WO2019059570A1 - 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매 - Google Patents

연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매 Download PDF

Info

Publication number
WO2019059570A1
WO2019059570A1 PCT/KR2018/010409 KR2018010409W WO2019059570A1 WO 2019059570 A1 WO2019059570 A1 WO 2019059570A1 KR 2018010409 W KR2018010409 W KR 2018010409W WO 2019059570 A1 WO2019059570 A1 WO 2019059570A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
catalyst
fuel cell
supporting
solvent
Prior art date
Application number
PCT/KR2018/010409
Other languages
English (en)
French (fr)
Inventor
이원균
김상훈
황교현
조준연
김광현
최란
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880039186.8A priority Critical patent/CN110741497B/zh
Priority to US16/620,717 priority patent/US11374230B2/en
Publication of WO2019059570A1 publication Critical patent/WO2019059570A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a process for producing a catalyst for a fuel cell and a catalyst for a fuel cell produced thereby.
  • Fuel Cell is a clean energy source that can replace fossil energy. It is a clean energy source that can replace the chemical energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol, The power generation system.
  • Examples of the fuel cell include a polymer electrolyte membrane fuel cell (PEMFC) and a direct methanol fuel cell (DMFC) using methanol as a fuel, and a PEMFC or a DMFC Membrane Electrode Assembly (MEA) is what affects performance.
  • PEMFC polymer electrolyte membrane fuel cell
  • DMFC direct methanol fuel cell
  • MEA DMFC Membrane Electrode Assembly
  • the MEA is composed of a solid polymer electrolyte membrane containing a hydrogen-ion conductive polymer and two electrodes separated therefrom.
  • the two electrodes are connected to an anode (also referred to as an "oxidizing electrode” or a “fuel electrode”) and a cathode Electrode “ or " air electrode ").
  • the anode and the cathode include an electrode catalyst for activating the reaction.
  • the electrode catalyst is used by supporting metal nanoparticles on a carrier, it is important to increase the supporting ratio.
  • the present invention provides a method for producing a catalyst for a fuel cell and a catalyst for a fuel cell produced thereby.
  • One embodiment of the present disclosure is directed to a method of fabricating a semiconductor device, comprising: forming a polymer layer on a carrier;
  • one embodiment of the present invention provides a catalyst for a fuel cell produced using the above production method.
  • an embodiment of the present invention includes an electrode catalyst layer including the catalyst for a fuel cell; And a membrane-electrode assembly including an electrolyte membrane.
  • one embodiment of the present invention provides a fuel cell including the membrane-electrode assembly.
  • a high supporting ratio can be maintained even in a carrier having a small specific surface area.
  • a high supporting ratio and uniform supporting can be simultaneously achieved.
  • the amount of the metal precursor used can be reduced, and the cost and time of the process can be saved.
  • FIG. 1 is a schematic view illustrating a process for producing a catalyst for a fuel cell according to an embodiment of the present invention.
  • TEM transmission electron microscope
  • FIG. 6 is a TEM photograph of the catalyst prepared in Comparative Example 1.
  • FIG. 7 is a TEM photograph of the catalyst prepared in Comparative Example 2.
  • FIG. 8 is a TEM photograph of the catalyst prepared in Comparative Example 3.
  • FIG. 8 is a TEM photograph of the catalyst prepared in Comparative Example 3.
  • FIG. 9 is a TEM photograph of the catalyst prepared in Comparative Example 4.
  • FIG. 9 is a TEM photograph of the catalyst prepared in Comparative Example 4.
  • FIG. 11 schematically shows a fuel cell used in the art.
  • One embodiment of the present disclosure is directed to a method of fabricating a semiconductor device, comprising: forming a polymer layer on a carrier;
  • the method for manufacturing a catalyst for a fuel cell according to the present invention by applying the two-step supporting method, cohesion between the supported particles is induced by heat treatment after the first supporting,
  • the untreated particles can be carried on the first support without agglomeration, so that the target support ratio can be reached while maintaining the uniform support shape.
  • it has an advantage in that it can attain 95% or more of the carrying achievement rate (the actual carrying ratio with respect to the target supporting ratio) even in a carrier having a small specific surface area (for example, 100 m 2 / g or less).
  • the amount of the metal precursor is changed according to the target supporting ratio, and thus the actual supporting ratio is changed, so that the supporting rate can be maintained at a constant level.
  • the amount of the metal precursor may be controlled such that the weight of the metal (the weight of the metal / the weight of the carrier + the weight of the metal) is equal to the sum of the target supporting ratio and the sum of the weight of the carrier and the metal.
  • the weight of the metal means the weight of the metal in the metal precursor, not the weight of the metal precursor.
  • the carrier may be a carbon-based carrier, and examples of the carbon-based carrier include carbon black, carbon nanotube (CNT), graphite, graphene, At least one selected from the group consisting of porous carbon, mesoporous carbon, carbon fiber and carbon nano wire can be used.
  • the carbon-based carrier include carbon black, carbon nanotube (CNT), graphite, graphene, At least one selected from the group consisting of porous carbon, mesoporous carbon, carbon fiber and carbon nano wire can be used.
  • the specific surface area (BET) of the support may be 100 m 2 / g or less, specifically 90 m 2 / g or less. This means that, when the production method of the present invention is applied, a carrier having a small specific surface area can also be used.
  • the step of forming the polymer layer on the support may be performed by coating a polymer solution containing a polymer containing at least one of pyridine groups and amine groups on a support.
  • polymer solution containing poly (4-vinylpyridine) or poly (allylamine hydrochloride) on a carrier.
  • the weight average molecular weight of the polymer may be 500 g / mol or more and 1,000,000 g / mol or less, respectively. Specifically, it may be 1,000 g / mol or more and 100,000 g / mol or less, respectively.
  • a polymer layer may be provided on a part or the whole of the surface of the carrier.
  • the polymer layer may be provided in an area of 50% to 100% of the surface of the carbon support.
  • the polymer layer may be provided in an area of 75% to 100%.
  • N in the polymer layer acts as an anchoring site when the metal nanoparticles are supported, thereby ensuring stability and dispersibility .
  • the solvent for forming the polymer solution water; Alcohols such as methanol, ethanol, propanol and isopropanol; And dimethylformamide can be used, and water can be preferably used.
  • the polymer solution may further comprise at least one acid selected from hydrochloric acid, nitric acid, and sulfuric acid.
  • the polymer solution may further comprise at least one acid selected from hydrochloric acid, nitric acid, and sulfuric acid.
  • potassium nitrate when water is used as a solvent in forming the polymer solution, potassium nitrate (KNO 3 ) may be further included in the polymer solution.
  • the content of the polymer is preferably 0.05 to 20% by weight, more preferably 1 to 10% by weight based on the total weight of the polymer solution.
  • the content of the polymer is within the above range, it is easy to coat on the surface of the carrier, so that a uniform coating layer can be formed.
  • the first supporting step includes: a carrier on which the polymer layer is formed; Metal precursors; ≪ / RTI > and a first solvent.
  • the method may include dispersing the carrier on which the polymer layer is formed in the first solvent, and then mixing the metal precursor with the dispersion.
  • the content of the support on which the polymer layer is formed may be 0.1 wt% or more and 3 wt% or less based on the total weight of the first composition.
  • the metal precursor is a material before being reduced to metal nanoparticles, and the metal precursor may be selected according to the kind of the metal nanoparticles.
  • the metal precursor may be a precursor of two or more different metals.
  • the metal precursor may be a metal nitrate (NO 3 - ), a halide (Halide), a hydroxide (OH - ) or a sulfate (SO 4 - ) .
  • the metal precursor is selected from the group consisting of platinum (Pt), cobalt (Co), nickel (Ni), iron (Fe), lead (Pd), ruthenium (Ru), chromium (Cr) Cu), and may be a precursor of at least one metal selected from the group consisting of platinum (Pt) precursors. It is preferable to use a platinum precursor because platinum is more active than other metals when used as a catalyst for a fuel cell.
  • the platinum precursor PtCl 4, K 2 PtCl 4, K 2 PtCl 6, H 2 PtC l4, H 2 PtCl 6, Pt (acac) 2, Pt (NH 3) 4 (NO 3) 2, Pt (NH 3 ) 4 Cl 2, Pt (CH 3 NH 2) 4 (NO 3) 2, Pt (CH 3 NH 2) 4 Cl 2, Pt (H 2 O) 4 (NO 3) 2 Or Pt (H 2 O) 4 Cl 2 , preferably PtCl 4 .
  • acac means acetylacetonate
  • the content of the metal precursor may be 0.1 wt% to 5 wt%, based on the total weight of the first composition.
  • the first solvent may include at least one selected from the group consisting of water, ethylene glycol, diethylene glycol, and propylene glycol.
  • the first solvent may be ethylene glycol.
  • the content of the first solvent may be 93 wt% to 98 wt%, based on the total weight of the first composition.
  • the first composition is sodium (NaOH), barium hydroxide hydroxide (Ba (OH) 2), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2) and lithium hydroxide (LiOH) , which is to adjust the pH of the first composition by adding a basic substance.
  • the first loading step may include adjusting the pH of the first composition to 8 to 12.
  • the particle size can be controlled to be small.
  • the first composition may further include a reducing agent for reducing metal ions.
  • a reducing agent for reducing metal ions such as ethylene glycol
  • it may not contain a separate reducing agent.
  • the reducing agent is not particularly limited as long as it is a strong reducing agent having a standard reduction of -0.23 V or less and a reducing power capable of reducing dissolved metal ions to precipitate into metal particles.
  • the reducing agent may be at least one selected from the group consisting of NaBH 4 , NH 2 NH 2 , LiAlH 4 and LiBEt 3 H, respectively.
  • the carrier-nanoparticle composite may further be washed and dried after the first loading step.
  • the washing may be performed through stirring and ultrasonic cleaning using water and ethanol
  • the drying can be performed at a temperature of 70 ° C to 100 ° C and vacuum conditions for 24 hours or more.
