WO2019103019A1 - 蓄電素子及び蓄電装置 - Google Patents

蓄電素子及び蓄電装置 Download PDF

Info

Publication number
WO2019103019A1
WO2019103019A1 PCT/JP2018/042914 JP2018042914W WO2019103019A1 WO 2019103019 A1 WO2019103019 A1 WO 2019103019A1 JP 2018042914 W JP2018042914 W JP 2018042914W WO 2019103019 A1 WO2019103019 A1 WO 2019103019A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
potential
active material
amorphous carbon
storage element
Prior art date
Application number
PCT/JP2018/042914
Other languages
English (en)
French (fr)
Inventor
智典 加古
明彦 宮崎
理史 高野
健太 中井
右京 針長
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2019555326A priority Critical patent/JP7249520B2/ja
Priority to CN201880072716.9A priority patent/CN111328434A/zh
Priority to US16/763,173 priority patent/US11515537B2/en
Publication of WO2019103019A1 publication Critical patent/WO2019103019A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a storage element such as a lithium ion secondary battery, and a storage device provided with a plurality of storage elements.
  • a lithium ion secondary battery in which an electrode winding group obtained by winding a positive electrode, a negative electrode and a separator, and an electrolytic solution are provided in a battery container.
  • the battery described in Patent Document 1 discloses the following technical contents.
  • the positive electrode has a current collector and a positive electrode mixture coated on both sides of the current collector, and the positive electrode mixture contains a layered lithium-nickel-manganese-cobalt composite oxide as a positive electrode active material.
  • the coating amount of the positive electrode mixture on one side is 110 to 170 g / m 2 , and the density of the positive electrode mixture is 2.5 to 2.8 g / cm 3 .
  • the negative electrode has a current collector and a negative electrode mixture coated on both sides of the current collector, and the negative electrode mixture contains amorphous carbon as a negative electrode active material.
  • the electrolytic solution contains cyclic carbonate, linear carbonate, cyclic sulfonic acid ester and vinylene carbonate as a non-aqueous solvent.
  • the storage element such as the battery described in Patent Document 1 is designed to have sufficient input / output performance so as to specialize in, for example, a hybrid type automobile, there are many in which the initial capacity is not very large. In recent years, since the use of a storage element for automobile applications is spreading, a storage element having a relatively high initial capacity in addition to sufficient input / output characteristics is required.
  • An object of the present embodiment is to provide a power storage device having a relatively high initial capacity while suppressing an increase in hysteresis at the time of charge and discharge, and a power storage device provided with a plurality of the power storage devices.
  • the storage element of the present embodiment includes a negative electrode having a negative electrode active material layer containing amorphous carbon as an active material, and the potential (V) of amorphous carbon with respect to the discharge electric charge (Q) of amorphous carbon is determined. Based on the measurement results, the rate of change (dQ / dV) of the potential (V) in the amount of discharged electricity (Q) per unit amount is determined, and the rate of change (dQ / dV) is plotted against the potential (V) Curve shows that the potential of amorphous carbon has one or more peaks in the range of 0.8 V to 1.5 V, and the potential of the negative electrode at full charge is 0.25 V or more in lithium potential. is there.
  • the storage device of the present embodiment includes a plurality of storage devices described above, a plurality of storage devices are connected in series, and the storage device has an ⁇ -NaFeO 2 type structure and a chemical formula of Li 1 + x M 1-x O 2 It has a positive electrode which contains lithium transition metal complex oxide (here, M is a transition metal and is 0 ⁇ x ⁇ 0.3) represented by a composition as an active material.
  • M lithium transition metal complex oxide
  • a storage element having a relatively high initial capacity while suppressing an increase in hysteresis at the time of charge and at the time of discharge. Further, a power storage device provided with a plurality of the power storage elements can be provided.
  • FIG. 1 is a perspective view of a storage element according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is each graph showing the example of the physical property of the amorphous carbon as an active material of a negative electrode.
  • FIG. 4 is a perspective view of a power storage device including the power storage element according to the embodiment.
  • Storage devices include secondary batteries, capacitors and the like.
  • a chargeable / dischargeable secondary battery will be described as an example of a storage element.
  • the name of each component (each component) of this embodiment is in this embodiment, and may differ from the name of each component (each component) in background art.
  • the storage element 1 of the present embodiment is a non-aqueous electrolyte secondary battery. More specifically, the storage element 1 is a lithium ion secondary battery utilizing electron transfer that occurs as lithium ion moves. This type of storage element 1 supplies electrical energy.
  • the storage element 1 is used singly or in plurality. Specifically, the storage element 1 is used singly when the required output and the required voltage are small. On the other hand, when at least one of the required output and the required voltage is large, storage element 1 is combined with another storage element 1 and used in the storage device. In the storage device, the storage element 1 used for the storage device supplies electrical energy.
  • the storage element 1 is an electrode assembly 2 including a positive electrode and a negative electrode, a case 3 for housing the electrode assembly 2, and an external terminal 7 disposed outside the case 3 And an external terminal 7 electrically connected to the electrode body 2.
  • the storage element 1 includes a current collecting member 5 and the like that electrically connect the electrode body 2 and the external terminal 7.
  • the electrode body 2 is formed by winding the laminated body 22 in which the positive electrode and the negative electrode are laminated so as to be insulated from each other by the separator.
  • the positive electrode has a metal foil (current collector) and a positive electrode active material layer which is superimposed on the surface of the metal foil and contains an active material.
  • the positive electrode active material layers respectively overlap on both sides of the metal foil.
  • the thickness of the positive electrode may be 40 ⁇ m to 150 ⁇ m.
  • the metal foil is band-shaped.
  • the metal foil of the positive electrode of the present embodiment is, for example, an aluminum foil.
  • the positive electrode has a non-coated portion of the positive electrode active material layer (a portion where the positive electrode active material layer is not formed) at one end of the width direction which is the short direction of the band shape.
  • the positive electrode active material layer contains a particulate active material (active material particles), a particulate conductive assistant, and a binder.
  • the thickness of the positive electrode active material layer (one layer) may be 12 ⁇ m or more and 70 ⁇ m or less.
  • the coated amount of the positive electrode active material layer (one layer) may be 0.4 g / 100 cm 2 or more and 1.7 g / 100 cm 2 or less.
  • the density of the positive electrode active material layer may be 1.5 g / cm 3 or more and 3.0 g / cm 3 or less.
  • the coating weight and density are in one layer disposed to cover one side of the metal foil.
  • the basis weight of the positive electrode active material layer can be calculated by the following method.
  • discharge the battery to 2.0 V at a current of 3 A (or a current corresponding to 1 C if the rated capacity of the battery can be determined), then 2.0 V for 5 hours Hold on. After holding, it is rested for 5 hours, and the electrode body is removed from the inside of the case in a dry room or an argon atmosphere glove box.
  • the positive electrode taken out of the electrode body is washed three times or more with DMC (dimethyl carbonate) having a purity of 99.9% or more and a water content of 20 ppm or less. The DMC is then removed by vacuum drying.
  • DMC dimethyl carbonate
  • a test piece having a set area S (cm 2 ), for example, a size of 4 cm 2 (2 cm ⁇ 2 cm) is cut out, and the weight W1 (mg) is measured.
  • the active material layer and the metal foil are separated by immersion in pure water or the like. After separation, the weight W2 (mg) of the metal foil is measured.
  • the basis weight of the active material layer is calculated by (W1-W2)) / S.
  • the average secondary particle diameter D50 of the active material particles in the positive electrode active material layer may be 2.0 ⁇ m or more and 20 ⁇ m or less.
  • the average secondary particle diameter D50 is determined by the laser diffraction / scattering method.
  • the porosity of the positive electrode active material layer may be 20% or more and 50% or less.
  • the porosity may be 45% or less.
  • Porosity is measured by mercury porosimetry.
  • the mercury porosimetry can be carried out using a mercury porosimeter. Specifically, the mercury intrusion method is implemented according to Japanese Industrial Standard (JIS R 1655: 2003).
  • the apparent volume V (cm 3 ) is obtained by multiplying the area (cm 2 ) of the active material layer in plan view by the thickness (cm) of the active material layer.
  • the battery is disassembled in a dry atmosphere.
  • the positive electrode active material layer is taken out, washed with dimethyl carbonate, and vacuum dried for 2 hours or more. Thereafter, measurement is performed using a mercury intrusion porosimeter, and the porosity of the positive electrode active material layer can be calculated from the measurement result.
  • the active material of the positive electrode is a compound capable of inserting and extracting lithium ions.
  • the active material of the positive electrode is, for example, a lithium transition metal oxide.
  • the active material of the positive electrode is, for example, a complex oxide (Li p Co s O 2 , Li p Ni q O) represented by Li p MeO t (Me represents one or more transition metals). 2, Li p Mn r O 4 , Li p Ni q Co s Mn r O 2 , etc.), or, Li p Me u (XO v ) w (Me represents one or more transition metals, X is e.g. P, Si, B, a polyanion compounds represented by the representative of the V) (Li p Fe u PO 4, Li p Mn u PO 4, Li p Mn u SiO 4, Li p Co u PO 4 F , etc.).
  • the active material of the positive electrode has an ⁇ -NaFeO 2 type structure and is represented by a chemical composition of Li 1 + x M 1-x O 2 (where M is a transition).
  • the lithium transition metal complex oxide represented by the chemical composition of Li p Ni q Mn r Co s O t as described above is, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 3/5 Co 1/5 Mn 1/5 O 2 , LiNi 4/5 Co 1/10 Mn 1/10 O 2 and the like.
  • the charge capacity (charge current per electrode unit area: 0.5 mA / cm 2 ) is 110 mAh / g or more and 230 mAh / g or less when the potential of the positive electrode is 4.25 V in terms of lithium potential. preferable.
  • the charge capacity is more preferably 150 mAh / g or more and 200 mAh / g or less, and still more preferably 160 mAh / g or more and 180 mAh / g or less.
  • the active material of the positive electrode is a lithium transition metal oxide of the above composition
  • the above charge capacity is within the above numerical range
  • the binder used for the positive electrode active material layer is, for example, polyvinylidene fluoride (PVdF), a copolymer of ethylene and vinyl alcohol, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid , Styrene butadiene rubber (SBR).
  • PVdF polyvinylidene fluoride
  • SBR Styrene butadiene rubber
  • the binder of the present embodiment is polyvinylidene fluoride.
  • the conductive support agent of the positive electrode active material layer is a carbonaceous material containing 98% by mass or more of carbon.
  • the carbonaceous material is, for example, ketjen black (registered trademark), acetylene black, graphite or the like.
  • the positive electrode active material layer of the present embodiment has acetylene black as a conductive additive.
  • the negative electrode has a metal foil (current collector) and a negative electrode active material layer formed on the metal foil.
  • the negative electrode active material layers are respectively superimposed on both sides of the metal foil.
  • the metal foil is band-shaped.
  • the material of the metal foil is preferably aluminum or an aluminum alloy.
  • the metal foil is an aluminum foil or an aluminum alloy foil, preferably an aluminum foil.
  • the aluminum alloy is an alloy containing 90% by mass or more of aluminum.
  • a conductive layer may be formed on the surface of the metal foil containing aluminum.
  • the negative electrode has a non-coated portion of the negative electrode active material layer (a portion where the negative electrode active material layer is not formed) at one end of the width direction which is the short direction of the band shape.
  • the thickness of the negative electrode may be 40 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the negative electrode active material layer may be 10 ⁇ m or more and 100 ⁇ m or less.
  • the basis weight (one layer) of the negative electrode active material layer may be 0.2 g / 100 cm 2 or more and 1.0 g / 100 cm 2 or less.
  • the density (one layer) of the negative electrode active material layer may be 0.5 g / cm 3 or more and 6.0 g / cm 3 or less.
