WO2021103169A1 - 钙钛矿微球、混色光转换薄膜、以及显示器 - Google Patents

钙钛矿微球、混色光转换薄膜、以及显示器 Download PDF

Info

Publication number
WO2021103169A1
WO2021103169A1 PCT/CN2019/125038 CN2019125038W WO2021103169A1 WO 2021103169 A1 WO2021103169 A1 WO 2021103169A1 CN 2019125038 W CN2019125038 W CN 2019125038W WO 2021103169 A1 WO2021103169 A1 WO 2021103169A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
microspheres
light
protective film
microsphere
Prior art date
Application number
PCT/CN2019/125038
Other languages
English (en)
French (fr)
Inventor
胡智萍
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/625,828 priority Critical patent/US20210332292A1/en
Publication of WO2021103169A1 publication Critical patent/WO2021103169A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to the field of display technology, in particular to a simple and efficient display structure.
  • the down-conversion white organic light-emitting diode (OLED) display uses blue OLED to excite the green and red light conversion layers to generate green and red light, which are mixed with the transmitted blue light to form white light.
  • OLED organic light-emitting diode
  • the structure of this white light OLED display is relatively simple. In order to improve the color purity and color gamut of such down-conversion white light OLEDs, it is necessary to develop light conversion materials with high luminous efficiency, narrow luminous peaks and wide color gamut.
  • perovskite materials have attracted much attention. Their excellent optical properties have enabled them to make rapid progress in the field of luminescence displays. Since the fluorescence quantum yield of perovskite materials is close to 99%, the external quantum efficiency of light-emitting diodes using perovskite materials has exceeded 20%, and the perovskite crystals have a high absorption coefficient for the blue band. Therefore, perovskite The material can be used as an excellent light conversion material. However, the perovskite structure has the disadvantage of water and oxygen sensitivity, which makes the stability of the device based on this material a major problem and hinders the wide application of perovskite materials in the field of light-emitting displays.
  • the purpose of the present invention is to provide a high-stability white organic light-emitting diode (OLED) display. Therefore, the present invention develops a red and green perovskite microsphere with a coating structure, which has luminous efficiency
  • the present invention provides a perovskite microsphere, comprising: a plurality of inorganic perovskite crystals as the core of the perovskite microsphere; and an amorphous silicon oxide spherical shell, which covers the The plurality of inorganic perovskite crystals, wherein the perovskite microspheres include green perovskite microspheres and red-green perovskite microspheres.
  • the luminescence peak of the fluorescence emission spectrum of the solution of the green perovskite microsphere is 515 nm to 525 nm, the half-height width of the luminescence peak is 16 nm to 20 nm; and the luminescence peak of the fluorescence emission spectrum of the solution of the red perovskite microspheres is 680 From nm to 690 nm, the full width at half maximum of the luminescence peak is from 32 nm to 37 nm.
  • the method for preparing the perovskite microspheres includes the following steps:
  • the step S10 includes:
  • the step S20 includes:
  • S21 respectively dissolve PbBr2 and PbI2 in an organic solvent to obtain the lead bromide precursor solution containing 10-15 mg/ml of PbBr2, and obtain the lead iodide precursor solution containing 20-25 mg/ml of PbI2;
  • the step S30 includes:
  • the cesium oleate precursor and the silane (volume ratio 4:5) are added to the lead bromide precursor liquid and the lead iodide precursor liquid to obtain a bright colloidal solution;
  • the perovskite powder is the green perovskite microspheres and the red calcium Titanium ore microspheres.
  • the silane is selected from the group consisting of tetraethyl orthosilicate, tetraoxysilane, triethoxysilane, methyltrimethoxysilane, and tetrapropoxysilane ;
  • the organic solvent is octadecene.
  • the present invention also provides a color mixing light conversion film, wherein the color mixing light conversion film includes a light conversion layer, and the light conversion layer includes a perovskite ultraviolet curable adhesive material, wherein 100 parts by weight The perovskite ultraviolet curing adhesive material is a reference, and the perovskite ultraviolet curing adhesive material comprises: 5 to 10 parts by weight of the red perovskite microspheres according to claim 1; and 10 to 20 parts by weight The green perovskite microspheres of claim 1; and 57 to 80 parts by weight of ultraviolet curing glue, the 57 to 80 parts by weight of ultraviolet curing glue includes: 35 to 45 parts by weight of resin, 20 to 25 parts by weight Parts of ultraviolet light absorbing monomer, 1 to 5 parts by weight of photoinitiator, and 1 to 5 parts by weight of diffusion particles.
