WO2020004848A1 - 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지 - Google Patents
막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지 Download PDFInfo
- Publication number
- WO2020004848A1 WO2020004848A1 PCT/KR2019/007261 KR2019007261W WO2020004848A1 WO 2020004848 A1 WO2020004848 A1 WO 2020004848A1 KR 2019007261 W KR2019007261 W KR 2019007261W WO 2020004848 A1 WO2020004848 A1 WO 2020004848A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ionomer
- electrode assembly
- membrane
- catalyst
- layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8892—Impregnation or coating of the catalyst layer, e.g. by an ionomer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8636—Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
- H01M4/8642—Gradient in composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8663—Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
- H01M4/8668—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method of manufacturing a membrane-electrode assembly, a membrane-electrode assembly manufactured by using the same, and a fuel cell including the membrane-electrode assembly. More specifically, a direct coating method is used between the polymer electrolyte membrane and the catalyst layer.
- the present invention relates to a method of manufacturing a membrane-electrode assembly capable of improving interfacial binding strength, a membrane-electrode assembly manufactured using the same, and a fuel cell including the membrane-electrode assembly.
- a fuel cell is a power generation system that directly converts chemical reaction energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol, and natural gas into electrical energy.
- hydrocarbon-based materials such as methanol, ethanol, and natural gas
- Representative examples of such a fuel cell include a polymer electrolyte fuel cell (PEMFC).
- PEMFC is in the spotlight as the next generation energy source, and research for commercialization is being actively conducted due to the advantages of eco-friendly image, especially in the automobile related field.
- a membrane-electrode assembly that substantially generates electricity is an anode electrode (also called a 'fuel electrode' or an 'oxide electrode' with a polymer electrolyte membrane comprising a hydrogen ion conductive polymer therebetween. ) And a cathode electrode (also called an "air electrode” or a “reduction electrode”) is located.
- anode electrode also called a 'fuel electrode' or an 'oxide electrode' with a polymer electrolyte membrane comprising a hydrogen ion conductive polymer therebetween.
- a cathode electrode also called an "air electrode” or a “reduction electrode
- Each electrode-forming composition is composed of a catalyst, an ionomer, a solvent, and an additive.
- the catalyst is a major factor for determining the activity and durability of the fuel cell.
- Platinum-based catalysts used in anodes and cathodes are the most widely used Pt / C catalysts in which platinum nanoparticles are supported on a carbon support having a large specific surface area and excellent electrical conductivity.
- Pt / C catalysts are limited in reducing the price of the catalyst as they are manufactured using pure platinum, which is an expensive metal, and are generated when oxygen is adsorbed on the surface of platinum due to the oxygen reduction reaction of the cathode. Due to the overvoltage, a considerable amount of energy is lost and commercialization is delayed.
- the direct coating technique for coating a direct electrode on a polymer electrolyte membrane has attracted attention as a new MEA manufacturing technique for commercialization of fuel cells.
- Representative examples of direct coating techniques include slot die coating and spray coating.
- An object of the present invention is to improve the interfacial binding between the polymer electrolyte membrane and the catalyst layer by using a free ionomer when using a direct coating method, to improve the mass transfer capacity and fuel cell output performance of fuel, air and generated water, It is to provide a method for producing a membrane-electrode assembly capable of increasing hydrogen permeation resistance and oxygen permeability.
- Another object of the present invention is to provide a membrane-electrode assembly manufactured by the method of manufacturing the membrane-electrode assembly.
- a method of making a membrane-electrode assembly comprising adding a second ionomer to prepare a coating composition, and directly coating the coating composition on at least one side of the polymer electrolyte membrane.
- the first and second ionomers may be the same or different.
- Each of the first and second ionomers may have an equivalent weight (EW) of 600 g / eq to 1100 g / eq, but the equivalent of the first ionomer may be different from the equivalent of the second ionomer. .
- Each of the first and second ionomers may be a fluorinated polymer including a fluorinated carbon skeleton and a side chain represented by Formula 1 below, and the first and second ionomers may have different side chain lengths (a + b). Can be.
- R f are each independently selected from the group consisting of F, Cl and perfluorinated alkyl group of 1 to 10 carbon atoms, X is an ion exchange group, a is 0 to 3 Is an integer of 1 to 5)
- the first ionomer may be a first hydrocarbon-based ionomer
- the second ionomer may be a second hydrocarbon-based ionomer
- the first hydrocarbon-based ionomer may be different from the second hydrocarbon-based ionomer.
- One of the first and second ionomers may be a fluorine-based ionomer and the other may be a hydrocarbon-based ionomer.
- the size of the second ionomer may be 10 nm to 1500 nm.
- the second ionomer may have any one shape selected from the group consisting of a spherical shape, an ellipsoidal shape, a stick shape, and a coil shape.
- the coating composition is at least one selected from the group consisting of a radical scavenger, an ionic conductor, an oxygen evolution reaction (OER) catalyst, and gas barrier particles.
- Functional additives can be prepared by adding the second ionomer to the dispersion mixture.
- the coating composition may include 20 wt% to 40 wt% of the first ionomer and 0.2 wt% to 7 wt% of the second ionomer, based on the total weight of the coating composition.
- At least some of the second ionomer may not be coated on the surface of the catalyst.
- Preparing the coating composition may further include dispersing the second ionomer added to the dispersion mixture.
- the second ionomer may be dispersed at a temperature of 15 °C to 80 °C.
- the method of manufacturing the membrane-electrode assembly may further include drying the coating composition coated on at least one side of the polymer electrolyte membrane, in the drying step, a free ionomer not coated on the surface of the catalyst May be precipitated toward the polymer electrolyte membrane to form an ionomer-rich layer, and the free ionomer may include at least one of the first and second ionomers.
- a polymer electrolyte membrane, and a catalyst layer on at least one side of the polymer electrolyte membrane wherein the catalyst layer comprises a catalyst, a coated ionomer on the surface of the catalyst, and on the surface of the catalyst
- An uncoated free ionomer, the catalyst layer comprising a first layer in contact with the polymer electrolyte membrane and a second layer thereon, wherein the first layer is an ionomer rich comprising the free ionomer
- a membrane-electrode assembly is provided, which is an ionomer-rich layer.
- the second layer may not include the free ionomer or may contain less amount of the free ionomer per unit volume than the first layer.
- the coated ionomer and the free ionomer may be different kinds of ionomers.
- the free ionomer may have any one shape selected from the group consisting of a spherical shape, an ellipsoid shape, a rod shape, and a coil shape.
- the ionomer rich layer is at least one selected from the group consisting of a radical scavenger, an ionic conductor, an oxygen evolution reaction (OER) catalyst, and gas barrier particles. Functional additives.
- the ionomer rich layer may have a thickness of 30 nm to 1500 nm.
- a fuel cell comprising the membrane-electrode assembly.
- the method of manufacturing the membrane-electrode assembly of the present invention uses a direct coating method, it does not require a decal film, thereby reducing the process time and material cost of coating the decal film, and does not require a transfer process. It can be secured.
- the manufacturing method of the membrane-electrode assembly of the present invention utilizes a free ionomer to improve the interfacial binding between the polymer electrolyte membrane and the catalyst layer, improve mass transfer and performance, and improve hydrogen permeability resistance. Oxygen permeability can be increased.
- FIG. 1 is a diagram schematically showing a state after the coating composition according to an embodiment of the present invention is coated on a polymer electrolyte membrane and before drying.
- FIG. 2 is a diagram schematically illustrating a state after the coating composition according to an embodiment of the present invention is coated on a polymer electrolyte membrane and then dried to form a catalyst layer.
- FIG. 3 is a schematic cross-sectional view of a membrane-electrode assembly according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram showing the overall configuration of a fuel cell according to another embodiment of the present invention.
- Example 5 is a scanning electron micrograph of the entire membrane-electrode assembly prepared in Example 1 of the present invention.
- Example 6 is a scanning electron micrograph of the catalyst layer prepared in Example 1 of the present invention.
- 10 and 11 are scanning electron micrographs of the cross section of the membrane-electrode assembly after the performance test in Experimental Example 3 of the present invention.
- Example 14 is a scanning electron micrograph of a cross section of the membrane-electrode assembly prepared in Example 3 of the present invention.
- a method of preparing a membrane-electrode assembly may include adding a catalyst and a first ionomer to a solvent and then dispersing the same to prepare a dispersion mixture, wherein at least a part of the first ionomer may have a surface of the catalyst. Coated onto the dispersion mixture, adding a second ionomer to the dispersion mixture to prepare a coating composition, and directly coating the coating composition onto at least one side of the polymer electrolyte membrane.
- the catalyst and the first ionomer are added to the solvent and then dispersed to prepare the dispersion mixture.
- the catalyst may be any one that can be used as a catalyst for hydrogen oxidation and / or oxygen reduction reaction, preferably a platinum-based metal and / or a non-platinum-based metal can be used.
- Platinum-based metals include platinum (Pt) and / or Pt-M alloys (wherein M is palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), and gallium (Ga). ), Titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), silver (Ag), gold (Au ), Zinc (Zn), tin (Sn), molybdenum (Mo), tungsten (W), lanthanum (La) and rhodium (Rh)] may be used.
- the non-platinum metal is at least one selected from the group consisting of palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), and non-platinum alloys This can be used.
- Pt-M alloy Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ni, Pt-Ru-W, Pt-Ru-Ni, Pt -Ru-Mo, Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Ru-Ir-Ni, Pt-Co, Pt-Co, Pt-Co-Mn, Pt-Co-Ni, Pt-Co-Fe , Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au -Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir, or mixtures of two or more thereof
- non-platinum alloy Ir-Fe, Ir-Ru, Ir-Os, Co-Fe, Co-Ru, Co-Os, Rh-Fe, Rh-Ru, Rh-Os, Ir-Ru-Fe, Ir-Ru-Os, Rh-Ru-Fe, Rh-Ru-Os, Fe-N, Fe-P, Co-N, or mixtures of two or more thereof may be used.
- the catalyst may be a metal itself (black), or may be used by supporting the catalyst metal on a carrier.
- the carrier may be (i) a carbon-based carrier, (ii) a porous inorganic oxide such as zirconia, alumina, titania, silica, ceria, or (iii) zeolite.
- the carbon-based carrier is graphite, super P, carbon fiber, carbon sheet, carbon black, Ketjen Black, Denka black, acetylene Acetylene black, carbon nanotube (CNT), carbon sphere, carbon ribbon, fullerene, activated carbon, carbon nanofiber, carbon nanowire, carbon nanoball , Carbon nano horn, carbon nano cage, carbon nano ring, ordered nano- / meso-porous carbon, carbon aerogel, mesoporous carbon, graphene, stabilized carbon, activated carbon, and It may be selected from one or more combinations thereof, but is not limited thereto, and carriers usable in the art may be used without limitation.
- the catalyst may be located on the surface of the carrier, or may penetrate into the carrier while filling the internal pores of the carrier.
- the noble metal supported on the carrier as a catalyst, a commercially available one may be used, or the noble metal supported on the carrier may be prepared and used.
- the process of supporting the precious metal on the carrier is well known in the art, and thus detailed description thereof will be omitted.
- the catalyst may be included in the coating composition to 20 to 80% by weight based on the total weight of the catalyst layer.
- the content of the catalyst is less than 20% by weight based on the total weight of the catalyst layer may not satisfy the catalyst activity required for the electrode, when the content of the catalyst exceeds 80% by weight of the active area is reduced due to the aggregation of the catalyst Catalytic activity may be reversed.
- the coating composition includes the first ionomer to improve adhesion of the catalyst and transfer hydrogen ions.
- the first ionomer may be a fluorine ionomer, a hydrocarbon ionomer, or a mixture thereof.
- the fluorine ionomer may be a (i) fluorine-based polymer containing fluorine in a main chain having a cation exchange group or an anion exchange group, or (ii) a polystyrene-graft-ethylenetetrafluoroethylene copolymer, polystyrene-graft-polytetra Partially fluorinated polymers such as fluoroethylene copolymers and the like.
- the cation exchange group is a functional group capable of transferring a cation such as proton, and may be, for example, an acidic group such as a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, or the like. And may generally be a sulfonic acid group or a carboxyl group.
- the anion exchange group is a functional group capable of carrying anions such as hydroxy ions, carbonate ions or bicarbonate ions.
- fluorine-based ionomer examples include (i) poly (perfluorosulfonic acid), (ii) poly (perfluorocarboxylic acid), (iii) a copolymer of tetrafluoroethylene and fluorovinyl ether containing a sulfonic acid group, And (iv) defluorinated sulfided polyetherketones.
- the said fluorine ionomer can also be used individually or in mixture of 2 or more types.
- the hydrocarbon-based ionomer may be a hydrocarbon-based polymer having a cation exchange group or an anion exchange group (eg, imidazole, benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, Polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, polycarbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyforce Hydrocarbon based polymer comprising at least one selected from the group consisting of pazene and polyphenylquinoxaline in the main chain).
- a hydrocarbon-based polymer having a cation exchange group or an anion exchange group eg, imidazole, benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene,
- the hydrocarbon-based ionomer may be sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polyimide (S-PAES) Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene , Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated Sulfonated polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated poly Sulfonated polyphenylene s
- hydrocarbon ionomers may be used alone or in combination of two or more thereof.
- the first ionomer may be used with a binder such as a nonconductive compound for the purpose of further improving adhesion to the polymer electrolyte membrane.
- a binder such as a nonconductive compound for the purpose of further improving adhesion to the polymer electrolyte membrane.
- the amount of the binder used is preferably adjusted to suit the purpose of use.
- non-conductive compound examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and ethylene / tetrafluoro Ethylene / tetrafluoroethylene (ETFE), ethylene chlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, copolymer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), dode One or more selected from the group consisting of silbenzenesulfonic acid and sorbitol may be used.
- PTFE polytetrafluoroethylene
- FEP tetrafluoroethylene-hexafluoropropylene copolymer
- PFA tetrafluoroethylene-perfluoroalkyl vinyl
- the binder may be included in the catalyst layer forming composition in less than 20% by weight based on the total weight of the catalyst layer.
- the content of the binder is 20% by weight or more based on the total weight of the catalyst layer, ion conductivity may be reduced, thereby deteriorating fuel cell performance.
- the solvent may be a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and a mixture of two or more thereof.
- the hydrophilic solvent is one selected from the group consisting of alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers and amides comprising, as main chain, straight or branched saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have a functional group or more, they may include an aliphatic or aromatic cyclic compound (at least part of the main chain).
- the alcohol may be methanol, ethanol, isopropyl alcohol, ethoxy ethanol, n-propyl alcohol, butyl alcohol, 1,2-propanediol, 1-pentanol, 1,5-pentanediol, or 1,9- Nonanediol
- ketone can be heptanone or octanon
- aldehyde can be benzaldehyde or tolualdehyde
- ester can be methylpentanoate or ethyl-2-hydroxypropanoate
- carboxylic acid It may be pentanoic acid or heptanoic acid
- the ether may be methoxybenzene or dimethoxypropane
- the amide may be propanamide, butylamide, or dimethylacetamide.
- the organic solvent may be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran, and mixtures of two or more thereof.
- the solvent may be contained in 80 to 95% by weight based on the total weight of the coating composition, if less than 80% by weight of the solid content is too high may cause dispersion problems due to cracks and high viscosity when forming the catalyst layer, 95 weight Exceeding% may be detrimental to catalyst bed activity.
- the catalyst and the first ionomer are added to the solvent and then dispersed so that at least a portion of the first ionomer is coated on the surface of the catalyst.
- any method can be used as long as it can coat the first ionomer on the surface of the catalyst, and for example, any one selected from the group consisting of a homogeneous mixer, a high pressure disperser, a ball mill, a powder mixer, and a resonant acoustic mixer. You can use one.
- a second ionomer is added to the dispersion mixture to prepare a coating composition.
- precipitation of the second ionomer may be better performed in the following drying process, and an ionomer rich layer adjacent to the polymer electrolyte membrane may be formed.
- the ionomer rich layer may be better formed.
- the second ionomer may be the same as or different from the first ionomer.
- specific examples of the second ionomer are the same as those described in the first ionomer, and thus, repeated descriptions thereof will be omitted.
- the first ionomer and the second ionomer may have different equivalent weights (EW).
- each of the first and second ionomers has an equivalent of 600 g / eq to 1100 g / eq, and the equivalent of the first ionomer may be different from the equivalent of the second ionomer.
- the first and second ionomers may have different side chain lengths.
- each of the first and second ionomers may be a fluorinated polymer including a fluorinated carbon skeleton and a side chain represented by Formula 1, wherein the first and second ionomers are represented by 'a in Formula 1 May differ from each other in terms of side chain length, defined as the sum of 'and' b '(ie, a + b).
- R f is each independently selected from the group consisting of F, Cl, and a C 1 to 10 perfluorinated alkyl group, it may be specifically F.
