WO2018124645A1 - 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 - Google Patents

전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 Download PDF

Info

Publication number
WO2018124645A1
WO2018124645A1 PCT/KR2017/015301 KR2017015301W WO2018124645A1 WO 2018124645 A1 WO2018124645 A1 WO 2018124645A1 KR 2017015301 W KR2017015301 W KR 2017015301W WO 2018124645 A1 WO2018124645 A1 WO 2018124645A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionomer
electrode
catalyst
carbon structure
coated
Prior art date
Application number
PCT/KR2017/015301
Other languages
English (en)
French (fr)
Inventor
김정호
김형수
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160181590A external-priority patent/KR102189064B1/ko
Priority claimed from KR1020170000025A external-priority patent/KR102175008B1/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP17887671.0A priority Critical patent/EP3536664B1/en
Priority to JP2019521674A priority patent/JP6895517B2/ja
Priority to CN201780066307.3A priority patent/CN109890752A/zh
Priority to US16/343,522 priority patent/US11283093B2/en
Publication of WO2018124645A1 publication Critical patent/WO2018124645A1/ko
Priority to US17/592,595 priority patent/US11557782B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4892Polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrode, an electrode produced thereby, a membrane-electrode assembly including the electrode, and a fuel cell including the membrane-electrode assembly, wherein the surface of the catalyst is coated with an ionomer at a nano-thickness.
  • the present invention relates to a method for manufacturing an electrode capable of increasing the number of electrodes, an electrode manufactured thereby, a membrane-electrode assembly including the electrode, and a fuel cell including the membrane-electrode assembly.
  • the present invention relates to a method for producing an ionomer-coated carbon structure, and to a carbon structure coated with the ionomer produced thereby, by coating the ionomer on the surface of the carbon structure in nano-thickness, dispersibility of the carbon structure, etc. Increased to facilitate mixing, increase dispersion stability, uniform distribution of ionomers on the surface of the carbon structure, increase the utilization rate of the carbon structure and ionomer to improve various performances, and increase the coupling efficiency of the carbon structure and ionomer
  • the present invention relates to a method for producing an ionomer-coated carbon structure, and to an ionomer-coated carbon structure prepared thereby.
  • a fuel cell is a battery having a power generation system that directly converts chemical reaction energy such as oxidation / reduction reaction of hydrogen and oxygen contained in hydrocarbon-based fuel materials such as methanol, ethanol and natural gas into electrical energy.
  • chemical reaction energy such as oxidation / reduction reaction of hydrogen and oxygen contained in hydrocarbon-based fuel materials such as methanol, ethanol and natural gas
  • hydrocarbon-based fuel materials such as methanol, ethanol and natural gas
  • This fuel cell has a merit that it can produce a wide range of output by stacking by stacking unit cells, and has attracted attention as a small and portable portable power source because it shows an energy density of 4 to 10 times compared to a small lithium battery. have.
  • a stack that substantially generates electricity in a fuel cell is made up of several to dozens of unit cells consisting of a membrane-electrode assembly (MEA) and a separator (also called a bipolar plate).
  • MEA membrane-electrode assembly
  • separator also called a bipolar plate
  • the membrane-electrode assembly has a structure in which an anode (Anode, or fuel electrode) and a cathode (Cathode, or air electrode) are formed on both sides of an electrolyte membrane.
  • Fuel cells may be classified into alkali electrolyte fuel cells and polymer electrolyte fuel cells (PEMFCs) according to the state and type of electrolyte.
  • PEMFCs polymer electrolyte fuel cells
  • polymer electrolyte fuel cells may have a low operating temperature of less than 100 ° C.
  • polymer electrolyte fuel cells include hydrogen exchange gas fuel cells (Proton Exchange Membrane Fuel Cell, PEMFC), and direct methanol fuel cell (DMFC) using liquid methanol as fuel. Etc. can be mentioned.
  • the electrode of the fuel cell is composed of a catalyst and an ionomer, the bonding and dispersity therebetween will greatly affect the performance and durability of the fuel cell.
  • An object of the present invention is to coat the ionomer nano-thickness on the surface of the catalyst, to increase the dispersibility of the catalyst, etc. to facilitate mixing, to evenly distribute the ionomer on the catalyst surface, thereby increasing the utilization rate of the catalyst and ionomer It is to provide a method for producing an electrode that can improve various performances, increase the coupling efficiency of the catalyst and the ionomer and increase durability.
  • Another object of the present invention is to provide an electrode produced by the method for producing the electrode.
  • Still another object of the present invention is to provide a membrane-electrode assembly including the electrode.
  • Another object of the present invention is to coat the ionomer on the surface of the carbon structure to a nano-thickness, thereby increasing the dispersibility of the carbon structure and the like to facilitate mixing, increase the dispersion stability, evenly distributed ionomer on the surface of the carbon structure It is to provide a method for producing an ionomer-coated carbon structure that can increase the utilization of the carbon structure and the ionomer to improve various performances, increase the coupling efficiency of the carbon structure and the ionomer to increase the durability.
  • Still another object of the present invention is to provide an ionomer-coated carbon structure prepared by the method for producing an ionomer-coated carbon structure.
  • preparing a composition for forming an electrode comprising a catalyst and an ionomer by applying a low-frequency acoustic energy (low-frequency acoustic energy) to the composition for forming the electrode by resonant mixing (resonant vibratory mixing) It provides a method for producing an electrode comprising coating the ionomer on the surface of the catalyst, and preparing an electrode by coating the composition for forming the electrode.
  • a low-frequency acoustic energy low-frequency acoustic energy
  • resonant mixing resonant vibratory mixing
  • the low frequency acoustic energy may have a frequency of 10 to 100 Hz.
  • the resonance mixing may be performed by applying an acceleration of 10 to 100 G to the composition for forming an electrode including the catalyst and the ionomer.
  • the resonance mixing may be performed for 30 seconds to 30 minutes.
  • the electrode forming composition may further include a solvent.
  • the present invention comprises a catalyst and ionomer, the ionomer provides an electrode that is coated with a thickness of 5 nm or less on the surface of the catalyst.
  • the ionomer may be coated on the surface of the catalyst by resonant vibratory mixing by applying low-frequency acoustic energy to the composition for forming an electrode including the catalyst and the ionomer.
  • the ionomer coated with a thickness of 5 nm or less on the surface of the catalyst may be 55 wt% to 95 wt% with respect to the total weight of the ionomer.
  • the ionomer that is not coated on the surface of the catalyst and aggregated may be 0 wt% to 45 wt% with respect to the total weight of the ionomer.
  • the catalyst may include catalyst metal particles alone or catalyst metal particles supported on a carrier.
  • a weight ratio (I / C ratio) of the ionomer to the carrier represented by Equation 1 may be 0.75 to 1.6.
  • an anode electrode and a cathode electrode which are located opposite to each other, and an ion exchange membrane positioned between the anode electrode and the cathode electrode, the anode electrode, the cathode electrode and both Any one selected from the group consisting of provides a membrane-electrode assembly comprising the electrode.
  • a fuel cell comprising the membrane-electrode assembly.
  • preparing a mixture comprising a carbon structure and an ionomer by applying low-frequency acoustic energy to the mixture (resonant vibratory mixing) It provides a method for producing an ionomer-coated carbon structure comprising the step of coating the ionomer on the surface of the carbon structure.
  • the carbon structure may include carbon nanotubes, carbon nanowires, graphene, graphene oxide, carbon black, and nanostructured carbon. It may be any one selected from the group consisting of porous carbon and mixtures thereof.
  • the low frequency acoustic energy may have a frequency of 10 to 100 Hz.
  • the resonance mixing may be performed by applying an acceleration of 10 to 100 G to the vessel containing the mixture of the carbon structure and the ionomer under the frequency.
  • the resonance mixing may be performed for 30 seconds to 30 minutes.
  • the mixture may further comprise a solvent.
  • a carbon structure (carbon structure) and ionomer wherein the ionomer is coated on the surface of the carbon structure to a thickness of 5 nm or less to provide an ionomer-coated carbon structure do.
  • the carbon structure is in the group consisting of carbon nano tube (carbon nano tube), carbon nano wire (carbon nano wire), graphene (graphene), graphene oxide (graphene oxide), carbon black (carbon black) and mixtures thereof Can be selected.
  • the ionomer may be coated on the surface of the carbon structure by resonant vibratory mixing by applying low-frequency acoustic energy to the carbon structure and the mixture including the ionomer.
  • An ionomer coated with a thickness of 5 nm or less on the surface of the carbon structure may be 60 wt% to 100 wt% with respect to the total weight of the ionomer.
  • the ionomer that is not coated on the surface of the carbon structure and aggregated may be 0 wt% to 40 wt% based on the total weight of the ionomer.
  • a weight ratio (I / C ratio) of the ionomer to the carbon structure represented by Equation 2 may be 0.75 to 1.6.
  • the dispersibility of the catalyst and the like is increased to facilitate mixing, and the ionomer is uniformly distributed on the catalyst surface, thereby increasing the utilization rate of the catalyst and the ionomer to improve the performance
  • the durability can be increased by increasing the coupling efficiency of the catalyst and the ionomer.
  • the present invention by coating the ionomer nano-thickness on the surface of the carbon structure, to increase the dispersibility of the carbon structure to facilitate mixing, to increase the dispersion stability, to uniformly distribute the ionomer on the surface of the carbon structure,
  • the utilization rate of the carbon structure and the ionomer may be increased to improve various performances, and the coupling efficiency of the carbon structure and the ionomer may be increased to increase durability.
  • FIG. 1 is a schematic diagram showing a process in which an ionomer is coated on a catalyst surface.
  • FIG. 2 is a schematic cross-sectional view of a membrane-electrode assembly according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the overall configuration of a fuel cell according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing a process in which the ionomer is coated on the surface of the carbon structure.
  • TEM 5 and 6 are transmission electron microscope (TEM) photographs of the electrodes prepared in Example 1-1 and Comparative Example 1-1 of the present invention, respectively.
  • Example 7 is a graph showing the results of performance evaluation of the membrane-electrode assembly prepared in Example 1-1 and Comparative Example 1-1 of the present invention.
  • Example 8 is a transmission electron microscope (TEM) photograph of the ionomer-coated carbon structure prepared in Example 2-1 of the present invention.
  • TEM 9 is a transmission electron microscope (TEM) photograph of the carbon structure in which the ionomer prepared in Comparative Example 2-1 of the present invention is mixed.
  • a method of manufacturing an electrode includes preparing a composition for forming an electrode including a catalyst and an ionomer, and applying a low-frequency acoustic energy to the composition for forming the electrode to thereby resonant mixture. vibratory mixing) to coat the ionomer on the surface of the catalyst, and to prepare the electrode by coating the composition for forming an electrode.
  • composition for electrode formation containing a catalyst and an ionomer is manufactured.
  • the catalyst may be any of those that can be used as a catalyst for hydrogen oxidation and oxygen reduction, and preferably a platinum-based metal is used.
  • the platinum-based metal is platinum (Pt), palladium (Pd), ruthenium (Ru), iridium (Ir), osmium (Os), platinum-M alloys (the M is palladium (Pd), ruthenium (Ru), iridium ( Ir), osmium (Os), gallium (Ga), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper ( Cu, silver (Ag), gold (Au), zinc (Zn), tin (Sn), molybdenum (Mo), tungsten (W), lanthanum (La) and rhodium (Rh) It may include one selected from the group consisting of) and a combination thereof, and more preferably, a combination of two or more metals selected from the platinum-based catalyst metal group may be used, but is not limited thereto. Platinum-based catalyst metals usable in the art can be used
  • the catalyst may be a metal itself (black), or may be used by supporting the catalyst metal on a carrier.
  • the carrier may be selected from carbon-based carriers, porous inorganic oxides such as zirconia, alumina, titania, silica, ceria, zeolite, and the like.
  • the carbon-based carrier is a super P, carbon fiber, carbon sheet, carbon black, Ketjen Black, acetylene black, carbon nanotube (carbon nano tube, CNT), carbon sphere (carbon sphere), carbon ribbon (carbon ribbon), fullerene (fullerene), activated carbon and one or more combinations thereof, but is not limited thereto.
  • Carriers usable in can be used without limitation.
  • the catalytic metal particles may be located on the surface of the carrier, or may penetrate into the carrier while filling the internal pores of the carrier.
  • the noble metal supported on the carrier When using the noble metal supported on the carrier as a catalyst, a commercially available commercially available one may be used, or may be prepared by using a noble metal supported on the carrier.
  • the process of supporting the noble metal on the carrier is well known in the art, and thus the detailed description thereof will be easily understood by those skilled in the art.
  • the catalyst metal particles may be contained in an amount of 20% to 80% by weight based on the total weight of the catalyst, and when contained in less than 20% by weight, there may be a problem of deterioration of activity. Aggregation of the catalyst metal particles may reduce the active area, which may in turn lower the catalytic activity.
  • the catalyst may be contained in an amount of 50% by weight to 80% by weight with respect to the total weight of the electrode, when less than 50% by weight may have a problem of deterioration of activity due to the lack of a catalyst, when it exceeds 80% by weight
  • the lack of ionomers can be detrimental to ion conduction.
  • the ionomer may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
  • the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
  • the cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
  • the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof.
  • Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, sulfonated poly Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated polyether ketone polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone
  • the cation conductor may also replace H with Na, K, Li, Cs or tetrabutylammonium in the cation exchange group at the side chain end.
  • H when H is replaced with Na, NaOH is substituted during the preparation of the catalyst composition, and when tetrabutylammonium is substituted, tetrabutylammonium hydroxide is used, and K, Li, or Cs is also appropriate.
  • Substitutions may be used. Since the substitution method is well known in the art, detailed description thereof will be omitted.
  • the cationic conductor can be used in the form of a single substance or a mixture, and can also be optionally used with a nonconductive compound for the purpose of further improving adhesion to the ion exchange membrane. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
  • non-conductive compound examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and ethylene / tetrafluoro Ethylene / tetrafluoroethylene (ETFE), ethylene chlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, copolymer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), dode
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene / tetrafluoro Ethylene / te
  • the anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
  • a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
  • ionomer examples include nafion, aquibion and the like.
  • the ionomer may be included in an amount of 20 wt% to 50 wt% with respect to the total weight of the electrode. If the content of the ionomer is less than 20% by weight, the generated ions may not be easily transferred. If the amount of the ionomer is more than 50% by weight, the active area may be difficult to supply and react with hydrogen or oxygen (air) due to insufficient porosity. This can be reduced.
  • the electrode forming composition may be prepared by specifically adding the catalyst to the ionomer or by adding the ionomer to the catalyst, and after the addition, the electrode forming composition does not need to be mixed, but the resonance mixing is performed. It is also possible to mix by a general method before. In this case, the general mixing method may be any one or more of the dispersion method selected from ultrasonic dispersion, stirring, three roll mill, ball mill, planetary stirring, high pressure dispersion, and mixing thereof.
  • the electrode forming composition may further include a solvent together with the catalyst and the ionomer.
  • the electrode forming composition may add the catalyst to the solvent to prepare a catalyst solution, and then add the ionomer to the catalyst solution. It may be prepared by adding, the ionomer may be added to the solvent to prepare an ionomer solution, and then the catalyst may be added to the ionomer solution, or the catalyst solution and the ionomer solution may be mixed.
  • the solvent may be a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and one or more mixtures thereof.
