WO2019131531A1 - 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池 - Google Patents

非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池 Download PDF

Info

Publication number
WO2019131531A1
WO2019131531A1 PCT/JP2018/047306 JP2018047306W WO2019131531A1 WO 2019131531 A1 WO2019131531 A1 WO 2019131531A1 JP 2018047306 W JP2018047306 W JP 2018047306W WO 2019131531 A1 WO2019131531 A1 WO 2019131531A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base material
secondary battery
aqueous secondary
adhesive layer
Prior art date
Application number
PCT/JP2018/047306
Other languages
English (en)
French (fr)
Inventor
大士 古賀
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP18895841.7A priority Critical patent/EP3734713A4/en
Priority to US16/771,680 priority patent/US20210091414A1/en
Priority to CN201880081118.8A priority patent/CN111480249B/zh
Priority to KR1020207015531A priority patent/KR20200102990A/ko
Priority to JP2019561662A priority patent/JP7234939B2/ja
Priority to CN202311399470.5A priority patent/CN117317348A/zh
Publication of WO2019131531A1 publication Critical patent/WO2019131531A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/414Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of a copolymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • C09J2423/106Presence of homo or copolymers of propene in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery laminate, a method for producing a non-aqueous secondary battery laminate, and a non-aqueous secondary battery, and in particular, a non-aqueous secondary battery laminate including an adhesive layer and
  • the present invention relates to a method for producing the same and a non-aqueous secondary battery provided with the laminate for a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) are small and lightweight, have high energy density, and are capable of repeated charge and discharge. Yes, it is used in a wide range of applications.
  • the secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that isolates the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode.
  • battery members provided with an adhesive layer for the purpose of improving adhesion between battery members are used.
  • an electrode formed by further forming an adhesive layer on an electrode base material formed by providing an electrode mixture layer on a current collector, and a separator formed by forming an adhesive layer on a separator base material, It is used as a battery member.
  • a method of forming an adhesive layer on an electrode base material and a separator base material for example, a laminate formed by forming an adhesive layer on a release base was prepared and formed on the release base A method of transferring an adhesive layer has been proposed (see, for example, Patent Document 1).
  • the portion on the positive electrode current collector where the electrode mixture layer (positive electrode mixture layer) is not formed and the negative electrode current collector An electrode is provided by disposing a laminate having a substrate made of a resin film and an adhesive layer formed on the substrate in a portion where the formed electrode mixture layer (negative electrode mixture layer) faces. Techniques have been proposed to suppress the occurrence of short circuits between them.
  • a laminate including a substrate and an adhesive layer formed on the substrate which is used in a secondary battery, may be stored and transported, for example, in a ripped or stacked state.
  • an object of this invention is to provide the laminated body for non-aqueous secondary batteries which can suppress generation
  • Another object of the present invention is to provide a non-aqueous secondary battery provided with a non-aqueous secondary battery laminate capable of suppressing the occurrence of blocking.
  • the present inventors diligently studied for the purpose of solving the above-mentioned problems. And this inventor discovers that the laminated body for non-aqueous secondary batteries which can suppress generation
  • the present invention aims to advantageously solve the above-mentioned problems, and the laminate for a non-aqueous secondary battery of the present invention comprises one of a non-porous base layer and the base layer. And a bonding layer formed on the surface of the base material, wherein the surface roughness of one surface of the base material layer is greater than the surface roughness of the other surface of the base material layer. Is also characterized by large. As described above, when the adhesive layer is formed on the surface side having a large surface roughness, the occurrence of blocking can be suppressed even in the case of storing and transporting in a ripped or laminated state.
  • surface roughness refers to arithmetic mean roughness Ra determined according to JIS B0601 (1994).
  • the surface roughness of one surface of the base material layer is preferably 0.20 ⁇ m or more and 2.00 ⁇ m or less. If the surface roughness of the surface on which the adhesive layer is formed is within the above range, the occurrence of blocking can be suppressed more effectively, and the laminate for a non-aqueous secondary battery is used as an electrode substrate or separator group. The transferability of the adhesive layer when transferring the adhesive layer onto the material can be enhanced.
  • the surface roughness of the other surface of the said base material layer is 0.01 micrometer or more and 0.15 micrometer or less. If the surface roughness of the other surface of the base material layer is within the above range, preparation of the base material layer is easy, and the occurrence of blocking can be further effectively suppressed.
  • the adhesive layer contains organic particles, and the organic particles contain a nitrile group-containing monomer unit in a proportion of 1% by mass to 70% by mass. It is preferably made of a polymer. If the adhesive layer contains an organic particle made of a polymer containing a nitrile group-containing monomer unit in a proportion of 1% by mass to 70% by mass, the adhesive strength of the adhesive layer to the base layer is sufficiently secured. At the same time, it is possible to enhance the transferability of the adhesive layer when transferring the adhesive layer from the laminate for non-aqueous secondary battery onto the electrode substrate and the separator substrate.
  • the thickness of the above-mentioned adhesion layer is 0.01 micrometer or more and 10.0 micrometers or less. If the thickness of the adhesive layer is in the above range, the occurrence of blocking can be further effectively suppressed while sufficiently securing the adhesive strength of the adhesive layer to the base material layer.
  • Another object of the present invention is to advantageously solve the above problem, and the non-aqueous secondary battery of the present invention is formed on a positive electrode current collector and a part of the positive electrode current collector.
  • a positive electrode having a positive electrode mixture layer, a negative electrode current collector, and a negative electrode having a negative electrode mixture layer formed on the negative electrode current collector, with a separator interposed therebetween, the positive electrode mixture layer and the negative electrode mixture layer A structure in which a portion in which the positive electrode mixture layer of the positive electrode current collector is not formed and an opposite portion in which the negative electrode mixture layer is opposed to each other exist.
  • any one of the above-mentioned laminates for non-aqueous secondary batteries described above is disposed in the facing portion.
  • the safety of the non-aqueous secondary battery can be enhanced by arranging the above-described laminate for non-aqueous secondary battery in the opposite portion.
  • the manufacturing method of the laminated body for non-aqueous secondary batteries of this invention is a non-porous base material layer,
  • the said base material It is a manufacturing method of a layered product for nonaqueous system rechargeable batteries which has an adhesion layer formed on one side of a layer, surface coarseness of one side of the above-mentioned base layer is the other side of the above-mentioned base layer.
  • the manufacturing method of the layered product for nonaqueous system rechargeable batteries of the present invention applies the composition for adhesion layers on the surface of one side of the above-mentioned base material layer in the above-mentioned process, and dries the composition for adhesion layers applied. It is preferable to form an adhesive layer. As described above, when the adhesive layer composition is applied and dried to form the adhesive layer, the non-aqueous secondary battery laminate can be easily obtained.
  • a non-aqueous secondary battery provided with a non-aqueous secondary battery laminate that can suppress the occurrence of blocking, and the non-aqueous secondary battery laminate is obtained.
  • the laminate for a non-aqueous secondary battery of the present invention can be produced, for example, using the method for producing a laminate for a non-aqueous secondary battery of the present invention.
  • the laminate for a non-aqueous secondary battery of the present invention is not particularly limited, and can be used when providing an adhesive layer on a substrate such as an electrode substrate or a separator substrate using a transfer method.
  • the laminate for a non-aqueous secondary battery of the present invention is not particularly limited, and for the purpose of enhancing the safety of the non-aqueous secondary battery, a portion where the positive electrode mixture layer of the positive electrode current collector is not formed.
  • the laminate for a non-aqueous secondary battery of the present invention is not particularly limited, and is used when adhering dirt and the like attached to production equipment for non-aqueous secondary batteries such as rolls with an adhesive layer and removing It can also be done.
  • the laminate for a non-aqueous secondary battery according to the present invention has a non-porous base material layer 1 and a surface 1A of one of the base material layers 1 (upper side in FIG. 1) as shown in FIG. And the adhesive layer 2 formed on the Then, in the laminate 10 for a non-aqueous secondary battery, the surface roughness of one surface 1A of the base material layer 1 is larger than the surface roughness of the other surface 1B (lower side in FIG. 1) of the base material layer 1 Need that.
  • FIG. 1 shows the case where adhesion layer 2 is provided on the entire surface of one surface 1A of base material layer 1, adhesion layer 2 is provided only on a part of one surface 1A of base material layer 1.
  • adhesion layer 2 is provided only in a part of one surface 1A of base material layer 1, a part in which adhesion layer 2 of surface 1A is not provided among other surface 1B of base material layer 1
  • An adhesive layer may be provided on the part facing the.
  • the laminate for a non-aqueous secondary battery of the present invention can suppress the occurrence of blocking even when it is stored and transported in a ripped or stacked state (that is, blocking resistance). Are better).