  • the preparation method of the mixed color light conversion film includes:
  • S101 provides a first protective film and a second protective film, wherein the materials of the first protective film and the second protective film include polyethylene terephthalate, and the first protective film and the The thickness of the second protective film is each independently 50 ⁇ m to 150 ⁇ m;
  • vacuum evaporation is performed on the surface of the first protective film and the surface of the second protective film, so that the surface of the first protective film and the surface of the second protective film form a first barrier layer and a surface, respectively.
  • the second barrier layer wherein the thickness of the first barrier layer and the second barrier layer are each independently 2 ⁇ m to 5 ⁇ m;
  • ultraviolet curing is performed on the mixed color light film assembly to obtain the mixed color light conversion film.
  • the present invention provides a display device, which includes: an anode; a hole injection layer; a hole transport layer; a blue organic light-emitting layer; an electron transport layer; an electron injection layer; a cathode;
  • the mixed-color light conversion film of the present invention wherein the mixed-color light conversion film includes: a first protective layer; a first barrier layer; the light conversion layer; a second barrier layer; and a second protective layer stacked in sequence.
  • the blue organic light-emitting layer emits excitation light to excite the perovskite ultraviolet curable adhesive material in the light conversion layer to obtain photo-induced red light and photo-induced green light .
  • the photo-induced red light and the photo-induced green light are mixed with the blue light not absorbed by the ultraviolet light absorbing monomer to form white light.
  • the purpose of the present invention is to provide a high-stability display. Therefore, the present invention develops a red and green perovskite microsphere with a coating structure, which has high luminous efficiency, narrow spectrum, adjustable spectrum, etc. Advantages, through the protective effect of the coating material, the physical and optical stability of the perovskite microsphere material can be improved, and the ion exchange between different halogen elements can be inhibited, so that the red and green perovskite materials are still very good when mixed Monochromaticity; the use of the red and green perovskite microspheres with the coating structure provided by the present invention as the optical conversion material of white light OLED displays can improve the photon utilization rate of organic light-emitting materials and reduce display power consumption. Compared with the light conversion layer, quantum dots can reduce the hazards of heavy metals and narrow the spectrum, thereby improving color purity and color gamut; compared with vapor-deposited white light OLEDs, it greatly reduces the process difficulty and cost.
  • Fig. 1 is a schematic diagram of perovskite microspheres having a coating structure in an embodiment of the present invention.
  • Figure 2A shows the emission spectrum of green perovskite microspheres.
  • Figure 2B shows the emission spectrum of the red perovskite microspheres.
  • FIG. 3 is a schematic diagram of a mixed color light conversion film according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a white organic light emitting diode display according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of the principle of a white light organic light emitting diode display according to an embodiment of the present invention.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the purpose of the present invention is to provide a high-stability display. Therefore, the present invention develops a red and green perovskite microsphere with a coating structure, which has high luminous efficiency, narrow spectrum, adjustable spectrum, etc. Advantages, through the protective effect of the coating material, the physical and optical stability of the perovskite microsphere material can be improved, and the ion exchange between different halogen elements can be inhibited, so that the red and green perovskite materials are still very good when mixed Monochromaticity; the use of the red and green perovskite microspheres with the coating structure provided by the present invention as the optical conversion material of white light OLED displays can improve the photon utilization rate of organic light-emitting materials and reduce display power consumption. Compared with the light conversion layer, quantum dots can reduce the hazards of heavy metals and narrow the spectrum, thereby improving color purity and color gamut; compared with vapor-deposited white light OLEDs, it greatly reduces the process difficulty and cost.
  • Fig. 1 is a schematic diagram of perovskite microspheres having a coating structure in an embodiment of the present invention.
  • an embodiment of the present invention provides a perovskite microsphere 10, including: a plurality of inorganic perovskite crystals 11 as the core of the perovskite microsphere 10 And an amorphous silicon oxide spherical shell 12, covering the plurality of inorganic perovskite crystals 11, wherein the perovskite microspheres 10 include green perovskite microspheres 10G and red-green perovskite microspheres 10R, As shown in Figure 3.
  • the luminescent core is an all-inorganic perovskite crystal 11, and the protective shell adopts a transparent amorphous silicon oxide spherical shell 12.