  • the hydrophilic solvent is one selected from the group consisting of alcohols, ketones, aldehydes, carbonates, carboxylates, carboxylic acids, ethers, and amides containing, as main chain, linear, branched, saturated or unsaturated hydrocarbons having 1 to 12 carbon atoms. It may have a functional group or more, they may include an alicyclic or aromatic cyclo compound as at least part of the main chain.
  • alcohols include methanol, ethanol, isopropyl alcohol, ethoxy ethanol, n-propyl alcohol, butyl alcohol, 1,2-propanediol, 1-pentanol, 1.5-pentanediol, 1.9-nonanediol, and the like;
  • Ketones include heptanone, octanon and the like;
  • Aldehydes include benzaldehyde, tolualdehyde and the like; Examples of the ester include methylpentanoate, ethyl-2-hydroxypropanoate, and the like;
  • Carboxylic acids include pentanoic acid, heptanoic acid and the like;
  • Ethers include methoxybenzene, dimethoxypropane and the like;
  • Amides include propanamide, butylamide, dimethylacetamide, and the like.
  • the organic solvent may be selected from N-methylpyrrolidone, dimethyl sulfoxide, tetrahydrofuran and mixtures thereof.
  • the solvent may be contained in an amount of 80 to 95% by weight based on the total weight of the composition for forming the electrode, if less than 80% by weight of the solid content is too high may cause dispersion problems due to cracks and high viscosity during electrode coating, If it exceeds 95% by weight, it may be detrimental to electrode activity.
  • the ion forming composition is resonantly mixed to coat the ionomer on the surface of the catalyst.
  • the resonance mixing is a mixing process in which mixing resonates, and the resonance of the mixing may occur as a result of a combination of vibration and acceleration of the mixing components.
  • the resonance mixing generates a large number of powerful mixing regions having a diameter of about 50 ⁇ m, thereby eliminating dead-zones, thereby enabling uniform mixing as a whole.
  • the resonant mixing can minimize the contamination without the need for stirring, such as an impeller, can reduce the loss (Loss), the available viscosity range is 1 cP to more than 1 million cP, it can also adjust the vacuum or temperature .
  • Resodyn ® 0 people's sound mixer Resonant Acoustic Mixer, RAM
  • the inventors of the present invention have found that by using the resonance mixing, the ionomer can be coated on the surface of the catalyst with a nano-thickness of 5 nm or less and completed the present invention.
  • FIG. 1 is a schematic diagram showing a process in which the ionomer is coated on the catalyst surface.
  • the surface of the catalytic metal particles 2 supported on the carrier 1 by the resonance mixing is coated with the ionomer 3 to a nano thickness. That is, the ionomer 3 having a softer shape may be coated onto the surface of the catalytic metal particles 2 having a harder structure by using the resonance mixing.
  • the resonance mixing may be performed by applying low frequency acoustic energy.
  • the low frequency acoustic energy is a straight or spherical energy propagation through a tangible medium in the frequency region of 10 to 20000 Hz, in the present invention, in order to nano-thickly coat the ionomer on the surface of the catalyst, a frequency of 10 to 100 Hz, specifically Low frequency acoustic energy having a frequency of 50 to 70 Hz is used.
  • the resonance mixing may be performed by applying an acceleration of 10 to 100 G, specifically 40 to 100 G, to the composition for forming an electrode including the catalyst and ionomer under the frequency (where G means gravity acceleration, For example, 10 G means 10 times the acceleration of gravity.
  • the coating is not made, the performance may be degraded, if it exceeds 100 G, ionomers agglomerate or change the mixing conditions and performance reduction due to phase separation and heat generation, There may be problems such as flooding.
  • the method for applying the low frequency acoustic energy and the acceleration in the frequency domain to the composition for forming an electrode is not particularly limited in the present invention, and any method known in the art can be used.
  • the acoustic energy is supplied by periodic linear displacement of a container filling the mixture of catalyst and ionomer, using a plurality of mechanical or electron transducer arrangements for this purpose. More specifically, it includes oscillator drives that transfer vibration and acceleration to the vessel and variable elastic members such as springs.
  • the resonance acoustic mixer see US Patent Registration No. 7188993 and US Patent Publication No. 2010-0294113.
  • the resonance mixing may be performed for 30 seconds to 30 minutes, and specifically for a short time for 1 minute to 10 minutes. If the resonance mixing time is less than 30 seconds, less mixing or coating properties may not be confirmed, and if it exceeds 30 minutes, the sample or composition may be changed.
  • the resonance mixing may also mix a wide range of materials such as solid-solid, solid-liquid, liquid-liquid, liquid-gas, and the like.
  • the composition for forming an electrode does not include a solvent
  • Solid-solid mixing comprising only the ionomer is possible
  • solid-liquid or liquid-liquid mixing is also possible wherein the catalyst, the ionomer, and both comprise a solvent.
  • the electrode is prepared by coating the composition for forming an electrode.
  • the preparing of the electrode is not particularly limited in the present invention, but the method may further include preparing an electrode by coating the composition for forming an electrode on a release film, and transferring the electrode to an ion exchange membrane. .
  • the composition for forming the electrode is coated on the release film
  • the composition for forming an electrode including the catalyst is continuously or intermittently transferred to a coater, and then uniformly coated on a release film with a dry thickness of 10 to 200 ⁇ m. It is desirable to.
  • the slot die is transferred to a coater such as a die, gravure, bar, comma coater, etc. continuously through a pump according to the viscosity of the electrode forming composition.
  • Coating, bar coating, comma coating, screen printing, spray coating, doctor blade coating, brush, etc. are used to uniformly apply the dry thickness of the electrode layer on the decal film to 10 to 200 ⁇ m, more preferably 10 to 100 ⁇ m. And evaporate the solvent through a drying furnace maintained at a constant temperature.
  • the activity of the catalyst may be reduced due to a small catalyst content.
  • the resistance may be increased by increasing the moving distance of ions and electrons. have.
  • the drying process may be to dry at least 12 hours at 25 °C to 90 °C. If the drying temperature is less than 25 °C and the drying time is less than 12 hours may cause a problem that can not form a sufficiently dried electrode, when drying at a temperature above 90 °C may cause cracking of the electrode. .
  • coating and drying the said composition for electrode formation is not limited to the above.
  • the method may further include cutting the dried electrode and the release film to a required size and bonding the electrode to the ion exchange membrane.
  • the ion exchange membrane includes an ion conductor.
  • the ion conductor may be a cation conductor having a cation exchange group such as proton or an anion conductor having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
  • the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
  • the cation conductor includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
  • the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain thereof.
  • Specific examples thereof include poly (perfluorosulfonic acid), poly (perfluorocarboxylic acid), copolymers of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups, defluorinated sulfide polyether ketones or mixtures thereof.
  • Fluorine-based polymer comprising; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene, Sulfonated polyquinoxaline, sulfonated polyketone, sulfonated polyphenylene oxide, sulfonated polyether sulfone, sulfonated poly Sulfonated polyether ketone, sulfonated polyphenylene sulfone, sulfonated polyphenylene sulfide, sulfonated polyphenylene sulfide sulfone, sulfon
  • the anion conductors are polymers capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion conductors are commercially available in the form of hydroxides or halides (generally chloride), the anion conductors being industrially purified (water purification), metal separation or catalytic processes.
  • a polymer doped with metal hydroxide may be generally used. Specifically, poly (ethersulphone) doped with metal hydroxide, polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) , Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
  • the ion exchange membrane may be in the form of a reinforced membrane in which the ion conductor fills pores such as a fluorine-based porous support such as e-PTFE or a porous nanoweb support prepared by electrospinning or the like.
  • a method of bonding the electrode and the ion exchange membrane may use a transfer method, and the transfer method may be performed by applying a heat press to a metal press alone or a soft press of a rubber material such as a silicon rubber material on a metal press to apply heat and pressure. hot pressing) method.
  • the transfer method may be performed under the conditions of 80 °C to 150 °C and 50 kgf / cm 2 to 200 kgf / cm 2 .
  • hot pressing at a temperature of 80 ° C. and less than 50 kgf / cm 2 transfer of the electrode on a release film may not be performed properly, and when it exceeds 150 ° C., the polymer of the ion exchange membrane may burn and There is a risk of structural deformation, and when hot pressing in a condition exceeding 200 kgf / cm 2 , the effect of pressing the electrode is greater than the transfer of the electrode may be a transfer may not be properly performed.
  • Electrode according to another embodiment of the present invention can be manufactured by the above-described electrode manufacturing method.
  • the electrode includes a catalyst and an ionomer, the ionomer is coated on the surface of the catalyst by resonant mixing by applying low frequency acoustic energy to the electrode forming composition comprising the catalyst and the ionomer, wherein the ionomer coating layer is 5 It may have a nano thickness of less than or equal to nm, specifically, a nano thickness of 0.5 to 4 nm. When the thickness of the ionomer coating layer is 5 nm or less, it is preferable in view of performance improvement of the catalyst.
  • ionomer aggregation layers having various thicknesses may be significantly reduced.
  • ionomer aggregation layers having various thicknesses are formed, but when the ionomer is coated on the surface of the catalyst using the resonance mixing, the catalyst has a thickness of 5 nm or less.
  • the ionomer layer to be coated may be formed almost uniformly over the entire area of the electrode.
  • the ionomer coated with a thickness of 5 nm or less on the surface of the catalyst may be 55 to 95 wt%, and specifically 80 to 90 wt%, based on the total weight of the ionomer.
  • the ionomer coated on the surface of the catalyst with a thickness of 5 nm or less is less than 55% by weight relative to the total weight of the ionomer, problems such as reduced performance due to uncoated parts and stability due to limited connection between catalyst and ionomer conjugates And, if it exceeds 95% by weight, the catalytic activity due to the aggregation of ionomers may be lowered.
  • the ionomer agglomeration layer composed of ionomers aggregated without coating on the catalyst surface may be 0 to 45% by weight, and specifically 10 to 20% by weight, based on the total weight of the ionomer.
  • the ionomer flocculating layer exceeds 45 wt% with respect to the total weight of the ionomer, catalytic activity due to agglomeration of the ionomer and an uncoated catalyst may be reduced.
  • An ionomer coated with a thickness of 5 nm or less on the surface of the catalyst means that the electrode is 5 nm or less when observed with a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM), and is not coated on the catalyst surface.
  • Aggregated ionomer means that when the electrode is observed by TEM or STEM, the thickness is greater than 5 nm, or the aggregated ionomer is observed by TEM, STEM or scanning electron microscope (SEM).
  • the ionomer may include ionomers coated with a thickness of 5 nm or less on the surface of the catalyst and ionomers other than the ionomers that are not coated on the surface of the catalyst and aggregated.
  • the content of the ionomer coated on the surface of the catalyst with a thickness of 5 nm or less or the content of the aggregated ionomer may be a content value measured for the entire electrode, and the TEM or STEM image on any at least five places of the electrode.
  • the content of the ionomer or the aggregated ionomer coated on the surface of the present catalyst having a thickness of 5 nm or less may be measured and then calculated by calculating their average value.
  • the ionomer-coated catalyst is detected by fluorine (F) when analyzed by energy dispersive X-ray spectroscopy (EDS) under TEM or SEM analysis conditions.
  • F fluorine
  • EDS energy dispersive X-ray spectroscopy
  • the ionomer-coated catalyst is sulfur (S) when analyzed by energy dispersive X-ray spectroscopy (EDS) under TEM or SEM analysis conditions. ), The distribution of the ionomer can be confirmed, and the coated and uncoated regions can be confirmed by the distribution of the ionomer.
  • the weight ratio (I / C ratio) of the ionomer to the carrier of the catalyst represented by Equation 1 may be 0.75 to 1.6. This may be an improved I / C ratio by 0.05 to 0.2 compared to the existing electrode.
  • the existing electrode does not include an ionomer coating layer of 5 nm or less, and may be manufactured using a conventional mixing method such as a ball mill.
  • the electrode may exhibit an electrochemical active surface area (ECSA) of 1 to 30% performance improvement, and specifically 5 to 20% performance improvement of the existing electrode.
  • ECSA electrochemical active surface area
  • the electrochemically effective surface area may be measured by measuring cyclo-voltammetry using a rotating disk electrode to obtain a hydrogen oxidation area.
  • the existing electrode does not include an ionomer coating layer of 5 nm or less, and may be manufactured using a conventional mixing method such as a ball mill.
  • the membrane-electrode assembly includes an anode electrode and a cathode electrode which face each other, and the ion exchange membrane positioned between the anode electrode and the cathode electrode.
  • Any one selected from the group consisting of the anode electrode, the cathode electrode, and both may include an electrode according to an embodiment of the present invention. Since the description of the electrode and the manufacturing method of the electrode is the same as described above, repeated description is omitted.
  • the membrane-electrode assembly 100 includes the ion exchange membrane 50 and the electrodes 20 and 20 ′ disposed on both surfaces of the ion exchange membrane 50, respectively.
  • the electrode 20, 20 ′ includes an electrode substrate 40, 40 ′ and a catalyst layer 30, 30 ′ formed on the surface of the electrode substrate 40, 40 ′, and the electrode substrate 40, 40 ′.
  • a microporous layer (not shown) including conductive fine particles such as carbon powder and carbon black to facilitate material diffusion between the electrode substrates 40 and 40 'between the catalyst layers 30 and 30'. It may further include.
  • an oxidation reaction is formed on one surface of the ion exchange membrane 50 to generate hydrogen ions and electrons from fuel delivered through the electrode base 40 to the catalyst layer 30.
  • the resulting electrode 20 is called an anode electrode and is disposed on the other surface of the ion exchange membrane 50 and passes through the hydrogen ions and the electrode base 40 'supplied through the ion exchange membrane 50 to the catalyst layer 30'.
  • the electrode 20 'which causes a reduction reaction to generate water from the oxidant transferred to the cathode is called a cathode electrode.
  • the catalyst layers 30, 30 'of the anode and cathode electrodes 20, 20' comprise an electrode according to one embodiment of the invention comprising the catalyst, ionomer and polyacrylic acid.
  • a porous conductive substrate may be used to smoothly supply hydrogen or oxygen.
  • Typical examples thereof include a carbon film, a carbon cloth, a carbon felt, or a metal cloth (a porous film composed of a metal cloth in a fibrous state or a metal film formed on a surface of a cloth formed of polymer fibers). May be used, but is not limited thereto.
  • fluorine-based resin examples include polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated ethylene propylene ( Fluorinated ethylene propylene), polychlorotrifluoroethylene or copolymers thereof can be used.
  • the membrane-electrode assembly 100 may be manufactured according to a conventional method of manufacturing a membrane-electrode assembly except for using the electrode according to the present invention as the anode or cathode electrodes 20 and 20 '.
  • a fuel cell according to another embodiment of the present invention includes the membrane-electrode assembly.
  • FIG. 3 is a schematic diagram showing the overall configuration of the fuel cell.
  • the fuel cell 200 includes a fuel supply unit 210 for supplying a mixed fuel in which fuel and water are mixed, and a reforming unit for reforming the mixed fuel to generate a reformed gas including hydrogen gas ( 220, a stack 230 in which a reformed gas including hydrogen gas supplied from the reformer 220 generates an electrical energy by causing an electrochemical reaction with an oxidant, and an oxidant in the reformer 220 and the stack.
  • a fuel supply unit 210 for supplying a mixed fuel in which fuel and water are mixed
  • a reforming unit for reforming the mixed fuel to generate a reformed gas including hydrogen gas ( 220, a stack 230 in which a reformed gas including hydrogen gas supplied from the reformer 220 generates an electrical energy by causing an electrochemical reaction with an oxidant, and an oxidant in the reformer 220 and the stack.
  • the stack 230 induces an oxidation / reduction reaction of a reforming gas including hydrogen gas supplied from the reformer 220 and an oxidant supplied from the oxidant supply unit 240 to generate a plurality of unit cells for generating electrical energy. Equipped.
  • Each unit cell means a cell of a unit for generating electricity, wherein the membrane-electrode assembly for oxidizing / reducing oxygen in an oxidant and a reforming gas containing hydrogen gas, and a reforming gas and an oxidant including hydrogen gas
  • a separator also referred to as a bipolar plate, hereinafter referred to as a "bipolar plate" for feeding to the membrane-electrode assembly.
