WO2019142719A1 - 調光積層体及び調光積層体用樹脂スペーサ - Google Patents

調光積層体及び調光積層体用樹脂スペーサ Download PDF

Info

Publication number
WO2019142719A1
WO2019142719A1 PCT/JP2019/000495 JP2019000495W WO2019142719A1 WO 2019142719 A1 WO2019142719 A1 WO 2019142719A1 JP 2019000495 W JP2019000495 W JP 2019000495W WO 2019142719 A1 WO2019142719 A1 WO 2019142719A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
light control
resin particles
particle diameter
spacer
Prior art date
Application number
PCT/JP2019/000495
Other languages
English (en)
French (fr)
Inventor
恭幸 山田
高橋 英之
沙織 上田
稔 中嶋
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201980004557.3A priority Critical patent/CN111095093A/zh
Priority to EP19741576.3A priority patent/EP3742224A4/en
Priority to US16/962,019 priority patent/US11644717B2/en
Priority to JP2019512013A priority patent/JPWO2019142719A1/ja
Priority to KR1020197036439A priority patent/KR20200105745A/ko
Priority to CN202311112020.3A priority patent/CN117331254A/zh
Publication of WO2019142719A1 publication Critical patent/WO2019142719A1/ja
Priority to US18/129,458 priority patent/US12072583B2/en
Priority to JP2023104332A priority patent/JP2023112207A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/172Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169 based on a suspension of orientable dipolar particles, e.g. suspended particles displays