  • the reason why the occurrence of blocking can be suppressed is not clear, but in the state where the laminate for a non-aqueous secondary battery is removed or laminated, the other has a smaller surface roughness than one surface. Where the surface comes in contact with the surface of the adhesive layer, it is inferred that the adhesion between the adhesive layer is due to the fact that one surface with greater surface roughness is greater than the other surface with smaller surface roughness. Ru.
  • the base layer is a non-porous layer in which the surface roughness of one surface is larger than the surface roughness of the other surface.
  • the surface roughness of one surface (the surface on which the adhesive layer is provided) of the base material layer is not particularly limited as long as it is larger than the surface roughness of the other surface, but is, for example, 0.20 ⁇ m or more
  • the thickness is preferably 0.35 ⁇ m or more, more preferably 2.00 ⁇ m or less, and still more preferably 1.00 ⁇ m or less. If the surface roughness of one surface of the base material layer is not less than the above lower limit value, the blocking resistance of the non-aqueous secondary battery laminate can be further enhanced.
  • the surface roughness of one surface of the base material layer is equal to or less than the above upper limit, adhesion when transferring the adhesive layer from the laminate for non-aqueous secondary battery onto the electrode base material, separator base material, etc.
  • the transferability of the layer can be enhanced.
  • the surface roughness of the other surface of the base material layer is not particularly limited as long as it is smaller than the surface roughness of one surface, but for example, it is preferably 0.01 ⁇ m or more, and 0.15 ⁇ m or less Is preferable, and 0.10 ⁇ m or less is more preferable. If the surface roughness of the other surface of the base material layer is not less than the above lower limit value, there is no need to make the surface of the base material layer excessively smooth, so the preparation of the base material layer is easy. Moreover, if the surface roughness of the other surface of a base material layer is below the said upper limit, the blocking resistance of the laminated body for non-aqueous secondary batteries can be further improved.
  • the surface roughness of the surface of the base material layer mentioned above is not specifically limited, It can adjust using known processing methods, such as a mat
  • a resin film can be used, for example, without being limited in particular.
  • the resin of the resin film that can be used for the base material layer is not particularly limited.
  • the resin film may be a multilayer film of the above-described resin.
  • the resin film is preferably a polypropylene film, and more preferably a biaxially oriented polypropylene (OPP) film.
  • fusing point is higher than the glass transition point of the polymer contained in the contact bonding layer mentioned later, and the glass transition point of the polymer contained in an contact bonding layer
  • the temperature is preferably 50 ° C. or more, and preferably 250 ° C. or less.
  • the adhesiveness between the base material layer and the adhesive layer can be sufficiently enhanced.
  • the glass transition temperature of the resin forming the resin film is higher than the glass transition temperature of the polymer contained in the adhesive layer, and 50 than the glass transition temperature of the polymer contained in the adhesive layer. It is preferable that the temperature be as high as ° C or higher, and 250 ° C or lower.
  • the "melting point” can be measured in accordance with JIS K7121.
  • the "glass transition point” can be measured in accordance with JIS K7121.
  • the thickness of the base material layer is preferably 100 ⁇ m or less, more preferably 40 ⁇ m or less, and preferably 10 ⁇ m or more. If the thickness of the base material layer is not less than the above lower limit value, the strength of the base material layer can be sufficiently secured. In addition, when the thickness of the base material layer is equal to or less than the above upper limit, lamination for a non-aqueous secondary battery in an opposing portion where the portion where the positive electrode mixture layer of the positive electrode current collector is not formed and the negative electrode mixture layer are opposed. When the body is disposed, it is possible to prevent the portion where the laminate for a non-aqueous secondary battery is disposed from swelling.
  • the adhesive layer provided on one surface of the base layer is not particularly limited, and any adhesive layer that can be used in the field of non-aqueous secondary batteries can be used.
  • the adhesive layer is not particularly limited, and, for example, JP-A-2017-098203, JP-A-2017-084651, JP-A-2016-100149, and JP-A-2016-081888.
  • the adhesive layer described in, for example, JP-A-2015-041603, WO 2015/064411, WO 2016/031163, and the like can be used.
  • the adhesive layer it is preferable to use an adhesive layer containing organic particles made of a polymer, and it is more preferable to use an adhesive layer containing organic particles and a binder made of a polymer different from the organic particles. .
  • the organic particle which consists of the polymer which contains the nitrile group content monomer unit in the ratio of 1 mass% or more and 70 mass% or less is preferable, and the nitrile group content single in the polymer which forms organic particle
  • the proportion of the monomer unit is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less, and more preferably 20% by mass or less . If the ratio of the nitrile group-containing monomer unit is equal to or more than the above lower limit value, the adhesiveness between the base material layer and the adhesive layer can be sufficiently enhanced.
  • (meth) acrylonitrile monomers such as an acrylonitrile and methacrylonitrile, are mentioned, for example.
  • a monomer which can form a monomer unit other than the nitrile group-containing monomer unit which the polymer forming the organic particle may contain, for example, vinyl chloride single monomers such as vinyl chloride, vinylidene chloride and the like Monomers; vinyl acetate monomers such as vinyl acetate; aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, styrene sulfonic acid, butoxystyrene and vinyl naphthalene; vinyl amine monomers such as vinyl amine; Vinylamide-based monomers such as vinylformamide and N-vinylacetamide; monomers having a carboxylic acid group such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid; vinylsulfonic acid and methylvinylsulfone Acid, (meth) allyl sulfonic acid, ethyl (meth) acrylic acid-2-sulfon
  • the above-mentioned monomers may be used alone or in combination of two or more at any ratio.
  • “(meth) acrylo” means acrylo and / or methacrylo
  • “(meth) acryl” means acryl and / or methacryl and “(meth) allyl” Means allyl and / or methallyl
  • “(meth) acrylate” means acrylate and / or methacrylate.
  • the organic particles preferably contain (meth) acrylic acid ester monomer units, and the proportion of (meth) acrylic acid ester monomer units in the polymer forming the organic particles is not particularly limited.
  • the organic particles preferably contain an acid group-containing monomer unit, particularly a monomer unit having a carboxylic acid group such as a (meth) acrylic acid unit, and the acid group in the polymer forming the organic particle.
  • the proportion of the monomer unit contained is not particularly limited, but is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and 10% by mass or less Preferably, it is 5% by mass or less.
  • the organic particles preferably have a glass transition temperature of 30 ° C. or more, more preferably 50 ° C. or more, preferably 90 ° C. or less, and more preferably 80 ° C. or less. If the glass transition point is at least the above lower limit value, the blocking resistance of the non-aqueous secondary battery laminate can be further enhanced. Moreover, if the glass transition point is below the said upper limit, even if it does not heat excessively, sufficient adhesive force can be exhibited to an contact bonding layer. When the organic particles have two or more glass transition points, the lowest glass transition point is preferably in the above range.
  • an organic particle does not have limitation in particular, and has a core-shell structure provided with a core part and a shell part which partially covers the outer surface of a core part.
  • the shell The portion is a shell portion that partially covers the outer surface of the core portion.
  • the binder which can be used in combination with the organic particles is not particularly limited, and thermoplastic elastomers such as conjugated diene polymer and acrylic polymer can be used.
  • the conjugated diene polymer refers to a polymer containing conjugated diene monomer units
  • specific examples of the conjugated diene polymer include aromatic vinyl monomers such as styrene-butadiene copolymer (SBR). Included are polymers comprising monomeric units and aliphatic conjugated diene monomeric units.
  • SBR styrene-butadiene copolymer
  • an acryl-type polymer points out the polymer containing a (meth) acrylic acid ester monomer unit.
  • the thickness of the adhesive layer provided on one surface of the base layer is not particularly limited, but is preferably, for example, 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and 0. It is more preferably 2 ⁇ m or more, particularly preferably 0.4 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, still more preferably 3 ⁇ m or less, and 1 ⁇ m or less Is particularly preferred. If the thickness of the adhesive layer is not less than the above lower limit value, the adhesiveness between the base material layer and the adhesive layer can be sufficiently enhanced. In addition, when the thickness of the adhesive layer is equal to or less than the above upper limit value, the blocking resistance of the non-aqueous secondary battery laminate can be further enhanced.
  • the adhesive strength of the adhesive layer to the base material layer is preferably 1 N / m or more, more preferably 3 N / m or more, preferably 50 N / m or less, more preferably 30 N / m or less. If the adhesive strength between the adhesive layer and the base material layer is equal to or more than the above lower limit value, the adhesive layer can be reliably held on the base material layer. On the other hand, when the adhesive strength between the adhesive layer and the base material layer is equal to or less than the above upper limit, peeling of the adhesive layer from the base material layer becomes easy, and the transferability of the adhesive layer can be further enhanced.
  • the adhesion strength of the adhesive layer to the base material layer is obtained by sticking a cellophane tape (defined in JIS Z 1522) fixed on a horizontal test stand to the other surface side of the base material layer, and laminating the secondary battery.