  • the basis weight of the negative electrode active material layer is calculated in the same manner as the basis weight of the positive electrode active material layer. Assuming that the basis weight of the positive electrode active material layer is VP and the basis weight of the negative electrode active material layer is VN in a portion where the positive electrode active material layer and the negative electrode active material layer face each other, the following relational expression (1) is satisfied. It may be done. With such a configuration, it is possible to obtain a storage element 1 resistant to overdischarge. The basis weight is measured in the same manner as described above. 0.4 ⁇ VN / VP ⁇ 0.6 Relational expression (1)
  • the negative electrode active material layer contains a particulate active material (active material particles) and a binder.
  • the negative electrode active material layer is disposed to face the positive electrode through the separator.
  • the width of the negative electrode active material layer is larger than the width of the positive electrode active material layer.
  • the active material of the negative electrode can contribute to the electrode reaction of the charge reaction and the discharge reaction at the negative electrode.
  • the active material of the negative electrode of the present embodiment is amorphous carbon. More specifically, the active material of the negative electrode is non-graphitizable carbon.
  • the average interplanar spacing d 002 of the (002) plane determined by wide-angle X-ray diffraction using CuK ⁇ radiation as a radiation source is 0.340 nm or more and 0.390 nm or less belongs to.
  • the non-graphitizable carbon is one whose average interplanar spacing d 002 is 0.360 nm or more and 0.390 nm or less.
  • Amorphous carbon of the active material of the negative electrode has the following physical properties. Based on the result of measuring the potential (V) of amorphous carbon with respect to the amount of discharged electricity (Q) of amorphous carbon (measured at the time of discharge), the amount of discharged electricity (Q) per unit amount of amorphous carbon is The curve showing the rate of change (dQ / dV) of the potential (V) and expressing the rate of change (dQ / dV) with respect to the potential (V) shows that the potential of amorphous carbon is 0.8 V or more and 1.5 V or less In the range of one or more peaks. The height of the peak is preferably 300 mAh / g ⁇ V or more.
  • the height of the peak is 300 mAh / g ⁇ V or more, a storage element 1 having a higher initial capacity can be obtained.
  • the height of the peak may be 1500 mAh / g ⁇ V or less.
  • the above curve usually has one peak.
  • the above curve is determined by the method described in the examples. In addition, it can confirm by visually observing the whole curve that the said curve has a peak, and it can confirm also as follows.
  • the amount of discharge electricity at which the potential (V) changes every 0.1 V is calculated, the average value of the change rates (dQ / dV) is calculated, and the potential of amorphous carbon is 0. In the range of 8 V to 1.5 V, when the average value of the calculated change rates (dQ / dV) once rises and then falls, it can be confirmed that the above-mentioned curve has a peak.
  • Amorphous carbon having the above physical properties can be obtained by setting the firing temperature at the time of production to 1000 ° C. or less. The peak is further increased by setting the firing temperature to 900 ° C. or less. Thus, the amorphous carbon of the present embodiment is produced by firing at a relatively low temperature. On the other hand, conventional general amorphous carbon is produced at a firing temperature of 1300 ° C. or higher.
  • the binder used for the negative electrode active material layer is the same as the binder used for the positive electrode active material layer.
  • the binder of this embodiment is styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC).
  • the proportion of the binder may be 0.5 mass% or more and 10 mass% or less with respect to the total mass of the active material particles and the binder.
  • the negative electrode active material layer may further have a conductive aid such as ketjen black (registered trademark), acetylene black, or graphite.
  • a conductive aid such as ketjen black (registered trademark), acetylene black, or graphite.
  • the negative electrode active material layer of the present embodiment does not have a conductive support agent.
  • the potential of the positive electrode When charged up to the upper limit voltage (full charge), the potential of the positive electrode is 3.85 V or more and 4.5 V or less [vs. It may be Li + / Li].
  • the potential of the negative electrode when charged up to the upper limit voltage (during full charge), the potential of the negative electrode is 0.25 V or more.
  • the potential of the negative electrode When charged up to the upper limit voltage (full charge), the potential of the negative electrode is 0.35 V or more and 0.4 V or less [vs. It may be Li + / Li].
  • the potential of the negative electrode when charged up to the upper limit voltage (when fully charged) is 0.25 V or more, it is possible to have a relatively high initial capacity.
  • the potential of the negative electrode when charged up to the upper limit voltage (when fully charged) is 0.4 V or less, the capacity of the battery can be further increased.
  • the potential of the negative electrode when charged up to the upper limit voltage (when fully charged) can be adjusted by changing the ratio of the weight of the active material layer of the positive electrode and the negative electrode. For example, the potential of the negative electrode can be set high by increasing the value of VN / VP described above.
  • the storage element 1 is designed to have a positive electrode containing as an active material), and the negative electrode is designed to have a voltage of 0.25 V or more when the voltage of the storage element 1 reaches 3.6 V.
  • the working voltage upper limit is 3.6V.
  • the positive electrode and the negative electrode configured as described above are wound in a state of being insulated by the separator. That is, in the electrode body 2 of the present embodiment, the laminate 22 of the positive electrode, the negative electrode, and the separator is wound.
  • the separator is a member having an insulating property.
  • the separator is disposed between the positive electrode and the negative electrode.
  • the separator holds the electrolytic solution in the case 3. Thereby, at the time of charge and discharge of the storage element 1, lithium ions move between the positive electrode and the negative electrode stacked alternately with the separator interposed therebetween.
  • the separator is band-shaped.
  • the separator has a porous separator substrate.
  • the separator is disposed between the positive electrode and the negative electrode in order to prevent a short circuit between the positive electrode and the negative electrode.
  • the separator of this embodiment has only a separator substrate.
  • the separator substrate is configured to be porous.
  • the separator substrate is, for example, a woven fabric, a non-woven fabric, or a porous membrane.
  • Examples of the material of the separator base include polymer compounds, glass, ceramics and the like.
  • Examples of the polymer compound include polyesters such as polyacrylonitrile (PAN), polyamide (PA) and polyethylene terephthalate (PET), polyolefins (PO) such as polypropylene (PP) and polyethylene (PE), and cellulose At least one selected from the above can be mentioned.
  • the width of the separator (the dimension in the widthwise direction of the band shape) is slightly larger than the width of the negative electrode active material layer.
  • the separator is disposed between the positive electrode and the negative electrode stacked in a state of being misaligned in the width direction such that the positive electrode active material layer and the negative electrode active material layer overlap. At this time, the non-coated portion of the positive electrode and the non-coated portion of the negative electrode do not overlap.
  • the non-coated portion of the positive electrode protrudes in the width direction from the overlapping region of the positive electrode and the negative electrode
  • the non-coated portion of the negative electrode extends in the width direction from the overlapping region of the positive electrode and the negative electrode (protrusion direction of the non-coated portion of the positive electrode And in the opposite direction).
  • the electrode body 2 is formed by winding the laminated positive electrode, the negative electrode, and the separator, that is, the laminate 22.
  • the case 3 has a case main body 31 having an opening, and a lid plate 32 that closes (closes) the opening of the case main body 31.
  • the case 3 accommodates the electrolytic solution in the inner space together with the electrode body 2 and the current collecting member 5 and the like.
  • Case 3 is formed of a metal resistant to the electrolyte.
  • the case 3 is formed of, for example, an aluminum-based metal material such as aluminum or an aluminum alloy.
  • the case 3 may be formed of a metal material such as stainless steel and nickel, or a composite material in which a resin such as nylon is adhered to aluminum.
  • the electrolyte is a non-aqueous electrolyte.
  • the electrolytic solution is obtained by dissolving an electrolyte salt in an organic solvent.
  • the organic solvent is, for example, cyclic carbonates such as propylene carbonate and ethylene carbonate, linear carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • the electrolyte salt is LiClO 4 , LiBF 4 , LiPF 6 or the like.
  • the electrolytic solution of the present embodiment is one in which 0.5 to 1.5 mol / L of LiPF 6 is dissolved in a mixed solvent in which propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate are mixed in a predetermined ratio.
  • the cover plate 32 has a gas discharge valve 321 capable of discharging the gas in the case 3 to the outside.
  • the gas discharge valve 321 discharges the gas from the inside of the case 3 to the outside when the internal pressure of the case 3 rises to a predetermined pressure.
  • the gas discharge valve 321 is provided at the center of the lid plate 32.
  • the case 3 is provided with a liquid injection hole for injecting an electrolytic solution.
  • the injection hole communicates the inside of the case 3 with the outside.
  • the liquid injection hole is provided in the cover plate 32.
  • the filling hole is sealed (closed) by the filling plug 326.
  • the liquid injection stopper 326 is fixed to the case 3 (in the example of the present embodiment, the lid plate 32) by welding.
  • the external terminal 7 is a portion electrically connected to the external terminal 7 of another storage element 1 or an external device or the like.
  • the external terminal 7 is formed of a conductive member.
  • the external terminal 7 has a surface 71 to which a bus bar or the like can be welded.
  • the surface 71 is a plane.
  • the current collecting member 5 is disposed in the case 3 and is connected to the electrode body 2 directly or indirectly so as to be electrically conductive.
  • the current collecting member 5 of the present embodiment is formed of a conductive member. As shown in FIG. 2, the current collecting member 5 is disposed along the inner surface of the case 3. The current collecting member 5 is electrically connected to the positive electrode and the negative electrode of the storage element 1 respectively.
  • the electrode body 2 (specifically, the electrode body 2 and the current collecting member 5) housed in the bag-shaped insulating cover 6 which insulates the electrode body 2 from the case 3 is the case 3 Housed inside.
  • the storage element 1 In the method of manufacturing the storage element 1, first, a mixture containing an active material is applied to a metal foil (current collector), an active material layer is formed, and electrodes (positive electrode and negative electrode) are manufactured. Next, the positive electrode, the separator, and the negative electrode are stacked to form the electrode assembly 2. Subsequently, the electrode assembly 2 is placed in the case 3, and the storage element 1 is assembled by placing the electrolytic solution in the case 3.
  • a positive electrode active material layer is formed by applying a mixture containing an active material, a binder, and a solvent on both sides of a metal foil. By changing the application amount of the mixture, it is possible to adjust the thickness and the basis weight of the positive electrode active material layer.
  • a general method is adopted as a coating method for forming the positive electrode active material layer.
  • the positive electrode active material layer is roll pressed at a predetermined pressure. By changing the pressing pressure, the thickness and density of the positive electrode active material layer can be adjusted. In the same manner, a negative electrode is manufactured.
  • the electrode body 2 is formed by winding the laminated body 22 in which the separator is sandwiched between the positive electrode and the negative electrode. Specifically, the positive electrode, the separator, and the negative electrode are superimposed on each other so that the positive electrode active material layer and the negative electrode active material layer face each other through the separator, to form a laminate 22.
  • the laminated body 22 is wound to form the electrode body 2.
  • the electrode body 2 is put in the case main body 31 of the case 3, the opening of the case main body 31 is closed by the cover plate 32, and the electrolytic solution is injected into the case 3.
  • the electrode body 2 is inserted into the case body 31, the positive electrode and one external terminal 7 are electrically connected, and the negative electrode and the other external terminal 7 are electrically connected.