Definitions

  • the present invention relates to a light control laminate having light control performance, and a resin spacer used for the light control laminate.
  • Light control materials such as light control glass and light control films have the property of being able to change the state between the transparent state and the opaque state depending on the presence or absence of voltage application, and are materials that allow adjustment of incident light quantity, haze, etc. is there. Further, the light control materials are roughly classified into PDLC (Polymer Dispersed Liquid Crystal) type and SPD (Suspended Particle Device) type according to the action mechanism of the state change between the transparent state and the opaque state.
  • PDLC Polymer Dispersed Liquid Crystal
  • SPD Small Particle Device
  • the PDLC method is a method of dispersing liquid crystal in a resin matrix.
  • Examples of the form of the PDLC system include a form in which liquid crystal and a resin matrix are dispersed as a continuous phase, and a form in which liquid crystal is dispersed as a liquid crystal capsule in a resin matrix.
  • the incident light is scattered in the light control material due to the difference in refractive index between the resin matrix and the liquid crystal because the liquid crystal molecular alignment is not uniform, and an opaque state is observed.
  • the liquid crystal molecules align in a direction parallel to the electric field.
  • the light transmittance is adjusted by utilizing the molecular alignment of liquid crystal.
  • the SPD method is a method of dispersing a light control suspension in a resin matrix.
  • the light control suspension comprises light control particles.
  • the light modulating particles are responsive to the electric field.
  • incident light is contained in the light control material because the light control particles dispersed in the light control suspension absorb, scatter or reflect light by Brownian motion. Does not pass through.
  • incident light passes through the light control material because the light control particles are polarized and arranged in a direction parallel to the electric field.
  • the light transmittance can be adjusted by utilizing the polarization orientation of the light control particles.
  • Patent Document 1 discloses a liquid crystal device that is resizable, is a polymer-stabilized type, and is thermotropic.
  • the liquid crystal device has a transparent substrate.
  • the substrate is coated with a liquid crystal component mixture in which a plurality of liquid crystal components are mixed.
  • the liquid crystal component mixture has a clearing point within the normal temperature range of the ambient temperature and a freezing point lower than the lowest expected ambient temperature.
  • the liquid crystal device comprises thickness defining means for defining the thickness of the coating of the liquid crystal component mixture.
  • the liquid crystal device comprises a stabilizing polymer provided on the substrate to interface with the liquid crystal component mixture. The stabilizing polymer cures under the influence of external stimuli.
  • the liquid crystal layer is sandwiched between the first laminate and the second laminate provided with at least the alignment layer, and the first laminate or the second laminate is used.
  • the light control film which controls the orientation of the liquid crystal of the said liquid crystal layer by the drive of the provided electrode, and controls transmitted light is disclosed.
  • the thickness of the liquid crystal layer is increased by the arrangement of two or more types of spacers whose difference in thickness in the thickness direction of the liquid crystal layer is 0.1 ⁇ m to 0.6 ⁇ m. Different first and second regions are provided.
  • the first laminate is a laminate in which a bead spacer for holding the thickness of the liquid crystal layer is provided on a substrate made of a transparent film material.
  • the Vickers hardness value B of the portion of the second laminate at which the bead spacer abuts is 11.8 or more and 35.9 or less.
  • a multiplication value A ⁇ B of an occupancy ratio A which is a ratio of an area occupied by the bead spacer on the first laminated body in a plan view of the first laminated body, and a Vickers hardness value B is It is 0.42 or more.
  • Patent Document 4 includes a first laminate provided with an alignment layer, a second laminate provided with an alignment layer, a liquid crystal layer, a spacer, and an electrode, and the electrode Discloses a light control film that controls transmitted light by controlling the orientation of liquid crystal molecules by driving the
  • the liquid crystal layer is sandwiched by the first laminate and the second laminate and includes liquid crystal molecules.
  • the spacer holds the thickness of the liquid crystal layer.
  • the electrode is provided on the first laminate or the second laminate.
  • the spacer is a bead spacer of a transparent member.
  • the ratio of the occupied area of the spacer per unit area when the light management film is viewed from the front is 0.1% or more and 10% or less.
  • the liquid crystal layer is a guest-host liquid crystal layer containing a dichroic dye.
  • a spacer may be used in order to keep constant the space
  • uniformity of the gap between the substrates in the light control material can not be ensured because the particle diameter of the spacers is largely dispersed, etc. Uneven color may occur.
  • the conventional light control material when a spacer with a large particle diameter is mixed, unevenness is formed on the surface of the light control material, the base material or the light control layer is broken, or the base material is inclined. Sometimes. As a result, the light control material may generate color unevenness and a phenomenon in which light is transmitted around the spacer (referred to as “light leakage”).
  • the light control material may be used for a vehicle use or a building material use.
  • the area of the light control material for vehicle or building applications is relatively large.
  • the area of the light control material for building materials use is often larger than the area of the light control material for vehicles etc.
  • Large-area light control materials are greatly affected by variations in the particle size of the spacers, so cracking of the base material and the light control layer, inclination of the base material, and the like easily occur, and color unevenness and light leakage occur in the light control materials. Likely to happen.
  • a light control layer disposed between a first transparent substrate, a second transparent substrate, and the first transparent substrate and the second transparent substrate And the light control layer includes a resin spacer, and the resin spacer is a plurality of resin particles, and the resin spacer has a particle diameter of at least 1.4 times the average particle diameter of the resin particles.
  • a light control that contains no resin particles, or contains 0.0006% or less of resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles in 100% of the total number of the resin particles A laminate is provided.
  • the resin spacer does not include resin particles having a particle diameter of at least 1.7 times the average particle diameter of the resin particles.
  • the resin spacer does not contain resin particles having a particle diameter of 0.5 times or less of the average particle diameter of the resin particles, or the resin particles The resin particles having a particle diameter of 0.5 times or less of the average particle diameter of the resin particles in 0.5% or less of the total number 100% of
  • an average particle diameter of the resin particles is 3 ⁇ m or more and 100 ⁇ m or less.
  • the resin particles contain a pigment or a dye.
  • the resin particles contain a pigment.
  • the present invention is a plurality of resin particles and does not contain resin particles having a particle diameter of 1.4 times or more the average particle diameter of the resin particles, or the total number of the resin particles is 100
  • the resin spacer for light control laminated bodies which contains the resin particle which has a particle diameter of 1.4 times or more of the average particle diameter of the said resin particle in 0.0006% or less is provided.
  • the resin particles are contained in an amount of one million or more.
  • the light control laminate according to the present invention comprises a first transparent base, a second transparent base, a light control disposed between the first transparent base and the second transparent base. And a layer.
  • the light control layer includes a resin spacer.
  • the resin spacer is a plurality of resin particles.
  • the resin spacer does not contain resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles, or the total number of the resin particles is 100%.
  • the resin particle which has a particle diameter of 1.4 times or more of the average particle diameter of the said resin particle is contained by 0.0006% or less.
  • the light control laminate according to the present invention is provided with the above-described configuration, so that the occurrence of color unevenness and light leakage can be effectively suppressed.
  • the resin spacer for a light control laminate according to the present invention is a plurality of resin particles.
  • the resin spacer for a light control laminate according to the present invention does not contain resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles, or in 100% of the total number of the resin particles.
  • the resin particles having a particle diameter of not less than 1.4 times the average particle diameter of the resin particles are contained at 0.0006% or less.
  • the resin spacer for a light control laminate according to the present invention is provided with the above-described configuration, so that the occurrence of color unevenness and light leakage can be effectively suppressed.
  • FIG. 1 is a cross-sectional view schematically showing a PDLC light modulation laminate according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an SPD light modulation laminate according to a second embodiment of the present invention.
  • the light control laminate according to the present invention comprises a first transparent base, a second transparent base, a light control disposed between the first transparent base and the second transparent base. And a layer.
  • the light control layer includes a resin spacer.
  • the resin spacer is a plurality of resin particles.
  • the resin spacer is an aggregate of a plurality of resin particles, and is a powder of a plurality of resin particles.
  • the resin spacer does not contain resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles, or the total number of the resin particles is 100%.
  • the resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles are contained at 0.0006% or less (6 or less per 1,000,000, 3 or less per 500,000).
  • the number of resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles is 6 or less per 1,000,000 of the resin particles, the number is 1.2 or less per 200,000.
  • the resin spacer does not contain resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles, or 1,000,000 of the resin particles
  • the number of resin particles having a particle diameter of not less than 1.4 times the average particle diameter of the resin particles is contained at 6 or less.
  • one resin particle has a particle diameter of not less than 1.4 times the average particle diameter of the above resin particles per 10,000 of the above resin particles, per one million of the above resin particles,
  • One hundred resin particles have a particle diameter of at least 1.4 times the average particle diameter.
  • the light control laminate according to the present invention is provided with the above-described configuration, so that the occurrence of color unevenness and light leakage can be effectively suppressed.
  • the resin spacer may contain 500,000 or more, or may contain 1,000,000 or more of the resin particles.
  • the light control laminated body which concerns on this invention may have a curved-surface part.
  • the light control laminated body which concerns on this invention may be used in the state which has a curved-surface part.
  • the transparent substrate may have a curved surface portion or may be used in a state having a curved surface portion.
  • the conventional light control material has a curved surface portion, it is very difficult to ensure the uniformity of the gap between the substrates in the light control material.
  • the base material and the light control layer are more susceptible to the influence of the dispersion of the particle diameter of the resin particles, and the base material has a crack or the like than the flat surface portion.
  • the light control laminate according to the present invention is provided with the above-described configuration, so that Uniformity of the gap can be secured, and cracking of the base material and the light control layer, inclination of the base material, and the like can be effectively suppressed. As a result, the occurrence of color unevenness and light leakage can be effectively suppressed.
  • the light control laminated body which concerns on this invention has a curved-surface part, it is preferable that the curvature of the curved surface part of the said light control laminated body is 300R or more and 1800R or less.
  • the curvature of the curved surface portion of the light control laminate satisfies the above-described preferable embodiment, it is possible to ensure the uniformity of the gap between the substrates, and cracking of the substrate and the light control layer, and the substrate Can be more effectively suppressed. As a result, the occurrence of color unevenness and light leakage can be suppressed more effectively.
  • the light control laminate preferably has a curved surface portion and is preferably used in a state having a curved surface portion, since the effects of the present invention are further exhibited.
  • the light control laminate preferably has a bent shape or a curved shape, and is preferably used in a bent shape or a curved shape.
  • the said light control laminated body may have a bending part or a curved part.
  • the light control laminate and the transparent substrate preferably have flexibility so as to be able to be in a bent or curved shape.
  • the said transparent base material is a base material (light transmissive base material) which has light transmittance, for example.
  • light is transmitted from one side of the transparent substrate to the other side through the transparent substrate.
  • Transparency includes, for example, translucency.
  • the transparent substrate may be colorless and transparent or may be colored and transparent.
  • the light control laminated body may be a light control film or a light control glass.
  • the light control laminate may be a light control laminate in which the light control film is sandwiched between transparent substrates such as glass.
  • FIG. 1 is a cross-sectional view schematically showing a PDLC light modulation laminate according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an SPD light modulation laminate according to a second embodiment of the present invention.
  • the size, thickness, shape, addition amount and the like of the light control layer and the resin spacer are appropriately changed from the actual size and shape for convenience of illustration.
  • a PDLC light control laminate 1 shown in FIG. 1 includes a first base 2, a second base 3, and a light control layer 4.
  • the light control layer 4 is sandwiched between the first base 2 and the second base 3.
  • the light control layer 4 is disposed between the first base 2 and the second base 3.
  • a sealing agent (not shown) may be disposed around the light control layer 4 between the first base 2 and the second base 3.
  • the light control layer 4 includes a liquid crystal capsule 4 A, a binder 4 B, and a resin spacer 6.
  • the resin spacer 6 is an aggregate of a plurality of resin particles, and is a powder of a plurality of resin particles.
  • the resin particles function as spacers.
  • the liquid crystal capsule 4A is a liquid crystal material.
  • the liquid crystal capsules 4A are dispersed in the binder 4B.
  • the liquid crystal capsule 4A is held in the form of a capsule in the binder 4B.
  • the liquid crystal material may be dispersed in a binder in a binder, or the liquid crystal material may be dispersed in the binder as a continuous phase.
  • the resin spacer 6 is used as a resin spacer for a light control laminate.
  • the resin spacer 6 is in contact with the first base 2 and the second base 3.
  • the resin spacer 6 controls the gap between the first base 2 and the second base 3.
  • Transparent electrodes are formed on the surface of the first substrate 2 and on the surface of the second substrate 3 (not shown).
  • a material of a transparent electrode indium tin oxide (ITO) etc. are mentioned.
  • the alignment of the liquid crystal molecules in the liquid crystal capsule 4A is not uniform, so the incident light is different due to the difference in refractive index between the binder 4B and the liquid crystal material. Scattering in the binder results in an opaque state.
  • liquid crystal molecules in the liquid crystal capsule 4A are aligned in a direction parallel to the electric field.
  • the refractive index of the binder 4B and the liquid crystal material becomes equal in this state, light can be transmitted and it becomes transparent.
  • the light control laminate 11 of the SPD system shown in FIG. 2 includes the first base 2, the second base 3, and the light control layer 5.
  • the light control layer 5 is sandwiched between the first base 2 and the second base 3.
  • the light control layer 5 is disposed between the first base 2 and the second base 3.
  • the light control layer 5 includes droplets 5 ⁇ / b> A of a light control suspension, a resin matrix 5 ⁇ / b> B, and a resin spacer 6.
  • the resin spacer 6 is an aggregate of a plurality of resin particles, and is a powder of a plurality of resin particles. The resin particles function as spacers.
  • the light control suspension droplets 5A are dispersed in the resin matrix 5B.
  • the light control suspension droplets 5A are held in the form of droplets in the resin matrix 5B.
  • the droplet 5A of the light control suspension contains a dispersion medium 5Aa and light control particles 5Ab.
  • the light control particles 5Ab are dispersed in the dispersion medium 5Aa.
  • the resin spacer 6 is used as a resin spacer for a light control laminate.
  • the resin spacer 6 is in contact with the first base 2 and the second base 3.
  • the resin spacer 6 controls the gap between the first base 2 and the second base 3.
  • Transparent electrodes are formed on the surface of the first substrate 2 and on the surface of the second substrate 3 (not shown).
  • a material of a transparent electrode indium tin oxide (ITO) etc. are mentioned.
  • incident light is generated by the Brownian motion of the light control particles 5Ab dispersed in the dispersion medium 5Aa constituting the droplet 5A of the light control suspension. Is absorbed, scattered or reflected by the light control particles 5Ab, and the incident light can not pass through the light control layer 5 and becomes opaque.
  • the light control particles 5Ab When a voltage is applied to the SPD type light control laminate 11, the light control particles 5Ab are arranged in a direction parallel to the electric field. For this reason, incident light can pass between the arranged light control particles 5Ab, and becomes transparent.
  • the resin spacer which concerns on this invention is a resin spacer used for a light control laminated body.
  • the resin spacer for a light control laminate according to the present invention comprises a first transparent base, a second transparent base, the first transparent base, and the second transparent base.
  • the resin spacer for the said light control layer is a plurality of resin particles.
  • the resin spacer for a light control laminate according to the present invention does not contain resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles, or in 100% of the total number of the resin particles.
  • the resin particles having a particle diameter of not less than 1.4 times the average particle diameter of the resin particles are contained at 0.0006% or less.