  • the stress when the end of the adhesive layer of the body is pulled vertically at a speed of 50 mm / min and peeled off can be measured three times and determined as an average value of the measured stress.
  • the adhesive layer has an adhesive strength to the aluminum foil of preferably 5 N / m or more, more preferably 10 N / m or more, and preferably 100 N / m or less, more preferably 50 N / m or less. If the adhesive strength between the adhesive layer and the aluminum foil is not less than the above lower limit value, the transferability of the adhesive layer can be further enhanced. On the other hand, when the adhesive strength between the adhesive layer and the aluminum foil is equal to or less than the above upper limit, the blocking resistance of the non-aqueous secondary battery laminate can be further enhanced. In addition, the adhesive strength with respect to the aluminum foil of an adhesive layer can be measured according to the method as described in an Example.
  • the adhesive strength between the adhesive layer and the secondary battery base may differ depending on the type and material of the secondary battery base, the adhesive layer and It roughly correlates with and approximates the above adhesive strength with aluminum foil. Therefore, from the viewpoint of transferability of the adhesive layer, in the laminate for a non-aqueous secondary battery, the adhesive strength between the adhesive layer and the base layer described above is more than the adhesive strength between the adhesive layer and the aluminum foil. Is also preferably small.
  • the laminate for a non-aqueous secondary battery of the present invention described above is, for example, a battery member (positive electrode, negative electrode, separator, etc.) having an adhesive layer by providing an adhesive layer on a substrate such as an electrode substrate or separator substrate. It can be used when obtaining. And when assembling a secondary battery, the battery member which has an adhesion layer can be favorably pasted together with other battery members via an adhesion layer. In addition, the battery member which has an adhesive layer can be used, for example, when manufacturing a secondary battery using the manufacturing method of known non-aqueous secondary batteries, such as a method of international publication 2016/031163 number.
  • examples of the substrate on which the adhesive layer is provided include a separator substrate, and an electrode substrate formed by forming an electrode mixture layer on a current collector.
  • the separator substrate and the electrode substrate may be provided with a porous film layer on the surface.
  • the separator substrate is not particularly limited, and for example, those described in JP-A-2012-204303 can be used. Among these, it is possible to reduce the film thickness of the whole separator, thereby increasing the ratio of the electrode active material in the secondary battery to increase the capacity per volume, and it is possible to use polyolefins ( A microporous membrane made of a resin of polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferred.
  • electrode base material a positive electrode base material and a negative electrode base material
  • the electrode base material in which the electrode compound material layer was formed on the collector is mentioned.
  • the well-known transfer method can be used.
  • a laminate formed by laminating a laminate for a non-aqueous secondary battery and a substrate so that the adhesive layer is in contact with a position to be transferred on the substrate is a mold press or a roll press
  • the adhesive layer can be transferred by pressing using an adhesive or the like and then peeling off the base material layer.
  • the pressurizing conditions pressure, temperature, time, etc.
  • the temperature of the roll can be appropriately set in the range of 50 to 200.degree.
  • the laminate for a non-aqueous secondary battery of the present invention described above is not particularly limited, and a facing portion in which a portion where the positive electrode mixture layer of the positive electrode current collector is not formed faces the negative electrode mixture layer. It can also be arranged in By arranging the non-aqueous secondary battery laminate in the opposite part, it is possible to suppress the occurrence of a short circuit in the opposite part due to contamination of metal or the like, and to enhance the safety of the non-aqueous secondary battery.
  • the laminate for a non-aqueous secondary battery of the present invention is, for example, as shown in FIG. 2, in the structure 100 in which the positive electrode 20, the negative electrode 40 and the separator 30 are stacked in a predetermined positional relationship. It can be disposed in the section 50.
  • the structure 100 shown in FIGS. 2A and 2B is formed on the positive electrode current collector 21 and a part of the positive electrode current collector 21 (in the illustrated example, a part other than the tab-like part).
  • the non-aqueous secondary battery laminate 10 is bonded to, for example, the positive electrode current collector 21 of the positive electrode 20 via the adhesive layer 2 in the state of having the base material layer 1.
  • the non-aqueous secondary battery including the structure having the above-described configuration is excellent in safety because the occurrence of a short circuit at the facing portion is suppressed.
  • the example shown in FIG. 2 shows the case where the electrode mixture layer (positive electrode mixture layer, negative electrode mixture layer) is formed only on one surface of the current collector for the positive electrode and the negative electrode, but The material layer may be formed on both sides of the current collector.
  • the laminated body 10 for non-aqueous secondary batteries was stuck only on the positive electrode collector 21, the laminated body 10 for non-aqueous secondary batteries is arrange
  • the positive electrode current collector 21 may be bonded to the positive electrode mixture layer 22 so as to cover the end surface of the positive electrode mixture layer 22 on the facing portion 50 side.
  • the non-aqueous secondary battery including the structure having the above-described configuration can be manufactured, for example, by placing the structure in a battery container, injecting an electrolyte solution into the battery container, and sealing the battery container. If necessary, expanded metal, a fuse, an overcurrent preventing element such as a PTC element, a lead plate, or the like may be inserted into the battery container to prevent pressure increase inside the battery and overcharge and discharge.
  • the shape of the battery may be, for example, a coin, a button, a sheet, a cylinder, a square, or a flat.
  • the method for producing a laminate for a non-aqueous secondary battery of the present invention is a laminate for a non-aqueous secondary battery having a non-porous base material layer and an adhesive layer formed on one surface of the base material layer.
  • Used in the manufacture of And the manufacturing method of the layered product for non-aqueous secondary batteries of the present invention uses the base material layer whose surface roughness of one surface is larger than the surface roughness of the other surface, and the adhesive layer is one of the base material layers. Forming on the surface of the substrate.
  • the adhesive layer is formed on one surface of the base material layer where the surface roughness of one surface is larger than the surface roughness of the other surface, the above-mentioned laminate for a non-aqueous secondary battery of the present invention Can be easily obtained.
  • the method for forming the adhesive layer on one surface of the base material layer is not particularly limited, and the components constituting the adhesive layer such as the organic particles described above are contained in a solvent such as water or an organic solvent
  • dissolving is mentioned.
  • the adhesive layer can be formed on one surface of the base material layer using, for example, the following method 1) or 2). 1) A method of applying a composition for an adhesive layer on one surface of a substrate layer and drying the applied composition for an adhesive layer.
  • composition for adhesive layer is applied to a support member such as a flat plate or a roll, and the applied composition for adhesive layer is dried to form an adhesive layer, and the obtained adhesive layer is used as one surface of the substrate layer How to transcribe.
  • the method 1) is particularly preferable because the film thickness of the adhesive layer can be easily controlled.
  • the method for applying the composition for an adhesive layer is not particularly limited.
  • a spray coating method, an inkjet method, a spin coating method, a doctor blade method, a reverse roll method, a direct roll A method, a gravure method, an extrusion method, a brush coating method, etc. can be used.
  • the gravure method, the spray coating method, and the ink jet method are preferable from the viewpoint of forming a thin adhesive layer.
  • the drying method by irradiation such as a warm air, a hot air, the drying method by low humidity air, a vacuum drying method, infrared rays, an electron beam etc.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 30 to 80 ° C., and the drying time is preferably 30 seconds to 10 minutes.
  • the laminated body for non-aqueous secondary batteries manufactured as mentioned above is excellent in blocking resistance.
  • the glass transition point of the organic particles, the surface roughness of the surface of the base layer, the thickness of the adhesive layer, the blocking resistance and the adhesive strength of the laminate for a secondary battery, and the adhesive layer was evaluated by the following method.
  • aqueous dispersion containing a polymer to be a measurement sample is prepared under the same polymerization conditions as the polymerization conditions of the polymer, A measurement sample obtained by drying the aqueous dispersion was prepared. Next, 10 mg of the above-mentioned measurement sample is weighed on an aluminum pan using a differential thermal analysis measurement apparatus (product name “EXSTAR DSC 6220” manufactured by SII Nano Technology Inc.), using an empty aluminum pan as a reference, temperature range The measurement was carried out in accordance with JIS K 7121 under measurement conditions of -100 ° C. to 300 ° C.
  • the surface roughness was calculated according to JIS B0601 (1994).
  • ⁇ Thickness> About the laminated body for secondary batteries produced on the same conditions, the thickness of the center of the laminated body for secondary batteries was each measured using the micrometer (made by Mitutoyo company), and the average value was calculated
  • ⁇ Blocking resistance> The prepared laminate for a secondary battery was cut into a width of 5 cm ⁇ length 5 cm to prepare a sample piece. The obtained two sample pieces were superimposed so that the adhesive layer side of one sample piece and the other surface side of the base material layer of the other sample piece faced each other.
  • the sample was placed under a pressure of 10 g / cm 2 at 40 ° C. to prepare a measurement sample.
