃임을 파악하였다. 이어서, 열처리 온도인 제2 온도(T2)를 T1±40℃의 범위 내인 500℃로 설정하여 상기 미처리 아세틸렌 블랙 담체를 5 시간 동안 열처리하였다. 구체적으로, 상기 미처리 담체가 담긴 보트(boat)를 퍼니스(furnace)에 넣었다. 공기 분위기에서 상기 퍼니스의 온도를 5℃/min의 속도로 500℃까지 올린 후 5 시간 동안 상기 미처리 담체에 대한 열처리를 수행함으로써 솔리드 타입의 활성화된 아세틸렌 블랙 담체를 얻었다.
비교예 1
실시예 1과 동일한 종류의 미처리 아세틸렌 블랙 담체(즉, T1 = 500℃)를 준비한 후, 열처리 온도인 제2 온도(T2)를 550℃(= T1+ 50℃)로 설정하여 열처리를 수행하였다는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 솔리드 타입의 활성화된 아세틸렌 블랙 담체를 얻었다.
비교예 2
실시예 1과 동일한 종류의 미처리 아세틸렌 블랙 담체(즉, T1 = 500℃)를 준비한 후, 열처리 온도인 제2 온도(T2)를 450℃(= T1-50℃)로 설정하여 열처리를 수행하였다는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 솔리드 타입의 활성화된 아세틸렌 블랙 담체를 얻었다.
비교예 3
실시예 1과 동일한 종류의 미처리 아세틸렌 블랙 담체(즉, T1 = 500℃)를 준비한 후, 공기 분위기가 아닌 수증기 분위기에서 열처리를 수행하였다는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 솔리드 타입의 활성화된 아세틸렌 블랙 담체를 얻었다.
[BET 분석]
BET 분석기(Micromeritics, ASAP-2020)를 이용하여 상기 미처리 아세틸렌 블랙 담체 및 실시예 1과 비교예들의 활성화된 아세틸렌 블랙 담체들의 물리적 특성들, 즉 BET 표면적(BET surface area)(SBET), 마이크로세공 표면적(micropore surface area)(SMICRO), 외표면적(external surface area)(SEX), 전체 세공 부피(total pore volume)(VT), 마이크로세공 부피(micropore volume)(VMICRO), 및 메조세공 부피(mesopore volume)(VMESO)를 각각 측정하였다. 구체적으로, 각 담체 별로 무작위로 5개의 샘플들을 취해서 상기 물리적 특성들을 각각 측정한 후 각 물리적 특성 별로 그 샘플 측정값들의 산술평균을 계산하였고, 그 결과를 아래의 표 1에 나타내었다.
[XRD 분석]
XRD 분석기(Shimadzu, XRD-7000)[X-ray 소스: Cu-Kα (파장 = 1.54056 Å)]를 이용하여 상기 미처리 아세틸렌 블랙 담체 및 실시예 1과 비교예들의 활성화된 아세틸렌 블랙 담체들에 대한 XRD 분석을 각각 실시하였다. (002) 피크를 이용하여 브래그 법칙(Bragg's law)에 따라 산출된 d-spacing 값(DS)을 아래의 표 1에 나타내었다. 또한, 상기 미처리 아세틸렌 블랙 담체 및 실시예 1의 활성화된 아세틸렌 블랙 담체의 XRD 그래프들을 도 2에 나타내었다.
SBET
(m2/g)
SMICRO
(m2/g)
SEX
(m2/g)
VMICRO
(cm3/g)
VMESO
(cm3/g)
VT
(cm3/g)
DS
(Å)
미처리 담체 69.0 27.5 41.4 0.01 0.22 0.23 3.4782
실시예1 166.7 31.7 134.9 0.01 0.27 0.28 3.4997
비교예1 235.6 54.2 181.7 0.06 0.41 0.47 3.8704
비교예2 72.4 28.7 42.5 0.01 0.24 0.25 3.4825
비교예3 280.1 60.5 220.1 0.10 0.47 0.57 3.8621