  • the resin spacer according to the present invention does not contain resin particles having a particle diameter of 1.4 times or more the average particle diameter of the resin particles, or the average of the resin particles per one million resin particles. It contains resin particles having a particle diameter of 1.4 times or more of the particle diameter at 6 or less (6 or less per 1,000,000, 3 or less for 500,000).
  • the number of resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles is 6 or less per 1,000,000 of the resin particles, the number is 1.2 or less per 200,000.
  • the resin spacer according to the present invention is provided with the above-described configuration, so that the occurrence of color unevenness and light leakage can be effectively suppressed.
  • the resin spacer according to the present invention may contain 500,000 or more of the above-mentioned resin particles, and may contain 1,000,000 or more.
  • the resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles be contained by 0.0006% or less, and it is contained by 0.0005% or less in 100% of the total number of the resin spacers. Is more preferably 0.0004% or less, and particularly preferably 0.0002% or less (2 or less per 1,000,000 pieces). It is particularly preferable that the resin spacer does not contain resin particles having a particle diameter of at least 1.4 times the average particle diameter of the resin particles.
  • the resin spacer may contain 200,000 or more of the resin particles, may contain 500,000 or more, and may contain 1,000,000 or more.
  • the resin spacer preferably contains 500,000 or more of the resin particles and does not contain resin particles having a particle diameter of 1.4 times or more the average particle diameter of the resin particles. It is more preferable that the resin spacer contains one million or more of the resin particles and does not contain resin particles having a particle diameter of 1.4 times or more of the average particle diameter of the resin particles.
  • the resin spacer satisfies the above-described preferable embodiment, it is further more effective that unevenness is formed on the surface, the base material or the light control layer is broken, or the base material is inclined in the light control laminate. Can be prevented.
  • the resin spacer satisfies the above-described preferable embodiment, it is possible to more effectively suppress the occurrence of color unevenness and light leakage in the light control laminate.
  • a method of selecting resin particles having a target particle diameter using a classifier there is a method of selecting resin particles having a target particle diameter using a classifier, and the like.
  • a system of the classification device a method using the principle of inertial force, a method using particle size, and the like can be mentioned.
  • the resin spacer preferably does not contain resin particles having a particle diameter of at least 1.5 times the average particle diameter of the resin particles, and has a particle diameter of at least 1.7 times the average particle diameter of the resin particles. It is particularly preferred not to contain resin particles.
  • the resin spacer preferably contains 500,000 or more of the resin particles, and preferably does not contain resin particles having a particle diameter of 1.5 times or more the average particle diameter of the resin particles, and the resin spacer It is more preferable to contain 500,000 or more resin particles and not contain resin particles having a particle diameter of at least 1.7 times the average particle diameter of the resin particles.
  • the resin spacer contains one million or more of the resin particles and does not contain resin particles having a particle diameter of 1.5 times or more of the average particle diameter of the resin particles; It is more preferable to contain one million or more resin particles and not contain resin particles having a particle diameter of at least 1.7 times the average particle diameter of the resin particles.
  • the resin spacer satisfies the above-described preferable embodiment, it is further more effective that unevenness is formed on the surface, the base material or the light control layer is broken, or the base material is inclined in the light control laminate. Can be prevented.
  • the resin spacer satisfies the above-described preferable embodiment, it is possible to more effectively suppress the occurrence of color unevenness and light leakage in the light control laminate.
  • a method of selecting a resin spacer having a target particle diameter using a classifier there is a method of selecting a resin spacer having a target particle diameter using a classifier, and the like.
  • a system of the classification device a method using the principle of inertial force, a method using particle size, and the like can be mentioned.
  • the resin spacer does not contain resin particles having a particle diameter of 0.5 times or less of the average particle diameter of the resin particles, or 0 of the average particle diameter of the resin particles in 100% of the total number of the resin particles. It is preferable to contain resin particles having a particle size of not more than 5 times by 0.5% or less (5 or less per 1000).
  • the resin spacer is 0.3% or less (3 or less per 1000 pieces) of resin particles having a particle diameter of 0.5 times or less of the average particle diameter of the resin particles in 100% of the total number of the resin particles It is more preferable to include. It is particularly preferable that the resin spacer does not contain resin particles having a particle diameter of 0.5 times or less of the average particle diameter of the resin particles.
  • the scratching of the base material can be more effectively prevented in the light control laminate, and the light control performance for adjusting incident light quantity, haze and the like is further improved. It can be effectively enhanced.
  • a method of selecting a resin spacer having a target particle diameter using a classifier there is a method of selecting a resin spacer having a target particle diameter using a classifier, and the like.
  • a system of the classification device a method using the principle of inertial force, a method using particle size, and the like can be mentioned.
  • the average particle diameter of the resin particles is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 7 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m. It is below.
  • the average particle diameter of the said resin particle is 3 micrometers-100 micrometers, and it can use suitably for the use of a light control laminated body.
  • the average particle size of the resin particles is preferably a number average particle size.
  • the average particle diameter of the resin particles can be determined by using any particle diameter measuring device for the particle diameter of the resin particles.
  • a particle size distribution measuring machine using principles such as laser light scattering, change in electric resistance value, and image analysis after imaging can be used.
  • the particle diameter of about 100,000 resin particles is measured using a particle size distribution measuring apparatus ("Multisizer 4" manufactured by Beckman Coulter, Inc.) The method etc. of measuring a diameter are mentioned.
  • the particle diameter of the resin particle means the diameter when the resin particle is spherical, and when the resin particle is in a shape other than spherical, it is assumed that the resin particle is a spherical equivalent of the volume. Means diameter.
  • the aspect ratio of the resin particles is preferably 1.5 or less, more preferably 1.3 or less.
  • the lower limit of the aspect ratio of the resin particles is not particularly limited.
  • the aspect ratio of the resin particles may be 1 or more.
  • the aspect ratio of the resin particle indicates a major axis / a minor axis.
  • the said resin spacer can be suitably used for the use of a light control laminated body as the aspect-ratio of the said resin particle is below the said upper limit.
  • the aspect ratio of the above-mentioned resin particles is that ten arbitrary resin particles are observed with an electron microscope or an optical microscope, and the maximum diameter and the minimum diameter are respectively taken as the long diameter and the short diameter, and the average value of the long diameter / short diameter of each resin particle It can be obtained by calculation.
  • the coefficient of variation (CV value) of the particle diameter of the resin particles is preferably 10% or less, more preferably 7% or less.
  • the lower limit of the coefficient of variation (CV value) of the particle diameter of the resin particles is not particularly limited.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of resin particle Dn: Average value of particle diameter of resin particle
  • the shape of the resin particle is not particularly limited.
  • the shape of the resin particle may be spherical or may be flat or other non-spherical shape.
  • 10% K value of the resin particles is preferably 1000 N / mm 2 or more, more preferably 3000N / mm 2 or more, preferably 10000 N / mm 2 or less, more preferably 7000N / mm 2 or less.
  • the 10% K value of the resin particles is the above lower limit or more, the gap between the substrates can be made more uniform.
  • the 10% K value of the resin particle is less than or equal to the above upper limit, it is possible to more effectively prevent the scratching of the base material in the light control laminate, and light control to adjust incident light quantity, haze and the like Performance can be enhanced more effectively.
  • 20% K value of the resin particles is preferably 1000 N / mm 2 or more, more preferably 3000N / mm 2 or more, preferably 10000 N / mm 2 or less, more preferably 7000N / mm 2 or less.
  • the gap between the substrates can be made more uniform.
  • the 20% K value of the resin particle is less than or equal to the upper limit, it is possible to more effectively prevent the substrate from being scratched in the light control laminate, and the light control to adjust the incident light amount, the haze, etc. Performance can be enhanced more effectively.
  • the 10% K value and the 20% K value of the resin particles can be measured as follows.
  • one resin particle is compressed under the conditions of 25 ° C., a compression rate of 0.3 mN / s, and a maximum test load of 20 mN on the smooth indenter end face of a cylinder (diameter 100 ⁇ m, made of diamond).
  • the load value (N) and the compression displacement (mm) at this time are measured.
  • the 10% K value (10% compression modulus) and the 20% K value (20% compression modulus) of the resin particles can be determined by the following equations.
  • the micro compression tester for example, “Micro compression tester MCT-W200” manufactured by Shimadzu Corporation, “Fisher Scope H-100” manufactured by Fisher, etc. may be used.
  • the 10% K value and the 20% K value of the resin particles are preferably calculated by arithmetically averaging the 10% K value or the 20% K value of 50 resin particles arbitrarily selected.
  • the above-mentioned K value expresses the hardness of resin particles universally and quantitatively. By using the above-mentioned K value, the hardness of the resin particle can be quantitatively and uniquely represented.
  • the compression recovery rate of the resin particles is preferably 30% or more, more preferably 40% or more, and preferably 95% or less, more preferably 90% or less.
  • the gap between the substrates can be made more uniform in the light control laminate when the compression recovery rate of the resin particles is at least the lower limit and the upper limit, and the occurrence of color unevenness is more effective. Can be suppressed.
  • the compression recovery rate of the resin particles can be measured as follows.
  • a load of 1 gf with respect to the resin particles in the center direction of the resin particles at 25 ° C. at a smooth indenter end face of a cylinder (diameter 100 ⁇ m, made of diamond) using a micro compression tester for one dispersed resin particle Apply a load (reverse load value) until it is applied. After that, unloading is performed to the origin load value (0.40 mN). The load-compression displacement can be measured during this period, and the compression recovery rate can be determined from the following equation.
  • the loading speed is 0.33 mN / sec.
  • the micro compression tester for example, “Micro compression tester MCT-W200” manufactured by Shimadzu Corporation, “Fisher Scope H-100” manufactured by Fisher, etc. may be used.
  • Compression recovery rate (%) [L2 / L1] ⁇ 100
  • L1 Compressive displacement from the home load value to the reverse load value when applying a load
  • L2 Unloaded displacement from the reverse load value to the home load value when releasing the load
  • the breaking strain of the resin particles is preferably 30% or more, more preferably 40% or more, and preferably 80% or less, more preferably 70% or less.
  • the gap between the substrates can be made more uniform in the light control laminate when the breaking strain of the resin particles is not less than the lower limit and not more than the upper limit, and the occurrence of color unevenness is further effectively achieved. It can be suppressed.
  • the fracture strain of the resin particles can be measured as follows.
  • Spray resin particles on the sample table For one dispersed resin particle, using a micro-compression tester, load is applied in the direction of the center of the resin particle until the resin particle is broken. Thereafter, the displacement when the resin particle is broken is measured. The rate of displacement when broken relative to the particle diameter of the resin particles is taken as the breaking strain. The loading speed is 0.33 mN / sec.
  • the micro compression tester for example, “Micro compression tester MCT-W200” manufactured by Shimadzu Corporation, “Fisher Scope H-100” manufactured by Fisher, etc. may be used.
  • the total light transmittance of the resin particles is preferably 5% or less, more preferably 4% or less.
  • the lower limit of the total light transmittance of the resin particle is not particularly limited.
  • the total light transmittance of the resin particle is equal to or less than the above-described upper limit, in the light control laminate, generation of a phenomenon (light leakage) in which light is transmitted from the spacer portion can be more effectively prevented, and color unevenness is generated. Can be suppressed more effectively.
  • the total light transmittance of the resin particle can be measured as follows.
  • the total light transmittance is measured using the obtained evaluation sample.
  • the total light transmittance can be measured, for example, using a spectrophotometer ("V-670" manufactured by JASCO Corporation).
  • An integrating sphere can be used as a detector.
  • the resin particles are preferably coated on the surface with a coating agent such as a silane coupling agent. It is preferable that the film by the said coating agent is a monomolecular film or a polymer film. The resin particles may not have the coating.
  • the said silane coupling agent is not specifically limited.
  • the method for coating the surface with a coating agent to obtain resin particles is not particularly limited.
  • the following method may be mentioned as a method of coating the surface with a coating agent to obtain resin particles.
  • the resin particles (before coating) and the above-mentioned coating agent are mixed in an inorganic solvent such as water or an organic solvent such as alcohol, heated under stirring, and the resin particles after heating are separated by decantation etc. How to remove the solvent.
  • the said resin spacer is used for a light control laminated body.
  • the said resin spacer may be used as a spacer for light control glass, and may be used as a spacer for light control film.
  • the resin particles preferably contain a pigment or a dye.
  • the resin particles preferably have a base particle body and a pigment or dye contained in the base particle body.
  • the base particle body is preferably a resin particle body, and is preferably a resin particle.
  • (meth) acrylate” means one or both of “acrylate” and “methacrylate”
  • (meth) acrylic” means one or both of “acrylic” and “methacrylic”. means.
  • the material of the resin particles and the material of the base particle body include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; polymethyl methacrylate and polymethyl acrylate Acrylic resin; polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, Polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamide imide, Ether ketone, polyether sulfone, divinyl benzene polymer, and divinylbenzen
  • polyolefin resins such as polyethylene, polypropylene, polystyrene,
  • divinylbenzene copolymer and the like examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer and the like. Since the compressive deformation characteristics of the resin particles can be easily controlled to a suitable range, the material of the resin particles and the material of the base particle main body contain one or two polymerizable monomers having an ethylenically unsaturated group. It is preferable that it is a polymer polymerized by species or more.
  • the resin particle and the substrate particle main body are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group
  • the polymerizable monomer having an ethylenically unsaturated group is non-crosslinkable.
  • a monomer and a crosslinkable monomer are mentioned.
  • non-crosslinkable monomers examples include, as vinyl compounds, styrene monomers such as styrene, ⁇ -methylstyrene and chlorostyrene; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; vinyl acetate, vinyl butyrate, Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) as a (meth) acrylic compound ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl Alkyl (meth
  • crosslinkable monomer examples include vinyl monomers such as divinylbenzene, 1,4-divinyloxybutane and divinylsulfone as vinyl compounds; and tetramethylolmethane tetra (meth) acrylate as (meth) acrylic compounds.
  • the resin particles and the base particle main body can be obtained by polymerizing the polymerizable monomer having the ethylenically unsaturated group.
  • the resin particles and the base particle body may be polymerized by uniformly mixing and dispersing a pigment or a dye in the polymerizable monomer having the ethylenically unsaturated group.
  • the above-mentioned polymerization method is not particularly limited, and can be polymerized by a known method. Examples of the above-mentioned polymerization method include radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, living radical polymerization and the like.
  • a method of suspension polymerization in the presence of a radical polymerization initiator and a method of seed polymerization which is a method of swelling and polymerizing a monomer with a radical polymerization initiator using non-crosslinked seed particles And dispersion polymerization methods.
  • a ball mill, bead mill, sand mill, attritor, sand grinder, nanomizer or the like may be used to uniformly mix and disperse the pigment or dye to the polymerizable monomer having an ethylenically unsaturated group.
  • a dispersant or the like may be added to enhance the dispersibility of the pigment or dye.
  • the said dispersing agent is not specifically limited.
  • the dispersant include water-soluble polymers such as polyvinyl alcohol, starch, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and sodium poly (meth) acrylate.
  • water-soluble polymers such as polyvinyl alcohol, starch, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and sodium poly (meth) acrylate.
  • barium sulfate, calcium sulfate, aluminum sulfate, calcium carbonate, calcium phosphate, talc, clay, metal oxide powder and the like can be mentioned.
  • the resin particles according to the present invention preferably contain a pigment or a dye.
  • the resin particles may contain both a pigment and a dye, may contain only a pigment, or may contain only a dye.
  • the pigment or the dye is preferably a pigment or a dye capable of reducing the total light transmittance of the resin particle to 7% or less.
  • the pigment may be a black pigment, a dark blue pigment, or a dark brown pigment. From the viewpoint of more effectively preventing the occurrence of light leakage and the viewpoint of more effectively suppressing the occurrence of color unevenness in the light control laminate, the pigment is preferably a black pigment.
  • the dye is preferably a black dye.
  • the resin particles may contain both the black pigment and the black dye, may contain only the black pigment, and may contain only the black dye.