  • This coating structure is to isolate the water and oxygen in the air and the solution and inhibit The ion exchange phenomenon between the different elements Br- and I- of the perovskite, so as to maintain the monochromaticity of the perovskite material.
  • Figure 2A shows the emission spectrum of green perovskite microspheres.
  • Figure 2B shows the emission spectrum of the red perovskite microspheres.
  • the luminescence peak of the fluorescence emission spectrum of the solution of the green perovskite microsphere 10G is 515 nm to 525 nm
  • the half-height width of the luminescence peak is 16 nm to 20 nm
  • the luminescence peak of the fluorescence emission spectrum of the solution of the red perovskite microsphere 10R is 680 nm to 690 nm
  • the half-height of the luminescence peak The width is 32 nm to 37 nm.
  • the luminescence peak of the fluorescence emission spectrum of the solution of the green perovskite microsphere 10G is 520 nm, and half of the luminescence peak is 520 nm.
  • the height and width are 18 nm; and the luminescence peak of the fluorescence emission spectrum of the solution of the red perovskite microsphere 10R is 684 nm, and the half-width of the luminescence peak is 35 nm.
  • the preparation method of the green and red perovskite microsphere materials is the thermal injection method.
  • the synthesized perovskite material has a narrower emission spectrum than the organic luminescent material, and emits high fluorescent brightness under ultraviolet light, such as As shown in Figure 2A and Figure 2B.
  • the present invention also provides a method for preparing the perovskite microspheres, which includes the following steps:
  • the step S10 includes:
  • the step S20 includes:
  • S21 respectively dissolve PbBr2 and PbI2 in an organic solvent to obtain the lead bromide precursor solution containing 10-15 mg/ml of PbBr2, and obtain the lead iodide precursor solution containing 20-25 mg/ml of PbI2;
  • the step S30 includes:
  • the cesium oleate precursor and the silane (volume ratio 4:5) are added to the lead bromide precursor liquid and the lead iodide precursor liquid to obtain a bright colloidal solution;
  • the perovskite powder is the green perovskite microspheres 10G and the red Perovskite microspheres 10R.
  • the silane is selected from the group consisting of tetraethyl orthosilicate, tetraoxysilane, triethoxysilane, methyltrimethoxysilane, and tetrapropoxysilane ;
  • the organic solvent is octadecene.
  • the method for preparing the perovskite microspheres with a coating structure is a thermal injection method, which includes the following steps:
  • PbBr2 and PbI2 are respectively dissolved in octadecene to obtain the lead bromide precursor liquid containing 10-15 mg/ml of PbBr2, and to obtain 25mg/ml of the lead iodide precursor solution of PbI2; then, the lead bromide precursor and the lead iodide precursor solution were introduced into nitrogen, magnetically stirred at 120°C for 1 hour, and then heated to 150 °C-170°C; Finally, add oleylamine and oleic acid (volume ratio 1:1), and heat for 3-5 minutes until a clear and transparent lead bromide precursor liquid and lead iodide precursor liquid are obtained.
  • the green and red perovskite microsphere coating materials have been synthesized; finally the bright colloidal solution is centrifuged After purification, proceed to low-temperature vacuum drying for 30 min, to obtain dry perovskite powder, the perovskite powder being the green perovskite microspheres and the red perovskite microspheres, respectively.
  • FIG. 3 is a schematic diagram of a mixed color light conversion film according to an embodiment of the present invention.
  • an embodiment of the present invention provides a color mixing light conversion film 100, wherein the color mixing light conversion film 100 includes a light conversion layer 101, and the light conversion layer 101 includes a perovskite Ultraviolet curing adhesive material, wherein based on 100 parts by weight of the perovskite ultraviolet curing adhesive material, the perovskite ultraviolet curing adhesive material includes: 10 to 40 parts by weight of red perovskite microspheres 10R and green perovskite Mineral microspheres 10G; and 60 to 90 parts by weight of ultraviolet curing glue.
