WO2018062769A1 - 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지 - Google Patents

담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지 Download PDF

Info

Publication number
WO2018062769A1
WO2018062769A1 PCT/KR2017/010403 KR2017010403W WO2018062769A1 WO 2018062769 A1 WO2018062769 A1 WO 2018062769A1 KR 2017010403 W KR2017010403 W KR 2017010403W WO 2018062769 A1 WO2018062769 A1 WO 2018062769A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fuel cell
carbon carrier
highly crystalline
group
Prior art date
Application number
PCT/KR2017/010403
Other languages
English (en)
French (fr)
Inventor
김준영
이진화
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP17856655.0A priority Critical patent/EP3520892A4/en
Priority to CN201780059813.XA priority patent/CN109789386A/zh
Priority to US16/338,381 priority patent/US20200028183A1/en
Priority to JP2019515501A priority patent/JP2020500096A/ja
Publication of WO2018062769A1 publication Critical patent/WO2018062769A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carrier, a fuel cell electrode, a membrane-electrode assembly, and a fuel cell including the same, more preferably a carrier having excellent durability applicable to a FCV (Fuel cell vehicle) and a fuel cell electrode comprising the same, Membrane-electrode assembly, a technology for a fuel cell.
  • FCV Fluel cell vehicle
  • a fuel cell is a battery having a power generation system that directly converts chemical reaction energy such as oxidation / reduction reaction of hydrogen and oxygen contained in hydrocarbon fuel materials such as methanol, ethanol and natural gas into electrical energy.
  • chemical reaction energy such as oxidation / reduction reaction of hydrogen and oxygen contained in hydrocarbon fuel materials such as methanol, ethanol and natural gas
  • hydrocarbon fuel materials such as methanol, ethanol and natural gas
  • This fuel cell has a merit that it can produce a wide range of output by stacking by stacking unit cells, and has attracted attention as a small and portable portable power source because it shows an energy density of 4 to 10 times compared to a small lithium battery. have.
  • a stack that substantially generates electricity in a fuel cell is made up of several to dozens of unit cells consisting of a membrane-electrode assembly (MEA) and a separator (also called a bipolar plate).
  • MEA membrane-electrode assembly
  • separator also called a bipolar plate
  • the membrane-electrode assembly has a structure in which an anode (Anode or fuel electrode) and a cathode (Cathode or air electrode) are formed on both sides of an electrolyte membrane.
  • the fuel cells may be classified into alkali electrolyte fuel cells and polymer electrolyte fuel cells (PEMFC) according to the state of the electrolyte.
  • the polymer electrolyte fuel cells may have a low operating temperature of less than 100 ° C. and a rapid start-up. Due to its advantages such as response characteristics and excellent durability, it has been spotlighted as a portable, vehicle, and home power supply.
  • polymer electrolyte fuel cells include hydrogen exchange gas fuel cells (Proton Exchange Membrane Fuel Cell, PEMFC), and direct methanol fuel cell (DMFC), which uses liquid methanol as fuel. Etc. can be mentioned.
  • FCV fuel cell vehicle
  • membrane-electrode assemblies for polymer electrolyte fuel cells for application in fuel cell vehicles have technical limitations such as deterioration of membrane-electrode assembly performance and remarkable decrease in durability due to long time operation, and major durability degradation of membrane-electrode assemblies.
  • the electrochemically active area of the catalyst rapidly decreases due to the corrosion of the carbon carrier and the aggregation-dissolution-ostwalt ripening between the platinum catalyst particles generated during the operation of the polymer electrolyte fuel cell.
  • the activity is also reduced, which may cause a problem that both the performance and the durability of the electrode catalyst used are significantly reduced.
  • An object of the present invention is to provide a highly crystalline graphitized carbon carrier having excellent durability and high electrochemical activity.
  • Another object of the present invention is to provide an electrode for a fuel cell comprising the carrier.
  • Still another object of the present invention is to provide a membrane-electrode assembly including the electrode.
  • Still another object of the present invention is to provide a fuel cell including the membrane-electrode assembly.
  • the present invention comprises a carbon particle comprising a high crystalline graphitization layer, the high crystalline graphitization layer comprises a functional group bonded to the surface, the functional group It is possible to provide a highly crystalline graphitized carbon carrier comprising a compound represented by.
  • Ar is alkylene or arylene, and each R is independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur and mixtures thereof, n is an integer from 1 to 20.
  • the functional group is 0.5 x 10 -10 to 1.0 x 10 to the surface of the high crystalline graphite-8 may be surface-coated (surface coverage) in mol / cm 2.
  • the doping level of the functional group may be 0.7 to 15.0 at.%, And the N / C or S / C ratio may be 0.005 to 0.500.
  • Formula 1 may be an aromatic hydrocarbon represented by the following formula (2).
  • R 1 to R 5 are each independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur, and mixtures thereof.
  • At least one or more of the R 1 to R 5 may include any one substituent selected from the group consisting of CN, SH and NH 2 .
  • the ratio of the maximum peak area of the D band may be 0.1 to 1.2.
  • the step heat treatment process is a first step of raising the carbon particles to 900 to 1,000 °C at a rate of 3 to 10 °C / min, and maintained for 5 to 30 minutes; A second step of increasing the temperature from 900 to 1,000 ° C. at a rate of 2 to 5 ° C./min to 1,800 to 1,900 ° C., and maintaining for 5 to 30 minutes; And a third step of raising the temperature to 2,000 to 3,000 ° C. at a rate of 1 to 3 ° C./min at 1,800 to 1,900 ° C., and maintaining the same for 10 minutes to 2 hours.
  • Diazonium salt substituted with the functional group may include a compound represented by the following formula (3).
  • R 1 to R 5 are each independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur, and mixtures thereof, wherein X ⁇ is a halogen group anion. .
  • the diazonium salt substituted with the functional group may be prepared by diazonation of an aromatic primary amine compound represented by the following Formula 4.
  • R 1 to R 5 are each independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur, and mixtures thereof.
  • the aromatic primary amine compound is selected from the group consisting of 4-aminobenzonitrile, 4-aminobenzothiol, 4-aminobenzothiol, p-phenylene diamine, and mixtures thereof. It can be any one.
  • the step of introducing the organic functional group into the highly crystalline graphitized layer may be performed at 0 to 50 °C for 15 minutes to 24 hours.
  • a high crystalline graphitized carbon carrier according to the above; And it can provide an electrode for a fuel cell comprising a catalyst supported on the carrier.
  • the anode; cathode; And a polymer electrolyte membrane, and at least one of the positive electrode and the negative electrode may include the electrode.
  • the anode may include the electrode.
  • the durability is excellent and the performance of the fuel cell can be improved.
  • FIG. 1 is a schematic diagram of a method for producing a highly crystalline graphitized carbon carrier according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a fuel cell according to another embodiment of the present invention.
  • Example 3 is a graph comparing the XPS results of Example 8 and Comparative Example 1 in Experimental Example 1 of the present invention.
  • Example 5 is a graph comparing the activity per mass of Examples 3, 8, 13 and Comparative Example 1 in Experimental Example 4 of the present invention.
  • Example 6 is a graph comparing the voltage loss of Examples 3, 8, 13 and Comparative Example 1 in Experimental Example 5 of the present invention.
  • the fuel cell electrode and the fuel cell membrane-electrode assembly are a phosphate electrolyte fuel cell (PAFC), a polymer electrolyte fuel cell, a hydrogen ion exchange membrane fuel cell (PEMFC), a direct methanol fuel cell (DMFC) and It can be applied to various electrolyte fuel cells such as high temperature PEMFC.
  • PAFC phosphate electrolyte fuel cell
  • PEMFC hydrogen ion exchange membrane fuel cell
  • DMFC direct methanol fuel cell
  • the present invention includes carbon particles including a high crystalline graphitization layer, the high crystalline graphitization layer comprises a functional group bonded to the surface, the functional group comprises a compound represented by the following formula (1) It is possible to provide a highly crystalline graphitized carbon carrier.
  • Ar is alkylene or arylene, and each R is independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur and mixtures thereof, n is an integer from 1 to 20.
  • Ar may be alkylene having 1 to 20 carbon atoms, heteroalkylene having 1 to 20 carbon atoms, arylene having 3 to 30 carbon atoms, heteroarylene having 3 to 30 carbon atoms, and preferably 3 to 10 carbon atoms.
  • the ring of may be one to three condensed arylene or heteroarylene, more preferably may include a benzene ring.
  • R may include at least one substituent selected from the group consisting of at least one hydrogen atom, CN, SH and NH 2 .
  • the thickness of the highly crystalline graphitized layer may be included in 0.1 to 100% with respect to the thickness of the entire high crystalline graphitized carbon carrier.
  • the carbon carrier including the highly crystalline graphitized layer according to an embodiment of the present invention is formed by the formation of a graphite layer (graphitic layer), the thickness of the graphite layer and the size of the crystalline domain (crystalline domain) Since the high crystalline graphitized carbon carrier can be formed with increasing, the entire carbon carrier can be formed of high crystalline graphite.
  • the functional group represented by Formula 1 may include an aromatic hydrocarbon represented by Formula 2 below.
  • R 1 to R 5 are each independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur, and mixtures thereof.
  • At least one or more of the R 1 to R 5 may include any one substituent selected from the group consisting of CN, SH and NH 2 .
  • the functional groups of 0.5 in the surface of the high crystalline graphite x 10 -10 to 1.0 x 10 - 8 mol / cm 2 in the surface-coated (surface coverage) can be, and preferably 1.0 x 10 -10 to 9.0 x 10 - 10 mol / cm 2, more preferably 1.0 x 10 -10 to 5.0 x 10 - 10 mol / cm 2, and more preferably, from 1.0 x 10 -10 to 4.5 x 10 - 10 mol / cm 2, more preferably it is 1.0 x 10 -10 to 3.5 x 10 - may be surface coated with a 10 mol / cm 2.
  • the doping level of the functional group may be 0.7 to 15.0 at.%, And the N / C or S / C ratio may be 0.005 to 0.500.
  • the doping level is less than 0.7 at.%, The effect of enhancing the electrochemical performance of the carrier by functional group substitution and improving the catalyst durability may be reduced.
  • the N / C or S / C ratio is less than 0.005, the ratio of nitrogen or sulfur in the substituent is low, thereby preventing the aggregation of catalyst metal particles and the deterioration of catalyst layer due to the surface functionalization of the carbon carrier, and the effect of improving catalyst durability. .
  • the ratio (R D / R G ) of the maximum peak area of the D band at 1 may be 0.1 to 1.2.
  • the R D / R G may be 0.3 to 1.0.
  • X-ray diffraction X-ray diffraction
  • a peak with respect to the (002) plane appears at a Bragg 2 ⁇ angle of 26 ° ⁇ 0.5 °, and on the (002) plane.
  • the full width at half maximum may be between 0.1 ° and 0.8 °. More preferably the FWHM may be 0.2 ° to 0.6 °.
  • the high crystalline graphitized carbon carrier had a d-spacing value of about 3.44 kPa obtained from the XRD measurement, which was similar to the theoretical value of 3.35 kPa of graphite of the ideal structure.
  • FIG. 1 is a schematic diagram showing a method for producing a carrier according to another embodiment of the present invention, after which will be described a method for producing a highly crystalline graphitized carbon carrier according to a preferred embodiment of the present invention through FIG. .
  • the step heat treatment process is a first step of raising the carbon particles to 900 to 1,000 °C at a rate of 3 to 10 °C / min, and maintained for 5 to 30 minutes; A second step of increasing the temperature from 900 to 1,000 ° C. at a rate of 2 to 5 ° C./min to 1,800 to 1,900 ° C., and maintaining for 5 to 30 minutes; And a third step of raising the temperature to 2,000 to 3,000 ° C. at a rate of 1 to 3 ° C./minute at 1,800 to 1,900 ° C., and maintaining the same for 10 minutes to 2 hours.
  • And 3 to 2 to maintain for 15 to 25 minutes at 2,000 to 3,000 °C; may be to include.
  • the diazonium salt substituted with a functional group represented by X ⁇ + N ⁇ N—Ar— (R) n in FIG. 1 may include a compound represented by the following Formula 3.
  • R 1 to R 5 are each independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur, and mixtures thereof, wherein X ⁇ is a halogen anion , preferably F -, Cl -, Br - and I - is any selected from the group consisting of.
  • the diazonium salt substituted with a functional group represented by X- + N ⁇ N-Ar- (R) n in FIG. 1 may be prepared by diazonation of an aromatic primary amine compound represented by the following Chemical Formula 4.
  • R 1 to R 5 are each independently a hydrogen atom, or a substituent including any one hetero atom selected from the group consisting of nitrogen, sulfur, and mixtures thereof.
  • the aromatic primary amine compound is selected from the group consisting of 4-aminobenzonitrile, 4-aminobenzothiol, 4-aminobenzothiol, p-phenylene diamine, and mixtures thereof. It can be any one.
  • Introducing the functional group into the highly crystalline graphitized layer may be performed at 0 to 50 ° C. for 15 minutes to 24 hours.
  • the step of introducing the functional group into the highly crystalline graphitized layer is more specifically to produce a diazonium salt containing a functional group and the diazonium salt containing the functional group and the highly crystalline graphitized layer by reacting the functional group is highly crystalline It can be subdivided into the step of combining with the graphitization layer. Generating the diazonium salt containing the functional group and combining the functional group with the high crystalline graphitization layer may occur sequentially or simultaneously.
  • Generating the diazonium salt containing the functional group and / or combining the functional group with the high crystalline graphitization layer is more preferably to disperse the carbon particles 100 including the high crystalline graphitization layer 120 in a solvent step; Adding a solution including the aromatic primary amine compound to a solution of carbon particles 100 including the dispersed high crystalline graphitization layer 120 to form a mixture; Adding sodium nitrite and strong acid to the mixture; Performing diazonium coupling reaction at 0-50 ° C. for 15 minutes to 12 hours; And vacuum filtering the reaction product, washing, and drying the vacuum to prepare a highly crystalline graphitized carbon carrier 130.
  • the aromatic primary amine compound may be added in an aqueous solution of 0.1 to 100 mM concentration.
  • the durability and performance of the carbon carrier can be improved by facilitating the coupling of functional groups to the surface of the highly crystalline graphitized carbon carrier by a diazonium coupling reaction.
  • the aromatic primary amine compound is present at a concentration of 0.1 mM or less, insufficient surface modification and surface coverage may cause a problem that the durability and activity improvement effect of supporting functional groups is reduced, and may exceed 100 mM.
  • side reactions may occur, resulting in non-uniform surface modification and surface coating, which may cause a problem of deteriorating electrochemical performance.
  • the solvent for dissolving the carbon particles 100 and / or the aromatic primary amine compound including the highly crystalline graphitized layer 120 may be a hydrophilic solvent, more preferably water, C 1-5 alcohol, C 1-5 ketones, C 1-5 aldehydes, C 1-5 carbonates, C 1-5 carboxylates, C 1-5 carboxylic acids, C 1-5 ethers, C 1-5 It may be any one selected from the group consisting of amides and mixtures thereof, more preferably purified water may be used.
  • the strong acid may be any one selected from the group consisting of hydrochloric acid, sulfuric acid and a mixture thereof, and more preferably, a strong acid having an acidity of 1.5 to 4 may be used.
  • the diazonium coupling reaction may be performed at 0 to 50 ° C. for 15 minutes to 24 hours, and more preferably at room temperature for 30 minutes to 6 hours. If the coupling reaction is carried out under the condition of less than 0 °C or less than 15 minutes, the reaction conditions are not sufficient enough may cause a problem that the binding of high crystalline graphite and functional groups is not made strong, exceeding 50 °C or more than 24 hours In the case of proceeding under the conditions, side reactions may occur in addition to the coupling reaction between the highly crystalline graphite and the functional group, thereby making it difficult to uniformly modify the surface.
  • a hydrophilic solvent may be used as the washing liquid, more preferably water, C 1-5 alcohol, C 1-5 ketone, C 1-5 aldehyde, C 1-5 carbonate, C 1 ⁇ Carboxylate of 5 , C 1-5 carboxylic acid, C 1-5 ether, C 1-5 amide and mixtures thereof, and more preferably methanol , Acetone, purified water and mixed solutions thereof may be used.
  • the highly crystalline graphitized carbon carrier can provide an electrode for a fuel cell comprising a catalyst supported on the carrier.
  • the catalyst may participate in the reaction of the fuel cell and can use anything that can be used as a catalyst, specifically, a metal catalyst, more specifically, a platinum-based catalyst.
  • the platinum-based catalyst is platinum (Pt), palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), platinum-M alloy (the M is palladium (Pd), ruthenium (Ru), iridium ( Ir), osmium (Os), gallium (Ga), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper ( Cu), silver (Ag), gold (Au), zinc (Zn), tin (Sn), molybdenum (Mo), tungsten (W), lanthanum (La), rhodium (Rh) and alloys in which one or more of these are combined Any one selected from the group consisting of) and mixtures thereof may include any one catalyst selected from the group consisting of.
  • the fuel cell electrode may refer to a cathode and / or an anode, and the anode and the cathode may use the same material or different materials. More specific examples include Pt, Pt / Ru, Pt / W, Pt / Ni, Pt / Sn, Pt / Mo, Pt / Pd, Pt / Fe, Pt / Cr, Pt / Co, Pt / Ru / W, Pt / A material containing any one platinum-based catalyst selected from the group consisting of Ru / Mo, Pt / Ru / V, Pt / Fe / Co, Pt / Ru / Rh / Ni, and Pt / Ru / Sn / W It can be used including.
  • the catalyst may be used by increasing the content of the catalyst similarly to the case of using the metal catalyst itself (black) according to the content ratio with the highly crystalline graphitized carbon carrier.
  • the highly crystalline graphitized carbon carrier may further include an auxiliary carrier, and the auxiliary carrier may be graphite, super P, carbon fiber, carbon sheet, carbon black, or carbon black.
  • the catalyst may be located on the surface of the carrier, or may penetrate into the carrier while filling the pores of the carrier.
  • the process of supporting the noble metal on the carrier is well known in the art, and thus the detailed description thereof will be easily understood by those skilled in the art.
  • the metal particles of the catalyst may include 10 to 70% by weight of the catalyst metal particles having a size of 1 to 20 nm relative to the total catalyst weight, the high crystalline graphitized carbon carrier 90 to 30% by weight relative to the total catalyst weight It may be included as.
  • the catalyst metal particles are contained in less than 10% by weight relative to the total weight of the catalyst, there may be a problem that the electrode activity is lowered, and when the catalyst metal particles exceeds 70% by weight, the active area is reduced due to the aggregation of the catalyst metal particles, the catalyst activity This may be reversed.
  • the fuel cell electrode may be manufactured by forming an electrode forming composition further comprising a solvent, an ionomer, and the like, in addition to an active material composed of the high crystalline graphitized carbon carrier and a catalyst.
  • the solvent may be selected from the group consisting of a hydrophilic solvent, an organic solvent and one or more mixtures thereof.
  • the hydrophilic solvent is selected from the group consisting of water, alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers and amides comprising, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms It may have one or more functional groups, which may include an alicyclic or aromatic cyclo compound as at least part of the main chain.
  • alcohols include methanol, ethanol, isopropyl alcohol, ethoxy ethanol, n-propyl alcohol, butyl alcohol, 1,2-propanediol, 1-pentanol, 1.5-pentanediol, 1.9-nonanediol, and the like;
  • Ketones include heptanone, octanon and the like;
  • Aldehydes include benzaldehyde, tolualdehyde and the like; Examples of the ester include methylpentanoate, ethyl-2-hydroxypropanoate, and the like;
  • Carboxylic acids include pentanoic acid, heptanoic acid and the like;
  • Ethers include methoxybenzene, dimethoxypropane and the like;
  • Amides include propanamide, butylamide, dimethylacetamide, and the like.
  • the organic solvent is ethoxy ethanol, N-methylpyrrolidone, and ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, 2 Methylene-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 3-methylene-1,5-pentanediol, 1,6-hexanediol, dimethylsulfoxide, tetrahydrofuran, and It can be selected from any one selected from the group consisting of a mixture thereof.
  • the solvent may be adjusted according to the required viscosity of the composition for forming an electrode, more preferably 20 to 95% by weight relative to the total weight of the composition for forming an electrode. If the content of the solvent is less than 20% by weight, the solid content may be too high, there may be a dispersion problem due to cracks and high viscosity when coating the electrode, and when the content of the solvent exceeds 95% by weight may be detrimental to the electrode activity.