  • the method for manufacturing a catalyst for a fuel cell according to an embodiment of the present disclosure may include separating unfrozen particles in a first carrying step. This can be performed by separating the solution in which the non-spherical particles are dispersed by centrifugation after the completion of the first supporting step.
  • the undissolved particles have electrostatic repulsion and are dispersed in the solution, they do not settle.
  • the carrier-nanoparticle composite formed by the first support is well submerged, the solution having been firstly supported is cooled to room temperature and centrifuged Thereby separating the undesired particles.
  • the method for producing a catalyst for a fuel cell according to an embodiment of the present invention is not to add a metal precursor but to reuse the unreformed particles that have been deposited but not yet supported in the second deposition step, There is an advantage that it can be reduced.
  • the method for preparing a catalyst for a fuel cell according to an embodiment of the present invention may include a step of heat-treating the carrier-nanoparticle composite produced in the first carrying step.
  • the heat treatment may be performed at a temperature of 200 ° C to 600 ° C, preferably 400 ° C to 600 ° C, more preferably 450 ° C to 550 ° C .
  • the particles When the heat treatment temperature is 200 ° C or higher, the particles can be smoothly moved and agglomerated smoothly to provide a sufficient supporting site. Particularly when the heat treatment temperature is 400 ° C or higher, the coagulation phenomenon can be minimized while achieving high supportability. When the temperature is lower than 600 ° C., there is an advantage that the decrease in activity due to excessive aggregation can be prevented.
  • the supported particles are agglomerated and the site that can be carried on the carrier surface due to such agglomeration is And can be further secured. Therefore, since the unrecorded particles in the first loading step can be additionally carried through the secondary loading step, the target loading rate can be easily reached even if the specific surface area of the carrier is small .
  • the heat treatment is carried out between the first loading step and the second loading step, there is a possibility that the characteristics of the particles to be supported in the second loading step may vary considerably (for example, increase in particle size and / ).
  • the method for manufacturing a catalyst for a fuel cell according to an embodiment of the present invention may further include a step of cooling immediately after the step of heat-treating the carrier-nanoparticle composite.
  • the second supporting step comprises the heat-treated support-nanoparticle composite; The separated hollow particles; And a second solvent. ≪ Desc / Clms Page number 7 >
  • the heat-treated carrier-nanoparticle composite may be dispersed in a second solvent and then mixed with a solution containing separated hollow particles in the dispersion.
  • the amount of the heat-treated carrier-nanoparticle complex may be 0.1 wt% to 20 wt% based on the total weight of the second composition.
  • the content of the separated hollow particles may be 0.1 wt% to 20 wt% based on the total weight of the second composition.
  • the second solvent is water; Alcohols such as methanol, ethanol, propanol and isopropanol; And dimethylformamide can be used, and water can be preferably used.
  • the second solvent may further comprise at least one acid selected from hydrochloric acid, nitric acid, and sulfuric acid, and may preferably include nitric acid.
  • the second solvent may be an aqueous nitric acid solution, and the concentration of the nitric acid aqueous solution may be 0.01 M to 1 M.
  • the content of the second solvent may be 60% by weight to 90% by weight, based on the total weight of the second composition.
  • the second deposition step may be performed without synthesizing the metal nanoparticles, that is, without reducing the metal precursor.
  • a method of manufacturing a catalyst for a fuel cell comprising: separating a second void-free particle in a second supporting step; Heat treating the second carrier-nanoparticle composite prepared in the second carrying step; And a third supporting step of supporting the separated second void particles on the second carrier-nanoparticle composite.
  • the second void-less particle means a particle which is not supported even after the second carrying step, and the second carrier-nanoparticle complex is formed after the second carrying step is completed, .
  • the same procedure can be used to increase the storage ratio by repeating the separation and recycling of the non-spherical particles.
  • the achievement ratio of the actual supporting ratio to the target supporting ratio as a percentage may be 90% or more, specifically 95% or more .
  • An embodiment of the present invention provides a catalyst for a fuel cell manufactured using the method for manufacturing a catalyst for a fuel cell.
  • the configuration of the catalyst for the fuel cell is the same as that described above.
  • One embodiment of the present invention relates to an electrode catalyst layer comprising the catalyst for a fuel cell; And a membrane-electrode assembly including an electrolyte membrane.
  • one embodiment of the present invention provides a fuel cell including the membrane-electrode assembly.
  • the fuel cell may be formed using materials and methods known in the art, except that it comprises the catalysts described above. Referring to FIG. 11, the fuel cell includes a stack 60, a fuel supply unit 80, and an oxidant supply unit 70.
  • the stack 60 includes one or more membrane-electrode assemblies (MEAs) and, when two or more membrane-electrode assemblies are included, a separator interposed therebetween. And to transfer the fuel and oxidant supplied from the outside to the membrane-electrode assembly.
  • MEAs membrane-electrode assemblies
  • the fuel supply unit 80 serves to supply fuel to the stack and includes a fuel tank 81 for storing the fuel and a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 .
  • a fuel tank 81 for storing the fuel
  • a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 .
  • the fuel gas or liquid hydrogen or hydrocarbon fuel may be used.
  • the hydrocarbon fuel include methanol, ethanol, propanol, butanol or natural gas.
  • the oxidant supply part 70 serves to supply an oxidant to the stack.
  • oxygen is typically used, and oxygen or air can be injected into the pump 82 for use.
  • the heat-treated composite was dispersed in 20 mL of 0.5 M nitric acid, and the solution containing the non-spherical particles previously separated was dispersed in the dispersed dispersion to carry out the second support.
  • the catalyst thus prepared was recovered through filtration, and a TEM photograph of the prepared catalyst is shown in FIG.
  • Example 1 carbon carrier formed of a polymer layer prepared in the same manner as 43mg of ethylene glycol (ethylene glycol) and then using an ultrasonic dispersion in 25mL, mixing PtCl 4 74.1mg and 40mg NaOH to the dispersion . Thereafter, reflux reaction was carried out at 160 DEG C for 3 hours to complete the first loading. Thereafter, the solution in which the nonporous particles were dispersed was separated by centrifugation, and the precipitated carrier-nanoparticle complexes were washed with ethanol and water, and then dried at 70 ° C for 24 hours.
  • P4VP / FX100 carbon carrier
  • the dried composite was heated to 500 ° C at a rate of 10 ° C / minute, and then immediately cooled to room temperature.
  • the heat-treated composite was dispersed in 20 mL of 0.5 M nitric acid, and the solution containing the non-spherical particles previously separated was dispersed in the dispersed dispersion to carry out the second support.
  • the catalyst thus prepared was recovered through filtration, and a TEM photograph of the prepared catalyst was shown in FIG.
  • a carbon carrier P4VP / FX100 having a polymer layer formed in the same manner as in Example 1 was dispersed in 200 mL of ethylene glycol, 963.3 mg of PtCl 4 and 520 mg of NaOH were mixed in the dispersion, . Thereafter, reflux reaction was carried out at 160 DEG C for 3 hours to complete the first loading. Thereafter, the solution in which the nonporous particles were dispersed was separated by centrifugation, and the precipitated carrier-nanoparticle complexes were washed with ethanol and water, and then dried at 70 ° C for 24 hours. The dried composite was heated to 500 ° C at a rate of 10 ° C / minute, and then immediately cooled to room temperature.
  • P4VP / FX100 carbon carrier having a polymer layer formed in the same manner as in Example 1 was dispersed in 200 mL of ethylene glycol, 963.3 mg of PtCl 4 and 520 mg of NaOH were mixed in the dispersion, . There
  • the heat-treated composite was dispersed in 20 mL of 0.5 M nitric acid, and the solution containing the non-spherical particles previously separated was dispersed in the dispersed dispersion to carry out the second support.
  • the catalyst thus prepared was recovered through filtration, and a TEM photograph of the prepared catalyst was shown in FIG.
  • a catalyst was prepared in the same manner as in Example 1 except that the heat treatment was conducted at 300 ° C instead of 500 ° C in Example 1, and a TEM photograph of the prepared catalyst was shown in FIG.
  • Table 1 below shows the target supported ratio and the actually achieved supported ratio of Examples 1 to 4 and Comparative Examples 1 to 4.
  • Carrying achievement rate is calculated by (actual carrying rate / target carrying rate) ⁇ 100.
  • Example 1 60 60.4 100.7%
  • Example 2 50 47.5 95.0%
  • Example 3 50 50.6 101.2%
  • Example 4 60 59.7 99.5%
  • Example 5 60 48.8 81.3% Comparative Example 1 50 26.6 53.2% Comparative Example 2 50 33 66.0% Comparative Example 3 50 49.8 99.6% Comparative Example 4 50 42.1 84.2%
  • Example 3 Compared the results of Example 3 and Comparative Example 2 in which the same target supporting ratio was set, the content of the carbon carrier (Poly (4-vinylpyridine) / FX100), ethylene glycol, PtCl 4 and NaOH
  • the actual loading ratio was 17.6 wt% higher in Example 3 than in Comparative Example 2.
  • Comparative Example 4 using a carbon support having a large specific surface area (BET), a high loading ratio was achieved as compared with Comparative Examples 1 and 2 because the loading site was increased. However, 4 was not achieved.
  • Example 1 having a heat treatment temperature of 400 ° C or higher has a significantly higher achievement ratio than Example 5 having a heat treatment temperature of less than 400 ° C.
  • FIG. 10 in the case of Example 5 in which the heat treatment temperature is low it can be confirmed that particles that are not visible in FIG. 2 (Example 1) are aggregated in some places and observed.
  • one embodiment of the present invention provides a method for producing a catalyst for a fuel cell, which achieves a high carrying rate and can carry out evenness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