  • the present invention further provides a method for preparing the color mixing light conversion film 100, including:
  • S101 provides a first protective film 102 and a second protective film 103, wherein the material of the first protective film 102 and the second protective film 103 includes polyethylene terephthalate, and the first protective film
  • the thickness of the film 102 and the second protective film 103 are each independently 50 ⁇ m to 150 ⁇ m;
  • the surface of the first protective film 102 and the surface of the second protective film 103 are subjected to vacuum evaporation treatment, so that the surface of the first protective film 102 and the surface of the second protective film 103 are respectively formed into the first A barrier layer 104 and a second barrier layer 105, wherein the thickness of the first barrier layer 104 and the second barrier layer 105 are independently 2 ⁇ m to 5 ⁇ m;
  • S104 covers the second protective film 103 on the perovskite ultraviolet curing adhesive material, wherein the second barrier layer 105 is located between the perovskite ultraviolet curing adhesive material and the second protective film 103, To obtain a mixed color light film set;
  • the preparation method of the mixed-color light conversion film 100 includes the following steps S1001 to S1003:
  • the prepared green and red perovskite microsphere powder and ultraviolet curing glue form a mixed solution, wherein the perovskite powder accounts for 10-40% of the total weight of the mixed solution.
  • the ultraviolet curing glue components include resin, monomer, Photoinitiator and diffusion particles; stir the mixed liquid uniformly to obtain red and green mixed color perovskite glue.
  • the green and red perovskite microsphere materials are present in the ultraviolet curing glue in the form of stable, homogeneous nanoparticles.
  • the mixed perovskite microsphere material has good film-forming properties.
  • the perovskite ultraviolet curing adhesive material includes: 5 to 10 parts by weight of red calcium Titanite microspheres 10R; 10 to 20 parts by weight of green perovskite microspheres 10G; and 57 to 80 parts by weight of ultraviolet curing glue, the 57 to 80 parts by weight of ultraviolet curing glue includes: 35 to 45 parts by weight The resin, 20 to 25 parts by weight of ultraviolet light absorbing monomer, 1 to 5 parts by weight of photoinitiator, and 1 to 5 parts by weight of diffusion particles.
  • S1002 uses polyethylene terephthalate (PET) as the material of the first protective film 102 and the second protective film 103 (thickness ranges from 50 ⁇ m to 150 ⁇ m).
  • PET polyethylene terephthalate
  • the first protective film 102 and the The front surface of the PET film of the second protective film 103 is vacuum-evaporated to form a first barrier layer 103 and a second barrier layer 104 (with a thickness of about 2 ⁇ m to 5 ⁇ m) on the surface, which has good water and oxygen barrier properties.
  • the present invention further provides a white light organic light emitting diode display, see FIG. 4.
  • 4 is a schematic diagram of a white organic light emitting diode display according to an embodiment of the invention. As shown in FIG. 4, specifically, an embodiment of the present invention further provides a white light organic light emitting diode display 1000, which includes an anode 1; a hole injection layer 2; and a hole transport layer 3 stacked in sequence.
  • FIG. 5 is a schematic diagram of a white organic light emitting diode display 1000 according to an embodiment of the present invention.
  • the blue organic light-emitting layer 4 emits excitation light to excite the perovskite ultraviolet curable adhesive material in the light conversion layer 101 to obtain light Red light and photo-green light, the photo-red light and the photo-green light are mixed with the blue light not absorbed by the ultraviolet light absorbing monomer to form white light.
  • the light emitting source of the blue light emitting layer can be selected from: blue organic light emitting diodes, blue chips, and micro light emitting diodes (Micro-LED).
  • the perovskite microsphere material may be: all-inorganic perovskite material or organic-inorganic hybrid perovskite material.
  • the present invention provides a perovskite microsphere and a mixed-color light conversion film, a preparation method thereof, and a display.
  • a red and green perovskite microsphere with a coating structure it has The advantages of high luminous efficiency, narrow spectrum, adjustable spectrum, etc.
  • the physical and optical stability of the perovskite microsphere material can be improved, and the ion exchange between different halogen elements can be inhibited to make red and green
  • the red and green perovskite microspheres with the coating structure provided by the present invention are used as the optical conversion material of the white light OLED display, which can improve the performance of organic light-emitting materials.