  • One surface of the obtained measurement sample consists of a base material layer, and the other surface consists of an adhesive layer.
  • the obtained measurement sample was left to stand at 40 ° C. under a pressure of 10 g / cm 2 for 24 hours, and it was confirmed whether two sample pieces were adhered to each other.
  • the measurement sample after leaving for 24 hours is the other surface of the base material layer located on one surface of the measurement sample. Sticked down and fixed.
  • one end of the sample piece (laminate for a secondary battery) positioned on one surface side of the measurement sample was pulled vertically at a speed of 50 mm / min to measure the stress when peeled off.
  • This measurement was performed three times, and the average value of the stress was evaluated as the blocking resistance (adhesive strength) of the laminate for a secondary battery according to the following criteria.
  • C The adhesion strength between the sample pieces is 0.1 N / m or more.
  • one end of the base material layer of the obtained laminate (laminate including the base material layer, the adhesive layer, and the positive electrode in this order) is pulled in the vertical direction at a sticking rate of 50 mm / min.
  • the transfer of the adhesive layer was completed by peeling off the layer.
  • the mass M1 of the base material layer after transfer was measured. Transferability is evaluated based on the following criteria using a value (M0 / M1 ratio, unit: mass%) obtained by dividing the mass M0 of the base layer by the mass M1 of the base layer after transfer and multiplying it by 100. did.
  • M0 / M1 ratio The larger the value of the M0 / M1 ratio, the smaller the mass of the adhesive layer remaining on the base material layer after transfer, and the better the transferability of the adhesive layer.
  • LiCoO 2 volume average particle diameter D50: 12 ⁇ m
  • a positive electrode active material 100 parts of LiCoO 2 (volume average particle diameter D50: 12 ⁇ m) as a positive electrode active material and a conductive material on a current collector made of aluminum foil ("1N99” manufactured by Japan Foil Co., Ltd.) 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., “HS-10”), and polyvinylidene fluoride (manufactured by Kureha, “# 7208”) as a particulate binder for the positive electrode mixture layer as a solid
  • a positive electrode formed by forming a positive electrode mixture layer containing 2 parts in an amount corresponding to 1 minute was used.
  • M0 / M1 ratio is 90 mass% or more
  • B: M0 / M1 ratio is 80 mass% or more and less than 90 mass%
  • C: M0 / M1 ratio is 60 mass% or more and less than 80 mass%
  • D: M0 / M1 ratio is 60 mass Less than% ⁇ adhesive strength>
  • the produced laminate for a secondary battery was disposed such that the adhesive layer was in contact with an aluminum foil (manufactured by Japan Foil Co., Ltd., “1N99”). Then, the laminate was passed through a roll press at a temperature of 80 ° C., a linear pressure of 200 kgf / cm, and a speed of 20 m / min to bond the laminate for a secondary battery and the aluminum foil.
  • the obtained laminate for a secondary battery with an aluminum foil was cut into a rectangle of 100 mm in length and 10 mm in width, and used as a test piece.
  • the obtained test piece is attached to a cellophane tape (specified in JIS Z 1522) fixed on a horizontal test stand, with the aluminum foil down, and one end of the secondary battery laminate is pulled vertically upward
  • the stress when pulling off at 50 mm / min was measured. This measurement was performed 3 times, the average value of stress was calculated
  • Adhesive strength is 20 N / m or more
  • Example 1 Preparation of Organic Particles> 43.5 parts of methyl methacrylate and 15 parts of butyl acrylate, 15 parts of acrylonitrile, 4 parts of methacrylic acid, and 1 part of trimethylpropane triacrylate in a 5 MPa pressure-resistant vessel equipped with a stirrer. 1 part of sodium dodecylbenzene sulfonate as an emulsifier, 150 parts of ion exchange water, and 0.5 parts of potassium persulfate as a polymerization initiator are added, sufficiently stirred, and then heated to 60 ° C. for polymerization Started.
  • Binder In a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.15 parts of sodium lauryl sulfate (manufactured by Kao Chemical Co., Ltd., product name "Emar 2F") as an emulsifier, and ammonium persulfate 0.5 as a polymerization initiator Parts were supplied, the gas phase was replaced with nitrogen gas, and the temperature was raised to 60.degree.
  • composition for adhesive layer The obtained aqueous dispersion of organic particles was mixed with 100 parts of solid equivalent, and the obtained aqueous dispersion of binder with solid part, 22 parts in a stirring vessel to obtain a mixture. Furthermore, an adhesive layer having a solid content concentration of 15% is added by adding ethylene oxide-propylene oxide copolymer as a surface tension regulator at a ratio of 1 part to 100 parts of organic particles and further diluting with ion exchanged water.
  • ⁇ Preparation of base material layer> A biaxially stretched polypropylene (OPP) film (manufactured by Kaisei Kogyo Co., Ltd., single-sided matte product, type D) having a melting point of 165 ° C. and a thickness of 20 ⁇ m was prepared as a resin film to be a base material layer. And the surface roughness of one surface of the resin film as a base material layer and the other surface was measured. The results are shown in Table 1.
  • ⁇ Production of Laminate for Nonaqueous Secondary Battery> The composition for an adhesive layer was applied to one surface of the substrate layer by a gravure method, and dried at a temperature of 50 ° C. for 3 minutes to form an adhesive layer. Then, using the obtained laminate for a secondary battery, the thickness of the adhesive layer, the blocking resistance and the adhesive strength of the laminate for a secondary battery, and the transferability of the adhesive layer were measured or evaluated. The results are shown in Table 1.
  • Example 2 A 20 ⁇ m thick biaxially stretched polypropylene film (manufactured by Kaisei Kogyo Co., Ltd., one-sided matte processed article, Type S) in place of a 20 ⁇ m-thick biaxially stretched polypropylene film (manufactured by Kaisei Kogyo Co., Ltd., one-sided matte processed product, type D) as a substrate layer
  • Organic particles, a binder, a composition for an adhesive layer, a base material layer and a laminate for a non-aqueous secondary battery were prepared or prepared in the same manner as in Example 1 except that the above was used. Then, measurement and evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A 20 ⁇ m thick biaxially stretched polypropylene film (manufactured by Kaisei Kogyo Co., Ltd., one-sided matte processed article, Type A) in place of a 20 ⁇ m thick biaxially stretched polypropylene film (manufactured by Kaisei Kogyo Co., Ltd., one-sided matte processed product, type D) as a substrate layer Organic particles and binding in the same manner as in Example 1 except that a resin film blasted using a pencil type blasting machine (petit blast, suction type, manufactured by Nitsche Co., Ltd.) is used on the matted surface of A material, a composition for an adhesive layer, a substrate layer and a laminate for a non-aqueous secondary battery were prepared or prepared. Then, measurement and evaluation were performed in the same manner as in Example 1. The results are shown in Table 1. The surface roughness of the blast treated surface was adjusted by adjusting the particle diameter of the blast particles, the blast pressure, and the treatment time.
  • Example 4 A 20 ⁇ m thick biaxially stretched polypropylene film (manufactured by Kaisei Kogyo Co., Ltd., one-sided matte processed product, type D) as a substrate layer, instead of a 20 ⁇ m thick biaxially stretched polypropylene film (manufactured by Kaisei Kogyo Co., Ltd., one-sided matte processed product, type D)
  • Organic particles and bindings were carried out in the same manner as in Example 1 except that a resin film blasted using a pencil type blasting machine (petit blast, suction type, manufactured by Nitsche Co., Ltd.) was used on the raw surface of A material, a composition for an adhesive layer, a substrate layer and a laminate for a non-aqueous secondary battery were prepared or prepared. Then, measurement and evaluation were performed in the same manner as in Example 1. The results are shown in Table 1. The surface roughness of the blast treated surface was adjusted by adjusting the particle diameter of the blast particles, the blast pressure, and the treatment time.
  • Example 5 In the same manner as in Example 1 except that the thickness of the adhesive layer is set to 0.1 ⁇ m by changing the number of lines of the gravure roll to which the composition for an adhesive layer is applied when producing a laminate for a non-aqueous secondary battery.
  • Organic particles, a binder, a composition for an adhesive layer, a base material layer, and a laminate for a non-aqueous secondary battery were prepared or prepared. Then, measurement and evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 The organic layer was prepared in the same manner as in Example 1, except that the thickness of the adhesive layer was made 4.0 ⁇ m by changing the number of lines of the gravure roll to which the composition for adhesive layer is applied when producing the laminate for non-aqueous secondary batteries. Particles, a binder, a composition for an adhesive layer, a base material layer, and a laminate for a non-aqueous secondary battery were prepared or prepared. Then, measurement and evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 The organic particles were prepared in the same manner as in Example 1 except that the amount of acrylonitrile for forming the core portion was changed to 3 parts, and the amount of methyl methacrylate for forming the core portion was changed to 55.5 parts. Particles, a binder, a composition for an adhesive layer, a base material layer, and a laminate for a non-aqueous secondary battery were prepared or prepared. Then, measurement and evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 The organic particles were prepared in the same manner as in Example 1 except that the amount of acrylonitrile for forming the core portion was changed to 55 parts, and the amount of methyl methacrylate for forming the core portion was changed to 3.5 parts. Particles, a binder, a composition for an adhesive layer, a base material layer, and a laminate for a non-aqueous secondary battery were prepared or prepared. Then, measurement and evaluation were performed in the same manner as in Example 1. The results are shown in Table 1.
  • a non-aqueous secondary battery provided with a non-aqueous secondary battery laminate that can suppress the occurrence of blocking, and the non-aqueous secondary battery laminate is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、ブロッキングの発生を抑制し得る非水系二次電池用積層体を提供する。本発明の非水系二次電池用積層体は、非多孔性の基材層と、基材層の一方の表面上に形成された接着層とを有する非水系二次電池用積層体であって、基材層の一方の表面の表面粗さが、基材層の他方の表面の表面粗さよりも大きい。ここで、基材層の一方の表面の表面粗さは0.20μm以上2.00μm以下であることが好ましく、基材層の他方の表面の表面粗さは0.01μm以上0.15μm以下であることが好ましい。