본 명세서는 1차 담지 단계; 상기 1차 담지 단계에서 미담지된 입자를 분리하는 단계; 열처리하는 단계; 및 2차 담지 단계를 포함하는 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매에 관한 것이다.

Description

연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
본 출원은 2017년 9월 19일 한국 특허청에 제출된 한국 특허 출원 10-2017-0120359의 출원일 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매에 관한 것이다.
연료전지(Fuel Cell)는 화석 에너지를 대체할 수 있는 청정 에너지원으로서 전기화학반응에 의해 메탄올, 에탄올, 천연가스와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다.
연료전지의 대표적인 예로는, 고분자 전해질형 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC)나 메탄올을 연료로 사용하는 직접 메탄올 연료전지(Direct Methanol Fuel Cell, DMFC) 등을 들 수 있으며, PEMFC 또는 DMFC 에서 성능을 좌우하는 것은 막-전극 접합체(Membrane Electrode Assembly, MEA)이다.
MEA는 수소 이온 전도성 고분자를 포함하는 고체 고분자 전해질막과 이에 의하여 분리된 두 개의 전극들로 구성되는데, 이 두 전극을 애노드(일명, "산화 전극" 또는 "연료극")와 캐소드(일명, "환원 전극" 또는 "공기극")이라 한다.
상기 애노드 및 캐소드는 반응을 활성화시키기 위한 전극 촉매를 포함하는데, 상기 전극 촉매는 일반적으로 금속 나노입자를 담체에 담지하여 사용하기 때문에 담지율을 높이는 것이 중요한 과제이다.
본 발명은 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매를 제공한다.
본 명세서의 일 실시상태는 담체 상에 고분자층을 형성하는 단계;
상기 고분자층이 형성된 담체 상에 금속 나노입자를 담지시켜 담체-나노입자 복합체를 제조하는 1차 담지 단계;
상기 1차 담지 단계에서 미담지된 입자를 분리하는 단계;
상기 담체-나노입자 복합체를 열처리하는 단계; 및
상기 분리된 미담지 입자를 상기 열처리된 담체-나노입자 복합체에 담지시키는 2차 담지 단계를 포함하는 연료전지용 촉매의 제조 방법을 제공한다.
또한, 본 명세서의 일 실시상태는 상기 제조 방법을 이용하여 제조된 연료전지용 촉매를 제공한다.
또한, 본 명세서의 일 실시상태는 상기 연료전지용 촉매를 포함하는 전극 촉매층; 및 전해질막을 포함하는 막-전극 접합체를 제공한다.
또한, 본 명세서의 일 실시상태는 상기 막-전극 접합체를 포함하는 연료전지를 제공한다.
본 발명의 연료전지용 촉매의 제조 방법에 따르면 비표면적이 작은 담체에서도 높은 담지율을 유지할 수 있다.
또한, 본 발명의 연료전지용 촉매의 제조 방법에 따르면 높은 담지율과 균일한 담지를 동시에 달성할 수 있다.
또한, 본 발명의 연료전지용 촉매의 제조 방법에 따르면 금속 전구체의 사용량을 줄일 수 있으며, 공정상의 비용 및 시간을 절약할 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 연료전지용 촉매의 제조 과정을 모식도로 도시한 것이다.
도 2는 실시예 1에서 제조된 촉매의 투과 전자 현미경(이하, TEM) 사진을 나타낸 것이다.
도 3는 실시예 2에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 4는 실시예 3에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 5는 실시예 4에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 6는 비교예 1에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 7는 비교예 2에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 8는 비교예 3에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 9는 비교예 4에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 10은 실시예 5에서 제조된 촉매의 TEM 사진을 나타낸 것이다.
도 11은 당 기술분야에서 사용되는 연료전지를 개략적으로 나타낸 것이다.
[부호의 설명]
60: 스택
70: 산화제공급부
80: 연료공급부
81: 연료탱크
82: 펌프
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치한다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 명세서의 일 실시상태는 담체 상에 고분자층을 형성하는 단계;
상기 고분자층이 형성된 담체 상에 금속 나노입자를 담지시켜 담체-나노입자 복합체를 제조하는 1차 담지 단계;
상기 1차 담지 단계에서 미담지된 입자를 분리하는 단계;
상기 담체-나노입자 복합체를 열처리하는 단계; 및
상기 분리된 미담지 입자를 상기 열처리된 담체-나노입자 복합체에 담지시키는 2차 담지 단계를 포함하는 연료전지용 촉매의 제조 방법을 제공한다.
종래 방식과 같이 폴리올(polyol) 공정을 이용하여 담체에 입자를 담지시킬 경우, 용액 내 OH-의 농도가 높으면 정전기적 반발력으로 인해 입자를 담지시키기 어렵다는 문제점이 있다. 이를 해소하고자 산을 투입하여 강제적으로 담지시키는 방법을 사용하기도 하지만, 이 역시 입자간 응집으로 인해 비표면적이 낮은 담체를 사용할 경우 입자가 고르게 담지되기 어렵다는 문제점이 있다.
반면, 본 발명에 따른 연료전지용 촉매의 제조 방법은 2단계 담지법을 적용함으로써, 1차 담지 이후 열처리를 통해 담지된 입자 간의 응집을 유도하고, 상기 응집으로 인해 추가로 확보된 담지 자리(site)에 1차 담지에서 미담지된 입자를 응집 없이 추가로 담지할 수 있기 때문에, 균일한 담지 형상을 유지하면서 목표 담지율에 도달할 수 있다. 구체적으로는, 비표면적이 작은 담체(예를 들면, 100m2/g 이하)에서도 담지 달성률(목표 담지율 대비 실제 담지율)을 95% 이상 달성할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 목표 담지율에 따라 금속 전구체의 양이 변화되며, 이에 따라 실제 담지율이 변화되므로 담지 달성률은 일정한 수준으로 유지될 수 있다.
구체적으로, 상기 '목표 담지율'과 '담체 및 금속의 중량의 합 대비 금속의 중량'(금속의 중량/(담체+금속의 중량))이 동일하도록 금속 전구체의 양을 조절할 수 있다. 상기 금속의 중량은 금속 전구체의 중량이 아닌, 금속 전구체 내 금속의 중량을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 담체는 탄소 기반의 담체일 수 있고, 상기 탄소 기반의 담체로는 카본 블랙, 탄소 나노 튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire)로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 담체의 비표면적(BET)은 100m2/g 이하일 수 있으며, 구체적으로 90m2/g 이하일 수 있다. 이는, 본 발명의 제조 방법을 적용할 경우, 비표면적이 작은 담체도 사용할 수 있음을 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 담체 상에 고분자층을 형성하는 단계는 피리딘기 및 아민기 중 적어도 하나 이상을 포함하는 고분자를 포함하는 고분자 용액을 담체 상에 코팅하여 수행될 수 있다.
구체적으로는, 폴리(4-비닐피리딘) 또는 폴리(알릴아민 하이드로클로라이드)를 포함하는 고분자 용액을 담체 상에 코팅하여 수행될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자의 중량평균분자량은 각각 500g/mol 이상 1,000,000g/mol 이하일 수 있다. 구체적으로는 각각 1,000g/mol 이상 100,000g/mol 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 담체 표면의 일부 또는 전체에 고분자층이 구비될 수 있다. 상기 탄소 담체 표면의 50% 내지 100%의 면적에 고분자층이 구비될 수 있으며, 구체적으로는 75% 내지 100%의 면적에 고분자층이 구비될 수 있다.
