WO2019010988A1 - 一种卤素钝化钙钛矿量子点及其制备方法和qled器件 - Google Patents

一种卤素钝化钙钛矿量子点及其制备方法和qled器件 Download PDF

Info

Publication number
WO2019010988A1
WO2019010988A1 PCT/CN2018/078494 CN2018078494W WO2019010988A1 WO 2019010988 A1 WO2019010988 A1 WO 2019010988A1 CN 2018078494 W CN2018078494 W CN 2018078494W WO 2019010988 A1 WO2019010988 A1 WO 2019010988A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
perovskite quantum
inorganic perovskite
halogen
ligand
Prior art date
Application number
PCT/CN2018/078494
Other languages
English (en)
French (fr)
Inventor
程陆玲
杨一行
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2019010988A1 publication Critical patent/WO2019010988A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the invention relates to the field of quantum dots, in particular to a halogen passivated perovskite quantum dot, a preparation method thereof and a QLED device.
  • perovskite light-emitting diodes At present, research progress on perovskite light-emitting diodes is mainly focused on organic-inorganic perovskite materials (such as CH 3 NH 3 PbBr), which can achieve higher device efficiency in green light, and its external quantum efficiency (External The quantum efficiency (EQE) value reached 8.53%.
  • organic-inorganic perovskite materials such as CH 3 NH 3 PbBr
  • EQE Quantum efficiency
  • the organic-inorganic perovskite material is sensitive to light and heat, the light-emitting diode prepared therefrom has poor thermal stability.
  • Inorganic perovskite quantum dot materials exhibit superior thermal stability relative to organic inorganic perovskite materials.
  • an inorganic perovskite quantum dot material was used to prepare a light-emitting diode, it was found that the prepared diode had an EQE value of less than 1%.
  • the reason why the EQE value of the light-emitting diode prepared from the inorganic perovskite quantum dot material is low is that a long-chain insulating ligand covered by the outer surface of the inorganic perovskite quantum dot hinders the charge transfer, so
  • the use of these perovskite quantum dots with long-chain insulating ligands to prepare devices can not effectively radiate electrons in perovskite nanocrystals, which seriously reduces the device effect of perovskite light-emitting diodes.
  • long-chain insulating ligands are mainly used to ensure high stability of quantum dots and high fluorescence intensity.
  • inorganic perovskite quantum is caused.
  • the fluorescence intensity of the point material is reduced; therefore, how to achieve the enhancement of the fluorescence intensity of the inorganic perovskite quantum dot while using the short-chain ligand to replace the long-chain insulating ligand is a great challenge.
  • the present invention aims to provide a halogen-passivated perovskite quantum dot, a preparation method thereof and a QLED device, aiming at solving the prior art in the exchange of inorganic perovskites using short-chain ligands.
  • a long-chain insulating ligand on a quantum dot causes a decrease in the fluorescence intensity of the inorganic perovskite quantum dot.
  • a method for preparing a halogen-passivated inorganic perovskite quantum dot comprising the steps of:
  • the deprotonated ligand is added to the inorganic perovskite quantum dot solution to carry out a ligand exchange reaction to obtain a first ligand exchanged inorganic perovskite quantum dot solution;
  • the method for preparing a halogen-passivated inorganic perovskite quantum dot wherein the ligand having deprotonation is a carboxylic acid ligand, such as oleic acid, palmitic acid or the like is not limited thereto. .
  • the mass ratio of the deprotonated ligand to the inorganic perovskite quantum dot is (20 ul - 120 ul): 100 mg, and the deprotonated ligand is added to the inorganic perovskite quantum.
  • the first ligand exchange was carried out in the spot solution.
  • the method for preparing a halogen-passivated inorganic perovskite quantum dot wherein the polar organic halide is a halogenated quaternary ammonium salt, preferably a halogenated quaternary ammonium salt having a hydrocarbon group of 1 to 12 carbon atoms.
  • the halogenated quaternary ammonium salt includes: dodecyldimethylammonium chloride, dodecyldimethylammonium bromide or dodecyldimethylammonium iodide, and the like, and is not limited thereto. .
  • the method for preparing a halogen-passivated inorganic perovskite quantum dot wherein the polar organic halide is a halogenated benzene
  • the halogenated benzene comprises pentafluoroiodobenzene, pentafluorochlorobenzene Or pentafluorobromobenzene or the like is not limited thereto.
  • the method for preparing a halogen-passivated inorganic perovskite quantum dot wherein the inorganic perovskite quantum dot is one of CsPbCl 3 , CsPbBr 3 or CsPbI 3 , the inorganic perovskite Quantum dot surface ligands include protonated ligands such as sulfhydryl ligands, amine ligands, and the like.
  • the polar organic halide was added to the inorganic perovskite quantum dot solution for halogen passivation according to the mass ratio of the polar organic halide solvent volume to the inorganic perovskite quantum dot (50 ul - 120 ul): 100 mg.
  • the polar organic halide in the polar organic halide is from 0.2 to 1.5 mmol/ml.
  • the method for preparing a halogen-passivated inorganic perovskite quantum dot wherein the halogen-passivated inorganic perovskite quantum dot solution is subjected to centrifugation using a polar organic solvent to obtain a solid halogen passivation Inorganic perovskite quantum dot material.
  • the polar organic solvent including methanol, ethanol, propanol, butanol or the like is not limited thereto.
  • the present invention also provides a halogen-passivated inorganic perovskite quantum dot prepared by the preparation method of the present invention.
  • the present invention also provides a QLED device, wherein the QLED device comprises an anode, a hole transport layer, a light emitting layer, an electron transport layer and a cathode, the quantum dot light emitting layer comprising the halogen passivated inorganic perovskite provided by the present invention Quantum dots are prepared.