- X is an ion exchange group, specifically, a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, and a sulfonamide group may be a cation exchange group selected from the group, and more specifically, a sulfonic acid group or It may be a carboxyl group.
- A may be an integer of 0 to 3
- b may be an integer of 1 to 5.
- the first ionomer is a first hydrocarbon-based ionomer
- the second ionomer is a second hydrocarbon-based ionomer
- the first hydrocarbon-based ionomer is the second It may be different from hydrocarbon-based ionomers.
- sulfonated polyarylethersulfone may be used as the first ionomer
- sulfonated polyetheretherketone may be used as the second ionomer.
- one of the first and second ionomers may be a fluorine-based ionomer, and the other may be a hydrocarbon-based ionomer.
- the size of the second ionomer may be 10 nm to 1500 nm, specifically 30 nm to 800 nm. If the size of the second ionomer is out of the range, it may be difficult to prevent mass transfer or to control the location of formation of the ionomer rich layer.
- the shape of the second ionomer may be any one selected from the group consisting of a spherical shape, an ellipsoid shape, a rod shape, and a coil shape, and may be more preferably an ellipsoid shape or a bar shape in order to improve mass transfer efficiency and improve ion conductivity. Can be.
- the size and shape of the second ionomer can be adjusted by changing the composition, temperature and dispersion method of the solvent.
- the coating composition may be prepared by adding a functional additive with the second ionomer to the dispersion mixture.
- the coating composition may be prepared by adding a mixture of the second ionomer and the functional additive to the dispersion mixture.
- the functional additive may increase hydrogen permeability or oxygen permeability of the membrane-electrode assembly.
- the functional additive is any one selected from the group consisting of radical scavenger, ionic conductor, oxygen evolution reaction (OER) catalyst, gas barrier particles and mixtures thereof. It can be one.
- the radical scavenger may be uniformly dispersed in the ionomer rich layer (more specifically, in the second ionomer in the ionomer rich layer) to contribute to stabilization of the membrane-electrode assembly.
- the radical scavenger is a ion of a transition metal that can decompose hydrogen peroxide into water and oxygen to inhibit the generation of hydroxy radicals, specifically cerium, tungsten, ruthenium, palladium, silver, rhodium, cerium, zirconium, yttrium, manganese. , Molybdenum, lead, vanadium, titanium, and the like, and the metals themselves, their ionic forms, their oxide forms, their salt forms, or other forms are also possible.
- the ion conductor may be excellent in dispersibility to improve hydrogen ion conductivity of the membrane electrode assembly.
- the ion conductor may be a hydrophilic inorganic additive, specifically, SnO 2 , silica, alumina, zirconia, mica, zeolite, phosphotungstic acid It may be any one selected from the group consisting of silicon tungstic acid, zirconium hydrogen phosphate, and mixtures thereof.
- the ion conductor is a hydrophilic inorganic ion additive, it is possible to prevent the phenomenon of deteriorating hydrogen ion conductivity at high temperature and low humidity conditions.
- the oxygen generation reaction catalyst may be atomized / uniformly dispersed in the catalyst layer to improve durability of the catalyst layer through an effective water decomposition reaction.
- the oxygen generating reaction catalyst may include an active material of a platinum-based metal and / or a non-platinum-based metal.
- the platinum-based metal may be platinum or a platinum alloy.
- the platinum alloy is Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ni, Pt-Ru-W, Pt-Ru-Ni, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Ru-Ir-Ni, Pt-Co, Pt-Co-Mn, Pt-Co-Ni, Pt-Co-Fe, Pt-Co- Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt- Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir and the like
- the non-platinum-based metal may be gold, palladium, rhodium, iridium, ruthenium, osmium, or non-platinum alloys.
- the non-platinum alloy is Ir-Fe, Ir-Ru, Ir-Os, Co-Fe, Co-Ru, Co-Os, Rh-Fe, Rh-Ru, Rh-Os, Ir-Ru-Fe, Ir-Ru -Os, Rh-Ru-Fe, Rh-Ru-Os, Fe-N, Fe-P, Co-N, and the like, but are not limited to these.
- the oxygen generating reaction catalyst may use a metal itself (black), or may be used by supporting the catalyst metal on a carrier.
- the carrier may be a carbon-based carrier or a porous inorganic oxide carrier such as zirconia, alumina, titania, silica, ceria, ITO, WO, SnO 2 , ZnO 2, or the like.
- the carbon-based carrier is graphite, carbon fiber, carbon sheet, carbon black, acetylene black, Ketjen black, fullerene (fullerene), carbon nanotubes, carbon nanofibers, carbon nanowires, carbon nanoballs, carbon nanohorns, carbon nano cages , Carbon nano rings, ordered nano- / meso-porous carbon, carbon aerogels, mesoporous carbon, graphene, stabilized carbon, activated carbon, and mixtures thereof It can be any one.
- the gas barrier particles include clay, montmorillonite, saponite, laponite, mica, fluorohetorite, kaolinite, vermiculite. And it may be any one selected from the group consisting of a mixture thereof.
- the functional additive may have an average particle size of 1 nm to 100 nm.
- the functional additive may be nanoparticles having an average particle diameter of 2 nm to 35 nm.
- the size of the functional additive is within the range, it may be uniformly dispersed in the second ionomer to implement the membrane-electrode assembly without a large increase in resistance.
- the average particle diameter of the functional additive is out of the range, agglomeration phenomenon between the functional additives or dispersibility decrease and phase separation phenomenon may occur in the second ionomer.
- the mixture added to the dispersion mixture is 0.1 wt% to 30 wt%, more specifically 0.5, based on the total weight of the mixture. It may comprise from 15% by weight to 15% by weight.
- the content of the functional additive is within the range, the functional additive may be uniformly included without phase separation in the second ionomer.
- the content of the functional additive is less than 0.1% by weight it may be difficult to achieve the effect expected from the additive, when the content of more than 30% by weight lowered the hydrogen ion conductivity at high temperature and low humidity conditions due to the lowering of the dispersibility of the functional additive , An increase in ionic resistance, an increase in charge transfer resistance, an increase in mass transfer resistance and a non-uniform water decomposition reaction, resulting in the output of the membrane-electrode assembly Performance and durability improvement effects may not be achieved.
- the coating composition may include 20 wt% to 40 wt% of the first ionomer and 0.2 wt% to 7 wt% of the second ionomer with respect to the total weight of the coating composition, and more specifically, 25 It may comprise from 1% to 35% by weight of the first ionomer and 0.5% to 4% by weight of the second ionomer. If the content of the first ionomer is less than 20% by weight, poor ion transfer may reduce the performance of the membrane-electrode assembly, and when the content of the first ionomer exceeds 40% by weight, the delivery of reactants and products may be hindered.
- the content of the second ionomer is less than 0.2% by weight based on the total weight of the composition for forming the catalyst layer, there may be little improvement effect through the introduction of the second ionomer, and when it exceeds 5% by weight, it may interfere with mass transfer. have.
- the first ionomer remaining in the dispersion mixture without being coated on the surface of the catalyst may be removed.
- Preparing the coating composition may further include dispersing the second ionomer added to the dispersion mixture.
- Dispersion of the second ionomer may be performed using any one selected from the group consisting of, for example, a homogeneous mixer, a high pressure disperser, a ball mill, a powder mixer, and a resonance sound mixer.
- the second ionomer since the binding force between the first ionomer and the second ionomer is weak compared to the binding force between the catalyst and the first ionomer, the second ionomer phase coated on or on the catalyst surface. Less likely to be coated on On the other hand, if the second ionomer is added to the solvent together with the catalyst and the first ionomer, there is a high possibility that a thick ionomer layer including the first and second ionomers is formed on the surface of the catalyst (ie, the ionomer Since the rich layer is less likely to be formed), the performance of the membrane-electrode assembly may not be expected, and the thick ionomer layer may reduce the activity of the catalyst, resulting in deterioration of the membrane-electrode assembly.
- the second ionomer added to the dispersion mixture may be dispersed at a temperature of 15 ° C to 80 ° C, specifically 15 ° C to 70 ° C. When the dispersion temperature exceeds 70 °C dispersibility may be reduced by the bonding between the ionomer.
- Means such as a cooling jacket can be used to control the rising temperature during the dispersion process.
- the coating composition is directly coated on at least one side of the polymer electrolyte membrane.
- the polymer electrolyte membrane includes an ion conductor.
- the ion conductor may be a cation conductor having a cation exchange group capable of carrying cations such as protons, or an anion conductor having an anion exchange group capable of carrying anions such as hydroxy ions, carbonate ions or bicarbonate ions.
- the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
- the cationic conductor includes (i) a fluorine-based polymer including fluorine in a main chain, including the cation exchange group; (ii) benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyether Hydrocarbon-based polymers such as mid, polycarbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; (iii) partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymers or polystyrene-graft-polytetrafluoroethylene copolymers; Or (iv) sulfone imides.
- the side chain may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof.
- the cationic conductor may be (i) a copolymer of tetrafluoroethylene containing a poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), sulfonic acid group and fluorovinyl ether, defluorinated Fluorinated polymers containing sulfide polyether ketone or a mixture of two or more thereof; (ii) sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, alcohol Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated poly
- the anionic conductors are polymers capable of transporting anions such as hydroxy ions, carbonate ions or bicarbonate ions, and the anionic conductors are commercially available in the form of hydroxides or halides (generally chlorides). It can be used for industrial water purification, metal separation or catalytic processes.
- a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
- the polymer electrolyte membrane may be in the form of a reinforcing membrane in which the ion conductor fills pores of a porous support such as a fluorine-based porous support such as e-PTFE or a porous nanoweb support prepared by electrospinning or the like.
- a porous support such as a fluorine-based porous support such as e-PTFE or a porous nanoweb support prepared by electrospinning or the like.
- the manufacturing method of the membrane-electrode assembly can directly reduce the process time and material cost of coating on the decal film by using a direct coating method, and does not require a transfer process, so the processability and economic feasibility It can be secured.
- the other side may form the catalyst layer by CCS (Catalyst Coated Substrate) method or other CCM (Catalyst Coated Membrane) method other than direct coating.
- CCS Catalyst Coated Substrate
- CCM Catalyst Coated Membrane
- the coating composition in which the catalyst is dispersed may be continuously or intermittently transferred to a coater, and then uniformly coated on the polymer electrolyte membrane.
- the coating composition is continuously transferred to a coater such as a die, gravure, bar, comma coater, and the like, followed by slot die coating, bar coating, comma coating, and screen.
- a coater such as a die, gravure, bar, comma coater, and the like
- slot die coating, bar coating, comma coating, and screen The method may be applied by printing, spray coating, doctor blade coating, brush coating, or the like.
- the free ionomer can be used to improve interfacial binding between the polymer electrolyte membrane and the catalyst layer, improve mass transfer and performance, and increase hydrogen permeation resistance or oxygen permeability.
- the method of manufacturing the membrane-electrode assembly may further include drying the coating composition coated on at least one side of the polymer electrolyte membrane.
- an ionomer ie, 'free ionomer'
- the free ionomer may include at least one of the first and second ionomers, for example, only the second ionomer or both the first and second ionomers.
- drying steps such as hot air drying, vacuum drying, and infrared ray (IR) drying, may be applied for the drying step.
- the temperature and time for drying may be appropriately adjusted depending on the boiling point (BP) of the solvent used.
- the drying step may be performed for 0.3 to 30 minutes at 80 °C to 120 °C. If the drying temperature is less than 80 °C or the drying time is less than 0.3 minutes may not form a sufficiently dried catalyst layer, if the drying temperature exceeds 120 °C or the drying time exceeds 30 minutes process time is Unnecessarily long, a crack etc. may arise in the said catalyst layer.
- FIG. 1 is a diagram schematically showing a state before a coating composition is coated on a polymer electrolyte membrane and then dried, according to an embodiment of the present invention
- FIG. 2 is a polymer electrolyte coating composition according to an embodiment of the present invention. It is a figure which shows typically the state after coating on a membrane and drying and forming a catalyst layer.
- the coating composition 31 coated on the polymer electrolyte membrane 50 is a catalyst 2 coated with a coated ionomer (eg, the first ionomer) 3. And a free ionomer (eg the second ionomer) 4 are dispersed on the solvent 6.
- the catalyst (2) is supported on the carrier (1), the coating ionomer (3) is coated on both the carrier (1) and the catalyst (2), the free ionomer (4) It is distributed homogeneously on the solvent 6.
- the free ionomer 4 is settled toward the polymer electrolyte membrane 50 to form an ionomer rich layer 5.
- the free ionomer 4 may be located not only in the ionomer rich layer 5, but also between the catalysts 2 on the ionomer rich layer 5.
- the free ionomer 4 is any one selected from the group consisting of the first ionomer not coated on the surface of the catalyst (2), the second ionomer not coated on the surface of the catalyst (2) and both It includes. That is, the free ionomer 4 includes all of the ionomers that are not coated on the surface of the catalyst 2.
- the catalyst layer 30 formed through the drying process of the coating composition 31 is a catalyst (2), a coated ionomer (coated ionomer) (3) on the surface of the catalyst (2), and the A free ionomer 4 which is not coated on the surface of the catalyst 2.
- the catalyst layer 30 comprises a first layer in contact with the polymer electrolyte membrane 50 and a second layer thereon, the first layer being an ionomer rich layer 5 comprising the free ionomer 4. .
- the second layer may not contain the free ionomer 4 at all, or may contain less amount of free ionomer 4 per unit volume than the first layer, as illustrated in FIG. 2.
- the free ionomer 4 may comprise at least one of the first and second ionomers, for example, only the second ionomer or both the first and second ionomers. That is, the free ionomer 4 consists mainly of the second ionomer added to the dispersion mixture, but the first ionomer remains uncoated with the catalyst 2 before adding the second ionomer to the dispersion mixture. If not removed from the dispersion mixture, the free ionomer 4 may further comprise a first ionomer that remains uncoated with the catalyst 2.
- At least a part of the free ionomer 4 (ie, the second ionomer) is a different kind of ionomer than the coating ionomer (ie, the first ionomer) 3.
- the coating ionomer ie, the first ionomer 3.
- the ionomer rich layer 5 formed using the free ionomer 4 may improve interfacial binding between the polymer electrolyte membrane 50 and the catalyst layer 30, and improve mass transfer and performance.
- an ionomer that is not added to the catalyst or an ionomer that is not in contact with the catalyst which is a problem in the method of transferring the coating after the conventional decal film, that is, a free ionomer may be used. That is, in the decal method, since the decal film is coated on the decal film and then transferred to the polymer electrolyte membrane, the ionomer excess region by the free ionomer rises to prevent mass transfer, and a relatively small portion of the ionomer is located on the polymer electrolyte membrane side. There was a problem of poor interfacial binding.
- the free ionomer 4 is settled toward the polymer electrolyte membrane 50 to form an ionomer rich layer ( 5), the interface binding property between the catalyst layer 30 and the polymer electrolyte membrane 50 can be improved.
- the ionomer rich layer 5 may have a thickness of 30 nm to 1500 nm, specifically 50 nm to 1300 nm. When the size of the ionomer rich layer 5 is less than 30 nm, there may be no effect of improving interfacial binding or improving ion conductivity, and when the size of the ionomer rich layer 5 is greater than 1500 nm, performance may be reduced by preventing mass transfer.
- the ionomer rich layer 5 may be formed without a separate process when using the direct coating method, improves the interfacial binding between the polymer electrolyte membrane 50 and the catalyst layer 30, and improves mass transfer and performance. Can be improved.
- the catalyst layer 30 may include 0.2 wt% to 5 wt%, more specifically 0.5 wt% to 4 wt% of the free ionomer 4, based on the total weight of the catalyst layer 30. If the content of the free ionomer 4 is less than 0.2% by weight based on the total weight of the catalyst layer 30, the improvement effect may be insignificant, and when the content of the free ionomer 4 is greater than 5% by weight, mass transfer may be prevented.
- the content of the free ionomer 4 in the catalyst layer 30 may be centrifuged at 20000 rpm or more with respect to the catalyst layer 30 to which the free ionomer 4 which is not coated on the catalyst 2 is ionically coated. It can measure by separating from the catalyst (2).
- the free ionomer 4 may have a size of 10 nm to 1500 nm, more specifically 30 nm to 800 nm. If the size of the free ionomer 4 is out of the range, it may be difficult to hinder mass transfer or to adjust the production position of the ionomer rich layer 5.
- the free ionomer 4 may also exist between the catalysts 2 present on the ionomer rich layer 3 to assist in ion transfer.
- the free ionomer 4 may have any one shape selected from the group consisting of a spherical shape, an ellipsoid shape, a rod shape, and a coil shape.
- a spherical shape an ellipsoid shape
- a rod shape a rod shape
- a coil shape a shape selected from the group consisting of a spherical shape, an ellipsoid shape, a rod shape, and a coil shape.