  • the separator is disposed on both sides of the membrane-electrode assembly at the center. At this time, the separator plates respectively located at the outermost side of the stack may be specifically referred to as end plates.
  • the end plate of the separator plate, the pipe-shaped first supply pipe 231 for injecting the reformed gas containing hydrogen gas supplied from the reforming unit 220, and the pipe-shaped second for injecting oxygen gas The supply pipe 232 is provided, and the other end plate has a first discharge pipe 233 for discharging the reformed gas containing hydrogen gas remaining unreacted in the plurality of unit cells to the outside and the unit cell described above. Finally, the second discharge pipe 234 for discharging the remaining unreacted oxidant to the outside is provided.
  • the electrode may be applied to various fields such as a secondary battery or a capacitor, in addition to the membrane-electrode assembly for the fuel cell.
  • a method of manufacturing an ionomer-coated carbon structure includes preparing a mixture including the carbon structure and the ionomer, and applying low-frequency acoustic energy to the mixture to resonate the same. Coating the ionomer on the surface of the carbon structure by resonant vibratory mixing.
  • the carbon structure is a structure of various shapes made of carbon, and the kind thereof is not particularly limited in the present invention.
  • the carbon structure may have a size of micro to nano level, and is not limited to a specific size or shape.
  • carbon structure examples include carbon nano tube (CNT), carbon nano wire, carbon nanowire, graphene, graphene oxide, carbon black, nano structure Any one selected from the group consisting of carbon (nanostructured carbon), porous carbon (porous carbon) and mixtures thereof.
  • the amount of the ionomer is preferably determined in consideration of the specific surface area of the carbon structure, and the ionomer is typically 30 to 200 parts by weight, specifically 50 parts by weight, based on 100 parts by weight of the carbon structure. To 150 parts by weight. When the content of the ionomer is less than 30 parts by weight, a portion in which the ionomer is uncoated may exist in the carbon structure, and when the amount of the ionomer exceeds 200 parts by weight, an agglomeration portion between the ionomers may occur due to an excessive amount of the ionomer.
  • the mixture may be prepared by specifically adding the carbon structure to the ionomer or by adding the ionomer to the carbon structure, and there is no need to mix the prepared mixture after the addition, but the general method prior to the resonance mixing It is also possible to mix by.
  • the general mixing method may be any one or more of the dispersion method selected from ultrasonic dispersion, stirring, three roll mill, ball mill, planetary stirring, high pressure dispersion, and mixing thereof.
  • the mixture may further include a solvent together with the carbon structure and the ionomer, in which case the mixture may be added to the solvent to prepare a carbon structure solution and then add the ionomer to the carbon structure solution.
  • the ionomer may be prepared by adding the ionomer to the solvent to prepare an ionomer solution, followed by adding the carbon structure to the ionomer solution, or mixing the carbon structure solution and the ionomer solution.
  • the solvent may be a solvent selected from the group consisting of water, a hydrophilic solvent, an organic solvent and a mixture of one or more thereof, and the description of the hydrophilic solvent and the organic solvent is the same as described above, and thus a repetitive description thereof will be omitted.
  • the solvent may be contained in 80 to 95% by weight based on the total weight of the mixture, if less than 80% by weight of the solid content is too high may have dispersion problems due to cracks and high viscosity when applying the ionomer-coated carbon structure And, in excess of 95% by weight, may be detrimental to the activity of the ionomer-coated carbon structure.
  • the mixture is resonantly mixed to coat the ionomer on the surface of the carbon structure.
  • the resonance mixing is a mixing process in which mixing resonates, and the resonance of the mixing may occur as a result of a combination of vibration and acceleration of the mixing components.
  • the resonance mixing generates a large number of powerful mixing regions having a diameter of about 50 ⁇ m, thereby eliminating dead-zones, thereby enabling uniform mixing as a whole.
  • the resonant mixing can minimize the contamination without the need for stirring, such as an impeller, can reduce the loss (Loss), the available viscosity range is 1 cP to more than 1 million cP, it can also adjust the vacuum or temperature .
  • Resodyn ® 0 people's sound mixer Resonant Acoustic Mixer, RAM
  • the inventors of the present invention have found that by using the resonance mixing, the ionomer can be coated on the surface of the carbon structure with a nano-thickness of 5 nm or less and completed the present invention.
  • FIG. 4 is a schematic diagram showing a process of coating the ionomer on the surface of the carbon structure.
  • the surface of the carbon structure 11 is coated with the ionomer 13 to a nano thickness by the resonance mixing. That is, the ionomer 13 having a softer shape may be coated onto the surface of the carbon structure 11 having a harder structure by using the resonance mixing.
  • the resonance mixing may be performed by applying low frequency acoustic energy.
  • the low frequency acoustic energy is a straight or spherical energy propagation through a tangible medium in the frequency region of 10 to 20000 Hz, in the present invention, in order to coat the ionomer in nano-thickness on the surface of the carbon structure, a frequency of 10 to 100 Hz, Specifically, low frequency acoustic energy having a frequency of 50 to 70 Hz is used.
  • the resonance mixing may be performed by applying an acceleration of 10 to 100 G, specifically 40 to 100 G, to the vessel containing the mixture of the carbon structure and the ionomer under the frequency (where G means gravity acceleration, for example, 10 G means 10 times the acceleration of gravity).
  • the coating may not be made, if more than 100G there may be a problem such as agglomeration of ionomers or a change in mixing conditions due to phase separation and exotherm.
  • the resonance mixing may be performed for 30 seconds to 30 minutes, and specifically for a short time for 1 minute to 10 minutes. If the resonance mixing time is less than 30 seconds, less mixing or coating properties may not be confirmed, and if it exceeds 30 minutes, the sample or composition may be changed.
  • the resonant mixing is also possible to mix a wide range of materials, such as solid-solid, solid-liquid, liquid-liquid, liquid-gas, such that, using the resonant mixing, the mixture does not contain a solvent and the carbon structure and the ionomer
  • Solid-solid mixing comprising only is possible, and solid-liquid or liquid-liquid mixing is also possible in which the carbon structure, the ionomer, and both comprise a solvent.
  • the ionomer-coated carbon structure according to another embodiment of the present invention may be prepared by the method for producing the ionomer-coated carbon structure.
  • the ionomer-coated carbon structure includes a carbon structure and an ionomer, and the ionomer is subjected to resonance mixing by applying low frequency acoustic energy to the mixture including the carbon structure and the ionomer and coated on the surface of the carbon structure.
  • the ionomer coating layer may have a nano-thickness of 5 nm or less, specifically, 0.5 to 4 nm. When the thickness of the ionomer coating layer is 5 nm or less, it is preferable in terms of utilization of the carbon structure.
  • ionomer aggregation layers having various thicknesses may be significantly reduced.
  • the ionomer coated with a thickness of 5 nm or less on the surface of the carbon structure may be 60 wt% to 100 wt% with respect to the total weight of the ionomer, and specifically 85 Weight percent to 95 weight percent. If the ionomer coated with a thickness of 5 nm or less on the surface of the carbon structure is less than 60% by weight relative to the total weight of the ionomer, an uncoated region may occur, and when the amount of the ionomer is greater than 100% by weight, aggregated portions of the ionomer may occur. have.
  • the ionomer agglomeration layer composed of the ionomers not coated on the surface of the carbon structure may be 0 wt% to 40 wt% with respect to the total weight of the ionomer, and specifically 1 wt% to 15 wt%. If the ionomer aggregation layer exceeds 40% by weight relative to the total weight of the ionomer, aggregated regions of the ionomer may occur.
  • the ionomer coated with a thickness of 5 nm or less on the surface of the carbon structure means that the carbon structure coated with the ionomer is 5 nm or less when observed with an electron microscope (TEM) or a scanning transmission electron microscope (STEM).
  • TEM electron microscope
  • STEM scanning transmission electron microscope
  • Agglomerated ionomers that are not coated on the surface of the structure have a thickness greater than 5 nm when the ionomer-coated carbon structures are observed by TEM or STEM, or that agglomerated ionomers are observed by TEM, STEM or Scanning Electron Microscopy (SEM). it means.
  • the ionomer may include an ionomer coated with a thickness of 5 nm or less on the surface of the carbon structure and an ionomer other than the ionomer that is not coated on the surface of the carbon structure and aggregated.
  • the content of the ionomer coated with a thickness of 5 nm or less on the surface of the carbon structure or the content of the aggregated ionomer may be a content value measured for the entire carbon structure coated with the ionomer, and any of the ionomer coated carbon structures It is also possible to calculate the average value of the ionomers coated on the surface of the carbon structures present on the transmission electron microscopy (TEM) photograph for at least five places of the ionized or aggregated ionomers and calculate their average value. have.
  • TEM transmission electron microscopy
  • the ionomer when the ionomer is a fluorine-based ionomer, the ionomer-coated carbon structure is detected by fluorine (F) when analyzed by energy dispersive X-ray spectroscopy (EDS) under TEM or SEM analysis conditions.
  • F fluorine
  • EDS energy dispersive X-ray spectroscopy
  • the ionomer-coated carbon structure is analyzed by sulfur (EMS) analysis by energy dispersive X-ray spectroscope (EDS) under TEM or SEM analysis conditions.
  • EMS sulfur
  • EDS energy dispersive X-ray spectroscope
  • the distribution of the ionomer can be confirmed by the detection of S), and the coated and uncoated regions can be identified by the distribution of the ionomer.
  • the weight ratio (I / C ratio) of the ionomer to the carbon structure represented by Equation 2 may be 0.75 to 1.6. This may be an improved I / C ratio by 0.05 to 0.2 compared to the mixture of the existing carbon structure and the ionomer.
  • the mixture of the existing carbon structure and the ionomer does not include an ionomer coating layer of 5 nm or less, and may be prepared using a conventional mixing method such as a ball mill.
  • the ionomer-coated carbon structure exhibits a dispersion stability of 0.5 days to 15 days, specifically 1 day to 8 days in a range where visual layer separation does not occur when left in a solvent after being dispersed in a solvent with various dispersion apparatuses. Can be. If the dispersion stability is less than 0.5 days, it means that the ionomer layer is not coated.
  • the ionomer-coated carbon structure can be applied to catalyst carriers, electrode materials, etc. in the field of electrochemical devices such as fuel cells, secondary cells or capacitors.
  • the vessel containing the mixture was mounted in a Resodyn ® Resonant Acoustic Mixer (RAM).
  • the composition for forming an electrode was prepared by adding low frequency acoustic energy having a frequency of 60 Hz to the resonance acoustic mixer for 5 minutes with an acceleration of 70 G.
  • the electrode-forming composition was bar-coated on a polyimide release film under conditions of a coating speed of 10 mm / s and a coating thickness of 100 ⁇ m, and then dried at 30 ° C. for 6 hours to prepare electrodes.
  • the membrane was subjected to the same procedure as in Example 1-1 except that the resonance acoustic mixer was mixed for 10 minutes with an acceleration of 70 G while applying low frequency acoustic energy having a frequency of 60 Hz to the resonance acoustic mixer.
  • An electrode assembly was prepared.
  • the membrane was subjected to the same procedure as in Example 1-1 except that the resonance acoustic mixer was mixed for 5 minutes with an acceleration of 80 G while applying low frequency acoustic energy having a frequency of 60 Hz to the resonance acoustic mixer.
  • An electrode assembly was prepared.
  • the vessel containing the mixture was mounted in a Resodyn ® Resonant Acoustic Mixer (RAM).
  • the composition for forming an electrode was prepared by adding low frequency acoustic energy having a frequency of 60 Hz to the resonance acoustic mixer for 5 minutes with an acceleration of 70 G.
  • the electrode-forming composition was bar-coated on a polyimide release film under conditions of a coating speed of 10 mm / s and a coating thickness of 100 ⁇ m, and then dried at 30 ° C. for 6 hours to prepare electrodes.
  • the mixture was dispersed and stirred using a ball mill to prepare a composition for forming an electrode.
  • the step of preparing the membrane-electrode assembly by coating and drying the electrode forming composition on a decal film was performed in the same manner as described in the above embodiment to prepare a membrane-electrode assembly.
  • Example 1-1 in the electrode manufactured by resonance mixing as in Example 1-1, a coating phenomenon of ionomer is clearly observed on the surface of the catalyst, and the coating thickness is 5 nm or less. .
  • the wave pattern of the arrow portion (A) in Figure 5 indicates that the ionomer is coated with 5 nm or less, it can be seen that the coating portion is spread throughout.
  • the stacking phenomenon (B) in which the ionomers represented in Comparative Example 1-1 manufactured by the ball mill is stacked is not observed.
  • the voltage and current output from the electrode were measured for the membrane-electrode assemblies prepared in Examples 1-1 and Comparative Example 1-1, and the output characteristics (discharge performance) of the voltage-current density were compared and evaluated. 7 is shown.
  • the membrane-electrode assembly manufactured in the above example has superior voltage performance according to the current density, compared to the membrane-electrode assembly manufactured in the comparative example. It can be seen that the electrode exhibits a larger electrochemically effective surface area than that of the electrode prepared in the comparative example, that is, the activity of the catalyst is increased.
  • the vessel containing the mixture was mounted in a Resodyn ® Resonant Acoustic Mixer (RAM).
  • An ionomer-coated carbon structure was prepared by mixing the resonance acoustic mixer with low frequency acoustic energy having a frequency of 60 Hz for 5 minutes with an acceleration of 70 G.
  • the ionomer was carried out in the same manner as in Example 2-1 except that the resonance acoustic mixer was mixed for 10 minutes with an acceleration of 70 G while applying low frequency acoustic energy having a frequency of 60 Hz to the resonance acoustic mixer. To prepare a coated carbon structure.
  • the ionomer was carried out in the same manner as in Example 2-1 except that the resonance acoustic mixer was mixed for 5 minutes with an acceleration of 80 G while applying low frequency acoustic energy having a frequency of 60 Hz to the resonance acoustic mixer. To prepare a coated carbon structure.
  • Example 2-1 An ionomer-coated carbon structure was prepared in the same manner as in Example 2-1, except that graphene was used as the carbon structure in Example 2-1.
  • Example 2-1 An ionomer-coated carbon structure was prepared in the same manner as in Example 2-1, except that carbon black was used as the carbon structure in Example 2-1.
  • the vessel containing the mixture was mounted in a Resodyn ® Resonant Acoustic Mixer (RAM).
  • An ionomer-coated carbon structure was prepared by mixing the resonance acoustic mixer with low frequency acoustic energy having a frequency of 60 Hz for 5 minutes with an acceleration of 70 G.
  • the mixture was dispersed and stirred using a ball mill to prepare a carbon structure in which ion conductors were mixed.
  • the ionomer-coated carbon structure prepared by resonant mixing as in Example 2-1 is clearly observed in the ionomer coating on the surface of the carbon structure, the coating thickness is 5 It can be confirmed that it is nm or less.
  • the wave pattern of the arrow portion (A) in Figure 8 indicates that the ionomer is coated with 5 nm or less, it can be seen that the coating portion is spread throughout.
  • the stacking phenomenon (B) in which the ionomers represented in Comparative Example 2-1 manufactured by the ball mill is stacked is not observed.
  • stack 231 first supply pipe
  • second discharge pipe 240 oxidant supply unit
  • the present invention relates to a method for manufacturing an electrode, an electrode produced thereby, a membrane-electrode assembly including the electrode, and a fuel cell including the membrane-electrode assembly, wherein the electrode manufacturing method includes an ionomer on a surface of a catalyst. Is coated with a nano-thickness to increase the dispersibility of the catalyst and the like to facilitate mixing, uniform distribution of ionomers on the surface of the catalyst, increase the utilization rate of the catalyst and ionomer to improve various performances, and improve the performance of the catalyst and ionomer The durability can be increased by increasing the binding efficiency.
  • the present invention also relates to a method for producing an ionomer-coated carbon structure, and to a method for producing an ionomer-coated carbon structure, wherein the method for preparing an ionomer-coated carbon structure is nano-thick to the surface of the carbon structure.
  • durability of the carbon structure and the ionomer may be increased by increasing the coupling efficiency.
  • the ionomer-coated carbon structure can be applied to catalyst carriers, electrode materials, etc. in the field of electrochemical devices such as fuel cells, secondary cells or capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것으로서, 상기 전극의 제조 방법은 촉매와 이오노머를 혼합하여 전극 형성용 조성물을 제조하는 단계, 상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고 상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계를 포함한다. 상기 전극의 제조 방법은 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있다.