  • the present invention provides a method for preparing a halogen-passivated inorganic perovskite quantum dot by first adding a deprotonated ligand to an inorganic perovskite quantum dot solution for ligand exchange reaction to obtain a first An inorganic perovskite quantum dot solution after sub-ligand exchange; a polar organic halide is added to the first ligand-exchanged inorganic perovskite quantum dot solution for halogen passivation to obtain a halogen-passivated inorganic Perovskite quantum dot solution; the invention can effectively passivate the metal and non-metal elements on the surface of the inorganic perovskite quantum dots, reduce the surface defects of the quantum dots, thereby improving the fluorescence intensity of the inorganic perovskite quantum dots And charge transfer efficiency.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for preparing a halogen-passivated inorganic perovskite quantum dot according to the present invention
  • FIG. 2 is a schematic diagram of a preferred embodiment of a method for fabricating a QLED device according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural view of a preferred embodiment of a QLED device according to Embodiment 1 of the present invention.
  • the present invention provides a method for preparing a halogen-passivated inorganic perovskite quantum dot.
  • a halogen-passivated inorganic perovskite quantum dot In order to clarify and clarify the object, technical solution and effect of the present invention, the present invention will be further described in detail below. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for preparing a halogen-passivated inorganic perovskite quantum dot according to the present invention. As shown in the figure, the method includes the following steps:
  • the inorganic perovskite quantum dot solution needs to be prepared in advance.
  • the inorganic perovskite quantum dot is one of CsPbCl 3 , CsPbBr 3 or CsPbI 3 .
  • the prior art generally uses a cationic precursor salt (for example, lanthanum oleate) solution mixed with an anionic precursor salt (for example, a lead halide) solution for crystal growth to prepare the inorganic perovskite quantum dot. Since the cation precursor salt solution and the anion precursor salt solution are added to the protonated ligand (for example, an amine ligand, a thiol ligand), the prepared oleylamine and thiol of the inorganic perovskite quantum dot are prepared.
  • the protonated ligand for example, an amine ligand, a thiol ligand
  • the surface of the inorganic perovskite quantum dot includes an amine ligand, which facilitates protonation of the amine ligand to produce R-NH 3 + and quantum dot surface.
  • amine ligand which facilitates protonation of the amine ligand to produce R-NH 3 + and quantum dot surface.
  • These protonated ligands not only hinder charge transport from affecting luminescence efficiency, but also halogens in polar organic halides are more readily associated with surface passivation of the inorganic perovskite quantum dots with polar organic halides.
  • Protonated ligands bind to affect the passivation effect.
  • the inorganic perovskite quantum dots are modified with a carboxylic acid ligand to remove protonated ligands on the surface of the inorganic perovskite quantum dots (eg, R-NH 3 + ), obtaining proton-free ligands such as R-COO- and R-COOH, thereby reducing the charge effect on the surface of the inorganic perovskite chain point.
  • a carboxylic acid ligand eg, R-NH 3 +
  • proton-free ligands such as R-COO- and R-COOH
  • the carboxylic acid ligand is added to the inorganic perovskite quantum dot solution to form R-COO- and H + , wherein R-COO- is combined with R-NH 3 + on the surface of the inorganic perovskite quantum dot by a charge effect , causing R-NH 3 + to detach from the surface of the inorganic perovskite quantum dot; and H + will combine with the R-NH 2 ligand on the surface of the inorganic perovskite quantum dot to form R-NH 3 + , the R-NH 3 + again with R-COO- combined by the charge effect and detached from the surface of the inorganic perovskite quantum dot, and finally the surface of the inorganic perovskite quantum dot exists only in the form of R-COO- and R-COOH.
  • the first ligand exchange reaction time is 0.5-2h, if the reaction time is too short, the protonated ligands on the surface of the inorganic perovskite quantum dots will be insufficiently removed. If the reaction time is too long, the proton-free ligand after the surface of the inorganic perovskite quantum dots has been exchanged is lost, and the fluorescence intensity is affected.
  • the mass ratio of the deprotonated ligand to the inorganic perovskite quantum dot is (20 ul - 100 ul): 100 mg, and the deprotonated ligand is added to the inorganic perovskite The first ligand exchange was carried out in the quantum dot solution.
  • the first ligand-exchanged inorganic perovskite quantum is subjected to passivation treatment using a polar organic halide.
  • the step S20 is a second ligand exchange reaction in which a halogen ion and an electropositive organic ligand are ionizable.
  • the halogen ion and the surface metal of the inorganic perovskite quantum dot are coordinated in a covalent bond. If a surface of the inorganic perovskite quantum dot has a cation defect, the halogen ion can be bonded to the surface of the inorganic perovskite quantum dot.
  • the metal is bonded in the form of an ionic bond, and the electropositive organic ligand is coordinated with an anion on the surface of the inorganic perovskite quantum dot by a covalent bond, and if an anion defect state exists on the surface of the inorganic perovskite quantum dot,
  • the electropositive organic ligand is capable of binding to the anion of the surface in the form of an ionic bond.
  • the surface of the inorganic perovskite quantum dots can be effectively passivated by the above method, thereby reducing surface defects and thereby increasing the fluorescence intensity of the inorganic perovskite quantum dots.
  • the polar organic halide is a quaternary ammonium halide.
  • the halogenated quaternary ammonium salt can be ionized to obtain a halogen ion (such as Cl 1- , Br 1- , I 1- ) and an organic cation BN + (wherein B is a hydrocarbon group).