  • the opening of the case body 31 is closed by the cover plate 32.
  • the electrolytic solution is injected into the case 3 from the injection hole of the cover plate 32 of the case 3.
  • the storage element 1 of the present embodiment configured as described above is usually used so that the potential of the negative electrode does not reach the alloying potential of aluminum and lithium. .
  • the storage element 1 of the present embodiment configured as described above includes a negative electrode having a negative electrode active material layer containing amorphous carbon as an active material. Based on the measurement result of the potential (V) of amorphous carbon with respect to the discharge electricity (Q) of amorphous carbon, the potential (V) in the discharge electricity (Q) per unit amount of amorphous carbon The curve showing the change ratio (dQ / dV) to the change ratio (dQ / dV) by calculating the change ratio (dQ / dV) It has one or more peaks.
  • the potential of the negative electrode when the storage element 1 is fully charged is 0.25 V or more in lithium potential.
  • Amorphous carbon having the above-described physical properties has the above-described peak because it is configured with a pore structure different from that of conventional amorphous carbon.
  • the amorphous carbon has the above-mentioned peak, the charge amount of electricity increases, and it is estimated that the storage element 1 can obtain more capacity.
  • the potential of the negative electrode at full charge is 0.25 V or more in lithium potential, it is considered that an increase in hysteresis of the storage element 1 at the time of charge and at the time of discharge is suppressed. Therefore, with the above configuration, it is possible to provide a storage element having a relatively high initial capacity and in which the increase in hysteresis at the time of charge and at the time of discharge is suppressed.
  • the storage element 1 in which the increase in hysteresis is suppressed it is relatively easy to control charge and discharge.
  • the storage element of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the scope of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment.
  • some of the configuration of an embodiment can be deleted.
  • the positive electrode and the negative electrode in which the active material layer containing the active material is in direct contact with the metal foil have been described in detail, but in the present invention, the positive electrode or the negative electrode is a conductive layer containing a binder and a conductive additive. It may have a conductive layer disposed between the active material layer and the metal foil. That is, the metal foil of the positive electrode or the negative electrode may overlap the active material layer through the conductive layer.
  • the active material layer is described on the both sides of the metal foil of each electrode, but in the storage element of the present invention, the positive electrode or the negative electrode has the active material layer on one side of the metal foil. It may be provided only.
  • the electricity storage device of the present invention may include the laminate 22 which is not wound.
  • the storage element may include an electrode body in which a positive electrode, a separator, a negative electrode, and a separator, each formed in a rectangular shape, are stacked a plurality of times in this order.
  • the storage element 1 is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, lithium ion secondary battery), the type and size (capacity) of the storage element 1 are arbitrary. is there.
  • the said embodiment demonstrated the lithium ion secondary battery as an example of the electrical storage element 1, it is not limited to this.
  • the present invention can be applied to various secondary batteries and storage devices of capacitors such as electric double layer capacitors.
  • the storage element 1 (for example, a battery) may be used for a storage device 100 as shown in FIG. 4 (a battery module when the storage element is a battery).
  • Power storage device 100 has at least two (a plurality of, for example, four) power storage elements 1 and a bus bar member 91 electrically connecting adjacent two power storage elements 1 to each other.
  • the plurality of storage elements 1 are connected in series.
  • the technique of the present invention may be applied to some of the plurality of storage elements, or may be applied to all of the plurality of storage elements.
  • the negative electrode active material amorphous carbon
  • the energy level (zero point energy) of each site is different.
  • Li ions are inserted into sites with low energy levels, and the potential energy of the sites increases (transitions). After that, when the potential energy curve (energy level) intersects with another site, the Li ion moves to the other site (because the energy level of the other site is lower as a result).
  • energy stabilization releases internal energy as energy to the outside. During discharge, the opposite phenomenon occurs.
  • the amorphous carbon according to the present invention has a potential (V) of 0.8 V or more and 1.5 V or less in a curve representing a change ratio (dQ / dV) of the amount of discharge electricity per unit amount to the potential (V).
  • the charge depth is shallow so that the energy level does not cross by setting the potential of the negative electrode at full charge to 0.25 V or more with respect to the metal lithium potential. Even if it is charged and discharged, it has a relatively high initial capacity.
  • amorphous carbon of desired conditions can be produced by adjusting a calcination temperature.
  • a non-aqueous electrolyte secondary battery (lithium ion secondary battery) was manufactured as shown below.
  • Example 1 (1) Preparation of Positive Electrode N-methyl-2-pyrrolidone (NMP), conductive auxiliary (acetylene black), binder (PVdF) and active material (LiNi 1/3 Co 1/3 Mn 1/3 as solvents
  • NMP Positive Electrode N-methyl-2-pyrrolidone
  • PVdF conductive auxiliary
  • active material LiNi 1/3 Co 1/3 Mn 1/3 as solvents
  • a mixture for a positive electrode was prepared by mixing and kneading O 2 and D50 particles of 4.0 ⁇ m)). The blending amounts of the conductive additive, the binder, and the active material were 4.5% by mass, 2.5% by mass, and 93% by mass, respectively.
  • the prepared positive electrode mixture was applied to both sides of an aluminum foil (12 ⁇ m thick) so that the coated amount (area weight) after drying was 0.613 g / 100 cm 2 .
  • the potential of the positive electrode is 4.00 V [vs.
  • the application amount was set to be Li + / Li].
  • a roll press was performed. Thereafter, it was vacuum dried to remove water and the like.
  • the thickness of the active material layer (one layer) after pressing was 64 ⁇ m.
  • the porosity of the active material layer was 42%.
  • Negative Electrode A particulate amorphous carbon (non-graphitizable carbon) was used as the active material (described in detail later). Moreover, PVdF was used as a binder.
  • the mixture for the negative electrode was prepared by mixing and kneading NMP as a solvent, a binder, and an active material. In terms of solid content, PVdF was blended so as to be 4% by mass, and the active material was blended so as to be 96% by mass.
  • the prepared negative electrode mixture was applied to both sides of an aluminum foil (12 ⁇ m in thickness) such that the coated amount (area weight) after drying was 0.3 g / 100 cm 2 . The coating amount was 0.40 V [vs.
  • the thickness of the active material layer (one layer) was 71 ⁇ m.
  • the porosity of the active material layer was 32%.
  • a microporous polyethylene film with a thickness of 22 ⁇ m was used as a separator.
  • the air resistance of the microporous polyethylene membrane was 100 seconds / 100 cc.
  • Electrolytic solution As an electrolytic solution, one prepared by the following method was used.
  • a non-aqueous solvent a solvent in which 1 part by volume each of propylene carbonate, dimethyl carbonate and ethyl methyl carbonate is mixed is used, and LiPF 6 is dissolved in this non-aqueous solvent so that the salt concentration is 1 mol / L, An electrolyte was prepared.
  • a battery was manufactured by a general method using the above positive electrode, the above negative electrode, the above electrolyte, a separator, and a case.
  • a sheet-like product in which a separator is disposed and laminated between the positive electrode and the negative electrode was wound.
  • the wound electrode body was placed in the case main body of an aluminum rectangular battery case as a case.
  • the positive electrode and the negative electrode were electrically connected to each of the two external terminals.
  • a cover plate was attached to the case body.
  • the above-mentioned electrolytic solution was injected into the case from a liquid injection port formed in the cover plate of the case.
  • the case was sealed by sealing the liquid inlet of the case.
  • Examples 2 to 5 Each cell is shown in the table by changing the type of amorphous carbon as the active material of the negative electrode, or changing the basis weight when producing the negative electrode in the range of 0.132 to 0.760 g / 100 cm 2 , etc.
  • a lithium ion secondary battery was manufactured in the same manner as Example 1, except that the configuration was changed to 1.
  • the lithium ion secondary battery was designed such that the negative electrode potential at the upper limit voltage had the value shown in Table 1.
  • the same amorphous carbon (Sample 1) as in Example 1 was used as the active material of the negative electrode.
  • Example 5 in the curve representing the change ratio (dQ / dV) with respect to the potential (V), amorphous carbon having one peak (sample 2 different from sample 1) is used as the active material of the negative electrode It was.
  • the height of the peak was 300 mAh / g ⁇ V or more.
  • amorphous carbon having no peak was used as the active material of the negative electrode in the curve representing the change ratio (dQ / dV) with respect to the potential (V).
  • the amorphous carbon of Sample 1 described above was used as the active material of the negative electrode.
  • Curves representing change rates (dQ / dV) with respect to potential (V) are shown in FIG. 3 for the sample 1, the sample 2 and the amorphous carbon having no peak.
  • Sample 1 was obtained by calcination at 900 ° C.
  • Sample 2 was obtained by calcination at 1000 ° C.
  • Amorphous carbon having no peak is obtained by calcination at 1300 ° C.
  • the curve shown in FIG. 3 is based on the result of measuring the potential (V) of amorphous carbon with respect to the quantity of discharged electricity (Q) of amorphous carbon, and the potential (V) in the amount of discharged electricity (Q) per unit amount
  • the change rate (dQ / dV) of the potential (V) is represented by determining the change rate (dQ / dV) of
  • the above curve is obtained by measuring the amount of electricity during discharge of amorphous carbon. In this measurement method, after performing predetermined pretreatment on amorphous carbon, the amount of electricity with respect to the potential at the time of discharge was measured. (Preprocessing) The battery was discharged to 2.0 V at a current of 5 A and then held at 2.0 V for 5 hours.
  • the fabricated cell was charged at a constant current density of 0.5 mA / cm 2 to constant voltage for 24 hours up to 0.01 V. After resting for 10 minutes, constant current discharge was performed to 2.0 V at the same current density. The calculated value of the discharge capacity in such an operation is 1 CmA. After performing constant current charging for 36 seconds at a current value of 1 CmA using the same cell, 99 rest operations for 720 seconds are performed 99 times, and then constant voltage charging for 30 minutes at 0.01 V with the same current value is performed. The Subsequently, after a pause of 720 seconds, a constant current discharge was performed for 36 seconds with the same current value and a lower limit voltage of 2.0 V, and then an operation of pause for 720 seconds was performed 100 times.
  • a value (rate of change) obtained by dividing the difference between the respective potentials after the discharge suspension where the measurement order is adjacent by the difference between the respective electrical discharge amounts corresponding to the respective potentials was defined as dQ / dV.
  • the curves representing the change rates (dQ / dV) with respect to each potential (V) after the discharge stop are the amorphous carbon potentials of 0.8 V or more 1 in the amorphous carbons of the above sample 1 and sample 2 There was one peak in the range of .5 V or less.
  • the hysteresis was calculated under the following conditions. Assuming that the initial capacity calculated above is 1 CA, discharge at 3 A constant current, and a termination voltage of 2.4 V, charge for 1 s for 36 seconds and then pause for 720 s, and repeat the charge 99 times. , 3.6V constant voltage charging at 1.5A for 3600 seconds. Thereafter, the battery was discharged for 36 seconds with 1 CA, and the discharge was repeated 100 times with one discharge for 720 seconds of rest. The voltage after pause for each charge is calculated as OCV for charge, and the voltage after pause for each discharge is calculated as OCV for discharge, and the difference between OCV during charge and OCV during discharge is calculated for each SOC. And
  • Table 1 shows the measurement results of the initial capacity of the batteries manufactured in each of the examples and the comparative examples, and the evaluation results of the hysteresis during charging and discharging.
  • 1 Storage element (non-aqueous electrolyte secondary battery), 2: Electrode body, 3: Case 31: Case body 32: Lid plate, 5: Current collecting member, 6: Insulating cover, 7: External terminal, 71: Surface, 100: Power storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