  • black pigment examples include carbon black, lamp black, graphite, iron oxide, copper-chromium complex oxide, and copper-chromium-zinc complex oxide. Only one type of the black pigment may be used, or two or more types may be used in combination.
  • dark blue pigments examples include copper phthalocyanine, cobalt phthalocyanine, and cobalt aluminate.
  • the dark blue pigments may be used alone or in combination of two or more.
  • dark brown pigment examples include zinc ferrite and iron oxide.
  • the dark brown pigment may be used alone or in combination of two or more.
  • black dye examples include pyrazole azo dyes, anilino azo dyes, triphenylmethane dyes, anthraquinone dyes, anthrapyridone dyes, benzylidene dyes, oxole dyes, pyrazolotriazole azo dyes, pyridone azo dyes , Cyanine dyes, phenothiazine dyes, pyrrolopyrazole azomethine dyes, xysatin dyes, phthalocyanine dyes, benzopyran dyes, indigo dyes, pilomethene dyes, triarylmethane dyes, azomethine dyes, berylene dyes, perinone Dyes, quatarylene dyes, quinophthalone dyes, etc., and acid dyes, direct dyes, basic dyes, mordant dyes, acid mordant dyes, azoic dyes, disperse dyes, oil soluble dyes, food dye
  • the pigment is preferably carbon black, titanium black, aniline black or iron oxide. Only one type of the pigment may be used, or two or more types may be used in combination.
  • the above pigment Is preferably carbon black.
  • the carbon black is not particularly limited. Examples of the carbon black include channel black, roll black, furnace black, thermal black, ketjen black, and acetylene black. The carbon black may be used alone or in combination of two or more.
  • the dye is preferably an acid dye. Only one type of the dye may be used, or two or more types may be used in combination.
  • the pigment is preferably a pigment having a surface coated.
  • the pigment preferably has a surface coated with a polymer.
  • the surface of the pigment is preferably coated with a polymer.
  • the carbon black is preferably coated with a polymer on the surface.
  • the surface of the carbon black is preferably coated with a polymer.
  • thermoplastic resin is not particularly limited.
  • thermoplastic resin alkyd resin, modified alkyd resin, phenol resin, natural resin modified phenolic resin, maleic acid resin, natural resin modified maleic resin, fumaric acid resin, ester gum, rosin, petroleum resin, coumarone resin, indene Resin, polyester resin, polyimide resin, polyamide resin, polycarbonate resin, polyethylene resin, epoxy resin, phenoxy resin, styrene resin, vinyl resin, acrylic resin, chlorinated rubber, benzoguanamine resin, urea resin, polyolefin resin, ethylene-vinyl acetate copolymer A united body, and a urethane resin etc. are mentioned. Only one type of the thermoplastic resin may be used, or two or more types may be used in combination.
  • the method of coating the surface of the pigment with the thermoplastic resin is not particularly limited.
  • a method of coating the surface of the pigment with the thermoplastic resin there is provided a method of pulverizing the pigment in a hydrophobic solvent containing the thermoplastic resin using a pulverizing apparatus such as a ball mill, and the thermoplastic resin After emulsifying by adding and mixing the water dispersion of a pigment in the hydrophobic solvent to contain, the method of distilling off water by heating etc. are mentioned.
  • the total content of the pigment and the dye is preferably 2% by weight or more, more preferably 3% by weight or more, and preferably 40% by weight or less, more preferably 20% by weight, in 100% by weight of the resin particles. It is below.
  • the total content of the pigment and the dye is equal to or more than the lower limit and equal to or less than the upper limit, the occurrence of light leakage can be more effectively prevented and the occurrence of color unevenness is further enhanced. Can be suppressed.
  • the content of the pigment is preferably 2% by weight or more, more preferably 3% by weight or more, and preferably 10% by weight or less, more preferably 8% by weight or less in 100% by weight of the resin particles.
  • the content of the pigment is at least the lower limit and the upper limit, the occurrence of light leakage can be more effectively prevented and the occurrence of color unevenness can be more effectively suppressed.
  • the content of the dye is preferably 3% by weight or more, more preferably 5% by weight or more, and preferably 40% by weight or less, more preferably 20% by weight or less.
  • the content of the dye is equal to or more than the lower limit and equal to or less than the upper limit, the occurrence of light leakage can be more effectively prevented and the occurrence of color unevenness can be further effectively suppressed.
  • the light control layer which concerns on this invention has light control property.
  • the light control property is a property in which the transmittance of light or the like changes depending on the presence or absence of voltage application, and the amount of incident light and the haze can be adjusted.
  • the material of the light control layer is not particularly limited.
  • the material of the light control layer may be any material as long as it has light control properties.
  • the light control layer preferably includes a binder and a liquid crystal material dispersed in the binder.
  • the liquid crystal material is not particularly limited.
  • the liquid crystal material may be any liquid crystal material as long as it has the property of changing the orientation according to the applied state of voltage.
  • the liquid crystal material may be dispersed as a continuous phase in the binder, or may be dispersed in the binder in the form of liquid crystal drops or liquid crystal capsules.
  • Examples of the liquid crystal material include nematic liquid crystals and cholesteric liquid crystals.
  • the materials for the cholesteric liquid crystal include steroidal cholesterol derivatives, Schiff bases, azos, azoxys, benzoates, biphenyls, terphenyls, cyclohexyls, phenylcyclohexanes, biphenylcyclohexanes, pyrimidines.
  • nematic liquid crystals such as smectic liquid crystals, such as dioxane type, cyclohexyl cyclohexane ester type, cyclohexyl ethane type, cyclohexane type, tolane type, alkenyl type, stilbene type and condensed polycyclic type.
  • examples of the material of the cholesteric liquid crystal include materials in which a chiral component composed of an optically active material such as Schiff base type, azo type, ester type and biphenyl type is added to the mixed liquid crystal.
  • a chiral component composed of an optically active material such as Schiff base type, azo type, ester type and biphenyl type is added to the mixed liquid crystal.
  • the material of the cholesteric liquid crystal only one type may be used, or two or more types may be used in combination.
  • the binder holds the liquid crystal material and suppresses the flow of the liquid crystal material.
  • the binder is not particularly limited as long as it does not dissolve in the liquid crystal material, has strength to withstand external force, and has high transparency to reflected light and incident light.
  • materials for the binder include water-soluble polymer materials such as gelatin, polyvinyl alcohol, cellulose derivatives, polyacrylic acid polymers, ethyleneimine, polyethylene oxide, polyacrylamide, polystyrene sulfonate, polyamidine, and isoprene sulfonic acid polymers. Etc.
  • materials which can be aqueous-emulsifiable such as a fluorine resin, a silicone resin, an acrylic resin, a urethane resin, and an epoxy resin, etc. are mentioned.
  • the materials of the binder may be used alone or in combination of two or more.
  • the binder is preferably crosslinked by a crosslinking agent.
  • the crosslinking agent is not particularly limited as long as it is a compound which forms a crosslink between the binders and hardens the binder, makes it poorly soluble, or insolubilizes the binder.
  • examples of the crosslinking agent include acetaldehyde, glutaraldehyde, glyoxal, potassium alum hydrate of polyvalent metal salt compound, adipic acid dihydrazide, melamine formalin oligomer, ethylene glycol diglycidyl ether, polyamide epichlorohydrin, polycarbodiimide and the like. It can be mentioned. Only one type of crosslinking agent may be used, or two or more types may be used in combination.
  • the light control layer preferably includes a resin matrix and a light control suspension dispersed in the resin matrix.
  • the light conditioning suspension contains a dispersion medium and light conditioning particles dispersed in the dispersion medium.
  • the light control particles include carbon materials such as polyiodide and carbon black, metal materials such as copper, nickel, iron, cobalt, chromium, titanium, and aluminum, and inorganic materials such as silicon nitride, titanium nitride, and aluminum oxide. Compound materials and the like can be mentioned. Also, these materials may be particles coated with a polymer.
  • the light adjusting particles may be used alone or in combination of two or more.
  • the dispersion medium disperses the light adjusting particles in a flowable state.
  • the dispersion medium selectively adheres to the light control particles, covers the light control particles, and moves to the droplet phase in which the light control particles are phase separated during phase separation from the resin matrix. It is preferred to act.
  • the dispersion medium is preferably a material having no electrical conductivity, and is preferably a material having no affinity to the resin matrix. Furthermore, it is preferable that the dispersion medium is a liquid copolymer in which the refractive index with the resin matrix is similar when it is made a light control laminate.
  • the (meth) acrylic acid ester oligomer which has a fluoro group or a hydroxyl group is preferable, and the (meth) acrylic acid ester oligomer which has a fluoro group and a hydroxyl group is more preferable.
  • the fluoro or hydroxy monomer units are directed to the light conditioning particles, and the remaining monomer units stabilize the droplets of the light conditioning suspension in the resin matrix. For this reason, the light control particles are easily dispersed in the light control suspension, and the light control particles are easily induced in the droplets to be phase separated in the phase separation with the resin matrix.
  • (meth) acrylic acid ester oligomer having the above fluoro group or hydroxyl group 2,2,2-trifluoroethyl methacrylate / butyl acrylate / 2-hydroxyethyl acrylate copolymer, acrylic acid 3,5,5 -Trimethylhexyl / 2-hydroxypropyl acrylate / fumaric acid copolymer, butyl acrylate / 2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl acrylate / butyl acrylate / acrylic Acid 2-hydroxyethyl copolymer, acrylic acid 1H, 1H, 5H-octafluoropentyl / butyl acrylate / acrylic acid 2-hydroxyethyl copolymer, acrylic acid 1H, 1H, 2H, 2H, 2H-heptadecafluorodecyl / Butyl acrylate / 2-hydroxyethyl acrylate copoly
  • the weight average molecular weight of the (meth) acrylic acid ester oligomer is preferably 1000 or more, more preferably 2000 or more, preferably 20000 or less, more preferably 10000 or less.
  • the said weight average molecular weight shows the weight average molecular weight in polystyrene conversion measured by gel permeation chromatography (GPC).
  • the light control layer can be produced using a resin material for forming the resin matrix and the light adjustment suspension.
  • the said resin material is a resin material hardened
  • the resin material that is cured by irradiation with an energy beam include polymer compositions containing a photopolymerization initiator and a polymer compound that is cured by energy beams such as ultraviolet light, visible light and electron beam.
  • the polymer composition the polymer composition containing the polymerizable monomer which has an ethylenically unsaturated group, and a photoinitiator is mentioned.
  • a polymerizable monomer which has the said ethylenically unsaturated group a non-crosslinkable monomer and a crosslinkable monomer are mentioned.
  • non-crosslinkable monomer the non-crosslinkable monomer mentioned above is mentioned.
  • crosslinkable monomer the crosslinkable monomer mentioned above is mentioned.
  • photopolymerization initiator 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- (4- (2-hydroxyethoxy) phenyl) -2-hydroxy-2-methyl-1-propane -1-one, bis (2,4,6-trimethylbenzoyl) phenyl phosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and (1-hydroxycyclohexyl) phenyl ketone etc.
  • the resin material may contain an organic solvent soluble resin, a thermoplastic resin, poly (meth) acrylic acid and the like. Moreover, the said resin material may contain various additives, such as a coloring inhibitor, an antioxidant, and an adhesiveness imparting agent, and may contain the solvent.
  • the materials of the first transparent substrate and the second transparent substrate are not particularly limited.
  • the material of the first transparent substrate and the material of the second transparent substrate may be the same or different.
  • Glass, a resin film, etc. are mentioned as a material of the said transparent base material.
  • the glass include soda lime glass for general construction, lead glass, borosilicate glass, glasses of various compositions in other applications, and the like, and functional glasses such as heat reflecting glass, heat absorbing glass, and tempered glass.
  • the resin film include polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, and resin films such as acrylic resin films.
  • the transparent substrate is preferably a resin substrate, is more preferably a resin film, and is preferably a polyethylene terephthalate film, because it is excellent in transparency, moldability, adhesiveness, processability, etc. More preferable.
  • the transparent substrate preferably includes a substrate body and a transparent conductive film formed on the surface of the substrate body so that a voltage for light control can be applied.
  • the transparent conductive film include indium tin oxide (ITO), SnO 2 , and In 2 O 3 .
  • the visible light transmittance of the first transparent substrate and the second transparent substrate is preferably 75% or more, more preferably 80% or more.
  • the visible light transmittance of the transparent substrate can be measured by spectrometry or the like in accordance with ISO 13837 (2008).
  • Example 1 Resin Spacer Production of Resin Spacer 1: 20 parts by weight of benzoyl peroxide was added to 1000 parts by weight of divinylbenzene (purity 96%), and the mixture was stirred until it was uniformly dissolved, to obtain a monomer mixed liquid. 4000 parts by weight of a 2% by weight aqueous solution of polyvinyl alcohol having a molecular weight of about 1700 dissolved in pure water was placed in a reaction kettle. The obtained monomer mixture was added to this and stirred for 4 hours to adjust the particle size so that the droplets of the monomer had a predetermined particle size. Thereafter, the reaction was carried out under a nitrogen atmosphere at 90 ° C.
  • the polymerization reaction of the monomer droplets was carried out to obtain particles.
  • the obtained particles are washed several times with each of hot water, methanol and acetone, then classified, dried at 55 ° C. overnight, crushed, and passed through a stainless steel mesh sieve to obtain a plurality of resin particles.
  • the resin spacer 1 containing was obtained.
  • the average particle diameter of the resin spacer 1 was 15.9 ⁇ m.
  • PDLC type light control laminate 1 A light control film was prepared in which a known PDLC layer was disposed between two PET films on which transparent and conductive ITO was vapor-deposited, except that 5% by weight of the resin spacer 1 was dispersed. The light control film was sandwiched between two sheets of transparent glass to produce a PDLC light control laminate 1 (curved surface: none).
  • Preparation of PDLC type light control laminate 2 The light control film produced by the light control laminate 1 of the PDLC system was sandwiched between two transparent bending glass sheets of 3 mmR to produce the light control laminate 2 of the PDLC system (curved shape: curved shape): Yes).
  • the light control laminates 1 and 2 of the PDLC system can be manufactured, for example, by the method described in Japanese Patent Application Laid-Open No. 2013-148744 and the like.
  • SPD type light control laminate 1 A light control film was prepared in which a known SPD layer was disposed between two PET films on which transparent and conductive ITO was vapor-deposited, except that 5% by weight of the resin spacer 1 was dispersed. By interposing the light control film in two sheets of transparent glass, an SPD light control laminate 1 was produced (curved surface: none).
  • the SPD type light control laminates 1 and 2 can be produced, for example, by the method described in JP-A-2014-089361.
  • Example 2 Production of Resin Spacer 2: A carbon black surface-coated with a polymer was prepared. 5 parts by weight of this carbon black, 47.5 parts by weight of divinylbenzene, and 47.5 parts by weight of tetramethylolmethane triacrylate were mixed to obtain a dispersion. To this dispersion, 20 parts by weight of benzoyl peroxide was added and uniformly mixed to obtain a mixed solution. The obtained mixed solution was put into 8500 parts by weight of a 3% by weight polyvinyl alcohol aqueous solution, sufficiently stirred, and then adjusted to have a predetermined emulsion diameter by a homogenizer.
  • This emulsion is transferred to a 20-liter reaction kettle equipped with a thermometer, a stirrer and a reflux condenser, heated to 85 ° C. with stirring under a nitrogen atmosphere, and subjected to a polymerization reaction for 7 hours.
  • the polymerization reaction was carried out by heating for time.
  • the polymerization reaction solution is cooled, and the produced particles are washed with water, methanol and acetone in this order, and classification is performed, dried overnight at 55 ° C., crushed, and passed through a stainless steel mesh sieve to obtain a plurality of resins. Resin spacer 2 containing particles was obtained. The average particle diameter of the resin spacer 2 was 15.0 ⁇ m.
  • a light control laminate was produced in the same manner as in Example 1 except that the resin spacer 2 was used instead of the resin spacer 1 in the production of the light control laminate.
  • Example 3 Production of Resin Spacer 3: A resin spacer 3 was obtained in the same manner as the resin spacer 2 except that the average particle diameter was 6.9 ⁇ m.
  • a laminated light control was produced in the same manner as in Example 1 except that the resin spacer 3 was used instead of the resin spacer 1 when producing the light control laminate.
  • Example 4 Production of resin spacer 4: A resin spacer 4 was obtained in the same manner as the resin spacer 2 except that the average particle diameter was 30.2 ⁇ m.
  • a laminated light control was produced in the same manner as in Example 1 except that the resin spacer 4 was used instead of the resin spacer 1 when producing the light control laminate.
  • a laminated light control body was produced in the same manner as in Example 1 except that the resin spacer 5 was used instead of the resin spacer 1 when producing the light control laminate. In addition, in Example 5, only the SPD system light control laminated body was produced and evaluated.
  • Example 2 Silica spacer: Sekisui Chemical Co., Ltd. "Micropearl SI-H100" (average particle size 10.0 ⁇ m)
  • a light control laminate was produced in the same manner as in Example 1 except that a silica spacer was used instead of the resin spacer 1 in the production of the light control laminate.
  • a light control laminate was produced in the same manner as in Example 1 except that the resin spacer A was used instead of the resin spacer 1 in the production of the light control laminate.
  • a light control laminate was produced in the same manner as in Example 1 except that the resin spacer B was used instead of the resin spacer 1 in the production of the light control laminate.
  • a light control laminate was produced in the same manner as in Example 1 except that the resin spacer C was used instead of the resin spacer 1 in the production of the light control laminate.
  • the particle diameter of 1000 resin particles was measured about the obtained resin spacer using the particle size distribution measuring apparatus ("Multisizer 4 by Beckman Coulter Inc.”).
  • CV value of the particle diameter of resin particle was computed by the method mentioned above.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