  • the halogen ion in the halogenated quaternary ammonium salt can coordinate with the surface metal of the inorganic perovskite quantum dot in a covalent bond.
  • the halogen ion can be combined with the inorganic
  • the metal on the surface of the perovskite quantum dot is bound by an ionic bond, and the organic cation is coordinated with an anion on the surface of the inorganic perovskite quantum dot by a covalent bond.
  • the organic cation can bind to the anion of the surface in the form of an ionic bond.
  • the surface of the inorganic perovskite quantum dots can be effectively passivated by the above method, thereby reducing surface defects and thereby increasing the fluorescence intensity of the inorganic perovskite quantum dots.
  • the quaternary ammonium halide is a quaternary ammonium halide having a hydrocarbon group of 1 to 12 carbon atoms.
  • it may be a dodecyldimethylammonium chloride, a dodecyldimethylammonium bromide or a dodecyldimethylammonium iodide, and is not limited thereto.
  • the polar organic halide is a halogenated benzene. Since the halogen species of the substituted benzene ring are different and the positions of the substitutions are also asymmetric, the positive and negative charge centers of the benzene ring molecules are asymmetric. The asymmetric halogen atom on the benzene ring undergoes a polarization charge effect, thereby ionizing to obtain a halogen ion and a phenyl positive ion.
  • the halogen ion in the halogenated quaternary ammonium salt can coordinate with the surface metal of the inorganic perovskite quantum dot in a covalent bond.
  • the halogen ion can be combined with the inorganic
  • the metal on the surface of the perovskite quantum dot is bound by an ionic bond, and the phenyl cation is coordinated with an anion on the surface of the inorganic perovskite quantum dot by a covalent bond, if an anion defect state exists on the surface of the inorganic perovskite quantum dot
  • the phenyl cation can be combined with the anion of the surface in the form of an ionic bond.
  • a polar pentafluoroiodobenzene or one pentaflourochlorobenzene pentafluoro of bromobenzene; electron withdrawing ability of the halogen atom is F>Cl>Br> I, easy ionization of I - , Cl - , Br - and pentafluoro-substituted phenyl cations. Since the pentafluoro-substituted phenyl cation itself is also highly polar, its combination with an anion on the surface of the inorganic perovskite quantum dot can generate a strong dipole moment, and further reduce the surface defects while further realizing calcium. The increase in fluorescence intensity of titanium ore quantum dots.
  • the halogen in the polar organic halide of the present invention may also passivate the halogen bond formed by the halogen of the inorganic perovskite quantum surface or passivate the surface of the inorganic perovskite quantum dot by the charge dipole effect, thereby reducing surface defects thereof. Increasing the fluorescence intensity and charge transport efficiency of inorganic perovskite quantum dots.
  • the polar organic halide is added to the inorganic perovskite quantum dot solution for halogen passivation.
  • concentration of the polar organic halide in the polar organic halide solution is 0.2-1.5 mmol/ml.
  • the present invention further needs to be centrifuged with a polar organic solvent to prepare a halogen-passivated inorganic perovskite quantum dot.
  • a polar organic solvent includes methanol, ethanol, propanol or butanol but is not limited thereto.
  • the present invention also provides a halogen-passivated inorganic perovskite quantum dot prepared by the above method; further, a QLED device including an anode, a cathode, and an electron transport layer is further provided a hole transport layer and a quantum dot light emitting layer, wherein the quantum dot light emitting layer of the QLED device comprises the halogen passivated inorganic perovskite quantum dot.
  • halogen-passivated inorganic perovskite quantum dots and QLED device structures of the present invention are further explained below by way of specific examples:
  • the method for preparing the chlorine-passivated CsPbBr 3 quantum dot of the present embodiment comprises the following steps:
  • octadecene ODE
  • OAm oleylamine
  • PbBr 2 lead bromide
  • the prepared CsPbBr 3 quantum dot was dissolved in toluene to prepare a CsPbBr 3 quantum dot toluene solution, and 50 ⁇ l of oleic acid (OA) was added to the quantum dot toluene solution for 30 minutes, and then 0.1 ml of 0.05 ml was added.
  • the dodecyldimethylammonium chloride solution was stirred for another 30 minutes; finally, the mixture was centrifuged with butanol, separated and then dispersed into toluene to prepare a halogen-passivated CsPbBr 3 quantum dot solution.
  • the QLED device of the present embodiment includes an anode 14 stacked on the substrate 12, a hole transport layer 16, a quantum dot light-emitting layer 18, an electron transport layer 20, and a cathode 22, in order from bottom to top, wherein the quantum The dot light-emitting layer 18 was prepared from the chlorine-passivated CsPbBr 3 quantum dot solution of the present example.
  • the method for preparing the iodine element passivated CsPbBr 3 quantum dot of the embodiment comprises the following steps:
  • the QLED device of the present embodiment includes an anode 14 stacked on the substrate 12, a hole transport layer 16, a quantum dot light-emitting layer 18, an electron transport layer 20, and a cathode 22, in order from bottom to top, wherein the quantum The dot light-emitting layer 18 was prepared from the CsPbBr 3 quantum dot solution in which the iodine element of the present embodiment was passivated.
  • the present invention provides a method for preparing a halogen-passivated inorganic perovskite quantum dot by first adding a deprotonated ligand to an inorganic perovskite quantum dot solution for ligand exchange reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种卤素钝化钙钛矿量子点及其制备方法和QLED器件,其中,制备方法包括步骤:将具有去质子化作用的配体加入无机钙钛矿量子点溶液中,进行配体交换反应,得到第一次配体交换后的无机钙钛矿量子点溶液(S10);再将极性有机卤化物加入所述第一次配体交换后的无机钙钛矿量子点溶液中对所述无机钙钛矿量子点表面进行卤素钝化,离心得到卤素钝化的无机钙钛矿量子点(S20)。通过该制备方法能够实现对无机钙钛矿量子点表面的金属和非金属元素进行有效钝化,减少了其表面缺陷,从而提高了无机钙钛矿量子点的荧光强度以及电荷传输效率。