比較的高い初期容量を有しつつ充電時及び放電時のヒステリシスの増加が抑制された蓄電素子を提供する。本実施形態では、非晶質炭素を活物質として含有する負極活物質層を有する負極を備え、非晶質炭素の放電電気量(Q)に対する非晶質炭素の電位(V)を測定した結果に基づいて、単位量あたりの放電電気量(Q)における電位(V)の変化割合(dQ/dV)を求めて、電位(V)に対して変化割合(dQ/dV)を表した曲線は、非晶質炭素の電位が0.8V以上1.5V以下の範囲に、1つ以上のピークを有し、満充電時における前記負極の電位は、リチウム電位で0.25V以上である。

Description

蓄電素子及び蓄電装置
 本発明は、リチウムイオン二次電池などの蓄電素子、及び、該蓄電素子を複数備えた蓄電装置に関する。
 従来、正極、負極およびセパレータを捲回した電極捲回群と、電解液と、を電池容器内に備えるリチウムイオン二次電池が知られている。
 特許文献1に記載の電池では、次に示す技術内容が開示されている。正極は、集電体と前記集電体の両面に塗布された正極合材とを有し、正極合材は、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物を正極活物質として含む。正極合材の片面の塗布量は、110~170g/mであり、正極合材の密度は、2.5~2.8g/cmである。負極は、集電体と集電体の両面に塗布された負極合材とを有し、負極合材は、非晶質炭素を負極活物質として含む。電解液は、非水系溶媒として環状カーボネート、鎖状カーボネート、環状スルホン酸エステル及びビニレンカーボネートを含む。
特開2016-091927号公報
 特許文献1に記載の電池のごとき蓄電素子は、例えばハイブリッド型自動車での用途に特化すべく、入出力性能を十分に有するように設計されるものの、初期容量があまり大きくないものが多い。近年、自動車用途で蓄電素子を用いることが広がりつつあるため、十分な入出力特性の他、比較的高い初期容量を有する蓄電素子が求められている。
 そこで、従来の非晶質炭素よりも充放電電気量を増やせる非晶質炭素を、活物質として適用した蓄電素子を検討することが考えられる。しかしながら、斯かる蓄電素子では、充電時及び放電時の電圧曲線が大きく解離する、即ち、ヒステリシスが増加するという問題が起こり得る。ヒステリシスが増加すると、充放電制御が難しくなる。
 本実施形態は、比較的高い初期容量を有しつつ充電時及び放電時のヒステリシスの増加が抑制された蓄電素子、及び、該蓄電素子を複数備えた蓄電装置を提供することを課題とする。
 本実施形態の蓄電素子は、非晶質炭素を活物質として含有する負極活物質層を有する負極を備え、非晶質炭素の放電電気量(Q)に対する非晶質炭素の電位(V)を測定した結果に基づいて、単位量あたりの放電電気量(Q)における電位(V)の変化割合(dQ/dV)を求めて、電位(V)に対して変化割合(dQ/dV)を表した曲線は、非晶質炭素の電位が0.8V以上1.5V以下の範囲に、1つ以上のピークを有し、満充電時における前記負極の電位は、リチウム電位で0.25V以上である。
 本実施形態の蓄電装置は、上記の蓄電素子を複数備え、複数の蓄電素子が直列に接続され、蓄電素子は、α―NaFeO型構造を有し且つLi1+x1-xの化学組成で表されるリチウム遷移金属複合酸化物(ここで、Mは、遷移金属であり、0<x<0.3である。)を活物質として含有する正極を有する。
 本実施形態によれば、比較的高い初期容量を有しつつ充電時及び放電時のヒステリシスの増加が抑制された蓄電素子を提供できる。また、該蓄電素子を複数備えた蓄電装置を提供できる。
図1は、本実施形態に係る蓄電素子の斜視図である。 図2は、図1のII-II線位置の断面図である。 図3は、負極の活物質としての非晶質炭素の物性の例を表す各グラフである。 図4は、同実施形態に係る蓄電素子を含む蓄電装置の斜視図である。
 以下、本発明に係る蓄電素子の一実施形態について、図1及び図2を参照しつつ説明する。蓄電素子には、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。
 本実施形態の蓄電素子1は、非水電解質二次電池である。より詳しくは、蓄電素子1は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子1は、電気エネルギーを供給する。蓄電素子1は、単一又は複数で使用される。具体的に、蓄電素子1は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子1は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子1と組み合わされて蓄電装置に用いられる。前記蓄電装置では、該蓄電装置に用いられる蓄電素子1が電気エネルギーを供給する。
 蓄電素子1は、図1及び図2に示すように、正極と負極とを含む電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子7であって電極体2と導通する外部端子7と、を備える。また、蓄電素子1は、電極体2、ケース3、及び外部端子7の他に、電極体2と外部端子7とを導通させる集電部材5等を有する。
 電極体2は、正極と負極とがセパレータによって互いに絶縁された状態で積層された積層体22が巻回されることによって形成される。
 正極は、金属箔(集電体)と、金属箔の表面に重ねられ且つ活物質を含む正極活物質層と、を有する。本実施形態では、正極活物質層は、金属箔の両面にそれぞれ重なる。なお、正極の厚さは、40μm以上150μm以下であってもよい。
 金属箔は帯状である。本実施形態の正極の金属箔は、例えば、アルミニウム箔である。正極は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質層の非被覆部(正極活物質層が形成されていない部位)を有する。
 正極活物質層は、粒子状の活物質(活物質粒子)と、粒子状の導電助剤と、バインダとを含む。正極活物質層(1層分)の厚さは、12μm以上70μm以下であってもよい。正極活物質層(1層分)の目付量は、0.4g/100cm以上1.7g/100cm以下であってもよい。正極活物質層の密度は、1.5g/cm 以上3.0g/cm 以下であってもよい。目付量及び密度は、金属箔の一方の面を覆うように配置された1層分におけるものである。
 正極活物質層の目付量は、下記の方法によって算出できる。製造され、使用された電池の密度を測定する場合、電池を3Aの電流(電池の定格容量が把握できる場合は、1Cに相当する電流)で2.0Vまで放電した後、5時間2.0Vで保持する。保持後、5時間休止させ、ドライルームまたはアルゴン雰囲気化のグローブボックス内でケース内部から電極体を取り出す。純度99.9%以上、水分量20ppm以下のDMC(ジメチルカーボネート)で、電極体から取り出した正極を3回以上洗浄する。その後、DMCを真空乾燥によって除去する。そして、設定した面積S(cm)、例えば、4cm(2cm×2cm)の大きさの試験片を切り出し、重量W1(mg)を測定する。純水に浸漬すること等によって、活物質層と金属箔とを分離させる。分離後に金属箔の重量W2(mg)を測定する。活物質層の目付量を、(W1-W2))/Sによって算出する。
 正極活物質層における活物質粒子の平均二次粒子径D50は、2.0μm以上20μm以下であってもよい。平均二次粒子径D50は、レーザ回折・散乱法によって求められる。
 正極活物質層の多孔度は、20%以上50%以下であってもよい。多孔度は、45%以下であってもよい。多孔度は、水銀圧入法によって測定される。水銀圧入法は、水銀圧入ポロシメーターを用いて実施できる。具体的に、水銀圧入法は、日本工業規格(JIS R1655:2003)に準じて実施する。多孔度p(%)は、水銀圧入法によって測定された水銀圧入量A(cm)と、正極活物質層のみかけ体積V(cm)とから、p=(A/V)×100により算出される。ここで、みかけ体積V(cm)とは、活物質層を平面視したときの面積(cm)に活物質層の厚さ(cm)を乗じたものである。なお、製造された電池における正極活物質層の多孔度を測定する場合、例えば、電池を放電した後、該電池を乾燥雰囲気下で解体する。次に、正極活物質層を取り出してジメチルカーボネートで洗浄した後、2時間以上真空乾燥する。その後、水銀圧入ポロシメーターを用いて測定をおこない、測定結果から正極活物質層の多孔度を算出することができる。
 正極の活物質は、リチウムイオンを吸蔵放出可能な化合物である。正極の活物質は、例えば、リチウム遷移金属酸化物である。具体的に、正極の活物質は、例えば、LiMeO(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiCo、LiNi、LiMn、LiNiCoMn等)、又は、LiMe(XO(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiFePO、LiMnPO、LiMnSiO、LiCoPOF等)である。
 本実施形態では、正極の活物質は、α―NaFeO型構造を有し且つLi1+x1-xの化学組成で表されるリチウム遷移金属複合酸化物(ここで、Mは、遷移金属であり、0<x<0.3である。)であり、より詳細には、LiNiMnCoの化学組成で表されるリチウム遷移金属複合酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)である。また、0<q<1であり、0<r<1であり、0<s<1であることが好ましい。