  • the photon utilization rate reduces the display power consumption. Compared with the traditional quantum dots as the light conversion layer, it can reduce the hazards of heavy metals and narrow the spectrum, thereby improving the color purity and color gamut. Compared with the vapor-deposited white light OLED, it greatly reduces Process difficulty and cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种钙钛矿微球(10)和一种混色光转换薄膜(100)、其制备方法,以及显示器(1000),该钙钛矿微球(10)包括:多个无机钙钛矿晶体(11),作为钙钛矿微球(10)的球核;以及非晶氧化硅球壳(12),包覆多个无机钙钛矿晶体(11),采用具有包覆结构的红色和绿色钙钛矿微球(10),作为白光OLED显示器的光学转换材料,可提高有机发光材料的光子利用率,降低显示功耗,减少工艺难度及成本。

Description

钙钛矿微球、混色光转换薄膜、以及显示器 技术领域
本发明涉及显示技术领域,尤其涉及一种简易高效的显示器的结构。
背景技术
下转换白光有机发光二极体(OLED)显示器是通过蓝光OLED激发绿色和红色光转换层,产生绿光和红光,与透过的蓝光混合形成白光,相对于习知制备像素化的OLED显示器或使白光透过彩膜产生白光的OLED显示器,这种白光OLED显示器的结构较为简单。为提高这种下转换白光OLED发光的色纯度与色域,需开发发光效率高、发光峰窄、色域广的光转换材料。
技术问题
近年来,钙钛矿材料由于带隙可调、发光峰窄,量子效率高、色域广等优势备受关注,优异的光学特性使其在发光显示领域取得了突飞猛进的发展。由于钙钛矿材料荧光量子产率已接近99%,利用钙钛矿材料的发光二极管外量子效率已经超过20%,并且钙钛矿晶体对蓝光波段有很高的吸收系数,因此,钙钛矿材料可作为优异的光转换材料。然而,钙钛矿结构具有水氧敏感性的缺点,使得基于该材料的器件稳定性成为一大难题,阻碍了钙钛矿材料在发光显示领域的广泛应用。
据此,开发一种高稳定性的钙钛矿材料成为该材料产业化应用的关键技术。
技术解决方案
本发明的目的在于提供一种高稳定性的白光有机发光二极体(OLED)显示器,因此,本发明藉由开发一种具有包覆结构的红色和绿色钙钛矿微球,其具有发光效率高、光谱窄、光谱可调等优点,通过包覆材料的保护作用,可提高钙钛矿微球材料的物理光学稳定性,同时抑制不同卤族元素之间的离子交换,使红绿钙钛矿材料混合时,仍保持很好的单色性;采用本发明提供的具有包覆结构的红色和绿色钙钛矿微球,作为白光OLED显示器的光学转换材料,可提高有机发光材料的光子利用率,降低显示功耗,与传统量子点作为光转换层相比,可减少重金属危害,并能窄化光谱,从而提高色纯度及色域;与蒸镀白光OLED相比,大大减少了工艺难度及成本。
为实现上述目的,本发明提供了一种钙钛矿微球,包括:多个无机钙钛矿晶体,作为所述钙钛矿微球的球核;以及非晶氧化硅球壳,包覆所述多个无机钙钛矿晶体,其中所述钙钛矿微球包括绿色钙钛矿微球及红绿色钙钛矿微球。
依据本发明一实施例,所述绿色钙钛矿微球的其溶液的荧光发射谱的发光峰为515 nm至525 nm,所述发光峰的半高宽为16 nm至20 nm;以及所述红色钙钛矿微球的溶液的荧光发射谱的发光峰为680 nm至690 nm,所述发光峰的半高宽为32 nm至37 nm。
依据本发明一实施例,所述钙钛矿微球的制备方法,包括以下步骤:
S10 制备油酸铯前驱体;
S20 分别制备溴化铅前驱液及碘化铅前驱液;以及
S30 将所述溴化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到绿色钙钛矿微球;以及将所述碘化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到红色钙钛矿微球。
依据本发明一实施例,所述步骤S10包括:
S11将碳酸铯和油酸加入十八烯溶剂中,得到一混合液,其中所述碳酸铯浓度为20-25mg/ml,所述油酸含量为15-20重量%;以及
S12在所述混合液中通入氮气,在100℃至140℃的下搅拌,直至所述碳酸铯完全溶解成油酸铯前驱体。
依据本发明一实施例,所述步骤S20包括:
S21将PbBr2以及PbI2分别溶解于有机溶剂中,得到包括10-15mg/ml的PbBr2的所述溴化铅前驱液,以及得到包括20-25mg/ml的PbI2的所述碘化铅前驱液;
S22对所述溴化铅前驱液及所述碘化铅前驱液通入氮气,在100℃至140℃的下搅拌40 min至80 min,再升温至150℃-170℃;以及
S23加入油胺和油酸(体积比1:1)至所述溴化铅前驱液及所述碘化铅前驱液中,加热3-5 min,直至得到澄清透明的所述溴化铅前驱液及所述碘化铅前驱液。
依据本发明一实施例,所述步骤S30包括:
S31取所述油酸铯前驱体和所述硅烷(体积比4:5)加入所述溴化铅前驱液及所述碘化铅前驱液中,得到亮色胶体溶液;
S32将所述亮色胶体溶液加热搅拌5-8 min,进行冰浴以终止反应;以及
S33将所述亮色胶体溶液离心提纯后,再进行低温真空干燥20-40 min,得到干燥的钙钛矿粉末,所述钙钛矿粉末分别为所述绿色钙钛矿微球和所述红色钙钛矿微球。
依据本发明一实施例,所述硅烷择自下列所组成的群组:原硅酸四乙酯、四氧基硅烷、三乙氧基硅烷、甲基三甲氧基硅烷、以及四丙氧基硅烷;以及所述有机溶剂为十八烯。
依据本发明一实施例,本发明还提供了一种混色光转换薄膜,其中所述混色光转换薄膜包括光转换层,所述光转换层包括钙钛矿紫外固化胶材料,其中以100重量份所述钙钛矿紫外固化胶材料为基准,所述钙钛矿紫外固化胶材料包括:5至10重量份的根据权利要求1所述的红色钙钛矿微球;10至20重量份的根据权利要求1所述的绿色钙钛矿微球;以及57至80重量份的紫外固化胶水,所述57至80重量份的紫外固化胶水中包括:35至45重量份的树脂、20至25重量份的紫外光吸收单体、1至5重量份的光引发剂、以及1至5重量份的扩散粒子。
依据本发明一实施例,所述混色光转换薄膜的制备方法包括:
S101提供第一保护膜及第二保护膜,其中所述第一保护膜及所述第二保护膜的材料包括聚对苯二甲酸乙二酯,且所述所述第一保护膜及所述第二保护膜的厚度各自独立地为50μm至150μm;
S102将所述第一保护膜的表面及所述第二保护膜的表面进行真空蒸镀处理,使所述第一保护膜的表面及所述第二保护膜的表面分别形成第一阻隔层及第二阻隔层,其中所述第一阻隔层及所述第二阻隔层的厚度各自独立地为2μm至5μm;
S103在所述第一阻隔层上涂布所述钙钛矿紫外固化胶材料;
S104在所述钙钛矿紫外固化胶材料上覆盖所述第二保护膜,其中所述第二阻隔层位于所述钙钛矿紫外固化胶材料及所述第二保护膜之间,以得到混色光膜片组;以及
S105对所述混色光膜片组进行紫外固化,得到所述混色光转换膜。
依据本发明一实施例,本发明又提供一种显示器,包括依序堆叠的:阳极;空穴注入层;空穴传输层;蓝光有机发光层;电子传输层;电子注入层;阴极;以及依据本发明的混色光转换薄膜,其中所述混色光转换薄膜包括依序堆叠的:第一保护层;第一阻隔层;所述光转换层;第二阻隔层;以及第二保护层。
在本发明所提供的实施例中,所述蓝光有机发光层发射激发光,用来激发所述光转换层中的所述钙钛矿紫外固化胶材料,得到光致红光以及光致绿光,所述光致红光以及所述光致绿光与未被所述紫外光吸收单体吸收的蓝光混合成白光。
有益效果
本发明的目的在于提供一种高稳定性的显示器,因此,本发明藉由开发一种具有包覆结构的红色和绿色钙钛矿微球,其具有发光效率高、光谱窄、光谱可调等优点,通过包覆材料的保护作用,可提高钙钛矿微球材料的物理光学稳定性,同时抑制不同卤族元素之间的离子交换,使红绿钙钛矿材料混合时,仍保持很好的单色性;采用本发明提供的具有包覆结构的红色和绿色钙钛矿微球,作为白光OLED显示器的光学转换材料,可提高有机发光材料的光子利用率,降低显示功耗,与传统量子点作为光转换层相比,可减少重金属危害,并能窄化光谱,从而提高色纯度及色域;与蒸镀白光OLED相比,大大减少了工艺难度及成本。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为在本发明一实施例中具有包覆结构的钙钛矿微球的示意图。
图2A为绿色钙钛矿微球的发射光谱。
图2B为红色钙钛矿微球的发射光谱。
图3为依据本发明一实施例的混色光转换薄膜的示意图。