표 1에 나타난 바와 같이, 실시예 1에서는 메조세공에 해당하는 외표면적(SEX) 및 메조세공 부피(VMESO)는 현저히 증가되었지만 마이크로세공 표면적(SMICRO) 및 마이크로세공 부피(VMICRO)는 거의 증가하지 않았다(즉, 메조세공들의 표면적 및 부피는 유의미하게 증가하였지만 마이크로세공들의 표면적 및 부피는 거의 증가하지 않았다). 이에 반해, 비교예 1 및 3에서는 외표면적(SEX) 및 메조세공 부피(VMESO)가 증가하였지만 마이크로세공 표면적(SMICRO) 및 마이크로세공 부피(VMICRO)의 상당한 증가도 관찰되었다(즉, 메조세공들의 표면적 및 부피 못지않게 마이크로세공들의 표면적 및 부피 역시도 상당히 증가하였다). 전술한 바와 같이, 촉매 금속 입자들을 담체 상에 분산시킬 때 메조세공에 들어간 촉매 금속 입자는 촉매 활성에 어느 정도 공헌할 수 있는 반면 마이크로세공에 들어간 촉매 금속 입자는 촉매 활성에 공헌도가 거의 없거나 극히 미미하다는 점을 감안할 때, 이와 같은 마이크로세공 표면적 및 부피의 증가는 메조세공 표면적 및 부피의 증가로 인한 촉매 활성 증가를 상쇄시키고, 결과적으로 담체 열처리를 통한 촉매 활성 증가를 기대하기 어렵게 만든다.
또한, 실시예 1 및 비교예 2의 활성화된 아세틸렌 블랙 담체들의 d-spacing 값들(DS)은 미처리 아세틸렌 블랙 담체의 d-spacing 값(DS)과 별 차이가 없는 반면[예를 들어, 실시예 1의 경우, 열처리를 통해 d-spacing 값(DS)이 단지 약 0.6%만 증가], 비교예 1 및 비교예 3의 활성화된 아세틸렌 블랙 담체들의 d-spacing 값들(DS)은 미처리 아세틸렌 블랙 담체의 d-spacing 값(DS)에 비해 상당히 큰 것[즉, 열처리를 통해 d-spacing 값(DS)이 상당히 증가한 것]을 확인할 수 있다. 이러한 d-spacing 값(DS)의 상당한 증가(예를 들어, 10%를 초과하는 증가)는 탄소의 결정 구조에 심각한 변화가 야기되었음을 가리킨다.
도 2의 XRD 그래프에 나타난 바와 같이, 실시예 1의 (002) 피크 강도(I)는 미처리 아세틸렌 블랙 담체의 (002) 피크 강도(I)의 50% 이상이었다[즉, 활성화로 인한 (002) 피크 강도(I) 감소율이 50% 이하이었다].
구체적 기재는 생략하지만, 상기 미처리 아세틸렌 블랙 담체를 T1±40℃의 범위 내의 온도들(즉, 460℃, 480℃, 520℃, 및 540℃)에서 열처리함으로써 얻어진 활성화된 아세틸렌 블랙 담체들 역시도 상기 실시예 1의 활성화된 아세틸렌 블랙 담체와 유사한 결과를 나타내었다.
[BET 등온곡선 (BET Isotherm) 및 세공 분포 곡선]
BET 분석기(Micromeritics, ASAP-2020)를 이용하여 상기 미처리 아세틸렌 블랙 담체 및 실시예 1의 활성화된 아세틸렌 블랙 담체의 BET 등온곡선 및 세공 분포 곡선을 각각 얻었고, 이들 도 3 및 도 4에 각각 나타내었다.
도 3의 그래프로부터, Type II 형태의 등온곡선이 실시예 1의 열처리 후 Type IV 형태로 변화된 것을 확인할 수 있는데, 이것은 마이크로세공보다는 메조세공이 증가하였음을 의미하는 것이다.
또한, 도 4의 그래프로부터, 실시예 1의 열처리를 통해 메조세공들의 표면적 및 부피가 크게 증가하였음을 확인할 수 있다.
[촉매의 투과전자 현미경(TEM) 분석]
도 5의 (a) 및 (b)는, 실시예 1의 활성화된 아세틸렌 블랙 담체 상에 촉매 금속 입자들을 분산시켜 얻어진 촉매의 투과전자현미경(TEM) 사진 및 고해상도-투과전자현미경(HR-TEM) 사진이다. 도 5의 사진들로부터 알 수 있는 바와 같이, 본 발명의 솔리드 타입의 탄소계 담체 상에 촉매 금속 입자들이 균일하게 분포되어 있음을 확인할 수 있다.