Description

非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池
 本発明は、非水系二次電池用積層体および非水系二次電池用積層体の製造方法、並びに、非水系二次電池に関し、特には、接着層を備える非水系二次電池用積層体およびその製造方法、並びに、当該非水系二次電池用積層体を備える非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、二次電池は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。
 ここで、近年、二次電池においては、電池部材間の接着性の向上を目的とした接着層を備える電池部材が使用されている。
 具体的には、集電体上に電極合材層を設けてなる電極基材上にさらに接着層を形成してなる電極、および、セパレータ基材上に接着層を形成してなるセパレータが、電池部材として使用されている。そして、電極基材やセパレータ基材の上に接着層を形成する方法としては、例えば、離型基材上に接着層を形成してなる積層体を準備し、離型基材上に形成した接着層を転写する方法等が提案されている(例えば、特許文献1参照)。
 また、例えば特許文献2等では、二次電池の安全性を高める観点から、正極集電体上の電極合材層(正極合材層)が形成されていない部分と、負極集電体上に形成された電極合材層(負極合材層)とが対向する部分に、樹脂フィルムからなる基材と、当該基材上に形成された接着層とを有する積層体を配置することにより、電極間における短絡の発生を抑制する技術が提案されている。
国際公開第2016/031163号 特許第5925690号公報
 ここで、二次電池に用いられる、基材と、基材上に形成された接着層とを備える積層体は、例えば、捲き取った状態または積層した状態で保存および運搬されることがある。
 しかし、基材上に接着層を形成してなる上記従来の積層体をこのような状態で保存および運搬すると、接着層を介して隣接する基材同士が膠着、即ちブロッキングし、不良の発生や生産性の低下が起こることがあった。
 そこで、本発明は、ブロッキングの発生を抑制し得る非水系二次電池用積層体およびその製造方法を提供することを目的とする。
 また、本発明は、ブロッキングの発生を抑制し得る非水系二次電池用積層体を備える非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の性状を有する基材層上に接着層を形成することにより、ブロッキングの発生を抑制し得る非水系二次電池用積層体が得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用積層体は、非多孔性の基材層と、前記基材層の一方の表面上に形成された接着層とを有する非水系二次電池用積層体であって、前記基材層の一方の表面の表面粗さが、前記基材層の他方の表面の表面粗さよりも大きいことを特徴とする。このように、表面粗さの大きい表面側に接着層を形成すれば、捲き取った状態または積層した状態で保存および運搬する場合であっても、ブロッキングの発生を抑制することができる。
 なお、本発明において、「表面粗さ」とは、JIS B0601(1994)に準拠して求められる算術平均粗さRaを指す。
 ここで、本発明の非水系二次電池用積層体は、前記基材層の一方の表面の表面粗さが、0.20μm以上2.00μm以下であることが好ましい。接着層を形成する側の表面の表面粗さが上記範囲内であれば、ブロッキングの発生を更に効果的に抑制することができると共に、非水系二次電池用積層体から電極基材やセパレータ基材の上に接着層を転写する際の接着層の転写性を高めることができる。
 また、本発明の非水系二次電池用積層体は、前記基材層の他方の表面の表面粗さが、0.01μm以上0.15μm以下であることが好ましい。前記基材層の他方の表面の表面粗さが上記範囲内であれば、基材層の準備が容易であると共に、ブロッキングの発生を更に効果的に抑制することができる。
 更に、本発明の非水系二次電池用積層体は、前記接着層が、有機粒子を含み、前記有機粒子が、ニトリル基含有単量体単位を1質量%以上70質量%以下の割合で含む重合体よりなることが好ましい。接着層がニトリル基含有単量体単位を1質量%以上70質量%以下の割合で含む重合体よりなる有機粒子を含有していれば、基材層に対する接着層の接着強度を十分に確保しつつ、非水系二次電池用積層体から電極基材やセパレータ基材の上に接着層を転写する際の接着層の転写性を高めることができる。
 そして、本発明の非水系二次電池用積層体は、前記接着層の厚みが、0.01μm以上10.0μm以下であることが好ましい。接着層の厚みが上記範囲内であれば、基材層に対する接着層の接着強度を十分に確保しつつ、ブロッキングの発生を更に効果的に抑制することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、正極集電体および前記正極集電体上の一部に形成された正極合材層を有する正極と、負極集電体および前記負極集電体上に形成された負極合材層を有する負極とを、セパレータを介して、前記正極合材層と前記負極合材層とが互いに対向するように、且つ、前記正極集電体の前記正極合材層が形成されていない部分と前記負極合材層とが対向する対向部が存在するように配置してなる構造体を備え、前記対向部に、上述した非水系二次電池用積層体の何れかが配置されてなることを特徴とする。このように、対向部に上述した非水系二次電池用積層体を配置すれば、非水系二次電池の安全性を高めることができる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用積層体の製造方法は、非多孔性の基材層と、前記基材層の一方の表面上に形成された接着層とを有する非水系二次電池用積層体の製造方法であって、前記基材層の一方の表面の表面粗さは、前記基材層の他方の表面の表面粗さよりも大きく、前記接着層を前記基材層の一方の表面上に形成する工程を含むことを特徴とする。このように、表面粗さの大きい表面側に接着層を形成すれば、得られた非水系二次電池用積層体を捲き取った状態または積層した状態で保存および運搬する場合であっても、ブロッキングの発生を抑制することができる。
 そして、本発明の非水系二次電池用積層体の製造方法は、前記工程では、前記基材層の一方の表面上に接着層用組成物を塗布し、塗布した接着層用組成物を乾燥させて接着層を形成することが好ましい。このように、接着層用組成物を塗布および乾燥させて接着層を形成すれば、非水系二次電池用積層体を容易に得ることができる。
 本発明によれば、ブロッキングの発生を抑制し得る非水系二次電池用積層体、および、当該非水系二次電池用積層体を備える非水系二次電池が得られる。
本発明に従う非水系二次電池用積層体の一例の側面図である。 本発明に従う非水系二次電池が備える構造体の一例の構造を示す図であり、(a)は分解斜視図を示し、(b)は構造体の積層方向に沿う断面図を示す。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池用積層体は、例えば、本発明の非水系二次電池用積層体の製造方法を用いて製造することができる。そして、本発明の非水系二次電池用積層体は、特に限定されることなく、電極基材やセパレータ基材等の基材上に転写法を用いて接着層を設ける際に用いることができる。また、本発明の非水系二次電池用積層体は、特に限定されることなく、非水系二次電池の安全性を高める目的で、正極集電体の正極合材層が形成されていない部分と負極合材層とが対向する対向部に配設することもできる。更に、本発明の非水系二次電池用積層体は、特に限定されることなく、ロール等の非水系二次電池の生産設備に付着した汚れ等を接着層で接着して除去する際に用いることもできる。
(非水系二次電池用積層体)
 本発明の非水系二次電池用積層体は、一例の構造を図1に示すように、非多孔性の基材層1と、基材層1の一方(図1では上側)の表面1A上に形成された接着層2とを有している。そして、非水系二次電池用積層体10は、基材層1の一方の表面1Aの表面粗さが、基材層1の他方(図1では下側)の表面1Bの表面粗さよりも大きいことを必要とする。
 なお、図1では接着層2が基材層1の一方の表面1Aの全面に設けられている場合を示したが、接着層2は基材層1の一方の表面1Aの一部のみに設けられていてもよい。そして、接着層2が基材層1の一方の表面1Aの一部のみに設けられている場合、基材層1の他方の表面1Bのうち、表面1Aの接着層2が設けられていない部分に対向する部分には、接着層が設けられていてもよい。
 そして、本発明の非水系二次電池用積層体は、捲き取った状態または積層した状態で保存および運搬する場合であっても、ブロッキングの発生を抑制することができる(即ち、耐ブロッキング性に優れている)。
 なお、ブロッキングの発生を抑制することができる理由は、明らかではないが、非水系二次電池用積層体を捲き取った状態または積層した状態では一方の表面に比べて表面粗さが小さい他方の表面が接着層の表面に接触するところ、接着層との間の接着力は、表面粗さの大きい一方の表面の方が表面粗さの小さい他方の表面よりも大きくなるためであると推察される。
<基材層>
 基材層は、一方の表面の表面粗さが他方の表面の表面粗さよりも大きい非多孔性の層である。
 ここで、基材層の一方の表面(接着層が設けられる面)の表面粗さは、他方の表面の表面粗さよりも大きければ特に限定はされないが、例えば、0.20μm以上であることが好ましく、0.35μm以上であることがより好ましく、2.00μm以下であることが好ましく、1.00μm以下であることがより好ましい。基材層の一方の表面の表面粗さが上記下限値以上であれば、非水系二次電池用積層体の耐ブロッキング性を更に高めることができる。また、基材層の一方の表面の表面粗さが上記上限値以下であれば、非水系二次電池用積層体から電極基材やセパレータ基材などの上に接着層を転写する際の接着層の転写性を高めることができる。
 また、基材層の他方の表面の表面粗さは、一方の表面の表面粗さよりも小さければ特に限定はされないが、例えば、0.01μm以上であることが好ましく、0.15μm以下であることが好ましく、0.10μm以下であることがより好ましい。基材層の他方の表面の表面粗さが上記下限値以上であれば、基材層の表面を過度に平滑にする必要が無いので、基材層の準備が容易である。また、基材層の他方の表面の表面粗さが上記上限値以下であれば、非水系二次電池用積層体の耐ブロッキング性を更に高めることができる。
 なお、上述した基材層の表面の表面粗さは、特に限定されることなく、マット加工、ブラスト加工、エンボス加工、研磨などの既知の処理方法を用いて調節することができる。また、コロナ処理、プラズマ処理などの既知の表面処理方法を用いて調節することもできる。
 そして、上述した基材層としては、特に限定されることなく、例えば樹脂フィルムを用いることができる。
 ここで、基材層に使用し得る樹脂フィルムの樹脂としては、特に限定されることなく、例えば、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリイミド(PI)、ポリアミド(PA)などが挙げられる。なお、樹脂フィルムは、上述した樹脂の多層フィルムであってもよい。中でも、樹脂フィルムは、ポリプロピレンフィルムであることが好ましく、二軸延伸ポリプロピレン(OPP)フィルムであることがより好ましい。
 なお、樹脂フィルムを形成する樹脂が融点を有する場合、当該融点は、後述する接着層に含まれる重合体のガラス転移点よりも高いことが好ましく、接着層に含まれる重合体のガラス転移点より50℃以上高いことが好ましく、250℃以下であることが好ましい。樹脂フィルムを形成する樹脂の融点が接着層に含まれる重合体のガラス転移点よりも高ければ、接着層に十分な接着力を発揮させる目的で非水系二次電池用積層体を加熱した際などに基材層に穴が開くのを抑制することができる。また、樹脂の融点が250℃以下であれば、基材層と接着層との接着性を十分に高めることができる。
 また、同様の理由により、樹脂フィルムを形成する樹脂のガラス転移点は、接着層に含まれる重合体のガラス転移点よりも高いことが好ましく、接着層に含まれる重合体のガラス転移点より50℃以上高いことが好ましく、250℃以下であることが好ましい。
 なお、本発明において、「融点」は、JIS K7121に準拠して測定することができる。また、本発明において、「ガラス転移点」は、JIS K7121に準拠して測定することができる。
 更に、基材層の厚みは、100μm以下であることが好ましく、40μm以下であることがより好ましく、10μm以上であることが好ましい。基材層の厚みが上記下限値以上であれば、基材層の強度を十分に確保することができる。また、基材層の厚みが上記上限値以下であれば、正極集電体の正極合材層が形成されていない部分と負極合材層とが対向する対向部に非水系二次電池用積層体を配設した際などに、非水系二次電池用積層体を配置した部分が盛り上がるのを防止することができる。
<接着層>
 基材層の一方の表面に設ける接着層としては、特に限定されることなく、非水系二次電池の分野において使用し得る任意の接着層を用いることができる。具体的には、接着層としては、特に限定されることなく、例えば、特開2017-098203号公報、特開2017-084651号公報、特開2016-100149号公報、特開2016-081888号公報、特開2015-041603号公報、国際公開第2015/064411号、国際公開第2016/031163号などに記載されている接着層を用いることができる。
 中でも、接着層としては、重合体よりなる有機粒子を含む接着層を用いることが好ましく、有機粒子と、有機粒子とは異なる重合体よりなる結着材とを含む接着層を用いることがより好ましい。
 そして、有機粒子としては、ニトリル基含有単量体単位を1質量%以上70質量%以下の割合で含有する重合体よりなる有機粒子が好ましく、有機粒子を形成する重合体中のニトリル基含有単量体単位の割合は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、また、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。ニトリル基含有単量体単位の割合が上記下限値以上であれば、基材層と接着層との接着性を十分に高めることができる。また、ニトリル基含有単量体単位の割合が上記上限値以下であれば、非水系二次電池用積層体から電極基材やセパレータ基材などの上に接着層を転写する際の接着層の転写性を高めることができる。