  • the ionomer may include a hydrogen ion conductive polymer, preferably a polymer resin having a cation exchange group in the side chain or a polymer resin having an anion exchange group.
  • the cation exchange group may be any one selected from the group consisting of sulfonic acid group, carboxylic acid group, boronic acid group, phosphoric acid group, imide group, sulfonimide group, sulfonamide group, phosphonic acid group and derivatives thereof, and generally Sulfonic acid groups or carboxyl groups.
  • polymer resin having a cation exchange group examples include a fluorine polymer, a benzimidazole polymer, a polyimide polymer, a polyetherimide polymer, a polyphenylene sulfide polymer, a polysulfone polymer, and a polyether sulfone polymer
  • Polyether ketone-based polymers, polyether-etherketone-based polymers and polyphenylquinoxaline-based polymers may include one or more hydrogen ion conductive polymers, and more specifically, poly (perfluorosulfonic acid), poly (Perfluorocarboxylic acid), copolymer of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid group, sulfide polyether ketone, aryl ketone, poly (2,2'-m-phenylene) -5,5 At least one hydrogen ion conductive polymer selected from '-bibenzimidazole [poly
  • the anion exchanger is a polymer capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, the anion conductors being commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
  • the polymer resin having the anion exchange group may be a polymer conductor doped with metal hydroxide, and specifically, poly (ethersulfone), polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinyl chloride) doped with metal hydroxide Leaden fluoride), poly (tetrafluoroethylene), poly (benzimidazole), poly (ethyleneglycol) and the like can be used.
  • poly (ethersulfone), polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinyl chloride) doped with metal hydroxide Leaden fluoride), poly (tetrafluoroethylene), poly (benzimidazole), poly (ethyleneglycol) and the like can be used.
  • ionomer may further include Nafion, Aquibion and the like.
  • the ionomer may substitute H, Na, K, Li, Cs or tetrabutylammonium in a cation exchanger or anion exchanger at the side chain end.
  • H Na
  • K Li
  • Cs tetrabutylammonium
  • K, Li, or Cs are also suitable compounds. It can be substituted using. Since the substitution method is well known in the art, detailed description thereof will be omitted.
  • the ionomer may be used in the form of a single substance or a mixture, and may be optionally used with a nonconductive compound for the purpose of further improving adhesion to the polymer electrolyte membrane. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
  • non-conductive compound examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and ethylene / tetrafluoro Ethylene / tetrafluoroethylene (ETFE), ethylenechlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), dode
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene / tetrafluoro Ethylene / te
  • the ionomer may be contained in 20 to 50% by weight relative to the weight of the total electrode solids, if less than 20% by weight may have a problem that the generated ions are not transferred well, when the pore is greater than 50% by weight Lack of supply of hydrogen or oxygen (air) is difficult and the active area to react can be reduced.
  • the catalyst may be contained in 5 to 50% by weight relative to the total weight of the composition for forming the electrode, when less than 5% by weight may deteriorate the electrode performance due to the lack of a catalyst, when it exceeds 50% by weight
  • the high viscosity may be detrimental to electrode production or lack of ionomers may be detrimental to ion conduction.
  • the fuel cell electrode of the present invention may be manufactured through a drying process after the coating process of applying the fuel cell electrode forming composition on the decal film to a thickness of 1 to 100 ⁇ m. If the thickness is less than 1 ⁇ m, the performance may be degraded due to the lack of catalytically active sites. If the thickness is more than 100 ⁇ m, the movement distance of ions and electrons may be increased, thereby increasing resistance.
  • the fuel cell electrode may optionally further include an electrode substrate.
  • the electrode base serves to support the electrode and diffuses fuel and oxidant into the catalyst so that fuel or oxidant can be easily accessed.
  • the electrode base material may be carbon paper, carbon cloth, carbon felt, carbon fiber, or a combination thereof, and among these, carbon fiber may be preferably used. have.
  • the electrode substrate may include pores, thereby improving the performance of the fuel cell by adjusting the size and porosity of the pores.
  • the electrode substrate may include an average pore (mean pore) of 20 to 40 ⁇ m diameter at a porosity of 30 to 80% by volume relative to the total volume of the electrode substrate.
  • the average pore diameter of 20 to 30 ⁇ m may be included at a porosity of 50 to 80 vol% based on the total volume of the electrode substrate.
  • the fuel cell electrode may further include a microporous layer (optional) to enhance the reactant diffusion effect.
  • the microporous layer may have a thickness of 3 to 80 ⁇ m, specifically, may have a thickness of 10 to 70 ⁇ m.
  • the thickness of the microporous layer is within the above range, it is possible to prevent an increase in resistance due to mass transfer limitation caused by water flooding at a relative humidity humidification condition of 80%, and manufacturing a fuel cell stack. It is possible to prevent cracks or detachment caused by the pressure of the separator plate caused by the clamping pressure.
  • the microporous layer is generally a conductive powder having a small particle size, such as carbon powder, carbon black, acetylene black, activated carbon, carbon fiber, fullerene, carbon nanotube, carbon nanowire, carbon nanohorn ), Carbon nano rings, or a combination thereof may be used.
  • the microporous layer may be prepared by coating a composition including the conductive powder, a binder resin, and a solvent on the electrode substrate.
  • the binder resin may be polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride, alkoxy vinyl ether, polyvinyl alcohol, cellulose acetate And these copolymers can be used.
  • alcohols such as ethanol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, water, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran and the like can be used.
  • the coating process may be used in the screen printing method, spray coating method, a coating method using a doctor blade according to the viscosity of the composition, but is not limited thereto.
  • the drying process may be to dry at least 12 hours at 25 to 90 °C. If the drying temperature is less than 25 °C and the drying time is less than 12 hours, excess solvent may remain to interfere with the transfer, if dried at a temperature above 90 °C may cause cracks on the electrode surface due to rapid drying .
  • a positive electrode; cathode; And a polymer electrolyte membrane, and at least one of the positive electrode and the negative electrode may provide a fuel cell membrane electrode assembly including an electrode according to another preferred embodiment of the present invention.
  • the anode may include an electrode according to another preferred embodiment of the present invention.
  • the polymer electrolyte membrane is a solid polymer electrolyte including an ion conductor, and the polymer electrolyte membrane may be in the form of a single membrane in which the ion conductor is formed of a sheet or a film, or may be in the form of a reinforcing membrane in which the ion conductor is filled in a porous support.
  • the ion conductor may be either a polymer resin having a cation exchange group in the side chain or a polymer resin having an anion exchange group.
  • the cation exchange group may be any one selected from the group consisting of sulfonic acid group, carboxylic acid group, boronic acid group, phosphoric acid group, imide group, sulfonimide group, sulfonamide group, phosphonic acid group and derivatives thereof, and generally Sulfonic acid groups or carboxyl groups.
  • polymer resin having a cation exchange group examples include a fluorine polymer, a benzimidazole polymer, a polyimide polymer, a polyetherimide polymer, a polyphenylene sulfide polymer, a polysulfone polymer, and a polyether sulfone polymer
  • Polyether ketone-based polymers, polyether-etherketone-based polymers and polyphenylquinoxaline-based polymers may include one or more hydrogen ion conductive polymers, and more specifically, poly (perfluorosulfonic acid), poly (Perfluorocarboxylic acid), copolymer of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid group, sulfide polyether ketone, aryl ketone, poly (2,2'-m-phenylene) -5,5 At least one hydrogen ion conductive polymer selected from '-bibenzimidazole [poly
  • the polymer resin having the hydrogen ion conductivity may replace H with Na, K, Li, Cs or tetrabutylammonium in a cation exchange group at the side chain end.
  • H Na in the side chain terminal ion exchanger
  • NaOH is substituted during the preparation of the catalyst composition and tetrabutylammonium hydroxide is substituted with tetrabutylammonium
  • K, Li, or Cs are also suitable compounds. It can be substituted using. Since the substitution method is well known in the art, detailed description thereof will be omitted.
  • the anion exchanger is a polymer capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, the anion conductors being commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
  • the polymer resin having the anion exchange group may be a polymer doped with metal hydroxide, specifically, poly (ethersulfone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinyl) Leaden fluoride), poly (tetrafluoroethylene), poly (benzimidazole), poly (ethyleneglycol) and the like can be used.
  • poly (ethersulfone) doped with metal hydroxide polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinyl) Leaden fluoride), poly (tetrafluoroethylene), poly (benzimidazole), poly (ethyleneglycol) and the like can be used.
  • the polymer electrolyte membrane may be a hydrocarbon-based polymer electrolyte membrane, a fluorine-based polymer electrolyte membrane and one or more mixtures or copolymers thereof.
  • the hydrocarbon-based polymer electrolyte membrane may include a hydrocarbon-based polymer, the polymer is a homopolymer or copolymer of styrene, imide, sulfone, phosphazene, ether ether ketone, ethylene oxide, polyphenylene sulfide or aromatic group and these Derivatives and the like, and these polymers may be used alone or in combination.
  • the preparation of the electrolyte membrane using the hydrocarbon-based polymer is cheaper in manufacturing cost, easier to manufacture than the fluorine-based polymer, and exhibits high ion conductivity.
  • the suitable hydrocarbon membrane is more preferably sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherketone, sulfonated polyether ether ketone ketone), sulfonated poly aryrene ether ether ketone, sulfonated poly aryrene ether sulfone, poly arylene ether sulfone (PAES), sulfonated poly arylene ether benzimi
  • PAES poly arylene ether sulfone
  • the fluorine-based polymer electrolyte membrane may be used without particular limitation as long as it has a material having high mechanical strength and high electrochemical stability to form a film as an ion conductive membrane.
  • Specific examples of the fluorine-based polymer electrolyte membrane include perfluorosulfonic acid resins, copolymers of tetrafluoroethylene and fluorovinyl ether.
  • the fluorovinyl ether moiety has a function of conducting hydrogen ions.
  • the copolymer is commercially available because it is sold under the trade name Nafion by Dupont.
  • Method of manufacturing a membrane-electrode assembly for a fuel cell comprises the steps of coating and drying the electrode (or electrode composition for forming) on a release film; Contacting a substrate including an electrode on both sides of the polymer electrolyte membrane, and then transferring the substrate to a transfer device; And removing the release film from the transferred film-electrode assembly.
  • the composition for forming an electrode may include a fuel cell carrier and a catalyst according to an embodiment of the present invention, and the composition for forming an electrode is not limited to a mixture including the carrier and the catalyst, and may include an electrode layer or a catalyst layer in a fuel cell. Any one may be used as long as it is formed, and may further include a solvent, a hydrogen ion conductive polymer, an ionomer, a carbon-based material, and the like.
  • the composition for forming an electrode is coated on a release film
  • the dispersed electrode formation is continuously transferred to a coater such as a die, gravure, bar, comma coater, etc. through a pump, and then uniformly formed on a release film.
  • the drying thickness of the electrode layer is applied to 10 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and passed through a drying furnace maintained at a constant temperature to volatilize the solvent.
  • coating and drying an electrode forming composition on a release film is not limited to the above.
  • Drying the composition for forming an electrode may be to dry for 12 hours or more at 25 to 90 °C. If the drying temperature is less than 25 °C and the drying time is less than 12 hours, excess solvent may remain to interfere with the transfer, if dried at a temperature above 90 °C may cause cracks on the electrode surface due to rapid drying .
  • the transfer step through thermocompression may be performed by cutting the dried electrode layer and the release film to a required size.
  • Bonding the electrode-coated release film and the polymer electrolyte membrane and transferring the same using a transfer device may be performed at 80 to 200 ° C. and 5 to 200 kgf / cm 2 .
  • the transfer step is performed at 80 ° C. and less than 5 kgf / cm 2 , the transfer of the electrode layer on the release film may not be performed properly, and when it exceeds 200 ° C., there is a risk of degeneration of the ionomer in the electrolyte membrane. Under conditions exceeding 200 kgf / cm 2 , collapse of the pore structure in the electrode layer may cause deterioration of performance.
  • After the transfer step may further comprise the step of removing the release film to prepare a membrane-electrode assembly.
  • FIG. 2 is a schematic diagram showing the overall configuration of a fuel cell according to another embodiment of the present invention.
  • the fuel cell 200 includes a fuel supply unit 210 for supplying a mixed fuel in which fuel and water are mixed, and a reforming unit for reforming the mixed fuel to generate a reformed gas including hydrogen gas ( 220, a stack 230 in which a reformed gas including hydrogen gas supplied from the reformer 220 generates an electrical energy by causing an electrochemical reaction with an oxidant, and an oxidant in the reformer 220 and the stack. It includes an oxidant supply unit 240 for supplying to (230).
  • the stack 230 induces an oxidation / reduction reaction of a reforming gas including hydrogen gas supplied from the reformer 220 and an oxidant supplied from the oxidant supply unit 240 to generate a plurality of unit cells for generating electrical energy. Equipped.
  • Each unit cell refers to a cell of a unit for generating electricity, wherein the membrane-electrode assembly for oxidizing / reducing oxygen in an oxidant and a reforming gas containing hydrogen gas, a reforming gas and an oxidant including hydrogen gas
  • a separator also called a bipolar plate, hereinafter referred to as a "bipolar plate" for feeding to the membrane-electrode assembly.
  • the separator is disposed at both sides of the membrane-electrode assembly at the center. At this time, the separator plates respectively located at the outermost side of the stack may be specifically referred to as end plates.
  • the end plate of the separator plate, the pipe-shaped first supply pipe 231 for injecting the reformed gas containing hydrogen gas supplied from the reforming unit 220, and the pipe-shaped second for injecting oxygen gas The supply pipe 232 is provided, and the other end plate has a first discharge pipe 233 for discharging the reformed gas containing hydrogen gas remaining unreacted in the plurality of unit cells to the outside and the unit cell described above. Finally, the second discharge pipe 234 for discharging the remaining unreacted oxidant to the outside is provided.
  • Step 1-1 of heating the carbon particles (trade name: ECP 300J, manufacturer: Lion) to 1,000 ° C. at a rate of 5 ° C./min;
  • a first step 1-2 maintained at 1,000 ° C. for 10 minutes;
  • the reaction product was vacuum filtered, washed sequentially with distilled water, methanol and acetone, and vacuum dried for 24 hours to prepare a carbon carrier.
  • Pt was supported on the prepared carbon carrier by a chemical reduction method using an aqueous solution of water / ethylene glycol (1: 0.25 molar ratio) to prepare a catalyst for a fuel cell.
  • Examples 2 to 5 are added 4, 8, 16, 32 mM instead of 2 mM 4-aminobenzonitrile of Example 1, except that 8, 16, 32, 64 mM is added instead of 4 mM sodium nitrite And to prepare a fuel cell carrier through the same method as in the above embodiment.
  • Examples 6 to 10 are identical to those of Example 1 except that 4-aminobenzothiol 2, 4, 8, 16, 32 mM is added instead of 4-aminobenzonitrile of Example 1.
  • a fuel cell carrier was prepared by the method.
  • Examples 11 to 15 are the same as the above example except that p-phenylene diamine 2, 4, 8, 16, 32 mM is added instead of 4-aminobenzonitrile of Example 1.
  • a fuel cell carrier was prepared by the same method.
  • Carbon particles (trade name: ECP 300J, manufacturer: Lion) were graphitized at 2,250 ° C. for 60 minutes under a nitrogen / argon (N 2 / Ar) atmosphere to prepare a fuel cell carrier.
  • Pt was supported on the prepared carbon carrier in the same manner as in Example 1 to prepare a catalyst for a fuel cell.
  • anode (Anode) Nafion ® / H 2 O / 2- propanol solution of 12 wt% to 88 wt% of the catalyst with a binder were dispersed with stirring and an ultrasonic method for the anode electrode composition was prepared.
  • the anode electrode composition prepared above was doctorblade coated on a Teflon release film, and then dried at 60 ° C. for 6 hours to prepare an anode electrode. At this time, the amount of catalyst loading in the anode was about 0.10 mg / cm 2 .
  • a fuel cell membrane-electrode assembly was manufactured in the same manner as in Example 16, except that the fuel cell carriers of Examples 2 to 5 were added instead of the fuel cell carrier of Example 1 in Example 16.
  • a fuel cell membrane-electrode assembly was manufactured in the same manner as in Example 16, except that the fuel cell carriers of Examples 6 to 10 were added instead of the fuel cell carrier of Example 1 in Example 16.
  • a fuel cell membrane-electrode assembly was manufactured in the same manner as in Example 16, except that the fuel cell carriers of Examples 11 to 15 were added instead of the fuel cell carrier of Example 1 in Example 16.
  • a fuel cell membrane-electrode assembly was manufactured through the method of Example 16, except for adding the fuel cell carrier prepared in Comparative Example 1.
  • Example 8 The fuel cell carriers of Example 8 and Comparative Example 1 were analyzed by X-ray photoelectron spectroscopy (XPS) as shown in FIG. 3.
  • XPS X-ray photoelectron spectroscopy
  • Comparative Example 1 shows only the peak related to the binding energy of C1s, in the case of Example 8 in which the diazonium coupling reaction by the addition of 8 mM 4-aminobenzothiol in addition to C1s, S2s ,
  • the peak having the S2p binding energy, and the XPS results showed that a functional group including a sulfur atom was formed on the highly crystalline graphitized carbon carrier of Example 8.
  • the fuel cell carriers of Examples 1, 8, and 13 and Comparative Example 1 were analyzed by Raman spectroscopy using a laser of 514 nm wavelength, and at 1570 cm ⁇ 1 to 1600 cm ⁇ 1 of the spectra detected by the Raman spectroscopy.
  • G-band up to the peak area (R G) conducted by calculating a ratio (R D / R G) of the maximum peak areas (R D) of the D band at 1335 cm -1 to 1365 cm -1 for the examples and the comparison of the The carbon component in the fuel cell carrier was analyzed.
  • Example 8 was 0.85
  • Example 13 was 0.86
  • Comparative Example 1 showed a value of 0.81.
  • Examples 1, 8, and 13 have a higher R D / R G value through a step graphitization process different from Comparative Example 1, and thus the D band at 1335 cm -1 to 1365 cm -1 is obtained.
  • the crystallinity of the sp 2 graphite carbon represented by the G band at 1570 cm ⁇ 1 to 1600 cm ⁇ 1 is higher in crystallinity than in the comparative example where more components are present.
  • p-phenylenediamine 2, 4, 8, 16, 32 mM aqueous solution was added to each of the fuel cell carrier to perform the diazonium coupling reaction according to the concentration of p-phenylenediamine
  • the doping level, the doping ratio and the surface coverage of nitrogen were calculated as the ratio of the N1s peak and the C1s peak, and are shown in Table 1 below.
  • the surface doping level (N-doping level), doping ratio (surface coverage) and surface coverage of the nitrogen is increased in the concentration of p-phenylenediamine from 2 mM to 32 mM depending 1.19 to 3.80 at%, 0.0132 to 0.0449, and 3.3731 x 0.9636 x 10 -10 to about 10, respectively and confirmed that increased to 10 mol / cm 2.
  • Example 3 is the most active area loss It was found to be less, and then Example 8, Example 13 was found to be superior to the electrochemical durability compared to Comparative Example 1.
  • Example 3 having a benzonitrile group supported by a functional group was evaluated as having the highest activity per mass.
  • Example 18 and Example 28 had a voltage loss degree due to enhanced durability of the anode catalyst compared to Comparative Example 2. Was confirmed to be low.
  • stack 231 first supply pipe
  • second discharge pipe 240 oxidant supply unit
  • the present invention relates to a carrier, a fuel cell electrode, a membrane-electrode assembly, and a fuel cell including the same, more preferably a carrier having excellent durability applicable to a FCV (Fuel cell vehicle) and a fuel cell electrode comprising the same, Membrane-electrode assembly, a technology for a fuel cell.
  • FCV Fluel cell vehicle
  • the durability is excellent and the performance of the fuel cell can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 고결정성 흑연화층을 포함하는 카본 입자를 포함하며, 상기 고결정성 흑연화층은 표면에 결합된 기능기를 포함하는 고결정성 흑연화 카본 담체와 상기 담체를 포함하는 연료전지용 전극, 막-전극 접합체 및 연료전지에 대한 기술을 제공한다. 본 발명의 일 실시예에 따른 고결정성 흑연화 카본 담체는 내구성 및 전기화학적 활성이 개선되어 연료전지의 성능을 향상시킬 수 있다.