본 명세서의 일 실시상태에 따르면, 담체 상에 고분자층을 형성할 경우, 고분자층에 존재하는 N이 금속 나노 입자 담지 시 고정 자리(anchoring site)로 작용하기 때문에 안정성 및 분산성을 확보할 수 있다.
상기 고분자 용액 형성시 용매로는 물; 메탄올, 에탄올, 프로판올 및 이소프로판올 등의 알코올; 및 디메틸포름아마이드(dimethylformamide)로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있으며, 바람직하게는 물을 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 용액은 염산, 질산, 및 황산 중 적어도 하나의 산을 추가로 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 용액은 염산, 질산, 및 황산 중 적어도 하나의 산을 추가로 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 고분자 용액 형성시 용매로 물을 사용할 경우, 상기 고분자 용액에 질산칼륨(KNO3)이 추가로 포함될 수 있다.
상기 고분자 용액 총 중량을 기준으로 상기 고분자의 함량은 0.05 중량% 내지 20 중량%, 구체적으로는 1 중량% 내지 10 중량%인 것이 바람직하다.
고분자의 함량이 상기 범위 내에 있는 경우, 담체 표면에 코팅이 용이하여 균일한 코팅층을 형성할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 1차 담지 단계는 상기 고분자층이 형성된 담체; 금속 전구체; 및 제1 용매를 포함하는 제1 조성물을 이용하여 수행되는 것이다.
구체적으로, 상기 고분자층이 형성된 담체를 상기 제1 용매에 분산시킨 후 상기 분산액에 금속 전구체를 혼합하는 과정이 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 조성물 총 중량을 기준으로, 상기 고분자층이 형성된 담체의 함량은 0.1 중량% 이상 3 중량% 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 금속 전구체는 금속 나노 입자로 환원되기 전의 물질이며, 상기 금속 전구체는 금속 나노 입자의 종류에 따라 선택될 수 있다.
명세서의 일 실시상태에 따르면, 상기 금속 전구체는 2종 이상의 서로 다른 금속의 전구체일 수 있다.
명세서의 일 실시상태에 따르면, 상기 금속 전구체는 금속의 질산화물(Nitrate, NO3 -), 할로겐화물(Halide), 수산화물(Hydroxide, OH-) 또는 황산화 물(Sulfate, SO4 -)일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 금속 전구체는 백금(Pt), 코발트(Co), 니켈(Ni), 철(Fe), 납(Pd), 루테늄(Ru), 크롬(Cr) 및 구리(Cu)로 이루어진 군에서 선택되는 1종 이상의 금속의 전구체일 수 있으며, 바람직하게는 백금(Pt) 전구체일 수 있다. 연료전지의 촉매로 활용될 때 백금이 다른 금속에 비해 활성이 높기 때문에 백금 전구체를 사용하는 것이 바람직하다.
본 명세서의 일 실시상태에 따르면, 상기 백금 전구체는 PtCl4, K2PtCl4, K2PtCl6, H2PtCl4, H2PtCl6, Pt(acac)2, Pt(NH3)4(NO3)2, Pt(NH3)4Cl2, Pt(CH3NH2)4(NO3)2, Pt(CH3NH2)4Cl2, Pt(H2O)4(NO3)2 또는 Pt(H2O)4Cl2일 수 있으며, 바람직하게는 PtCl4 일 수 있다.
본 명세서에서, acac는 아세틸아세토네이트를 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 제1 조성물 총 중량을 기준으로, 상기 금속 전구체의 함량은 0.1 중량% 내지 5 중량%일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 용매는 물, 에틸렌 글리콜, 다이에틸렌 글리콜 및 프로필렌 글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 용매는 에틸렌 글리콜일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 조성물 총 중량을 기준으로, 상기 제1 용매의 함량은 93 중량% 내지 98 중량%일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 조성물은 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2) 및 수산화리튬(LiOH)으로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있으며, 이는 염기성 물질을 첨가함으로써 제1 조성물의 pH를 조절하기 위함이다.
본 명세서의 일 실시상태에 따르면, 상기 1차 담지 단계는 상기 제1 조성물의 pH를 8 내지 12로 조절하는 단계를 포함할 수 있다.
제1 조성물의 pH가 8 내지 12의 범위로 조절될 경우, 입자 사이즈를 작게 조절할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 제1 조성물은 금속 이온을 환원 시키기 위한 환원제를 추가로 포함할 수 있다. 다만, 에틸렌 글리콜과 같이 환원제의 역할을 할 수 있는 용매를 사용할 경우, 별도의 환원제를 포함하지 않을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 환원제는 표준 환원 -0.23V 이하의 강한 환원제이면서, 용해된 금속 이온을 환원시켜 금속 입자로 석출시킬 수 있는 환원력을 갖는 것이라면 특별히 한정되지 않는다.
본 명세서의 일 실시상태에 따르면, 상기 환원제는 각각 NaBH4, NH2NH2, LiAlH4 및 LiBEt3H 로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 1차 담지 단계 이후 상기 담체-나노입자 복합체를 세척 및 건조하는 단계를 추가로 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 세척은 물 및 에탄올을 이용하며 교반 및 초음파 세척 과정을 통해 수행될 수 있다
본 명세서의 일 실시상태에 따르면, 상기 건조는 70℃ 내지 100℃의 온도 및 진공 조건에서 24시간 이상 수행될 수 있다.
본 명세서의 일 실시상태에 따른 연료전지용 촉매의 제조 방법은 1차 담지 단계에서 미담지된 입자를 분리하는 단계를 포함할 수 있다. 이는 1차 담지 단계 종료 후 원심 분리를 통해 미담지 입자들이 분산된 용액을 별도로 분리하는 과정을 통해 수행될 수 있다.
미담지된 입자들은 정전기적 반발력을 가지며 용액 상에 분산되어 있으므로 가라앉지 않으나, 1차 담지로 생성된 담체-나노입자 복합체는 잘 가라앉기 때문에, 1차 담지가 완료된 용액을 상온까지 식힌 후 원심 분리함으로써 미담지된 입자들을 분리할 수 있다.
본 명세서의 일 실시상태에 따른 연료전지용 촉매의 제조 방법은 금속 전구체를 추가로 투입하는 것이 아니라, 기존에 투입하였으나 담지되지 못한 미담지 입자를 2차 담지 단계에서 재사용하기 때문에, 금속 전구체의 사용량을 줄일 수 있다는 장점이 있다.
또한, 2차 담지 단계에서 별도의 금속 전구체 환원 과정을 거치지 않아도 되기 때문에 공정상의 비용 및 시간을 절약할 수 있다.
뿐만 아니라, 미담지 입자들이 분리된 상태에서 담체-나노입자 복합체에 대한 열처리 단계가 수행되기 때문에 분리된 미담지 입자들의 열로 인한 특성 변화를 방지할 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따른 연료전지용 촉매의 제조 방법은 1차 담지 단계에서 제조된 상기 담체-나노입자 복합체를 열처리하는 단계를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 열처리는 200℃ 내지 600℃의 온도에서 수행될 수 있으며, 바람직하게는 400℃ 내지 600℃, 더욱 바람직하게는 450℃ 내지 550℃의 온도에서 수행될 수 있다.