 なお、ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、例えば、アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル単量体が挙げられる。
 また、有機粒子を形成する重合体が含有し得る、ニトリル基含有単量体単位以外の単量体単位を形成し得る単量体としては、例えば、塩化ビニル、塩化ビニリデン等の塩化ビニル系単量体;酢酸ビニル等の酢酸ビニル系単量体;スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等の芳香族ビニル単量体;ビニルアミン等のビニルアミン系単量体;N-ビニルホルムアミド、N-ビニルアセトアミド等のビニルアミド系単量体;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のカルボン酸基を有する単量体;ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸等のスルホン酸基を有する単量体;リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチル等のリン酸基を有する単量体;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル等の水酸基を有する単量体等の酸基含有単量体;メタクリル酸2-ヒドロキシエチル等の(メタ)アクリル酸誘導体;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステル単量体;アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド単量体;2-(パーフルオロヘキシル)エチルメタクリレート、2-(パーフルオロブチル)エチルアクリレート等のフッ素含有(メタ)アクリレート単量体;マレイミド;フェニルマレイミド等のマレイミド誘導体;1,3-ブタジエン、イソプレン等のジエン系単量体;ジビニルベンゼン、アリルメタクリレート等のジビニル単量体;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート(EDMA)、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル単量体;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル単量体;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;γ-メタクリロキシプロピルトリメトキシシラン;などが挙げられる。
 上述した単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本明細書において、「(メタ)アクリロ」とは、アクリロおよび/またはメタクリロを意味し、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味し、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味し、「(メタ)アクリレート」とは、アクリレートおよび/またはメタクリレートを意味する。
 そして、有機粒子は、(メタ)アクリル酸エステル単量体単位を含むことが好ましく、有機粒子を形成する重合体中の(メタ)アクリル酸エステル単量体単位の割合は、特に制限はないが、1質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、また、95質量%以下であることが好ましく、75質量%以下であることがより好ましい。
 また、有機粒子は、酸基含有単量体単位、特には(メタ)アクリル酸単位などのカルボン酸基を有する単量体単位を含むことが好ましく、有機粒子を形成する重合体中の酸基含有単量体単位の割合は、特に制限はないが、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、また、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 また、有機粒子は、ガラス転移点が30℃以上であることが好ましく、50℃以上であることがより好ましく、90℃以下であることが好ましく、80℃以下であることがより好ましい。ガラス転移点が上記下限値以上であれば、非水系二次電池用積層体の耐ブロッキング性を更に高めることができる。また、ガラス転移点が上記上限値以下であれば、過度に加熱しなくても接着層に十分な接着力を発揮させることができる。
 なお、有機粒子がガラス転移点を2つ以上有する場合には、最も低いガラス転移点が上記範囲内であることが好ましい。
 そして、有機粒子は、特に限定されることなく、コア部と、コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有することが好ましい。なお、本発明では、外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部とする。また、有機粒子がコアシェル構造を有する場合、上述したニトリル基含有単量体単位の含有割合とは、コア部を構成する重合体とシェル部を構成する重合体との合計(即ち、有機粒子を形成する全重合体)中の割合を指す。
 また、有機粒子と併用し得る結着材としては、特に限定されることなく、共役ジエン系重合体およびアクリル系重合体などの熱可塑性エラストマーを用いることができる。
 ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指し、共役ジエン系重合体の具体例としては、スチレン-ブタジエン共重合体(SBR)などの芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む重合体が挙げられる。また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を含む重合体を指す。
 そして、基材層の一方の表面に設けられた接着層の厚みは、特に限定はされないが、例えば、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、0.2μm以上であることが更に好ましく、0.4μm以上であることが特に好ましく、10μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更に好ましく、1μm以下であることが特に好ましい。接着層の厚みが上記下限値以上であれば、基材層と接着層との接着性を十分に高めることができる。また、接着層の厚みが上記上限値以下であれば、非水系二次電池用積層体の耐ブロッキング性を更に高めることができる。
 また、接着層の基材層に対する接着強度は、好ましくは1N/m以上、より好ましくは3N/m以上であり、好ましくは50N/m以下、より好ましくは30N/m以下である。接着層と基材層との接着強度が上記下限値以上であれば、接着層を基材層上に確実に保持することが可能となる。一方、接着層と基材層との接着強度が上記上限値以下であれば、基材層からの接着層の剥離が容易となり、接着層の転写性を更に高めることができる。
 なお、接着層の基材層に対する接着強度は、水平な試験台に固定されたセロハンテープ(JIS Z1522に規定されるもの)を基材層の他方の表面側に貼り付け、二次電池用積層体の接着層の一端を鉛直上方に引っ張り速度50mm/分で引っ張って剥がしたときの応力を3回測定し、測定した応力の平均値として求めることができる。
 また、接着層は、アルミ箔に対する接着強度が、好ましくは5N/m以上、より好ましくは10N/m以上であり、好ましくは100N/m以下、より好ましくは50N/m以下である。接着層とアルミ箔との接着強度が上記下限値以上であれば、接着層の転写性を更に高めることができる。一方、接着層とアルミ箔との接着強度が上記上限値以下であれば、非水系二次電池用積層体の耐ブロッキング性を更に高めることができる。
 なお、接着層のアルミ箔に対する接着強度は、実施例に記載の方法に従って測定することができる。
 ここで、接着層と二次電池用基材(電極基材、セパレータ基材)との間の接着強度は、二次電池用基材の種類や材質により異なり得るものであるが、接着層とアルミ箔との間の上記接着強度に概ね相関し、そして近似するものである。
 従って、接着層の転写性の観点からは、非水系二次電池用積層体において、上述した接着層と基材層との間の接着強度は、接着層とアルミ箔との間の接着強度よりも小さいことが好ましい。
<非水系二次電池用積層体の第一使用例>
 上述した本発明の非水系二次電池用積層体は、例えば、電極基材やセパレータ基材等の基材上に接着層を設けて接着層を有する電池部材(正極、負極、セパレータ等)を得る際に用いることができる。そして、接着層を有する電池部材は、二次電池を組み立てる際に、接着層を介して他の電池部材と良好に貼り合わせることができる。
 なお、接着層を有する電池部材は、例えば国際公開第2016/031163号に記載の方法等の既知の非水系二次電池の製造方法を用いて二次電池を製造する際に用いることができる。
 ここで、接着層を設ける基材としては、例えば、セパレータ基材、並びに、集電体上に電極合材層を形成してなる電極基材が挙げられる。なお、セパレータ基材および電極基材は、表面に多孔膜層が設けられたものであってもよい。
 そして、セパレータ基材としては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
 また、電極基材(正極基材および負極基材)としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。
 ここで、集電体、電極合材層中の成分(例えば、電極活物質(正極活物質、負極活物質)および電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)など)、並びに、集電体上への電極合材層の形成方法は、例えば特開2013-145763号公報に記載のもの等、既知のものを用いることができる。
 そして、非水系二次電池用積層体の基材層上から上述した基材上へと接着層を転写する方法としては、特に限定されることなく、既知の転写方法を用いることができる。具体的には、例えば、接着層が基材上の転写させたい位置に接触するように非水系二次電池用積層体と基材とを積層してなる積層体を、金型プレスやロールプレスなどを用いて加圧し、その後、基材層を剥離することにより、接着層を転写することができる。なお、加圧条件(圧力、温度、時間など)は、接着層に含まれている重合体のガラス転移点等に応じて適宜変更し得るが、ロールプレスを用いた場合を例に挙げると、ロールの温度は50~200℃の範囲で適宜設定し得る。
<非水系二次電池用積層体の第二使用例>
 また、上述した本発明の非水系二次電池用積層体は、特に限定されることなく、正極集電体の正極合材層が形成されていない部分と負極合材層とが対向する対向部に配設することもできる。対向部に非水系二次電池用積層体を配設することで、金属等のコンタミによって対向部で短絡が起こるのを抑制し、非水系二次電池の安全性を高めることができる。
 具体的には、本発明の非水系二次電池用積層体は、例えば図2に示すようにして、正極20、負極40およびセパレータ30を所定の位置関係で積層してなる構造体100の対向部50に配設することができる。ここで、図2(a)および(b)に示す構造体100は、正極集電体21および正極集電体21上の一部(図示例ではタブ状の部分以外の部分)に形成された正極合材層22を有する正極20と、負極集電体41および負極集電体41上(図示例ではタブ状の部分以外の部分)に形成された負極合材層42を有する負極40とを、セパレータ30を介して、正極合材層22と負極合材層42とが互いに対向するように、且つ、正極集電体21の正極合材層22が形成されていない部分と負極合材層42の一部とが対向する対向部50が存在するように配置してなる。そして、対向部50(図2(b)の二点鎖線で囲まれた部分)には、本発明に従う非水系二次電池用積層体10が配置されている。より具体的には、非水系二次電池用積層体10は、基材層1を有する状態のまま、接着層2を介して例えば正極20の正極集電体21に貼り合わされている。
 そして、上述した構成の構造体を備える非水系二次電池は、対向部での短絡の発生が抑制されるので、安全性に優れたものとなる。
 なお、図2に示す例では、正極および負極について、電極合材層(正極合材層、負極合材層)を集電体の一方の表面のみに形成した場合を示しているが、電極合材層は集電体の両面に形成されていてもよい。また、図2に示す例では非水系二次電池用積層体10を正極集電体21上のみに貼り付けたが、非水系二次電池用積層体10は、少なくとも対向部50に配置されていれば、正極合材層22の対向部50側の端部表面を覆うように正極集電体21上から正極合材層22上に亘って貼り付けられていてもよい。
 ここで、上述した構成の構造体を備える非水系二次電池は、例えば、構造体を電池容器に入れ、電池容器に電解液を注入して封口することで製造し得る。なお、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
(非水系二次電池用積層体の製造方法)
 本発明の非水系二次電池用積層体の製造方法は、非多孔性の基材層と、基材層の一方の表面上に形成された接着層とを有する非水系二次電池用積層体を製造する際に用いられる。そして、本発明の非水系二次電池用積層体の製造方法は、一方の表面の表面粗さが他方の表面の表面粗さよりも大きい基材層を使用し、接着層を基材層の一方の表面上に形成する工程を含むことを特徴とする。このように、一方の表面の表面粗さが他方の表面の表面粗さよりも大きい基材層の一方の表面上に接着層を形成すれば、上述した本発明の非水系二次電池用積層体を容易に得ることができる。
 なお、本発明の非水系二次電池用積層体の製造方法において、基材層および接着層としては、上述した本発明の非水系二次電池用積層体と同様のものを使用することができるので、以下では説明を省略する。
 ここで、接着層を基材層の一方の表面上に形成する方法としては、特に限定されることなく、上述した有機粒子等の接着層を構成する成分を水や有機溶媒などの溶媒中に分散または溶解させてなる接着層用組成物を用いた方法が挙げられる。具体的には、接着層は、例えば下記の1)または2)の方法を用いて基材層の一方の表面上に形成することができる。
1)接着層用組成物を基材層の一方の表面上に塗布し、塗布した接着層用組成物を乾燥させる方法。