Description

一种卤素钝化钙钛矿量子点及其制备方法和QLED器件 技术领域
本发明涉及量子点领域,尤其涉及一种卤素钝化钙钛矿量子点及其制备方法和QLED器件。
背景技术
目前,对于钙钛矿发光二极管的研究进展主要集中在有机无机钙钛矿材料(例如CH 3NH 3PbBr),这种材料在绿光方面能够获得较高的器件效率,其外量子效率(External quantum efficiency,EQE)值达到8.53%。然而,由于有机无机钙钛矿材料对光热比较敏感,由其制备的发光二极管的热稳定性较差。
相对于有机无机钙钛矿材料,无机钙钛矿量子点材料(例如CsPbX 3(X=Cl,Br,and I))表现出了超强的热稳定性。然而,当采用无机钙钛矿量子点材料来制备发光二极管时,发现制备出的二极管的EQE值不到1%。经过分析发现由无机钙钛矿量子点材料制备的发光二极管,其EQE值较低的主要原因是由于无机钙钛矿量子点外表面覆盖的一层长链绝缘配体阻碍了电荷传输,因此在利用这些带有长链绝缘配体的钙钛矿量子点制备器件时不能够有效的使电子在钙钛矿纳米晶内进行辐射复合,严重降低了钙钛矿发光二极管的器件效果。
这些长链绝缘配体主要是用来保证量子点的高稳定性以及高荧光强度的,现有技术在采用短链配体来交换所述长链绝缘配体时,会导致无机钙钛矿量子点材料的荧光强度降低;因此如何实现在使用短链配体替换长链绝缘配体的同时,还能使无机钙钛矿量子点的荧光强度增强是一个很大的挑战。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种卤素钝化钙钛矿量子点及其制备方法和QLED器件,旨在解决现有技术在使用短链配体来交换无机钙钛矿量子点上的长链绝缘配体时,会导致无机钙钛矿量子点的荧光强度降低的问题。
本发明的技术方案如下:
一种卤素钝化无机钙钛矿量子点的制备方法,其中,包括步骤:
提供一种无机钙钛矿量子点溶液;
将具有去质子化作用的配体加入无机钙钛矿量子点溶液中,进行配体交换反应,得到第一次配体交换后的无机钙钛矿量子点溶液;
将极性有机卤化物加入所述第一次配体交换后的无机钙钛矿量子点溶液中对所述无机钙钛矿量子点表面进行卤素钝化,离心得到所述卤素钝化无机钙钛矿量子点。
较佳的,所述的卤素钝化无机钙钛矿量子点的制备方法,其中,所述具有去质子化作用的配体为羧酸配体,例如油酸、十六烷酸等不限于此。
较佳的,按具有去质子化作用的配体体积与无机钙钛矿量子点的质量比为(20ul-120ul):100mg,将所述具有去质子化作用的配体加入无机钙钛矿量子点溶液中进行第一次配体交换。
较佳的,所述的卤素钝化无机钙钛矿量子点的制备方法,其中,极性有机卤化物为卤化季铵盐,优选的为烃基碳原子数为1-12的卤化季铵盐。作为举例,所述卤化季铵盐包括:双十二烷基二甲基氯化铵、双十二烷基二甲基溴化铵或双十二烷基二甲基碘化铵等不限于此。
较佳的,所述的卤素钝化无机钙钛矿量子点的制备方法,其中,极性有机卤化物为卤代苯,作为举例,所述卤代苯包括五氟碘苯、五氟氯苯或五氟溴苯等不限于此。
较佳的,所述的卤素钝化无机钙钛矿量子点的制备方法,其中,所述无机钙钛矿量子点为CsPbCl 3、CsPbBr 3或CsPbI 3中的一种,所述无机钙钛矿量子点表面配体包括巯基配体、胺基配体等可产生质子化的配体。
按极性有机卤化物溶剂体积与无机钙钛矿量子点的质量比为(50ul-120ul):100mg,将所述极性有机卤化物加入无机钙钛矿量子点溶液中进行卤素钝化。所述极性有机卤化物中极性有机卤化物为0.2-1.5mmol/ml。
较佳的,所述的卤素钝化无机钙钛矿量子点的制备方法,其中,采用极性有机溶剂对所述卤素钝化无机钙钛矿量子点溶液进行离心处理,得到固态的卤素钝化无机钙钛矿量子点材料。所述极性有机溶剂包括甲醇、乙醇、丙醇、丁醇等不限于此。
本发明还提供一种卤素钝化无机钙钛矿量子点,其中,采用本发明所述制备 方法制备而成。
本发明还提供一种QLED器件,其中,所述QLED器件包括阳极、空穴传输层、发光层、电子传输层和阴极,所述量子点发光层包括由本发明提供的卤素钝化无机钙钛矿量子点制备得到。
有益效果:本发明提供一种卤素钝化无机钙钛矿量子点的制备方法,先将具有去质子化作用的配体加入无机钙钛矿量子点溶液中,进行配体交换反应,得到第一次配体交换后的无机钙钛矿量子点溶液;再将极性有机卤化物加入所述第一次配体交换后的无机钙钛矿量子点溶液中进行卤素钝化,得到卤素钝化无机钙钛矿量子点溶液;通过本发明能够实现对无机钙钛矿量子点表面的金属和非金属元素进行有效钝化,减少了量子点表面缺陷,从而提高了无机钙钛矿量子点的荧光强度以及电荷传输效率。
附图说明
图1为本发明一种卤素钝化无机钙钛矿量子点的制备方法较佳实施例的流程图;
图2为本发明实施例2中一种QLED器件制备方法的较佳实施例的示意图;
图3为本发明实施例1中一种QLED器件的较佳实施例结构示意图。
具体实施方式
本发明提供一种卤素钝化无机钙钛矿量子点的制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为本发明一种卤素钝化无机钙钛矿量子点的制备方法较佳实施例的流程图,如图所示,其中,包括步骤:
S10、将具有去质子化作用的配体加入无机钙钛矿量子点溶液中,进行配体交换反应,得到第一次配体交换后的无机钙钛矿量子点溶液;
S20、将极性有机卤化物加入所述第一次配体交换后的无机钙钛矿量子点溶液中对所述无机钙钛矿量子点表面进行卤素钝化,离心得到所述卤素钝化无机钙钛矿量子点。
具体来说,在所述步骤S10之前,需要预先制备好无机钙钛矿量子点溶液。在本发明中,所述无机钙钛矿量子点为CsPbCl 3、CsPbBr 3或CsPbI 3中的一种。
现有技术一般采用阳离子前驱体盐(例如油酸铯)溶液与阴离子前驱体盐(例如卤化铅)溶液混合进行晶体生长制备得到所述无机钙钛矿量子点。由于阳离子前驱体盐溶液与阴离子前驱体盐溶液加入了可发生了质子化配体(例如胺基配体、硫醇配体),使制备得到的无机钙钛矿量子点的油胺、硫醇配体溶液发生质子化,这些质子化的长链有机配体会阻碍电荷传输,不能够有效的使电子在钙钛矿纳米晶内进行辐射复合,从而严重降低钙钛矿量子点发光二极管的发光效率。