- the free ionomer 4 has an elliptical and / or rod-shaped shape, the effect of improving mass transfer can be further improved.
- the ionomer rich layer 3 is selected from the group consisting of a radical scavenger, an ionic conductor, an oxygen evolution reaction (OER) catalyst, and gas barrier particles. It may further comprise at least one functional additive.
- the functional additive may be present in the free ionomer 4 present in the ionomer rich layer 3.
- FIG. 3 is a schematic cross-sectional view of a membrane-electrode assembly according to an embodiment of the present invention.
- the membrane-electrode assembly 100 includes a polymer electrolyte membrane 50, a first catalyst layer 30 on one surface of the polymer electrolyte membrane 50, and The first gas diffusion layer 40 on the first catalyst layer 30, the second catalyst layer 30 ′ on the other surface of the polymer electrolyte membrane 50, and the second gas diffusion layer 40 ′ on the second catalyst layer 30 ′. ).
- the membrane-electrode assembly 100 may be disposed between the first catalyst layer 30 and the first gas diffusion layer 40 and / or between the second catalyst layer 30 'and the second gas diffusion layer 40'.
- a microporous layer (not shown) including conductive fine particles such as carbon powder and carbon black to facilitate material diffusion in the first and / or second gas diffusion layers 40 and 40 '. It may be.
- any one of the first and second catalyst layers 30 and 30 functions as an anode for receiving hydrogen gas and generating hydrogen ions and electrons, and the other One receives the hydrogen ions and the electrons through the polymer electrolyte membrane 50 and an external circuit (not shown), respectively, and functions as a cathode for generating water by reducing oxygen gas supplied from the outside.
- first and second catalyst layers 30 and 30 are the same as those of the catalyst layer 30 described above with reference to FIG. 2, a repeated description thereof will be omitted.
- Porous conductive substrates may be used as the first and second gas diffusion layers 40 and 40 'so as to smoothly supply hydrogen or oxygen.
- Typical examples thereof include a carbon film, a carbon cloth, a carbon felt, or a metal cloth (a porous film composed of a metal cloth in a fibrous state or a metal film formed on a surface of a cloth formed of polymer fibers). May be used, but is not limited thereto.
- using the water repellent treatment of the first and second gas diffusion layers 40 and 40 ′ with a fluorine resin may prevent the reactant diffusion efficiency from being lowered by water generated when the fuel cell is driven. desirable.
- fluorine-based resins examples include polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated ethylene propylene ( Fluorinated ethylene propylene), polychlorotrifluoroethylene or copolymers thereof can be used.
- a fuel cell according to another embodiment of the present invention includes the membrane-electrode assembly 100.
- FIG. 4 is a schematic diagram showing the overall configuration of the fuel cell.
- the fuel cell 200 includes a fuel supply unit 210 for supplying a mixed fuel in which fuel and water are mixed, and a reforming unit for reforming the mixed fuel to generate a reformed gas including hydrogen gas ( 220, a stack 230 in which a reformed gas including hydrogen gas supplied from the reformer 220 generates an electrical energy by causing an electrochemical reaction with an oxidant, and an oxidant in the reformer 220 and the stack.
- a fuel supply unit 210 for supplying a mixed fuel in which fuel and water are mixed
- a reforming unit for reforming the mixed fuel to generate a reformed gas including hydrogen gas ( 220, a stack 230 in which a reformed gas including hydrogen gas supplied from the reformer 220 generates an electrical energy by causing an electrochemical reaction with an oxidant, and an oxidant in the reformer 220 and the stack.
- the stack 230 induces an oxidation / reduction reaction of a reforming gas including hydrogen gas supplied from the reformer 220 and an oxidant supplied from the oxidant supply unit 240 to generate a plurality of unit cells for generating electrical energy. Equipped.
- Each unit cell refers to a cell of a unit for generating electricity, wherein the membrane-electrode assembly 100 for oxidizing / reducing oxygen in an oxidant and a reformed gas including hydrogen gas and a reformed gas including hydrogen gas And a separator plate (or also called a bipolar plate, hereinafter referred to as a separator plate) for supplying an oxidant to the membrane-electrode assembly 100.
- the separator is disposed on both sides of the membrane-electrode assembly 100 at the center. At this time, the separator plates respectively located at the outermost side of the stack may be specifically referred to as end plates.
- the end plate of the separator plate, the pipe-shaped first supply pipe 231 for injecting the reformed gas containing hydrogen gas supplied from the reforming unit 220, and the pipe-shaped second for injecting oxygen gas The supply pipe 232 is provided, and the other end plate has a first discharge pipe 233 for discharging the reformed gas containing hydrogen gas remaining unreacted in the plurality of unit cells to the outside and the unit cell described above. Finally, the second discharge pipe 234 for discharging the remaining unreacted oxidant to the outside is provided.
- Tanaka commercial Pt / C catalyst 1 g was placed in a reaction vessel and wetted with water.
- 3.6 g of an amorphous first ionomer solution (10 wt%) and 40 g of an alcohol-based mixed solvent were placed in a reaction vessel, and dispersed using a homogeneous mixer and a high pressure disperser to prepare a dispersion mixture.
- the first ionomer was coated on the surface of the catalyst through the dispersion process.
- a solution (10 wt%) of a second ionomer having a spherical shape and a size of 100 to 300 nm was added, and then dispersed at room temperature (20 ° C.) using a homogeneous mixer and a high pressure disperser to coat the coating.
- the composition was prepared.
- the coating composition included 25.5 wt% of the first ionomer and 3.5 wt% of the second ionomer with respect to the total weight thereof.
- the masking film was attached after removing the protective film attached to one side of the polymer electrolyte membrane.
- the coating composition was directly applied to one surface of the polymer electrolyte membrane using a slot die with a coating thickness of 50 ⁇ m, and dried by hot air at a temperature of 90 ° C. for 3 minutes to form a first catalyst layer.
- the masking film was separated from the polymer electrolyte membrane, and the surface on which the catalyst layer was formed was protected with protective paper. Subsequently, the protective film which adhered to the other surface of the said polymer electrolyte membrane was peeled off, and the masking film was stuck.
- the coating composition was directly applied to the other surface of the polymer electrolyte membrane using a slot die at a thickness of 30 ⁇ m, and dried by hot air at a temperature of 90 ° C. for 3 minutes to form a second catalyst layer.
- the membrane-electrode assembly was obtained by removing the masking film.
- Example 2 Catalyst Layer Comprising a Free Ionomer Different from the First Ionomer
- Tanaka's commercial Pt / C catalyst was placed in a reaction vessel and wetted with water.
- 3.6 g of a first ionomer solution (10 wt%) having an equivalent weight (EW) of 1100 g / eq and 40 g of an alcohol-based mixed solvent were placed in a reaction vessel, and dispersed using a homogeneous mixer and a high pressure disperser to prepare a dispersion mixture.
- the first ionomer was coated on the surface of the catalyst through the dispersion process.
- a second ionomer solution (10 wt%) having an EW of 800 g / eq was added to the dispersion mixture, and then dispersed at room temperature (20 ° C.) using a homogeneous mixer and a high pressure disperser to prepare a coating composition.
- the coating composition included 25.5 wt% of the first ionomer and 3.5 wt% of the second ionomer with respect to the total weight thereof.
- a membrane-electrode assembly was obtained in the same manner as in Example 1, except that the coating composition thus prepared was used.
- Each of the first and second catalyst layers of the membrane-electrode assembly thus prepared includes an ionomer rich layer positioned on the side in contact with the polymer electrolyte membrane and including a free ionomer, and the thickness of the ionomer rich layer is 30 nm to 1500 nm. It was.
- Tanaka's commercial Pt / C catalyst was placed in a reaction vessel and wetted with water.
- 3.6 g of a first ionomer solution (10 wt%) having an EW of 1100 g / eq and 40 g of an alcohol-based mixed solvent were placed in a reaction vessel, and dispersed using a homogeneous mixer and a high pressure disperser to prepare a dispersion mixture.
- the first ionomer was coated on the surface of the catalyst through the dispersion process.
- a solution of a second ionomer having an EW of 800 g / eq (10% by weight) and MnO 2 , an Mn-based radical scavenger were added to the dispersion mixture, and then dispersed using a homogeneous mixer and a high pressure disperser.
- the coating composition was prepared.
- the coating composition included 25.5 wt% of the first ionomer and 3.5 wt% of the second ionomer with respect to the total weight thereof.
- a membrane-electrode assembly was obtained in the same manner as in Example 1, except that the coating composition thus prepared was used.
- Each of the first and second catalyst layers of the membrane-electrode assembly thus prepared includes an ionomer rich layer positioned on the side in contact with the polymer electrolyte membrane and including a free ionomer, and the thickness of the ionomer rich layer is 30 nm to 1500 nm. It was.
- a membrane-electrode assembly was manufactured in the same manner as in Example 1, except that the coating composition was prepared without adding the second ionomer to the dispersion mixture in Example 1.
- FIG. 5 is a scanning electron micrograph of the entire membrane-electrode assembly prepared in Example 1
- FIG. 6 is a scanning electron micrograph of the catalyst layer prepared in Example 1.
- a yellow circle indicates an ionomer rich layer.
- the catalyst layer includes an ionomer rich layer in contact with the polymer electrolyte membrane. It can be seen that the ionomer rich layer has a thickness of 30 nm to 1500 nm.
- Example 2 After coating compositions were prepared in the same manner as in Example 1, except that the amounts of the second ionomer contained in the coating composition were 8 wt%, 1 wt%, and 0.1 wt%, respectively, these coating compositions were prepared. Using the same method as in Example 1 was coated and dried on the deden film to form a catalyst layer, respectively. Subsequently, each of the catalyst layers separated from the decal film was observed with a scanning electron microscope, and the results are shown in FIGS. 7 to 9, respectively. 7 is a case where the content of the second ionomer is 8% by weight, FIG. 8 is a case where the content of the second ionomer is 1% by weight, and FIG. 9 is 0.1% by weight of the content of the second ionomer. If In FIG. 7 and FIG. 8, the yellow circle indicates the ionomer rich region.
- the content of the second ionomer is appropriately 0.2 to 7 wt%, and the ionomer-rich region when the content of the second ionomer exceeds 7 wt%. It can be seen that the performance may be degraded or the activation is slow, and when the content of the second ionomer is less than 0.2% by weight, the effect of increasing the interfacial binding force may not appear.
- Example 1 and Comparative Example 1 were subjected to several cycles under wet-dry conditions, and after the wet-dry cycle, the membranes of Example 1 and Comparative Example 1
- the cross section of the electrode assembly was observed with a scanning electron microscope, which is shown in FIGS. 10 and 11.
- 10 is a scanning electron micrograph after the performance test of the membrane-electrode assembly prepared in Example 1
- Figure 11 is a scanning electron micrograph after the performance test of the membrane-electrode assembly prepared in Comparative Example 1.
- Example 1 has better interface binding between the catalyst layer and the polymer electrolyte membrane than the membrane-electrode assembly prepared in Comparative Example 1 above. Can be. That is, it can be observed that the catalyst layer including the free ionomer shows a stable interface even after the performance test, whereas the catalyst layer not containing the free ionomer is separated from the polymer electrolyte membrane after the performance test.
- FIGS. 12 and 13 Tensile properties of the membrane-electrode assemblies prepared in Example 1 and Comparative Example 1 were evaluated, and the results are shown in FIGS. 12 and 13.
- 12 is a result of evaluating the tensile properties of the membrane-electrode assembly prepared in Example 1
- FIG. 13 is a result of evaluating the tensile properties of the membrane-electrode assembly prepared in Comparative Example 1.
- 12 and 13 the upper sample is a sample before the tensile test, the lower sample is a sample after the tensile test, and the portion discolored by the test indicates a portion where the catalyst layer is detached from the polymer electrolyte membrane.
- the catalyst layer including the free ionomer has better interfacial binding properties to the polymer electrolyte membrane than the catalyst layer not including the free ionomer. That is, the catalyst layer including the free ionomer shows a stable interface even after the tensile test, and the detachment of the catalyst layer is hardly observed, whereas the electrode without the free ionomer has the interface layer between the polymer electrolyte membrane and the catalyst layer that is separated after the tensile test. This is showing a detachment.
- the hydrodynamic size of the free ionomer was measured by the Dynamic Light Scattering (DLS) method for the catalyst layer of the membrane-electrode assembly prepared in Example 1, and the results are shown in Table 1 below.
- DLS Dynamic Light Scattering
- Sample 1 is a case containing 60% by weight of the alcohol-based mixed solvent
- Sample 2 is a case containing 90% by weight of the alcohol-based mixed solvent.
- Rh / nm (Min viscosity) Rh / nm (Max viscosity) Range / nm (Min viscosity) Range / nm (Max viscosity) Sample 1 245 122 36 18 Sample 2 97 39 21 9
- Range / nm represents the viscosity range of the solution (indicated by the 'width' on the instrument).
- the size of the free ionomer can be adjusted by controlling the type and content of the solvent.
- the shape of the free ionomer can be controlled by controlling the type and content of the solvent.
- the hydrodynamic size and shape of the free ionomer of the present invention can be seen that the content, shape, size, type of the second ionomer can be adjusted by changing the composition of the solvent and the preparation method when the second ionomer is added. .
- FIG. 14 The cross section of the membrane-electrode assembly prepared in Example 3 was observed with a scanning electron microscope, which is shown in FIG. 14.
- a yellow circle indicates an ionomer rich layer
- an upper part of the yellow circle is a catalyst layer part
- a lower part is a polymer electrolyte membrane part.
- An ionomer rich layer made of the functional free ionomer may increase hydrogen permeability and oxygen permeability of the membrane-electrode assembly.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
- Paints Or Removers (AREA)
- Catalysts (AREA)
Abstract
고분자 전해질 막과 촉매층의 계면 결착성을 향상시키고, 물질 전달 및 성능을 개선시키며, 수소 투과 내성이나 산소 투과도를 증대시킬 수 있는 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지가 개시된다. 본 발명의 제조 방법은, 용매에 촉매 및 제 1 이오노머를 첨가한 후 분산시켜 분산 혼합물을 제조하는 단계, 상기 분산 혼합물에 제 2 이오노머를 첨가하여 코팅 조성물을 제조하는 단계, 그리고 고분자 전해질 막의 적어도 일 면 상에 상기 코팅 조성물을 직접 코팅하는 단계를 포함한다.
Description
본 발명은 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것으로서, 보다 구체적으로 직접 코팅 방법을 이용하면서도 고분자 전해질 막과 촉매층 사이의 계면 결착성(interfacial binding strength)을 향상시킬 수 있는 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것이다.
연료 전지(fuel cell)는 메탄올, 에탄올, 천연기체와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다. 이러한 연료 전지의 대표적 예로는 고분자 전해질 연료 전지(Polymer Electrolyte Membrane Fuel Cell; PEMFC)를 들 수 있다. PEMFC는 차세대 에너지원으로 각광받고 있으며 특히 자동차 관련분야에서 친환경 이미지 등의 이점으로 인해 상용화를 위한 연구가 활발히 진행되고 있다.
연료 전지 시스템에 있어서, 전기를 실질적으로 발생시키는 막-전극 어셈블리(Membrane Electrode Assembly: MEA)는 수소 이온 전도성 고분자를 포함하는 고분자 전해질 막을 사이에 두고 애노드 전극(일명, '연료극' 또는 '산화 전극'이라 한다)과 캐소드 전극(일명 '공기극' 또는 '환원 전극'이라고 한다)이 위치하는 구조를 가진다.
각 전극 형성용 조성물은 촉매, 이오노머, 용매 및 첨가제로 구성되어 있고, 상기 구성 요소 중 촉매는 연료 전지의 활성 및 내구성을 결정하는 주요 인자이다. 산화극(anode) 및 환원극(cathode)에 사용되는 백금계 촉매는 비표면적이 크고 전기 전도성이 우수한 탄소 지지체에 백금 나노 입자를 담지시킨 Pt/C 촉매가 가장 널리 사용되고 있다. 그러나 Pt/C 촉매는 고가의 금속인 순수 백금을 사용하여 제조됨에 따라 촉매의 가격을 절감하는데 있어 제한되고, 환원극의 산소 환원 반응으로 인해서 백금 표면에 산소가 흡착되어 백금 산화물이 생성되면서 발생되는 과전압에 의하여 상당한 양의 에너지 손실을 발생시켜 상용화가 지연되고 있다.
한편, 연료 전지 상용화를 위하여 개발되고 있는 다양한 기술들 중, 고분자 전해질 막에 직접 전극을 코팅하는 직접 코팅 기술은 연료 전지의 상용화를 위한 새로운 MEA 제조 기술로 주목을 받고 있다. 직접 코팅 기술의 대표적인 예로는 슬롯다이 코팅, 스프레이 코팅 등의 방법이 있다.