Description

전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
본 발명은 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것으로서, 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있는 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것이다.
또한, 본 발명은 이오노머가 코팅된 탄소 구조체의 제조 방법, 그리고 이에 의하여 제조된 이오노머가 코팅된 탄소 구조체에 관한 것으로서, 탄소 구조체의 표면에 이오노머를 나노 두께로 코팅함으로써, 탄소 구조체 등의 분산성을 증대시켜 혼합을 용이하게 하고, 분산 안정성을 증대시키며, 탄소 구조체 표면에 이오노머가 균일하게 분포하도록 하여, 탄소 구조체와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 탄소 구조체와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있는 이오노머가 코팅된 탄소 구조체의 제조 방법, 그리고 이에 의하여 제조된 이오노머가 코팅된 탄소 구조체에 관한 것이다.
연료 전지는 메탄올, 에탄올, 천연 기체와 같은 탄화수소 계열의 연료물질 내에 함유되어 있는 수소와 산소의 산화/환원반응과 같은 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템을 구비한 전지로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 인해 화석 에너지를 대체할 수 있는 차세대 청정 에너지원으로 각광받고 있다.
이러한 연료 전지는 단위 전지의 적층에 의한 스택 구성으로 다양한 범위의 출력을 낼 수 있는 장점을 갖고 있으며, 소형 리튬 전지에 비하여 4 내지 10 배의 에너지 밀도를 나타내기 때문에 소형 및 이동용 휴대전원으로 주목받고 있다.
연료 전지에서 전기를 실질적으로 발생시키는 스택은 막-전극 어셈블리 (Membrane Electrode Assembly, MEA)와 세퍼레이터(separator)(또는 바이폴라 플레이트(Bipolar Plate)라고도 함)로 이루어진 단위 셀이 수 개 내지 수십 개로 적층된 구조를 가지며, 막-전극 어셈블리는 일반적으로 전해질 막을 사이에 두고 그 양쪽에 산화극(Anode, 또는, 연료극)과 환원극(Cathode, 또는 공기극)이 각각 형성된 구조를 이룬다.
연료 전지는 전해질의 상태 및 종류에 따라 알칼리 전해질 연료 전지, 고분자 전해질 연료 전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등으로 구분될 수 있는데, 그 중에 고분자 전해질 연료 전지는 100 ℃ 미만의 낮은 작동온도, 빠른 시동과 응답특성 및 우수한 내구성 등의 장점으로 인하여 휴대용, 차량용 및 가정용 전원장치로 각광을 받고 있다.
고분자 전해질 연료 전지의 대표적인 예로는 수소 가스를 연료로 사용하는 수소이온 교환막 연료 전지 (Proton Exchange Membrane Fuel Cell, PEMFC), 액상의 메탄올을 연료로 사용하는 직접 메탄올 연료 전지 (Direct Methanol Fuel Cell, DMFC) 등을 들 수 있다.
고분자 전해질 연료 전지에서 일어나는 반응을 요약하면, 우선, 수소가스와 같은 연료가 산화극에 공급되면, 산화극에서는 수소의 산화반응에 의해 수소이온(H+)과 전자(e-)가 생성된다. 생성된 수소이온은 고분자 전해질 막을 통해 환원극으로 전달되고, 생성된 전자는 외부회로를 통해 환원극에 전달된다. 환원극에서는 산소가 공급되고, 산소가 수소이온 및 전자와 결합하여 산소의 환원반응에 의해 물이 생성된다.
한편, 상기 연료 전지의 전극은 촉매 및 이오노머로 구성되는데 이들 간에 결합 및 분산도가 상기 연료 전지의 성능 및 내구성에 큰 영향을 미치게 된다.
본 발명의 목적은 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있는 전극의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 전극의 제조 방법에 의하여 제조된 전극을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 전극을 포함하는 막-전극 어셈블리를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 막-전극 어셈블리를 포함하는 연료 전지를 제공하는 것이다.
본 발명의 또 다른 목적은 탄소 구조체의 표면에 이오노머를 나노 두께로 코팅함으로써, 탄소 구조체 등의 분산성을 증대시켜 혼합을 용이하게 하고, 분산 안정성을 증대시키며, 탄소 구조체 표면에 이오노머가 균일하게 분포하도록 하여, 탄소 구조체와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 탄소 구조체와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있는 이오노머가 코팅된 탄소 구조체의 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 이오노머가 코팅된 탄소 구조체의 제조 방법에 의하여 제조된 이오노머가 코팅된 탄소 구조체를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조하는 단계, 상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고 상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계를 포함하는 전극의 제조 방법을 제공한다.
상기 저주파 음향 에너지는 10 내지 100 Hz의 주파수를 가질 수 있다.
상기 공진 혼합은 상기 촉매와 이오노머를 포함하는 전극 형성용 조성물에 10 내지 100 G의 가속도를 가하여 이루어질 수 있다.
상기 공진 혼합은 30 초 내지 30 분 동안 이루어질 수 있다.
상기 전극 형성용 조성물은 용매를 더 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면, 촉매 및 이오노머를 포함하며, 상기 이오노머는 상기 촉매의 표면에 5 nm 이하의 두께로 코팅된 것인 전극을 제공한다.
상기 이오노머는, 상기 촉매 및 상기 이오노머를 포함하는 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 코팅된 것일 수 있다.
상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 55 중량% 내지 95 중량%일 수 있다.
상기 촉매 표면에 코팅되지 않고 응집된(aggregated) 이오노머는 상기 이오노머 전체 중량에 대하여 0 중량% 내지 45 중량%일 수 있다.
상기 촉매는 촉매 금속 입자 단독 또는 담체에 담지된 촉매 금속 입자를 포함할 수 있다.
하기 수학식 1로 표시되는 상기 담체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6일 수 있다.
[수학식 1]
I/C ratio = WI / WC
WI = 이오노머(Ionomer)의 전체 중량
WC = 담체(Carrier)의 전체 중량
본 발명의 또 다른 일 실시예에 따르면, 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고 상기 애노드 전극과 캐소드 전극 사이에 위치하는 이온 교환막을 포함하며, 상기 애노드 전극, 상기 캐소드 전극 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 전극을 포함하는 것인 막-전극 어셈블리를 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 상기 막-전극 어셈블리를 포함하는 것인 연료 전지를 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 탄소 구조체(carbon structure)와 이오노머를 포함하는 혼합물을 제조하는 단계, 상기 혼합물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 탄소 구조체 표면에 상기 이오노머를 코팅하는 단계를 포함하는 이오노머가 코팅된 탄소 구조체의 제조 방법을 제공한다.
상기 탄소 구조체는 카본 나노 튜브(carbon nano tube), 카본 나노 와이어(carbon nano wire), 그래핀(graphene), 산화 그래핀(graphene oxide), 카본 블랙(carbon black), 나노구조 탄소(nanostructured carbon), 다공성 탄소(porous carbon) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 저주파 음향 에너지는 10 내지 100 Hz의 주파수를 가질 수 있다.
상기 공진 혼합은 상기 주파수 하에서 상기 탄소 구조체와 이오노머의 혼합물이 담긴 용기에 10 내지 100 G의 가속도를 가하여 이루어질 수 있다.
상기 공진 혼합은 30 초 내지 30 분 동안 이루어질 수 있다.
상기 혼합물은 용매를 더 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 탄소 구조체(carbon structure) 및 이오노머를 포함하며, 상기 이오노머는 상기 탄소 구조체의 표면에 5 nm 이하의 두께로 코팅된 것인 이오노머가 코팅된 탄소 구조체를 제공한다.
상기 탄소 구조체는 카본 나노 튜브(carbon nano tube), 카본 나노 와이어(carbon nano wire), 그래핀(graphene), 산화 그래핀(graphene oxide), 카본 블랙(carbon black) 및 이들의 혼합물로 이루어진 군에서 선택될 수 있다.
상기 이오노머는, 상기 탄소 구조체 및 상기 이오노머를 포함하는 혼합물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 탄소 구조체 표면에 코팅될 수 있다.
상기 탄소 구조체 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 60 중량% 내지 100 중량%일 수 있다.
상기 탄소 구조체 표면에 코팅되지 않고 응집된(aggregated) 이오노머는 상기 이오노머 전체 중량에 대하여 0 중량% 내지 40 중량%일 수 있다.
하기 수학식 2로 표시되는 상기 탄소 구조체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6일 수 있다.
[수학식 2]
I/C ratio = WI / WC
WI = 이오노머(Ionomer)의 전체 중량
WC = 탄소 구조체(Carbon structure)의 전체 중량
본 발명은 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있다.
또한, 본 발명은 탄소 구조체의 표면에 이오노머를 나노 두께로 코팅함으로써, 탄소 구조체의 분산성을 증대시켜 혼합을 용이하게 하고, 분산 안정성을 증대시키며, 탄소 구조체 표면에 이오노머가 균일하게 분포하도록 하여, 탄소 구조체와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 탄소 구조체와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있다.
도 1은 촉매 표면에 이오노머가 코팅되는 과정을 나타내는 모식도이다.
도 2는 본 발명의 일 실시예에 따른 막-전극 어셈블리를 개략적으로 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 연료 전지의 전체적인 구성을 도시한 모식도이다.
도 4는 탄소 구조체 표면에 이오노머가 코팅되는 과정을 나타내는 모식도이다.
도 5 및 도 6은 각각 본 발명의 실시예 1-1 및 비교예 1-1에서 제조된 전극의 투과 전자 현미경(TEM) 사진이다.
도 7은 본 발명의 실시예 1-1 및 비교예 1-1에서 제조된 막-전극 접합체의 성능 평가 결과를 나타내는 그래프이다.
도 8은 본 발명의 실시예 2-1에서 제조된 이오노머가 코팅된 탄소 구조체의 투과 전자 현미경(TEM) 사진이다.
도 9는 본 발명의 비교예 2-1에서 제조된 이오노머가 혼합된 탄소 구조체의 투과 전자 현미경(TEM) 사진이다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 특별한 언급이 없는 한, 층, 막, 영역, 판 등의 부분이 다른 부분 '위에' 있다고 할 때, 이는 다른 부분 '바로 위에' 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 발명의 일 실시예에 따른 전극의 제조 방법은 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조하는 단계, 상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고 상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계를 포함한다.
우선, 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조한다.
상기 촉매는 수소 산화반응, 산소 환원반응에 촉매로 사용될 수 있는 것은 어느 것을 사용하여도 무방하며, 바람직하게는 백금계 금속을 사용하는 것이 좋다.
상기 백금계 금속은 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 백금-M 합금(상기 M은 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 갈륨(Ga), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 은(Ag), 금(Au), 아연(Zn), 주석(Sn), 몰리브덴(Mo), 텅스텐(W), 란탄(La) 및 로듐(Rh)으로 이루어진 군에서 선택되는 어느 하나 이상) 및 이들의 조합으로 이루어진 군에서 선택되는 하나를 포함할 수 있으며, 보다 바람직하게는 상기 백금계 촉매 금속 군에서 선택된 2종 이상의 금속을 조합한 것을 사용할 수 있으나, 이에 한정되는 것은 아니며, 본 기술 분야에서 사용 가능한 백금계 촉매 금속이라면 제한 없이 사용할 수 있다.
또한, 상기 촉매는 금속 자체(black)을 사용할 수도 있고, 촉매 금속을 담체에 담지시켜 사용할 수도 있다.
상기 담체는 탄소계 담체, 지르코니아, 알루미나, 티타니아, 실리카, 세리아 등의 다공성 무기산화물, 제올라이트 등에서 선택될 수 있다. 상기 탄소계 담체는 수퍼피(super P), 탄소섬유(carbon fiber), 탄소시트(carbon sheet), 카본블랙(carbon black), 케첸블랙(Ketjen Black), 아세틸렌 블랙(acetylene black), 카본나노튜브(carbon nano tube, CNT), 탄소구체(carbon sphere), 탄소리본(carbon ribbon), 풀러렌(fullerene), 활성탄소 및 이들의 하나 이상의 조합에서 선택될 수 있으나, 이에 한정되는 것은 아니며, 본 기술분야에서 사용 가능한 담체는 제한 없이 사용할 수 있다.
상기 촉매 금속 입자는 담체의 표면 위에 위치할 수도 있고, 담체의 내부 기공(pore)을 채우면서 담체 내부로 침투할 수도 있다.
상기 담체에 담지된 귀금속을 촉매로 사용하는 경우에는 상용화된 시판된 것을 사용할 수도 있고, 또한 담체에 귀금속을 담지시켜 제조하여 사용할 수도 있다. 상기 담체에 귀금속을 담지시키는 공정은 당해 분야에서 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하여도, 당해 분야에 종사하는 사람들에게 쉽게 이해될 수 있는 내용이다.