상기 열처리 온도가 200℃ 이상일 경우, 입자의 이동 및 응집이 원활하여 담지 자리(site)를 충분히 제공할 수 있고, 특히 400℃ 이상일 경우, 높은 담지달성률을 얻으면서도 응집 현상을 최소화할 수 있다. 600℃ 이하일 경우, 과도한 응집으로 인한 활성 저하를 방지할 수 있다는 장점이 있다.
도 1의 모식도에서 도시한 바와 같이 상기 1차 담지 단계에서 제조된 담체-나노입자 복합체에 열을 가하면 담지된 입자끼리 응집하게 되고, 이러한 응집으로 인해 담체 표면에 담지할 수 있는 자리(site)가 추가로 확보될 수 있다. 따라서, 추가로 확보된 자리에 상기 1차 담지 단계에서 미담지된 입자를 상기 2차 담지 단계를 통해 추가로 담지할 수 있기 때문에, 담체의 비표면적이 작더라도 보다 용이하게 목표 담지율에 도달할 수 있다.
뿐만 아니라, 1차 담지 단계와 2차 담지 단계 사이에 열처리가 수행되기 때문에 2차 담지 단계에서 담지되는 입자들의 경우, 별다른 특성 변화(예를 들면, 입자 크기의 증가 및/또는 입자 표면 특성의 변화) 없이 담지시킬 수 있다는 장점이 있다.
본 명세서의 일 실시상태에 따른 연료전지용 촉매의 제조 방법은 상기 담체-나노입자 복합체를 열처리하는 단계 직후 냉각하는 단계를 추가로 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 2차 담지 단계는 상기 열처리된 담체-나노입자 복합체; 상기 분리된 미담지 입자; 및 제2 용매를 포함하는 제2 조성물을 이용하여 수행될 수 있다.
구체적으로, 상기 열처리된 담체-나노입자 복합체를 제2 용매에 분산시킨 후, 상기 분산액에 분리된 미담지 입자를 포함하는 용액을 혼합하는 과정이 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 조성물 총 중량을 기준으로, 상기 열처리된 담체-나노입자 복합체의 함량은 0.1 중량% 내지 20 중량%일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 조성물 총 중량을 기준으로, 상기 분리된 미담지 입자의 함량은 0.1 중량% 내지 20 중량%일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 용매는 물; 메탄올, 에탄올, 프로판올 및 이소프로판올 등의 알코올; 및 디메틸포름아마이드(dimethylformamide)로 이루어진 군에서 선택된 1 종 이상을 사용할 수 있으며, 바람직하게는 물을 사용할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 용매는 염산, 질산, 및 황산 중 적어도 하나의 산을 추가로 포함할 수 있으며, 바람직하게는 질산을 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 용매는 질산 수용액일 수 있으며, 상기 질산 수용액의 농도는 0.01 M 내지 1 M 일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 조성물 총 중량을 기준으로, 상기 제2 용매의 함량은 60 중량% 내지 90 중량%일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 2차 담지 단계는 금속 나노 입자의 합성 과정, 즉 금속 전구체를 환원하는 과정 없이 수행될 수 있다.
본 명세서의 일 실시상태에 따른 연료전지용 촉매의 제조 방법은 상기 2차 담지 단계에서 미담지된 제2 미담지 입자를 분리하는 단계; 상기 2차 담지 단계*서 제조된 제2 담체-나노입자 복합체를 열처리하는 단계; 및 상기 분리된 제2 미담지 입자를 상기 제2 담체-나노입자 복합체에 담지시키는 제3 담지 단계를 더 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 제2 미담지 입자는 2차 담지 단계 후에도 담지되지 못한 입자를 의미하며, 제2 담체-나노입자 복합체는 상기 2차 담지 단계가 완료된 직후 담체-나노입자 복합체의 상태를 의미한다. 이와 동일한 과정으로 미담지 입자의 분리 및 재담지를 반복함으로써 담지율을 단계적으로 높일 수 있다.
본 명세서의 일 실시상태에 따른 연료전지용 촉매의 제조 방법을 통해 촉매를 제조할 경우, 목표 담지율 대비 실제 담지율을 백분율로 나타낸 값인 담지 달성률이 90% 이상일 수 있으며, 구체적으로 95% 이상일 수 있다.
본 명세서의 일 실시상태는 상기 연료전지용 촉매의 제조 방법을 이용하여 제조된 연료전지용 촉매를 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 연료전지용 촉매의 각 구성은 전술한 내용과 동일하다.
본 명세서의 일 실시상태는 상기 연료전지용 촉매를 포함하는 전극 촉매층; 및 전해질막을 포함하는 막-전극 접합체를 제공한다.
나아가, 본 명세서의 일 실시상태는 상기 막-전극 접합체를 포함하는 연료전지를 제공한다.
상기 연료전지는 전술한 촉매를 포함하는 것을 제외하고는, 당 기술분야에 알려진 재료 및 방법을 이용하여 형성할 수 있다. 도 11을 참조하면, 상기 연료전지는 스택(60), 연료공급부(80) 및 산화제공급부(70)를 포함하여 형성된다.
상기 스택(60)은 막-전극 접합체(MEA)를 하나 또는 둘 이상 포함하며, 막-전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다 상기 세퍼레이터는 막-전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막-전극 접합체로 전달하는 역할을 한다.
상기 연료 공급부(80)는 연료를 상기 스택으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 상기 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있으며, 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
상기 산화제 공급부(70)는 산화제를 상기 스택으로 공급하는 역할을 한다. 상기 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 펌프(82)로 주입하여 사용할 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1.
폴리(4-비닐 피리딘)(Poly(4-vinyl pyridine))(Sigma-Aldrich 社, P4VP) 3g 및 1M 염산(HCl) 60mL을 물 1L에 첨가한 후 충분히 교반하여 용해시켜 주었다. 그 후, KNO3 6g을 추가로 용해시킨 뒤, FX100(Cabot 社의 고결정성 카본, BET = 87m2/g) 1.8g을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 고분자층이 형성된 카본 담체(P4VP/FX100)를 제조하였다. 상기 고분자층이 형성된 카본 담체 45.8mg을 에틸렌 글리콜(ethylene glycol) 40mL에 분산시키고, 상기 분산액에 PtCl4 118.6mg 및 NaOH 64mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하여 1차 담지를 완료하였다. 그 다음 원심 분리를 통해 미담지 입자들이 분산된 용액을 따로 분리하였고, 침전된 담체-나노입자 복합체들은 에탄올과 물로 세척한 다음, 70℃에서 24시간 동안 건조하였다. 건조가 끝난 복합체는 10℃/분의 속도로 500℃까지 승온시켜 열처리한 직후 바로 상온으로 냉각시키는 방식으로 Ar 분위기에서 열처리를 진행하였다. 열처리가 끝난 복합체는 0.5M의 질산 20mL에 분산시킨 뒤 분산된 분산액에 미리 분리해둔 미담지 입자가 포함된 용액을 혼합하여 2차 담지를 진행하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 2에 나타내었다.
실시예 2.