그러나, 직접 코팅을 효과적으로 구현하기 위해서는 고분자 전해질 막을 다루는 기술과 함께 고분자 전해질 막과 전극 사이의 계면 결착력을 향상시킬 수 있는 직접 코팅용 전극 조성물 개발이 필수적이다.
본 발명의 목적은 직접 코팅 방법을 이용시 자유 이오노머를 활용해 고분자 전해질 막과 촉매층 사이의 계면 결착성을 향상시키고, 연료, 공기 및 생성된 물 등의 물질 전달 능력 및 연료전지 출력 성능을 개선시키며, 수소 투과 내성이나 산소 투과도를 증대시킬 수 있는 막-전극 어셈블리의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 막-전극 어셈블리의 제조 방법에 의하여 제조된 막-전극 어셈블리를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 막-전극 어셈블리를 포함하는 연료 전지를 제공하는 것이다.
본 발명의 일 관점에 따라, 용매에 촉매 및 제 1 이오노머를 첨가한 후 분산시켜 분산 혼합물을 제조하는 단계 - 상기 제1 이오노머의 적어도 일부는 상기 촉매의 표면 상에 코팅됨 -, 상기 분산 혼합물에 제 2 이오노머를 첨가하여 코팅 조성물을 제조하는 단계, 및 고분자 전해질 막의 적어도 일 면 상에 상기 코팅 조성물을 직접 코팅하는 단계를 포함하는 막-전극 어셈블리의 제조 방법이 제공된다.
상기 제 1 및 제2 이오노머들은 동일 또는 상이할 수 있다.
상기 제 1 및 제 2 이오노머들 각각은 600 g/eq 내지 1100 g/eq의 당량(equivalent weight, EW)을 가질 수 있되, 상기 제 1 이오노머의 당량은 상기 제 2 이오노머의 당량과 상이할 수 있다.
상기 제 1 및 제 2 이오노머들 각각은 불소화된 탄소 골격 및 하기 화학식 1로 표시되는 측쇄를 포함하는 불소화된 고분자일 수 있고, 상기 제 1 및 제 2 이오노머들은 상이한 측쇄 길이(a+b)를 가질 수 있다.
[화학식 1]
-(OCF2CFRf)a-O-(CF2)b-X
(상기 화학식 1에서, 상기 Rf는 각각 독립적으로 F, Cl 및 탄소수 1 내지 10의 과불소화된 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 상기 X는 이온 교환 그룹이고, 상기 a는 0 내지 3의 정수이고, 상기 b는 1 내지 5의 정수이다)
상기 제 1 이오노머는 제1 탄화수소계 이오노머일 수 있고, 상기 제 2 이오노머는 제2 탄화수소계 이오노머일 수 있으며, 상기 제 1 탄화수소계 이오노머는 상기 제2 탄화수소계 이오노머와 상이할 수 있다.
상기 제 1 및 제2 이오노머들 중 어느 하나는 불소계 이오노머일 수 있고 다른 하나는 탄화수소계 이오노머일 수 있다.
상기 제 2 이오노머의 크기(size)는 10 nm 내지 1500 nm일 수 있다.
상기 제 2 이오노머는 구형(spherical shape), 타원체형(ellipsoidal shape), 막대형(stick shape) 및 코일형(coil shape)으로 이루어진 군에서 선택되는 어느 하나의 형태를 가질 수 있다.
상기 코팅 조성물은, 라디칼 스캐빈저(radical scavenger), 이온 전도체(ionic conductor), 산소 발생 반응(oxygen evolution reaction, OER) 촉매, 및 가스 배리어(gas barrier) 입자로 이루어진 군에서 선택되는 적어도 하나의 기능성 첨가제를 상기 제2 이오노머와 함께 상기 분산 혼합물에 첨가함으로써 제조될 수 있다.
상기 코팅 조성물은, 상기 코팅 조성물 전체 중량에 대하여, 20 중량% 내지 40 중량%의 상기 제 1 이오노머 및 0.2 중량% 내지 7 중량%의 상기 제 2 이오노머를 포함할 수 있다.
상기 제 2 이오노머 중 적어도 일부는 상기 촉매의 표면 상에 코팅되지 않을 수 있다.
상기 코팅 조성물을 제조하는 단계는 상기 분산 혼합물에 첨가된 상기 제 2 이오노머를 분산시키는 단계를 더 포함할 수 있다.
상기 제2 이오노머는 15 ℃ 내지 80 ℃의 온도에서 분산될 수 있다.
상기 막-전극 어셈블리의 제조 방법은 상기 고분자 전해질 막의 적어도 일 면 상에 코팅된 상기 코팅 조성물을 건조하는 단계를 더 포함할 수 있고, 상기 건조 단계에서, 상기 촉매의 표면 상에 코팅되지 않은 자유 이오노머가 상기 고분자 전해질 막 쪽으로 침강하여 이오노머 리치층(ionomer-rich layer)을 형성할 수 있으며, 상기 자유 이오노머는 상기 제1 및 제2 이오노머들 중 적어도 하나를 포함할 수 있다.
본 발명의 다른 관점에 따라, 고분자 전해질 막, 및 상기 고분자 전해질 막의 적어도 일 면 상의 촉매층을 포함하되, 상기 촉매층은 촉매, 상기 촉매의 표면 상의 코팅 이오노머(coated ionomer), 및상기 촉매의 표면 상에 코팅되어 있지 않은 자유 이오노머(free ionomer)를 포함하고, 상기 촉매층은 상기 고분자 전해질 막과 접하는 제 1 층 및 그 위의 제 2 층을 포함하며, 상기 제 1 층은 상기 자유 이오노머를 포함하는 이오노머 리치층(ionomer-rich layer)인, 막-전극 어셈블리가 제공된다.
상기 제 2 층은 상기 자유 이오노머를 포함하지 않거나 상기 제 1 층보다 단위 부피당 더 적은 양의 상기 자유 이오노머를 포함할 수 있다.
상기 코팅 이오노머와 상기 자유 이오노머는 상이한 종류의 이오노머들일 수 있다.
상기 자유 이오노머는 구형, 타원체형, 막대형 및 코일형으로 이루어진 군에서 선택되는 어느 하나의 형태를 가질 수 있다.
상기 이오노머 리치층은 라디칼 스캐빈저(radical scavenger), 이온 전도체(ionic conductor), 산소 발생 반응(oxygen evolution reaction, OER) 촉매, 및 가스 배리어(gas barrier) 입자로 이루어진 군에서 선택되는 적어도 하나의 기능성 첨가제를 포함할 수 있다.
상기 이오노머 리치층의 두께는 30 nm 내지 1500 nm일 수 있다.
본 발명의 또 다른 관점에 따라, 상기 막-전극 어셈블리를 포함하는 연료 전지가 제공된다.
본 발명의 막-전극 어셈블리의 제조 방법은 직접 코팅 방법을 이용함으로써, 데칼 필름을 필요로 하지 않으므로 데칼 필름에 코팅하는 공정 시간 및 재료비를 절감할 수 있으며, 전사 공정도 필요하지 않으므로 공정성 및 경제성을 확보할 수 있다.
또한, 본 발명의 막-전극 어셈블리의 제조 방법은 상기 직접 코팅 방법을 이용시 자유 이오노머를 활용해 고분자 전해질 막과 촉매층 사이의 계면 결착성을 향상시키고, 물질 전달 및 성능을 개선시키며, 수소 투과 내성이나 산소 투과도를 증대시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 코팅 조성물이 고분자 전해질 막 상에 코팅된 후 건조되기 전의 상태를 모식적으로 나타낸 그림이다.
도 2는 본 발명의 일 실시예에 따른 코팅 조성물이 고분자 전해질 막 상에 코팅된 후 건조되어 촉매층을 형성한 후의 상태를 모식적으로 나타낸 그림이다.
도 3은 본 발명의 일 실시예에 따른 막-전극 어셈블리를 개략적으로 나타낸 단면도이다.
도 4는 본 발명의 다른 일 실시예에 따른 연료 전지의 전체적인 구성을 도시한 모식도이다.
도 5는 본 발명의 실시예 1에서 제조된 막-전극 어셈블리의 전체에 대한 주사 전자 현미경 사진이다.
도 6은 본 발명의 실시예 1에서 제조된 촉매층의 대한 주사 전자 현미경 사진이다.
도 7 내지 도 9 각각은 본 발명의 실험예 2에서 이오노머 리치층의 형성을 확인하기 위한 주사 전자 현미경 사진이다.
도 10 및 도 11 각각은 본 발명의 실험예 3에서 성능 테스트 후 막-전극 어셈블리 단면의 주사 전자 현미경 사진이다.
도 12 및 도 13 각각은 본 발명의 실험예 4에서 인장 테스트 전후의 샘플들을 보여준다.
도 14는 본 발명의 실시예 3에서 제조된 막-전극 어셈블리 단면의 주사 전자 현미경 사진이다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 특별한 언급이 없는 한, 층, 막, 영역, 판 등의 부분이 다른 부분 '위에' 있다고 할 때, 이는 다른 부분 '바로 위에' 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 발명의 일 실시예에 따른 막-전극 어셈블리의 제조 방법은 용매에 촉매 및 제 1 이오노머를 첨가한 후 분산시켜 분산 혼합물을 제조하는 단계(이때, 상기 제1 이오노머의 적어도 일부는 상기 촉매의 표면 상에 코팅됨), 상기 분산 혼합물에 제 2 이오노머를 첨가하여 코팅 조성물을 제조하는 단계, 그리고 고분자 전해질 막의 적어도 일 면 상에 상기 코팅 조성물을 직접 코팅하는 단계를 포함한다.
우선, 상기 용매에 상기 촉매 및 상기 제 1 이오노머를 첨가한 후 분산시켜 상기 분산 혼합물을 제조한다.
상기 촉매는 수소 산화반응 및/또는 산소 환원반응에 촉매로 사용될 수 있는 것은 어느 것을 사용하여도 무방하며, 바람직하게는 백금계 금속 및/또는 비백금계 금속을 사용할 수 있다.
상기 백금계 금속(platinum-based metal)으로는 백금(Pt) 및/또는 Pt-M 합금[상기 M은 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 갈륨(Ga), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 은(Ag), 금(Au), 아연(Zn), 주석(Sn), 몰리브덴(Mo), 텅스텐(W), 란탄(La) 및 로듐(Rh)으로 이루어진 군에서 선택되는 어느 하나 이상]이 사용될 수 있다.
상기 비백금계 금속(non-platinum metal)으로는 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 및 비백금 합금(non-platinum alloy)으로 이루어진 군으로부터 선택되는 하나 이상이 사용될 수 있다.
구체적으로 상기 Pt-M 합금으로는 Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ni, Pt-Ru-W, Pt-Ru-Ni, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Ru-Ir-Ni, Pt-Co, Pt-Co-Mn, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir, 또는 이들 중 2 이상의 혼합물이 사용될 수 있다.
또한, 상기 비백금 합금으로는 Ir-Fe, Ir-Ru, Ir-Os, Co-Fe, Co-Ru, Co-Os, Rh-Fe, Rh-Ru, Rh-Os, Ir-Ru-Fe, Ir-Ru-Os, Rh-Ru-Fe, Rh-Ru-Os, Fe-N, Fe-P, Co-N, 또는 이들 중 2 이상의 혼합물이 사용될 수 있다.
또한, 상기 촉매는 금속 자체(black)을 사용할 수도 있고, 촉매 금속을 담체에 담지시켜 사용할 수도 있다.
상기 담체는 (i) 탄소계 담체, (ii) 지르코니아, 알루미나, 티타니아, 실리카, 세리아 등의 다공성 무기산화물, 또는 (iii) 제올라이트일 수 있다. 상기 탄소계 담체는 흑연, 수퍼피(super P), 탄소섬유(carbon fiber), 탄소시트(carbon sheet), 카본블랙(carbon black), 케첸 블랙(Ketjen Black), 덴카 블랙(Denka black), 아세틸렌 블랙(acetylene black), 카본나노튜브(carbon nano tube, CNT), 탄소구체(carbon sphere), 탄소리본(carbon ribbon), 풀러렌(fullerene), 활성탄소, 카본 나노 파이버, 카본 나노 와이어, 카본 나노 볼, 카본 나노 혼, 카본 나노 케이지, 카본 나노 링, 규칙성 나노다공성탄소(ordered nano-/meso-porous carbon), 카본 에어로겔, 메소포러스카본(mesoporous carbon), 그래핀, 안정화 카본, 활성화 카본, 및 이들의 하나 이상의 조합에서 선택될 수 있으나, 이에 한정되는 것은 아니며, 본 기술분야에서 사용가능한 담체는 제한 없이 사용할 수 있다.
상기 촉매는 담체의 표면 위에 위치할 수도 있고, 담체의 내부 기공(pore)을 채우면서 담체 내부로 침투할 수도 있다.
상기 담체에 담지된 귀금속을 촉매로 사용하는 경우에는 시판되는 것을 사용할 수도 있고, 또는 담체에 귀금속을 담지시켜 제조하여 사용할 수도 있다. 상기 담체에 귀금속을 담지시키는 공정은 당해 분야에서 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략한다.
상기 촉매는 상기 촉매층 전체 중량에 대하여 20 중량% 내지 80 중량%가 되도록 상기 코팅 조성물에 포함될 수 있다. 상기 촉매의 함량이 상기 촉매층 전체 중량에 대하여 20 중량% 미만으로 함유될 경우에는 전극에 요구되는 촉매 활성을 만족시키지 못할 수 있고, 80 중량%를 초과할 경우에는 상기 촉매의 응집으로 활성 면적이 줄어들어 촉매 활성이 반대로 저하될 수 있다.
상기 코팅 조성물은 상기 촉매의 접착력 향상 및 수소 이온의 전달을 위하여 상기 제 1 이오노머를 포함한다. 상기 제 1 이오노머는 불소계 이오노머, 탄화수소계 이오노머, 또는 이들의 혼합물일 수 있다.
상기 불소계 이오노머는 양이온 교환 그룹 또는 음이온 교환 그룹을 갖는 (i) 주쇄에 불소를 포함하는 플루오르계 고분자, 또는 (ii) 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등과 같은 부분 불소화된 고분자이다.
상기 양이온 교환 그룹은 프로톤과 같은 양이온을 전달할 수 있는 작용기로서, 예를 들어, 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 등과 같은 산성기(acidic group)일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.
상기 음이온 교환 그룹은 하이드록시 이온, 카보네이트 이온 또는 바이카보네이트 이온과 같은 음이온을 전달할 수 있는 작용기이다.
상기 불소계 이오노머의 예들은 (i) 폴리(퍼플루오로술폰산), (ii) 폴리(퍼플루오로카르복실산), (iii) 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 및 (iv) 탈불소화된 황화 폴리에테르케톤을 포함하지만, 이들로 한정되는 것은 아니다.
상기 불소계 이오노머는 단독으로 또는 2종 이상 혼합하여 사용할 수도 있다.
상기 탄화수소계 이오노머는 양이온 교환 그룹 또는 음이온 교환 그룹을 갖는 탄화수소계 고분자(예를 들어, 이미다졸, 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠, 및 폴리페닐퀴녹살린으로 이루어진 군으로부터 선택되는 적어도 하나를 주쇄에 포함하는 탄화수소계 고분자)이다.
상기 탄화수소계 이오노머는 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 및 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone)을 포함하지만, 이들로 한정되는 것은 아니다.
상기 탄화수소계 이오노머는 단독으로 또는 2 종 이상 혼합하여 사용할 수 있다.
선택적으로(optionally), 상기 제 1 이오노머는 상기 고분자 전해질 막과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 같은 바인더와 함께 사용될 수도 있다. 상기 바인더의 사용량은 사용 목적에 적합하도록 조절하는 것이 바람직하다.
상기 비전도성 화합물로는 폴리테트라플루오로에틸렌(PTFE), 테트라플루오로에틸렌-헥사플루오르프로필렌 공중합체(FEP), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체(PFA), 에틸렌/테트라플루오로에틸렌(ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌공중합체(ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 도데실벤젠술폰산 및 소르비톨(sorbitol)로 이루어진 군에서 선택된 1 종 이상의 것이 사용될 수 있다.
상기 바인더는 상기 촉매층 전체 중량에 대하여 20 중량% 미만으로 상기 촉매층 형성용 조성물에 포함될 수 있다. 상기 바인더의 함량이 상기 촉매층 전체 중량에 대하여 20 중량% 이상일 경우에는 이온 전도도가 감소해 연료전지 성능이 저하될 수 있다.
상기 용매는 물, 친수성 용매, 유기용매 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택되는 용매일 수 있다.