如图2所示,在一种具体的实施方式中,无机钙钛矿量子点表面包括有胺基配体,使所述胺基配体极易质子化产生R-NH 3 +与量子点表面结合。这些质子化的配体不仅阻碍电荷传输影响发光效率,如果进一步采用极性有机卤化物对所述无机钙钛矿量子点进行表面钝化时,极性有机卤化物中的卤素也更容易与这些质子化的配体结合,从而影响钝化效果。
在一种所述步骤S10具体的实施方式中,如图2所示,利用羧酸配体对无机钙钛矿量子点进行修饰,去除无机钙钛矿量子点表面上质子化的配体(例如R-NH 3 +),得到无质子化类别的配体,如R-COO-和R-COOH,从而降低了无机钙钛矿链子点表面的电荷效应。具体地,羧酸配体加入无机钙钛矿量子点溶液后形成R-COO-和H +,其中R-COO-与无机钙钛矿量子点表面上的R-NH 3 +通过电荷效应结合后,使得R-NH 3 +脱离无机钙钛矿量子点表面;而H +会与无机钙钛矿量子点表面上的R-NH 2配体结合形成R-NH 3 +,所述R-NH 3 +再次与R-COO-通过电荷效应结合并脱离无机钙钛矿量子点表面,最终使得无机钙钛矿量子点表面只存在R-COO-和R-COOH两种形式的配体。
在室温(20℃-40℃)条件下,第一次配体交换的反应时间为0.5-2h,若反应时间过短会导致无机钙钛矿量子点表面上含有质子化的配体去除不充分,反应时间过长会对无机钙钛矿量子点表面已经交换后的无质子配体造成损失,导致荧光强度受影响。
优选地,按所述具有去质子化作用的配体体积与无机钙钛矿量子点的质量比为(20ul-100ul):100mg,将所述具有去质子化作用的配体加入无机钙钛矿量子点溶液中进行第一次配体交换。
进一步地,在所述步骤S20中,采用极性有机卤化物对第一次配体交换后的无机钙钛矿量子进行钝化处理。所述步骤S20为第二次配体交换反应,所述极性 有机卤化物中可电离出卤素离子和具有电正性的有机配体。所述卤素离子与无机钙钛矿量子点的表面金属以共价键的形式进行配位,若无机钙钛矿量子点的表面存在阳离子缺陷,则卤素离子能够与无机钙钛矿量子点表面的金属以离子键的形式结合,具有电正性的有机配体与无机钙钛矿量子点表面的阴离子以共价键进行配位,若无机钙钛矿量子点的表面存在阴离子缺陷态时,具有电正性的有机配体能够与表面的阴离子以离子键的形式进行结合。通过上述方式可对无机钙钛矿量子点的表面进行有效钝化,从而降低其表面缺陷,进而提高无机钙钛矿量子点的荧光强度。
在一种具体的实施方式中,所述极性有机卤化物为卤化季铵盐。所述卤化季铵盐可以电离得到卤素离子(如Cl 1-、Br 1-、I 1-)和有机阳离子B-N +(其中B为烃基基团)。所述卤化季铵盐中的卤素离子可与无机钙钛矿量子点的表面金属以共价键的形式进行配位,若无机钙钛矿量子点的表面存在阳离子缺陷,则卤素离子能够与无机钙钛矿量子点表面的金属以离子键的形式结合,有机阳离子与无机钙钛矿量子点表面的阴离子以共价键进行配位,若无机钙钛矿量子点的表面存在阴离子缺陷态时,有机阳离子能够与表面的阴离子以离子键的形式进行结合。通过上述方式可对无机钙钛矿量子点的表面进行有效钝化,从而降低其表面缺陷,进而提高无机钙钛矿量子点的荧光强度。
优选的,所述卤化季铵盐为烃基碳原子数为1-12的卤化季铵盐。例如可以是双十二烷基二甲基氯化铵、双十二烷基二甲基溴化铵或双十二烷基二甲基碘化铵中等不限于此。
在一种具体的实施方式中,所述极性有机卤化物为卤代苯,由于取代苯环的卤素种类不同并且取代的位置也不对称,造成苯环分子发生正负电荷中心不对称,因此苯环上不对称的卤素原子会发生极化电荷效应,从而电离得到卤素离子和苯基正离子。所述卤化季铵盐中的卤素离子可与无机钙钛矿量子点的表面金属以共价键的形式进行配位,若无机钙钛矿量子点的表面存在阳离子缺陷,则卤素离子能够与无机钙钛矿量子点表面的金属以离子键的形式结合,苯基正离子与无机钙钛矿量子点表面的阴离子以共价键进行配位,若无机钙钛矿量子点的表面存在阴离子缺陷态时,苯基正离子能够与表面的阴离子以离子键的形式进行结合。优选的,为极性较强的五氟碘苯、五氟氯苯或五氟溴苯中的一种;由于卤素原子的吸 电子能力为F>Cl>Br>I,极易电离产生I -、Cl -、Br -和五氟取代的苯基正离子。由于五氟取代的苯基正离子本身的极性也较强,其与无机钙钛矿量子点表面的阴离子结合可产生较强的偶极矩,在降低其表面缺陷的同时,可进一步实现钙钛矿量子点荧光强度的升高。
进一步的,本发明极性有机卤化物中的卤素还可以与无机钙钛矿量子表面的卤素形成的卤键或通过电荷偶极效应来钝化无机钙钛矿量子点表面,减少其表面缺陷从而提高无机钙钛矿量子点的荧光强度以及电荷传输效率。
按极性有机卤化物溶液的体积与无机钙钛矿量子点的质量比为(50ul-120ul):100mg,将所述极性有机卤化物加入无机钙钛矿量子点溶液中进行卤素钝化,其中,所述极性有机卤化物溶液中极性有机卤化物的浓度为0.2-1.5mmol/ml。
进一步,本发明在步骤S20中制得卤素钝化无机钙钛矿量子点溶液后,还需采用极性有机溶剂对其进行离心处理,从而制得卤素钝化无机钙钛矿量子点。较佳地,所述极性有机溶剂包括甲醇、乙醇、丙醇或丁醇但不限于此。
基于上述方法,本发明还提供一种采用上述方法制备而成的卤素钝化无机钙钛矿量子点;进一步地,还提供了一种QLED器件,所述QLED器件包括阳极、阴极、电子传输层、空穴传输层和量子点发光层,其中,所述QLED器件的量子点发光层包括所述的卤素钝化无机钙钛矿量子点。
下面通过具体实施例对本发明一种卤素钝化无机钙钛矿量子点以及QLED器件结构做进一步地解释说明:
实施例1
本实施例的氯元素钝化的CsPbBr 3量子点的制备方法,包括如下步骤:
(1)、油酸铯Cs(OA)储备液的制备:
称取0.814g的碳酸铯Cs 2CO 3加入到100ml的三口烧瓶中,向烧瓶中加入30ml的十八烯(ODE)和2.5ml的油酸(OA);
在惰性气体下先常温排气20min,然后再加热到120℃排气60min,最后再加热到160℃使所有的碳酸铯Cs 2CO 3与油酸反应,然后保持溶液温度在160℃,避免油酸铯Cs(OA)溶液凝固,制备得到油酸铯Cs(OA)储备液。
(2)、CsPbBr 3量子点的制备:
取50ml的十八烯(ODE)、5ml的油胺(OAm)和0.7g的溴化铅(PbBr 2)一起加入到100ml的三口烧瓶当中,在惰性气体下先常温排气20min,然后加热到120℃排气30min,然后将混合液加热到180℃,得到Pb前驱体混合液;