상기 촉매 금속 입자는 상기 촉매의 전체 중량 대비 20 중량% 내지 80 중량%로 함유될 수 있으며, 20 중량% 미만으로 함유될 경우에는 활성 저하의 문제가 있을 수 있고, 80 중량%를 초과할 경우에는 촉매 금속 입자의 응집으로 활성 면적이 줄어들어 촉매 활성이 반대로 저하될 수 있다.
상기 촉매는 상기 전극 전체 중량에 대하여 50 중량% 내지 80 중량%로 함유될 수 있으며, 50 중량% 미만일 경우에는 촉매의 부족으로 인한 활성 저하의 문제가 있을 수 있고, 80 중량%를 초과하는 경우에는 이오노머가 부족하여 이온 전도에 불리할 수 있다.
한편, 상기 이오노머는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 양이온 전도체는 측쇄 말단의 양이온 교환 그룹에서 H를 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 상기 측쇄 말단의 양이온 교환 그룹에서 H를 Na으로 치환하는 경우에는 촉매 조성물 제조시 NaOH를, 테트라부틸암모늄으로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 상기 치환 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다.
상기 양이온 전도체는 단일물 또는 혼합물 형태로 사용가능하며, 또한 선택적으로 이온 교환막과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 함께 사용될 수도 있다. 그 사용량은 사용 목적에 적합하도록 조절하여 사용하는 것이 바람직하다.
상기 비전도성 화합물로는 폴리테트라플루오로에틸렌(PTFE), 테트라플루오로에틸렌-헥사플루오르프로필렌 공중합체(FEP), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체(PFA), 에틸렌/테트라플루오로에틸렌(ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌공중합체(ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 도데실벤젠술폰산 및 소르비톨(sorbitol)로 이루어진 군에서 선택된 1종 이상의 것이 사용될 수 있다.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.
상기 이오노머의 상업적으로 상용화된 예로는 나피온, 아퀴비온 등을 들 수 있다.
상기 이오노머는 상기 전극 전체 중량에 대하여 20 중량% 내지 50 중량%로 포함될 수 있다. 상기 이오노머의 함량이 20 중량% 미만일 경우에는 생성된 이온이 잘 전달되지 못할 수 있고, 50 중량%를 초과하는 경우에는 기공이 부족하여 수소 또는 산소(공기)의 공급이 어려우며 반응할 수 있는 활성면적이 줄어들 수 있다.
상기 전극 형성용 조성물은 구체적으로 상기 촉매를 이오노머에 첨가하거나, 상기 이오노머를 상기 촉매에 첨가하여 제조할 수 있고, 상기 첨가 후 상기 제조된 전극 형성용 조성물을 혼합하여 줄 필요는 없으나, 상기 공진 혼합에 앞서 일반적인 방법에 의하여 혼합하는 것도 가능하다. 이때, 상기 일반적인 혼합 방법은 초음파 분산, 교반, 3롤밀, 볼밀, 유성교반, 고압분산 및 이들의 혼합법 중에서 선택되는 어느 하나 이상의 분산법을 이용할 수 있다.
상기 전극 형성용 조성물은 상기 촉매 및 상기 이오노머와 함께 용매를 더 포함할 수 있는데, 이 경우 상기 전극 형성용 조성물은 상기 촉매를 상기 용매에 첨가하여 촉매 용액을 제조한 후 상기 촉매 용액에 상기 이오노머를 첨가하여 제조할 수 있고, 상기 이오노머를 상기 용매에 첨가하여 이오노머 용액을 제조한 후 상기 이오노머 용액에 상기 촉매를 첨가하여 제조할 수 있고, 상기 촉매 용액과 상기 이오노머 용액을 혼합하여 제조할 수도 있다.
상기 용매는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매일 수 있다.
상기 친수성 용매는 탄소수 1 내지 12의 직쇄상, 분지상의 포화 또는 불포화 탄화수소를 주쇄로서 포함하는 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 것일 수 있으며, 이들은 지환식 또는 방향족 사이클로 화합물을 주쇄의 최소한 일부로 포함할 수 있다. 구체적인 예로 알코올에는 메탄올, 에탄올, 이소프로필알코올, 에톡시 에탄올, n-프로필알코올, 부틸알코올, 1,2-프로판디올, 1-펜탄올, 1.5-펜탄디올, 1.9-노난디올 등; 케톤에는 헵타논, 옥타논 등; 알데히드에는 벤즈알데하이드, 톨루알데하이드 등; 에스터에는 메틸펜타노에이트, 에틸-2-하이드록시프로파노에이트 등; 카르복실산에는 펜타노익산, 헵타노익산 등; 에테르에는 메톡시벤젠, 다이메톡시프로판 등; 아미드에는 프로판아미드, 뷰틸아미드, 디메틸아세트아마이드 등이 있다.
상기 유기용매는 N-메틸피롤리돈, 디메틸술폭사이드, 테트라하이드로퓨란 및 이들의 혼합물에서 선택할 수 있다.
상기 용매는 상기 전극 형성용 조성물 전제 중량에 대하여 80 내지 95 중량%로 함유될 수 있으며, 80 중량% 미만일 경우에는 고형분의 함량이 너무 높아 전극 코팅시 균열 및 고점도로 인한 분산 문제가 있을 수 있고, 95 중량%를 초과하는 경우에는 전극 활성에 불리할 수 있다.
다음으로, 상기 전극 형성용 조성물을 공진 혼합하여 상기 촉매 표면에 상기 이오노머를 코팅한다.
상기 공진 혼합은 혼합이 공진하는 혼합 공정으로서, 상기 혼합의 공진은 혼합 성분들의 진동과 가속의 조합의 결과로 발생시킬 수 있다. 상기 공진 혼합을 하게 되면 약 50 ㎛ 직경의 다수의 강력한 혼합 영역을 발생시켜 데드 존(dead-zone)을 없애 전체적으로 균일한 혼합이 가능해진다.
상기 공진 혼합은 임펠러 등 교반에 필요한 부품이 필요 없어 오염을 최소화 할 수 있으며, 손실율(Loss)을 감소시킬 수 있고, 가용 점도 범위는 1 cP 내지 100만 cP 이상이며, 진공이나 온도를 조절할 수도 있다.
상기 공진 혼합을 할 수 있는 상용화되어 있는 기기로는 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM) 등을 이용할 수 있다.
본 발명의 발명자들은 상기 공진 혼합을 이용하면 상기 촉매 표면에 상기 이오노머를 5 nm 이하의 나노 두께로 코팅 가능하다는 것을 발견하고 본 발명을 완성하였다.
도 1은 상기 촉매 표면에 상기 이오노머가 코팅되는 과정을 나타내는 모식도이다. 도 1을 참고하면, 상기 공진 혼합에 의하여 담체(1)에 담지된 촉매 금속 입자(2)의 표면이 상기 이오노머(3)에 의하여 나노 두께로 코팅된다. 즉, 상기 공진 혼합을 이용해 보다 단단한 구조의 상기 촉매 금속 입자(2)의 표면으로 보다 무른 형태의 상기 이오노머(3)가 코팅될 수 있다.
이를 위하여, 상기 공진 혼합은 저주파 음향 에너지를 가하여 이루어질 수 있다. 상기 저주파 음향 에너지는 10 내지 20000 Hz의 주파수 영역 내에 있는 유형 매체를 통한 직선 또는 구면 에너지 전파로서, 본 발명에서는 상기 촉매 표면에 상기 이오노머를 나노 두께로 코팅시키기 위하여, 10 내지 100 Hz의 주파수, 구체적으로 50 내지 70 Hz의 주파수를 가지는 저주파 음향 에너지를 이용한다.
또한, 상기 공진 혼합은 상기 주파수 하에서 상기 촉매와 이오노머를 포함하는 전극 형성용 조성물에 10 내지 100 G, 구체적으로 40 내지 100 G의 가속도를 가하여 이루어질 수 있다(여기서, G는 중력가속도를 의미하며, 예를 들어 10 G는 중력가속도의 10 배를 의미한다).
상기 가속도가 10 G 미만인 경우 미혼합 영역이 존재할 수 있고, 코팅이 이루어지지 않아 성능이 저하될 수 있고, 100 G를 초과하는 경우 이오노머끼리 뭉침현상이나 상분리 및 발열에 의한 혼합 조건 변화와 성능 감소, 플러딩(flooding) 등의 문제가 있을 수 있다.
상기 주파수 영역 내의 저주파 음향 에너지와 상기 가속도를 상기 전극 형성용 조성물에 가하기 위한 방법은 본 발명에서 특별히 한정되지 않으며, 종래 알려진 방법이면 어느 것이나 이용 가능하다. 일 예로서 상기 Resodyn®사의 공명 음향 혼합기를 이용하는 경우, 상기 촉매와 이오노머의 혼합물을 채우고 있는 용기의 주기적인 직선 변위에 의해 상기 음향 에너지를 공급하고, 이를 위하여 다수의 기계식 또는 전자 변환기 배치를 이용하며, 보다 구체적으로 상기 용기로 진동과 가속을 옮기는 오실레이터 드라이브(oscillator drives)와 스프링과 같은 가변성 탄성 부재를 포함하고 있다. 상기 공명 음향 혼합기에 관한 내용은 미국 특허 등록 제7188993호 및 미국 특허 공개 제2010-0294113호 등을 참고할 수 있다.
상기 공진 혼합은 30 초 내지 30 분 동안 이루어질 수 있고, 구체적으로 1 분 내지 10 분 동안의 짧은 시간 동안 이루어질 수 있다. 상기 공진 혼합의 시간이 30 초 미만인 경우 덜 혼합되거나 코팅 특성을 확인할 수 없을 수 있고, 30 분을 초과하는 경우 시료나 조성이 변화될 수 있다.
또한, 상기 공진 혼합은 고체-고체, 고체-액체, 액체-액체, 액체-기체 등 광범위한 물질의 혼합도 가능하므로, 상기 공진 혼합을 이용하면 상기 전극 형성용 조성물이 용매를 포함하지 않고 상기 촉매와 상기 이오노머만을 포함하는 고체-고체 혼합이 가능하고, 상기 촉매, 상기 이오노머, 및 이 둘 모두가 용매를 포함하는 고체-액체 또는 액체-액체 혼합도 가능하다.
마지막으로, 상기 전극 형성용 조성물을 코팅하여 전극을 제조한다.
상기 전극을 제조하는 단계는 본 발명에서 특별히 한정되지 않으나, 구체적인 일 예시로 상기 전극 형성용 조성물을 이형필름에 코팅하여 전극을 제조하고, 상기 전극을 이온 교환막에 전사하는 단계를 더 포함할 수 있다.
상기 전극 형성용 조성물을 상기 이형필름 위에 코팅할 때는 상기 촉매를 포함하는 전극 형성용 조성물을 연속적 또는 간헐적으로 코터(coater)에 이송시킨 후 이형필름 상에 10 내지 200 ㎛의 건조두께로 균일하게 도포하는 것이 바람직하다.
더욱 상세하게는, 상기 전극 형성용 조성물의 점성에 따라 펌프를 통해서 연속적으로 다이(die), 그라비아(gravure), 바(bar), 콤마 코터(comma coater) 등의 코터에 이송한 후, 슬롯다이 코팅, 바 코팅, 콤마 코팅, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드 코팅, 브러시 등의 방법이 사용하여 데칼필름 위에 전극층의 건조두께가 10 내지 200 ㎛, 더욱 바람직하게는 10 내지 100 ㎛로 균일하게 도포하고 일정한 온도로 유지된 건조로를 통과시키며 용매를 휘발시킨다.
상기 전극 형성용 조성물을 1 ㎛ 미만의 두께로 코팅할 경우 촉매 함량이 작아 활성이 떨어질 수 있고, 200 ㎛를 초과하는 두께로 코팅할 경우에는 이온 및 전자의 이동 거리가 증가하여 저항이 증가될 수 있다.
상기 건조 공정은 25 ℃ 내지 90 ℃에서 12 시간 이상 건조시키는 것일 수 있다. 상기 건조 온도가 25 ℃ 미만이고 건조 시간이 12 시간 미만인 경우에는 충분히 건조된 전극을 형성하지 못할 수 있는 문제가 발생될 수 있고, 90 ℃를 초과하는 온도에서 건조시키면 전극의 균열 등이 발생할 수 있다.
다만, 상기 전극 형성용 조성물을 도포 및 건조하는 방법은 상기에 한정되지 않는다.
선택적으로, 상기 전극 형성용 조성물을 건조시켜 전극을 제조하는 단계 이후에는 건조된 전극 및 이형필름을 필요한 크기로 컷팅하여 이온 교환막에 접합하는 단계를 더 포함할 수 있다.
상기 이온 교환막은 이온 전도체를 포함한다. 상기 이온 전도체는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.
한편, 상기 이온 교환막은 e-PTFE와 같은 불소계 다공성 지지체 또는 전기 방사 등에 의하여 제조된 다공성 나노웹 지지체 등의 공극을 상기 이온 전도체가 채우고 있는 강화막 형태일 수도 있다.
상기 전극과 상기 이온 교환막을 접합하는 방법은 일 예로 전사 방법을 이용할 수 있고, 상기 전사 방법은 금속프레스 단독 또는 금속프레스에 실리콘 고무재 등과 같은 고무재의 연질판을 덧대어 열과 압력을 가하는 핫프레싱(hot pressing) 방법으로 수행될 수 있다.
상기 전사 방법은 80 ℃ 내지 150 ℃ 및 50 kgf/cm2 내지 200 kgf/cm2의 조건에서 이루어질 수 있다. 80 ℃, 50 kgf/cm2 미만의 조건에서 핫프레싱 할 경우, 이형필름상의 상기 전극의 전사가 제대로 이루어지지 않을 수 있고, 150 ℃를 초과할 경우에는 상기 이온 교환막의 고분자가 타면서 상기 전극의 구조변성이 일어날 우려가 있으며, 200 kgf/cm2을 초과하는 조건에서 핫프레싱 할 경우, 상기 전극의 전사보다 상기 전극을 압착하는 효과가 더 커져서 전사가 제대로 이루어지지 못할 수 있다.
본 발명의 다른 일 실시예에 따른 전극은 상술한 전극의 제조 방법에 의하여 제조될 수 있다. 이에 따라, 상기 전극은 촉매 및 이오노머를 포함하며, 상기 이오노머는 상기 촉매 및 상기 이오노머를 포함하는 전극 형성용 조성물에 저주파 음향 에너지를 가하여 공진 혼합하여 상기 촉매 표면에 코팅되며, 이때 상기 이오노머 코팅층은 5 nm 이하의 나노 두께, 구체적으로 0.5 내지 4 nm의 나노 두께를 가질 수 있다. 상기 이오노머 코팅층의 두께가 5 nm 이하인 경우 촉매의 성능 향상 측면에서 바람직하다.
또한, 상기 공진 혼합을 이용하여 상기 촉매 표면에 상기 이오노머를 코팅하는 경우 다양한 두께의 이오노머 응집 층(ionomer aggregation layer)들이 현저히 감소될 수 있다.
종래의 다른 방법들로 상기 촉매와 상기 이오노머를 혼합하는 경우 다양한 두께를 가지는 이오노머 응집 층들이 형성되나, 상기 공진 혼합을 이용하여 상기 촉매 표면에 상기 이오노머를 코팅하는 경우 상기 촉매를 5 nm 이하의 두께로 코팅하는 이오노머 층을 상기 전극의 전체 영역에서 거의 균일하게 형성될 수 있다.
상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 55 내지 95 중량%일 수 있고, 구체적으로 80 내지 90 중량%일 수 있다. 상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머가 상기 이오노머 전체 중량에 대하여 55 중량% 미만인 경우 코팅되지 않은 부분에 의한 성능 감소 및 촉매-이오노머 결합체들 간의 연결 제한에 따른 안정성 감소 등의 문제가 있을 수 있고, 95 중량%를 초과하는 경우 이오노머의 응집으로 인한 촉매 활성이 저하될 수 있다.
또한, 상기 촉매 표면에 코팅되지 않고 응집된 이오노머로 이루어지는 이오노머 응집 층은 상기 이오노머 전체 중량에 대하여 0 내지 45 중량%일 수 있고, 구체적으로 10 내지 20 중량%일 수 있다. 상기 이오노머 응집 층이 상기 이오노머 전체 중량에 대하여 45 중량%를 초과하는 경우 이오노머의 응집 및 코팅되지 않은 촉매로 인한 촉매 활성이 저하될 수 있다.
상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 전극을 투과 전자 현미경(TEM) 또는 주사 투과 전자 현미경(STEM)으로 관찰시 두께가 5 nm 이하인 것을 의미하고, 상기 촉매 표면에 코팅되지 않고 응집된 이오노머는 상기 전극을 TEM 또는 STEM으로 관찰시 두께가 5 nm를 초과하거나, 응집된 이오노머가 TEM, STEM 또는 주사 전자 현미경(SEM)으로 관찰되는 것을 의미한다. 또한, 상기 이오노머는 상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머 및 상기 촉매 표면에 코팅되지 않고 응집된 이오노머 이외의 이오노머를 나머지 함량으로 포함할 수 있다. 상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머의 함량 또는 상기 응집된 이오노머의 함량은 상기 전극 전체에 대하여 측정한 함량 값일 수 있고, 상기 전극의 임의의 적어도 5 군데에 대한 TEM 또는 STEM 사진 상 존재하는 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머의 함량 또는 응집된 이오노머의 함량을 측정한 후 이들의 평균 값을 계산하여 구할 수도 있다.