Claims (12)

  1. 연료전지 촉매용 탄소계 담체(carbon-based support)에 있어서,
    상기 탄소계 담체는 솔리드 타입(solid type)의 담체이고,
    상기 탄소계 담체는 100 내지 450 m2/g의 외표면적(external surface area), 0.25 내지 0.65 cm3/g의 메조세공 부피(mesopore volume), 및 0.01 내지 0.05 cm3/g의 마이크로세공 부피(micropore volume)를 갖는 - 상기 외표면적, 상기 메조세공 부피, 및 상기 마이크로세공 부피 각각은 무작위로 취하여진 5개 샘플들로부터 BET(Brunauer-Emmett-Teller) 분석기(Micromeritics, ASAP-2020)를 이용하여 얻어진 측정값들의 산술평균임 -,
    탄소계 담체.
  2. 제1항에 있어서,
    상기 탄소계 담체는 150 내지 600 m2/g의 BET 표면적(BET surface area)을 갖는 - 상기 BET 표면적은 무작위로 취하여진 5개 샘플들로부터 상기 BET 분석기를 이용하여 얻어진 측정값들의 산술평균임 -,
    탄소계 담체.
  3. 제1항에 있어서,
    상기 탄소계 담체는 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙(Bragg's law)에 따라 산출되는 d-spacing 값이 3.38 내지 3.62 Å인,
    탄소계 담체.
  4. 제1항에 있어서,
    상기 탄소계 담체는 아세틸렌 블랙 담체인,
    탄소계 담체.
  5. 제1항의 탄소계 담체; 및
    상기 탄소계 담체 상에 분산되어 있는 촉매 금속 입자들(catalytic metal particles)
    을 포함하는,
    촉매.
  6. 애노드(anode);
    캐소드(cathode); 및
    상기 애노드와 상기 캐소드 사이의 고분자 전해질막
    을 포함하고,
    상기 애노드와 상기 캐소드 중 적어도 하나는 제5항의 촉매를 포함하는,
    막-전극 어셈블리.
  7. 솔리드 타입의 탄소계 미처리 담체(carbon-based raw support)를 준비하는 단계; 및
    상기 미처리 담체를 열처리하되, 상기 열처리를 통해 활성화된 담체가 하기의 식 1 내지 3을 만족할 수 있도록 열처리하는 단계
    를 포함하는,
    탄소계 담체 제조방법:
    [식 1]
    SEX_AS ≥ SEX_RS × 3
    [식 2]
    VMESO_AS ≥ VMESO_RS × 1.2
    [식 3]
    VMICRO_AS ≤ VMICRO_RS × 1.1
    여기서, SEX_AS는 상기 활성화된 담체의 외표면적이고, SEX_RS는 상기 미처리 담체의 외표면적이고, VMESO_AS는 상기 활성화된 담체의 메조세공 부피이고, VMESO_RS는 상기 미처리 담체의 메조세공 부피이고, VMICRO_AS는 상기 활성화된 담체의 마이크로세공 부피이고, VMICRO_RS는 상기 미처리 담체의 마이크로세공 부피이며,
    상기 외표면적, 상기 메조세공 부피, 상기 마이크로세공 부피 각각은 무작위로 취하여진 5개 샘플들로부터 BET 분석기(Micromeritics, ASAP-2020)를 이용하여 얻어진 측정값들의 산술평균임.
  8. 제7항에 있어서,
    상기 열처리 단계는 상기 활성화된 담체가 하기의 식 4를 더 만족할 수 있도록 수행되는,
    탄소계 담체 제조방법:
    [식 4]
    SBET_AS ≥ SBET_RS × 2
    여기서, SBET_AS는 상기 활성화된 담체의 BET 표면적이고, SBET_RS는 상기 미처리 담체의 BET 표면적이며,
    상기 BET 표면적은 무작위로 취하여진 5개 샘플들로부터 상기 BET 분석기를 이용하여 얻어진 측정값들의 산술평균임.
  9. 제7항에 있어서,
    상기 열처리 단계는 상기 활성화된 담체가 하기의 식 5 및 식 6을 더 만족할 수 있도록 수행되는,
    탄소계 담체 제조방법:
    [식 5]
    DSAS ≤ DSRS × 1.1
    [식 6]
    IAS ≥ IRS × 0.5
    여기서, DSAS는 상기 활성화된 담체의 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙(Bragg's law)에 따라 산출되는 d-spacing 값이고, DSRS는 상기 미처리 담체의 XRD 분석을 통해 얻어지는 (002) 피크를 이용하여 브래그 법칙에 따라 산출되는 d-spacing 값이고, IAS는 상기 활성화된 담체의 XRD 분석을 통해 얻어지는 (002) 피크의 강도(intensity)이고, IRS는 상기 미처리 담체의 XRD 분석을 통해 얻어지는 (002) 피크의 강도임.
  10. 제7항에 있어서,
    상기 열처리 단계 전에,
    상기 미처리 담체에 대한 열중량 분석(Thermogravimetric analysis)을 수행하는 단계; 및
    상기 열중량 분석의 결과로부터, 20 중량%의 중량 감소가 발생한 제1 온도를 파악하는 단계
    를 더 포함하고,
    상기 열처리 단계는 공기(air) 중에서 하기의 식 7을 만족시키는 제2 온도에서 수행되는,
    탄소계 담체 제조방법:
    [식 7]
    T1 - 40℃ ≤ T2 ≤ T1 + 40℃
    여기서, T1은 상기 제1 온도이고, T2는 상기 제2 온도임.
  11. 제10항에 있어서,
    상기 열처리 단계는 0.5 내지 8 시간 동안 수행되는,
    탄소계 담체 제조방법.
  12. 제7항에 있어서,
    상기 미처리 담체는 아세틸렌 블랙을 포함하는,
    탄소계 담체 제조방법.
PCT/KR2021/013006 2020-10-21 2021-09-24 연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법 WO2022085963A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180017258.0A CN115176365A (zh) 2020-10-21 2021-09-24 用于燃料电池催化剂的碳类载体、包括其的催化剂、包括其的膜-电极组件及其制备方法
US17/778,938 US20220416259A1 (en) 2020-10-21 2021-09-24 Carbon-based carrier for fuel cell catalyst, catalyst comprising same, membrane-electrode assembly comprising same, and method for preparing same
EP21883035.4A EP4235877A1 (en) 2020-10-21 2021-09-24 Carbon-based carrier for fuel cell catalyst, catalyst comprising same, membrane-electrode assembly comprising same, and method for preparing same
JP2022529557A JP7416938B2 (ja) 2020-10-21 2021-09-24 燃料電池触媒用炭素系担体、これを含む触媒、これを含む膜電極アセンブリー、及びこれを製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0136421 2020-10-21
KR20200136421 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022085963A1 true WO2022085963A1 (ko) 2022-04-28