상기 친수성 용매는 탄소수 1 내지 12의 직쇄상 또는 분지상의 포화 또는 불포화 탄화수소를 주쇄로서 포함하는 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 것일 수 있으며, 이들은 지방족 또는 방향족의 고리형 화합물(aliphatic or aromatic cyclic compound)을 주쇄의 최소한 일부로 포함할 수 있다. 예를 들어, 알코올은 메탄올, 에탄올, 이소프로필알코올, 에톡시 에탄올, n-프로필알코올, 부틸알코올, 1,2-프로판디올, 1-펜탄올, 1,5-펜탄디올, 또는 1,9-노난디올일 수 있고, 케톤은 헵타논 또는 옥타논일 수 있고, 알데히드는 벤즈알데하이드 또는 톨루알데하이드일 수 있고, 에스터는 메틸펜타노에이트 또는 에틸-2-하이드록시프로파노에이트일 수 있고, 카르복실산은 펜타노익산 또는 헵타노익산일 수 있고, 에테르는 메톡시벤젠 또는 다이메톡시프로판일 수 있으며, 아미드는 프로판아미드, 뷰틸아미드, 또는 디메틸아세트아마이드일 수 있다.
상기 유기용매는 N-메틸피롤리돈, 디메틸술폭사이드, 테트라하이드로퓨란, 및 이들 중 2 이상의 혼합물에서 선택할 수 있다.
상기 용매는 상기 코팅 조성물 전제 중량에 대하여 80 내지 95 중량%로 함유될 수 있으며, 80 중량% 미만일 경우에는 고형분의 함량이 너무 높아 촉매층 형성시 균열 및 고점도로 인한 분산 문제가 있을 수 있고, 95 중량%를 초과하는 경우에는 촉매층 활성에 불리할 수 있다.
상기 용매에 촉매 및 상기 제 1 이오노머를 첨가한 후 분산시킴으로써 상기 제1 이오노머의 적어도 일부가 상기 촉매의 표면 상에 코팅되도록 한다.
상기 분산 방법으로는 상기 촉매 표면에 상기 제 1 이오노머를 코팅시킬 수 있는 방법이면 어느 것이나 사용 가능하고, 예를 들면 균질혼합기, 고압분산기, 볼밀, 파우더 믹서 및 공명 음향 혼합기로 이루어진 군에서 선택되는 어느 하나를 이용할 수 있다.
다음으로, 상기 분산 혼합물에 제 2 이오노머를 첨가하여 코팅 조성물을 제조한다. 상기 분산 혼합물을 일단 준비한 후 여기에 상기 제 2 이오노머를 첨가함으로써, 하기 건조 과정에서 상기 제 2 이오노머의 침강이 더욱 잘 이루어질 수 있고, 고분자 전해질 막에 인접한 이오노머 리치층이 형성될 수 있다. 상기 제 2 이오노머의 종류, 함량, 형태 및 크기를 조절함으로써 상기 이오노머 리치층이 더욱 잘 형성되도록 할 수 있다.
상기 제 2 이오노머는 상기 제 1 이오노머와 동일 또는 상이할 수 있다. 상기 제 2 이오노머로 상기 제 1 이오노머와 동일한 물질을 사용하는 경우, 상기 제 2 이오노머의 구체적인 예시는 상기 제 1 이오노머에서 설명한 것과 동일하므로, 반복적인 설명은 생략한다.
상기 제 2 이오노머와 상기 제 1 이오노머가 상이한 일 예로서, 상기 제 1 이오노머와 상기 제 2 이오노머가 상이한 당량(equivalent weight, EW)을 가질 수 있다.
구체적으로, 상기 제 1 및 제 2 이오노머들 각각은 600 g/eq 내지 1100 g/eq의 당량을 갖되, 상기 제 1 이오노머의 당량은 상기 제 2 이오노머의 당량과 상이할 수 있다.
상기 제 2 이오노머와 상기 제 1 이오노머가 상이한 다른 예로서, 상기 제 1 및 제 2 이오노머들은 상이한 측쇄 길이를 가질 수 있다.
구체적으로, 상기 제 1 및 제2 이오노머들 각각은 불소화된 탄소 골격 및 하기 화학식 1로 표시되는 측쇄를 포함하는 불소화된 고분자일 수 있고, 이때 상기 제 1 및 제 2 이오노머들은 하기 화학식 1의 'a'와 'b'의 합(즉, a+b)으로 정의되는 측쇄 길이 면에서 서로 상이할 수 있다.
[화학식 1]
-(OCF2CFRf)a-O-(CF2)b-X
상기 화학식 1에서, 상기 Rf는 각각 독립적으로 F, Cl 및 탄소수 1 내지 10의 과불소화된 알킬기로 이루어진 군에서 선택되는 어느 하나이고, 구체적으로 F일 수 있다.
상기 X는 이온 교환 그룹이고, 구체적으로 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 및 술폰아미드기로 이루어진 군에서 선택되는 양이온 교환 그룹일 수 있고, 더욱 구체적으로 술폰산기 또는 카르복실기일 수 있다.
상기 a는 0 내지 3의 정수일 수 있고, 상기 b는 1 내지 5의 정수일 수 있다.
상기 제 2 이오노머와 상기 제 1 이오노머가 상이한 또 다른 예로서, 상기 제 1 이오노머는 제 1 탄화수소계 이오노머이고, 상기 제 2 이오노머는 제 2 탄화수소계 이오노머이고, 상기 제 1 탄화수소계 이오노머는 상기 제 2 탄화수소계 이오노머와 상이할 수 있다. 일 예로, 상기 제 1 이오노머로는 술폰화된 폴리아릴에테르술폰을 사용할 수 있고, 상기 제 2 이오노머로는 술폰화된 폴리에테르에테르케톤을 사용할 수 있다.
상기 제 2 이오노머와 상기 제 1 이오노머가 상이한 또 다른 예로서, 상기 제 1 및 제 2 이오노머들 중 어느 하나는 불소계 이오노머이고, 다른 하나는 탄화수소계 이오노머일 수 있다.
상기 제 2 이오노머의 크기(size)는 10 nm 내지 1500 nm일 수 있고, 구체적으로 30 nm 내지 800 nm일 수 있다. 상기 제 2 이오노머의 크기가 상기 범위를 벗어나는 경우 물질 전달을 방해하거나 이오노머 리치층의 생성 위치를 조절하는 것이 어려울 수 있다.
상기 제 2 이오노머의 형태는 구형, 타원체형, 막대형 및 코일형으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 물질 전달 효율을 개선하고 이온 전도도를 향상시키기 위해서 타원체형이나 막대형인 것이 보다 바람직할 수 있다.
상기 제 2 이오노머의 크기와 형태는 상기 용매의 조성, 온도 및 분산 방법을 변화시켜 조절 가능하다.
한편, 상기 코팅 조성물은, 기능성 첨가제를 상기 제 2 이오노머와 함께 상기 분산 혼합물에 첨가함으로써 제조될 수 있다. 예를 들어, 상기 제2 이오노머와 상기 기능성 첨가제의 혼합물을 상기 분산 혼합물에 첨가하여 상기 코팅 조성물을 제조할 수 있다. 상기 기능성 첨가제는 상기 막-전극 어셈블리의 수소 투과 내성이나 산소 투과도를 증대시킬 수 있다.
상기 기능성 첨가제는 라디칼 스캐빈저(radical scavenger), 이온 전도체(ionic conductor), 산소 발생 반응(oxygen evolution reaction, OER) 촉매, 가스 배리어(gas barrier) 입자 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 라디칼 스캐빈저는 상기 이오노머 리치층 내(더욱 구체적으로는, 상기 이오노머 리치층 내의 상기 제2 이오노머 내)에서 균일하게 분산되어 상기 막-전극 어셈블리의 안정화에 기여할 수 있다. 상기 라디칼 스캐빈저는 과산화수소를 물 및 산소로 분해하여 하이드록시 라디칼의 발생을 억제할 수 있는 전이 금속의 이온으로서, 구체적으로 세륨, 텅스텐, 루테늄, 팔라듐, 은, 로듐, 세륨, 지르코늄, 이트륨, 망간, 몰리브덴, 납, 바나듐, 티타늄 등을 들 수 있고, 상기 금속 자체, 이들의 이온 형태, 이들의 산화물 형태, 이들의 염 형태 또는 다른 형태인 것도 가능하다.
더욱 구체적으로, 상기 라디컬 포착제는 CeO2, MnO2, CsO2, ZrO2, Ru, Ag, RuO2, WO3, Fe3O4, CePO4, CrPO4, AlPO4, FePO4, CeF3, FeF3, Ce2(CO3)3·8H2O, Ce(CHCOO)3·H2O, CeCl3·6 H2O, Ce(NO3)6·6H2O, Ce(NH4)2(NO3)6, Ce(NH4)4(SO4)4·4H2O, Ce(CH3COCHCOCH3)3·3H2O, Fe-포르피린, Co-포르피린 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있고, 이들의 1 종 이상의 혼합물 또는 화합물을 사용할 수 있다.
상기 이온 전도체는 분산성이 우수하여 상기 막-전극 어셈블리의 수소 이온 전도성을 향상시킬 수 있다. 상기 이온 전도체는 친수성 무기 첨가제일 수 있는데, 구체적으로는 SnO2, 실리카(silica), 알루미나(alumina), 지르코니아(zirconia), 운모(mica), 제올라이트(zeolite), 포스포텅스텐산(phosphotungstic acid), 실리콘 텅스텐산(silicon tungstic acid), 지르코늄 하이드로겐 포스페이트(zirconiumhydrogen phosphate), 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다. 상기 이온 전도체는 친수성 무기 이온 첨가제로, 고온 저가습 조건에서 수소 이온 전도도 저하 현상을 방지할 수 있다.
상기 산소 발생 반응 촉매는 촉매층 내에서 미립화/균일하게 분산되어 효과적인 물 분해 반응을 통해 촉매층의 내구성을 향상시킬 수 있다. 상기 산소 발생 반응 촉매는 백금계 금속 및/또는 비백금계 금속의 활성 물질을 포함할 수 있다.
상기 백금계 금속은 백금 또는 백금 합금일 수 있다. 상기 백금 합금은 Pt-Pd, Pt-Sn, Pt-Mo, Pt-Cr, Pt-W, Pt-Ru, Pt-Ni, Pt-Ru-W, Pt-Ru-Ni, Pt-Ru-Mo, Pt-Ru-Rh-Ni, Pt-Ru-Sn-W, Pt-Ru-Ir-Ni, Pt-Co, Pt-Co-Mn, Pt-Co-Ni, Pt-Co-Fe, Pt-Co-Ir, Pt-Co-S, Pt-Co-P, Pt-Fe, Pt-Fe-Ir, Pt-Fe-S, Pt-Fe-P, Pt-Au-Co, Pt-Au-Fe, Pt-Au-Ni, Pt-Ni, Pt-Ni-Ir, Pt-Cr, Pt-Cr-Ir 등을 포함하지만 이들로 한정되는 것은 아니다.
상기 비백금계 금속은 금, 팔라듐, 로듐, 이리듐, 루테늄, 오스뮴, 또는 비백금 합금일 수 있다. 상기 비백금 합금은 Ir-Fe, Ir-Ru, Ir-Os, Co-Fe, Co-Ru, Co-Os, Rh-Fe, Rh-Ru, Rh-Os, Ir-Ru-Fe, Ir-Ru-Os, Rh-Ru-Fe, Rh-Ru-Os, Fe-N, Fe-P, Co-N 등을 포함하지만 이들로 한정되는 것은 아니다.
또한, 상기 산소 발생 반응 촉매는 금속 자체(black)을 사용할 수도 있고, 촉매 금속을 담체에 담지시켜 사용할 수도 있다. 상기 담체는 탄소계 담체 또는 지르코니아, 알루미나, 티타니아, 실리카, 세리아, ITO, WO, SnO2, ZnO2 등의 다공성 무기산화물 담체일 수 있다. 상기 탄소계 담체는 흑연, 탄소섬유, 탄소시트, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 풀러렌(fullerene), 카본나노튜브, 카본 나노 파이버, 카본 나노 와이어, 카본 나노 볼, 카본 나노 혼, 카본 나노 케이지, 카본 나노 링, 규칙성 나노다공성탄소(ordered nano-/meso-porous carbon), 카본 에어로겔, 메소포러스카본(mesoporous carbon), 그래핀, 안정화 카본, 활성화 카본, 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 가스 배리어 입자는 클레이(clay), 몬모릴로나이트(momtmorillonite), 사포나이트(saponite), 라포나이트(laponite), 마이카(mica), 플루오르헥토라이트(fluorohetorite), 카올리나이트(kaolinite), 버미큘리트(vermiculite) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 기능성 첨가제는 1 nm 내지 100 nm의 평균 입경(average particle size)을 가질 수 있다. 예를 들어, 상기 기능성 첨가제는 2 nm 내지 35 nm의 평균 입경을 갖는 나노 입자들일 수 있다. 상기 기능성 첨가제의 크기가 상기 범위 내인 경우 상기 제 2 이오노머 내에서 균일하게 분산될 수 있어 저항의 큰 증가 없이 상기 막-전극 어셈블리를 구현할 수 있다. 상기 기능성 첨가제의 평균 입경이 상기 범위를 벗어나는 경우, 상기 기능성 첨가제 간의 응집 현상 또는 상기 제 2 이오노머 내에서 분산성 저하 및 상분리 현상이 발생할 수 있다.
상기 제 2 이오노머와 상기 기능성 첨가제의 혼합물을 상기 분산 혼합물에 첨가할 때, 상기 분산 혼합물에 첨가되는 상기 혼합물은 그 전체 중량에 대하여 상기 기능성 첨가제를 0.1 중량% 내지 30 중량%, 더욱 구체적으로는 0.5 중량% 내지 15 중량%로 포함할 수 있다. 상기 기능성 첨가제의 함량이 상기 범위 내인 경우 상기 제 2 이오노머 내 상 분리 없이 균일하게 상기 기능성 첨가제를 포함할 수 있다. 상기 기능성 첨가제의 함량이 0.1 중량% 미만인 경우 상기 첨가제로부터 기대되는 효과가 달성되기 어려울 수 있고, 30 중량%를 초과하는 경우 상기 기능성 첨가제의 분산성 저하로 인해 고온 저가습 조건에서 수소 이온 전도도의 저하, 이온 저항(ionic resistance)의 증가, 전하 이동 저항(charge transfer resistance)의 증가, 물질 전달 저항(mass transfer resistance)의 증가 및 불균일한 물 분해 반응이 야기되고, 그 결과, 막-전극 어셈블리의 출력 성능 및 내구성 향상 효과를 달성하지 못할 수 있다.
상기 코팅 조성물은, 상기 코팅 조성물 전체 중량에 대하여, 20 중량% 내지 40 중량%의 상기 제 1 이오노머 및 0.2 중량% 내지 7 중량%의 상기 제 2 이오노머를 포함할 수 있고, 더욱 구체적으로는, 25 중량% 내지 35 중량%의 상기 제 1 이오노머 및 0.5 중량% 내지 4 중량%의 상기 제 2 이오노머를 포함할 수 있다. 상기 제 1 이오노머의 함량이 20 중량% 미만인 경우 이온 전달이 잘 안되어 막-전극 어셈블리의 성능이 감소할 수 있고, 40 중량%를 초과하는 경우 반응물과 생성물의 전달이 방해될 수 있다. 상기 제 2 이오노머의 함량이 상기 촉매층 형성용 조성물 전체 중량에 대하여 0.2 중량% 미만인 경우 상기 제2 이오노머의 도입을 통한 개선 효과가 별로 없을 수 있고, 5 중량%를 초과하는 경우 물질 전달을 방해할 수 있다.
선택적으로(optionally), 상기 분산 혼합물에 상기 제 2 이오노머를 첨가하기 전에, 상기 촉매의 표면 상에 코팅되지 않고 상기 분산 혼합물에 남아 있는 제 1 이오노머를 제거할 수 있다.
상기 코팅 조성물을 제조하는 단계는 상기 분산 혼합물에 첨가된 상기 제 2 이오노머를 분산시키는 단계를 더 포함할 수 있다.
상기 제 2 이오노머의 분산은, 예를 들면 균질혼합기, 고압분산기, 볼밀, 파우더 믹서 및 공명 음향 혼합기로 이루어진 군에서 선택되는 어느 하나를 이용하여 수행될 수 있다.
본 발명에 의하면, 상기 제 1 이오노머와 상기 제 2 이오노머 간의 결합력은 상기 촉매와 상기 제 1 이오노머 간의 결합력에 비해 약하기 때문에 상기 제 2 이오노머가 상기 촉매 표면 상에 또는 그 위에 코팅된 상기 제 1 이오노머 상에 코팅될 가능성이 적다. 반면, 상기 제 2 이오노머를 상기 촉매 및 상기 제 1 이오노머와 함께 상기 용매에 첨가한다면, 상기 촉매 표면에 상기 제1 및 제2 이오노머들을 포함하는 두터운 이오노머 층이 형성될 가능성이 높아져(즉, 상기 이오노머 리치층이 형성될 가능성이 적어) 막-전극 어셈블리의 성능 향상을 기대할 수 없을 뿐만 아니라 상기 두꺼운 이오노머 층으로 인하여 촉매의 활성이 감소해 막-전극 어셈블리의 성능 저하가 야기될 수 있다.