色むらや光抜けの発生を効果的に抑制することができる調光積層体を提供する。 本発明に係る調光積層体は、第1の透明基材と、第2の透明基材と、前記第1の透明基材と前記第2の透明基材との間に配置された調光層とを備え、前記調光層が、樹脂スペーサを含み、前記樹脂スペーサが、複数の樹脂粒子であり、前記樹脂スペーサは、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、前記樹脂粒子の全個数100%中、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む。

Description

調光積層体及び調光積層体用樹脂スペーサ
 本発明は、調光性能を有する調光積層体、及び調光積層体に用いられる樹脂スペーサに関する。
 調光ガラスや調光フィルム等の調光材料は、電圧の印加の有無により、透明状態と不透明状態との状態変化が可能な性質を有し、入射光量及びヘイズ等の調整が可能な材料である。また、透明状態と不透明状態との状態変化の作用機構によって、調光材料は、PDLC(Polymer Dispersed Liquid Crystal)方式とSPD(Suspended Particle Device)方式とに大別される。
 PDLC方式は、液晶を樹脂マトリックス中に分散させる方式である。PDLC方式の形態として、液晶と樹脂マトリックスとを、連続相として分散させた形態や、液晶を、樹脂マトリックス中に液晶カプセルとして分散させた形態等がある。電圧が印加されていない状態では、液晶分子配向が均一ではないために、樹脂マトリックスと液晶との屈折率の違いにより、入射光は調光材料中で散乱して、不透明な状態が観察される。電圧が印加されると、液晶分子が電界に対して平行な方向に配列する。この際に、樹脂マトリックスの屈折率と液晶の屈折率とが同等になることで、入射光は調光材料中を透過することでき、透明な状態が観察される。このように、PDLC方式では、液晶の分子配向を利用することで、光透過率を調整している。
 SPD方式は、光調整懸濁液を樹脂マトリックス中に分散させる方式である。光調整懸濁液は、光調整粒子を含む。光調整粒子は、電界に対して応答可能である。SPD方式においては、電圧が印加されていない状態では、光調整懸濁液中に分散している光調整粒子がブラウン運動により光を吸収、散乱、又は反射するため、入射光は調光材料中を透過しない。電圧が印加されると、光調整粒子が分極を起こして電界に対して平行な方向に配列するため、入射光は調光材料中を透過する。このように、SPD方式では、光調整粒子の分極配向を利用することで、光透過率を調整することができる。
 上記調光材料の一例として、下記の特許文献1には、リサイズ可能であり、ポリマー安定化型であり、サーモトロピックである液晶デバイスが開示されている。上記液晶デバイスは、透過性を有するサブストレートを有する。上記液晶デバイスでは、複数の液晶成分が混合された液晶成分混合物によって、上記サブストレートがコーティングされる。上記液晶成分混合物は、大気温度の常温域内のクリアリングポイントと、予想される最低大気温度より低い凝固点とを有する。上記液晶デバイスは、上記液晶成分混合物の上記コーティングの厚さを規定する厚さ規定手段を有する。上記液晶デバイスは、上記液晶成分混合物と接合するように上記サブストレート上に提供される安定化ポリマーを有する。上記安定化ポリマーは、外部刺激の影響下で硬化する。
 また、下記の特許文献2,3にはそれぞれ、少なくとも配向層を備える第1の積層体及び第2の積層体により液晶層を挟持し、上記第1の積層体又は上記第2の積層体に設けられた電極の駆動により上記液晶層の液晶の配向を制御して透過光を制御する調光フィルムが開示されている。
 特許文献2に記載の調光フィルムでは、上記液晶層の厚み方向における、厚みの差分値が0.1μm以上0.6μm以下である2種類以上のスペーサの配置によって、上記液晶層において、厚みの異なる第1の領域及び第2の領域が設けられる。
 特許文献3に記載の調光フィルムでは、上記第1の積層体は、透明フィルム材による基材に、上記液晶層の厚みを保持するビーズスペーサが設けられた積層体である。上記ビーズスペーサが当接する上記第2の積層体の部位のビッカース硬度値Bは、11.8以上35.9以下である。上記第1の積層体を平面視した状態で、上記第1の積層体上で上記ビーズスペーサが占める面積の比率である占有率Aと、上記ビッカース硬度値Bとの乗算値A×Bは、0.42以上である。
 また、下記の特許文献4には、配向層が設けられた第1の積層体と、配向層が設けられた第2の積層体と、液晶層と、スペーサと、電極とを備え、上記電極の駆動により液晶分子の配向を制御して透過光を制御する調光フィルムが開示されている。上記液晶層は、上記第1の積層体及び上記第2の積層体により挟持されるとともに液晶分子を含む。上記スペーサは、上記液晶層の厚みを保持する。上記電極は、上記第1の積層体又は上記第2の積層体に設けられる。上記調光フィルムでは、上記スペーサは、透明部材のビーズスペーサである。上記液晶層の調光可能領域における、上記調光フィルムを正面視した場合の単位面積当たりの上記スペーサの占有面積の割合は、0.1%以上10%以下である。上記液晶層は、二色性色素を含むゲストホスト型液晶層である。
WO2011/123457A1 特開2017-198744号公報 特開2017-198732号公報 特開2017-187810号公報
 調光ガラスや調光フィルム等の調光材料では、調光層が配置される基材間の間隔(ギャップ)を一定に保つためにスペーサが用いられることがある。特許文献1-4に記載のような従来の調光材料では、スペーサの粒子径が大きくばらついていること等によって、調光材料における基材間のギャップの均一性を確保することができず、色むらが発生することがある。
 また、従来の調光材料では、粒子径の大きなスペーサが混入することで、調光材料の表面に凹凸が形成されたり、基材や調光層が割れたり、基材に傾きが生じたりすることがある。結果として、調光材料に色むらやスペーサの周囲に光が透過する現象(「光抜け」と呼ばれる)が発生することがある。
 また、調光材料は車両用途又は建材用途に用いられることがある。車両用途又は建材用途の調光材料の面積は比較的大きい。また、建材用途の調光材料の面積は、車両用途等の調光材料の面積よりも大きいことが多い。大面積の調光材料では、スペーサの粒子径のばらつきの影響を大きく受けるため、基材や調光層の割れ、及び基材の傾き等が生じやすく、調光材料に色むらや光抜けが発生しやすい。
 本発明の目的は、色むらや光抜けの発生を効果的に抑制することができる調光積層体を提供することである。また、本発明の目的は、色むらや光抜けの発生を効果的に抑制することができる調光積層体用樹脂スペーサを提供することである。
 本発明の広い局面によれば、第1の透明基材と、第2の透明基材と、前記第1の透明基材と前記第2の透明基材との間に配置された調光層とを備え、前記調光層が、樹脂スペーサを含み、前記樹脂スペーサが、複数の樹脂粒子であり、前記樹脂スペーサは、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、前記樹脂粒子の全個数100%中、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む、調光積層体が提供される。
 本発明に係る調光積層体のある特定の局面では、前記樹脂スペーサは、前記樹脂粒子の平均粒子径の1.7倍以上の粒子径を有する樹脂粒子を含まない。
 本発明に係る調光積層体のある特定の局面では、前記樹脂スペーサは、前記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を含まないか、又は、前記樹脂粒子の全個数100%中、前記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を0.5%以下で含む。
 本発明に係る調光積層体のある特定の局面では、前記樹脂粒子の平均粒子径が、3μm以上100μm以下である。
 本発明に係る調光積層体のある特定の局面では、前記樹脂粒子が、顔料又は染料を含む。
 本発明に係る調光積層体のある特定の局面では、前記樹脂粒子が、顔料を含む。
 本発明の広い局面によれば、複数の樹脂粒子であり、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、前記樹脂粒子の全個数100%中、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む、調光積層体用樹脂スペーサが提供される。
 本発明に係る調光積層体用樹脂スペーサのある特定の局面では、前記樹脂粒子を100万個以上含む。
 本発明に係る調光積層体は、第1の透明基材と、第2の透明基材と、上記第1の透明基材と上記第2の透明基材との間に配置された調光層とを備える。本発明に係る調光積層体では、上記調光層が、樹脂スペーサを含む。本発明に係る調光積層体では、上記樹脂スペーサは、複数の樹脂粒子である。本発明に係る調光積層体では、上記樹脂スペーサは、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、上記樹脂粒子の全個数100%中、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む。本発明に係る調光積層体では、上記の構成が備えられているので、色むらや光抜けの発生を効果的に抑制することができる。
 本発明に係る調光積層体用樹脂スペーサは、複数の樹脂粒子である。本発明に係る調光積層体用樹脂スペーサは、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、上記樹脂粒子の全個数100%中、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む。本発明に係る調光積層体用樹脂スペーサでは、上記の構成が備えられているので、色むらや光抜けの発生を効果的に抑制することができる。
図1は、本発明の第1の実施形態に係るPDLC方式の調光積層体を模式的に示す断面図である。 図2は、本発明の第2の実施形態に係るSPD方式の調光積層体を模式的に示す断面図である。
 以下、本発明を詳細に説明する。
 (調光積層体)
 本発明に係る調光積層体は、第1の透明基材と、第2の透明基材と、上記第1の透明基材と上記第2の透明基材との間に配置された調光層とを備える。本発明に係る調光積層体では、上記調光層が、樹脂スペーサを含む。本発明に係る調光積層体では、上記樹脂スペーサは、複数の樹脂粒子である。本発明に係る調光積層体では、上記樹脂スペーサは、複数の樹脂粒子の集合体であり、複数の樹脂粒子の粉体である。
 本発明に係る調光積層体では、上記樹脂スペーサは、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、上記樹脂粒子の全個数100%中、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下(100万個当たり6個以下、50万個当たり3個以下)で含む。上記樹脂粒子100万個当たり、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子が6個以下である場合に、20万個当たり、1.2個以下である。
 例えば、本発明に係る調光積層体では、上記樹脂スペーサは、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、上記樹脂粒子100万個当たり、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を6個以下で含む。なお、上記樹脂粒子1万個当たり、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子が1個である場合に、上記樹脂粒子100万個当たり、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子が100個である。
 本発明に係る調光積層体では、上記の構成が備えられているので、色むらや光抜けの発生を効果的に抑制することができる。
 本発明に係る調光積層体では、上記樹脂スペーサは、上記樹脂粒子を50万個以上含んでいてもよく、100万個以上含んでいてもよい。
 また、本発明に係る調光積層体は、曲面部を有していてもよい。本発明に係る調光積層体は、曲面部を有する状態で用いられてもよい。本発明に係る調光積層体では、透明基材は、曲面部を有していてもよく、曲面部を有する状態で用いられてもよい。従来の調光材料が曲面部を有する場合には、調光材料における基材間のギャップの均一性を確保することは非常に困難である。また、従来の調光材料が曲面部を有する場合には、樹脂粒子の粒子径のばらつきの影響を大きく受けるため、基材や調光層の割れ、及び基材の傾き等が平面部よりも顕著となり、色むらや光抜けの発生を抑制することは非常に困難である。しかしながら、本発明に係る調光積層体では、上記の構成が備えられているので、上記調光積層体が曲面部を有する場合でも、樹脂粒子の粒子径が均一であるので、基材間のギャップの均一性を確保することができ、基材や調光層の割れ、及び基材の傾き等を効果的に抑制することができる。結果として、色むらや光抜けの発生を効果的に抑制することができる。本発明に係る調光積層体が曲面部を有する場合において、上記調光積層体の曲面部の曲率は、300R以上1800R以下であることが好ましい。上記調光積層体の曲面部の曲率が、上記の好ましい態様を満足していると、基材間のギャップの均一性を確保することができ、基材や調光層の割れ、及び基材の傾き等をより一層効果的に抑制することができる。結果として、色むらや光抜けの発生をより一層効果的に抑制することができる。
 本発明の効果がより一層発揮されるので、上記調光積層体は、曲面部を有することが好ましく、曲面部を有する状態で用いられることが好ましい。上記調光積層体は、折り曲げられた形状又は湾曲された形状を有することが好ましく、折り曲げられた形状又は湾曲された形状で用いられることが好ましい。上記調光積層体は、折り曲げ部又は湾曲部を有していてもよい。上記調光積層体及び上記透明基材は、折り曲げられた形状又は湾曲された形状とすることが可能であるように、フレキシブル性を有することが好ましい。
 上記透明基材は、例えば、光透過性を有する基材(光透過性基材)である。例えば、透明基材の一方側から、透明基材を介して他方側に光が透過する。例えば、透明基材の一方側から、透明基材を介して他方側にある物質を目視したときに、物質を視認可能である。透明には、例えば半透明も含まれる。透明基材は、無色透明であってもよく、有色透明であってもよい。
 上記調光積層体は、調光フィルムであってもよく、調光ガラスであってもよい。また、上記調光積層体は、ガラス等の透明基材によって、上記調光フィルムが挟みこまれた調光積層体であってもよい。
 次に、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の第1の実施形態に係るPDLC方式の調光積層体を模式的に示す断面図である。図2は、本発明の第2の実施形態に係るSPD方式の調光積層体を模式的に示す断面図である。なお、図1,2において、調光層及び樹脂スペーサの大きさ、厚み、形状及び添加量等は、図示の便宜上、実際の大きさ及び形状から適宜変更している。
 図1に示すPDLC方式の調光積層体1は、第1の基材2と、第2の基材3と、調光層4とを備える。調光層4は、第1の基材2と第2の基材3との間に挟まれている。調光層4は、第1の基材2と第2の基材3との間に配置されている。第1の基材2と、第2の基材3との間において、調光層4の周囲に、シール剤(図示せず)が配置されていてもよい。
 調光層4は、液晶カプセル4Aと、バインダー4Bと、樹脂スペーサ6とを含む。樹脂スペーサ6は、複数の樹脂粒子の集合体であり、複数の樹脂粒子の粉体である。該樹脂粒子は、スペーサとして機能している。液晶カプセル4Aは液晶材料である。液晶カプセル4Aは、バインダー4B中に分散している。液晶カプセル4Aは、バインダー4B中にカプセル状に保持されている。液晶材料は、カプセル状でバインダー中に分散していてもよく、液晶材料が連続相としてバインダー中に分散していてもよい。
 樹脂スペーサ6は、調光積層体用樹脂スペーサとして用いられている。樹脂スペーサ6は、第1の基材2と第2の基材3とに接触している。樹脂スペーサ6は、第1の基材2と第2の基材3とのギャップを制御している。
 第1の基材2の表面上及び第2の基材3の表面上には透明電極が形成されている(図示せず)。透明電極の材料としては、インジウム錫オキサイド(ITO)等が挙げられる。
 PDLC方式の調光積層体1に電圧が印加されていない状態では、液晶カプセル4A内の液晶分子の配向が均一ではないために、バインダー4Bと液晶材料との屈折率の違いにより、入射光がバインダー中で散乱して、不透明な状態となる。
 PDLC方式の調光積層体1に電圧が印加されると、液晶カプセル4A内の液晶分子が電界に対して平行な方向に配列する。この状態でバインダー4Bと液晶材料との屈折率が同等になる場合には、光が透過することができ、透明な状態となる。
 図2に示すSPD方式の調光積層体11は、第1の基材2と、第2の基材3と、調光層5とを備える。調光層5は、第1の基材2と第2の基材3との間に挟まれている。調光層5は、第1の基材2と第2の基材3との間に配置されている。
 調光層5は、光調整懸濁液の液滴5Aと、樹脂マトリックス5Bと、樹脂スペーサ6とを含む。樹脂スペーサ6は、複数の樹脂粒子の集合体であり、複数の樹脂粒子の粉体である。該樹脂粒子は、スペーサとして機能している。光調整懸濁液の液滴5Aは、樹脂マトリックス5B中に分散している。光調整懸濁液の液滴5Aは、樹脂マトリックス5B中に液滴状態で保持されている。
 光調整懸濁液の液滴5Aは、分散媒5Aaと光調整粒子5Abとを含む。光調整粒子5Abは、分散媒5Aa中に分散している。
 樹脂スペーサ6は、調光積層体用樹脂スペーサとして用いられている。樹脂スペーサ6は、第1の基材2と第2の基材3とに接触している。樹脂スペーサ6は、第1の基材2と第2の基材3とのギャップを制御している。
 第1の基材2の表面上及び第2の基材3の表面上には透明電極が形成されている(図示せず)。透明電極の材料としては、インジウム錫オキサイド(ITO)等が挙げられる。
 SPD方式の調光積層体11に電圧が印加されていない状態では、光調整懸濁液の液滴5Aを構成する分散媒5Aa中に分散している光調整粒子5Abのブラウン運動により、入射光が光調整粒子5Abに吸収、散乱、又は反射され、入射光は調光層5を透過することができず、不透明な状態となる。
 SPD方式の調光積層体11に電圧が印加されると、光調整粒子5Abが電界に対して平行な方向に配列する。このため、入射光は、配列した光調整粒子5Ab間を通過することができ、透明な状態となる。
 以下、本発明の他の詳細を説明する。
 (樹脂スペーサ)
 本発明に係る樹脂スペーサは、調光積層体に用いられる樹脂スペーサであることが好ましい。具体的には、本発明に係る調光積層体用樹脂スペーサは、第1の透明基材と、第2の透明基材と、上記第1の透明基材と上記第2の透明基材との間に配置された調光層とを備える調光積層体において、上記調光層に用いられる樹脂スペーサであることが好ましい。本発明に係る調光積層体用樹脂スペーサは、複数の樹脂粒子である。本発明に係る調光積層体用樹脂スペーサは、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、上記樹脂粒子の全個数100%中、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む。
 例えば、本発明に係る樹脂スペーサは、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、上記樹脂粒子100万個当たり、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を6個以下(100万個当たり6個以下、50万個当たり3個以下)で含む。上記樹脂粒子100万個当たり、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子が6個以下である場合に、20万個当たり、1.2個以下である。
 本発明に係る樹脂スペーサでは、上記の構成が備えられているので、色むらや光抜けの発生を効果的に抑制することができる。
 本発明に係る樹脂スペーサは、上記樹脂粒子を50万個以上含んでいてもよく、100万個以上含んでいてもよい。
 上記樹脂スペーサの全個数100%中、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含むことが好ましく、0.0005%以下で含むことがより好ましく、0.0004%以下で含むことがさらに好ましく、0.0002%以下(100万個当たり2個以下)で含むことが特に好ましい。上記樹脂スペーサは、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないことが特に好ましい。上記樹脂スペーサは、上記樹脂粒子を20万個以上含んでいてもよく、50万個以上含んでいてもよく、100万個以上含んでいてもよい。また、上記樹脂スペーサが、上記樹脂粒子を50万個以上含み、かつ、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないことが好ましい。上記樹脂スペーサが、上記樹脂粒子を100万個以上含み、かつ、上記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないことがより好ましい。上記樹脂スペーサが、上記の好ましい態様を満足すると、調光積層体において、表面に凹凸が形成されたり、基材や調光層が割れたり、基材に傾きが生じたりすることをより一層効果的に防止することができる。結果として、上記樹脂スペーサが、上記の好ましい態様を満足すると、調光積層体において、色むらや光抜けの発生をより一層効果的に抑制することができる。
 上記の好ましい態様を満足する樹脂スペーサを得る方法としては、目的とする粒子径を有する樹脂粒子を、分級装置を用いて選別する方法等が挙げられる。分級装置の方式としては、慣性力の原理を用いた方法、及び粒子径サイズを利用した方法等が挙げられる。