2)平板やロール等の担持部材に接着層用組成物を塗布し、塗布した接着層用組成物を乾燥させて接着層を形成した後、得られた接着層を基材層の一方の表面に転写する方法。
 上述した中でも、前記1)の方法が、接着層の膜厚を制御し易いことから特に好ましい。
 ここで、上述した方法において、接着層用組成物を塗布する方法としては、特に限定されることなく、例えば、スプレーコート法、インクジェット法、スピンコート法、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。中でも、薄い接着層を形成する点から、グラビア法、スプレーコート法、インクジェット法が好ましい。
 また、塗布した接着層用組成物を乾燥する方法としては、特に限定されることなく、例えば、温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは30~80℃であり、乾燥時間は好ましくは30秒~10分である。
 そして、上述したようにして製造した非水系二次電池用積層体は、耐ブロッキング性に優れている。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例および比較例において、有機粒子のガラス転移点、基材層の表面の表面粗さ、接着層の厚み、二次電池用積層体の耐ブロッキング性および接着強度、並びに、接着層の転写性は、以下の方法で評価した。
<ガラス転移点>
 有機粒子のコア部の重合体の調製に使用した単量体組成物を使用し、当該重合体の重合条件と同様の重合条件で、測定試料となる重合体を含む水分散液を作製し、当該水分散液を乾固させて得られる測定試料を準備した。
 次に、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、製品名「EXSTAR DSC6220」)を用い、上述の測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、温度範囲-100℃~300℃、昇温速度10℃/分の測定条件で、JIS K7121に準拠して測定を実施し、示差走査熱量分析(DSC)曲線を得た。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点から、ガラス転移点を求めた。
<表面粗さ>
 基材層の一方の表面および他方の表面について、それぞれ、ナノスケールハイブリッド顕微鏡(キーエンス社製、製品名「VN-8010」)を使用し、温度25℃において倍率100倍における粗さ曲線を求め、JIS B0601(1994)に準拠して表面粗さを算出した。
<厚み>
 同一条件で作製された3つの二次電池用積層体について、マイクロメータ(ミツトヨ社製)を用いて、二次電池用積層体の中央の厚みをそれぞれ測定し、その平均値を求めた。そして、平均値および使用した基材層の厚みから接着層の厚みを求めた。
<耐ブロッキング性>
 作製した二次電池用積層体を、幅5cm×長さ5cmに裁断し、試料片を作成した。得られた2枚の試料片を、一方の試料片の接着層側と他方の試料片の基材層の他方の表面側とが向かい合うように重ね合わせた。その後、40℃、10g/cmの加圧下に置いて、測定試料を作製した。得られた測定試料は、一方の表面が基材層からなり、他方の表面が接着層よりなる。そして、得られた測定試料を40℃、10g/cmの加圧下において24時間放置し、2枚の試料片同士が接着しているかを確認した。
 具体的には、水平な試験台に固定したセロハンテープ(JIS Z1522に規定されるもの)に、24時間放置後の測定試料を、測定試料の一方の表面に位置する基材層の他方の表面を下にして貼り付けて固定した。そして、測定試料の一方の表面側に位置する試料片(二次電池用積層体)の一端を鉛直上方に引っ張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値を二次電池用積層体の耐ブロッキング性(接着強度)として下記の基準で評価した。接着強度が小さいほど耐ブロッキング性が良好であることを表す。
 A:試料片同士が接着しておらず、接着強度の測定ができない
 B:試料片同士の接着強度が0.1N/m未満
 C:試料片同士の接着強度が0.1N/m以上0.3N/m未満
 D:試料片同士の接着強度が0.3N/m以上
<転写性>
 作製した二次電池用積層体を長さ100mm、幅10mmの長方形に切り出して試験片とした。また、長さ100mm、幅10mmの長方形状に切り出した基材層の質量M0を予め測定しておいた。
 得られた試験片と、正極とを、試験片の接着層側が正極の正極合材層側と対向するように配置し、100℃、200Kgf/cmの線圧にて、1分間プレスした。そして、得られた積層体(基材層と、接着層と、正極とをこの順に備えてなる積層体)の基材層の一端を、垂直方向に引っ貼り速度50mm/分で引っ張って基材層を剥がすことで接着層の転写を完了した。そして、転写後の基材層の質量M1を測定した。基材層の質量M0を、転写後の基材層の質量M1で除した値に100を乗じた数値(M0/M1比率、単位:質量%)を用いて、以下の基準で転写性を評価した。M0/M1比率の値が大きいほど、転写後の基材層に残存した接着層の質量が小さく、接着層の転写性に優れることを示す。
 なお、正極としては、アルミ箔(日本製箔社製、「1N99」)からなる集電体上に、正極活物質としてのLiCoO(体積平均粒子径D50:12μm)を100部と、導電材としてのアセチレンブラック(電気化学工業社製、「HS-10」)を2部と、正極合材層用の粒子状結着材としてのポリフッ化ビニリデン(クレハ社製、「#7208」)を固形分相当で2部とを含む正極合材層を形成してなる正極を用いた。
 A:M0/M1比率が90質量%以上
 B:M0/M1比率が80質量%以上90質量%未満
 C:M0/M1比率が60質量%以上80質量%未満
 D:M0/M1比率が60質量%未満
<接着強度>
 作製した二次電池用積層体を接着層がアルミ箔(日本製箔社製、「1N99」)に接するように配置した。そして温度80℃、線圧200Kgf/cm、速度20m/分でロールプレスを通し、二次電池用積層体とアルミ箔とを貼り合わせた。得られたアルミ箔付き二次電池用積層体を長さ100mm、幅10mmの長方形に切り出し、試験片とした。得られた試験片を、水平な試験台に固定したセロハンテープ(JIS Z1522に規定されるもの)に、アルミ箔を下にして貼り付け、二次電池用積層体の一端を鉛直上方に引っ張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値を二次電池用積層体とアルミ箔との間の接着強度として求め、下記の基準で評価した。二次電池用積層体とアルミ箔との間の接着強度が大きいほど、二次電池用積層体の接着性が高いことを示す。
 A:接着強度が20N/m以上
 B:接着強度が10N/m以上20N/m未満
 C:接着強度が5N/m以上10N/m未満
 D:接着強度が5N/m未満
(実施例1)
<有機粒子の調製>
 攪拌機付き5MPa耐圧容器に、有機粒子のコア部形成用として、メタクリル酸メチル43.5部およびアクリル酸ブチル15部と、アクリロニトリル15部と、メタクリル酸4部と、トリメチルプロパントリアクリレート1部と、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部と、イオン交換水150部と、重合開始剤としての過硫酸カリウム0.5部とを添加し、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で、続いて、有機粒子のシェル部形成用として、スチレン19部と、メタクリル酸1部との混合物を連続添加し、70℃に加温して重合を継続した。添加した全単量体の重合転化率が96%になった時点で冷却し、反応を停止して、コア部の外表面がシェル部で部分的に覆われたコアシェル構造を有する有機粒子を含む水分散液を得た。そして、得られた有機粒子のガラス転移温度を測定した。結果を表1に示す。
<結着材の調製>
 撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてのラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、および重合開始剤としての過硫酸アンモニウム0.5部をそれぞれ供給し、気相部を窒素ガスで置換して、60℃に昇温した。
 一方、別の容器に、イオン交換水50部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.5部、並びに、単量体としてのブチルアクリレート94部、アクリロニトリル2部、メタクリル酸2部、N-ヒドロキシメチルアクリルアミド1部およびアリルグリシジルエーテル1部を供給し、混合することにより、単量体混合物を得た。得られた単量体混合物を4時間かけて反応器に連続的に添加して重合を行った。なお、単量体混合物の添加中は、温度60℃下で重合反応を続けた。添加終了後、温度70℃下で更に3時間撹拌して重合反応を終了し、結着材としてアクリル系重合体を含む水分散液を調製した。
<接着層用組成物の調製>
 得られた有機粒子の水分散液を固形分相当で100部と、得られた結着材の水分散液を固形分相当で22部とを撹拌容器内で混合し、混合物を得た。更に、表面張力調整剤としてのエチレンオキサイド-プロピレンオキサイド共重合体を有機粒子100部に対して1部の割合で添加し、さらにイオン交換水により希釈することで、固形分濃度15%の接着層用組成物を得た。
<基材層の準備>
 基材層とする樹脂フィルムとして、融点165℃、厚み20μmの二軸延伸ポリプロピレン(OPP)フィルム(開成工業社製、片面マット加工品、タイプD)を準備した。そして、基材層としての樹脂フィルムの一方の表面および他方の表面の表面粗さを測定した。結果を表1に示す。
<非水系二次電池用積層体の製造>
 基材層の一方の表面に接着層用組成物をグラビア法で塗布し、温度50℃で3分間乾燥させて接着層を形成した。
 そして、得られた二次電池用積層体を用いて、接着層の厚み、二次電池用積層体の耐ブロッキング性および接着強度、並びに、接着層の転写性を測定または評価した。結果を表1に示す。
(実施例2)
 基材層として厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、片面マット加工品、タイプD)に替えて厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、片面マット加工品、タイプS)を使用した以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(実施例3)
 基材層として厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、片面マット加工品、タイプD)に替えて厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、片面マット加工品、タイプA)のマット加工表面に、ペンシル型ブラストマシン(ニッチェー社製、プチブラスト、サクションタイプ)を用いてブラスト処理を行った樹脂フィルムを使用した以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
 なお、ブラスト処理面の表面粗さは、ブラスト粒子の粒子径、ブラスト圧力、処理時間を調整することで調節した。
(実施例4)
 基材層として厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、片面マット加工品、タイプD)に替えて厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、片面マット加工品、タイプD)の未加工表面に、ペンシル型ブラストマシン(ニッチェー社製、プチブラスト、サクションタイプ)を用いてブラスト処理を行った樹脂フィルムを使用した以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
 なお、ブラスト処理面の表面粗さは、ブラスト粒子の粒子径、ブラスト圧力、処理時間を調整することで調節した。
(実施例5)
 非水系二次電池用積層体の製造時に、接着層用組成物を塗布するグラビアロールの線数を変更することで接着層の厚みを0.1μmとした以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(実施例6)
 非水系二次電池用積層体の製造時に接着層用組成物を塗布するグラビアロールの線数を変更することで接着層の厚みを4.0μmとした以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(実施例7)
 有機粒子の調製時に、コア部形成用のアクリロニトリルの量を3部に変更し、コア部形成用のメタクリル酸メチルの量を55.5部に変更した以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(実施例8)
 有機粒子の調製時に、コア部形成用のアクリロニトリルの量を55部に変更し、コア部形成用のメタクリル酸メチルの量を3.5部に変更した以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
(比較例1)
 基材層として厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、片面マット加工品、タイプD)に替えて厚み20μmの二軸延伸ポリプロピレンフィルム(開成工業社製、両面マット加工品、一方の表面をタイプSと同様に処理、他方の表面をタイプDと同様に処理)を使用した以外は実施例1と同様にして、有機粒子、結着材、接着層用組成物、基材層および非水系二次電池用積層体を調製または準備した。そして、実施例1と同様にして測定および評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~8の非水系二次電池用積層体では、ブロッキングの発生を抑制し得ることが分かる。一方、表1より、接着層を形成した一方の表面の表面粗さよりも他方の表面の表面粗さの方が大きい比較例1の非水系二次電池用積層体では、ブロッキングの発生を抑制できないことが分かる。
 本発明によれば、ブロッキングの発生を抑制し得る非水系二次電池用積層体、および、当該非水系二次電池用積層体を備える非水系二次電池が得られる。
1 基材層
1A,1B 表面
2 接着層
10 非水系二次電池用積層体
20 正極
21 正極集電体
22 正極合材層
30 セパレータ
40 負極
41 負極集電体
42 負極合材層
50 対向部
100 構造体