Description

담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지
본 발명은 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지에 관한 것으로, 보다 바람직하게는 FCV(Fuel cell vehicle)에 적용할 수 있는 내구성이 우수한 담체 및 이를 포함하는 연료전지용 전극, 막-전극 접합체, 연료전지에 대한 기술이다.
연료전지는 메탄올, 에탄올, 천연 기체와 같은 탄화수소 계열의 연료물질 내에 함유되어 있는 수소와 산소의 산화/환원반응과 같은 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템을 구비한 전지로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 인해 화석 에너지를 대체할 수 있는 차세대 청정 에너지원으로 각광받고 있다.
이러한 연료 전지는 단위 전지의 적층에 의한 스택 구성으로 다양한 범위의 출력을 낼 수 있는 장점을 갖고 있으며, 소형 리튬 전지에 비하여 4 내지 10 배의 에너지 밀도를 나타내기 때문에 소형 및 이동용 휴대전원으로 주목받고 있다.
연료전지에서 전기를 실질적으로 발생시키는 스택은 막-전극 접합체 (Membrane Electrode Assembly, MEA)와 세퍼레이터(separator)(또는 바이폴라 플레이트(Bipolar Plate)라고도 함)로 이루어진 단위 셀이 수 개 내지 수십 개로 적층된 구조를 가지며, 막-전극 접합체는 일반적으로 전해질막을 사이에 두고 그 양쪽에 산화극(Anode, 또는, 연료극)과 환원극(Cathode, 또는 공기극)이 각각 형성된 구조를 이룬다.
연료 전지는 전해질의 상태에 따라 알칼리 전해질 연료전지, 고분자 전해질 연료 전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등으로 구분될 수 있는데, 그 중에 고분자 전해질 연료 전지는 100 ℃ 미만의 낮은 작동온도, 빠른 시동과 응답특성 및 우수한 내구성 등의 장점으로 인하여 휴대용, 차량용 및 가정용 전원장치로 각광을 받고 있다.
고분자 전해질 연료 전지의 대표적인 예로는 수소 가스를 연료로 사용하는 수소이온 교환막 연료 전지(Proton Exchange Membrane Fuel Cell, PEMFC), 액상의 메탄올을 연료로 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등을 들 수 있다.
고분자 전해질 연료 전지에서 일어나는 반응을 요약하면, 우선, 수소가스와 같은 연료가 산화극에 공급되면, 산화극에서는 수소의 산화반응에 의해 수소이온(H+)과 전자(e-)가 생성된다. 생성된 수소이온은 고분자 전해질 막을 통해 환원극으로 전달되고, 생성된 전자는 외부회로를 통해 환원극에 전달된다. 환원극에서는 산소가 공급되고, 산소가 수소이온 및 전자와 결합하여 산소의 환원반응에 의해 물이 생성된다.
특히, 최근에는 연료전지 자동차(Fuel cell vehicle, FCV)에 적용하기 위해서 연료전지 시스템을 소형화 하는 것이 요구되고 있으며, 이를 위해서는 단위면적당 우수한 출력밀도를 나타낼 수 있는 막-전극 접합체의 개발이 요구되고, 특히 연료전지 자동차의 실제적인 운행을 위해서는 막-전극 접합체 전극층의 내구성 증대가 필수적으로 요구되고 있다.
현재 연료전지 자동차 분야에 적용하기 위한 고분자 전해질 연료 전지용 막-전극 접합체는 장 시간 운전에 따른 막-전극 접합체 성능 저하 및 내구성의 현저한 감소 등의 기술적 한계를 지니고 있으며, 막-전극 접합체의 주요 내구성 저하는 (1)부하주기(Load cycling) 시 발생하는 전위주기(Potential cycling)에 의한 촉매층 및 촉매의 열화나, (2)시작(startup)/종료(shutdown)시 양극 포텐셜(High cathode potential)에 의한 탄소 담체의 부식 등으로 발생할 수 있다.
또한, 고분자 전해질 연료전지 운전 중에 발생하는 탄소 담체의 부식과 백금 촉매 입자간의 응집(aggregation)-용해(dissolution)-오스트왈트 숙성(ostwalt ripening)으로 촉매의 전기화학적 활성면적이 급격히 감소하고, 전기화학적 활성 또한 감소하여, 사용된 전극 촉매의 성능과 내구성이 모두 현저하게 저하되는 문제가 발생할 수 있다.
이러한 문제를 해결하기 위해서는 내구성이 우수하면서도 전기화학적 활성이 높은 담체 촉매의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 등록공보 제1444635호
본 발명의 목적은 내구성이 우수하면서도 전기화학적 활성이 높은 고결정성 흑연화 카본 담체를 제공하는 것이다.
본 발명의 다른 목적은 상기 담체를 포함하는 연료전지용 전극을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 전극을 포함하는 막-전극 접합체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 막-전극 접합체를 포함하는 연료전지를 제공하는 것이다.
상기 목적을 해결하기 위해서, 본 발명의 일 실시예에 따르면, 고결정성 흑연화층을 포함하는 카본 입자를 포함하며, 상기 고결정성 흑연화층은 표면에 결합된 기능기를 포함하고, 상기 기능기는 하기 화학식 1로 표시되는 화합물을 포함하는 것인 고결정성 흑연화 카본 담체를 제공할 수 있다.
[화학식 1]
-Ar-(R)n
상기 화학식 1에서, 상기 Ar은 알킬렌 또는 아릴렌이며, 상기 R은 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이고, 상기 n은 1 내지 20의 정수이다.
상기 기능기는 상기 고결정성 흑연의 표면에 0.5 x 10-10 내지 1.0 x 10- 8 mol/cm2으로 표면 피복(surface coverage)되어 있을 수 있다.
상기 기능기의 도핑 레벨(doping level)은 0.7 내지 15.0 at.%이고, N/C 또는 S/C 비율은 0.005 내지 0.500 일 수 있다.
상기 화학식 1은 하기 화학식 2로 표시되는 방향족 탄화수소를 포함하는 것일 수 있다.
[화학식 2]
Figure PCTKR2017010403-appb-I000001
상기 화학식 2에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이다.
상기 R1 내지 R5 중 적어도 하나 이상은 CN, SH 및 NH2로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함할 수 있다.
상기 고결정성 흑연화 카본 담체의 514nm 파장의 레이저를 이용한 라만 분광 분석법에 의해 얻어진 1570 cm-1 내지 1600 cm-1에서의 G 밴드의 최대 피크 면적에 대한 1335 cm-1 내지 1365 cm-1에서의 D 밴드의 최대 피크 면적의 비가 0.1 내지 1.2일 수 있다.
상기 고결정성 흑연화 카본 담체의 X선 회절 스펙트럼에서 (002)면에 대한 피크가 브래그(Bragg) 2θ각이 26°±0.5°에서 나타나고, 상기 (002)면에 대한 피크의 반가폭(FWHM)이 0.1° 내지 0.8°일 수 있다.
본 발명의 다른 일 실시예에 따르면, 카본 입자에 단계적 열처리 과정을 가하여 고결정성 흑연화층을 형성하는 단계; 및 상기 고결정성 흑연화층과 기능기가 치환된 디아조늄염을 커플링 반응시켜 유기 기능기를 상기 고결정성 흑연화층에 도입하는 단계;를 포함하는 것인 고결정성 흑연화 카본 담체의 제조방법을 제공할 수 있다.
상기 단계적 열처리 과정은 카본 입자를 3 내지 10 ℃/분의 속도로 900 내지 1,000 ℃까지 승온하고, 5 내지 30분간 유지하는 제1단계; 상기 900 내지 1,000 ℃에서 2 내지 5 ℃/분의 속도로 1,800 내지 1,900 ℃까지 승온하고, 5 내지 30분간 유지하는 제2단계; 및 상기 1,800 내지 1,900 ℃에서 1 내지 3 ℃/분의 속도로 2,000 내지 3,000 ℃까지 승온하고, 10분 내지 2시간 유지하는 제3단계;를 포함하는 것일 수 있다.
상기 기능기가 치환된 디아조늄염은 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2017010403-appb-I000002
상기 화학식 3에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이고, 상기 X-는 할로겐족 음이온이다.
상기 기능기가 치환된 디아조늄염은 하기 화학식 4로 표시되는 방향족 1차 아민 화합물을 디아조늄화 반응시켜 제조되는 것일 수 있다.
[화학식 4]
Figure PCTKR2017010403-appb-I000003
상기 화학식 4에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이다.
상기 방향족 1차 아민 화합물은 4-아미노벤조나이트릴(4-aminobenzonitrile), 4-아미노벤조티올(4-aminobenzothiol), p-페닐렌디아민(p-phenylene diamine) 및 이들의 혼합물로 구성된 군에서 선택되는 어느 하나일 수 있다.
상기 유기 기능기를 상기 고결정성 흑연화층에 도입하는 단계는 0 내지 50 ℃에서 15분 내지 24시간 동안 진행될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기에 따른 고결정성 흑연화 카본 담체; 및 상기 담체에 담지된 촉매를 포함하는 것인 연료전지용 전극을 제공할 수 있다.
또한, 본 발명의 또 다른 일 실시예에 따르면, 양극; 음극; 및 고분자 전해질 막을 포함하고, 상기 양극 및 음극 중 적어도 하나 이상은 상기 전극을 포함하는 것인 연료전지용 막-전극 접합체를 제공할 수 있다.
상기 양극은 상기 전극을 포함하는 것일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 막-전극 접합체를 포함하는 것인 연료전지를 제공할 수 있다.
본 발명의 일 실시예에 따른 고결정성 흑연화 카본 담체를 포함하는 전극, 막-전극 접합체 및 연료전지를 사용하는 경우, 내구성이 우수하고, 연료 전지의 성능이 향상될 수 있다.
도 1은 본 발명의 일 실시예에 따른 고결정성 흑연화 카본 담체의 제조방법의 모식도이다.
도 2는 본 발명의 다른 일 실시예에 따른 연료전지의 모식도이다.
도 3은 본 발명의 실험예 1에서 실시예 8과 비교예 1의 XPS 결과를 비교한 그래프이다.
도 4는 본 발명의 실험예 3에서 실시예 3, 8, 13 및 비교예 1의 1000회 사이클 동안 ESCA 손실을 비교한 그래프이다.
도 5는 본 발명의 실험예 4에서 실시예 3, 8, 13 및 비교예 1의 질량당 활성도를 비교한 그래프이다.
도 6은 본 발명의 실험예 5에서 실시예 3, 8, 13 및 비교예 1의 전압 손실을 비교한 그래프이다.
이하 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 특별한 언급이 없는 한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 발명의 실시예에 따른 연료전지용 전극 및 연료전지용 막-전극 접합체는 인산 전해질형 연료전지(PAFC), 고분자 전해질형 연료전지로서 수소이온 교환막 연료전지(PEMFC), 직접 메탄올 연료전지(DMFC)와 고온용 PEMFC 등 다양한 전해질형 연료전지에 적용될 수 있다.
본 발명의 일 실시예에 따르면, 고결정성 흑연화층을 포함하는 카본 입자를 포함하며, 상기 고결정성 흑연화층은 표면에 결합된 기능기를 포함하고, 상기 기능기는 하기 화학식 1로 표시되는 화합물을 포함하는 것인 고결정성 흑연화 카본 담체를 제공할 수 있다.
[화학식 1]
-Ar-(R)n
상기 화학식 1에서, 상기 Ar은 알킬렌 또는 아릴렌이며, 상기 R은 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이고, 상기 n은 1 내지 20의 정수이다.
상기 화학식 1에서 상기 Ar은 탄소수 1 내지 20의 알킬렌, 탄소수 1 내지 20의 헤테로알킬렌, 탄소수 3 내지 30의 아릴렌, 탄소수 3 내지 30의 헤테로아릴렌일 수 있으며, 바람직하게는 탄소수 3 내지 10의 고리가 1개 내지 3개 축합된 아릴렌 또는 헤테로아릴렌일 수 있으며, 보다 바람직하게는 벤젠고리를 포함할 수 있다.
상기 R은 적어도 하나 이상의 수소원자, CN, SH 및 NH2로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함할 수 있다.
상기 고결정성 흑연화층의 두께는 전체 고결정성 흑연화 카본 담체의 두께에 대하여 0.1 내지 100%로 포함될 수 있다. 고결정성 흑연화층이 0.1 두께% 미만으로 형성될 경우에는 담체 내구성 및 전지성능 향상효과가 저감될 수 있다. 비결정성 카본 담체와 비교할 때, 본 발명의 일 실시예에 따른 고결정성 흑연화층을 포함하는 카본 담체는 흑연층(graphitic layer)가 형성 및 발달하여 흑연층의 두께와 결정도메인(crystalline domain)의 크기가 증가하면서 고결정성 흑연화 카본 담체를 형성할 수 있기 때문에 카본 담체 전체가 고결정성 흑연으로 형성될 수 있다.
상기 화학식 1로 표시되는 기능기는 하기 화학식 2로 표시되는 방향족 탄화수소를 포함하는 것일 수 있다.
[화학식 2]
Figure PCTKR2017010403-appb-I000004
상기 화학식 2에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이다.
상기 R1 내지 R5 중 적어도 하나 이상은 CN, SH 및 NH2로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함할 수 있다.
상기 기능기는 상기 고결정성 흑연의 표면에 0.5 x 10-10 내지 1.0 x 10- 8 mol/cm2으로 표면 피복(surface coverage)되어 있을 수 있고, 바람직하게는 1.0 x 10-10 내지 9.0 x 10- 10 mol/cm2, 보다 바람직하게는 1.0 x 10-10 내지 5.0 x 10- 10 mol/cm2, 보다 더 바람직하게는 1.0 x 10-10 내지 4.5 x 10- 10 mol/cm2, 보다 더 바람직하게는 1.0 x 10-10 내지 3.5 x 10- 10 mol/cm2으로 표면 피복되어 있을 수 있다. 상기 기능기가 상기 고결정성 흑연의 표면에 0.5 x 10- 10 mol/cm2 미만으로 존재할 경우에는 표면 개질에 의한 기능화 효과가 감소되는 문제가 발생할 수 있고, 1.0 x 10-8 mol/cm2를 초과하여 존재할 경우에는 카본 담체에 불균일하게 표면 피복되어 전기화학적 성능을 저하시키는 문제가 발생할 수 있다.