또한, 상기 이오노머가 불소계 이오노머인 경우, 상기 이오노머가 코팅된 촉매는 TEM 또는 SEM 분석 조건에서 에너지분산형 분광분석법(energy dispersive X-ray spectroscope, EDS)에 의한 분석시 불소(F)의 검출로 상기 이오노머의 분포로 코팅 및 코팅되지 않은 영역을 확인할 수 있다.
또한, 상기 이오노머가 이온 교환 그룹으로 술폰산기를 포함하는 경우, 상기 이오노머가 코팅된 촉매는 TEM 또는 SEM 분석 조건에서 에너지분산형 분광분석법(energy dispersive X-ray spectroscope, EDS)에 의한 분석시 황(S)의 검출로 상기 이오노머의 분포를 확인할 수 있으며, 상기 이오노머의 분포로 코팅 및 코팅되지 않은 영역을 확인할 수 있다.
이와 같이, 상기 이오노머가 상기 촉매 표면에 균일하게 코팅되기 때문에 종래의 다른 방법들에 비해 더 많은 함량의 이오노머가 필요하게 된다. 구체적으로, 하기 수학식 1로 표시되는 상기 촉매의 담체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6 일 수 있다. 이는 기존 전극 대비 I/C ratio가 0.05 내지 0.2 만큼 향상된 것일 수 있다. 상기 기존 전극은 5 nm 이하의 이오노머 코팅층을 포함하지 않는 경우로, 볼밀 등의 기존 혼합 방법을 이용하여 제조된 것일 수 있다.
[수학식 1]
I/C ratio = WI / WC
WI = 이오노머(Ionomer)의 전체 중량
WC = 담체(Carrier)의 전체 중량
또한, 상기 전극은 전기화학적 유효 표면적(electrochemical active surface area, ECSA)이 기존 전극 대비 1 내지 30 % 성능 향상을 나타낼 수 있고, 구체적으로는 5 내지 20 % 성능 향상을 나타낼 수 있다. 상기 전기화학적 유효 표면적은 회전 원반 전극(Rotating Disk Electrode)를 이용해 시클로-볼타메트리(Cyclo-voltammetry)를 측정해 수소 산화반응 면적을 구해 측정할 수 있다. 상기 기존 전극은 5 nm 이하의 이오노머 코팅층을 포함하지 않는 경우로, 볼밀 등의 기존 혼합 방법을 이용하여 제조된 것일 수 있다.
본 발명의 또 다른 일 실시예에 따른 막-전극 어셈블리는 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고 상기 애노드 전극과 캐소드 전극 사이에 위치하는 상기 이온 교환막을 포함한다. 상기 애노드 전극, 상기 캐소드 전극 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 본 발명의 일 실시예에 따른 전극을 포함할 수 있다. 상기 전극과 상기 전극의 제조 방법에 대한 설명은 상술한 바와 동일하므로 반복적인 설명은 생략한다.
도 2는 상기 막-전극 어셈블리를 개략적으로 나타낸 단면도이다. 상기 도 2를 참조하여 설명하면, 상기 막-전극 어셈블리(100)는 상기 이온 교환막(50) 및 상기 이온 교환막(50)의 양면에 각각 배치되는 상기 전극(20, 20')을 포함한다. 상기 전극(20, 20')은 전극기재(40, 40')와 상기 전극기재(40, 40') 표면에 형성된 촉매층(30, 30')을 포함하며, 상기 전극 기재(40, 40')와 상기 촉매층(30, 30') 사이에 상기 전극기재(40, 40')에서의 물질 확산을 용이하게 하기 위해 탄소분말, 카본 블랙 등의 도전성 미세 입자를 포함하는 미세기공층(미도시)을 더 포함할 수도 있다.
상기 막-전극 어셈블리(100)에 있어서, 상기 이온 교환막(50)의 일면에 배치되어 상기 전극기재(40)를 지나 상기 촉매층(30)으로 전달된 연료로부터 수소 이온과 전자를 생성시키는 산화 반응을 일으키는 전극(20)을 애노드 전극이라 하고, 상기 이온 교환막(50)의 다른 일면에 배치되어 상기 이온 교환막(50)을 통해 공급받은 수소 이온과 전극기재(40')를 지나 상기 촉매층(30')으로 전달된 산화제로부터 물을 생성시키는 환원 반응을 일으키는 전극(20')을 캐소드 전극이라 한다.
상기 애노드 및 캐소드 전극(20, 20')의 촉매층(30, 30')은 상기 촉매, 이오노머 및 폴리아크릴산을 포함하는 본 발명의 일 실시예에 따른 전극을 포함한다.
상기 전극기재(40, 40')로는 수소 또는 산소의 원활한 공급이 이루어질 수 있도록 다공성의 도전성 기재가 사용될 수 있다. 그 대표적인 예로 탄소 페이퍼(carbon paper), 탄소 천(carbon cloth), 탄소 펠트(carbon felt) 또는 금속천(섬유 상태의 금속천으로 구성된 다공성의 필름 또는 고분자 섬유로 형성된 천의 표면에 금속 필름이 형성된 것을 말함)이 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 전극기재(40, 40')는 불소 계열 수지로 발수 처리한 것을 사용하는 것이 연료 전지의 구동시 발생되는 물에 의하여 반응물 확산 효율이 저하되는 것을 방지할 수 있어 바람직하다. 상기 불소 계열 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드알콕시비닐 에테르, 플루오리네이티드 에틸렌 프로필렌(Fluorinated ethylene propylene), 폴리클로로트리플루오로에틸렌 또는 이들의 코폴리머를 사용할 수 있다.
상기 막-전극 어셈블리(100)는 상기 애노드 또는 캐소드 전극(20, 20')으로서 본 발명에 따른 전극을 사용하는 것을 제외하고는 통상의 막-전극 어셈블리의 제조 방법에 따라 제조할 수 있다.
본 발명의 또 다른 일 실시예에 따른 연료 전지는 상기 막-전극 어셈블리를 포함한다.
도 3은 상기 연료 전지의 전체적인 구성을 도시한 모식도이다.
상기 도 3을 참조하면, 상기 연료 전지(200)는 연료와 물이 혼합된 혼합 연료를 공급하는 연료 공급부(210), 상기 혼합 연료를 개질하여 수소 가스를 포함하는 개질 가스를 발생시키는 개질부(220), 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스가 산화제와 전기 화학적인 반응을 일으켜 전기 에너지를 발생시키는 스택(230), 및 산화제를 상기 개질부(220) 및 상기 스택(230)으로 공급하는 산화제 공급부(240)를 포함한다.
상기 스택(230)은 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스와 산화제 공급부(240)로부터 공급되는 산화제의 산화/환원 반응을 유도하여 전기 에너지를 발생시키는 복수의 단위 셀을 구비한다.
각각의 단위 셀은 전기를 발생시키는 단위의 셀을 의미하는 것으로서, 수소 가스를 포함하는 개질 가스와 산화제 중의 산소를 산화/환원시키는 상기 막-전극 어셈블리와, 수소 가스를 포함하는 개질 가스와 산화제를 막-전극 어셈블리로 공급하기 위한 분리판(또는 바이폴라 플레이트(bipolar plate)라고도 하며, 이하 '분리판'이라 칭한다)을 포함한다. 상기 분리판은 상기 막-전극 어셈블리를 중심에 두고, 그 양측에 배치된다. 이 때, 상기 스택의 최외측에 각각 위치하는 분리판을 특별히 엔드 플레이트라 칭하기도 한다.
상기 분리판 중 상기 엔드 플레이트에는 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스를 주입하기 위한 파이프 형상의 제1 공급관(231)과, 산소 가스를 주입하기 위한 파이프 형상의 제2 공급관(232)이 구비되고, 다른 하나의 엔드 플레이트에는 복수의 단위 셀에서 최종적으로 미반응되고 남은 수소 가스를 포함하는 개질 가스를 외부로 배출시키기 위한 제1 배출관(233)과, 상기한 단위 셀에서 최종적으로 미반응되고 남은 산화제를 외부로 배출시키기 위한 제2 배출관(234)이 구비된다.
상기 전극은 상기한 연료 전지용 막-전극 어셈블리 이외에도 이차 전지 또는 커패시터 등의 다양한 분야에 적용 가능하다.
본 발명의 또 다른 일 실시예에 따른 이오노머가 코팅된 탄소 구조체의 제조 방법은 탄소 구조체와 이오노머를 포함하는 혼합물을 제조하는 단계, 그리고 상기 혼합물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 탄소 구조체 표면에 상기 이오노머를 코팅하는 단계를 포함한다.
우선, 탄소 구조체와 이오노머를 포함하는 혼합물을 제조한다.
상기 탄소 구조체는 탄소로 이루어진 다양한 형상의 구조체로서, 본 발명에서 그 종류가 특별히 한정되지 않는다.
상기 탄소 구조체는 마이크로 내지 나노 수준의 크기를 가질 수 있으며, 특정 크기나 모양에 한정되지 않는다.
상기 탄소 구조체의 구체적인 예로는 카본 나노 튜브(carbon nano tube, CNT), 카본 나노 와이어(carbon nano wire), 그래핀(graphene), 산화 그래핀(graphene oxide), 카본 블랙(carbon black), 나노구조 탄소(nanostructured carbon), 다공성 탄소(porous carbon) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나를 들 수 있다.
한편, 상기 이오노머는 상술한 바와 동일하므로 반복적인 설명은 생략한다.
상기 이오노머의 투입량은 상기 탄소 구조체의 비표면적을 감안해 상기 이오노머의 투입량을 결정하는 것이 바람직하며, 통상적으로 상기 이오노머는 상기 탄소 구조체 100 중량부에 대하여 30 중량부 내지 200 중량부, 구체적으로 50 중량부 내지 150 중량부로 포함될 수 있다. 상기 이오노머의 함량이 30 중량부 미만일 경우에는 상기 탄소 구조체에 상기 이오노머가 미코팅되는 부분이 존재할 수 있고, 200 중량부를 초과하는 경우에는 이오노머의 과다로 이오노머간 응집 부분이 발생할 수 있다.
상기 혼합물은 구체적으로 상기 탄소 구조체를 이오노머에 첨가하거나, 상기 이오노머를 상기 탄소 구조체에 첨가하여 제조할 수 있고, 상기 첨가 후 상기 제조된 혼합물을 혼합하여 줄 필요는 없으나, 상기 공진 혼합에 앞서 일반적인 방법에 의하여 혼합하는 것도 가능하다. 이때, 상기 일반적인 혼합 방법은 초음파 분산, 교반, 3롤밀, 볼밀, 유성교반, 고압분산 및 이들의 혼합법 중에서 선택되는 어느 하나 이상의 분산법을 이용할 수 있다.
상기 혼합물은 상기 탄소 구조체 및 상기 이오노머와 함께 용매를 더 포함할 수 있는데, 이 경우 상기 혼합물은 상기 탄소 구조체를 상기 용매에 첨가하여 탄소 구조체 용액을 제조한 후 상기 탄소 구조체 용액에 상기 이오노머를 첨가하여 제조할 수 있고, 상기 이오노머를 상기 용매에 첨가하여 이오노머 용액을 제조한 후 상기 이오노머 용액에 상기 탄소 구조체를 첨가하여 제조할 수 있고, 상기 탄소 구조체 용액과 상기 이오노머 용액을 혼합하여 제조할 수도 있다.
상기 용매는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매일 수 있고, 상기 친수성 용매 및 유기용매에 대한 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.
상기 용매는 상기 혼합물 전제 중량에 대하여 80 내지 95 중량%로 함유될 수 있으며, 80 중량% 미만일 경우에는 고형분의 함량이 너무 높아 이오노머가 코팅된 탄소 구조체 도포시 균열 및 고점도로 인한 분산 문제가 있을 수 있고, 95 중량%를 초과하는 경우에는 이오노머가 코팅된 탄소 구조체의 활성에 불리할 수 있다.
다음으로, 상기 혼합물을 공진 혼합하여 상기 탄소 구조체 표면에 상기 이오노머를 코팅한다.
상기 공진 혼합은 혼합이 공진하는 혼합 공정으로서, 상기 혼합의 공진은 혼합 성분들의 진동과 가속의 조합의 결과로 발생시킬 수 있다. 상기 공진 혼합을 하게 되면 약 50 ㎛ 직경의 다수의 강력한 혼합 영역을 발생시켜 데드 존(dead-zone)을 없애 전체적으로 균일한 혼합이 가능해진다.
상기 공진 혼합은 임펠러 등 교반에 필요한 부품이 필요 없어 오염을 최소화 할 수 있으며, 손실율(Loss)을 감소시킬 수 있고, 가용 점도 범위는 1 cP 내지 100만 cP 이상이며, 진공이나 온도를 조절할 수도 있다.
상기 공진 혼합을 할 수 있는 상용화되어 있는 기기로는 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM) 등을 이용할 수 있다.
본 발명의 발명자들은 상기 공진 혼합을 이용하면 상기 탄소 구조체 표면에 상기 이오노머를 5 nm 이하의 나노 두께로 코팅 가능하다는 것을 발견하고 본 발명을 완성하였다.
도 4는 상기 탄소 구조체 표면에 상기 이오노머가 코팅되는 과정을 나타내는 모식도이다. 도 4를 참고하면, 상기 공진 혼합에 의하여 탄소 구조체(11)의 표면이 상기 이오노머(13)에 의하여 나노 두께로 코팅된다. 즉, 상기 공진 혼합을 이용해 보다 단단한 구조의 상기 탄소 구조체(11)의 표면으로 보다 무른 형태의 상기 이오노머(13)가 코팅될 수 있다.
이를 위하여, 상기 공진 혼합은 저주파 음향 에너지를 가하여 이루어질 수 있다. 상기 저주파 음향 에너지는 10 내지 20000 Hz의 주파수 영역 내에 있는 유형 매체를 통한 직선 또는 구면 에너지 전파로서, 본 발명에서는 상기 탄소 구조체 표면에 상기 이오노머를 나노 두께로 코팅시키기 위하여, 10 내지 100 Hz의 주파수, 구체적으로 50 내지 70 Hz의 주파수를 가지는 저주파 음향 에너지를 이용한다.
또한, 상기 공진 혼합은 상기 주파수 하에서 상기 탄소 구조체와 이오노머의 혼합물이 담긴 용기에 10 내지 100 G, 구체적으로 40 내지 100 G의 가속도를 가하여 이루어질 수 있다(여기서, G는 중력가속도를 의미하며, 예를 들어 10 G는 중력가속도의 10 배를 의미한다).
상기 가속도가 10 G 미만인 경우 미혼합 영역이 존재할 수 있고, 코팅이 이루어지지 않을 수도 있고, 100 G를 초과하는 경우 이오노머끼리 뭉침 현상이나 상분리 및 발열에 의한 혼합 조건 변화 등의 문제가 있을 수 있다.
상기 주파수 영역 내의 저주파 음향 에너지와 상기 가속도를 상기 혼합물에 가하기 위한 방법에 대한 설명은 상기한 바와 동일하므로 반복적인 설명은 생략한다.
상기 공진 혼합은 30 초 내지 30 분 동안 이루어질 수 있고, 구체적으로 1 분 내지 10 분 동안의 짧은 시간 동안 이루어질 수 있다. 상기 공진 혼합의 시간이 30 초 미만인 경우 덜 혼합되거나 코팅 특성을 확인할 수 없을 수 있고, 30 분을 초과하는 경우 시료나 조성이 변화될 수 있다.
또한, 상기 공진 혼합은 고체-고체, 고체-액체, 액체-액체, 액체-기체 등 광범위한 물질의 혼합도 가능하므로, 상기 공진 혼합을 이용하면 상기 혼합물이 용매를 포함하지 않고 상기 탄소 구조체와 상기 이오노머만을 포함하는 고체-고체 혼합이 가능하고, 상기 탄소 구조체, 상기 이오노머, 및 이 둘 모두가 용매를 포함하는 고체-액체 또는 액체-액체 혼합도 가능하다.
본 발명의 또 다른 일 실시예에 따른 이오노머가 코팅된 탄소 구조체는 상술한 이오노머가 코팅된 탄소 구조체의 제조 방법에 의하여 제조될 수 있다. 이에 따라, 상기 이오노머가 코팅된 탄소 구조체는 탄소 구조체 및 이오노머를 포함하며, 상기 이오노머는 상기 탄소 구조체 및 상기 이오노머를 포함하는 혼합물에 저주파 음향 에너지를 가하여 공진 혼합하여 상기 탄소 구조체 표면에 코팅되며, 이때 상기 이오노머 코팅층은 5 nm 이하의 나노 두께, 구체적으로 0.5 내지 4 nm의 나노 두께를 가질 수 있다. 상기 이오노머 코팅층의 두께가 5 nm 이하인 경우 상기 탄소 구조체의 활용 측면에서 바람직하다.