Family

ID=81290691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013006 WO2022085963A1 (ko) 2020-10-21 2021-09-24 연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법

Country Status (7)

Country Link
US (1) US20220416259A1 (ko)
EP (1) EP4235877A1 (ko)
JP (1) JP7416938B2 (ko)
KR (1) KR20220052824A (ko)
CN (1) CN115176365A (ko)
TW (1) TWI774566B (ko)
WO (1) WO2022085963A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060092741A (ko) * 2005-02-19 2006-08-23 한남대학교 산학협력단 탄소 나노파이버 구조체, 그의 제조방법 및 그것을 이용한연료 전지용 전극 촉매
KR100708642B1 (ko) * 2003-11-21 2007-04-18 삼성에스디아이 주식회사 중형다공성 탄소 분자체 및 이를 사용한 담지촉매
KR20120021408A (ko) 2010-07-30 2012-03-09 현대자동차주식회사 연료전지 촉매 및 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017837B2 (en) * 2008-02-19 2015-04-28 Cabot Corporation High surface area graphitized carbon and processes for making same
CN102460794B (zh) * 2009-06-03 2016-01-20 昭和电工株式会社 燃料电池用催化剂和使用该催化剂的固体高分子型燃料电池
ES2957208T3 (es) * 2014-06-11 2024-01-15 Heraeus Deutschland Gmbh & Co Kg Catalizador portador y método para producir un material de carbono grafitizado poroso recubierto con nanopartículas metálicas
JP2016039268A (ja) 2014-08-08 2016-03-22 株式会社ライジングアドバンステクノロジー 薬液付与装置、薬液付与装置を用いた薬液付与方法及び薬液付与装置が直列に配列された薬液付与機構
KR102003112B1 (ko) * 2014-09-09 2019-07-23 가부시키가이샤 토호쿠 테크노 아치 다공질 흑연의 제조 방법 및 다공질 흑연
JP6879686B2 (ja) * 2016-07-21 2021-06-02 日本製鉄株式会社 多孔質炭素材料の製造方法
JP6802363B2 (ja) * 2017-03-31 2020-12-16 日本製鉄株式会社 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法
KR102113719B1 (ko) * 2018-08-31 2020-05-21 주식회사 티씨케이 활성탄 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708642B1 (ko) * 2003-11-21 2007-04-18 삼성에스디아이 주식회사 중형다공성 탄소 분자체 및 이를 사용한 담지촉매
KR20060092741A (ko) * 2005-02-19 2006-08-23 한남대학교 산학협력단 탄소 나노파이버 구조체, 그의 제조방법 및 그것을 이용한연료 전지용 전극 촉매
KR20120021408A (ko) 2010-07-30 2012-03-09 현대자동차주식회사 연료전지 촉매 및 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JANUS PAULA; JANUS RAFAł; DUDEK BARBARA; DROZDEK MAREK; SILVESTRE-ALBERO ANA; RODRíGUEZ-REINOSO FRANCISCO; KUśTROWS: "On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene", MICROPOROUS AND MESOPOROUS MATERIALS, ELSEVIER, AMSTERDAM ,NL, vol. 299, 22 February 2020 (2020-02-22), Amsterdam ,NL , XP086098369, ISSN: 1387-1811, DOI: 10.1016/j.micromeso.2020.110118 *
LI JHENG‐GUANG, HO YA‐FAN, AHMED MAHMOUD M. M., LIANG HENG‐CHIA, KUO SHIAO‐WEI: "Mesoporous Carbons Templated by PEO‐PCL Block Copolymers as Electrode Materials for Supercapacitors", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 25, no. 44, 6 August 2019 (2019-08-06), DE, pages 10456 - 10463, XP055924629, ISSN: 0947-6539, DOI: 10.1002/chem.201901724 *
XU J. B., ZHAO T. S.: "Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells", RSC ADV., vol. 3, no. 1, 1 January 2013 (2013-01-01), pages 16 - 24, XP055924620, DOI: 10.1039/C2RA22279E *