 上記樹脂スペーサは、上記樹脂粒子の平均粒子径の1.5倍以上の粒子径を有する樹脂粒子を含まないことが好ましく、上記樹脂粒子の平均粒子径の1.7倍以上の粒子径を有する樹脂粒子を含まないことが特に好ましい。上記樹脂スペーサが、上記樹脂粒子を50万個以上含み、かつ、上記樹脂粒子の平均粒子径の1.5倍以上の粒子径を有する樹脂粒子を含まないことが好ましく、上記樹脂スペーサが、上記樹脂粒子を50万個以上含み、かつ、上記樹脂粒子の平均粒子径の1.7倍以上の粒子径を有する樹脂粒子を含まないことがより好ましい。上記樹脂スペーサが、上記樹脂粒子を100万個以上含み、かつ、上記樹脂粒子の平均粒子径の1.5倍以上の粒子径を有する樹脂粒子を含まないことが好ましく、上記樹脂スペーサが、上記樹脂粒子を100万個以上含み、かつ、上記樹脂粒子の平均粒子径の1.7倍以上の粒子径を有する樹脂粒子を含まないことがより好ましい。上記樹脂スペーサが、上記の好ましい態様を満足すると、調光積層体において、表面に凹凸が形成されたり、基材や調光層が割れたり、基材に傾きが生じたりすることをより一層効果的に防止することができる。結果として、上記樹脂スペーサが、上記の好ましい態様を満足すると、調光積層体において、色むらや光抜けの発生をより一層効果的に抑制することができる。
 上記の好ましい態様を満足する樹脂スペーサを得る方法としては、目的とする粒子径を有する樹脂スペーサを、分級装置を用いて選別する方法等が挙げられる。分級装置の方式としては、慣性力の原理を用いた方法、及び粒子径サイズを利用した方法等が挙げられる。
 上記樹脂スペーサは、上記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を含まないか、又は上記樹脂粒子の全個数100%中、上記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を0.5%以下(1000個当たり5個以下)で含むことが好ましい。上記樹脂スペーサは、上記樹脂粒子の全個数100%中、上記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を0.3%以下(1000個当たり3個以下)で含むことがより好ましい。上記樹脂スペーサは、上記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を含まないことが特に好ましい。上記樹脂スペーサが、上記の好ましい態様を満足すると、調光積層体において、基材の傷付きをより一層効果的に防止することができ、入射光量やヘイズ等を調整する調光性能をより一層効果的に高めることができる。
 上記の好ましい態様を満足する樹脂スペーサを得る方法としては、目的とする粒子径を有する樹脂スペーサを、分級装置を用いて選別する方法等が挙げられる。分級装置の方式としては、慣性力の原理を用いた方法、及び粒子径サイズを利用した方法等が挙げられる。
 実用性の観点からは、上記樹脂粒子の平均粒子径は、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは7μm以上であり、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下である。上記樹脂粒子の平均粒子径が、3μm以上100μm以下であると、調光積層体の用途に好適に用いることができる。
 上記樹脂粒子の平均粒子径は、数平均粒子径であることが好ましい。上記樹脂粒子の平均粒子径は、上記樹脂粒子の粒子径を任意の粒子径測定装置により求めることができる。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析等の原理を用いた粒度分布測定機が利用できる。具体的には、上記樹脂粒子の平均粒子径の測定方法としては、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の樹脂粒子の粒子径を測定し、平均粒子径を測定する方法等が挙げられる。
 上記樹脂粒子の粒子径は、上記樹脂粒子が真球状である場合には直径を意味し、上記樹脂粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。
 上記樹脂粒子のアスペクト比は、好ましくは1.5以下、より好ましくは1.3以下である。上記樹脂粒子のアスペクト比の下限は特に限定されない。上記樹脂粒子のアスペクト比は、1以上であってもよい。上記樹脂粒子のアスペクト比は、長径/短径を示す。上記樹脂粒子のアスペクト比が、上記上限以下であると、上記樹脂スペーサを調光積層体の用途に好適に用いることができる。
 上記樹脂粒子のアスペクト比は、任意の樹脂粒子10個を電子顕微鏡又は光学顕微鏡にて観察し、最大径と最小径をそれぞれ長径、短径とし、各樹脂粒子の長径/短径の平均値を算出することにより求められる。
 上記樹脂粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下である。上記樹脂粒子の粒子径の変動係数(CV値)の下限は特に限定されない。上記樹脂粒子の粒子径の変動係数(CV値)が、上記上限以下であると、調光積層体において、表面に凹凸が形成されたり、基材や調光層が割れたり、基材に傾きが生じたりすることをより一層効果的に防止することができる。結果として、調光積層体において、色むらや光抜けの発生をより一層効果的に抑制することができる。
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:樹脂粒子の粒子径の標準偏差
 Dn:樹脂粒子の粒子径の平均値
 上記樹脂粒子の形状は特に限定されない。上記樹脂粒子の形状は、球状であってもよく、扁平状等の球状以外の形状であってもよい。
 上記樹脂粒子の10%K値は、好ましくは1000N/mm以上、より好ましくは3000N/mm以上であり、好ましくは10000N/mm以下、より好ましくは7000N/mm以下である。上記樹脂粒子の10%K値が、上記下限以上であると、調光積層体において、基材間のギャップをより一層均一にすることができる。上記樹脂粒子の10%K値が、上記上限以下であると、調光積層体において、基材の傷付きをより一層効果的に防止することができ、入射光量やヘイズ等を調整する調光性能をより一層効果的に高めることができる。
 上記樹脂粒子の20%K値は、好ましくは1000N/mm以上、より好ましくは3000N/mm以上であり、好ましくは10000N/mm以下、より好ましくは7000N/mm以下である。上記樹脂粒子の20%K値が、上記下限以上であると、調光積層体において、基材間のギャップをより一層均一にすることができる。上記樹脂粒子の20%K値が、上記上限以下であると、調光積層体において、基材の傷付きをより一層効果的に防止することができ、入射光量やヘイズ等を調整する調光性能をより一層効果的に高めることができる。
 上記樹脂粒子の10%K値及び20%K値は、以下のようにして測定できる。
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で樹脂粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、樹脂粒子の10%K値(10%圧縮弾性率)及び20%K値(20%圧縮弾性率)を下記式により求めることができる。上記微小圧縮試験機として、例えば、島津製作所社製「微小圧縮試験機MCT-W200」、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記樹脂粒子の10%K値及び20%K値は、任意に選択された50個の樹脂粒子の10%K値又は20%K値を算術平均することにより、算出することが好ましい。
 10%K値又は20%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:樹脂粒子が10%圧縮変形したときの荷重値(N)又は樹脂粒子が20%圧縮変形したときの荷重値(N)
 S:樹脂粒子が10%圧縮変形したときの圧縮変位(mm)又は樹脂粒子が20%圧縮変形したときの圧縮変位(mm)
 R:樹脂粒子の半径(mm)
 上記K値は、樹脂粒子の硬さを普遍的かつ定量的に表す。上記K値を用いることにより、樹脂粒子の硬さを定量的かつ一義的に表すことができる。
 上記樹脂粒子の圧縮回復率は、好ましくは30%以上、より好ましくは40%以上であり、好ましくは95%以下、より好ましくは90%以下である。上記樹脂粒子の圧縮回復率が、上記下限以上及び上記上限以下であると、調光積層体において、基材間のギャップをより一層均一にすることができ、色むらの発生をより一層効果的に抑制することができる。
 上記樹脂粒子の圧縮回復率は、以下のようにして測定することができる。
 試料台上に樹脂粒子を散布する。散布された樹脂粒子1個について、微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃で、樹脂粒子の中心方向に、樹脂粒子に対して1gfの荷重がかかるまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、島津製作所社製「微小圧縮試験機MCT-W200」、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 圧縮回復率(%)=[L2/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位
 上記樹脂粒子の破壊歪みは、好ましくは30%以上、より好ましくは40%以上であり、好ましくは80%以下、より好ましくは70%以下である。上記樹脂粒子の破壊歪みが、上記下限以上及び上記上限以下であると、調光積層体において、基材間のギャップをより一層均一にすることができ、色むらの発生をより一層効果的に抑制することができる。
 上記樹脂粒子の破壊歪みは、以下のようにして測定することができる。
 試料台上に樹脂粒子を散布する。散布された樹脂粒子1個について、微小圧縮試験機を用いて、樹脂粒子の中心方向に、樹脂粒子が破壊されるまで負荷を与える。その後、樹脂粒子が破壊したときの変位を測定する。樹脂粒子の粒子径に対する破壊したときの変位の割合を破壊歪みとする。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、島津製作所社製「微小圧縮試験機MCT-W200」、フィッシャー社製「フィッシャースコープH-100」等が用いられる。
 上記樹脂粒子の全光線透過率は、好ましくは5%以下、より好ましくは4%以下である。上記樹脂粒子の全光線透過率の下限は特に限定されない。上記樹脂粒子の全光線透過率が、上記上限以下であると、調光積層体において、スペーサ部分から光が透過する現象(光漏れ)の発生をより一層効果的に防止でき、色むらの発生をより一層効果的に抑制できる。
 上記樹脂粒子の全光線透過率は、以下のようにして測定することができる。
 透明板(透明アクリル板等)の表面に透明の両面テープを貼り、両面テープの粘着面上に樹脂粒子を均一に敷きつめて付着させ、樹脂粒子が両面テープ上に単層に配置された評価サンプルを作製する。得られた評価サンプルを用いて、全光線透過率を測定する。上記全光線透過率は、例えば分光光度計(日本分光社製「V-670」)を用いて測定することができる。なお、ディテクターには積分球を用いることができる。
 不純物の溶出及び拡散をより一層防止する観点からは、上記樹脂粒子は、シランカップリング剤等のコーティング剤で表面が被覆されていることが好ましい。上記コーティング剤による被膜は、単分子膜やポリマー膜であることが好ましい。上記樹脂粒子は、上記被膜を有していなくてもよい。
 上記シランカップリング剤は特に限定されない。上記シランカップリング剤としては、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-[N-アリル-N-(2-アミノエチル)]アミノプロピルトリメトキシシラン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N-アリル-N-メタクリル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン等のアミノ系シランカップリング剤;N,N-ビス[3-(メチルジメトキシシリル)プロピル]アミン、N,N-ビス[3-(トリメトキシシリル)プロピル]アミン、N,N-ビス[3-(メチルジメトキシシリル)プロピル]エチレンジアミン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N-グリシジル-N,N-ビス[3-(メチルジメトキシシリル)プロピル]アミン、N-グリシジル-N,N-ビス[3-(トリメトキシシリル)プロピル]アミン等のアミド系シランカップリング剤;ビニルトリエトキシシラン、ビニル-トリス(2-メトキシエトキシ)シラン等のビニル系シランカップリング剤;γ-メタクリロキシプロピルトリメトキシシラン等のメタクリル系シランカップリング剤;γ-グリシドキシプロピルトリメトキシシラン等のグリシジル系シランカップリング剤;γ-メルカプトプロピルトリメトキシシラン等のメルカプト系シランカップリング剤等が挙げられる。
 コーティング剤で表面を被覆して樹脂粒子を得る方法は特に限定されない。コーティング剤で表面を被覆して樹脂粒子を得る方法としては、以下の方法が挙げられる。樹脂粒子(コーティング前)と上記コーティング剤とを水等の無機溶媒又はアルコール等の有機溶媒中で混合し、攪拌下で加熱し、加熱後の樹脂粒子をデカンテーション等で分離し、減圧乾燥等で溶媒を除去する方法。樹脂粒子(コーティング前)と上記コーティング剤とを直接混合し、加熱する方法。
 上記樹脂スペーサは、調光積層体に用いられる。上記樹脂スペーサは調光ガラス用スペーサとして用いられてもよく、調光フィルム用スペーサとして用いられてもよい。
 上記樹脂粒子は、顔料又は染料を含むことが好ましい。上記樹脂粒子は、基材粒子本体と、該基材粒子本体内に含まれる顔料又は染料を有することが好ましい。上記基材粒子本体は、樹脂粒子本体であることが好ましく、樹脂粒子であることが好ましい。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味し、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。
 上記樹脂粒子の材料及び上記基材粒子本体の材料として、種々の有機物が好適に用いられる。上記樹脂粒子の材料及び上記基材粒子本体の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン共重合体等が挙げられる。上記ジビニルベンゼン共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の圧縮変形特性を好適な範囲に容易に制御できるので、上記樹脂粒子の材料及び上記基材粒子本体の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
 上記樹脂粒子及び上記基材粒子本体を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル等のハロゲン含有単量体;(メタ)アクリル化合物として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。
 上記架橋性の単量体としては、ビニル化合物として、ジビニルベンゼン、1,4-ジビニロキシブタン、ジビニルスルホン等のビニル単量体;(メタ)アクリル化合物として、テトラメチロールメタンテトラ(メタ)アクリレート、ポリテトラメチレングリコールジアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;アリル化合物として、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル;シラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、1,3-ジビニルテトラメチルジシロキサン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のシランアルコキシド化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の重合性二重結合含有シランアルコキシド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端変性シリコーンオイル、両末端シリコーンオイル、側鎖型シリコーンオイル等の変性(反応性)シリコーンオイル;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体等が挙げられる。
 上記樹脂粒子及び上記基材粒子本体は、上記エチレン性不飽和基を有する重合性単量体を重合させることによって得ることができる。上記樹脂粒子及び上記基材粒子本体は、上記エチレン性不飽和基を有する重合性単量体に、顔料又は染料を均一に混合及び分散させて、重合させてもよい。上記の重合方法は特に限定されず、公知の方法により重合させることができる。上記の重合方法としては、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、リビングラジカル重合等が挙げられる。具体的には、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法であるシード重合法及び分散重合法等が挙げられる。
 上記エチレン性不飽和基を有する重合性単量体に、顔料又は染料を均一に混合及び分散させるために、ボールミル、ビーズミル、サンドミル、アトライター、サンドグラインダー、及びナノマイザー等を用いてもよい。この場合には、顔料又は染料の分散性を高めるために、分散剤等を添加してもよい。
 上記分散剤は特に限定されない。上記分散剤としては、ポリビニルアルコール、デンプン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、及びポリ(メタ)アクリル酸ナトリウム等の水溶性高分子が挙げられる。さらに、上記分散剤としては、硫酸バリウム、硫酸カルシウム、硫酸アルミニウム、炭酸カルシウム、リン酸カルシウム、タルク、粘土、及び金属酸化物粉末等が挙げられる。
 (顔料又は染料)
 本発明に係る樹脂粒子は、顔料又は染料を含むことが好ましい。上記樹脂粒子は、顔料と染料との双方を含んでいてもよく、顔料のみを含んでいてもよく、染料のみを含んでいてもよい。上記顔料又は上記染料は、上記樹脂粒子の全光線透過率を7%以下にすることができる顔料又は染料であることが好ましい。上記顔料は、黒色顔料であってもよく、濃紺色顔料であってもよく、濃褐色顔料であってもよい。調光積層体において、光漏れの発生をより一層効果的に防止する観点、及び色むらの発生をより一層効果的に抑制する観点からは、上記顔料は、黒色顔料であることが好ましい。調光積層体において、光漏れの発生をより一層効果的に防止する観点、及び色むらの発生をより一層効果的に抑制する観点からは、上記染料は、黒色染料であることが好ましい。上記樹脂粒子は、黒色顔料と黒色染料との双方を含んでいてもよく、黒色顔料のみを含んでいてもよく、黒色染料のみを含んでいてもよい。
 上記黒色顔料としては、カーボンブラック、ランプブラック、グラファイト、酸化鉄、銅-クロムの複合酸化物、及び銅-クロム-亜鉛の複合酸化物等が挙げられる。上記黒色顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記濃紺色顔料としては、銅フタロシアニン、コバルトフタロシアニン、及びアルミン酸コバルト等が挙げられる。上記濃紺色顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記濃褐色顔料としては、亜鉛フェライト、及び酸化鉄等が挙げられる。上記濃褐色顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記黒色染料としては、例えば、ピラゾールアゾ系染料、アニリノアゾ系染料、トリフェニルメタン系染料、アントラキノン系染料、アンスラピリドン系染料、ベンジリデン系染料、オキソール系染料、ピラゾロトリアゾールアゾ系染料、ピリドンアゾ系染料、シアニン系染料、フェノチアジン系染料、ピロロピラゾールアゾメチン系染料、キサテン系染料、フタロシアニン系染料、ベンゾピラン系染料、インジゴ系染料、ピロメテン系染料、トリアリールメタン系染料、アゾメチン系染料、ベリレン系染料、ペリノン系染料、クオタリレン系染料、及びキノフタロン系染料等が挙げられ、また酸性染料、直接染料、塩基性染料、媒染染料、酸性媒染染料、アゾイック染料、分散染料、油溶染料、食品染料及びこれらの誘導体を2種以上混合して黒色にした染料等が挙げられる。上記黒色染料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記樹脂粒子が顔料を含む場合には、上記顔料は、カーボンブラック、チタンブラック、アニリンブラック又は酸化鉄であることが好ましい。上記顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。調光積層体において、光漏れの発生をより一層効果的に防止する観点、及び色むらの発生をより一層効果的に抑制する観点からは、上記樹脂粒子が顔料を含む場合には、上記顔料は、カーボンブラックであることが好ましい。
 上記カーボンブラックは特に限定されない。上記カーボンブラックとしては、チャンネルブラック、ロールブラック、ファーネスブラック、サーマルブラック、ケッチェンブラック、及びアセチレンブラック等が挙げられる。上記カーボンブラックは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記樹脂粒子が染料を含む場合には、上記染料は、酸性染料であることが好ましい。上記染料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 不純物の溶出及び拡散をより一層防止する観点からは、上記樹脂粒子が顔料を含む場合には、上記顔料は、表面が被覆されている顔料であることが好ましい。上記顔料は、表面がポリマーにより被覆されていることが好ましい。上記顔料の表面は、ポリマーにより被覆されていることが好ましい。不純物の溶出及び拡散をより一層防止する観点からは、上記カーボンブラックは、表面がポリマーにより被覆されていることが好ましい。上記カーボンブラックの表面は、ポリマーにより被覆されていることが好ましい。表面が被覆されている顔料を用いることによって、顔料の配合量が多くなっても、樹脂粒子の電気抵抗等の特性の低下を効果的に防止することができる。さらに、表面が被覆されることで顔料の分散性が向上して、より少ない配合量で樹脂粒子を着色することができる。上記顔料の表面を被覆する材料としては、熱可塑性樹脂等が挙げられる。