상기 기능기의 도핑 레벨(doping level)은 0.7 내지 15.0 at.%일 수 있고, N/C 또는 S/C 비율은 0.005 내지 0.500 일 수 있다. 상기 도핑 레벨이 0.7 at.% 미만일 경우, 기능기 치환에 의한 담체의 전기화학적 성능의 증진 및 촉매 내구성 향상 효과가 저감될 수 있다. 또한, N/C 또는 S/C 비율이 0.005 미만인 경우에는 치환기 내의 질소 또는 황의 비율이 낮아 카본 담체의 표면기능화에 의한 촉매 금속입자의 응집 장지 및 촉매층 열화방지 그리고 촉매 내구성 향상효과가 저감될 수 있다.
상기 고결정성 흑연화 카본 담체의 514nm 파장의 레이저(laser)를 이용한 라만 분광 분석법에 의해 얻어진 1570 cm-1 내지 1600 cm-1에서의 G 밴드의 최대 피크 면적에 대한 1335 cm-1 내지 1365 cm-1에서의 D 밴드의 최대 피크 면적의 비(RD/RG)가 0.1 내지 1.2일 수 있다. 바람직하게 상기 RD/RG는 0.3 내지 1.0일 수 있다.
상기 고결정성 흑연화 카본 담체의 X선 회절(X-ray diffraction, XRD) 스펙트럼에서 (002)면에 대한 피크가 브래그(Bragg) 2θ각이 26°±0.5°에서 나타나고, 상기 (002)면에 대한 피크의 반가폭(FWHM, full width at half maximum)이 0.1° 내지 0.8°일 수 있다. 더 바람직하게 상기 FWHM은 0.2° 내지 0.6°일 수 있다.
또한, 상기 고결정성 흑연화 카본 담체는 XRD 측정으로부터 얻어진 d-spacing 값이 약 3.44 Å으로, 이는 이상적인 구조의 그래파이트(graphite)의 이론적인 수치인 3.35 Å와 유사한 것을 확인할 수 있었다.
본 발명의 다른 일 실시예는 상기 고결정성 흑연화 카본 담체의 제조방법을 제공한다. 도 1은 본 발명의 다른 일 실시예에 따른 담체의 제조방법을 도시한 모식도이며, 이후 도 1을 통해 본 발명의 바람직한 일 실시예에 따른 고결정성 흑연화 카본 담체의 제조방법에 대하여 설명하고자 한다.
본 발명의 다른 일 실시예에 따르면, 카본 입자(110)에 단계적 열처리 과정을 가하여 고결정성 흑연화층(120)을 형성하여 고결정성 흑연화층을 포함하는 카본 입자(100)를 제조하는 단계; 및 상기 고결정성 흑연화층(120)과 기능기가 치환된 디아조늄염을 커플링 반응시켜 기능기를 상기 고결정성 흑연화층에 도입하는 단계;를 포함하는 것인 고결정성 흑연화 카본 담체(130)의 제조방법을 제공할 수 있다.
상기 단계적 열처리 과정은 카본 입자를 3 내지 10 ℃/분의 속도로 900 내지 1,000 ℃까지 승온하고, 5 내지 30분간 유지하는 제1단계; 상기 900 내지 1,000 ℃에서 2 내지 5 ℃/분의 속도로 1,800 내지 1,900 ℃까지 승온하고, 5 내지 30분간 유지하는 제2단계; 및 상기 1,800 내지 1,900 ℃에서 1 내지 3 ℃/분의 속도로 2,000 내지 3,000 ℃까지 승온하고, 10분 내지 2시간 동안 유지하는 제3단계;를 포함하는 것일 수 있다.
보다 바람직하게, 상기 단계적 열처리 과정은 카본 입자를 3 내지 5 ℃/분의 속도로 900 내지 1,000 ℃까지 승온하는 제1-1단계; 900 내지 1,000 ℃에서 5 내지 20분간 유지하는 제1-2단계; 상기 900 내지 1,000 ℃에서 2 내지 4 ℃/분의 속도로 1,800 내지 1,900 ℃까지 승온하는 제2-1단계; 1,800 내지 1,900 ℃에서 10 내지 20분간 유지하는 제2-2단계; 상기 1,800 내지 1,900 ℃에서 1 내지 2 ℃/분의 속도로 2,000 내지 3,000 ℃까지 승온하는 제3-1단계; 및 2,000 내지 3,000 ℃에서 15 내지 25분간 유지하는 제3-2단계;를 포함하는 것일 수 있다.
상기 도 1에 X- +N≡N-Ar-(R)n으로 표시된 기능기가 치환된 디아조늄염은 하기 화학식 3으로 표시되는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2017010403-appb-I000005
상기 화학식 3에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이고, 상기 X-는 할로겐족 음이온으로, 바람직하게는 F-, Cl-, Br- 및 I-로 이루어진 군에서 선택되는 어느 하나이다.
상기 도 1에 X- +N≡N-Ar-(R)n으로 표시된 기능기가 치환된 디아조늄염은 하기 화학식 4로 표시되는 방향족 1차 아민 화합물을 디아조늄화 반응시켜 제조되는 것일 수 있다.
[화학식 4]
Figure PCTKR2017010403-appb-I000006
상기 화학식 4에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이다.
상기 방향족 1차 아민 화합물은 4-아미노벤조나이트릴(4-aminobenzonitrile), 4-아미노벤조티올(4-aminobenzothiol), p-페닐렌디아민(p-phenylene diamine) 및 이들의 혼합물로 구성된 군에서 선택되는 어느 하나일 수 있다.
상기 기능기를 상기 고결정성 흑연화층에 도입하는 단계는 0 내지 50 ℃에서 15분 내지 24시간 동안 진행될 수 있다.
상기 기능기를 상기 고결정성 흑연화층에 도입하는 단계는 보다 상세하게는 기능기를 포함하는 디아조늄염을 생성하는 단계와 상기 기능기를 포함하는 디아조늄염과 상기 고결정성 흑연화층을 반응시켜 기능기를 고결정성 흑연화층과 결합하는 단계로 세분화될 수 있다. 상기 기능기를 포함하는 디아조늄염을 생성하는 단계와 기능기를 고결정성 흑연화층과 결합하는 단계는 순차적으로 일어나거나, 동시에 일어날 수 있다.
상기 기능기를 포함하는 디아조늄염의 생성 단계 및/또는 상기 기능기를 고결정성 흑연화층과 결합하는 단계는 보다 바람직하게는 상기 고결정성 흑연화층(120)을 포함하는 카본 입자(100)를 용매에 분산하는 단계; 상기 분산된 고결정성 흑연화층(120)을 포함하는 카본 입자(100) 용액에 상기 방향족 1차 아민 화합물을 포함하는 용액을 첨가하고 교반하여 혼합물을 형성하는 단계; 상기 혼합물에 아질산나트륨과 강산을 첨가하는 단계; 이를 0 내지 50 ℃에서 15분 내지 12시간 동안 디아조늄 커플링 반응(diazonium coupling reaction)시키는 단계; 및 상기 반응생성물을 진공 여과하고, 세척한 후 진공 건조하여 고결정성 흑연화 카본 담체(130)를 제조하는 단계를 포함할 수 있다.
상기 방향족 1차 아민 화합물은 0.1 내지 100 mM 농도의 수용액으로 첨가될 수 있다. 상기 범위 내의 방향족 1차 아민 화합물이 첨가되면 디아조늄 커플링 반응으로 상기 고결정성 흑연화 카본 담체 표면에 기능기와의 결합을 용이하게 함으로써 상기 카본 담체의 내구성 및 성능을 개선할 수 있다. 상기 방향족 1차 아민 화합물이 0.1 mM 농도 이하로 존재할 경우에는 불충분한 표면 개질 및 표면 피복율로 인해 기능기 담지에 따른 내구성 및 활성도 향상 효과가 감소되는 문제가 발생할 수 있고, 100 mM 농도를 초과할 경우에는 상기 고결정성 흑연화 카본 담체와 기능기의 결합 반응 외에 부반응 등이 발생하여 불균일한 표면 개질 및 표면 피복되어 전기화학적 성능을 저하시키는 문제가 발생할 수 있다.
상기 고결정성 흑연화층(120)을 포함하는 카본 입자(100) 및/또는 방향족 1차 아민 화합물을 용해하는 용매는 친수성 용매를 사용할 수 있으며, 보다 바람직하게는 물, C1~5의 알코올, C1~5의 케톤, C1~5의 알데히드, C1~5의 카보네이트, C1~5의 카르복실레이트, C1~5의 카르복실산, C1~5의 에테르, C1~5의 아미드 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있으며, 보다 바람직하게는 정제수를 사용할 수 있다.
상기 강산은 염산, 황산 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나일 수 있으며, 보다 바람직하게는 산도가 1.5 내지 4인 강산을 사용할 수 있다.
상기 디아조늄 커플링 반응은 0 내지 50 ℃에서 15분 내지 24시간 동안 진행될 수 있으며, 보다 바람직하게는 상온에서 30분 내지 6시간 동안 진행될 수 있다. 상기 커플링 반응이 0℃ 미만 또는 15분 미만의 조건에서 진행될 경우, 반응조건이 충분치 못해 고결정성 흑연과 기능기의 결합이 강하게 이루어지지 않는 문제가 발생할 수 있고, 50 ℃초과 또는 24시간 초과의 조건에서 진행될 경우에는 고결정성 흑연과 기능기의 결합 반응 외에 부반응 등이 발생하여 균일한 표면 개질이 어려운 문제가 발생할 수 있다.
상기 세척 단계에서는 세척액으로 친수성 용매를 사용할 수 있으며, 보다 바람직하게는 물, C1~5의 알코올, C1~5의 케톤, C1~5의 알데히드, C1~5의 카보네이트, C1~5의 카르복실레이트, C1~5의 카르복실산, C1~5의 에테르, C1~5의 아미드 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있으며, 보다 더 바람직하게는 메탄올, 아세톤, 정제수 및 이들의 혼합용액을 사용할 수 있다.
본 발명의 또 다른 바람직한 일 실시예에 따르면, 상기 고결정성 흑연화 카본 담체; 및 상기 담체에 담지된 촉매를 포함하는 것인 연료전지용 전극을 제공할 수 있다.
상기 촉매는 연료전지의 반응에 참여하여 촉매로 사용 가능한 것은 어떠한 것도 사용할 수 있으며, 구체적으로는 금속 촉매, 더 구체적으로는 백금계 촉매를 사용할 수 있다.
상기 백금계 촉매는 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 백금-M 합금(상기 M은 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 갈륨(Ga), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 은(Ag), 금(Au), 아연(Zn), 주석(Sn), 몰리브덴(Mo), 텅스텐(W), 란탄(La), 로듐(Rh) 및 이들이 하나 이상 결합된 합금으로 이루어진 군에서 선택되는 어느 하나) 및 이들의 혼합물과 같은 조합으로 이루어진 군에서 선택되는 어느 하나의 촉매를 포함할 수 있다.
상기 연료전지용 전극은 양극(cathode) 및/또는 음극(anode)을 지칭할 수 있으며, 상기 양극과 음극은 서로 동일한 물질 또는 서로 상이한 물질을 사용하여도 무방하다. 더욱 구체적인 예로는 Pt, Pt/Ru, Pt/W, Pt/Ni, Pt/Sn, Pt/Mo, Pt/Pd, Pt/Fe, Pt/Cr, Pt/Co, Pt/Ru/W, Pt/Ru/Mo, Pt/Ru/V, Pt/Fe/Co, Pt/Ru/Rh/Ni 및 Pt/Ru/Sn/W으로 이루어진 군에서 선택되는 어느 하나의 백금계 촉매를 포함하는 물질을 전극에 포함하여 사용할 수 있다.
또한, 상기 촉매는 상기 고결정성 흑연화 카본 담체와의 함량비에 따라 금속 촉매 자체(black)로 사용하는 경우와 유사하게 촉매의 함량을 높여서 사용할 수도 있다.
상기 고결정성 흑연화 카본 담체는 보조 담체를 추가로 더 포함할 수 있으며, 상기 보조 담체는 흑연, 수퍼피(super P), 탄소섬유(carbon fiber), 탄소시트(carbon sheet), 카본블랙(carbon black), 케첸블랙(Ketjen Black), 아세틸렌 블랙(acetylene black), 카본나노튜브(carbon nano tube, CNT), 탄소구체(carbon sphere), 탄소리본(carbon ribbon), 풀러렌(fullerene), 활성탄소, 카본나노와이어(carbon nanowire), 카본나노혼(carbon nanohorn), 카본에어로겔(carbon aerogel), 카본나노링(carbon nanoring), 카본나노케이지(carbon nanocage), 메조포러스 카본(mesoporous carbon) 및 규칙성 나노다공성 탄소(ordered (nano)mesoporous carbon) 등의 탄소계 촉매 담체, 지르코니아, 알루미나, 티타니아, 실리카, 세리아 등의 다공성 무기산화물, 제올라이트 및 이들의 하나 이상의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.
이 때, 촉매는 담체의 표면 위에 위치할 수도 있고, 담체의 내부 기공(pore)을 채우면서 담체 내부로 침투할 수도 있다. 상기 담체에 귀금속을 담지시키는 공정은 당해 분야에서 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하여도, 당해 분야에 종사하는 사람들에게 쉽게 이해될 수 있는 내용이다.
상기 촉매의 금속 입자는 1 내지 20 nm의 크기를 갖는 촉매 금속 입자를 전체 촉매 중량 대비 10 내지 70 중량%로 포함할 수 있으며, 상기 고결정성 흑연화 카본 담체는 전체 촉매 중량 대비 90 내지 30 중량%로 포함될 수 있다. 상기 촉매 금속입자가 상기 촉매 전체 중량대비 10 중량% 미만으로 함유될 경우에는 전극활성이 저하되는 문제가 있을 수 있고, 70 중량%를 초과할 경우에는 촉매 금속 입자의 응집으로 활성면적이 줄어들어 촉매 활성이 반대로 저하될 수 있다.
상기 연료전지용 전극은 상기 고결정성 흑연화 카본 담체 및 촉매로 구성된 활물질 이외에도 용매와 이오노머 등을 더 포함하는 전극 형성용 조성물을 구성하여 제조할 수 있다.
상기 용매는 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택하여 사용할 수 있다.
상기 친수성 용매는 물, 탄소수 1 내지 12의 직쇄상, 분지상의 포화 또는 불포화 탄화수소를 주쇄로서 포함하는 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 것일 수 있으며, 이들은 지환식 또는 방향족 사이클로 화합물을 주쇄의 최소한 일부로 포함할 수 있다. 구체적인 예로 알코올에는 메탄올, 에탄올, 이소프로필알코올, 에톡시 에탄올, n-프로필알코올, 부틸알코올, 1,2-프로판디올, 1-펜탄올, 1.5-펜탄디올, 1.9-노난디올 등; 케톤에는 헵타논, 옥타논 등; 알데히드에는 벤즈알데하이드, 톨루알데하이드 등; 에스터에는 메틸펜타노에이트, 에틸-2-하이드록시프로파노에이트 등; 카르복실산에는 펜타노익산, 헵타노익산 등; 에테르에는 메톡시벤젠, 다이메톡시프로판 등; 아미드에는 프로판아미드, 부틸아미드, 디메틸아세트아마이드 등이 있다.