또한, 상기 공진 혼합을 이용하여 상기 탄소 구조체 표면에 상기 이오노머를 코팅하는 경우 다양한 두께의 이오노머 응집 층(ionomer aggregation layer)들이 현저히 감소될 수 있다.
종래의 다른 방법들로 상기 탄소 구조체와 상기 이오노머를 혼합하는 경우 코팅이 이루어지지 않거나, 다양한 두께를 가지는 이오노머 응집 층들이 형성되나, 상기 공진 혼합을 이용하여 상기 탄소 구조체 표면에 상기 이오노머를 코팅하는 경우 상기 탄소 구조체를 5 nm 이하의 두께로 코팅하는 이오노머 층을 상기 이오노머가 코팅된 탄소 구조체의 전체 영역에서 거의 균일하게 형성될 수 있다.
상기 이오노머의 대부분은 상기 탄소 구조체를 코팅하기 위해 사용되며, 상기 탄소 구조체 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 60 중량% 내지 100 중량%일 수 있고, 구체적으로 85 중량% 내지 95 중량%일 수 있다. 상기 탄소 구조체 표면에 5 nm 이하의 두께로 코팅된 이오노머가 상기 이오노머 전체 중량에 대하여 60 중량% 미만인 경우 코팅되지 않은 영역이 발생할 수 있고, 100 중량%를 초과하는 경우 이오노머의 응집된 부분이 발생할 수 있다.
또한, 상기 탄소 구조체 표면에 코팅되지 않고 응집된 이오노머로 이루어지는 이오노머 응집 층은 상기 이오노머 전체 중량에 대하여 0 중량% 내지 40 중량%일 수 있고, 구체적으로 1 중량% 내지 15 중량%일 수 있다. 상기 이오노머 응집 층이 상기 이오노머 전체 중량에 대하여 40 중량%를 초과하는 경우 이오노머의 응집된 영역이 발생할 수 있다.
상기 탄소 구조체 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머가 코팅된 탄소 구조체를 전자 현미경(TEM) 또는 주사 투과 전자 현미경(STEM)으로 관찰시 두께가 5 nm 이하인 것을 의미하고, 상기 탄소 구조체 표면에 코팅되지 않고 응집된 이오노머는 상기 이오노머가 코팅된 탄소 구조체를 TEM 또는 STEM으로 관찰시 두께가 5 nm를 초과하거나, 응집된 이오노머가 TEM, STEM 또는 주사 전자 현미경(SEM)으로 관찰되는 것을 의미한다. 또한, 상기 이오노머는 상기 탄소 구조체 표면에 5 nm 이하의 두께로 코팅된 이오노머 및 상기 탄소 구조체 표면에 코팅되지 않고 응집된 이오노머 이외의 이오노머를 나머지 함량으로 포함할 수 있다. 상기 탄소 구조체 표면에 5 nm 이하의 두께로 코팅된 이오노머의 함량 또는 상기 응집된 이오노머의 함량은 상기 이오노머가 코팅된 탄소 구조체 전체에 대하여 측정한 함량 값일 수 있고, 상기 이오노머가 코팅된 탄소 구조체의 임의의 적어도 5 군데에 대한 투과 전자 현미경(TEM) 사진 상 존재하는 탄소 구조체 표면에 5 nm 이하의 두께로 코팅된 이오노머의 함량 또는 응집된 이오노머의 함량을 측정한 후 이들의 평균 값을 계산하여 구할 수도 있다.
또한, 상기 이오노머가 불소계 이오노머인 경우, 상기 이오노머가 코팅된 탄소 구조체는 TEM 또는 SEM 분석 조건에서 에너지분산형 분광분석법(energy dispersive X-ray spectroscope, EDS)에 의한 분석시 불소(F)의 검출로 상기 이오노머의 분포로 코팅 및 코팅되지 않은 영역을 확인할 수 있다.
또한, 상기 이오노머가 이온 교환 그룹으로 술폰산기를 포함하는 경우, 상기 이오노머가 코팅된 탄소 구조체는 TEM 또는 SEM 분석 조건에서 에너지분산형 분광분석법(energy dispersive X-ray spectroscope, EDS)에 의한 분석시 황(S)의 검출로 상기 이오노머의 분포를 확인할 수 있으며, 상기 이오노머의 분포로 코팅 및 코팅되지 않은 영역을 확인할 수 있다.
이와 같이, 상기 이오노머가 상기 탄소 구조체 표면에 균일하게 코팅되기 때문에 종래의 다른 방법들에 비해 더 많은 함량의 이오노머가 필요하게 된다. 구체적으로, 하기 수학식 2로 표시되는 상기 탄소 구조체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6 일 수 있다. 이는 기존 탄소 구조체와 이오노머의 혼합물 대비 I/C ratio가 0.05 내지 0.2 만큼 향상된 것일 수 있다. 상기 기존 탄소 구조체와 이오노머의 혼합물은 5 nm 이하의 이오노머 코팅층을 포함하지 않는 경우로, 볼밀 등의 기존 혼합 방법을 이용하여 제조된 것일 수 있다.
[수학식 2]
I/C ratio = WI / WC
WI = 이오노머(Ionomer)의 전체 중량
WC = 탄소 구조체(Carbon structure)의 전체 중량
또한, 상기 이오노머가 코팅된 탄소 구조체는 다양한 분산장치로 용매에 분산 후 방치해 두었을 때 육안상 층 분리가 일어나지 않는 범위에서 분산 안정성이 0.5 일 내지 15 일, 구체적으로 1 일 내지 8 일을 나타낼 수 있다. 상기 분산 안정성이 0.5 일 미만인 경우 이오노머 층이 코팅이 되지 않은 것임을 의미한다.
상기 이오노머가 코팅된 탄소 구조체는 연료 전지, 이차 전지 또는 커패시터 등의 전기 화학 디바이스 분야에서 촉매 담체, 전극 물질 등으로의 적용될 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되는 것은 아니다. 또한, 여기에 기재되지 않은 내용은 당 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것으로 그 설명을 생략한다.
[ 제조예 1: 전극의 제조]
( 실시예 1-1)
Pt/C(다나카 사(社) 제품) 1.0 g을 용기에 개량하고, 이오노머 파우더(Nafion, 듀폰 사(社) 제품) 1.0 g을 개량해 동일 용기에 넣었다.
상기 혼합물이 담긴 용기를 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM)에 장착하였다. 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 5 분 동안 혼합시켜 전극 형성용 조성물을 제조하였다.
상기 전극 형성용 조성물을 폴리이미드 이형필름에 코팅속도 10 mm/s, 코팅 두께 100 ㎛의 조건으로 바 코팅한 후, 30 ℃, 6 시간 동안 건조시켜 전극을 제조하였다.
상기 건조된 전극을 필요한 크기로 자르고, 이온 교환막(듀폰社 제품; Nafion 212 Membrane) 양면에 전극과 이온 교환막이 맞닿게 정렬시킨 후, 100 ℃, 100 kgf/cm2의 열 및 압력 조건으로 5 분간 압착한 후, 1 분간 상온에서 유지하는 방법으로 핫프레싱하여 전사하고, 이형필름을 박리하여 막-전극 어셈블리를 제조하였다.
( 실시예 1-2)
상기 실시예 1-1에서 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 10분 동안 혼합시킨 것을 제외하고는 상기 실시예 1-1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.
( 실시예 1-3)
상기 실시예 1-1에서 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 80 G의 가속도로 5분 동안 혼합시킨 것을 제외하고는 상기 실시예 1-1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.
( 실시예 1-4)
Pt/C(다나카 사(社) 제품) 1.0 g을 용기에 개량하고, 이오노머 용액(Nafion 20 % 용액, 듀폰 사(社) 제품) 5.0 g을 개량해 동일 용기에 넣었다.
상기 혼합물이 담긴 용기를 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM)에 장착하였다. 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 5 분 동안 혼합시켜 전극 형성용 조성물을 제조하였다.
상기 전극 형성용 조성물을 폴리이미드 이형필름에 코팅속도 10 mm/s, 코팅 두께 100 ㎛의 조건으로 바 코팅한 후, 30 ℃, 6 시간 동안 건조시켜 전극을 제조하였다.
상기 건조된 전극을 필요한 크기로 자르고, 이온 교환막(듀폰社 제품; Nafion 212 Membrane) 양면에 전극과 이온 교환막이 맞닿게 정렬시킨 후, 100 ℃, 100 kgf/cm2의 열 및 압력 조건으로 5 분간 압착한 후, 1 분간 상온에서 유지하는 방법으로 핫프레싱하여 전사하고, 이형필름을 박리하여 막-전극 어셈블리를 제조하였다.
( 비교예 1-1)
Pt/C(다나카 사(社) 제품) 1.0 g을 용기에 개량하고, 이오노머 용액(Nafion 20 % 용액, 듀폰 사(社) 제품) 5.0 g을 개량해 동일 용기에 넣었다.
상기 혼합물을 볼밀을 이용하여 분산 및 교반시켜 전극 형성용 조성물을 제조하였다.
이후 상기 전극 형성용 조성물을 데칼필름에 코팅, 건조하여 막-전극 어셈블리를 제조하는 단계는 상기 실시예에서 기재한 바와 동일하게 진행하여 막-전극 어셈블리를 제조하였다.
[ 실험예 1-1]
( 실험예 1-1: TEM 사진 관찰)
상기 실시예 1-1 및 비교예 1-1에서 제조된 전극의 투과 전자 현미경(Transmission Electron Microscope, TEM) 사진을 각각 하기 도 5 및 도 6에 나타내었다.
상기 도 5 및 도 6을 참고하면, 상기 실시예 1-1에서와 같이 공진 혼합으로 제조된 전극은 촉매의 표면에 이오노머의 코팅 현상이 뚜렷하게 관찰되며, 그 코팅 두께가 5 nm 이하인 것을 확인할 수 있다. 구체적으로, 상기 도 5에서 화살표 부분(A)의 물결 무늬가 이오노머가 5 nm 이하로 코팅된 것을 나타내며, 상기 코팅 부분이 전체적으로 퍼져 있는 것을 확인할 수 있다. 또한, 볼밀로 제조된 비교예 1-1에서 나타나는 이오노머가 겹겹이 쌓인 뭉침 현상(B)이 관찰되지 않음을 확인할 수 있다.
( 실험예 1-2: CV 분석)
상기 실시예 1-1 및 비교예 1-1에서 제조된 막-전극 어셈블리에 대하여 전극에서 출력되는 전압과 전류를 측정하고, 전압-전류밀도의 출력특성(방전성능)을 비교 평가하여 그 결과를 도 7에 나타내었다.
상기 도 7을 참고하면, 상기 실시예에서 제조된 막-전극 어셈블리가 상기 비교예에서 제조된 막-전극 어셈블리에 비하여 전류 밀도에 따른 전압 성능이 우수함을 확인할 수 있고, 이로써 상기 실시예에서 제조된 전극이 상기 비교예에서 제조된 전극에 비하여 전기화학적 유효 표면적 더 크게 나타나는 것, 즉 촉매의 활성이 증대되는 것을 확인할 수 있다.
[ 제조예 2: 이오노머가 코팅된 탄소 구조체의 제조]
( 실시예 2-1)
카본 나노 튜브 1.0 g을 용기에 개량하고, 이오노머 파우더(Nafion, 듀폰 사(社) 제품) 0.2 g을 개량해 동일 용기에 넣었다.
상기 혼합물이 담긴 용기를 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM)에 장착하였다. 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 5 분 동안 혼합시켜 이오노머가 코팅된 탄소 구조체를 제조하였다.
( 실시예 2-2)
상기 실시예 2-1에서 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 10분 동안 혼합시킨 것을 제외하고는 상기 실시예 2-1과 동일하게 실시하여 이오노머가 코팅된 탄소 구조체를 제조하였다.
( 실시예 2-3)
상기 실시예 2-1에서 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 80 G의 가속도로 5분 동안 혼합시킨 것을 제외하고는 상기 실시예 2-1과 동일하게 실시하여 이오노머가 코팅된 탄소 구조체를 제조하였다.
( 실시예 2-4)
상기 실시예 2-1에서 상기 탄소 구조체로 그래핀을 사용한 것을 제외하고는 상기 실시예 2-1과 동일하게 실시하여 이오노머가 코팅된 탄소 구조체를 제조하였다.
( 실시예 2-5)
상기 실시예 2-1에서 상기 탄소 구조체로 카본 블랙을 사용한 것을 제외하고는 상기 실시예 2-1과 동일하게 실시하여 이오노머가 코팅된 탄소 구조체를 제조하였다.
( 실시예 2-6)
카본 나노 튜브 1.0 g을 용기에 개량하고, 이오노머 용액(Nafion 20 % 용액, 듀폰 사(社) 제품) 1.0 g을 개량해 동일 용기에 넣었다.
상기 혼합물이 담긴 용기를 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM)에 장착하였다. 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 5 분 동안 혼합시켜 이오노머가 코팅된 탄소 구조체를 제조하였다.
( 비교예 2-1)
카본 나노 튜브 1.0 g을 용기에 개량하고, 이오노머 파우더(Nafion, 듀폰 사(社) 제품) 0.2 g을 개량해 동일 용기에 넣었다.
상기 혼합물을 볼밀을 이용하여 분산 및 교반시켜 이온 전도체가 혼합된 탄소 구조체를 제조하였다.
[ 실험예 2-1]
( 실험예 2-1: TEM 사진 관찰)
상기 실시예 2-1에서 제조된 이오노머가 코팅된 탄소 구조체와 상기 비교예 2-1에서 제조된 이오노머가 혼합된 탄소 구조체의 투과 전자 현미경(Transmission Electron Microscope, TEM) 사진을 각각 하기 도 8 및 도 9에 나타내었다.
상기 도 8 및 도 9를 참고하면, 상기 실시예 2-1에서와 같이 공진 혼합으로 제조된 이오노머가 코팅된 탄소 구조체는 탄소 구조체의 표면에 이오노머의 코팅 현상이 뚜렷하게 관찰되며, 그 코팅 두께가 5 nm 이하인 것을 확인할 수 있다. 구체적으로, 상기 도 8에서 화살표 부분(A)의 물결 무늬가 이오노머가 5 nm 이하로 코팅된 것을 나타내며, 상기 코팅 부분이 전체적으로 퍼져 있는 것을 확인할 수 있다. 또한, 볼밀로 제조된 비교예 2-1에서 나타나는 이오노머가 겹겹이 쌓인 뭉침 현상(B)이 관찰되지 않음을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만, 상기한 실시예는 본 발명의 특정한 일 예로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명의 권리범위는 후술할 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
1: 담체
2: 촉매 금속 입자
3: 이오노머
11: 탄소 구조체
13: 이오노머
20, 20': 전극
30, 30': 촉매층
40, 40': 전극기재
50: 이온 교환막
100: 막-전극 어셈블리
200: 연료 전지
210: 연료 공급부 220: 개질부
230: 스택 231: 제 1 공급관
232: 제 2 공급관 233: 제 1 배출관
234: 제 2 배출관 240: 산화제 공급부
본 발명은 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것으로서, 상기 전극의 제조 방법은 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있다.
또한, 본 발명은 이오노머가 코팅된 탄소 구조체의 제조 방법, 그리고 이에 의하여 제조된 이오노머가 코팅된 탄소 구조체에 관한 것으로서, 상기 이오노머가 코팅된 탄소 구조체의 제조 방법은 탄소 구조체의 표면에 이오노머를 나노 두께로 코팅함으로써, 탄소 구조체 등의 분산성을 증대시켜 혼합을 용이하게 하고, 분산 안정성을 증대시키며, 탄소 구조체 표면에 이오노머가 균일하게 분포하도록 하여, 탄소 구조체와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 탄소 구조체와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있다. 상기 이오노머가 코팅된 탄소 구조체는 연료 전지, 이차 전지 또는 커패시터 등의 전기 화학 디바이스 분야에서 촉매 담체, 전극 물질 등으로의 적용될 수 있다.