 上記のごときLiNiMnCoの化学組成で表されるリチウム遷移金属複合酸化物は、例えば、LiNi1/3Co1/3Mn1/3、LiNi3/5Co1/5Mn1/5、LiNi4/5Co1/10Mn1/10などである。
 本実施形態では、正極の電位をリチウム電位で4.25Vとした場合の充電容量(電極単位面積あたりの充電電流:0.5mA/cm)が110mAh/g以上230mAh/g以下であることが好ましい。また、上記の充電容量が、150mAh/g以上200mAh/g以下であることがより好ましく、160mAh/g以上180mAh/g以下であることがさらに好ましい。
 正極の活物質が上記組成のリチウム遷移金属酸化物であり、且つ、上記の充電容量が上記数値範囲内である場合には、負極に用いた炭素材料(難黒鉛化炭素)の充放電容量との関係上、比較的高い重量エネルギー密度、及び耐久性の両方が達成され得る。
 正極活物質層に用いられるバインダは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダは、ポリフッ化ビニリデンである。
 正極活物質層の導電助剤は、炭素を98質量%以上含む炭素質材料である。炭素質材料は、例えば、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等である。本実施形態の正極活物質層は、導電助剤としてアセチレンブラックを有する。
 負極は、金属箔(集電体)と、金属箔の上に形成された負極活物質層と、を有する。本実施形態では、負極活物質層は、金属箔の両面にそれぞれ重ねられる。金属箔は帯状である。金属箔の材質は、アルミニウムまたはアルミニウム合金であることが好ましい。本実施形態では、金属箔は、アルミニウム箔又はアルミニウム合金箔であり、好ましくはアルミニウム箔である。アルミニウム合金とは、アルミニウムを90質量%以上含む合金である。アルミニウムを含む金属箔の表面には、導電層が形成されてもよい。金属箔がアルミニウムを含むことにより、蓄電素子が過放電状態になった場合においても、金属箔が溶解することが抑制され、過放電に対して耐性が発揮されると考えられる。負極は、帯形状の短手方向である幅方向の一方の端縁部に、負極活物質層の非被覆部(負極活物質層が形成されていない部位)を有する。負極の厚さは、40μm以上150μm以下であってもよい。
 負極活物質層(1層分)の厚さは、10μm以上100μm以下であってもよい。負極活物質層の目付量(1層分)は、0.2g/100cm以上1.0g/100cm以下であってもよい。負極活物質層の密度(1層分)は、0.5g/cm以上6.0g/cm以下であってもよい。
 負極活物質層の目付量は、正極活物質層の目付量と同様にして算出する。正極活物質層及び負極活物質層が互いに対向する部分において、正極活物質層の目付量をVPとし、負極活物質層の目付量をVNとしたときに、下記の関係式(1)が満たされてもよい。斯かる構成により、過放電に対して耐性を有する蓄電素子1を得ることができる。目付量は、上述した方法と同様にして測定される。
      0.4≦VN/VP≦0.6    関係式(1)
 負極活物質層は、粒子状の活物質(活物質粒子)と、バインダと、を含む。負極活物質層は、セパレータを介して正極と向き合うように配置される。負極活物質層の幅は、正極活物質層の幅よりも大きい。
 負極の活物質は、負極において充電反応及び放電反応の電極反応に寄与し得るものである。本実施形態の負極の活物質は、非晶質炭素である。より具体的には、負極の活物質は、難黒鉛化炭素である。
 ここで、非晶質炭素とは、放電状態において、線源としてCuKα線を用いた広角X線回折法によって求められる(002)面の平均面間隔d002が、0.340nm以上0.390nm以下のものである。また、難黒鉛化炭素とは、前記平均面間隔d002が、0.360nm以上0.390nm以下のものである。
 負極の活物質の非晶質炭素は、下記の物性を有する。非晶質炭素の放電電気量(Q)に対する非晶質炭素の電位(V)を測定(放電時に測定)した結果に基づいて、非晶質炭素の単位量あたりの放電電気量(Q)における電位(V)の変化割合(dQ/dV)を求め、電位(V)に対して変化割合(dQ/dV)を表した曲線は、非晶質炭素の電位が0.8V以上1.5V以下の範囲に、1つ以上のピークを有する。該ピークの高さは、300mAh/g・V以上であることが好ましい。該ピークの高さが300mAh/g・V以上であることにより、より高い初期容量を有する蓄電素子1を得ることができる。該ピークの高さは、1500mAh/g・V以下であってもよい。上記の曲線は、通常、1つのピークを有する。上記の曲線は、実施例に記載された方法によって求められる。なお、上記の曲線がピークを有することは、曲線全体を目視することによって確認でき、下記のようにしても確認できる。上記曲線を表すグラフにおいて、電位(V)が0.1Vごとに変化する放電電気量を算出し、その変化割合(dQ/dV)の平均値を算出し、非晶質炭素の電位が0.8V以上1.5V以下の範囲において、算出した変化割合(dQ/dV)の平均値が、いったん上昇してから低下する場合に、上記の曲線がピークを有することを確認できる。
 上記の物性を有する非晶質炭素は、製造時の焼成温度を1000℃以下に設定することで得ることができる。焼成温度を900℃以下に設定することでさらにピークが大きくなる。このように、本実施形態の非晶質炭素は、比較的低温で焼成されることによって作製されたものである。一方、従来の一般的な非晶質炭素は、1300℃以上の焼成温度で作製されたものである。
 負極活物質層に用いられるバインダは、正極活物質層に用いられるバインダと同様のものである。本実施形態のバインダは、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)である。
 負極活物質層では、バインダの割合は、活物質粒子とバインダとの合計質量に対して、0.5質量%以上10質量%以下であってもよい。
 負極活物質層は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層は、導電助剤を有していない。
 上限電圧まで充電したとき(満充電時)に、正極の電位は、3.85V以上4.5V以下[vs.Li/Li]であってもよい。一方、上限電圧まで充電したとき(満充電時)に、負極の電位は、0.25V以上である。上限電圧まで充電したとき(満充電時)に、負極の電位は、0.35V以上0.4V以下[vs.Li/Li]であってもよい。上限電圧まで充電したとき(満充電時)の負極の電位が0.25V以上であることで、比較的高い初期容量を有することができる。また、斯かる電位が0.25V以上であることで、リチウムと、集電体のアルミニウムとが合金化反応を起こすことを抑制できるため、負極の集電体にアルミニウムを選択することができるようになり、過放電特性に優れた蓄電素子1を得ることができる。上限電圧まで充電したとき(満充電時)の負極の電位が0.4V以下であることにより、電池の容量をより大きくすることができる。なお、上限電圧まで充電したとき(満充電時)の負極の電位は、正極及び負極の活物質層の目付量の比を変更することによって、調整できる。例えば、上述したVN/VPの値を大きくすることによって、上記の負極の電位を高く設定することができる。
 α―NaFeO型構造を有し且つLi1+x1-xの化学組成で表されるリチウム遷移金属複合酸化物(ここで、Mは、遷移金属であり、0<x<0.3である。)を活物質として含有する正極を備え、蓄電素子1の電圧が3.6Vに到達した場合の負極の電圧が0.25V以上となるように設計された蓄電素子1では、通常の使用電圧上限は、3.6Vとなる。このような蓄電素子1の複数を直列に接続、好ましくは4つを直列に接続した場合、従来の鉛蓄電池を備えた自動車用電源と電圧の互換性が生じるため、鉛蓄電池の代替として用いることができる。このような蓄電装置を、鉛蓄電池の代替用途に用いると、鉛蓄電池にはできない深放電が可能となり、加えて、軽量化を図ることが可能になる。
 本実施形態の電極体2では、以上のように構成される正極と負極とがセパレータによって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極、負極、及びセパレータの積層体22が巻回される。セパレータは、絶縁性を有する部材である。セパレータは、正極と負極との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極と負極とが互いに絶縁される。また、セパレータは、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータを挟んで交互に積層される正極と負極との間を移動する。
 セパレータは、帯状である。セパレータは、多孔質なセパレータ基材を有する。セパレータは、正極及び負極間の短絡を防ぐために正極及び負極の間に配置されている。本実施形態のセパレータは、セパレータ基材のみを有する。
 セパレータ基材は、多孔質に構成される。セパレータ基材は、例えば、織物、不織布、又は多孔膜である。セパレータ基材の材質としては、高分子化合物、ガラス、セラミックなどが挙げられる。高分子化合物としては、例えば、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン(PO)、及び、セルロースからなる群より選択された少なくとも1種が挙げられる。