 上記熱可塑性樹脂は特に限定されない。上記熱可塑性樹脂としては、アルキド樹脂、変性アルキド樹脂、フェノール樹脂、天然樹脂変性フェノール樹脂、マレイン酸樹脂、天然樹脂変性マレイン酸樹脂、フマル酸樹脂、エステルガム、ロジン、石油樹脂、クマロン樹脂、インデン樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、エポキシ樹脂、フェノキシ樹脂、スチレン樹脂、ビニル樹脂、アクリル樹脂、塩化ゴム、ベンゾグアナミン樹脂、尿素樹脂、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体、及びウレタン樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂を用いて上記顔料の表面を被覆する方法は特に限定されない。上記熱可塑性樹脂を用いて上記顔料の表面を被覆する方法としては、上記熱可塑性樹脂を含む疎水性溶媒中で顔料をボールミル等の粉砕機器を用いて微粉化する方法、及び上記熱可塑性樹脂を含む疎水性溶媒中に顔料の水分散物を添加及び混合することで乳化した後、加熱によって水を留去する方法等が挙げられる。
 上記樹脂粒子100重量%中、上記顔料及び上記染料の合計の含有量は、好ましくは2重量%以上、より好ましくは3重量%以上であり、好ましくは40重量%以下、より好ましくは20重量%以下である。上記顔料及び上記染料の合計の含有量が、上記下限以上及び上記上限以下であると、調光積層体において、光漏れの発生をより一層効果的に防止でき、色むらの発生をより一層効果的に抑制できる。
 上記樹脂粒子100重量%中、上記顔料の含有量は、好ましくは2重量%以上、より好ましくは3重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下である。上記顔料の含有量が、上記下限以上及び上記上限以下であると、調光積層体において、光漏れの発生をより一層効果的に防止でき、色むらの発生をより一層効果的に抑制できる。
 上記樹脂粒子100重量%中、上記染料の含有量は、好ましくは3重量%以上、より好ましくは5重量%以上であり、好ましくは40重量%以下、より好ましくは20重量%以下である。上記染料の含有量が、上記下限以上及び上記上限以下であると、調光積層体において、光漏れの発生をより一層効果的に防止でき、色むらの発生をより一層効果的に抑制できる。
 (調光層)
 本発明に係る調光層は、調光性を有していることが好ましい。上記調光性とは、電圧の印加の有無により光の透過率等が変化し、入射光量やヘイズを調整することができる性質である。上記調光層の材料は特に限定されない。上記調光層の材料は、調光性を有していれば、どのような材料であってもよい。
 (PDLC方式)
 本発明に係る調光積層体がPDLC方式である場合には、上記調光層は、バインダーと、上記バインダー中に分散している液晶材料とを含むことが好ましい。
 上記液晶材料は特に限定されない。上記液晶材料は、電圧の印加状態によって配向が変化する性質を有していれば、どのような液晶材料であってもよい。上記液晶材料は、上記バインダー中に連続相として分散していてもよく、上記バインダー中に液晶ドロップ状又は液晶カプセル状で分散していてもよい。上記液晶材料としては、ネマチック液晶、及びコレステリック液晶等が挙げられる。
 上記コレステリック液晶の材料としては、ステロイド系コレステロール誘導体、シッフ塩基系、アゾ系、アゾキシ系、安息香酸エステル系、ビフェニル系、ターフェニル系、シクロヘキシルカルボン酸エステル系、フェニルシクロヘキサン系、ビフェニルシクロヘキサン系、ピリミジン系、ジオキサン系、シクロヘキシルシクロヘキサンエステル系、シクロヘキシルエタン系、シクロヘキサン系、トラン系、アルケニル系、スチルベン系、縮合多環系等のネマチック液晶、及びスメクチック液晶等が挙げられる。さらに、上記コレステリック液晶の材料としては、これらの混合液晶に、シッフ塩基系、アゾ系、エステル系、及びビフェニル系等の光学活性材料からなるカイラル成分を添加した材料等が挙げられる。上記コレステリック液晶の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記バインダーは、上記液晶材料を保持し、上記液晶材料の流動を抑制する。上記バインダーは、液晶材料に溶解せず、外力に耐え得る強度を持ち、さらに、反射光及び入射光に対して高い透過性を有していれば、特に限定されない。上記バインダーの材料としては、ゼラチン、ポリビニルアルコール、セルロース誘導体、ポリアクリル酸系ポリマー、エチレンイミン、ポリエチレンオキサイド、ポリアクリルアミド、ポリスチレンスルホン酸塩、ポリアミジン、及びイソプレン系スルホン酸ポリマー等の水溶性高分子材料等が挙げられる。さらに、上記バインダーの材料としては、フッ素樹脂、シリコーン樹脂、アクリル樹脂、ウレタン樹脂、及びエポキシ樹脂等の水性エマルジョン化できる材料等が挙げられる。上記バインダーの材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記バインダーは、架橋剤によって架橋されていることが好ましい。上記架橋剤は、上記バインダー間で架橋が形成され、上記バインダーを硬膜化、難溶化、又は不溶化する化合物であれば、特に限定されない。上記架橋剤としては、アセトアルデヒド、グルタルアルデヒド、グリオキサール、多価金属塩化合物のカリミョウバン水和物、アジピン酸ジヒドラジド、メラミンホルマリンオリゴマ、エチレングリコールジグリシジルエーテル、ポリアミドエピクロロヒドリン、及びポリカルボジイミド等が挙げられる。上記架橋剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 (SPD方式)
 本発明に係る調光積層体がSPD方式である場合には、上記調光層は、樹脂マトリックスと、上記樹脂マトリックス中に分散している光調整懸濁液とを含むことが好ましい。
 上記光調整懸濁液は、分散媒と、分散媒中に分散した光調整粒子とを含む。
 上記光調整粒子としては、ポリヨウ化物、カーボンブラック等の炭素系材料、銅、ニッケル、鉄、コバルト、クロム、チタン、及びアルミニウム等の金属材料、並びに窒化ケイ素、窒化チタン、及び酸化アルミニウム等の無機化合物材料等が挙げられる。また、これらの材料がポリマーで被覆された粒子であってもよい。上記光調整粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記分散媒は、上記光調整粒子を流動可能な状態で分散させる。上記分散媒は、上記光調整粒子に選択的に付着し、上記光調整粒子を被覆し、樹脂マトリックスとの相分離の際に上記光調整粒子が相分離された液滴相に移動するように作用することが好ましい。上記分散媒は、電気導電性がない材料であることが好ましく、樹脂マトリックスとは親和性がない材料であることが好ましい。さらに、上記分散媒は、調光積層体とした際に、樹脂マトリックスとの屈折率が近似した液状共重合体であることが好ましい。上記液状共重合体としては、フルオロ基又は水酸基を有する(メタ)アクリル酸エステルオリゴマーが好ましく、フルオロ基及び水酸基を有する(メタ)アクリル酸エステルオリゴマーがより好ましい。このような共重合体を使用すると、フルオロ基又は水酸基のモノマー単位が光調整粒子に向き、残りのモノマー単位が光調整懸濁液の液滴を樹脂マトリックス中で安定化させる。このため、光調整懸濁液内に光調整粒子が分散しやすく、樹脂マトリックスとの相分離の際に光調整粒子が相分離される液滴内に誘導されやすい。
 上記フルオロ基又は水酸基を有する(メタ)アクリル酸エステルオリゴマーとしては、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸3,5,5-トリメチルヘキシル/アクリル酸2-ヒドロキシプロピル/フマル酸共重合体、アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、及びメタクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体等が挙げられる。また、これらの(メタ)アクリル酸エステルオリゴマーは、フルオロ基及び水酸基の両方を有することがより好ましい。
 上記(メタ)アクリル酸エステルオリゴマーの重量平均分子量は、好ましくは1000以上、より好ましくは2000以上であり、好ましくは20000以下、より好ましくは10000以下である。
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン換算での重量平均分子量を示す。
 上記調光材がSPD方式である場合には、上記調光層は、上記樹脂マトリックスを形成するための樹脂材料と、上記光調整懸濁液とを用いて、作製することができる。
 上記樹脂材料は、エネルギー線を照射することにより硬化する樹脂材料であることが好ましい。エネルギー線を照射することにより硬化する樹脂材料としては、光重合開始剤及び、紫外線、可視光線、電子線等のエネルギー線により硬化する高分子化合物を含む高分子組成物が挙げられる。上記高分子組成物としては、エチレン性不飽和基を有する重合性単量体及び光重合開始剤を含む高分子組成物が挙げられる。上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、上述した非架橋性の単量体が挙げられる。上記架橋性の単量体としては、上述した架橋性の単量体が挙げられる。
 上記光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-(4-(2-ヒドロキシエトキシ)フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、及び(1-ヒドロキシシクロヘキシル)フェニルケトン等が挙げられる。
 上記樹脂材料は、有機溶剤可溶型樹脂、熱可塑性樹脂、及びポリ(メタ)アクリル酸等を含んでいてもよい。また、上記樹脂材料は、着色防止剤、酸化防止剤、及び密着性付与剤等の各種添加剤を含んでいてもよく、溶剤を含んでいてもよい。
 (第1の透明基材及び第2の透明基材)
 上記第1の透明基材及び第2の透明基材の材料は、特に限定されない。上記第1の透明基材の材料と第2の透明基材の材料とは同一であってもよく、異なっていてもよい。上記透明基材の材料としては、ガラス及び樹脂フィルム等が挙げられる。上記ガラスとしては、一般建築用のソーダ石灰ガラス、鉛ガラス、硼珪酸ガラス、及びその他用途における各種組成のガラス等、並びに熱反射ガラス、熱吸収ガラス、及び強化ガラス等の機能ガラスが挙げられる。上記樹脂フィルムとしては、ポリエチレンテレフタレート等のポリエステルフィルム、ポリプロピレン等のポリオレフィンフィルム、アクリル樹脂系フィルム等の樹脂フィルムが挙げられる。透明性、成形性、接着性、加工性等に優れていることから、上記透明基材は、樹脂基材であることが好ましく、樹脂フィルムであることがより好ましく、ポリエチレンテレフタレートフィルムであることがさらに好ましい。
 上記透明基材は、調光のための電圧を印加可能であるように、基材本体と、基材本体の表面に形成された透明導電膜とを備えることが好ましい。上記透明導電膜としては、インジウム錫オキサイド(ITO)、SnO、及びIn等が挙げられる。
 調光積層体の視認性をより一層高める観点からは、上記第1の透明基材及び第2の透明基材の可視光透過率は、好ましくは75%以上、より好ましくは80%以上である。
 上記透明基材の可視光透過率は、ISO13837(2008)に準拠して分光測定等により測定することができる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 (1)樹脂スペーサ
 樹脂スペーサ1の作製:
 ジビニルベンゼン(純度96%)1000重量部に過酸化ベンゾイル20重量部を加えて、均一に溶解するまで攪拌し、モノマー混合液を得た。分子量約1700のポリビニルアルコールを純水に溶解させた2重量%水溶液4000重量部を、反応釜に入れた。この中に、得られたモノマー混合液を入れ、4時間攪拌することで、モノマーの液滴が所定の粒径になるように、粒径を調整した。この後、90℃の窒素雰囲気下で9時間反応を行い、モノマー液滴の重合反応を行って、粒子を得た。得られた粒子を熱水、メタノール及びアセトンのそれぞれにて数回洗浄した後、分級操作を行い55℃で一晩乾燥後、解砕、ステンレスメッシュ篩を通過させることで、複数の樹脂粒子を含む樹脂スペーサ1を得た。樹脂スペーサ1の平均粒子径は15.9μmであった。
 (2)調光積層体
 PDLC方式の調光積層体1の作製:
 透明かつ導電性を有するITOが蒸着されたPETフィルム2枚の間に、樹脂スペーサ1を5重量%分散させたこと以外は公知のPDLC層が配置された調光フィルムを作製した。2枚の透明ガラスに調光フィルムを挟みこむことで、PDLC方式の調光積層体1を作製した(曲面:無し)。
 PDLC方式の調光積層体2の作製:
 上記PDLC方式の調光積層体1で作製した調光フィルムを3mmRの2枚の透明曲げガラスに挟みこむことで、PDLC方式の調光積層体2を作製した(曲面(湾曲された形状):有り)。
 PDLC方式の調光積層体1,2は、例えば、特開2013-148744号公報等に記載されている方法で作製できる。
 SPD方式の調光積層体1の作製:
 透明かつ導電性を有するITOが蒸着されたPETフィルム2枚の間に、樹脂スペーサ1を5重量%分散させたこと以外は公知のSPD層が配置された調光フィルムを作製した。2枚の透明ガラスに調光フィルムを挟みこむことで、SPD方式の調光積層体1を作製した(曲面:無し)。
 SPD方式の調光積層体2の作製:
 上記SPD方式の調光積層体1で作製した調光フィルムを3mmRの2枚の透明曲げガラスに挟みこむことで、SPD方式の調光積層体2を作製した(曲面(湾曲された形状):有り)。
 SPD方式の調光積層体1,2は、例えば、特開2014-089361号公報等に記載されている方法で作製できる。
 (実施例2)
 樹脂スペーサ2の作製:
 ポリマーにより表面が被覆されたカーボンブラックを用意した。このカーボンブラック5重量部、ジビニルベンゼン47.5重量部、及びテトラメチロールメタントリアクリレート47.5重量部を混合して、分散液を得た。この分散液に、過酸化ベンゾイル20重量部を添加して均一に混合し、混合液を得た。得られた混合液を3重量%のポリビニルアルコール水溶液8500重量部中に入れ、十分に撹拌した後、ホモジナイザーで所定の乳化径となるように調整した。
 この乳化液を、温度計と撹拌機と還流冷却器とを備えた20リットルの反応釜に移し、窒素雰囲気中で撹拌しながら85℃に加熱し7時間重合反応を行い、さらに90℃で3時間加熱し重合反応を行った。
 重合反応液を冷却し、生成した粒子を水、メタノール、アセトンの順番で洗浄した後、分級操作を行い55℃で一晩乾燥後、解砕、ステンレスメッシュ篩を通過させることで、複数の樹脂粒子を含む樹脂スペーサ2を得た。樹脂スペーサ2の平均粒子径は15.0μmであった。
 調光積層体の作製の際、樹脂スペーサ1の代わりに、樹脂スペーサ2を用いたこと以外は、実施例1と同様にして、調光積層体を作製した。
 (実施例3)
 樹脂スペーサ3の作製:
 平均粒子径が6.9μmであること以外は、樹脂スペーサ2と同様にして樹脂スペーサ3を得た。
 調光積層体の作製の際、樹脂スペーサ1の代りに、樹脂スペーサ3を用いたこと以外は、実施例1と同様にして、積層調光体を作製した。
 (実施例4)
 樹脂スペーサ4の作製:
 平均粒子径が30.2μmであること以外は、樹脂スペーサ2と同様にして樹脂スペーサ4を得た。
 調光積層体の作製の際、樹脂スペーサ1の代りに、樹脂スペーサ4を用いたこと以外は、実施例1と同様にして、積層調光体を作製した。
 (実施例5)
 樹脂スペーサ5の作製:
 平均粒子径が80.1μmであること以外は、樹脂スペーサ1と同様にして樹脂スペーサ5を得た。
 調光積層体の作製の際、樹脂スペーサ1の代りに、樹脂スペーサ5を用いたこと以外は、実施例1と同様にして、積層調光体を作製した。なお、実施例5においては、SPD方式の調光積層体のみを作製して評価を行った。
 (比較例1)
 調光積層体の作製の際、樹脂スペーサを用いずに、実施例1と同様にして調光積層体を作製した。
 (比較例2)
 シリカスペーサ:
 積水化学工業社製「ミクロパールSI-H100」(平均粒子径10.0μm)
 調光積層体の作製の際、樹脂スペーサ1の代わりに、シリカスペーサを用いたこと以外は、実施例1と同様にして調光積層体を作製した。
 (比較例3)
 樹脂スペーサAの作製:
 樹脂スペーサの作製の際に、分級操作をしなかったこと以外は、実施例1と同様にして、複数の樹脂粒子を含む樹脂スペーサを作製した。樹脂スペーサAの平均粒子径は16.3μmであった。
 調光積層体の作製の際、樹脂スペーサ1の代わりに、樹脂スペーサAを用いたこと以外は、実施例1と同様にして調光積層体を作製した。
 (比較例4)
 樹脂スペーサBの作製:
 樹脂スペーサの作製の際に、分級操作をしなかったこと以外は、実施例2と同様にして、複数の樹脂粒子を含む樹脂スペーサを作製した。樹脂スペーサBの平均粒子径は15.3μmであった。
 調光積層体の作製の際、樹脂スペーサ1の代わりに、樹脂スペーサBを用いたこと以外は、実施例1と同様にして調光積層体を作製した。
 (比較例5)
 樹脂スペーサCの作製:
 樹脂スペーサの作製の際に、99重量%の樹脂スペーサ2と1重量%の樹脂スペーサBとを混合することで、複数の樹脂粒子を含む樹脂スペーサCを作製した。樹脂スペーサCの平均粒子径は15.1μmであった。
 調光積層体の作製の際、樹脂スペーサ1の代わりに、樹脂スペーサCを用いたこと以外は、実施例1と同様にして調光積層体を作製した。
 (評価)
 (1)平均粒子径
 得られた樹脂スペーサについて、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の樹脂粒子の粒子径を測定し、平均粒子径を算出した。
 (2)樹脂スペーサの存在状態
 得られた樹脂スペーサについて、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、100万個の樹脂粒子の粒子径を測定した。
 上記の(1)で得られた樹脂粒子の平均粒子径の測定結果から、樹脂粒子100万個当たりの、樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子の個数、及び、樹脂粒子100万個当たりの、樹脂粒子の平均粒子径の1.7倍以上の粒子径を有する樹脂粒子の個数を算出した。
 また、得られた樹脂スペーサについて、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、1000個の樹脂粒子の粒子径を測定した。
 上記の(1)で得られた樹脂粒子の平均粒子径の測定結果から、樹脂粒子1000個当たりの、樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子の個数を算出した。
 (3)CV値
 得られた樹脂粒子について、上述した方法で、樹脂粒子の粒子径のCV値を算出した。
 (4)10%K値及び20%K値
 得られた樹脂粒子について、フィッシャー社製「フィッシャースコープH-100」を用いて、上述した方法で、樹脂粒子の10%K値及び20%K値を測定した。
 (5)圧縮回復率
 得られた樹脂粒子について、フィッシャー社製「フィッシャースコープH-100」を用いて、上述した方法で、樹脂粒子の圧縮回復率を測定した。
 (6)破壊歪み
 得られた樹脂粒子について、フィッシャー社製「フィッシャースコープH-100」を用いて、上述した方法で、樹脂粒子の破壊歪みを測定した。
 (7)全光線透過率
 得られた樹脂粒子について、日本分光社製「V-670」を用いて、上述した方法で、樹脂粒子の全光線透過率を測定した。
 (8)表面のざらつき(表面の凹凸)
 得られた調光フィルムについて、摩擦感テスター(カトーテック社製「KES-SE」)を用いて、調光フィルムの表面のざらつきを測定した。具体的には、荷重25gfの条件にて得られる平均摩擦係数及び摩擦係数の変動範囲を測定した。これらの数値の値が高いほど、表面のざらつきが大きくなることを意味する。表面のざらつきを以下の基準で判定した。
 [表面のざらつきの判定基準]
 ○:平均摩擦係数が0.20未満、かつ、摩擦係数の変動範囲が0.015未満
 △:平均摩擦係数が0.20以上0.25未満、かつ、摩擦係数の変動範囲が0.015以上0.02未満
 △△:○、△及び×のいずれの基準にも該当しない
 ×:平均摩擦係数が0.25以上、又は、摩擦係数の変動範囲が0.02以上
 (9)色むら
 得られた調光積層体について、色むらが発生しているか否かを目視で評価した。色むらを以下の基準で判定した。
 [色むらの判定基準]
 ○:色むらが発生していない
 △:色むらがごくわずかに発生している(実使用上問題なし)
 ×:色むらが発生している
 (10)光抜け
 得られた調光積層体について、光抜けが発生しているか否かを目視で評価した。光抜けを以下の基準で判定した。
 [光抜けの判定基準]
 ○:光抜けが発生していない
 △:光抜けがごくわずかに発生している(実使用上問題なし)
 ×:光抜けが発生している
 (11)調光性能(ヘイズ)
 得られた調光積層体について、電圧を印加した場合と電圧を印加していない場合とにおけるヘイズを算出した。ヘイズは、東京電色社製「ヘイズメーター TC-H3PDK」を用いて測定を実施した。得られたヘイズを調光積層体の調光性能として評価した。調光性能を下記の基準で判定した。
 [調光性能(ヘイズ)の判定基準(電圧未印加時)]
 ○:ヘイズが98%以上
 △:ヘイズが95%以上、98%未満
 ×:ヘイズが95%未満
 [調光性能(ヘイズ)の判定基準(電圧印加時)]
 ○:ヘイズが4%未満
 △:ヘイズが4%以上、6%未満
 ×:ヘイズが6%以上
 結果を下記の表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1…PDLC方式の調光積層体
 2…第1の基材
 3…第2の基材
 4,5…調光層
 4A…液晶カプセル
 4B…バインダー
 5A…光調整懸濁液の液滴
 5Aa…分散媒
 5Ab…光調整粒子
 5B…樹脂マトリックス
 6…樹脂スペーサ
 11…SPD方式の調光積層体