取上述油酸铯Cs(OA)储备液快速热注入到Pb前驱体混合液中,反应10s后将反应混合液快速的转移到冰水浴当中;用甲苯和甲醇对冷却后的混合液进行高速离心分离沉淀,制备得到110.2mgCsPbBr 3量子点,将最终的样品分散在甲苯当中制得CsPbBr 3量子点溶液;
(3)、氯元素钝化的CsPbBr 3量子点的制备:
将制备得到的CsPbBr 3量子点溶于甲苯,制备得到CsPbBr 3量子点甲苯溶液,将50微升的油酸(OA)添加到量子点甲苯溶液中搅拌30min,然后再添加0.1ml含有0.05mmol的双十二烷基二甲基氯化铵溶液再搅拌30min;最后用丁醇对混合液进行离心,分离后再分散到甲苯当中制得卤素钝化的CsPbBr 3量子点溶液。
本实施例的QLED器件,如图3所示,从下至上依次包括基板12上叠置的阳极14、空穴传输层16、量子点发光层18、电子传输层20和阴极22,其中,量子点发光层18由本实施例的氯元素钝化的CsPbBr 3量子点溶液制备得到。
实施例2
本实施例的碘元素钝化的CsPbBr 3量子点的制备方法,包括如下步骤:
(1)、采用本发明实施例1的方法制备得到CsPbBr 3量子点甲苯溶液;
(2)、碘元素钝化的CsPbBr 3量子点的制备:
将50微升的油酸(OA)添加到量子点甲苯溶液中搅拌30min,然后再添加100微升含有0.05mmol的五氟碘苯(IPFB)溶液再搅拌30min,最后用丁醇对混合液进行离心分离沉淀,分离后再分散到甲苯当中制得碘元素钝化的CsPbBr 3量子点溶液。
本实施例的QLED器件,如图3所示,从下至上依次包括基板12上叠置的阳极14、空穴传输层16、量子点发光层18、电子传输层20和阴极22,其中,量子点发光层18由本实施例的碘元素钝化的CsPbBr 3量子点溶液制备得到。
综上所述,本发明提供一种卤素钝化无机钙钛矿量子点的制备方法,先将具有去质子化作用的配体加入无机钙钛矿量子点溶液中,进行配体交换反应,得到第一次配体交换后的无机钙钛矿量子点溶液;再将卤化季铵盐或卤代苯加入所述 第一次配体交换后的无机钙钛矿量子点溶液中进行卤素钝化,得到卤素钝化无机钙钛矿量子点溶液;通过本发明能够实现对无机钙钛矿量子点表面的金属和非金属元素进行有效钝化,减少了其表面缺陷,从而提高了无机钙钛矿量子点的荧光强度以及电荷传输效率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种卤素钝化无机钙钛矿量子点的制备方法,其特征在于,包括步骤:
    提供一种无机钙钛矿量子点溶液;
    将具有去质子化作用的配体加入无机钙钛矿量子点溶液中,进行配体交换反应,得到第一次配体交换后的无机钙钛矿量子点溶液;
    将极性有机卤化物加入所述第一次配体交换后的无机钙钛矿量子点溶液中对所述无机钙钛矿量子点表面进行卤素钝化,离心得到所述卤素钝化无机钙钛矿量子点。
  2. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述具有去质子化作用的配体为羧酸配体。
  3. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述无机钙钛矿量子点表面的配体包括硫醇配体和/或胺基配体。
  4. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述极性有机卤化物为卤化季铵盐。
  5. 根据权利要求4所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述卤化季铵盐为烃基碳原子数为1-12的卤化季铵盐。
  6. 根据权利要求4所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述卤化季铵盐为双十二烷基二甲基氯化铵、双十二烷基二甲基溴化铵或双十二烷基二甲基碘化铵。
  7. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述极性有机卤化物为卤代苯。
  8. 根据权利要求7所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述卤代苯为五氟碘苯、五氟氯苯或五氟溴苯。
  9. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,按极性有机卤化物溶液的体积与无机钙钛矿量子点的质量比为(50ul-120ul):100mg,将所述极性有机卤化物加入无机钙钛矿量子点溶液中进行卤素钝化,其中,所述极性有机卤化物溶液中极性有机卤化物的浓度为0.2-1.5mmol/ml。
  10. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述第一次配体交换的反应时间为0.5-2h。
  11. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述第一次配体交换的反应在20℃-40℃条件下进行。
  12. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述具有去质子化作用的配体体积与无机钙钛矿量子点的质量比为(20ul-100ul):100mg。
  13. 根据权利要求1所述的卤素钝化无机钙钛矿量子点的制备方法,其特征在于,所述无机钙钛矿量子点为CsPbCl3、CsPbBr3或CsPbI3中的一种。
  14. 一种卤素钝化无机钙钛矿量子点,其特征在于,采用权利要求1-13任意一项所述卤素钝化无机钙钛矿量子点的制备方法制备得到。
  15. 一种QLED器件,所述QLED器件包括阳极、阴极、电子传输层、空穴传输层和量子点发光层,其特征在于,所述QLED器件的量子点发光层材料包括权利要求14所述的卤素钝化无机钙钛矿量子点。
PCT/CN2018/078494 2017-07-14 2018-03-09 一种卤素钝化钙钛矿量子点及其制备方法和qled器件 WO2019010988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710575807.1 2017-07-14
CN201710575807.1A CN109256495B (zh) 2017-07-14 2017-07-14 一种卤素钝化钙钛矿量子点及其制备方法和qled器件