 セパレータの幅(帯形状の短手方向の寸法)は、負極活物質層の幅より僅かに大きい。セパレータは、正極活物質層及び負極活物質層が重なるように幅方向に位置ずれした状態で重ね合わされた正極と負極との間に配置される。このとき、正極の非被覆部と負極の非被覆部とは重なっていない。即ち、正極の非被覆部が、正極と負極との重なる領域から幅方向に突出し、且つ、負極の非被覆部が、正極と負極との重なる領域から幅方向(正極の非被覆部の突出方向と反対の方向)に突出する。積層された状態の正極、負極、及びセパレータ、即ち、積層体22が巻回されることによって、電極体2が形成される。
 ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、電極体2及び集電部材5等と共に、電解液を内部空間に収容する。ケース3は、電解液に耐性を有する金属によって形成される。ケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。
 電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。本実施形態の電解液は、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを所定の割合で混合した混合溶媒に、0.5~1.5mol/LのLiPFを溶解させたものである。
 蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。ガス排出弁321は、蓋板32の中央部に設けられる。
 ケース3には、電解液を注入するための注液孔が設けられる。注液孔は、ケース3の内部と外部とを連通する。注液孔は、蓋板32に設けられる。注液孔は、注液栓326によって密閉される(塞がれる)。注液栓326は、溶接によってケース3(本実施形態の例では蓋板32)に固定される。
 外部端子7は、他の蓄電素子1の外部端子7又は外部機器等と電気的に接続される部位である。外部端子7は、導電性を有する部材によって形成される。外部端子7は、バスバ等が溶接可能な面71を有する。面71は、平面である。
 集電部材5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電部材5は、導電性を有する部材によって形成される。図2に示すように、集電部材5は、ケース3の内面に沿って配置される。集電部材5は、蓄電素子1の正極と負極とにそれぞれ導通される。
 本実施形態の蓄電素子1では、電極体2とケース3とを絶縁する袋状の絶縁カバー6に収容された状態の電極体2(詳しくは、電極体2及び集電部材5)がケース3内に収容される。
 次に、上記実施形態の蓄電素子1の製造方法について説明する。
 蓄電素子1の製造方法では、まず、金属箔(集電体)に活物質を含む合剤を塗布し、活物質層を形成し、電極(正極及び負極)を作製する。次に、正極、セパレータ、及び負極を重ね合わせて電極体2を形成する。続いて、電極体2をケース3に入れ、ケース3に電解液を入れることによって蓄電素子1を組み立てる。
 電極(正極)の作製では、金属箔の両面に、活物質とバインダと溶媒とを含む合剤をそれぞれ塗布することによって正極活物質層を形成する。合剤の塗布量を変化させることによって、正極活物質層の厚さや目付量を調整することができる。正極活物質層を形成するための塗布方法としては、一般的な方法が採用される。さらに、正極活物質層を所定の圧力でロールプレスする。プレス圧を変化させることにより、正極活物質層の厚さや密度を調整できる。なお、同様にして、負極を作製する。
 電極体2の形成では、正極と負極との間にセパレータを挟み込んだ積層体22を巻回することにより、電極体2を形成する。詳しくは、正極活物質層と負極活物質層とがセパレータを介して互いに向き合うように、正極とセパレータと負極とを重ね合わせ、積層体22を作る。積層体22を巻回して、電極体2を形成する。
 蓄電素子1の組み立てでは、ケース3のケース本体31に電極体2を入れ、ケース本体31の開口を蓋板32で塞ぎ、電解液をケース3内に注入する。ケース本体31の開口を蓋板32で塞ぐときには、ケース本体31の内部に電極体2を入れ、正極と一方の外部端子7とを導通させ、且つ、負極と他方の外部端子7とを導通させた状態で、ケース本体31の開口を蓋板32で塞ぐ。電解液をケース3内へ注入するときには、ケース3の蓋板32の注入孔から電解液をケース3内に注入する。
 上記のように構成された本実施形態の蓄電素子1は、負極の金属箔がアルミニウムであることから、通常、負極の電位が、アルミニウムとリチウムとの合金化電位に到達しないように使用される。
 上記のように構成された本実施形態の蓄電素子1は、非晶質炭素を活物質として含有する負極活物質層を有する負極を備える。非晶質炭素の放電電気量(Q)に対する非晶質炭素の電位(V)を測定した結果に基づいて、非晶質炭素の単位量あたりの放電電気量(Q)における電位(V)の変化割合(dQ/dV)を求めて、電位(V)に対して変化割合(dQ/dV)を表した曲線は、非晶質炭素の電位が0.8V以上1.5V以下の範囲に、1つ以上のピークを有する。蓄電素子1の満充電時における前記負極の電位は、リチウム電位で0.25V以上である。
 上記の物性を有する非晶質炭素は、従来の非晶質炭素と異なる細孔構造で構成されていることから、上記のピークを有する。非晶質炭素が上記のピークを有する分、充電電気量が多くなり、蓄電素子1がより多くの容量を得ることができると推定される。また、満充電時における前記負極の電位は、リチウム電位で0.25V以上であることから、充電時及び放電時の蓄電素子1のヒステリシスの増加が抑制されると考えられる。
 従って、上記の構成によって、比較的高い初期容量を有しつつ充電時及び放電時のヒステリシスの増加が抑制された蓄電素子を提供できる。なお、ヒステリシスの増加が抑制された蓄電素子1では、充放電を制御することが比較的容易となる。
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。
 上記の実施形態では、活物質を含む活物質層が金属箔に直接接した正極及び負極について詳しく説明したが、本発明では、正極又は負極が、バインダと導電助剤とを含む導電層であって活物質層と金属箔との間に配置された導電層を有してもよい。すなわち、正極又は負極の金属箔は、導電層を介して活物質層に重なってもよい。
 上記実施形態では、活物質層が各電極の金属箔の両面側にそれぞれ配置された電極について説明したが、本発明の蓄電素子では、正極又は負極は、活物質層を金属箔の片面側にのみ備えてもよい。
 上記実施形態では、積層体22が巻回されてなる電極体2を備えた蓄電素子1について詳しく説明したが、本発明の蓄電素子は、巻回されない積層体22を備えてもよい。詳しくは、それぞれ矩形状に形成された正極、セパレータ、負極、及びセパレータが、この順序で複数回積み重ねられてなる電極体を蓄電素子が備えてもよい。
 上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子1の種類や大きさ(容量)は任意である。また、上記実施形態では、蓄電素子1の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。
 蓄電素子1(例えば電池)は、図4に示すような蓄電装置100(蓄電素子が電池の場合は電池モジュール)に用いられてもよい。蓄電装置100は、少なくとも二つ(複数、例えば4つ)の蓄電素子1と、隣り合う二つの蓄電素子1同士を電気的に接続するバスバ部材91と、を有する。複数の蓄電素子1は、直列に接続されていることが好ましい。本発明の技術が複数のうち一部の蓄電素子に適用されてもよく、複数のすべての蓄電素子に適用されてもよい。
<ヒステリシスの増加が抑制されるメカニズム>
負極活物質(非晶質炭素)において、Liイオンが挿入可能なサイトが複数存在し、各サイトのエネルギー準位(零点エネルギー)が異なる。充電時、まずLiイオンはエネルギー準位の低いサイトに挿入されていき、そのサイトのポテンシャルエネルギーが増加(遷移)する。その後、他のサイトとポテンシャルエネルギーカーブ(エネルギー準位)が交差する時点で、(結果的に他のサイトの方がエネルギー準位が低くなったため)Liイオンは他のサイトへ移動する。また、エネルギー安定化により、内部エネルギーが外部にエネルギーとして放出される。放電時はその逆の現象となる。この充放電時における負極活物質内のエネルギー準位の差に依存したLiイオンのサイト間移動が、充放電時にヒステリシスが生じる原因となる。
 言い換えると、Liイオンのサイト間移動を制限すれば、ヒステリシスは生じない。従って、エネルギー準位が交差しないように充電深度が浅い条件で充放電を行えば、ヒステリシスは生じないと考えられる。本発明に係る非晶質炭素は、電位(V)に対する単位量あたりの放電電気量の変化割合(dQ/dV)を表した曲線において、電位(V)が0.8V以上1.5V以下の範囲に、1つ以上のピークを有することから、満充電時における負極の電位を、金属リチウム電位に対して0.25V以上とすることにより、エネルギー準位が交差しないように充電深度が浅い条件で充放電しても、比較的高い初期容量を有している。
 なお、焼成温度を調整することで、所望の条件の非晶質炭素を作製することができる。
 以下に示すようにして、非水電解質二次電池(リチウムイオン二次電池)を製造した。
 