상기 유기용매는 에톡시 에탄올, N-메틸피롤리돈, 그리고 에틸렌 글라이콜, 프로필렌 글라이콜, 부틸렌 글라이콜, 디에틸렌 글라이콜, 디프로필렌 글라이콜, 폴리에틸렌 글라이콜, 2-메틸렌-1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 3-메틸렌-1,5-펜탄디올, 1,6-헥산디올, 디메틸술폭사이드, 테트라하이드로퓨란, 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나에서 선택할 수 있다.
상기 용매는 전극 형성용 조성물의 필요 점도에 따라 조절 가능하며, 보다 바람직하게는 전체 전극 형성용 조성물 중량대비 20 내지 95 중량%로 함유될 수 있다. 용매의 함량이 20 중량% 미만일 경우에는 고형분의 함량이 너무 높아 전극 코팅시 균열 및 고점도로 인한 분산 문제가 있을 수 있고, 95 중량%를 초과하는 경우에는 전극활성에 불리할 수 있다.
상기 이오노머는 수소이온 전도성 고분자를 포함할 수 있으며, 바람직하게는 측쇄에 양이온 교환기를 가지고 있는 고분자 수지 또는 음이온 교환기를 가지고 있는 고분자 수지는 어느 것이나 이용할 수 있다.
상기 양이온 교환기는 술폰산기, 카르복실산기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로는 술폰산기 또는 카르복실기일 수 있다.
상기 양이온 교환기를 가지는 고분자 수지는, 구체적으로는 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소이온 전도성 고분자를 포함할 수 있고, 보다 구체적으로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 황화폴리에테르케톤, 아릴케톤, 폴리(2,2'-m-페닐렌)-5,5'-바이벤즈이미다졸[poly(2,2'-m-phenylene)-5,5'-bibenzimidazole] 및 폴리(2,5-벤즈이미다졸) 중에서 선택되는 1종 이상의 수소이온 전도성 고분자를 포함하는 것을 사용할 수 있다.
상기 음이온 교환기는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.
상기 음이온 교환기를 가지는 고분자 수지는 일반적으로 금속 수산화물이 도핑된 고분자 전도체를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.
또한, 상기 이오노머의 상업적으로 상용화된 일 예인 나피온, 아퀴비온 등을 더 포함할 수도 있다.
상기 이오노머는 측쇄 말단의 양이온 교환기 또는 음이온 교환기에서 H를 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 상기 측쇄 말단의 이온 교환기에서 H를 Na으로 치환하는 경우에는 촉매 조성물 제조시 NaOH를, 테트라부틸암모늄으로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 상기 치환 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다.
또한, 상기 이오노머는 단일물 또는 혼합물 형태로 사용가능하며, 선택적으로 고분자 전해질 막과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 함께 사용될 수도 있다. 그 사용량은 사용 목적에 적합하도록 조절하여 사용하는 것이 바람직하다.
상기 비전도성 화합물로는 폴리테트라플루오로에틸렌(PTFE), 테트라플루오로에틸렌-헥사플루오르프로필렌 공중합체(FEP), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체(PFA), 에틸렌/테트라플루오로에틸렌 (ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌공중합체(ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 도데실벤젠술폰산 및 소르비톨(sorbitol)로 이루어진 군에서 선택된 1종 이상의 것이 사용될 수 있다. 보다 바람직하게는 나피온 등을 사용할 수 있다.
상기 이오노머는 전체 전극 고형분의 중량대비 20 내지 50 중량%로 함유될 수 있으며, 20 중량% 미만일 경우에는 생성된 이온이 잘 전달되지 못하는 문제가 있을 수 있고, 50 중량%를 초과하는 경우에는 기공이 부족하여 수소 또는 산소(공기)의 공급이 어려우며 반응할 수 있는 활성면적이 줄어들 수 있다.
또한, 상기 촉매는 전체 전극 형성용 조성물의 중량대비 5 내지 50 중량%로 함유될 수 있으며, 5 중량% 미만일 경우에는 촉매의 부족으로 인한 전극 성능이 저하될 수 있고, 50 중량%를 초과할 경우에는 점도가 높아져 전극 제조에 불리하거나 이오노머가 부족하여 이온 전도에 불리할 수 있다.
또한, 본 발명의 상기 연료전지용 전극은 상기 연료전지 전극 형성용 조성물을 데칼필름 상에 1 내지 100 ㎛의 두께로 도포하는 코팅 공정 후 건조 공정을 거쳐 제조될 수 있다. 상기 두께가 1 ㎛ 미만인 경우 촉매 활성 사이트가 부족하여 성능이 저하될 수 있고, 100 ㎛를 초과하는 경우에는 이온 및 전자의 이동 거리가 증가하여 저항이 증가될 수 있다.
또한, 상기 연료전지용 전극은 선택적으로 전극기재를 더 포함할 수 있다. 상기 전극기재는 상기 전극을 지지하는 역할을 하며, 상기 촉매로 연료 및 산화제를 확산시켜 연료나 산화제가 쉽게 접근할 수 있는 역할을 한다.
상기 전극기재는 탄소 페이퍼(carbon paper), 탄소천(carbon cloth), 탄소펠트(carbon felt), 탄소섬유(carbon fiber) 또는 이들의 조합을 사용할 수 있고, 이들 중에서 바람직하게는 탄소섬유를 사용할 수 있다.
상기 전극기재는 기공을 포함할 수 있는데, 상기 기공의 크기와 기공율을 조절함으로써 연료전지의 성능을 개선시킬 수 있다. 구체적으로, 상기 전극기재는 20 내지 40 ㎛ 직경의 평균 기공(mean pore)을 상기 전극기재 총 부피에 대하여 30 내지 80 부피%의 기공율로 포함할 수 있다. 구체적으로는 20 내지 30 ㎛ 직경의 평균 기공을 상기 전극기재 총 부피에 대하여 50 내지 80 부피%의 기공율로 포함할 수 있다.
또한, 상기 연료전지용 전극은 선택적으로 반응물 확산 효과를 증진시키기 위한 미세 기공층(microporous layer)을 더 포함할 수 있다. 상기 미세 기공층은 3 내지 80 ㎛의 두께를 가질 수 있고, 구체적으로는 10 내지 70 ㎛의 두께를 가질 수 있다. 상기 미세 기공층의 두께가 상기 범위 내일 경우, 80 %의 상대습도 가습조건에서 워터 플러딩(water flooding)으로 유발되는 물질 전달 제한(mass transfer limitation)으로 인한 저항 증가를 막을 수 있으며, 연료 전지 스택 제작시 체결 압력에 의한 분리판의 유로에 의한 눌림으로 인하여 발생되는 크랙이나 탈리를 막을 수 있다.
상기 미세 기공층은 일반적으로 입경이 작은 도전성 분말, 예를 들어 탄소 분말, 카본블랙, 아세틸렌 블랙, 활성 탄소, 카본 파이버, 플러렌(fullerene), 카본 나노 튜브, 카본 나노 와이어, 카본 나노 혼(carbon nanohorn), 카본 나노 링(carbon nano ring) 또는 이들의 조합을 사용할 수 있다.
상기 미세 기공층은 상기 도전성 분말과 바인더 수지 및 용매를 포함하는 조성물을 상기 전극기재에 코팅하여 제조될 수 있다.
상기 바인더 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드, 알콕시비닐 에테르, 폴리비닐알코올, 셀룰로오스아세테이트, 이들의 코폴리머 등을 사용할 수 있다.
상기 용매로는 에탄올, 이소프로필알코올, n-프로필알코올, 부틸알코올 등과 같은 알코올, 물, 디메틸아세트아마이드, 디메틸술폭사이드, N-메틸피롤리돈, 테트라하이드로퓨란 등을 사용할 수 있다.
상기 코팅 공정은 조성물의 점성에 따라 스크린 프린팅법, 스프레이 코팅법, 닥터 블레이드를 이용한 코팅법 등이 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 건조 공정은 25 내지 90 ℃에서 12시간 이상 건조시키는 것일 수 있다. 상기 건조온도가 25 ℃ 미만이고 건조시간이 12시간 미만일 경우, 과량의 용매가 남아 전사를 방해할 수 있으며, 90 ℃를 초과하는 온도에서 건조시키면 빠른 건조로 인하여 전극 표면에 크랙 현상이 발생할 수 있다.
본 발명의 다른 일 실시예에 따르면, 양극; 음극; 및 고분자 전해질 막을 포함하고, 상기 양극 및 음극 중 적어도 하나 이상은 본 발명의 또 다른 바람직한 일 실시예에 따른 전극을 포함하는 것인 연료전지용 막-전극 접합체를 제공할 수 있다. 보다 더 바람직하게는 상기 양극은 본 발명의 또 다른 바람직한 일 실시예에 따른 전극을 포함하는 것일 수 있다.
상기 고분자 전해질막은 이온 전도체를 포함하는 고체 폴리머 전해질로서, 상기 고분자 전해질막은 상기 이온 전도체가 시트 또는 필름으로 형성된 단일막 형태이거나, 상기 이온 전도체가 다공성 지지체 내부에 충진된 강화막 형태일 수도 있다.
상기 이온 전도체는 측쇄에 양이온 교환기를 가지고 있는 고분자 수지 또는 음이온 교환기를 가지고 있는 고분자 수지는 어느 것이나 이용할 수 있다.
상기 양이온 교환기는 술폰산기, 카르복실산기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로는 술폰산기 또는 카르복실기일 수 있다.
상기 양이온 교환기를 가지는 고분자 수지는, 구체적으로는 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소이온 전도성 고분자를 포함할 수 있고, 보다 구체적으로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 황화폴리에테르케톤, 아릴케톤, 폴리(2,2'-m-페닐렌)-5,5'-바이벤즈이미다졸[poly(2,2'-m-phenylene)-5,5'-bibenzimidazole] 및 폴리(2,5-벤즈이미다졸) 중에서 선택되는 1종 이상의 수소이온 전도성 고분자를 포함하는 것을 사용할 수 있다.
상기 수소이온 전도성을 갖는 고분자 수지는 측쇄 말단의 양이온 교환기에서 H를 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 상기 측쇄 말단의 이온 교환기에서 H를 Na으로 치환하는 경우에는 촉매 조성물 제조시 NaOH를, 테트라부틸암모늄으로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 상기 치환 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다.
상기 음이온 교환기는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.
상기 음이온 교환기를 가지는 고분자 수지는, 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.
또한, 상기 고분자 전해질막은 탄화수소계 고분자 전해질막, 불소계 고분자 전해질막 및 이들의 하나 이상의 혼합물 또는 공중합체를 사용할 수 있다.
상기 탄화수소계 고분자 전해질막은 탄화수소계 고분자를 포함할 수 있으며, 상기 고분자는 스티렌, 이미드, 술폰, 포스파젠, 에테르에테르 케톤, 에틸렌옥사이드, 폴리페닐렌 설파이드 또는 방향족기의 호모폴리머 또는 코폴리머 및 이들의 유도체 등에서 선택할 수 있으며, 이들 고분자는 단독 또는 조합으로 사용할 수 있다. 탄화수소계 고분자를 사용하여 전해질막을 제조하는 것은 불소계 고분자를 사용하는 것보다 제조비용이 저렴하고, 제조가 용이하며, 높은 이온전도도를 나타낸다.
상기 적합한 탄화수소막으로는 보다 바람직하게는 술폰화 폴리술폰(sulfonated polysulfone), 술폰화 폴리에테르술폰(sulfonated polyethersulfone), 술폰화 폴리에테르케톤(sulfonated polyetherketone), 술폰화 폴리에테르에테르케톤(sulfonated poly ether ether ketone), 술폰화 폴리아릴렌에테르에테르케톤(sulfonated poly aryrene ether ether ketone), 술폰화 폴리아릴렌에테르술폰(sulfonated poly aryrene ether sulfone, Poly arylene ether sulfone, PAES), 술폰화 폴리아릴렌에테르벤즈이미다졸(sulfonated poly aryrene ether benzimidazole) 및 이온전도체가 도입된 막으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다.
상기 불소계 고분자 전해질막은 이온전도성 막으로 필름을 형성할 수 있을 정도의 기계적 강도 및 높은 전기화학적 안정성을 갖는 물질이라면 특별한 제한없이 사용될 수 있다. 불소계 고분자 전해질막의 구체적인 예로서는 퍼플루오로설폰산 수지, 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체 등이 있다. 플루오로비닐에테르 모이어티는 수소이온을 전도하는 기능을 갖는다. 상기 공중합체는 듀퐁(Dupont)사에서 나피온(Nafion)이라는 상품명으로 판매되고 있어서 상업적으로 입수가능하다.
본 발명의 일 실시예에 따른 연료전지용 막-전극 접합체의 제조방법은 전극(또는 전극 형성용 조성물)을 이형필름상에 코팅 및 건조하는 단계; 고분자 전해질 막의 양면에 전극을 포함하는 기재를 접촉시킨 후, 전사기기로 전사시키는 단계; 및 전사된 막-전극 접합체에서 이형필름을 제거하는 단계;를 포함할 수 있다.
전극 형성용 조성물은 본 발명의 일 실시예에 따른 연료전지용 담체 및 촉매를 포함할 수 있고, 상기 전극 형성용 조성물은 상기 담체 및 촉매를 포함하는 혼합물에 한정되지 않고, 연료전지에서 전극층 또는 촉매층을 형성하기 위한 것이면 어느 것이나 사용가능하며, 용매, 수소이온 전도성 고분자, 이오노머 및 카본계 물질 등을 더 포함할 수도 있다.
상기 전극 형성용 조성물을 이형필름 위에 코팅할 때는 분산된 전극 형성용을 연속적 또는 간헐적으로 코터(coater)에 이송시킨 후 이형필름 상에 10 내지 200 ㎛의 건조두께로 균일하게 도포하는 것이 바람직하다. 더욱 상세하게는, 분산된 전극 형성용을 펌프를 통해서 연속적으로 다이(die), 그라비아(gravure), 바(bar), 콤마 코터(comma coater) 등의 코터에 이송한 후, 이를 이형필름 위에 균일하게 전극층의 건조두께가 10 내지 200 ㎛, 더욱 바람직하게는 10 내지 100 ㎛로 도포하고 일정한 온도로 유지된 건조로를 통과시키며 용매를 휘발시킨다. 이형필름 위에 전극 형성용 조성물을 도포 및 건조하는 방법은 상기에 한정되지 않는다.