Publications (1)

Publication Number Publication Date
WO2019010988A1 true WO2019010988A1 (zh) 2019-01-17

Family

ID=65000924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078494 WO2019010988A1 (zh) 2017-07-14 2018-03-09 一种卤素钝化钙钛矿量子点及其制备方法和qled器件

Country Status (2)

Country Link
CN (1) CN109256495B (zh)
WO (1) WO2019010988A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019640A (zh) * 2019-11-19 2020-04-17 南昌航空大学 一种高稳定性、优异光学性质钙钛矿薄膜的制备方法
KR20220013802A (ko) * 2020-07-27 2022-02-04 한국생산기술연구원 울트라소니케이션을 활용한 고안정성 고발광 페로브스카이트 양자점 합성법
CN114384615A (zh) * 2022-02-16 2022-04-22 闽都创新实验室 一种无机钙钛矿量子点扩散板及其制备方法
CN115074115A (zh) * 2022-07-21 2022-09-20 合肥福纳科技有限公司 一种用于修饰量子点表面缺陷的方法、量子点产品及应用
WO2023118938A1 (en) * 2021-12-22 2023-06-29 Ecole Polytechnique Federale De Lausanne (Epfl) Optoelectronic or photovoltaic device with metal halide perovskite film treated by passivating agent