Claims (8)

  1.  第1の透明基材と、第2の透明基材と、前記第1の透明基材と前記第2の透明基材との間に配置された調光層とを備え、
     前記調光層が、樹脂スペーサを含み、
     前記樹脂スペーサが、複数の樹脂粒子であり、
     前記樹脂スペーサは、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、前記樹脂粒子の全個数100%中、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む、調光積層体。
  2.  前記樹脂スペーサは、前記樹脂粒子の平均粒子径の1.7倍以上の粒子径を有する樹脂粒子を含まない、請求項1に記載の調光積層体。
  3.  前記樹脂スペーサは、前記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を含まないか、又は、前記樹脂粒子の全個数100%中、前記樹脂粒子の平均粒子径の0.5倍以下の粒子径を有する樹脂粒子を0.5%以下で含む、請求項1又は2に記載の調光積層体。
  4.  前記樹脂粒子の平均粒子径が、3μm以上100μm以下である、請求項1~3のいずれか1項に記載の調光積層体。
  5.  前記樹脂粒子が、顔料又は染料を含む、請求項1~4のいずれか1項に記載の調光積層体。
  6.  前記樹脂粒子が、顔料を含む、請求項5に記載の調光積層体。
  7.  複数の樹脂粒子であり、
     前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を含まないか、又は、前記樹脂粒子の全個数100%中、前記樹脂粒子の平均粒子径の1.4倍以上の粒子径を有する樹脂粒子を0.0006%以下で含む、調光積層体用樹脂スペーサ。
  8.  前記樹脂粒子を100万個以上含む、請求項7に記載の調光積層体用樹脂スペーサ。
PCT/JP2019/000495 2018-01-17 2019-01-10 調光積層体及び調光積層体用樹脂スペーサ WO2019142719A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201980004557.3A CN111095093A (zh) 2018-01-17 2019-01-10 调光叠层体和调光叠层体用树脂间隔物
EP19741576.3A EP3742224A4 (en) 2018-01-17 2019-01-10 DIMMLAMINATE AND RESIN SPACER FOR A DIMMLAMINATE
US16/962,019 US11644717B2 (en) 2018-01-17 2019-01-10 Dimming laminate and resin spacer for dimming laminate
JP2019512013A JPWO2019142719A1 (ja) 2018-01-17 2019-01-10 調光積層体及び調光積層体用樹脂スペーサ
KR1020197036439A KR20200105745A (ko) 2018-01-17 2019-01-10 조광 적층체 및 조광 적층체용 수지 스페이서
CN202311112020.3A CN117331254A (zh) 2018-01-17 2019-01-10 调光叠层体和调光叠层体用树脂间隔物
US18/129,458 US12072583B2 (en) 2018-01-17 2023-03-31 Dimming laminate and resin spacer for dimming laminate
JP2023104332A JP2023112207A (ja) 2018-01-17 2023-06-26 調光積層体及び調光積層体用樹脂スペーサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018005684 2018-01-17
JP2018-005684 2018-01-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/962,019 A-371-Of-International US11644717B2 (en) 2018-01-17 2019-01-10 Dimming laminate and resin spacer for dimming laminate
US18/129,458 Continuation US12072583B2 (en) 2018-01-17 2023-03-31 Dimming laminate and resin spacer for dimming laminate

Publications (1)

Publication Number Publication Date
WO2019142719A1 true WO2019142719A1 (ja) 2019-07-25

Family

ID=67301751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000495 WO2019142719A1 (ja) 2018-01-17 2019-01-10 調光積層体及び調光積層体用樹脂スペーサ

Country Status (6)

Country Link
US (2) US11644717B2 (ja)
EP (1) EP3742224A4 (ja)
JP (2) JPWO2019142719A1 (ja)
KR (1) KR20200105745A (ja)
CN (2) CN117331254A (ja)
WO (1) WO2019142719A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471224A (zh) * 2019-08-27 2019-11-19 业成科技(成都)有限公司 曲面式组合模组及其制作方法
WO2021047015A1 (zh) * 2019-09-12 2021-03-18 武汉华星光电技术有限公司 显示面板及显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200105745A (ko) * 2018-01-17 2020-09-09 세키스이가가쿠 고교가부시키가이샤 조광 적층체 및 조광 적층체용 수지 스페이서
TWI720569B (zh) * 2019-08-02 2021-03-01 友達光電股份有限公司 顯示面板

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318951A (ja) * 1996-05-31 1997-12-12 Kao Corp 液晶表示用スペーサーの製造方法
JPH10139830A (ja) * 1996-11-12 1998-05-26 Hayakawa Rubber Co Ltd 微粒子、スペーサー及び液晶パネル
JP2002166228A (ja) * 1999-11-09 2002-06-11 Sekisui Chem Co Ltd 微粒子の製造方法、微粒子、液晶表示素子用スペーサ、液晶表示素子、導電性微粒子及び導電性シート
JP2003066464A (ja) * 2001-08-28 2003-03-05 Nec Corp 液晶表示装置
JP2007004142A (ja) * 2005-05-25 2007-01-11 Sanyo Chem Ind Ltd 液晶表示板スペーサ用樹脂粒子
WO2011123457A1 (en) 2010-03-29 2011-10-06 Ravenbrick Llc Polymer-stabilized thermotropic liquid crystal device
JP2013148744A (ja) 2012-01-20 2013-08-01 Konica Minolta Inc 調光フィルム、及び調光フィルムの製造方法
JP2014089361A (ja) 2012-10-31 2014-05-15 Hitachi Chemical Co Ltd 調光素子、調光装置、調光フィルムの駆動方法、調光フィルムの駆動装置
JP2015072364A (ja) * 2013-10-03 2015-04-16 株式会社日本触媒 球状ギャップ剤
KR101745599B1 (ko) * 2015-08-26 2017-06-09 에스케이씨하스디스플레이필름(유) 양자점 광학시트 및 이의 제조방법
JP2017187810A (ja) 2015-11-13 2017-10-12 大日本印刷株式会社 調光フィルム及び合わせガラス
JP2017198732A (ja) 2016-04-25 2017-11-02 大日本印刷株式会社 調光フィルム、合わせガラス及び調光フィルムの製造方法
JP2017198744A (ja) 2016-04-25 2017-11-02 大日本印刷株式会社 調光フィルム、調光フィルムの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157112B2 (ja) * 1995-12-01 2001-04-16 積水化学工業株式会社 液晶表示素子用スペーサ及びその製造方法並びに液晶表示素子
TW401423B (en) * 1996-02-14 2000-08-11 Sekisui Fine Chemical Co Ltd Spacer for liquid crystal display device and liquid crystal display device
WO2004086145A1 (ja) * 2003-03-24 2004-10-07 Dai Nippon Printing Co. Ltd. 硬化性樹脂組成物、感光性パターン形成用硬化性樹脂組成物、カラーフィルター、液晶パネル用基板、及び、液晶パネル
KR100667374B1 (ko) 2004-12-16 2007-01-10 제일모직주식회사 이방전도성 접속부재용 고분자 수지 미립자, 전도성 미립자 및 이를 포함한 이방 전도성 접속재료
WO2006070831A1 (ja) 2004-12-27 2006-07-06 Sekisui Chemical Co., Ltd. 液晶表示装置の製造方法、スペーサ粒子分散液及び液晶表示装置
WO2008007788A1 (fr) * 2006-07-14 2008-01-17 Asahi Glass Company, Limited Structure et son procédé de fabrication
RU2011143858A (ru) * 2009-05-29 2013-07-10 Шарп Кабушики Каиша Жидкокристаллическая панель и жидкокристаллическое дисплейное устройство
JP5556762B2 (ja) * 2011-08-01 2014-07-23 日立化成株式会社 懸濁粒子装置,懸濁粒子装置を用いた調光装置及びそれらの駆動方法
CN107534231B (zh) * 2015-05-27 2020-04-14 迪睿合株式会社 各向异性导电性膜及连接构造体
EP3447566B1 (en) 2016-04-21 2020-05-27 Dai Nippon Printing Co., Ltd. Light control film, laminated glass and method for producing light control film
KR20200105745A (ko) * 2018-01-17 2020-09-09 세키스이가가쿠 고교가부시키가이샤 조광 적층체 및 조광 적층체용 수지 스페이서

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318951A (ja) * 1996-05-31 1997-12-12 Kao Corp 液晶表示用スペーサーの製造方法
JPH10139830A (ja) * 1996-11-12 1998-05-26 Hayakawa Rubber Co Ltd 微粒子、スペーサー及び液晶パネル
JP2002166228A (ja) * 1999-11-09 2002-06-11 Sekisui Chem Co Ltd 微粒子の製造方法、微粒子、液晶表示素子用スペーサ、液晶表示素子、導電性微粒子及び導電性シート
JP2003066464A (ja) * 2001-08-28 2003-03-05 Nec Corp 液晶表示装置
JP2007004142A (ja) * 2005-05-25 2007-01-11 Sanyo Chem Ind Ltd 液晶表示板スペーサ用樹脂粒子
WO2011123457A1 (en) 2010-03-29 2011-10-06 Ravenbrick Llc Polymer-stabilized thermotropic liquid crystal device
JP2013148744A (ja) 2012-01-20 2013-08-01 Konica Minolta Inc 調光フィルム、及び調光フィルムの製造方法
JP2014089361A (ja) 2012-10-31 2014-05-15 Hitachi Chemical Co Ltd 調光素子、調光装置、調光フィルムの駆動方法、調光フィルムの駆動装置
JP2015072364A (ja) * 2013-10-03 2015-04-16 株式会社日本触媒 球状ギャップ剤
KR101745599B1 (ko) * 2015-08-26 2017-06-09 에스케이씨하스디스플레이필름(유) 양자점 광학시트 및 이의 제조방법
JP2017187810A (ja) 2015-11-13 2017-10-12 大日本印刷株式会社 調光フィルム及び合わせガラス
JP2017198732A (ja) 2016-04-25 2017-11-02 大日本印刷株式会社 調光フィルム、合わせガラス及び調光フィルムの製造方法
JP2017198744A (ja) 2016-04-25 2017-11-02 大日本印刷株式会社 調光フィルム、調光フィルムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3742224A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471224A (zh) * 2019-08-27 2019-11-19 业成科技(成都)有限公司 曲面式组合模组及其制作方法
WO2021047015A1 (zh) * 2019-09-12 2021-03-18 武汉华星光电技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
EP3742224A4 (en) 2021-10-13
US11644717B2 (en) 2023-05-09
US20230244108A1 (en) 2023-08-03
JP2023112207A (ja) 2023-08-10
US12072583B2 (en) 2024-08-27
US20200348549A1 (en) 2020-11-05
JPWO2019142719A1 (ja) 2020-11-19
CN111095093A (zh) 2020-05-01
EP3742224A1 (en) 2020-11-25
CN117331254A (zh) 2024-01-02
KR20200105745A (ko) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2019142719A1 (ja) 調光積層体及び調光積層体用樹脂スペーサ
TWI832804B (zh) 調光積層體及調光積層體用樹脂間隔件
WO2023095747A1 (ja) 着色樹脂粒子及び調光積層体
WO2022131319A1 (ja) 接着性粒子、接着剤及び調光積層体
JP7534909B2 (ja) 調光積層体
JP7198668B2 (ja) 複合粒子、複合粒子粉体及び調光材
JP7573012B2 (ja) 複合粒子、複合粒子粉体及び調光材
WO2023095748A1 (ja) 着色樹脂粒子及び調光積層体
WO2023090457A1 (ja) 接着性粒子及び積層体
WO2023090456A1 (ja) 接着性粒子及び積層体
WO2024010061A1 (ja) 複合粒子及び調光積層体
WO2022131318A1 (ja) 接着性粒子、接着剤及び調光積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512013

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019741576

Country of ref document: EP

Effective date: 20200817