상기 분산 혼합물에 첨가된 상기 제 2 이오노머는 15 ℃ 내지 80 ℃, 구체적으로 15 ℃ 내지 70 ℃의 온도에서 분산될 수 있다. 상기 분산 온도가 70 ℃를 초과하는 경우 이오노머 간의 결합으로 분산성이 떨어질 수 있다. 상기 분산 과정 중 상승하는 온도를 제어하기 위해 냉각 자켓 등과 같은 수단을 이용할 수 있다.
다음으로, 고분자 전해질 막의 적어도 일 면 상에 상기 코팅 조성물을 직접 코팅한다.
상기 고분자 전해질 막은 이온 전도체를 포함한다. 상기 이온 전도체는 프로톤과 같은 양이온을 전달할 수 있는 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 이온 또는 바이카보네이트 이온과 같은 음이온을 전달할 수 있는 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하는, (i) 주쇄에 불소를 포함하는 플루오르계 고분자; (ii) 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; (iii) 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 또는 (iv) 술폰 이미드일 수 있다.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있다. 예를 들어, 상기 양이온 전도체는, (i) 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤, 또는 이들 중 2 이상의 혼합물을 포함하는 플루오르계 고분자; (ii) 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 또는 이들 중 2 이상의 혼합물을 포함하는 탄화수소계 고분자일 수 있으나, 이에 한정되는 것은 아니다.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 이온 또는 바이카보네이트 이온과 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.
한편, 상기 고분자 전해질 막은 e-PTFE와 같은 불소계 다공성 지지체 또는 전기 방사 등에 의하여 제조된 다공성 나노웹 지지체 등과 같은 다공성 지지체의 공극들을 상기 이온 전도체가 채우고 있는 강화막 형태일 수도 있다.
상기 고분자 전해질 막의 적어도 일 면 상에 상기 코팅 조성물을 코팅하여 코팅층을 형성한다. 이때, 상기 막-전극 어셈블리의 제조 방법은 직접 코팅 방법을 이용함으로써, 데칼 필름을 필요로 하지 않으므로 데칼 필름에 코팅하는 공정 시간 및 재료비를 절감할 수 있으며, 전사 공정도 필요하지 않으므로 공정성 및 경제성을 확보할 수 있다.
한편, 상기 고분자 전해질 막의 일면에만 상기 코팅 조성물을 직접 코팅하여 촉매층을 형성하는 경우 다른 일면에는 CCS(Catalyst Coated Substrate) 방식이나, 직접 코팅 이외의 다른 CCM(Catalyst Coated Membrane) 방식으로 촉매층을 형성할 수도 있다.
상기 코팅 조성물을 상기 고분자 전해질 막 위에 직접 코팅할 때는 상기 촉매가 분산되어 있는 코팅 조성물을 연속적 또는 간헐적으로 코터(coater)에 이송시킨 후 상기 고분자 전해질 막 상에 일정한 두께로 균일하게 도포할 수 있다.
예를 들어, 상기 코팅 조성물을 연속적으로 다이(die), 그라비아(gravure), 바(bar), 콤마 코터(comma coater) 등의 코터에 이송한 후, 슬롯다이 코팅, 바 코팅, 콤마 코팅, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드 코팅, 브러시 코팅 등의 방법을 사용하여 도포할 수 있다.
본 발명의 막-전극 어셈블리의 제조 방법에 의하면, 자유 이오노머를 활용해 고분자 전해질 막과 촉매층 사이의 계면 결착성을 향상시키고, 물질 전달 및 성능을 개선시키며, 수소 투과 내성이나 산소 투과도를 증대시킬 수 있다.
본 발명의 일 실시예에 의하면, 상기 막-전극 어셈블리의 제조 방법은 상기 고분자 전해질 막의 적어도 일 면 상에 코팅된 상기 코팅 조성물을 건조하는 단계를 더 할 수 있다. 상기 건조 단계에서, 상기 촉매의 표면 상에 코팅되어 있지 않은 이오노머(즉, '자유 이오노머')가 상기 고분자 전해질 막 쪽으로 침강하여 이오노머 리치층(ionomer-rich layer)을 형성할 수 있다. 상기 자유 이오노머는 상기 제 1 및 제 2 이오노머들 중 적어도 하나, 예를 들어, 상기 제 2 이오노머만 또는 상기 제1 및 제2 이오노머들 모두를 포함할 수 있다.
열풍 건조, 진공(Vacuum) 건조, 적외선(IR) 건조 등 다양한 건조 방식이 상기 건조 단계를 위해 적용될 수 있다. 건조를 위한 온도와 시간은 사용되는 용매의 끓는점(BP)에 따라 적절하게 조절할 수 있다. 구체적으로, 상기 건조 단계는 80 ℃ 내지 120 ℃에서 0.3 분 내지 30 분 동안 수행될 수 있다. 상기 건조 온도가 80 ℃ 미만이거나 건조 시간이 0.3 분 미만인 경우에는 충분히 건조된 촉매층을 형성하지 못할 수 있고, 상기 건조 온도가 120 ℃를 초과하거나 상기 건조 시간이 30 분을 초과하는 경우에는 공정 시간이 불필요하게 길어지고, 상기 촉매층에 균열 등이 발생할 수 있다.
도 1은 본 발명의 일 실시예에 따른 코팅 조성물이 고분자 전해질 막 상에 코팅된 후 건조되기 전의 상태를 모식적으로 나타낸 그림이고, 도 2는 본 발명의 일 실시예에 따른 코팅 조성물이 고분자 전해질 막 상에 코팅된 후 건조되어 촉매층을 형성한 후의 상태를 모식적으로 나타낸 그림이다.
상기 도 1을 참고하면, 상기 고분자 전해질 막(50) 위에 코팅된 상기 코팅 조성물(31)은 코팅 이오노머(coated ionomer)(예를 들어, 상기 제 1 이오노머)(3)로 코팅된 촉매(2)와 자유 이오노머(free ionomer)(예를 들어, 상기 제 2 이오노머)(4)가 상기 용매(6) 상에서 분산되어 있다. 이때, 상기 촉매(2)는 상기 담체(1)에 담지되어 있으며, 상기 코팅 이오노머(3)는 상기 담체(1) 및 상기 촉매(2)를 모두 코팅하고 있으며, 상기 자유 이오노머(4)는 상기 용매(6) 상에 균질하게 분포되어 있다.
상기 도 2를 참고하면, 상기 건조 과정을 거치면서 상기 자유 이오노머(4)는 상기 고분자 전해질 막(50) 쪽으로 침강하여 이오노머 리치층(5)을 형성한다. 이때, 상기 자유 이오노머(4)는 상기 이오노머 리치층(5)에만 위치하지 않고, 상기 이오노머 리치층(5) 위에 있는 상기 촉매(2)들 사이에도 위치할 수 있다. 이때, 상기 자유 이오노머(4)는 상기 촉매(2) 표면에 코팅되지 않은 상기 제 1 이오노머, 상기 촉매(2) 표면에 코팅되지 않은 상기 제 2 이오노머 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나를 포함한다. 즉, 상기 자유 이오노머(4)는 상기 촉매(2) 표면에 코팅되지 않은 이오노머를 모두 포함한다.
즉, 본 발명에 의하면, 상기 코팅 조성물(31)의 건조 과정을 거치면서 형성된 촉매층(30)은 촉매(2), 상기 촉매(2)의 표면 상의 코팅 이오노머(coated ionomer)(3), 및 상기 촉매(2)의 표면 상에 코팅되어 있지 않은 자유 이오노머(free ionomer)(4)를 포함한다. 상기 촉매층(30)은 상기 고분자 전해질 막(50)과 접하는 제 1 층 및 그 위의 제 2 층을 포함하며, 상기 제 1 층이 상기 자유 이오노머(4)를 포함하는 이오노머 리치층(5)이다.
상기 제 2 층은 상기 자유 이오노머(4)를 전혀 포함하지 않거나, 도 2에 예시된 바와 같이, 상기 제 1 층보다 단위 부피당 더 적은 양의 자유 이오노머(4)를 포함할 수 있다.
전술한 바와 같이, 상기 자유 이오노머(4)는 상기 제 1 및 제 2 이오노머들 중 적어도 하나, 예를 들어, 상기 제 2 이오노머만 또는 상기 제1 및 제2 이오노머들 모두를 포함할 수 있다. 즉, 상기 자유 이오노머(4)는 상기 분산 혼합물에 첨가된 상기 제 2 이오노머로 주로 이루어지나, 상기 분산 혼합물에 상기 제 2 이오노머를 첨가하기 전에 상기 촉매(2)에 코팅되지 않고 남아 있는 제 1 이오노머를 상기 분산 혼합물로부터 제거하지 않은 경우, 상기 자유 이오노머(4)는 상기 촉매(2)에 코팅되지 않고 남아 있는 제 1 이오노머를 더 포함할 수도 있다.
전술한 바와 같이, 본 발명의 일 실시예에 의하면, 상기 자유 이오노머(4)의 적어도 일부(즉, 제2 이오노머)는 상기 코팅 이오노머(즉, 제1 이오노머)(3)와 상이한 종류의 이오노머일 수 있다.
상기 자유 이오노머(4)를 활용해 형성되는 이오노머 리치층(5)은 고분자 전해질 막(50)과 촉매층(30) 사이의 계면 결착성을 향상시키고, 물질 전달 및 성능을 개선시킬 수 있다.
구체적으로 상기 직접 코팅을 적용하는 경우, 종래의 데칼 필름에 코팅 후 전사하는 방식에서 문제가 되었던 촉매 대비 과량 첨가된 이오노머 또는 촉매와 접촉되지 않은 이오노머, 즉 자유 이오노머를 활용할 수 있다. 즉, 데칼 방식에서는 데칼 필름에 코팅한 후 상기 고분자 전해질 막에 전사하기 때문에 상기 자유 이오노머에 의한 이오노머 과다 영역이 상부로 올라가 물질 전달을 방해하고, 상대적으로 이오노머가 적은 부분이 상기 고분자 전해질 막 쪽에 위치해 계면 결착성이 떨어지는 문제가 있었다. 그러나, 상기 직접 코팅 방식을 통해 본 발명의 코팅 조성물을 고분자 전해질 막(50) 상에 코팅하는 본 발명에 의하면, 상기 자유 이오노머(4)가 상기 고분자 전해질 막(50) 쪽으로 침강하여 이오노머 리치층(5)을 형성함에 따라, 촉매층(30)과 고분자 전해질 막(50) 사이의 계면 결착성을 향상시킬 수 있다.
또한, 데칼 방식의 경우, 촉매층 내 이오노머의 균일한 도포가 요구되기 때문에, 본 발명의 이오노머 리치층(5)을 형성하는 것은 쉽지 않다.
상기 이오노머 리치층(5)의 두께는 30 nm 내지 1500 nm, 구체적으로 50 nm 내지 1300 nm일 수 있다. 상기 이오노머 리치층(5)의 크기가 30 nm 미만인 경우 계면 결착력 향상이나 이온 전도도 개선의 효과가 없을 수 있고, 1500 nm를 초과하는 경우 물질 전달을 방해해 성능이 감소할 수 있다.
상기 이오노머 리치층(5)은 상기 직접 코팅 방법을 이용시 별도의 공정 없이도 형성될 수 있으며, 상기 고분자 전해질 막(50)과 상기 촉매층(30) 사이의 계면 결착성을 향상시키고, 물질 전달 및 성능을 개선시킬 수 있다.
상기 촉매층(30)은 상기 촉매층(30) 전체 중량에 대하여 0.2 중량% 내지 5 중량%, 더욱 구체적으로는 0.5 중량% 내지 4 중량%의 상기 자유 이오노머(4)를 포함할 수 있다. 상기 자유 이오노머(4)의 함량이 상기 촉매층(30) 전체 중량에 대하여 0.2 중량% 미만인 경우 개선 효과가 미미할 수 있고, 5 중량%를 초과하는 경우 물질 전달을 방해할 수 있다.
상기 촉매층(30) 내 상기 자유 이오노머(4)의 함량은, 상기 촉매층(30)에 대해 20000 rpm 이상의 원심 분리를 수행하여 상기 촉매(2)에 코팅되지 않은 자유 이오노머(4)를 이오노머가 코팅된 촉매(2)로부터 분리함으로써 측정할 수 있다.
상기 자유 이오노머(4)의 크기는 10 nm 내지 1500 nm, 더 구체적으로는 30 nm 내지 800 nm일 수 있다. 상기 자유 이오노머(4)의 크기가 상기 범위를 벗어나는 경우 물질 전달을 방해하거나 이오노머 리치층(5)의 생성 위치를 조절하는 것이 어려울 수 있다.
전술한 바와 같이, 상기 자유 이오노머(4)는 상기 이오노머 리치층(3) 위에 존재하는 촉매들(2) 사이에도 존재하여 이온 전달에 도움을 주는 역할을 수행할 수도 있다.
상기 자유 이오노머(4)는 구형, 타원체형, 막대형 및 코일형으로 이루어진 군에서 선택되는 어느 하나의 형태를 가질 수 있다. 특히, 상기 자유 이오노머(4)가 타원형 및/또는 막대형 형태를 가지는 경우 물질 전달을 개선하는 효과가 더욱 향상될 수 있다.
상기 이오노머 리치층(3)은 라디칼 스캐빈저(radical scavenger), 이온 전도체(ionic conductor), 산소 발생 반응(oxygen evolution reaction, OER) 촉매, 및 가스 배리어(gas barrier) 입자로로 이루어진 군에서 선택되는 적어도 하나의 기능성 첨가제를 더 포함할 수 있다. 상기 기능성 첨가제는 상기 이오노머 리치층(3)에 존재하는 상기 자유 이오노머(4) 내에 존재할 수 있다.
상기 기능성 첨가제는 막-전극 어셈블리 제조방법과 관련하여 앞에서 이미 설명한 바 있으므로 이에 대한 반복적인 설명은 생략한다.
도 3은 본 발명의 일 실시예에 따른 막-전극 어셈블리를 개략적으로 나타낸 단면도이다.
상기 도 3을 참조하여 설명하면, 본 발명의 일 실시예에 따른 막-전극 어셈블리(100)는 고분자 전해질 막(50), 상기 고분자 전해질 막(50)의 일면 상의 제1 촉매층(30), 상기 제1 촉매층(30) 상의 제1 가스 확산층(40), 상기 고분자 전해질 막(50)의 타면 상의 제2 촉매층(30'), 및 상기 제2 촉매층(30') 상의 제2 가스 확산층(40')을 포함한다. 상기 막-전극 어셈블리(100)는, 상기 제1 촉매층(30)과 상기 제1 가스 확산층(40) 사이 및/또는 상기 제2 촉매층(30')과 상기 제2 가스 확산층(40') 사이에, 상기 제1 및/또는 제2 가스 확산층(40, 40')에서의 물질 확산을 용이하게 하기 위해 탄소분말, 카본 블랙 등의 도전성 미세 입자를 포함하는 미세기공층(미도시)을 더 포함할 수도 있다.
상기 막-전극 어셈블리(100)에 있어서, 상기 제1 및 제2 촉매층들(30, 30') 중 어느 하나는 수소 가스를 전달받아 수소 이온과 전자를 생성하는 애노드(anode)로서 기능하고, 다른 하나는 상기 고분자 전해질 막(50) 및 외부 회로(미도시)를 통해 상기 수소 이온 및 상기 전자를 각각 전달받아 외부로부터 공급되는 산소 가스를 환원시켜 물을 생성하는 캐소드(cathode)로서 기능한다.
상기 제1 및 제2 촉매층들(30, 30')은 도 2를 참조하여 앞에서 설명한 촉매층(30)과 동일하므로 이에 대한 반복적인 설명은 생략한다.
상기 제1 및 제2 가스 확산층들(40, 40')로는 수소 또는 산소의 원활한 공급이 이루어질 수 있도록 다공성의 도전성 기재가 사용될 수 있다. 그 대표적인 예로 탄소 페이퍼(carbon paper), 탄소 천(carbon cloth), 탄소 펠트(carbon felt) 또는 금속천(섬유 상태의 금속천으로 구성된 다공성의 필름 또는 고분자 섬유로 형성된 천의 표면에 금속 필름이 형성된 것을 말함)이 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 제1 및 제2 가스 확산층들(40, 40')은 불소 계열 수지로 발수 처리한 것을 사용하는 것이 연료 전지의 구동시 발생되는 물에 의하여 반응물 확산 효율이 저하되는 것을 방지할 수 있어 바람직하다. 상기 불소 계열 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드알콕시비닐 에테르, 플루오리네이티드 에틸렌 프로필렌(Fluorinated ethylene propylene), 폴리클로로트리플루오로에틸렌 또는 이들의 코폴리머를 사용할 수 있다.