상기 전극 형성용 조성물을 건조하는 단계는 25 내지 90 ℃에서 12시간 이상 건조시키는 것일 수 있다. 상기 건조온도가 25 ℃ 미만이고 건조시간이 12시간 미만일 경우, 과량의 용매가 남아 전사를 방해할 수 있으며, 90 ℃를 초과하는 온도에서 건조시키면 빠른 건조로 인하여 전극 표면에 크랙 현상이 발생할 수 있다.
상기 전극 형성용 조성물을 건조시켜 전극을 제조하는 단계 이후에는 건조된 전극층 및 이형필름을 필요한 크기로 컷팅하여 열압착을 통한 전사단계를 행할 수 있다.
상기 전극이 코팅된 이형필름과 고분자 전해질 막을 접합하여 전사기기를 이용하여 전사하는 단계는 80 내지 200 ℃, 5 내지 200 kgf/cm2의 조건에서 수행될 수 있다. 80 ℃, 5 kgf/cm2미만 조건에서 전사 단계를 진행할 경우, 이형필름상의 전극층의 전사가 제대로 이루어지지 않을 수 있고, 200 ℃를 초과할 경우에는 전해질막 내 이오노머의 변성이 일어날 우려가 있으며, 200 kgf/cm2를 초과하는 조건에서는, 전극층 내 기공 구조의 붕괴로 성능 저하의 요인이 될 수 있다.
상기 전사단계 이후에 이형필름을 제거하는 단계를 더 포함하여 막-전극 접합체을 제조할 수 있다.
본 발명의 또 다른 일 실시예는 상기 막-전극 접합체를 포함하는 연료전지를 제공한다. 도 2는 본 발명의 또 다른 일 실시예에 따른 연료전지의 전체적인 구성을 도시한 개략도이다.
상기 도 2를 참조하면, 상기 연료전지(200)는 연료와 물이 혼합된 혼합 연료를 공급하는 연료 공급부(210), 상기 혼합 연료를 개질하여 수소 가스를 포함하는 개질 가스를 발생시키는 개질부(220), 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스가 산화제와 전기 화학적인 반응을 일으켜 전기 에너지를 발생시키는 스택(230), 및 산화제를 상기 개질부(220) 및 상기 스택(230)으로 공급하는 산화제 공급부(240)를 포함한다.
상기 스택(230)은 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스와 산화제 공급부(240)로부터 공급되는 산화제의 산화/환원 반응을 유도하여 전기 에너지를 발생시키는 복수의 단위 셀을 구비한다.
각각의 단위 셀은 전기를 발생시키는 단위의 셀을 의미하는 것으로서, 수소 가스를 포함하는 개질 가스와 산화제 중의 산소를 산화/환원시키는 상기 막-전극 접합체와, 수소 가스를 포함하는 개질 가스와 산화제를 막-전극 접합체로 공급하기 위한 분리판(또는 바이폴라 플레이트(bipolar plate)라고도 하며, 이하 '분리판'이라 칭한다)을 포함한다. 상기 분리판은 상기 막-전극 접합체를 중심에 두고, 그 양측에 배치된다. 이 때, 상기 스택의 최외측에 각각 위치하는 분리판을 특별히 엔드 플레이트라 칭하기도 한다.
상기 분리판 중 상기 엔드 플레이트에는 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스를 주입하기 위한 파이프 형상의 제1 공급관(231)과, 산소 가스를 주입하기 위한 파이프 형상의 제2 공급관(232)이 구비되고, 다른 하나의 엔드 플레이트에는 복수의 단위 셀에서 최종적으로 미반응되고 남은 수소 가스를 포함하는 개질 가스를 외부로 배출시키기 위한 제1 배출관(233)과, 상기한 단위 셀에서 최종적으로 미반응되고 남은 산화제를 외부로 배출시키기 위한 제2 배출관(234)이 구비된다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되는 것은 아니다. 또한, 여기에 기재되지 않은 내용은 당 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다.
[ 제조예 1: 연료전지용 담체 및 촉매의 제조]
( 실시예 1)
카본 입자(상품명: ECP 300J, 제조사: Lion)를 5 ℃/분의 속도로 1,000 ℃까지 승온하는 제1-1단계; 1,000 ℃에서 10분간 유지하는 제1-2단계; 1,000 ℃에서 3 ℃/분의 속도로 1,900 ℃까지 승온하는 제2-1단계; 1,900 ℃에서 5분간 유지하는 제2-2단계; 1,900 ℃에서 2 ℃/분의 속도로 2,250 ℃까지 승온하는 제3-1단계; 및 2,250 ℃에서 60분간 유지하는 제3-2단계;를 수행하여 고결정성 흑연화층을 가지는 카본 입자로 제조하였다.
상기 고결정성 카본 담체 2.5 g을 정제수(D.I Water)/에탄올(95/5, v/v) 250 ml에 분산시키고, 4-아미노벤조나이트릴(4-aminobenzonitrile) 2 mM을 첨가하고 1시간동안 교반하였다. 얻어진 교반 혼합물에 아질산나트륨(NaNO2) 4 mM을 첨가하고 30분간 교반한 후, 0.5 M 염산(HCl) 수용액 5 mL를 첨가하였다. 얻어진 혼합물을 상온에서 4시간 동안 교반하여 디아조늄 커플링반응(diazonium coupling reaction)을 수행하였다.
상기 반응 생성물을 진공 여과하고, 증류수, 메탄올 및 아세톤을 사용하여 차례로 세척하고, 24시간 동안 진공 건조하여 카본 담체를 제조하였다. 제조된 카본 담체에 Pt를 물/에틸렌글리콜(1:0.25 몰비) 수용액을 이용한 화학적 환원 방법으로 담지시켜 연료전지용 촉매를 제조하였다.
( 실시예 2 내지 5)
실시예 2 내지 5는 상기 실시예 1의 4-아미노벤조나이트릴 2 mM 대신 4, 8, 16, 32 mM을 첨가하고, 아질산나트륨 4 mM 대신 8, 16, 32, 64 mM을 첨가하는 것을 제외하고는 상기 실시예와 동일한 방법을 통해 연료전지용 담체를 제조하였다.
( 실시예 6 내지 10)
실시예 6 내지 10은 상기 실시예 1의 4-아미노벤조나이트릴 대신 4-아미노벤조티올(4-aminobenzothiol) 2, 4, 8, 16, 32 mM을 첨가하는 것을 제외하고는 상기 실시예와 동일한 방법을 통해 연료전지용 담체를 제조하였다.
( 실시예 11 내지 15)
실시예 11 내지 15는 상기 실시예 1의 4-아미노벤조나이트릴 대신 p-페닐렌디아민(p-phenylene diamine) 2, 4, 8, 16, 32 mM을 첨가하는 것을 제외하고는 상기 실시예와 동일한 방법을 통해 연료전지용 담체를 제조하였다.
( 비교예 1)
카본 입자(상품명: ECP 300J, 제조사: Lion)을 질소/아르곤(N2/Ar) 분위기 하에서 2,250 ℃, 60분간 흑연화 과정을 수행하여 연료전지용 담체를 제조하였다. 그리고 제조된 카본 담체에 상기 실시예 1과 동일한 방법을 통해 Pt를 담지시켜 연료전지용 촉매를 제조하였다.
[ 제조예 2: 연료전지용 전극 및 막-전극 접합체의 제조]
( 실시예 16)
상기 실시예 1의 기능기가 포함된 고결정성 흑연 연료전지용 담체에 Pt가 담지된 캐소드(Cathode) 촉매 88 중량%와 바인더로 Nafion®/H2O/2-프로판올 용액 12 중량%를 사용하여, 교반 및 초음파 방법으로 분산시켜 캐소드 전극 조성물을 제조하였다. 상기 제조된 캐소드 전극 조성물을 테플론 이형필름에 닥터 블레이드 코팅한 후, 60 ℃에서 6시간 동안 건조시켜 캐소드 전극을 제조하였다. 이때, 캐소드 전극에서 촉매 로딩량은 약 0.25 mg/cm2으로 하였다.
Pt/C 애노드(Anode) 촉매 88 중량%와 바인더로 Nafion®/H2O/2-프로판올 용액 12 중량%를 사용하여, 교반 및 초음파 방법으로 분산시켜 애노드 전극 조성물을 제조하였다. 상기 제조된 애노드 전극 조성물을 테플론 이형필름에 닥터블레이드 코팅한 후, 60 ℃에서 6시간 동안 건조시켜 애노드 전극을 제조하였다. 이때, 애노드 전극에서 촉매 로딩량은 약 0.10 mg/cm2으로 하였다.
상기 제조된 캐소드 및 애노드 전극 사이에 15 ㎛ 두께를 갖는 퍼플루오로술폰산(PFSA)의 불소계 고분자 전해질 막을 개재하여, 이것을 160 ℃, 20 kgf/cm2 조건의 열과 압력으로 3분간 압착한 후, 상기 캐소드 전극 및 애노드 전극이 고분자 전해질 막에 결착된 막-전극 접합체를 제조하였다.
( 실시예 17 내지 20)
상기 실시예 16에서 실시예 1의 연료전지용 담체 대신 실시예 2 내지 5의 연료전지용 담체를 첨가하는 것을 제외하고는 상기 실시예 16과 동일한 방법을 통해 연료전지용 막-전극 접합체를 제조하였다.
( 실시예 21 내지 25)
상기 실시예 16에서 실시예 1의 연료전지용 담체 대신 실시예 6 내지 10의 연료전지용 담체를 첨가하는 것을 제외하고는 상기 실시예 16과 동일한 방법을 통해 연료전지용 막-전극 접합체를 제조하였다.
( 실시예 26 내지 30)
상기 실시예 16에서 실시예 1의 연료전지용 담체 대신 실시예 11 내지 15의 연료전지용 담체를 첨가하는 것을 제외하고는 상기 실시예 16과 동일한 방법을 통해 연료전지용 막-전극 접합체를 제조하였다.
( 비교예 2)
상기 비교예 1에서 제조한 연료전지용 담체를 첨가하는 것을 제외하고는 상기 실시예 16의 방법을 통해 연료전지용 막-전극 접합체를 제조하였다.
[연료전지용 담체의 특성 평가]
( 실험예 1: XPS 분석 평가)
상기 실시예 8과 비교예 1의 연료전지용 담체를 X선 광전자 분광법(XPS, X-ray photoelectron spectroscopy)으로 분석한 결과를 하기 도 3과 같이 비교하여 도시하였다.
도 3의 결과에서 볼 수 있듯이, 비교예 1은 C1s의 결합에너지와 관련된 피크만 나타나지만, 4-아미노벤조티올을 8 mM 첨가하여 디아조늄 커플링 반응시킨 실시예 8의 경우에는 C1s 뿐 아니라, S2s, S2p 결합에너지를 가지는 피크를 나타내고 있으며, 이와 같은 XPS 결과를 통해 실시예 8의 고결정성 흑연화 탄소 담체 상에 황원자를 포함하는 기능기가 형성되어있음을 알 수 있었다.
( 실험예 2: 라만 분광 분석)
상기 실시예 1, 8, 13과 비교예 1의 연료전지용 담체를 514nm 파장의 레이저(laser)를 이용한 라만 분광기로 분석하고, 상기 라만 분광법으로 검출된 스펙트럼 중 1570 cm-1 내지 1600 cm-1에서의 G 밴드의 최대 피크 면적(RG)에 대한 1335 cm-1 내지 1365 cm-1에서의 D 밴드의 최대 피크 면적(RD)의 비(RD/RG)를 산출하여 실시예 및 비교예의 연료전지용 담체 내 카본 성분을 분석하였다.
실시예 1의 RD/RG는 0.83, 실시예 8은 0.85, 실시예 13은 0.86으로 나타났으며, 비교예 1은 0.81의 값을 보였다.
이와 같이, 실시예 1, 8, 13은 비교예 1과는 다른 단계적 흑연화 과정을 통해 RD/RG값이 더 높아졌으며, 이와 같이 1335 cm-1 내지 1365 cm-1에서의 D 밴드가 나타내는 sp3 구조의 다이아몬드질상 카본이 보다 잘 형성된 실시예의 경우, 1570 cm-1 내지 1600 cm-1에서의 G 밴드가 나타내는 sp2의 흑연질상 카본의 성분이 보다 많은 비교예에 비해 결정성이 높음을 확인할 수 있었다.
( 실험예 3: 디아조늄염의 표면 담지 평가)
상기 실시예 11 내지 15와 같이 p-페닐렌디아민 2, 4, 8, 16, 32 mM 수용액을 각각 첨가하여 디아조늄 커플링 반응을 수행한 연료전지용 담체에 대하여 p-페닐렌디아민의 농도에 따른 N1s 피크와 C1s 피크의 비율로 질소의 도핑레벨, 도핑비율 및 표면 피복율을 계산하여 하기 표 1과 같이 나타내었다.
p-페닐렌디아민 농도(mM) 질소(N)도핑레벨 (at.%) 도핑비율 (N/C) 표면피복율 (10- 10 mol/cm2)
실시예 11 2 1.19 0.0132 0.9636
실시예 12 4 2.76 0.0318 2.3239
실시예 13 8 3.24 0.0373 2.7229
실시예 14 16 3.68 0.0462 3.2796
실시예 15 32 3.80 0.0449 3.3731
상기 표 1에서와 같이, 질소의 표면 도핑레벨(N-doping level), 도핑 비율(doping ratio) 및 표면피복율(surface coverage)은 p-페닐렌디아민의 농도가 2 mM 내지 32 mM로 증가함에 따라 각각 1.19 내지 3.80 at%, 0.0132 내지 0.0449, 및 0.9636 x 10-10 내지 3.3731 x 10- 10 mol/cm2로 증가함을 확인할 수 있었다.
( 실험예 4: ESCA 손실 평가)
상기 실시예 3, 8, 13 및 비교예 1의 연료전지용 담체를 사용하였을 경우 전기화학적 활성면적(ECSA, estimate electrochemically surface area) 손실을 평가하여 하기 도 4의 그래프로 나타내었다.
각각의 실시예 및 비교예 담체의 최초의 활성면적 대비 CV 충방전 사이클을 1,000회 반복하면서 ECSA 손실이 어느 정도 진행되었는지 평가하였고, 상기 도 4의 결과와 같이, 실시예 3이 가장 활성면적 손실이 적은 것으로 나타났으며, 그 다음으로 실시예 8, 실시예 13이 비교예 1에 비해 전기화학적 내구성이 우수한 것을 알 수 있었다.
( 실험예 5: 질량당 활성도 평가)
상기 실시예 3, 8, 13 및 비교예 1의 연료전지용 담체를 사용하였을 경우 질량당 활성(mass activity)을 평가하여 하기 도 5와 같이 도시하였다.
비교예 1에 비해 실시예 3, 8, 13 모두 높은 활성을 보였으며, 특히 벤조나이트릴기가 기능기로 담지된 실시예 3의 경우 가장 질량당 활성치가 우수한 것으로 평가되었다.
[막-전극 접합체 및 전지의 성능 평가]
( 실험예 6: 전압 손실 평가)
상기 실시예 18, 23, 28 및 비교예 2에서 제조된 막-전극 접합체를 사용하여 전압 사이클을 30,000회 수행하여 AST 프로토콜 손실 평가를 실험하여 하기 도 6과 같이 도시하여 평가하였다.
상기 도 6의 결과에서 확인한 바와 같이, 실시예 23의 막-전극 접합체의 경우 가장 VC 내구성이 높았으며, 실시예 18과 실시예 28 역시 비교예 2에 비해 양극 촉매의 내구성 강화로 인하여 전압 손실 정도가 낮은 것을 확인할 수 있었다.
[부호의 설명]
100 : 고결정성 흑연화층을 포함하는 카본 입자
110 : 카본 입자 120 : 고결정성 흑연화층
130 : 고결정성 흑연화 카본 담체
200 : 연료전지
210 : 연료 공급부 220 : 개질부
230 : 스택 231 : 제 1 공급관
232 : 제 2 공급관 233 : 제 1 배출관
234 : 제 2 배출관 240 : 산화제 공급부
본 발명은 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지에 관한 것으로, 보다 바람직하게는 FCV(Fuel cell vehicle)에 적용할 수 있는 내구성이 우수한 담체 및 이를 포함하는 연료전지용 전극, 막-전극 접합체, 연료전지에 대한 기술이다.
상기 고결정성 흑연화 카본 담체를 포함하는 전극, 막-전극 접합체 및 연료전지를 사용하는 경우, 내구성이 우수하고, 연료 전지의 성능이 향상될 수 있다.