실시예 1과 동일한 방법으로 제조된 고분자층이 형성된 카본 담체(P4VP/FX100) 43mg을 에틸렌 글리콜(ethylene glycol) 25mL에 분산시키고, 상기 분산액에 PtCl4 74.1mg 및 NaOH 40mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하여 1차 담지를 완료하였다. 이후 원심 분리를 통해 미담지 입자들이 분산된 용액을 따로 분리하였고, 침전된 담체-나노입자 복합체들은 에탄올과 물로 세척한 다음, 70℃에서 24시간 건조하였다. 건조가 끝난 복합체는 10℃/분의 속도로 500℃까지 승온시킨 직후 바로 상온으로 냉각시키는 방식으로 Ar 분위기에서 열처리를 진행하였다. 열처리가 끝난 복합체는 0.5M의 질산 20mL에 분산시킨 뒤 분산된 분산액에 미리 분리해둔 미담지 입자가 포함된 용액을 혼합하여 2차 담지를 진행하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 3에 나타내었다.
실시예 3.
실시예 1과 동일한 방법으로 제조된 고분자층이 형성된 카본 담체(P4VP/FX100) 559mg을 에틸렌 글리콜(ethylene glycol) 200mL에 분산시키고, 상기 분산액에 PtCl4 963.3mg 및 NaOH 520mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하여 1차 담지를 완료하였다. 이후 원심 분리를 통해 미담지 입자들이 분산된 용액을 따로 분리하였고, 침전된 담체-나노입자 복합체들은 에탄올과 물로 세척한 다음, 70℃에서 24시간 건조하였다. 건조가 끝난 복합체는 10℃/분의 속도로 500℃까지 승온시킨 직후 바로 상온으로 냉각시키는 방식으로 Ar 분위기에서 열처리를 진행하였다. 열처리가 끝난 복합체는 0.5M의 질산 20mL에 분산시킨 뒤 분산된 분산액에 미리 분리해둔 미담지 입자가 포함된 용액을 혼합하여 2차 담지를 진행하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 4에 나타내었다.
실시예 4.
폴리(알릴아민 하이드로클로라이드)(Poly(allylamine hydrochloride)(Sigma-Aldrich 社, PAH) 6g을 물 1.5L에 첨가한 후 충분히 교반하여 용해시켜 주었다. 이 후, KNO3 6g을 추가로 용해시킨 뒤, Ketjen black 300J(Lion 社의 고비표면적 카본, BET = 647m2/g, KB300J) 1.8g을 분산시켰다. 상기 용액을 상온에서 24시간 교반 후, 증류수로 세척 및 건조하여 고분자층이 형성된 카본 담체(PAH/KB300J)를 제조하였다. 상기 고분자층이 형성된 카본 담체 45.8mg을 에틸렌 글리콜(ethylene glycol) 40mL에 분산시키고, 상기 분산액에 PtCl4 118.6mg 및 NaOH 64mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하여 1차 담지를 완료하였다. 이후 원심 분리를 통해 미담지 입자들이 분산된 용액을 따로 분리하였고, 침전된 담체-나노입자 복합체들은 에탄올과 물로 세척한 다음, 70℃에서 24시간 건조하였다. 건조가 끝난 복합체는 10℃/분의 속도로 500℃까지 승온시킨 직후 바로 상온으로 냉각시키는 방식으로 Ar 분위기에서 열처리를 진행하였다. 열처리가 끝난 복합체는 0.5M의 질산 20mL에 분산시킨 뒤 분산된 분산액에 미리 분리해둔 미담지 입자가 포함된 용액을 혼합하여 2차 담지를 진행하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 5에 나타내었다.
실시예 5.
실시예 1에서 열처리를 500℃가 아닌 300℃에서 진행한 것을 제외하고는 실시예 1과 동일한 과정으로 촉매를 제조하였으며, 제조된 촉매의 TEM 사진은 도 10에 나타내었다.
비교예 1.
카본 담체인 FX100(Cabot 社의 고결정성 카본, BET = 87m2/g) 559mg을 에틸렌 글리콜 200mL에 분산시키고, 상기 분산액에 PtCl4 963.3mg과 NaOH 520mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하여 담지를 완료하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 6에 나타내었다.
비교예 2.
실시예 1과 동일한 방법으로 제조된 고분자층이 형성된 카본 담체(P4VP/FX100) 559mg을 에틸렌 글리콜 200mL에 분산시키고, 상기 분산액에 PtCl4 963.3mg 및 NaOH 520mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하여 담지를 완료하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 7에 나타내었다.
비교예 3.
실시예 1과 동일한 방법으로 제조된 고분자층이 형성된 카본 담체(P4VP/FX100) 559mg을 에틸렌 글리콜 200mL에 분산시키고, 상기 분산액에 PtCl4 963.3mg과 NaOH 520mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하고 1M의 H2SO4를 첨가하여 pH를 1로 조절하였다. 그 다음 온도를 85℃로 상승시킨 후 1시간 동안 교반하고 상온으로 냉각시킨 뒤 다시 12시간 이상 교반하여 담지를 완료하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 8에 나타내었다.
비교예 4.
실시예 4와 동일한 방법으로 제조된 고분자층이 형성된 카본 담체(PAH/KB300J) 43mg을 에틸렌 글리콜 25mL에 분산시키고, 상기 분산액에 PtCl4 74.1mg 및 NaOH 40mg을 혼합한 후 초음파를 이용하여 분산시켰다. 이 후 160℃에서 3시간 동안 환류(reflux) 반응을 진행하여 담지를 완료하였다. 이로써 제조된 촉매는 여과를 통해 회수하였으며, 제조된 촉매의 TEM 사진은 도 9에 나타내었다.
하기 표 1은 실시예 1 내지 4 및 비교예 1 내지 4의 목표 담지율과 실제 달성된 담지율을 기재한 것이다. 담지 달성률은 (실제 담지율/목표 담지율) × 100으로 계산한 것이다.
목표 담지율 (wt%) 실제 담지율 (wt%) 담지 달성률 (%)
실시예 1 60 60.4 100.7%
실시예 2 50 47.5 95.0%
실시예 3 50 50.6 101.2%
실시예 4 60 59.7 99.5%
실시예 5 60 48.8 81.3%
비교예 1 50 26.6 53.2%
비교예 2 50 33 66.0%
비교예 3 50 49.8 99.6%
비교예 4 50 42.1 84.2%
본원발명의 제조 방법에 따라 미담지 입자를 재담지하는 2단계 담지를 실시한 실시예 1 내지 5의 경우, 목표한 담지율에 근접하였으나 미담지 입자를 재담지하는 과정 없이 1단계 담지만 실시한 비교예 1, 2 및 4의 경우 목표한 담지율을 달성하지 못한 것을 확인할 수 있다.
구체적으로, 동일한 목표 담지율을 설정한 실시예 3 및 비교예 2의 결과를 비교해 보면, 고분자층이 형성된 카본 담체(Poly(4-vinylpyridine)/FX100), 에틸렌 글리콜, PtCl4 및 NaOH의 함량을 동일하게 설정하였으나, 실제 담지율은 실시예 3이 비교예 2에 비해 17.6wt% 높았다. 비표면적(BET)이 큰 카본 담체를 사용한 비교예 4의 경우, 담지 자리(site)가 증가하였기 때문에 비교예 1 및 2에 비해서는 높은 담지율이 달성되었으나, 2단계 담지를 실시한 실시예 1 내지 4의 담지 달성률에는 도달하지 못하였다.
또한, 1차 담지 후 산성 용액을 첨가하여 용액 중에 분산되어 있는 미담지 입자 간의 반발력을 줄임으로써 추가 담지를 실시한 비교예 3의 경우 높은 담지율은 달성하였으나, 도 8에서 확인할 수 있듯이 입자 간의 응집 현상이 심화되어 고르게 담지되지 못하였다. 이는 미담지 입자들이 산성 용액에 의해 응집된 상태로 추가 담지될 뿐만 아니라, 1차 담지 후에 열처리를 통한 담지 자리(site)의 확보가 이뤄지지 못하였기 때문이다.
한편, 실시예 1 및 5의 결과를 비교하여 보면, 열처리 온도가 400℃ 이상인 실시예 1이 400℃ 미만인 실시예 5에 비해 담지 달성률이 현저히 높은 것을 확인할 수 있다. 또한, 도 10에서 확인할 수 있듯이, 열처리 온도가 낮은 실시예 5의 경우, 도 2(실시예 1)에서는 보이지 않는 입자들이 곳곳에 응집되어 모습이 관찰됨을 확인할 수 있다.
즉, 본 명세서의 일 실시상태는 높은 담지율을 달성하면서도 담지가 고르게 이뤄질 수 있는 연료전지용 촉매의 제조 방법을 제공한다.