Also Published As

Publication number Publication date
KR20220052824A (ko) 2022-04-28
TWI774566B (zh) 2022-08-11
TW202218221A (zh) 2022-05-01
US20220416259A1 (en) 2022-12-29
CN115176365A (zh) 2022-10-11
JP2023503095A (ja) 2023-01-26
JP7416938B2 (ja) 2024-01-17
EP4235877A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2017052248A1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2017175891A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2020138800A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
WO2018062769A1 (ko) 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지
WO2019004711A1 (ko) 탄소 나노 섬유 방사층을 포함하는 연료전지용 기체확산층
WO2019132281A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 막-전극 어셈블리 및 연료 전지
WO2022085963A1 (ko) 연료전지 촉매용 탄소계 담체, 이것을 포함하는 촉매, 이것을 포함하는 막-전극 어셈블리, 및 이것을 제조하는 방법
WO2017175892A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2021137514A1 (ko) 연료전지용 촉매, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
WO2021137513A1 (ko) 고내구성을 갖는 연료전지용 전극, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
WO2018101591A1 (ko) 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
WO2022145748A1 (ko) 막-전극 어셈블리 및 이를 포함하는 연료 전지
WO2021137517A1 (ko) 연료전지의 역전압 내구성을 향상시킬 수 있는 막-전극 어셈블리, 그 제조방법, 및 그것을 포함하는 연료전지
WO2020263004A1 (ko) 연료전지용 촉매, 그 제조방법, 및 그것을 포함하는 막 전극 어셈블리
WO2019146959A1 (ko) 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지
WO2023101333A1 (ko) 연료전지용 촉매, 이의 제조방법 및 이를 포함하는 연료전지
WO2022225246A1 (ko) 나노분산된 이오노머 바인더를 이용한 막-전극 접합체의 제조 방법 및 이에 의해 제조된 막-전극 접합체
WO2017175890A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2023101305A1 (ko) 막-전극 어셈블리 및 이를 포함하는 연료전지
WO2022131629A1 (ko) 막-전극 어셈블리 및 그 제조방법
WO2022145771A1 (ko) 연료전지용 촉매층, 이의 제조 방법, 이를 포함하는 막-전극 접합체 및 연료전지
WO2023191328A1 (ko) 불소 함유 촉매층을 포함하는 막-전극 어셈블리 및 이를 포함하는 연료 전지
WO2023243985A1 (ko) 고분자 전해질 막 및 막-전극 어셈블리의 제조 방법
WO2023068669A1 (ko) 고결정성 카본블랙 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022529557

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021883035

Country of ref document: EP

Effective date: 20230522