Claims (17)

  1. 고결정성 흑연화층을 포함하는 카본 입자를 포함하며,
    상기 고결정성 흑연화층은 표면에 결합된 기능기를 포함하고,
    상기 기능기는 하기 화학식 1로 표시되는 화합물을 포함하는 것인 고결정성 흑연화 카본 담체.
    [화학식 1]
    -Ar-(R)n
    (상기 화학식 1에서, 상기 Ar은 알킬렌 또는 아릴렌이며,
    상기 R은 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이고,
    상기 n은 1 내지 20의 정수이다.)
  2. 제1항에 있어서,
    상기 기능기는 상기 고결정성 흑연의 표면에 0.5 x 10-10 내지 1.0 x 10- 8 mol/cm2으로 표면 피복(surface coverage)되어 있는 것인 고결정성 흑연화 카본 담체.
  3. 제1항에 있어서,
    상기 기능기의 도핑 레벨(doping level)은 0.7 내지 15.0 at.%이고, N/C 또는 S/C 비율은 0.005 내지 0.500 인 것인 고결정성 흑연화 카본 담체.
  4. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 2로 표시되는 방향족 탄화수소를 포함하는 것인 고결정성 흑연화 카본 담체.
    [화학식 2]
    Figure PCTKR2017010403-appb-I000007
    (상기 화학식 2에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이다.)
  5. 제4항에 있어서,
    상기 R1 내지 R5 중 적어도 하나 이상은 CN, SH 및 NH2로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함하는 것인 고결정성 흑연화 카본 담체.
  6. 제1항에 있어서,
    상기 고결정성 흑연화 카본 담체의 514nm 파장의 레이저를 이용한 라만 분광 분석법에 의해 얻어진 1570 cm-1 내지 1600 cm-1에서의 G 밴드의 최대 피크 면적에 대한 1335 cm-1 내지 1365 cm-1에서의 D 밴드의 최대 피크 면적의 비가 0.1 내지 1.2인 것인 고결정성 흑연화 카본 담체.
  7. 제1항에 있어서,
    상기 고결정성 흑연화 카본 담체의 X선 회절 스펙트럼에서 (002)면에 대한 피크가 브래그(Bragg) 2θ각이 26°±0.5°에서 나타나고, 상기 (002)면에 대한 피크의 반가폭(FWHM)이 0.1° 내지 0.8°인 것인 고결정성 흑연화 카본 담체.
  8. 카본 입자에 단계적 열처리 과정을 가하여 고결정성 흑연화층을 형성하는 단계; 및
    상기 고결정성 흑연화층과 기능기가 치환된 디아조늄염을 커플링 반응시켜 유기 기능기를 상기 고결정성 흑연화층에 도입하는 단계;
    를 포함하는 것인 고결정성 흑연화 카본 담체의 제조방법.
  9. 제8항에 있어서,
    상기 단계적 열처리 과정은
    카본 입자를 3 내지 10 ℃/분의 속도로 900 내지 1,000 ℃까지 승온하고, 5 내지 30분간 유지하는 제1단계;
    상기 900 내지 1,000 ℃에서 2 내지 5 ℃/분의 속도로 1,800 내지 1,900 ℃까지 승온하고, 5 내지 30분간 유지하는 제2단계; 및
    상기 1,800 내지 1,900 ℃에서 1 내지 3 ℃/분의 속도로 2,000 내지 3,000 ℃까지 승온하고, 10분 내지 2시간 유지하는 제3단계;
    를 포함하는 것인 고결정성 흑연화 카본 담체의 제조방법.
  10. 제8항에 있어서,
    상기 기능기가 치환된 디아조늄염은 하기 화학식 3으로 표시되는 화합물을 포함하는 것인 고결정성 흑연화 카본 담체의 제조방법.
    [화학식 3]
    Figure PCTKR2017010403-appb-I000008
    (상기 화학식 3에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이고, 상기 X-는 할로겐족 음이온이다.)
  11. 제8항에 있어서,
    상기 기능기가 치환된 디아조늄염은 하기 화학식 4로 표시되는 방향족 1차 아민 화합물을 디아조늄화 반응시켜 제조되는 것인 고결정성 흑연화 카본 담체의 제조방법.
    [화학식 4]
    Figure PCTKR2017010403-appb-I000009
    (상기 화학식 4에서, 상기 R1 내지 R5는 각각 독립적으로 수소원자이거나, 질소, 황 및 이들의 혼합으로 이루어진 군에서 선택되는 어느 하나의 헤테로 원자를 포함하는 치환기이다.)
  12. 제11항에 있어서,
    상기 방향족 1차 아민 화합물은 4-아미노벤조나이트릴(4-aminobenzonitrile), 4-아미노벤조티올(4-aminobenzothiol), p-페닐렌디아민(p-phenylene diamine) 및 이들의 혼합물로 구성된 군에서 선택되는 어느 하나인 것인 고결정성 흑연화 카본 담체의 제조방법.
  13. 제8항에 있어서,
    상기 유기 기능기를 상기 고결정성 흑연화층에 도입하는 단계는 0 내지 50 ℃에서 15분 내지 24시간 동안 진행될 수 있는 것인 고결정성 흑연화 카본 담체의 제조방법.
  14. 제1항에 따른 고결정성 흑연화 카본 담체; 및 상기 담체에 담지된 촉매를 포함하는 것인 연료전지용 전극.
  15. 양극; 음극; 및 고분자 전해질 막을 포함하고,
    상기 양극 및 음극 중 적어도 하나 이상은 제14항에 따른 전극을 포함하는 것인 연료전지용 막-전극 접합체.
  16. 제15항에 있어서,
    상기 양극은 제14항에 따른 전극을 포함하는 것인 연료전지용 막-전극 접합체.
  17. 제15항에 따른 막-전극 접합체를 포함하는 것인 연료전지.
PCT/KR2017/010403 2016-09-30 2017-09-21 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지 WO2018062769A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17856655.0A EP3520892A4 (en) 2016-09-30 2017-09-21 SUPPORT, ELECTRODE FOR FUEL CELL, MEMBRANE-ELECTRODE ASSEMBLY, AND FUEL CELL COMPRISING SAME
CN201780059813.XA CN109789386A (zh) 2016-09-30 2017-09-21 载体、燃料电池用电极、膜电极组件以及包含该组件的燃料电池
US16/338,381 US20200028183A1 (en) 2016-09-30 2017-09-21 Support, electrode for fuel cell, membrane-electrode assembly, and fuel cell including same
JP2019515501A JP2020500096A (ja) 2016-09-30 2017-09-21 担体、燃料電池用電極、膜−電極接合体及びこれを含む燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0126266 2016-09-30
KR1020160126266A KR20180036107A (ko) 2016-09-30 2016-09-30 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지