본 발명의 또 다른 일 실시예에 따른 연료 전지는 상기 막-전극 어셈블리(100)를 포함한다.
도 4는 상기 연료 전지의 전체적인 구성을 도시한 모식도이다.
상기 도 4를 참조하면, 상기 연료 전지(200)는 연료와 물이 혼합된 혼합 연료를 공급하는 연료 공급부(210), 상기 혼합 연료를 개질하여 수소 가스를 포함하는 개질 가스를 발생시키는 개질부(220), 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스가 산화제와 전기 화학적인 반응을 일으켜 전기 에너지를 발생시키는 스택(230), 및 산화제를 상기 개질부(220) 및 상기 스택(230)으로 공급하는 산화제 공급부(240)를 포함한다.
상기 스택(230)은 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스와 산화제 공급부(240)로부터 공급되는 산화제의 산화/환원 반응을 유도하여 전기 에너지를 발생시키는 복수의 단위 셀을 구비한다.
각각의 단위 셀은 전기를 발생시키는 단위의 셀을 의미하는 것으로서, 수소 가스를 포함하는 개질 가스와 산화제 중의 산소를 산화/환원시키는 상기 막-전극 어셈블리(100)와, 수소 가스를 포함하는 개질 가스와 산화제를 막-전극 어셈블리(100)로 공급하기 위한 분리판(또는 바이폴라 플레이트(bipolar plate)라고도 하며, 이하 '분리판'이라 칭한다)을 포함한다. 상기 분리판은 상기 막-전극 어셈블리(100)를 중심에 두고, 그 양측에 배치된다. 이 때, 상기 스택의 최외측에 각각 위치하는 분리판을 특별히 엔드 플레이트라 칭하기도 한다.
상기 분리판 중 상기 엔드 플레이트에는 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스를 주입하기 위한 파이프 형상의 제1 공급관(231)과, 산소 가스를 주입하기 위한 파이프 형상의 제2 공급관(232)이 구비되고, 다른 하나의 엔드 플레이트에는 복수의 단위 셀에서 최종적으로 미반응되고 남은 수소 가스를 포함하는 개질 가스를 외부로 배출시키기 위한 제1 배출관(233)과, 상기한 단위 셀에서 최종적으로 미반응되고 남은 산화제를 외부로 배출시키기 위한 제2 배출관(234)이 구비된다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되는 것은 아니다. 또한, 여기에 기재되지 않은 내용은 당 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것으로 그 설명을 생략한다.
[제조예: 막-전극 어셈블리의 제조]
(실시예 1: 형태 및 크기가 조절된 자유 이오노머를 포함하는 촉매층)
다나까(Tanaka)사의 상용 Pt/C 촉매 1 g을 반응 용기에 넣고 물로 적셨다. 무정형의 제 1 이오노머 용액(10 중량%) 3.6 g과 알코올계 혼합 용매 40 g을 반응 용기에 넣고, 균질혼합기 및 고압분산기를 이용하여 분산시켜 분산 혼합물을 제조하였다. 상기 분산 공정을 통해 상기 제 1 이오노머가 상기 촉매 표면에 코팅되었다.
상기 분산 혼합물에, 모양이 구형이고 크기가 100 내지 300 nm인 제 2 이오노머의 용액(10 중량%) 0.5 g을 첨가한 후, 균질혼합기 및 고압분산기를 이용하여 상온(20 ℃)에서 분산시켜 코팅 조성물을 제조하였다. 상기 코팅 조성물은 그 전체 중량에 대하여 25.5 중량%의 상기 제 1 이오노머 및 3.5 중량%의 상기 제 2 이오노머를 포함하였다.
고분자 전해질 막의 일면에 붙어있던 보호 필름을 떼어낸 후 마스킹 필름을 붙였다.
상기 코팅 조성물을 상기 고분자 전해질 막의 일면에 슬롯다이를 이용하여 50 ㎛의 코팅 두께로 직접 도포하고, 90 ℃의 온도에서 3 분 동안 열풍으로 건조함으로써 제1 촉매층을 형성하였다.
상기 마스킹 필름을 상기 고분자 전해질 막으로부터 떼어내고, 상기 촉매층이 형성된 면을 보호지로 보호하였다. 이어서, 상기 고분자 전해질 막의 타면에 붙어있던 보호 필름을 떼어낸 후 마스킹 필름을 붙였다.
상기 코팅 조성물을 상기 고분자 전해질 막의 상기 타면에 슬롯다이를 이용하여 30 ㎛ 코팅 두께로 직접 도포하고, 90 ℃의 온도에서 3 분 동안 열풍으로 건조함으로써 제2 촉매층을 형성하였다.
상기 마스킹 필름을 떼어냄으로써 막-전극 어셈블리를 얻었다.
(실시예 2: 제 1 이오노머와 상이한 자유 이오노머를 포함하는 촉매층)
다나까사의 상용 Pt/C 촉매 1 g을 반응 용기에 넣고 물로 적셨다. 당량(EW)이 1100 g/eq인 제 1 이오노머 용액(10 중량%) 3.6 g과 알코올계 혼합 용매 40 g을 반응 용기에 넣고, 균질혼합기 및 고압분산기를 이용하여 분산시켜 분산 혼합물을 제조하였다. 상기 분산 공정을 통해 상기 제 1 이오노머가 상기 촉매 표면에 코팅되었다.
상기 분산 혼합물에 EW가 800 g/eq인 제 2 이오노머의 용액(10 중량%) 0.5 g을 첨가한 후, 균질혼합기 및 고압분산기를 이용하여 상온(20 ℃)에서 분산시켜 코팅 조성물을 제조하였다. 상기 코팅 조성물은 그 전체 중량에 대하여 25.5 중량%의 상기 제 1 이오노머 및 3.5 중량%의 상기 제 2 이오노머를 포함하였다.
이렇게 제조된 코팅 조성물을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 막-전극 어셈블리를 얻었다.
이렇게 제조된 막-전극 어셈블리의 제1 및 제2 촉매층들 각각은, 상기 고분자 전해질 막과 접하는 쪽에 위치하고 자유 이오노머를 포함하는 이오노머 리치층을 포함하였으며, 상기 이오노머 리치층의 두께는 30 nm 내지 1500 nm이었다.
(실시예 3: 기능성 자유 이오노머를 포함하는 촉매층)
다나까사의 상용 Pt/C 촉매 1 g을 반응 용기에 넣고 물로 적셨다. EW가 1100 g/eq인 제 1 이오노머 용액(10 중량%) 3.6 g과 알코올계 혼합 용매 40 g을 반응 용기에 넣고, 균질혼합기 및 고압분산기를 이용하여 분산시켜 분산 혼합물을 제조하였다. 상기 분산 공정을 통해 상기 제 1 이오노머가 상기 촉매 표면에 코팅되었다.
상기 분산 혼합물에 EW가 800 g/eq인 제 2 이오노머의 용액(10 중량%) 0.5 g 및 Mn계 라디칼 스캐빈져인 MnO2를 0.03 g 첨가한 후, 균질혼합기 및 고압분산기를 이용하여 분산시켜 코팅 조성물을 제조하였다. 상기 코팅 조성물은 그 전체 중량에 대하여 25.5 중량%의 상기 제 1 이오노머 및 3.5 중량%의 상기 제 2 이오노머를 포함하였다.
이렇게 제조된 코팅 조성물을 이용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 막-전극 어셈블리를 얻었다.
이렇게 제조된 막-전극 어셈블리의 제1 및 제2 촉매층들 각각은, 상기 고분자 전해질 막과 접하는 쪽에 위치하고 자유 이오노머를 포함하는 이오노머 리치층을 포함하였으며, 상기 이오노머 리치층의 두께는 30 nm 내지 1500 nm이었다.
(비교예 1)
상기 실시예 1에서 상기 제 2 이오노머를 상기 분산 혼합물에 첨가하지 않고 코팅 조성물을 제조하였다는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 막-전극 어셈블리를 제조하였다.
[실험예 1: 이오노머 리치층의 형성 확인]
상기 실시예 1에서 제조된 막-전극 어셈블리의 단면을 주사 전자 현미경으로 관찰하였고, 이를 도 5 및 도 6에 나타내었다. 상기 도 5는 상기 실시예 1에서 제조된 막-전극 어셈블리의 전체에 대한 주사 전자 현미경 사진이고, 상기 도 6은 상기 실시예 1에서 제조된 촉매층의 대한 주사 전자 현미경 사진이다. 상기 도 5에서 노란색 원은 이오노머 리치층을 표시한 것이다.
상기 도 5 및 도 6을 참고하면, 상기 촉매층은 상기 고분자 전해질 막과 접하는 쪽에 이오노머 리치층을 포함하는 것을 확인할 수 있다. 상기 이오노머 리치층은 두께가 30 nm 내지 1500 nm인 것을 확인할 수 있다.
[실험예 2: 제 2 이오노머의 함량에 따른 이오노머 리치층의 형성 확인]
상기 코팅 조성물에 함유되는 상기 제 2 이오노머의 함량이 각각 8 중량%, 1 중량% 및 0.1 중량%이었다는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 코팅 조성물들을 각각 제조한 후, 이들 코팅 조성물들을 이용하여 상기 실시예 1에서와 같은 방법으로 데캍 필름에 코팅 및 건조하여 촉매층들을 각각 형성하였다. 이어서, 상기 데칼 필름에서 떼어낸 상기 촉매층들 각각을 주사 전자 현미경으로 관찰하였고, 그 결과를 각각 도 7 내지 도 9에 나타내었다. 상기 도 7은 상기 제 2 이오노머의 함량이 8 중량%인 경우이고, 상기 도 8은 상기 제 2 이오노머의 함량이 1 중량%인 경우이고, 상기 도 9는 상기 제 2 이오노머의 함량이 0.1 중량%인 경우이다. 상기 도 7 및 도 8에서 노란색 원은 이오노머 리치 영역을 표시한 것이다.
상기 도 7 내지 도 9를 참고하면, 상기 제 2 이오노머의 함량은 0.2 중량% 내지 7 중량%가 적당하며, 상기 제 2 이오노머의 함량이 7 중량%를 초과하는 경우 이오노머 리치(Ionomer-rich) 영역이 많아져 성능이 떨어지거나 활성화가 느려질 수 있고, 제 2 이오노머의 함량이 0.2 중량% 미만인 경우 계면 결착력이 증대된 효과가 나타나지 않을 수 있음을 알 수 있다.
[실험예 3: 막-전극 어셈블리의 성능 테스트를 통한 계면 결착성 평가]
상기 실시예 1 및 비교예 1에서 제조된 막-전극 어셈블리에 대하여 웨트-드라이(Wet-Dry) 조건에서 수회 싸이클을 진행하였고, 상기 웨트-드라이 싸이클 후, 상기 실시예 1 및 비교예 1의 막-전극 어셈블리의 단면을 주사 전자 현미경으로 관찰하였고, 이를 도 10 및 도 11에 나타내었다. 상기 도 10는 상기 실시예 1 에서 제조된 막-전극 어셈블리의 성능 테스트 후 주사 전자 현미경 사진이고, 상기 도 11은 상기 비교예 1 에서 제조된 막-전극 어셈블리의 성능 테스트 후 주사 전자 현미경 사진이다.
상기 도 10 및 도 11을 참고하면, 상기 실시예 1 에서 제조된 막-전극 어셈블리는 상기 비교예 1 에서 제조된 막-전극 어셈블리에 비하여 촉매층과 고분자 전해질 막 사이의 계면 결착성이 더 우수함을 확인할 수 있다. 즉, 상기 자유 이오노머를 포함하는 촉매층은 성능 테스트 후에도 안정적인 계면을 보이는 반면 상기 자유 이오노머를 포함하지 않는 촉매층은 성능 테스트 후 고분자 전해질 막으로부터 분리된 것을 관찰할 수 있다.
[실험예 4: 막-전극 어셈블리의 인장 테스트를 통한 계면 결착성 평가]
상기 실시예 1 및 비교예 1에서 제조된 막-전극 어셈블리에 대하여 인장 물성을 평가하였고, 그 결과를 도 12 및 도 13에 나타내었다. 상기 도 12는 상기 실시예 1에서 제조된 막-전극 어셈블리에 대한 인장 물성을 평가한 결과이고, 상기 도 13은 상기 비교예 1에서 제조된 막-전극 어셈블리에 대한 인장 물성을 평가한 결과이다. 상기 도 12 및 도 13 각각에서 위 샘플은 인장 테스트 전의 샘플이고, 아래 샘플은 인장 테스트 후의 샘플이며, 테스트에 의해 변색된 부분은 촉매층이 고분자 전해질 막에서 탈리된 부분을 나타낸다.
상기 도 12 및 도 13을 참고하면, 상기 자유 이오노머를 포함하는 촉매층은 자유 이오노머를 포함하지 않는 촉매층에 비하여 고분자 전해질 막에 대해 더 우수한 계면 결착성을 가짐을 확인할 수 있다. 즉, 상기 자유 이오노머를 포함하는 촉매층은 인장 테스트 후에도 안정적인 계면을 보이며 촉매층의 탈리가 거의 관찰되지 않는 반면, 상기 자유 이오노머를 포함하지 않는 전극은 인장 테스트 후에 고분자 전해질 막과 촉매층 사이의 계면이 떨어져 촉매층이 탈리되는 양상을 보이고 있다.
[실험예 5: 자유 이오노머의 크기 관찰]
상기 실시예 1에서 제조된 막-전극 어셈블리의 촉매층에 대하여 Dynamic Light Scattering(DLS) 방법으로 자유 이오노머의 Hydrodynamic 크기를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
하기 표 1에서 Sample 1은 알코올계 혼합 용매를 60 중량% 포함한 경우이고, Sample 2는 알코올계 혼합 용매를 90 중량% 포함한 경우이다.
Rh/nm(Min viscosity) | Rh/nm(Max viscosity) | Range/nm(Min viscosity) | Range/nm(Max viscosity) | |
Sample 1 | 245 | 122 | 36 | 18 |
Sample 2 | 97 | 39 | 21 | 9 |
상기 표 1에 나타난 바와 같이, 용액에 포함되는 알코올계 용매의 함량이 높을수록 그리고 상기 용액의 점도가 높을수록 자유 이오노머의 Hydrodynamic 크기(Rh/nm)가 작아짐을 확인할 수 있었다. Range/nm는 용액의 점도 범위(장비에는 'width'로 표시됨)를 나타낸다.
위 실험으로부터, 상기 용매의 종류 및 함량 조절을 통해 상기 자유 이오노머의 크기를 조절할 수 있음을 알 수 있다. 또한, 상기 용매의 종류 및 함량 조절을 통해 상기 자유 이오노머의 모양도 조절 가능함이 여러 논문들 및 보고서들을 통해 소개된 바 있다. 결국, 본 발명의 상기 자유 이오노머의 Hydrodynamic 크기 및 모양은 상기 제 2 이오노머의 첨가시 상기 제 2 이오노머의 함량, 모양, 크기, 종류를 용매의 조성, 제조법의 변경을 통해 조절할 수 있음을 알 수 있다.
[실험예 6: 이오노머 리치층의 크기 및 모양 관찰]
상기 실시예 3에서 제조된 막-전극 어셈블리의 단면을 주사 전자 현미경으로 관찰하였고, 이를 도 14에 나타내었다. 상기 도 14에서 노란색 원은 이오노머 리치층을 표시한 것이고, 상기 노란색 원의 윗 부분은 촉매층 부분이고, 아랫 부분은 고분자 전해질 막 부분이다.
도 14를 참고하면, 상기 Mn계 라디칼 스캐빈져인 MnO2를 포함하는 기능성 자유 이오노머로 이루어진 이오노머 리치층이 상기 고분자 전해질 막과 접하는 쪽에 형성된 것을 확인할 수 있다.
상기 기능성 자유 이오노머로 이루어진 이오노머 리치층은 상기 막-전극 어셈블리의 수소 투과 내성 및 산소 투과도를 증대시킬 수 있다.
Claims (21)
- 용매에 촉매 및 제 1 이오노머를 첨가한 후 분산시켜 분산 혼합물을 제조하는 단계 - 상기 제 1 이오노머의 적어도 일부는 상기 촉매의 표면 상에 코팅됨 -;상기 분산 혼합물에 제 2 이오노머를 첨가하여 코팅 조성물을 제조하는 단계; 및고분자 전해질 막의 적어도 일 면 상에 상기 코팅 조성물을 직접 코팅하는 단계를 포함하는 막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 제 1 및 제 2 이오노머들은 동일 또는 상이한,막-전극 어셈블리의 제조 방법.
- 제 2 항에 있어서,상기 제 1 및 제 2 이오노머들 각각은 600 g/eq 내지 1100 g/eq의 당량(equivalent weight, EW)을 갖되,상기 제 1 이오노머의 당량은 상기 제 2 이오노머의 당량과 상이한,막-전극 어셈블리의 제조 방법.