Claims (15)

  1. 담체 상에 고분자층을 형성하는 단계;
    상기 고분자층이 형성된 담체 상에 금속 나노입자를 담지시켜 담체-나노입자 복합체를 제조하는 1차 담지 단계;
    상기 1차 담지 단계에서 미담지된 입자를 분리하는 단계;
    상기 담체-나노입자 복합체를 열처리하는 단계; 및
    상기 분리된 미담지 입자를 상기 열처리된 담체-나노입자 복합체에 담지시키는 2차 담지 단계를 포함하는 연료전지용 촉매의 제조 방법.
  2. 청구항 1에 있어서, 상기 고분자층을 형성하는 단계는 피리딘기 및 아민기 중 적어도 하나 이상을 포함하는 고분자를 포함하는 고분자 용액을 담체 상에 도포하여 수행되는 것인 연료전지용 촉매의 제조 방법.
  3. 청구항 1에 있어서, 상기 1차 담지 단계는 상기 고분자층이 형성된 담체; 금속 전구체; 및 제1 용매를 포함하는 제1 조성물을 이용하여 수행되는 것인 연료전지용 촉매의 제조 방법.
  4. 청구항 3에 있어서, 상기 금속 전구체는 백금(Pt) 전구체인 것인 연료전지용 촉매의 제조 방법.
  5. 청구항 3에 있어서, 상기 제1 용매는 물, 에틸렌 글리콜, 다이에틸렌 글리콜 및 프로필렌 글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 연료전지용 촉매의 제조 방법.
  6. 청구항 3에 있어서, 상기 1차 담지 단계는 상기 제1 조성물의 pH를 8 내지 12로 조절하는 단계를 포함하는 것인 연료전지용 촉매의 제조 방법.
  7. 청구항 3에 있어서, 상기 제1 조성물은 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 수산화칼륨(KOH), 수산화칼슘(Ca(OH)2) 및 수산화리튬(LiOH)으로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함하는 것인 연료전지용 촉매의 제조 방법.
  8. 청구항 1에 있어서, 상기 1차 담지 단계 이후 상기 담체-나노입자 복합체를 세척 및 건조하는 단계를 추가로 포함하는 것인 연료전지용 촉매의 제조 방법.
  9. 청구항 1에 있어서, 상기 열처리는 200℃ 내지 600℃의 온도에서 수행되는 것인 연료전지용 촉매의 제조 방법.
  10. 청구항 1에 있어서, 상기 담체-나노입자 복합체를 열처리하는 단계 직후 냉각하는 단계를 추가로 포함하는 연료전지용 촉매의 제조 방법.
  11. 청구항 1에 있어서, 상기 2차 담지 단계는 상기 열처리된 담체-나노입자 복합체; 상기 분리된 미담지 입자; 및 제2 용매를 포함하는 제2 조성물을 이용하여 수행되는 것인 연료전지용 촉매의 제조 방법.
  12. 청구항 11에 있어서, 상기 제2 용매는 물이며, 상기 제2 조성물은 질산을 추가로 포함하는 것인 연료전지용 촉매의 제조 방법.
  13. 청구항 1 내지 12 중 어느 한 항에 따른 제조 방법을 이용하여 제조된 연료전지용 촉매.
  14. 청구항 13에 따른 연료전지용 촉매를 포함하는 전극 촉매층; 및 전해질막을 포함하는 막-전극 접합체.
  15. 청구항 14에 따른 막-전극 접합체를 포함하는 연료전지.
PCT/KR2018/010409 2017-09-19 2018-09-06 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매 WO2019059570A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039186.8A CN110741497B (zh) 2017-09-19 2018-09-06 燃料电池用催化剂的制备方法和由此制备的燃料电池用催化剂
US16/620,717 US11374230B2 (en) 2017-09-19 2018-09-06 Method for producing fuel cell catalyst, and fuel cell catalyst produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170120359 2017-09-19
KR10-2017-0120359 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019059570A1 true WO2019059570A1 (ko) 2019-03-28