(実施例1)
(1)正極の作製
 溶剤としてN-メチル-2-ピロリドン(NMP)と、導電助剤(アセチレンブラック)と、バインダ(PVdF)と、活物質(LiNi1/3Co1/3Mn1/32 、D50が4.0μm))の粒子とを、混合し、混練することで、正極用の合剤を調製した。導電助剤、バインダ、活物質の配合量は、それぞれ4.5質量%、2.5質量%、93質量%とした。調製した正極用の合剤を、アルミニウム箔(厚さ12μm)の両面に、乾燥後の塗布量(目付量)が0.613g/100cmとなるようにそれぞれ塗布した。表1に記載の電池上限電圧まで電池を充電したときの正極の電位が4.00V[vs.Li/Li]となるように、塗布量を設定した。乾燥後、ロールプレスをおこなった。その後、真空乾燥して、水分等を除去した。プレス後の活物質層(1層分)の厚さは、64μmであった。活物質層の多孔度は、42%であった。
(2)負極の作製
 活物質としては、粒子状の非晶質炭素(難黒鉛化炭素)を用いた(後に詳述)。また、バインダとしては、PVdFを用いた。負極用の合剤は、溶剤としてNMPと、バインダと、活物質とを混合、混練することで調製した。固形分換算で、PVdFは、4質量%となるように配合し、活物質は、96質量%となるように配合した。調製した負極用の合剤を、乾燥後の塗布量(目付量)が0.3g/100cmとなるように、アルミニウム箔(厚さ12μm)の両面にそれぞれ塗布した。塗布量は、表1に記載の電池上限電圧まで電池を充電したときの負極の電位が0.40V[vs.Li/Li]となるように設定した。乾燥後、ロールプレスをおこない、真空乾燥して、水分等を除去した。活物質層(1層分)の厚さは、71μmであった。活物質層の多孔度は、32%であった。
(3)セパレータ
 セパレータとして厚さが22μmのポリエチレン製微多孔膜を用いた。ポリエチレン製微多孔膜の透気抵抗度は、100秒/100ccであった。
(4)電解液の調製
 電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1容量部ずつ混合した溶媒を用い、この非水溶媒に、塩濃度が1mol/LとなるようにLiPFを溶解させ、電解液を調製した。
(5)ケース内への電極体の配置
 上記の正極、上記の負極、上記の電解液、セパレータ、及びケースを用いて、一般的な方法によって電池を製造した。
 まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋板を取り付けた。上記の電解液を、ケースの蓋板に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
(実施例2~5、比較例1~3)
 負極の活物質としての非晶質炭素の種類を変えること、又は、負極を作製するときの目付量を0.132~0.760g/100cmの範囲で変更すること等によって、各電池を表1に示す構成に変更した点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。リチウムイオン二次電池は、上限電圧時の負極電位が表1に示す値となるように、設計した。
 詳しくは、実施例2~4では、実施例1と同じ非晶質炭素(サンプル1)を、負極の活物質として用いた。実施例5では、電位(V)に対して変化割合(dQ/dV)を表した曲線において、1つのピークを有する非晶質炭素(サンプル1と異なるサンプル2)を、負極の活物質として用いた。なお、サンプル1及びサンプル2の非晶質炭素において、上記ピークの高さは、300mAh/g・V以上であった。
 比較例2及び3では、電位(V)に対して変化割合(dQ/dV)を表した曲線において、ピークを有しない非晶質炭素を、負極の活物質として用いた。比較例1では、上記のサンプル1の非晶質炭素を、負極の活物質として用いた。
 上記サンプル1、上記サンプル2、及びピークを有しない非晶質炭素について、電位(V)に対して変化割合(dQ/dV)を表した曲線を図3にそれぞれ示す。サンプル1は、900℃での焼成によって得られたものであり、サンプル2は、1000℃での焼成によって得られたものである。ピークを有しない非晶質炭素は、1300℃での焼成によって得られたものである。
 図3に示す曲線は、非晶質炭素の放電電気量(Q)に対する非晶質炭素の電位(V)を測定した結果に基づき、単位量あたりの放電電気量(Q)における電位(V)の変化割合(dQ/dV)を求めて、電位(V)に対して変化割合(dQ/dV)を表したものである。上記曲線は、非晶質炭素の放電時の電気量を測定することによって得られる。この測定方法においては、非晶質炭素に対して所定の前処理をおこなったあと、放電時における電位に対する電気量を測定した。
(前処理)
 電池を5Aの電流で2.0Vまで放電した後、2.0Vで5時間保持した。保持した後、5時間休止させ、ドライルームまたはアルゴン雰囲気化のグローブボックス内でケース内部から電極体を取り出した。純度99.9%以上、水分量20ppm以下のDMCで、電極体から取り出した負極を3回以上洗浄した。その後、真空乾燥によってDMCを除去した。
(放電時の電気量の測定方法)
 上記のとおり前処理によって電池から負極を取り出したあと、3.0cm×2.5cmに切り抜いた負極(作用極)と、対極(Li金属)と、参照極(Li金属)とをもちいた3極式セルを作製した。セパレータおよび電解液として、本実施例1に記載のものと同じものを用いた。作製したセルを、電流密度0.5mA/cmの電流値で0.01Vまで24時間定電圧充電した。10分間休止したあと、同じ電流密度で2.0Vまで定電流放電をおこなった。このような操作における放電容量の算出値を1CmAとした。同じセルをもちいて、1CmAの電流値で36秒間の定電流充電をおこなった後、720秒休止する操作を99回おこない、さらに、同じ電流値で0.01Vで30分間の定電圧充電をおこなった。続いて、720秒の休止の後、同じ電流値で下限電圧を2.0Vとして、36秒間の定電流放電をおこなった後、720秒休止する操作を100回おこなった。測定順序が隣り合う放電休止後の各電位の差を、各電位に対応する各放電電気量の差で割った値(変化割合)をdQ/dVとした。放電休止後の各電位(V)に対して変化割合(dQ/dV)を表した曲線は、上記サンプル1及びサンプル2の非晶質炭素において、非晶質炭素の電位が0.8V以上1.5V以下の範囲に、1つのピークを有した。
<初期容量の測定>
 25℃で3.6Vまで3Aの定電流充電した後に、3.6Vで定電圧充電して、定電流充電と定電圧充電とを合わせて3時間充電した。その後、2.4Vまで3Aの定電流で放電した。この放電容量を「初期容量」とした。
<充電時及び放電時のヒステリシスの測定>
 ヒステリシスは以下の条件で算出した。上記で算出した初期容量を1CAとし,3A定電流で、終止電圧2.4Vの条件で放電したのち、1CAで36秒間充電し、720秒間休止する充電を1回として、同充電を99回繰り返し、1.5Aで3.6Vの定電圧充電を3600秒おこなった。その後、1CAで36秒間放電し、720秒間休止する放電を1回として、同放電を100回繰り返した。各充電時の休止後の電圧を充電時OCV、各放電時の休止後の電圧を放電時OCVとして、各SOCに対して算出し、各SOCにおいて、充電時OCVと放電時OCVの差をヒステリシスとした。
 各実施例、各比較例で製造した電池の初期容量の測定結果、及び、充電時及び放電時のヒステリシスの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から把握されるように、実施例の電池は、比較的高い初期容量を有しつつ充電時及び放電時のヒステリシスの増加が抑制されていた。
 1:蓄電素子(非水電解質二次電池)、
 2:電極体、
 3:ケース、 31:ケース本体、 32:蓋板、
 5:集電部材、
 6:絶縁カバー、
 7:外部端子、 71:面、
 100:蓄電装置。