Claims (19)

  1. 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조하는 단계,
    상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고
    상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계
    를 포함하는 전극의 제조 방법.
  2. 제 1 항에 있어서,
    상기 저주파 음향 에너지는 10 내지 100 Hz의 주파수를 가지는 것인 전극의 제조 방법.
  3. 제 1 항에 있어서,
    상기 공진 혼합은 상기 촉매와 이오노머를 포함하는 전극 형성용 조성물에 10 내지 100 G의 가속도를 가하여 이루어지는 것인 전극의 제조 방법.
  4. 제 1 항에 있어서,
    상기 공진 혼합은 30 초 내지 30 분 동안 이루어지는 것인 전극의 제조 방법.
  5. 제 1 항에 있어서,
    상기 전극 형성용 조성물은 용매를 더 포함하는 것인 전극의 제조 방법.
  6. 촉매 및 이오노머를 포함하며,
    상기 이오노머는 상기 촉매의 표면에 5 nm 이하의 두께로 코팅된 것인 전극.
  7. 제 6 항에 있어서,
    상기 이오노머는,
    상기 촉매 및 상기 이오노머를 포함하는 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 코팅된 것인 전극.
  8. 제 6 항에 있어서,
    상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 55 중량% 내지 95 중량%인 것인 전극.
  9. 제 6 항에 있어서,
    상기 촉매 표면에 코팅되지 않고 응집된(aggregated) 이오노머는 상기 이오노머 전체 중량에 대하여 0 중량% 내지 45 중량%인 것인 전극.
  10. 제 6 항에 있어서,
    상기 촉매는 촉매 금속 입자 단독 또는 담체에 담지된 촉매 금속 입자를 포함하는 것인 전극.
  11. 제 10 항에 있어서,
    하기 수학식 1로 표시되는 상기 담체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6인 것인 전극.
    [수학식 1]
    I/C ratio = WI / WC
    WI = 이오노머(Ionomer)의 전체 중량
    WC = 담체(Carrier)의 전체 중량
  12. 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고
    상기 애노드 전극과 캐소드 전극 사이에 위치하는 이온 교환막을 포함하며,
    상기 애노드 전극, 상기 캐소드 전극 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 제 6 항에 따른 전극을 포함하는 것인 막-전극 어셈블리.
  13. 제 12 항에 따른 막-전극 어셈블리를 포함하는 것인 연료 전지.
  14. 탄소 구조체(carbon structure)과 이오노머를 포함하는 혼합물을 제조하는 단계,
    상기 혼합물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 탄소 구조체 표면에 상기 이오노머를 코팅하는 단계
    를 포함하는 이오노머가 코팅된 탄소 구조체의 제조 방법.
  15. 제 14 항에 있어서,
    상기 탄소 구조체는 카본 나노 튜브(carbon nano tube), 카본 나노 와이어(carbon nano wire), 그래핀(graphene), 산화 그래핀(graphene oxide), 카본 블랙(carbon black), 나노구조 탄소(nanostructured carbon), 다공성 탄소(porous carbon) 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나인 것인 이오노머가 코팅된 탄소 구조체의 제조 방법.
  16. 제 14 항에 있어서,
    상기 저주파 음향 에너지는 10 내지 100 Hz의 주파수를 가지고,
    상기 공진 혼합은 상기 주파수 하에서 상기 탄소 구조체와 이오노머의 혼합물이 담긴 용기에 10 내지 100 G의 가속도를 가하여 이루어지고,
    상기 공진 혼합은 30 초 내지 30 분 동안 이루어지는 것인 이오노머가 코팅된 탄소 구조체의 제조 방법.
  17. 탄소 구조체(carbon structure) 및 이오노머를 포함하며,
    상기 이오노머는 상기 탄소 구조체의 표면에 5 nm 이하의 두께로 코팅된 것인 이오노머가 코팅된 탄소 구조체.
  18. 제 17 항에 있어서,
    상기 이오노머는,
    상기 탄소 구조체 및 상기 이오노머를 포함하는 혼합물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 탄소 구조체 표면에 코팅된 것인 이오노머가 코팅된 탄소 구조체.
  19. 제 17 항에 있어서,
    하기 수학식 2로 표시되는 상기 탄소 구조체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6인 것인 이오노머가 코팅된 탄소 구조체.
    [수학식 2]
    I/C ratio = WI / WC
    WI = 이오노머(Ionomer)의 전체 중량
    WC = 탄소 구조체(Carbon structure)의 전체 중량
PCT/KR2017/015301 2016-12-28 2017-12-22 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 WO2018124645A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17887671.0A EP3536664B1 (en) 2016-12-28 2017-12-22 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
JP2019521674A JP6895517B2 (ja) 2016-12-28 2017-12-22 電極の製造方法、これによって製造された電極、前記電極を含む膜−電極アセンブリー、そして前記膜−電極アセンブリーを含む燃料電池
CN201780066307.3A CN109890752A (zh) 2016-12-28 2017-12-22 电极的制备方法,由该法制备的电极,含该电极的膜电极组件及含该膜电极组件的燃料电池
US16/343,522 US11283093B2 (en) 2016-12-28 2017-12-22 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
US17/592,595 US11557782B2 (en) 2016-12-28 2022-02-04 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160181590A KR102189064B1 (ko) 2016-12-28 2016-12-28 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
KR10-2016-0181590 2016-12-28
KR10-2017-0000025 2017-01-02
KR1020170000025A KR102175008B1 (ko) 2017-01-02 2017-01-02 이오노머가 코팅된 탄소 구조체의 제조 방법, 그리고 이에 의하여 제조된 이오노머가 코팅된 탄소 구조체

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/343,522 A-371-Of-International US11283093B2 (en) 2016-12-28 2017-12-22 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
US17/592,595 Division US11557782B2 (en) 2016-12-28 2022-02-04 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly

Publications (1)

Publication Number Publication Date
WO2018124645A1 true WO2018124645A1 (ko) 2018-07-05

Family

ID=62709538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015301 WO2018124645A1 (ko) 2016-12-28 2017-12-22 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지

Country Status (5)

Country Link
US (2) US11283093B2 (ko)
EP (1) EP3536664B1 (ko)
JP (2) JP6895517B2 (ko)
CN (1) CN109890752A (ko)
WO (1) WO2018124645A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302911A (zh) * 2019-08-29 2022-04-08 陶氏环球技术有限责任公司 制备聚烯烃固体和碳固体的均匀混合物的方法
EP3970220A4 (en) * 2019-05-13 2022-08-10 Nikola Corporation CATALYST LAYERS OF MEMBRANE-ELECTRODE ASSEMBLIES AND METHODS OF MAKING THEM

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017538A1 (ko) * 2017-07-19 2019-01-24 한국에너지기술연구원 고분자연료전지 백금 용해시 발생되는 이오노머 재배열을 억제할 수 있는 전극 제조방법
EP4021696A1 (en) * 2019-08-29 2022-07-06 Dow Global Technologies LLC Method of making a homogeneous mixture of polyvinyl chloride solids and additive
CN114450831A (zh) * 2019-09-30 2022-05-06 可隆工业株式会社 具有高分散稳定性的离聚物分散体、其制造方法及使用其制造的聚合物电解质膜
GB201916427D0 (en) * 2019-11-12 2019-12-25 Johnson Matthey Plc Process
CN113745613A (zh) * 2021-08-04 2021-12-03 深圳市贝特瑞新能源技术研究院有限公司 膜电极、其制备方法及燃料电池
CN114899419B (zh) * 2022-04-22 2023-11-03 中国科学院大连化学物理研究所 一种改善燃料电池催化层质子传导的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265734A (ja) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd 燃料電池用触媒電極、その製造方法、燃料電池用高分子電解質膜・電極接合体及び燃料電池
JP2011159586A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp 燃料電池用触媒層構造
US20110294658A1 (en) * 2008-11-10 2011-12-01 Institut National De La Recherche Scientifique Catalyst precursors, catalysts and methods of producing same
KR20150037922A (ko) * 2012-08-02 2015-04-08 도요타지도샤가부시키가이샤 연료 전지용 전극 및 연료 전지용 전극, 막 전극 접합체 및 연료 전지의 제조 방법
KR20150075106A (ko) * 2012-10-26 2015-07-02 아우디 아게 연료 전지 막 전극 조립체 제조 공정

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282067A (ja) 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd 高分子電解質形燃料電池触媒層の構成ならびに製造方法
US7188993B1 (en) 2003-01-27 2007-03-13 Harold W Howe Apparatus and method for resonant-vibratory mixing
KR100684836B1 (ko) 2005-03-28 2007-02-20 삼성에스디아이 주식회사 연료전지용 촉매 복합체, 이의 제조방법, 이를 포함하는막-전극 어셈블리, 및 이를 포함하는 연료전지 시스템
JP5157041B2 (ja) 2005-03-31 2013-03-06 株式会社エクォス・リサーチ マイクロ/ナノカプセル、燃料電池用の触媒層、燃料電池、及びマイクロ/ナノカプセルの製造方法
JP5371270B2 (ja) 2007-06-12 2013-12-18 キヤノン株式会社 燃料電池用触媒層の製造方法
US20100294113A1 (en) * 2007-10-30 2010-11-25 Mcpherson Michael D Propellant and Explosives Production Method by Use of Resonant Acoustic Mix Process
KR101080783B1 (ko) 2008-10-06 2011-11-07 현대자동차주식회사 고분자전해질 연료전지용 전극 및 막전극접합체의 제조 방법
CN103501901A (zh) * 2011-02-08 2014-01-08 国家科学研究学院 使用热可分解的多孔载体制成的催化剂
KR101963921B1 (ko) * 2011-07-08 2019-03-29 아우디 아게 백금 저함량 전극
JP5877494B2 (ja) 2011-08-25 2016-03-08 日産自動車株式会社 燃料電池用電極触媒層、燃料電池用電極、燃料電池用膜電極接合体及び燃料電池
RU2638532C2 (ru) 2012-03-08 2017-12-14 Аркэктив Лимитед Улучшенная конструкция свинцово-кислотного аккумулятора
US8883264B2 (en) * 2012-11-01 2014-11-11 Xerox Corporation Method of powder coating and powder-coated fuser member
CN105229834B (zh) 2013-05-16 2017-09-29 丰田自动车株式会社 燃料电池用电极及其制造方法
JP5994729B2 (ja) * 2013-05-24 2016-09-21 トヨタ自動車株式会社 燃料電池用触媒電極層、膜電極接合体、燃料電池、および、燃料電池用触媒電極層を製造する方法。
KR102119393B1 (ko) 2015-12-30 2020-06-05 코오롱인더스트리 주식회사 전극과 전극의 제조방법, 그리고 이를 포함하는 연료전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265734A (ja) * 2006-03-28 2007-10-11 Toppan Printing Co Ltd 燃料電池用触媒電極、その製造方法、燃料電池用高分子電解質膜・電極接合体及び燃料電池
US20110294658A1 (en) * 2008-11-10 2011-12-01 Institut National De La Recherche Scientifique Catalyst precursors, catalysts and methods of producing same
JP2011159586A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp 燃料電池用触媒層構造
KR20150037922A (ko) * 2012-08-02 2015-04-08 도요타지도샤가부시키가이샤 연료 전지용 전극 및 연료 전지용 전극, 막 전극 접합체 및 연료 전지의 제조 방법
KR20150075106A (ko) * 2012-10-26 2015-07-02 아우디 아게 연료 전지 막 전극 조립체 제조 공정

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3970220A4 (en) * 2019-05-13 2022-08-10 Nikola Corporation CATALYST LAYERS OF MEMBRANE-ELECTRODE ASSEMBLIES AND METHODS OF MAKING THEM
CN114302911A (zh) * 2019-08-29 2022-04-08 陶氏环球技术有限责任公司 制备聚烯烃固体和碳固体的均匀混合物的方法

Also Published As

Publication number Publication date
JP6895517B2 (ja) 2021-06-30
EP3536664A4 (en) 2020-09-30
JP7083003B2 (ja) 2022-06-09
US11557782B2 (en) 2023-01-17
US20190245232A1 (en) 2019-08-08
EP3536664B1 (en) 2023-11-01
US11283093B2 (en) 2022-03-22
EP3536664A1 (en) 2019-09-11
JP2020145210A (ja) 2020-09-10
CN109890752A (zh) 2019-06-14
JP2019531582A (ja) 2019-10-31
US20220158208A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
WO2018124645A1 (ko) 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
WO2020004848A1 (ko) 막-전극 어셈블리의 제조 방법, 이를 이용하여 제조된 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지
WO2018062769A1 (ko) 담체, 연료전지용 전극, 막-전극 접합체 및 이를 포함하는 연료전지
WO2017052248A1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
JP4702735B2 (ja) 燃料電池用ガス拡散層の製造方法
WO2020138800A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
JP2009521790A (ja) 有機/空気燃料電池用膜電極組立体
WO2019066534A2 (ko) 라디칼 스케빈져, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 그리고 이를 포함하는 연료 전지
WO2018236119A1 (ko) 유기 관능성 금속 산화물을 포함하는 전극, 이의 제조 방법, 이를 포함하는 막-전극 어셈블리, 및 상기 막-전극 어셈블리를 포함하는 연료 전지
KR102189064B1 (ko) 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
WO2017175893A1 (ko) 비대칭 밀도 구배를 가지는 연료전지용 복합 전해질막, 이의 제조방법, 이를 포함하는 막-전극 접합체 및 이를 포함하는 연료전지
WO2018124764A1 (ko) 막-전극 어셈블리, 이의 제조 방법 그리고 이를 포함하는 연료 전지
WO2017116113A2 (ko) 전극과 전극의 제조방법, 그리고 이를 포함하는 연료전지
US20110097651A1 (en) Membrane Electrode Assembly (MEA) Fabrication Procedure on Polymer Electrolyte Membrane Fuel Cell
WO2019132281A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 막-전극 어셈블리 및 연료 전지
JP2007194197A (ja) 触媒電極、その製造方法および固体高分子型燃料電池
CN101051693A (zh) 燃料电池用膜电极组件,其制备方法以及燃料电池系统
KR20170079591A (ko) 연료전지용 전극 형성용 조성물, 연료전지용 전극, 막-전극 접합체와 이의 제조방법, 그리고 이를 포함하는 연료전지
JP2009238388A (ja) 微細孔層用ペースト、膜電極接合体および燃料電池
JP2008258057A (ja) 固体高分子形燃料電池用膜電極接合体
KR102175009B1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
JP2009266774A (ja) 膜電極接合体の製造方法、膜電極接合体、固体高分子型燃料電池
WO2017171328A1 (ko) 고분자 전해질 연료 전지용 나노구조 전극 및 이의 제조 방법
JP2013020816A (ja) 膜電極接合体およびその製造方法、ならびに燃料電池
JP2010086674A (ja) 燃料電池用触媒層を形成するためのインクジェット用インキ、燃料電池用触媒層及びその製造方法並びに触媒層−電解質膜積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521674

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017887671

Country of ref document: EP

Effective date: 20190319