Family

ID=65809882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010409 WO2019059570A1 (ko) 2017-09-19 2018-09-06 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매

Country Status (4)

Country Link
US (1) US11374230B2 (ko)
KR (1) KR102178482B1 (ko)
CN (1) CN110741497B (ko)
WO (1) WO2019059570A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111589443B (zh) * 2020-05-27 2022-12-16 贵研铂业股份有限公司 一种石墨烯负载钯纳米颗粒复合材料催化剂的制备方法
KR20220097006A (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 막-전극 어셈블리 및 이를 포함하는 연료 전지
KR20230140280A (ko) * 2022-03-29 2023-10-06 코오롱인더스트리 주식회사 연료전지용 촉매 및 이의 제조 방법
KR20230140748A (ko) 2022-03-30 2023-10-10 코오롱인더스트리 주식회사 불화처리된 미담지 나노입자를 포함하는 촉매층의 제조방법 및 이를 사용하는 막-전극 접합체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109439A (ko) * 2006-05-11 2007-11-15 한국과학기술연구원 대전 및 전사 과정을 이용한 연료전지용 막-전극 결합체제조 방법
JP2009026546A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池用の電極と電極形成用の電解質分散溶液とその製造方法および固体高分子型燃料電池
KR20090123915A (ko) * 2007-03-29 2009-12-02 신에쓰 가가꾸 고교 가부시끼가이샤 연료 전지용 전극 촉매의 제조 방법
KR20100138423A (ko) * 2009-06-25 2010-12-31 현대자동차주식회사 연료전지용 고비율 백금 담지 촉매 제조방법
KR20170092125A (ko) * 2016-02-02 2017-08-10 주식회사 엘지화학 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648988B2 (ja) * 1998-06-18 2005-05-18 日本電池株式会社 燃料電池用電極およびその製造方法
EP0920065B1 (en) 1997-11-25 2005-04-27 Japan Storage Battery Company Limited Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
US6482763B2 (en) * 1999-12-29 2002-11-19 3M Innovative Properties Company Suboxide fuel cell catalyst for enhanced reformate tolerance
KR100696463B1 (ko) * 2003-09-27 2007-03-19 삼성에스디아이 주식회사 고농도 탄소 담지 촉매, 그 제조방법, 상기 촉매를 이용한촉매전극 및 이를 이용한 연료전지
US20070031716A1 (en) * 2005-08-05 2007-02-08 Rajendran Raj G Process for making cation exchange membranes with reduced methanol permeability
KR100601101B1 (ko) 2005-09-23 2006-07-19 주식회사 엘지화학 연료전지용 백금 전극촉매의 제조방법
KR20110056803A (ko) * 2009-11-23 2011-05-31 고려대학교 산학협력단 금속공기 2차전지용 공기전극, 그의 제조 방법 및 상기 공기전극을 포함하는 금속공기 2차전지
US20140050995A1 (en) * 2011-03-01 2014-02-20 Liming Dai Metal-free oxygen reduction electrocatalysts
KR101484364B1 (ko) 2012-01-11 2015-01-19 주식회사 엘지화학 카본나노튜브 합성용 담지 촉매의 제조방법
WO2013155982A1 (zh) * 2012-04-20 2013-10-24 华东理工大学 一种负载型金属氧化物双活性中心乙烯聚合催化剂及其制备方法与应用
JP6159621B2 (ja) 2013-08-28 2017-07-05 石福金属興業株式会社 コアシェル触媒用コア材料に適した高分散担持されたパラジウム触媒の製造方法
KR101865993B1 (ko) 2015-03-10 2018-06-11 한국과학기술원 질소와 금속이 도핑된 다공성 탄소 소재 및 그 제조방법
CN105655607A (zh) * 2016-02-01 2016-06-08 中国科学院福建物质结构研究所 碳纳米管高负载铂基纳米催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070109439A (ko) * 2006-05-11 2007-11-15 한국과학기술연구원 대전 및 전사 과정을 이용한 연료전지용 막-전극 결합체제조 방법
KR20090123915A (ko) * 2007-03-29 2009-12-02 신에쓰 가가꾸 고교 가부시끼가이샤 연료 전지용 전극 촉매의 제조 방법
JP2009026546A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池用の電極と電極形成用の電解質分散溶液とその製造方法および固体高分子型燃料電池
KR20100138423A (ko) * 2009-06-25 2010-12-31 현대자동차주식회사 연료전지용 고비율 백금 담지 촉매 제조방법
KR20170092125A (ko) * 2016-02-02 2017-08-10 주식회사 엘지화학 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법

Also Published As

Publication number Publication date
US11374230B2 (en) 2022-06-28
CN110741497A (zh) 2020-01-31
CN110741497B (zh) 2022-07-05
KR20190032199A (ko) 2019-03-27
US20200144630A1 (en) 2020-05-07
KR102178482B1 (ko) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2019059570A1 (ko) 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2012157834A1 (ko) 실리카 코팅을 이용한 연료전지용 합금촉매의 제조방법
WO2017135709A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2011122757A2 (ko) 금속 산화물 나노선을 함유하는 혼합 촉매 제조방법, 이에 의해 제조된 혼합 촉매를 포함하는 전극 및 연료전지
WO2019093765A2 (ko) 자동차용 연료전지를 위한 다기능성 비백금 담지 촉매 및 그 제조 방법
WO2017191945A1 (ko) 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
WO2020138800A1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
WO2018194263A1 (ko) 연료전지 촉매용 인화철 나노입자 제조방법 및 이에 의해 제조된 인화철 나노입자
WO2018056774A2 (ko) 카본닷-백금-팔라듐 복합체의 제조방법, 이에 따라 제조된 카본닷-백금-팔라듐 촉매 및 이를 이용하는 연료전지
JP2018538651A (ja) 触媒およびその製造方法
US11217796B2 (en) Electrode catalyst for fuel cell and method of production of same
WO2020138799A1 (ko) 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지
WO2015060477A1 (ko) 전극 촉매, 이의 제조방법, 및 이를 포함하는 막전극 접합체와 연료전지
US20080107956A1 (en) Catalyst used to form fuel cell and fuel cell using the same
KR102121114B1 (ko) 담체-나노 입자 복합체, 이를 포함하는 촉매 및 촉매를 포함하는 전기화학 전지 및 담체-나노 입자 복합체의 제조방법
WO2019093660A2 (ko) 마그헤마이트의 제조방법
WO2017171471A1 (ko) 강화막, 이를 포함하는 전기화학 전지 및 연료 전지, 및 상기 강화막의 제조방법
WO2017052222A1 (ko) 담체-나노입자 복합체, 이의 제조방법, 및 이를 포함하는 막전극 접합체
WO2019013373A1 (ko) Pemfc용 라디칼 스캐빈져 조성물, pemfc용 라디칼 스캐빈져 및 이의 제조방법
WO2023136396A1 (ko) 루테늄 산화물 기반 산소 발생 반응용 촉매, 이의 제조방법 및 이를 포함하는 수전해 전지
WO2018101591A1 (ko) 막-전극 접합체 제조방법, 이로부터 제조된 막-전극 접합체 및 이를 포함한 연료전지
KR20110110600A (ko) 연료전지용 막-전극 접합체의 제조방법
WO2019146959A1 (ko) 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지
WO2023101313A1 (ko) 라디칼 스캐빈저 복합체, 이의 제조방법, 및 이를 포함하는 연료전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859142

Country of ref document: EP

Kind code of ref document: A1