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500280A (zh) * 2019-01-30 2020-08-07 苏州星烁纳米科技有限公司 钙钛矿量子点复合膜的制备方法
CN111500287A (zh) * 2019-01-30 2020-08-07 苏州星烁纳米科技有限公司 钙钛矿量子点的制备方法
CN109920920B (zh) * 2019-02-28 2020-12-29 华中科技大学 一种基于原子层沉积的量子点光电探测器及其制备方法
CN110144208A (zh) * 2019-05-15 2019-08-20 南京理工大学 提高APbI3钙钛矿量子点效率的方法
CN112011335B (zh) * 2019-05-30 2023-02-07 纳晶科技股份有限公司 无机钙钛矿量子点的制备方法
CN110184056B (zh) * 2019-06-20 2021-10-22 南京理工大学 用于x射线成像的高效率卤素钙钛矿量子点闪烁体的合成方法
CN110718645B (zh) * 2019-09-24 2021-01-05 华中科技大学 一种钙钛矿量子点发光二极管的制备方法及产品
CN111139059A (zh) * 2019-12-19 2020-05-12 南京理工大学 一种短链烷基羧酸改善钙钛矿量子点性能的方法
CN113025309A (zh) * 2019-12-25 2021-06-25 Tcl集团股份有限公司 量子点及其表面改性的方法和量子点发光二极管
CN113025308B (zh) * 2019-12-25 2023-04-07 Tcl科技集团股份有限公司 量子点薄膜,量子点发光二极管及其制备方法
CN111500289A (zh) * 2020-04-21 2020-08-07 陕西科技大学 1-烯丙基-3-甲基-卤化咪唑/明胶协同稳定的锡卤钙钛矿量子点及其制备方法
CN112175613B (zh) * 2020-09-24 2022-10-14 南京理工大学 双层配体制备高效稳定性无机钙钛矿量子点的方法
CN112466987B (zh) * 2020-11-03 2022-12-02 华中科技大学 一种基于铯铅溴辐射探测器的溴气氛围后处理方法
CN114188490B (zh) * 2021-12-10 2024-03-12 京东方科技集团股份有限公司 量子点-半导体复合膜层及其制备方法、量子点发光器件
CN114752370B (zh) * 2022-03-03 2023-11-03 浙江大学温州研究院 一种调控卤素钙钛矿量子点发光光谱的方法
CN115403067B (zh) * 2022-09-30 2024-04-19 武汉大学 一种提高混合卤素钙钛矿稳定性的方法
CN115386364B (zh) * 2022-09-30 2023-09-29 天津大学 一种蓝光钙钛矿量子点的制备方法
CN116004230B (zh) * 2023-02-09 2023-09-26 温州锌芯钛晶科技有限公司 一种可控结晶生长CsPbI3钙钛矿量子点及其制备方法
CN116218524B (zh) * 2023-03-07 2024-04-19 中国科学院宁波材料技术与工程研究所 CsPbI3量子点、其合成方法及量子点发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
CN105331362A (zh) * 2015-12-07 2016-02-17 南京理工大学 一种室温大产率无机卤素钙钛矿荧光量子点的制备方法
CN106450021A (zh) * 2016-11-24 2017-02-22 南方科技大学 一种有机电致发光器件及其制备方法
CN106449909A (zh) * 2016-12-05 2017-02-22 Tcl集团股份有限公司 无机钙钛矿量子点发光二极管及其制备方法
CN106590629A (zh) * 2016-11-23 2017-04-26 厦门华厦学院 一种提高钙钛矿量子点稳定性的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306195A3 (en) * 1998-09-18 2012-04-25 Massachusetts Institute of Technology Biological applications of semiconductor nanocrystals
JP6524095B2 (ja) * 2013-12-17 2019-06-05 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 金属ハロゲン化物ペロブスカイト及び不動態化剤を含む光起電力デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
CN105331362A (zh) * 2015-12-07 2016-02-17 南京理工大学 一种室温大产率无机卤素钙钛矿荧光量子点的制备方法
CN106590629A (zh) * 2016-11-23 2017-04-26 厦门华厦学院 一种提高钙钛矿量子点稳定性的方法
CN106450021A (zh) * 2016-11-24 2017-02-22 南方科技大学 一种有机电致发光器件及其制备方法
CN106449909A (zh) * 2016-12-05 2017-02-22 Tcl集团股份有限公司 无机钙钛矿量子点发光二极管及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019640A (zh) * 2019-11-19 2020-04-17 南昌航空大学 一种高稳定性、优异光学性质钙钛矿薄膜的制备方法
KR20220013802A (ko) * 2020-07-27 2022-02-04 한국생산기술연구원 울트라소니케이션을 활용한 고안정성 고발광 페로브스카이트 양자점 합성법
KR102452298B1 (ko) 2020-07-27 2022-10-07 한국생산기술연구원 울트라소니케이션을 활용한 고안정성 고발광 페로브스카이트 양자점 합성법
WO2023118938A1 (en) * 2021-12-22 2023-06-29 Ecole Polytechnique Federale De Lausanne (Epfl) Optoelectronic or photovoltaic device with metal halide perovskite film treated by passivating agent
CN114384615A (zh) * 2022-02-16 2022-04-22 闽都创新实验室 一种无机钙钛矿量子点扩散板及其制备方法
CN114384615B (zh) * 2022-02-16 2024-02-02 闽都创新实验室 一种无机钙钛矿量子点扩散板及其制备方法
CN115074115A (zh) * 2022-07-21 2022-09-20 合肥福纳科技有限公司 一种用于修饰量子点表面缺陷的方法、量子点产品及应用

Also Published As

Publication number Publication date
CN109256495A (zh) 2019-01-22
CN109256495B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2019010988A1 (zh) 一种卤素钝化钙钛矿量子点及其制备方法和qled器件
Song et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%
JP6953587B2 (ja) 空気中で安定な表面不動態化ペロブスカイト量子ドット(qd)、このqdを作製する方法及びこのqdを使用する方法
Li et al. Perovskite quantum dots for light-emitting devices
Fang et al. Recent advances and prospects toward blue perovskite materials and light‐emitting diodes
Di et al. Efficient white LEDs with bright green-emitting CsPbBr3 perovskite nanocrystal in mesoporous silica nanoparticles
Zhang et al. Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping
Zhao et al. Stabilizing CsPbBr3 quantum dots with conjugated aromatic ligands and their regulated optical behaviors
Peng et al. Pure Bromide‐Based Perovskite Nanoplatelets for Blue Light‐Emitting Diodes
WO2021103471A1 (zh) 一种自组装多维量子阱CsPbX 3钙钛矿纳米晶电致发光二极管
Yu et al. Color-stable blue light-emitting diodes enabled by effective passivation of mixed halide perovskites
Huang et al. Cs4PbBr6/CsPbBr3 nanocomposites for all-inorganic electroluminescent perovskite light-emitting diodes
WO2021103169A1 (zh) 钙钛矿微球、混色光转换薄膜、以及显示器
Tseng et al. Tetraoctylammonium bromide-passivated CsPbI3− xBrx perovskite nanoparticles with improved stability for efficient red light-emitting diodes
Yang et al. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes
Chen et al. Influence of surface passivation on perovskite CsPbBr1. 2I1. 8 quantum dots and application of high purity red light-emitting diodes
Liu et al. Efficiently improved photoluminescence in cesium lead halide perovskite nanocrystals by using bis (trifluoromethane) sulfonimide
Li et al. Hexamethyldisilazane-triggered room temperature synthesis of hydrophobic perovskite nanocrystals with enhanced stability for light-emitting diodes
Zhan et al. Fluorine Passivation Inhibits “Particle Talking” Behaviors under Thermal and Electrical Conditions of Pure Blue Mixed Halide Perovskite Nanocrystals
Yang et al. In situ tetrafluoroborate-modified MAPbBr 3 nanocrystals showing high photoluminescence, stability and self-assembly behavior
Yang et al. Effects of co-doped Li+ ions on luminescence of CaWO 4: Sm 3+ nanoparticles
Qiao et al. Synergistic effect of multidentate ligands on CsPbI3 perovskite nanocrystals surface for high efficiency deep red light-emitting diode
Wang et al. Synthesis of highly luminescent CsPbBr3@ Cs4PbBr6 nanocrystals via ligand-assisted reaction
CN109994623B (zh) 复合金属氧化物纳米颗粒及其制备方法和应用
Xie et al. Post-synthetic ammonium hexafluorophosphate treatment enables CsPbBr3 perovskite quantum dots exhibiting robust photoluminescence and environmental stability for white light-emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18831835

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17-09-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18831835

Country of ref document: EP

Kind code of ref document: A1