Claims (8)

  1.  非多孔性の基材層と、前記基材層の一方の表面上に形成された接着層とを有する非水系二次電池用積層体であって、
     前記基材層の一方の表面の表面粗さが、前記基材層の他方の表面の表面粗さよりも大きい、非水系二次電池用積層体。
  2.  前記基材層の一方の表面の表面粗さが、0.20μm以上2.00μm以下である、請求項1に記載の非水系二次電池用積層体。
  3.  前記基材層の他方の表面の表面粗さが、0.01μm以上0.15μm以下である、請求項1または2に記載の非水系二次電池用積層体。
  4.  前記接着層が、有機粒子を含み、
     前記有機粒子が、ニトリル基含有単量体単位を1質量%以上70質量%以下の割合で含む重合体よりなる、請求項1~3の何れかに記載の非水系二次電池用積層体。
  5.  前記接着層の厚みが、0.01μm以上10.0μm以下である、請求項1~4の何れかに記載の非水系二次電池用積層体。
  6.  正極集電体および前記正極集電体上の一部に形成された正極合材層を有する正極と、負極集電体および前記負極集電体上に形成された負極合材層を有する負極とを、セパレータを介して、前記正極合材層と前記負極合材層とが互いに対向するように、且つ、前記正極集電体の前記正極合材層が形成されていない部分と前記負極合材層とが対向する対向部が存在するように配置してなる構造体を備え、
     前記対向部に、請求項1~5の何れかに記載の非水系二次電池用積層体が配置されてなる、非水系二次電池。
  7.  非多孔性の基材層と、前記基材層の一方の表面上に形成された接着層とを有する非水系二次電池用積層体の製造方法であって、
     前記基材層の一方の表面の表面粗さは、前記基材層の他方の表面の表面粗さよりも大きく、
     前記接着層を前記基材層の一方の表面上に形成する工程を含む、非水系二次電池用積層体の製造方法。
  8.  前記工程では、前記基材層の一方の表面上に接着層用組成物を塗布し、塗布した接着層用組成物を乾燥させて接着層を形成する、請求項7に記載の非水系二次電池用積層体の製造方法。
PCT/JP2018/047306 2017-12-28 2018-12-21 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池 WO2019131531A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18895841.7A EP3734713A4 (en) 2017-12-28 2018-12-21 LAMINATED BODY FOR WATER-FREE SECONDARY BATTERY, METHOD OF MANUFACTURING IT, AND WATER-FREE SECONDARY BATTERY
US16/771,680 US20210091414A1 (en) 2017-12-28 2018-12-21 Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery
CN201880081118.8A CN111480249B (zh) 2017-12-28 2018-12-21 非水系二次电池用层叠体及其制造方法、以及非水系二次电池
KR1020207015531A KR20200102990A (ko) 2017-12-28 2018-12-21 비수계 이차 전지용 적층체 및 그 제조 방법, 그리고, 비수계 이차 전지
JP2019561662A JP7234939B2 (ja) 2017-12-28 2018-12-21 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池
CN202311399470.5A CN117317348A (zh) 2017-12-28 2018-12-21 非水系二次电池用层叠体及其制造方法、以及非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-254050 2017-12-28
JP2017254050 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131531A1 true WO2019131531A1 (ja) 2019-07-04

Family

ID=67067280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047306 WO2019131531A1 (ja) 2017-12-28 2018-12-21 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池

Country Status (6)

Country Link
US (1) US20210091414A1 (ja)
EP (1) EP3734713A4 (ja)
JP (1) JP7234939B2 (ja)
KR (1) KR20200102990A (ja)
CN (2) CN111480249B (ja)
WO (1) WO2019131531A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745630B (zh) * 2021-08-27 2023-03-24 宁德新能源科技有限公司 电化学装置、电化学装置的制备方法及电子装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925690B2 (ja) 1975-05-06 1984-06-20 株式会社クボタ クラツチ・ブレ−キ操作装置
JPH1173947A (ja) * 1997-08-29 1999-03-16 Ricoh Co Ltd 電池用電極およびその製造方法
JP2000285902A (ja) * 1999-03-30 2000-10-13 Japan Storage Battery Co Ltd 電 池
JP2001164202A (ja) * 1999-12-06 2001-06-19 Nitto Denko Corp 粘着テープ巻回体及び粘着テープの製造方法
JP2009199960A (ja) * 2008-02-25 2009-09-03 Nec Tokin Corp リチウムイオン電池
JP2010205467A (ja) * 2009-03-02 2010-09-16 Nitto Denko Corp 電池用粘着テープ、及びこの電池用粘着テープを用いた電池
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP2015041603A (ja) 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
WO2015064411A1 (ja) 2013-10-31 2015-05-07 日本ゼオン株式会社 リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物
WO2016031163A1 (ja) 2014-08-28 2016-03-03 日本ゼオン株式会社 非水系二次電池用積層体および非水系二次電池部材の製造方法
JP2016081888A (ja) 2014-10-22 2016-05-16 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
JP2016100149A (ja) 2014-11-20 2016-05-30 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
JP2017084651A (ja) 2015-10-29 2017-05-18 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
JP2017098203A (ja) 2015-11-27 2017-06-01 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178726B2 (ja) * 2007-08-30 2013-04-10 電気化学工業株式会社 粘着シート及び電子部品の製造方法
CN103190028B (zh) * 2010-10-27 2016-01-20 东丽薄膜先端加工股份有限公司 二次电池及其制造方法以及二次电池用热粘接性绝缘膜
JP2013054871A (ja) * 2011-09-01 2013-03-21 Toyota Motor Corp 二次電池及びその製造方法
JP2013064086A (ja) * 2011-09-20 2013-04-11 Nitto Denko Corp 電池用粘着テープ
CN103314044A (zh) * 2011-12-02 2013-09-18 三菱树脂株式会社 叠层多孔膜的制造方法
WO2014185365A1 (ja) * 2013-05-13 2014-11-20 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
CN105247708B (zh) * 2013-06-27 2017-09-22 日本瑞翁株式会社 锂离子电池用电极的制造方法
JP6658544B2 (ja) * 2014-12-26 2020-03-04 東亞合成株式会社 樹脂シートの製造方法
JP6592260B2 (ja) * 2015-03-20 2019-10-16 株式会社トッパンインフォメディア 絶縁性ヒートシール部材、及び該絶縁性ヒートシール部材を使用した電気化学デバイスの製造方法
JP6849533B2 (ja) * 2017-05-30 2021-03-24 日東電工株式会社 粘着シート

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925690B2 (ja) 1975-05-06 1984-06-20 株式会社クボタ クラツチ・ブレ−キ操作装置
JPH1173947A (ja) * 1997-08-29 1999-03-16 Ricoh Co Ltd 電池用電極およびその製造方法
JP2000285902A (ja) * 1999-03-30 2000-10-13 Japan Storage Battery Co Ltd 電 池
JP2001164202A (ja) * 1999-12-06 2001-06-19 Nitto Denko Corp 粘着テープ巻回体及び粘着テープの製造方法
JP2009199960A (ja) * 2008-02-25 2009-09-03 Nec Tokin Corp リチウムイオン電池
JP2010205467A (ja) * 2009-03-02 2010-09-16 Nitto Denko Corp 電池用粘着テープ、及びこの電池用粘着テープを用いた電池
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP2015041603A (ja) 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
WO2015064411A1 (ja) 2013-10-31 2015-05-07 日本ゼオン株式会社 リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物
WO2016031163A1 (ja) 2014-08-28 2016-03-03 日本ゼオン株式会社 非水系二次電池用積層体および非水系二次電池部材の製造方法
JP2016081888A (ja) 2014-10-22 2016-05-16 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
JP2016100149A (ja) 2014-11-20 2016-05-30 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、非水系二次電池部材、非水系二次電池、および非水系二次電池用接着層の製造方法
JP2017084651A (ja) 2015-10-29 2017-05-18 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
JP2017098203A (ja) 2015-11-27 2017-06-01 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3734713A4

Also Published As

Publication number Publication date
CN117317348A (zh) 2023-12-29
EP3734713A1 (en) 2020-11-04
US20210091414A1 (en) 2021-03-25
EP3734713A4 (en) 2021-11-10
JPWO2019131531A1 (ja) 2020-12-17
KR20200102990A (ko) 2020-09-01
CN111480249A (zh) 2020-07-31
CN111480249B (zh) 2023-12-29
JP7234939B2 (ja) 2023-03-08

Similar Documents

Publication Publication Date Title
CN111492506B (zh) 非水系二次电池功能层用组合物、非水系二次电池、电池构件、以及层叠体的制造方法
JP6504168B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層付き基材、非水系二次電池用積層体の製造方法および非水系二次電池
WO2019221056A1 (ja) 非水系二次電池用スラリー、非水系二次電池用セパレータ、非水系二次電池用電極、非水系二次電池用積層体および非水系二次電池
JP7020416B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池、および非水系二次電池用電極の製造方法
WO2017086215A1 (ja) 蓄電デバイス用バインダー、蓄電デバイス用バインダー組成物
JP7414003B2 (ja) 二次電池用積層体および二次電池、並びに、それらの製造方法
JP7380581B2 (ja) 二次電池およびその製造方法
JP6834127B2 (ja) 非水系二次電池用機能層の形成方法、および非水系二次電池の製造方法
WO2021161842A1 (ja) 電気化学素子用積層体及び電気化学素子
JP7088189B2 (ja) 電気化学素子用部材の製造方法及び電気化学素子用積層体
WO2019131531A1 (ja) 非水系二次電池用積層体およびその製造方法、並びに、非水系二次電池
JP7166579B2 (ja) 蓄電素子電極用積層体および蓄電素子用電極の製造方法
JP7306271B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および、非水系二次電池
JP7259752B2 (ja) 非水系二次電池用積層体およびその製造方法、非水系二次電池用捲回体、並びに非水系二次電池用電極の製造方法
WO2022209997A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
JP7088190B2 (ja) 電気化学素子用積層体及び電気化学素子用部材の製造方法
WO2023032718A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用積層体及びその製造方法、並びに、非水系二次電池
WO2023008165A1 (ja) 非水系二次電池用積層体、非水系二次電池用積層体の製造方法及び非水系二次電池
JP2023034675A (ja) 全固体電池製造用鋳型シートおよびこれを用いた全固体電池の製造方法
JP2004014417A (ja) セパレータ形成シートとセパレータの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895841

Country of ref document: EP

Effective date: 20200728