- 제 2 항에 있어서,상기 제 1 및 제 2 이오노머들 각각은 불소화된 탄소 골격 및 하기 화학식 1로 표시되는 측쇄를 포함하는 불소화된 고분자이고,상기 제 1 및 제 2 이오노머들은 상이한 측쇄 길이(a+b)를 갖는,막-전극 어셈블리의 제조 방법.[화학식 1]-(OCF2CFRf)a-O-(CF2)b-X(상기 화학식 1에서,상기 Rf는 각각 독립적으로 F, Cl 및 탄소수 1 내지 10의 과불소화된 알킬기로 이루어진 군에서 선택되는 어느 하나이고,상기 X는 이온 교환 그룹이고,상기 a는 0 내지 3의 정수이고,상기 b는 1 내지 5의 정수이다)
- 제 2 항에 있어서,상기 제 1 이오노머는 제 1 탄화수소계 이오노머이고,상기 제 2 이오노머는 제 2 탄화수소계 이오노머이며,상기 제 1 탄화수소계 이오노머는 상기 제 2 탄화수소계 이오노머와 상이한,막-전극 어셈블리의 제조 방법.
- 제 2 항에 있어서,상기 제 1 및 제 2 이오노머들 중 어느 하나는 불소계 이오노머이고 다른 하나는 탄화수소계 이오노머인,막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 제 2 이오노머의 크기(size)는 10 nm 내지 1500 nm인 것인 막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 제 2 이오노머는 구형(spherical shape), 타원체형(ellipsoidal shape), 막대형(stick shape) 및 코일형(coil shape)으로 이루어진 군에서 선택되는 어느 하나의 형태를 갖는,막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 코팅 조성물은, 라디칼 스캐빈저(radical scavenger), 이온 전도체(ionic conductor), 산소 발생 반응(oxygen evolution reaction, OER) 촉매, 및 가스 배리어(gas barrier) 입자로 이루어진 군에서 선택되는 적어도 하나의 기능성 첨가제를 상기 제 2 이오노머와 함께 상기 분산 혼합물에 첨가함으로써 제조되는,막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 코팅 조성물은, 상기 코팅 조성물 전체 중량에 대하여, 20 중량% 내지 40 중량%의 상기 제 1 이오노머 및 0.2 중량% 내지 7 중량%의 상기 제 2 이오노머를 포함하는,막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 제 2 이오노머 중 적어도 일부는 상기 촉매의 표면 상에 코팅되지 않는,막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 코팅 조성물을 제조하는 단계는 상기 분산 혼합물에 첨가된 상기 제 2 이오노머를 분산시키는 단계를 더 포함하는,막-전극 어셈블리의 제조 방법.
- 제 12 항에 있어서,상기 제 2 이오노머는 15 ℃ 내지 80 ℃의 온도에서 분산되는,막-전극 어셈블리의 제조 방법.
- 제 1 항에 있어서,상기 고분자 전해질 막의 적어도 일 면 상에 코팅된 상기 코팅 조성물을 건조하는 단계를 더 포함하고,상기 건조 단계에서, 상기 촉매의 표면 상에 코팅되지 않은 자유 이오노머가 상기 고분자 전해질 막 쪽으로 침강하여 이오노머 리치층(ionomer-rich layer)을 형성하며,상기 자유 이오노머는 상기 제 1 및 제 2 이오노머들 중 적어도 하나를 포함하는,막-전극 어셈블리의 제조 방법.
- 고분자 전해질 막; 및상기 고분자 전해질 막의 적어도 일 면 상의 촉매층을 포함하되,상기 촉매층은,촉매;상기 촉매의 표면 상의 코팅 이오노머(coated ionomer); 및상기 촉매의 표면 상에 코팅되어 있지 않은 자유 이오노머(free ionomer)를 포함하고,상기 촉매층은 상기 고분자 전해질 막과 접하는 제 1 층 및 그 위의 제 2 층을 포함하며,상기 제 1 층은 상기 자유 이오노머를 포함하는 이오노머 리치층(ionomer-rich layer)인,막-전극 어셈블리.
- 제 15 항에 있어서,상기 제 2 층은 상기 자유 이오노머를 포함하지 않거나 상기 제 1 층보다 단위 부피당 더 적은 양의 상기 자유 이오노머를 포함하는,막-전극 어셈블리.
- 제 15 항에 있어서,상기 코팅 이오노머와 상기 자유 이오노머는 상이한 종류의 이오노머들인,막-전극 어셈블리.
- 제 15 항에 있어서,상기 자유 이오노머는 구형, 타원체형, 막대형 및 코일형으로 이루어진 군에서 선택되는 어느 하나의 형태를 갖는,막-전극 어셈블리.
- 제 15 항에 있어서,상기 이오노머 리치층은 라디칼 스캐빈저(radical scavenger), 이온 전도체(ionic conductor), 산소 발생 반응(oxygen evolution reaction, OER) 촉매, 및 가스 배리어(gas barrier) 입자로 이루어진 군에서 선택되는 적어도 하나의 기능성 첨가제를 더 포함하는,막-전극 어셈블리.
- 제 15 항에 있어서,상기 이오노머 리치층의 두께는 30 nm 내지 1500 nm인,막-전극 어셈블리.
- 제 15 항에 따른 막-전극 어셈블리를 포함하는 연료 전지.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/048,238 US11563218B2 (en) | 2018-06-26 | 2019-06-17 | Manufacturing method of membrane electrode assembly, membrane electrode assembly manufactured thereby, and fuel cell comprising membrane electrode assembly |
JP2020565923A JP7085648B2 (ja) | 2018-06-26 | 2019-06-17 | 膜-電極アセンブリーの製造方法、これによって製造された膜-電極アセンブリー及び前記膜-電極アセンブリーを含む燃料電池 |
EP19827287.4A EP3817113A4 (en) | 2018-06-26 | 2019-06-17 | METHOD OF MANUFACTURING A DIAPHRAGM ELECTRODE ASSEMBLY, DIAPHRAGM ELECTRODE ASSEMBLY MANUFACTURED THEREFORE AND FUEL CELL WITH DIAPHRAGM ELECTRODE ASSEMBLY |
CN201980029313.0A CN112042025B (zh) | 2018-06-26 | 2019-06-17 | 膜电极组件的制造方法、由此制造的膜电极组件和包括膜电极组件的燃料电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0073072 | 2018-06-26 | ||
KR20180073072 | 2018-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020004848A1 true WO2020004848A1 (ko) | 2020-01-02 |
Family
ID=68987258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/007261 WO2020004848A1 (ko) | 2018-06-26 | 2019-06-17 | 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11563218B2 (ko) |
EP (1) | EP3817113A4 (ko) |
JP (1) | JP7085648B2 (ko) |
KR (1) | KR102407693B1 (ko) |
CN (1) | CN112042025B (ko) |
TW (1) | TWI726339B (ko) |
WO (1) | WO2020004848A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3828971A1 (en) * | 2019-11-26 | 2021-06-02 | Hyundai Motor Company | Catalyst slurry for fuel cells and method for manufacturing the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210013431A (ko) | 2019-07-25 | 2021-02-04 | 현대자동차주식회사 | 연료전지용 촉매 복합체, 이의 제조방법, 촉매 복합체를 포함하는 전해질막 및 이의 제조방법 |
KR20220049690A (ko) * | 2020-10-15 | 2022-04-22 | 코오롱인더스트리 주식회사 | 우수한 성능과 높은 내구성의 두 가지 요구들을 모두 만족시킬 수 있는 막-전극 어셈블리 및 그것을 포함하는 연료전지 |
CN112563518B (zh) * | 2020-12-11 | 2021-08-31 | 鸿基创能科技(广州)有限公司 | 制备高稳定性燃料电池催化剂涂布浆料的方法 |
US20220190353A1 (en) * | 2020-12-11 | 2022-06-16 | Sinohykey Technology Guangzhou Co. Ltd. | Method for Preparing Highly Stable Catalyst Coating Slurry for Fuel Cells |
KR20220097006A (ko) * | 2020-12-31 | 2022-07-07 | 코오롱인더스트리 주식회사 | 막-전극 어셈블리 및 이를 포함하는 연료 전지 |
KR20220138987A (ko) * | 2021-04-07 | 2022-10-14 | 코오롱인더스트리 주식회사 | 연료전지용 촉매층, 그의 제조방법, 막-전극 어셈블리, 그의 제조방법 및 연료전지 |
CN114373951A (zh) * | 2021-12-13 | 2022-04-19 | 同济大学 | 一种高固含量高分散性质子交换膜燃料电池催化剂墨水及其制备方法 |
KR20240011562A (ko) * | 2022-07-19 | 2024-01-26 | 코오롱인더스트리 주식회사 | 막-전극 어셈블리 및 이를 포함하는 연료전지 |
CN118531445B (zh) * | 2024-07-24 | 2024-09-20 | 山东赛克赛斯氢能源有限公司 | 失活电解水膜电极的修复装置、修复系统及修复方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007317658A (ja) * | 2006-05-15 | 2007-12-06 | Gm Global Technology Operations Inc | 膜電極アッセンブリの性能を最適化するための制御パラメータ |
JP2011222192A (ja) * | 2010-04-06 | 2011-11-04 | Toyota Motor Corp | 燃料電池用電極およびその製造方法 |
US20130157169A1 (en) * | 2010-08-23 | 2013-06-20 | Utc Power Corporation | Mixed-ionomer electrode |
JP2013134877A (ja) * | 2011-12-26 | 2013-07-08 | Toyota Motor Corp | 燃料電池とその製造方法 |
WO2018064623A1 (en) * | 2016-09-30 | 2018-04-05 | Ballard Power Systems Inc. | Cathode electrode design for electrochemical fuel cells |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0536418A (ja) | 1991-03-13 | 1993-02-12 | Fuji Electric Co Ltd | 固体高分子電解質型燃料電池およびその製造方法 |
KR100647296B1 (ko) | 2004-11-16 | 2006-11-23 | 삼성에스디아이 주식회사 | 금속 촉매 및 이를 포함한 전극을 채용한 연료전지 |
KR101229597B1 (ko) | 2007-11-19 | 2013-02-04 | 주식회사 엘지화학 | 연료전지용 막전극 접합체 및 그 제조방법과 이를 포함하는연료전지 |
US9093685B2 (en) | 2009-01-20 | 2015-07-28 | Los Alamos National Security, Llc | Methods of making membrane electrode assemblies |
JP4655167B2 (ja) | 2009-06-29 | 2011-03-23 | 凸版印刷株式会社 | 燃料電池用電極触媒層の製造方法 |
JP5821468B2 (ja) | 2011-09-26 | 2015-11-24 | 日産自動車株式会社 | 触媒インクの調製方法 |
WO2013064640A1 (en) | 2011-11-04 | 2013-05-10 | Solvicore Gmbh & Co. Kg | Method for the preparation of catalyst-coated membranes |
KR20140126734A (ko) * | 2012-03-29 | 2014-10-31 | 코오롱인더스트리 주식회사 | 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리 |
WO2013162499A1 (en) | 2012-04-23 | 2013-10-31 | United Technologies Corporation | Method for dispersing particles in perfluorinated polymer ionomer |
EP2842620A1 (en) | 2013-08-26 | 2015-03-04 | Agfa-Gevaert | A method for preparing a composite membrane |
CA2872682A1 (en) | 2014-11-28 | 2016-05-28 | Daimler Ag | Membrane electrode assembly for a fuel cell, method for preparing the membrane electrode assembly, fuel cell system and vehicle |
KR20160120078A (ko) * | 2015-04-07 | 2016-10-17 | 삼성에스디아이 주식회사 | 연료전지용 고분자 전해질 막 및 이를 포함하는 연료전지용 막-전극 어셈블리 |
KR20180036212A (ko) * | 2016-09-30 | 2018-04-09 | 코오롱인더스트리 주식회사 | 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 |
-
2019
- 2019-06-17 JP JP2020565923A patent/JP7085648B2/ja active Active
- 2019-06-17 EP EP19827287.4A patent/EP3817113A4/en active Pending
- 2019-06-17 KR KR1020190071590A patent/KR102407693B1/ko active IP Right Grant
- 2019-06-17 US US17/048,238 patent/US11563218B2/en active Active
- 2019-06-17 CN CN201980029313.0A patent/CN112042025B/zh active Active
- 2019-06-17 WO PCT/KR2019/007261 patent/WO2020004848A1/ko unknown
- 2019-06-25 TW TW108122213A patent/TWI726339B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007317658A (ja) * | 2006-05-15 | 2007-12-06 | Gm Global Technology Operations Inc | 膜電極アッセンブリの性能を最適化するための制御パラメータ |
JP2011222192A (ja) * | 2010-04-06 | 2011-11-04 | Toyota Motor Corp | 燃料電池用電極およびその製造方法 |
US20130157169A1 (en) * | 2010-08-23 | 2013-06-20 | Utc Power Corporation | Mixed-ionomer electrode |
JP2013134877A (ja) * | 2011-12-26 | 2013-07-08 | Toyota Motor Corp | 燃料電池とその製造方法 |
WO2018064623A1 (en) * | 2016-09-30 | 2018-04-05 | Ballard Power Systems Inc. | Cathode electrode design for electrochemical fuel cells |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3828971A1 (en) * | 2019-11-26 | 2021-06-02 | Hyundai Motor Company | Catalyst slurry for fuel cells and method for manufacturing the same |
US11362341B2 (en) | 2019-11-26 | 2022-06-14 | Hyundai Motor Company | Catalyst slurry for fuel cells and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN112042025A (zh) | 2020-12-04 |
US20210159510A1 (en) | 2021-05-27 |
US11563218B2 (en) | 2023-01-24 |
EP3817113A1 (en) | 2021-05-05 |
CN112042025B (zh) | 2023-09-15 |
KR20200001492A (ko) | 2020-01-06 |
JP2021524987A (ja) | 2021-09-16 |
EP3817113A4 (en) | 2022-03-16 |
TWI726339B (zh) | 2021-05-01 |
TW202002374A (zh) | 2020-01-01 |
KR102407693B1 (ko) | 2022-06-10 |
JP7085648B2 (ja) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020004848A1 (ko) | 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지 | |
CN109417180B (zh) | 膜电极组件及其制备方法和包括该膜电极组件的燃料电池 | |
KR102246525B1 (ko) | 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지 | |
WO2019066534A2 (ko) | 라디칼 스케빈져, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 그리고 이를 포함하는 연료 전지 | |
WO2018124645A1 (ko) | 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 | |
US8039414B2 (en) | Method for preparing metal catalyst and electrode | |
WO2018062769A1 (ko) | 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지 | |
WO2020138800A1 (ko) | 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지 | |
WO2020138799A1 (ko) | 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지 | |
JP2017533084A (ja) | 触媒 | |
WO2018124764A1 (ko) | 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지 | |
WO2018236119A1 (ko) | 유기 관능성 금속 산화물을 포함하는 전극, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 및 상기 막-전극 어셈블리를 포함하는 연료 전지 | |
WO2017116113A2 (ko) | 전극과 전극의 제조방법, 그리고 이를 포함하는 연료전지 | |
WO2019132281A1 (ko) | 촉매, 이의 제조 방법, 이를 포함하는 전극, 막-전극 어셈블리 및 연료 전지 | |
WO2022145771A1 (ko) | 연료전지용 촉매층, 이의 제조 방법, 이를 포함하는 막-전극 접합체 및 연료전지 | |
WO2022145748A1 (ko) | 막-전극 어셈블리 및 이를 포함하는 연료 전지 | |
WO2017171328A1 (ko) | 고분자 전해질 연료 전지용 나노구조 전극 및 이의 제조 방법 | |
WO2023101310A1 (ko) | 연료전지용 강화복합막, 이의 제조방법, 및 이를 포함하는 연료전지용 막-전극 어셈블리 | |
WO2017188793A1 (ko) | 연료전지용 막-전극 어셈블리 | |
KR101351392B1 (ko) | 연료 전지용 전극, 및 이를 포함하는 막-전극 어셈블리 및 연료 전지 시스템 | |
KR20190136252A (ko) | 연료전지 전극 촉매층 형성용 촉매 잉크 및 이의 제조 방법 | |
WO2024172348A1 (ko) | 연료 전지용 전극, 막-전극 어셈블리, 및 이의 제조 방법 | |
WO2022216138A1 (ko) | 연료전지용 촉매층, 그의 제조방법, 막-전극 어셈블리, 그의 제조방법 및 연료전지 | |
WO2019004763A1 (ko) | 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지 | |
WO2019039631A1 (ko) | 웹구조의 전극촉매층과 이를 이용한 전기화학 셀용 막전극접합체 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19827287 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020565923 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019827287 Country of ref document: EP Effective date: 20210126 |