Claims (6)

  1.  非晶質炭素を活物質として含有する負極活物質層を有する負極を備え、
     前記非晶質炭素の放電電気量(Q)に対する前記非晶質炭素の電位(V)を測定した結果に基づいて、単位量あたりの前記放電電気量(Q)における前記電位(V)の変化割合(dQ/dV)を求めて、前記電位(V)に対して前記変化割合(dQ/dV)を表した曲線は、前記非晶質炭素の電位が0.8V以上1.5V以下の範囲に、1つ以上のピークを有し、
     満充電時における前記負極の電位は、リチウム電位で0.25V以上である、蓄電素子。
  2.  前記満充電時における前記負極の電位は、リチウム電位で0.35V以上である、請求項1に記載の蓄電素子。
  3.  前記ピークの高さが300mAh/g・V以上である、請求項1または2に記載の蓄電素子。
  4.  前記負極は、アルミニウムを含有する金属箔を有する、請求項1乃至3のいずれかに記載の蓄電素子。
  5.  請求項1乃至4のいずれかに記載の蓄電素子を複数備え、
     複数の前記蓄電素子が直列に接続され、
     前記蓄電素子は、α―NaFeO型構造を有し且つLi1+x1-xの化学組成で表されるリチウム遷移金属複合酸化物(ここで、Mは、遷移金属であり、0<x<0.3である。)を活物質として含有する正極を有する、蓄電装置。
  6.  非晶質炭素を活物質として含有する負極活物質層を有する負極を備え、
     前記非晶質炭素の放電電気量(Q1)に対する前記非晶質炭素の電位(V)を測定した結果に基づいて、前記電位(V)に対する単位量あたりの前記放電電気量(Q)の変化割合(dQ/dV)を表した曲線は、前記電位(V)が0.8V以上1.5V以下の範囲に、1つ以上のピークを有し、
     満充電時における前記負極の電位は、金属リチウム電位に対して0.25V以上である、蓄電素子。
PCT/JP2018/042914 2017-11-22 2018-11-21 蓄電素子及び蓄電装置 WO2019103019A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019555326A JP7249520B2 (ja) 2017-11-22 2018-11-21 蓄電素子及び蓄電装置
CN201880072716.9A CN111328434A (zh) 2017-11-22 2018-11-21 蓄电元件以及蓄电装置
US16/763,173 US11515537B2 (en) 2017-11-22 2018-11-21 Energy storage device and energy storage apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-224748 2017-11-22
JP2017224748 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019103019A1 true WO2019103019A1 (ja) 2019-05-31

Family

ID=66631011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042914 WO2019103019A1 (ja) 2017-11-22 2018-11-21 蓄電素子及び蓄電装置

Country Status (4)

Country Link
US (1) US11515537B2 (ja)
JP (1) JP7249520B2 (ja)
CN (1) CN111328434A (ja)
WO (1) WO2019103019A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348725A (ja) * 1999-06-08 2000-12-15 Toyota Motor Corp リチウムイオン2次電池
JP2008004440A (ja) * 2006-06-23 2008-01-10 Hitachi Maxell Ltd リチウム二次電池、およびその使用方法
JP2012109175A (ja) * 2010-11-19 2012-06-07 Honda Motor Co Ltd リチウムイオン2次電池用負極材料及びその製造方法
JP2013152824A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013247003A (ja) * 2012-05-28 2013-12-09 Sony Corp 二次電池の充電制御装置、二次電池の充電制御方法、二次電池の充電状態推定装置、二次電池の充電状態推定方法、二次電池の劣化度推定装置、二次電池の劣化度推定方法、及び、二次電池装置
JP2014056697A (ja) * 2012-09-12 2014-03-27 Sony Corp 二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283117A (ja) 1996-04-12 1997-10-31 Toyota Motor Corp リチウムイオン二次電池
JP3752930B2 (ja) 1999-11-17 2006-03-08 新神戸電機株式会社 円筒形リチウムイオン電池
JP2002231225A (ja) 2001-02-01 2002-08-16 Hitachi Chem Co Ltd 複合電極材料とその製造方法、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP4454950B2 (ja) 2003-03-27 2010-04-21 株式会社東芝 非水電解質二次電池
KR101574958B1 (ko) 2007-11-12 2015-12-07 가부시키가이샤 지에스 유아사 리튬 이차전지용 활물질, 리튬 이차전지 및 그 제조방법
JP5321783B2 (ja) 2008-03-04 2013-10-23 株式会社東芝 非水電解質二次電池および組電池
JP5207151B2 (ja) 2011-02-28 2013-06-12 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP6066306B2 (ja) * 2012-07-04 2017-01-25 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
US20150311517A1 (en) * 2012-11-22 2015-10-29 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
JP5726954B2 (ja) 2013-06-27 2015-06-03 株式会社東芝 非水電解質二次電池および組電池
JP2016091927A (ja) 2014-11-10 2016-05-23 日立化成株式会社 リチウムイオン二次電池
KR102587533B1 (ko) 2015-09-15 2023-10-12 삼성전자주식회사 이차 전지용 전해질 및 이를 포함하는 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348725A (ja) * 1999-06-08 2000-12-15 Toyota Motor Corp リチウムイオン2次電池
JP2008004440A (ja) * 2006-06-23 2008-01-10 Hitachi Maxell Ltd リチウム二次電池、およびその使用方法
JP2012109175A (ja) * 2010-11-19 2012-06-07 Honda Motor Co Ltd リチウムイオン2次電池用負極材料及びその製造方法
JP2013152824A (ja) * 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013247003A (ja) * 2012-05-28 2013-12-09 Sony Corp 二次電池の充電制御装置、二次電池の充電制御方法、二次電池の充電状態推定装置、二次電池の充電状態推定方法、二次電池の劣化度推定装置、二次電池の劣化度推定方法、及び、二次電池装置
JP2014056697A (ja) * 2012-09-12 2014-03-27 Sony Corp 二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Also Published As

Publication number Publication date
US11515537B2 (en) 2022-11-29
JPWO2019103019A1 (ja) 2020-12-17
CN111328434A (zh) 2020-06-23
JP7249520B2 (ja) 2023-03-31
US20200388845A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2018043375A1 (ja) 蓄電素子およびその製造方法
JP2017191651A (ja) 蓄電素子
CN105990549B (zh) 蓄电元件
JP6688483B2 (ja) 蓄電素子の出力の回復方法
JP2017201589A (ja) 蓄電素子
JP2016186886A (ja) 蓄電素子
WO2016171276A1 (ja) リチウムイオン電池
JP6880488B2 (ja) リチウムイオン二次電池
CN109844999B (zh) 蓄电元件和蓄电元件的制造方法
JP2017183082A (ja) 蓄電素子
WO2019103019A1 (ja) 蓄電素子及び蓄電装置
JP2017168302A (ja) 蓄電素子
CN109075310B (zh) 蓄电元件
CN108292752B (zh) 蓄电元件
JP7240640B2 (ja) リチウムイオン二次電池
JP2018120829A (ja) 蓄電素子
JP2017201588A (ja) 蓄電素子
JP2018098138A (ja) 蓄電素子
JP7008275B2 (ja) 蓄電素子
JP2018098140A (ja) 蓄電素子
JP6781945B2 (ja) 蓄電装置の製造方法
JP2018041645A (ja) 蓄電素子
JP2016189305A (ja) 蓄電素子
JP2018055802A (ja) 蓄電素子
JP2017174738A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881635

Country of ref document: EP

Kind code of ref document: A1