Publications (1)

Publication Number Publication Date
WO2018062769A1 true WO2018062769A1 (ko) 2018-04-05

Family

ID=61762955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010403 WO2018062769A1 (ko) 2016-09-30 2017-09-21 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지

Country Status (6)

Country Link
US (1) US20200028183A1 (ko)
EP (1) EP3520892A4 (ko)
JP (1) JP2020500096A (ko)
KR (1) KR20180036107A (ko)
CN (1) CN109789386A (ko)
WO (1) WO2018062769A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006497B2 (ja) * 2018-05-11 2022-02-10 トヨタ自動車株式会社 燃料電池用触媒層及びその製造方法
JP6727264B2 (ja) * 2018-09-18 2020-07-22 株式会社キャタラー 燃料電池用アノード触媒層及びそれを用いた燃料電池
KR102169124B1 (ko) * 2018-12-19 2020-10-22 주식회사 제이앤티지 흑연화 탄소 기재 및 이를 채용한 기체확산층
CN111193053B (zh) * 2020-02-28 2020-10-09 成都新柯力化工科技有限公司 一种高热稳定性质子交换膜及制备方法
WO2023112958A1 (ja) * 2021-12-15 2023-06-22 凸版印刷株式会社 イオン液体含浸無機材料被覆触媒粒子、燃料電池用膜電極接合体、及び燃料電池
WO2023146885A1 (en) * 2022-01-25 2023-08-03 1S1 Energy, Inc. Functionalized polybenzimidazole polymers for ionomer and proton exchange membrane applications
JP2023129137A (ja) * 2022-03-04 2023-09-14 日清紡ホールディングス株式会社 金属担持触媒、電極及び電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228288A1 (en) * 2000-03-17 2006-10-12 University Of Central Florida Carbon nanotube with a graphitic outer layer: process and application
JP2007529404A (ja) * 2004-03-15 2007-10-25 キャボット コーポレイション 修飾炭素生成物及びその用途
EP1112224B1 (en) * 1998-09-18 2009-08-19 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes
KR20130122507A (ko) * 2012-04-30 2013-11-07 삼성에스디아이 주식회사 전극촉매용 담체 및 그 제조방법과 연료 전지
KR20140108977A (ko) * 2013-03-04 2014-09-15 삼성에스디아이 주식회사 연료 전지용 담체, 이의 제조 방법, 이를 포함하는 연료 전지용 전극, 연료 전지용 막-전극 어셈블리 및 연료 전지 시스템
KR101444635B1 (ko) 2012-06-21 2014-09-26 테슬라 나노코팅스, 인크. 기능화된 흑연물질의 제조방법
KR20140133774A (ko) * 2013-05-07 2014-11-20 삼성에스디아이 주식회사 연료전지용 전극 촉매, 이를 포함한 연료전지용 전극, 막전극 접합체 및 연료전지

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554739A (en) * 1994-12-15 1996-09-10 Cabot Corporation Process for preparing carbon materials with diazonium salts and resultant carbon products
WO2005006471A1 (en) * 2003-07-10 2005-01-20 Seoul National University Industry Foundation Nanostructured carbon materials having good crystallinity and large surface area suitable for electrodes, and method for synthesizing the same using catalytic graphitization of polymeric carbon precursors
EP1730509A1 (en) * 2004-03-04 2006-12-13 Isis Innovation Limited Electrochemical sensors
CA2560069C (en) * 2004-03-15 2012-10-30 Cabot Corporation Modified carbon products, their use in fuel cells and similar devices and methods relating to the same
JP2008041375A (ja) * 2006-08-04 2008-02-21 Hitachi Ltd 電解質,電解質膜、それを用いた膜電極接合体,燃料電池電源及び燃料電池電源システム
JP2009277360A (ja) * 2008-05-12 2009-11-26 Japan Carlit Co Ltd:The 触媒担体及び触媒体並びにそれらの製造方法
KR20140045808A (ko) * 2012-10-09 2014-04-17 삼성에스디아이 주식회사 연료 전지용 촉매, 이의 제조 방법, 이를 포함하는 연료 전지용 전극, 이를 포함하는 연료 전지용 막-전극 어셈블리, 이를 포함하는 연료 전지 시스템
KR20150088006A (ko) * 2014-01-23 2015-07-31 삼성에스디아이 주식회사 연료전지용 전극 촉매, 그 제조방법, 이를 포함한 연료전지용 전극 및 연료전지
JP6454350B2 (ja) * 2014-09-01 2019-01-16 富士フイルム株式会社 含窒素カーボンアロイの製造方法、含窒素カーボンアロイ及び燃料電池触媒

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1112224B1 (en) * 1998-09-18 2009-08-19 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes
US20060228288A1 (en) * 2000-03-17 2006-10-12 University Of Central Florida Carbon nanotube with a graphitic outer layer: process and application
JP2007529404A (ja) * 2004-03-15 2007-10-25 キャボット コーポレイション 修飾炭素生成物及びその用途
KR20130122507A (ko) * 2012-04-30 2013-11-07 삼성에스디아이 주식회사 전극촉매용 담체 및 그 제조방법과 연료 전지
KR101444635B1 (ko) 2012-06-21 2014-09-26 테슬라 나노코팅스, 인크. 기능화된 흑연물질의 제조방법
KR20140108977A (ko) * 2013-03-04 2014-09-15 삼성에스디아이 주식회사 연료 전지용 담체, 이의 제조 방법, 이를 포함하는 연료 전지용 전극, 연료 전지용 막-전극 어셈블리 및 연료 전지 시스템
KR20140133774A (ko) * 2013-05-07 2014-11-20 삼성에스디아이 주식회사 연료전지용 전극 촉매, 이를 포함한 연료전지용 전극, 막전극 접합체 및 연료전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3520892A4 *

Also Published As

Publication number Publication date
CN109789386A (zh) 2019-05-21
EP3520892A4 (en) 2020-06-03
JP2020500096A (ja) 2020-01-09
KR20180036107A (ko) 2018-04-09
US20200028183A1 (en) 2020-01-23
EP3520892A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2018062769A1 (ko) 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지
EP1387423B1 (en) Water-based catalyst inks and their use for manufacture of catalyst-coated substrates
US8623572B2 (en) Method for preparing metal catalyst and electrode
KR101233343B1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법 및 이를포함하는 연료 전지 시스템
WO2019066534A2 (ko) 라디칼 스케빈져, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 그리고 이를 포함하는 연료 전지
WO2020004848A1 (ko) 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지
WO2018124645A1 (ko) 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
KR100684767B1 (ko) 연료 전지 캐소드용 촉매, 이를 포함하는 막-전극 어셈블리및 연료 전지 시스템
WO2006067872A1 (ja) 高耐久性電極触媒層
WO2020138800A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
US20110097651A1 (en) Membrane Electrode Assembly (MEA) Fabrication Procedure on Polymer Electrolyte Membrane Fuel Cell
WO2020138799A1 (ko) 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지
WO2018236119A1 (ko) 유기 관능성 금속 산화물을 포함하는 전극, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 및 상기 막-전극 어셈블리를 포함하는 연료 전지
WO2018124764A1 (ko) 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지
WO2019132281A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 막-전극 어셈블리 및 연료 전지
KR20170079591A (ko) 연료전지용 전극 형성용 조성물, 연료전지용 전극, 막-전극 접합체와 이의 제조방법, 그리고 이를 포함하는 연료전지
KR101093703B1 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
KR20090027527A (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법 및 이를포함하는 연료 전지 시스템
KR101351392B1 (ko) 연료 전지용 전극, 및 이를 포함하는 막-전극 어셈블리 및 연료 전지 시스템
KR20090055304A (ko) 연료전지용 막-전극 어셈블리, 이의 제조 방법, 및 이를포함하는 연료전지 시스템
KR20080041844A (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법 및 이를포함하는 연료 전지용 시스템
KR20090032772A (ko) 연료전지용 막-전극 어셈블리, 이의 제조 방법, 및 이를포함하는 연료전지 시스템
KR20090055301A (ko) 연료전지용 막-전극 어셈블리의 제조방법
KR100778437B1 (ko) 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
KR20090030104A (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법 및 이를포함하는 연료 전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856655

Country of ref document: EP

Effective date: 20190430