图4为依据本发明一实施例的白光有机发光二极体显示器的示意图。
图5为依据本发明一实施例的白光有机发光二极体显示器的原理示意图。
本发明的实施方式
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式作详细说明。
在本发明的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,本揭示的说明书和权利要求书以及上述附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解,这样描述的对象在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本发明的目的在于提供一种高稳定性的显示器,因此,本发明藉由开发一种具有包覆结构的红色和绿色钙钛矿微球,其具有发光效率高、光谱窄、光谱可调等优点,通过包覆材料的保护作用,可提高钙钛矿微球材料的物理光学稳定性,同时抑制不同卤族元素之间的离子交换,使红绿钙钛矿材料混合时,仍保持很好的单色性;采用本发明提供的具有包覆结构的红色和绿色钙钛矿微球,作为白光OLED显示器的光学转换材料,可提高有机发光材料的光子利用率,降低显示功耗,与传统量子点作为光转换层相比,可减少重金属危害,并能窄化光谱,从而提高色纯度及色域;与蒸镀白光OLED相比,大大减少了工艺难度及成本。
为实现上述目的,本发明提供了一种钙钛矿微球,参见图1。图1为在本发明一实施例中具有包覆结构的钙钛矿微球的示意图。如图1所示,具体而言,本发明的一实施例提供了一种钙钛矿微球10,包括:多个无机钙钛矿晶体11,作为所述钙钛矿微球10的球核;以及非晶氧化硅球壳12,包覆所述多个无机钙钛矿晶体11,其中所述钙钛矿微球10包括绿色钙钛矿微球10G及红绿色钙钛矿微球10R,如图3所示。
在本发明的实施例中,发光核为全无机钙钛矿晶体11,保护壳层采用透明的非晶氧化硅球壳12,这种包覆结构是为了隔绝空气和溶液中的水氧及抑制钙钛矿不同元素Br-和I-之间的离子交换现象,从而保持钙钛矿材料的单色性。
图2A为绿色钙钛矿微球的发射光谱。图2B为红色钙钛矿微球的发射光谱。参见图2A及图2B,依据本发明一实施例,所述绿色钙钛矿微球10G的其溶液的荧光发射谱的发光峰为515 nm至525 nm,所述发光峰的半高宽为16 nm至20 nm;以及所述红色钙钛矿微球10R的溶液的荧光发射谱的发光峰为680 nm至690 nm,所述发光峰的半高宽为32 nm至37 nm。
如图2A及图2B所示,进一步,在本发明的一具体实施例中,所述绿色钙钛矿微球10G的其溶液的荧光发射谱的发光峰为520 nm,所述发光峰的半高宽为18 nm;以及所述红色钙钛矿微球10R的溶液的荧光发射谱的发光峰为684 nm,所述发光峰的半高宽为35 nm。
在本发明的实施例中,绿色和红色钙钛矿微球材料制备方法为热注入法,合成的钙钛矿材料发光谱比有机发光材料发光谱窄,在紫外灯下发射荧光亮度高,如图2A及图2B所示。
本发明还提供了所述钙钛矿微球的制备方法,包括以下步骤:
S10 制备油酸铯前驱体;
S20 分别制备溴化铅前驱液及碘化铅前驱液;以及
S30 将所述溴化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到绿色钙钛矿微球10G;以及将所述碘化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到红色钙钛矿微球10R。
依据本发明一实施例,所述步骤S10包括:
S11将碳酸铯和油酸加入十八烯溶剂中,得到一混合液,其中所述碳酸铯浓度为20-25mg/ml,所述油酸含量为15-20重量%;以及
S12在所述混合液中通入氮气,在100℃至140℃的下搅拌40 min至80 min,直至所述碳酸铯完全溶解成油酸铯前驱体。
依据本发明一实施例,所述步骤S20包括:
S21将PbBr2以及PbI2分别溶解于有机溶剂中,得到包括10-15mg/ml的PbBr2的所述溴化铅前驱液,以及得到包括20-25mg/ml的PbI2的所述碘化铅前驱液;
S22对所述溴化铅前驱液及所述碘化铅前驱液通入氮气,在100℃至140℃的下搅拌40 min至80 min,再升温至150℃-170℃;以及
S23加入油胺和油酸(体积比1:1)至所述溴化铅前驱液及所述碘化铅前驱液中,加热3-5 min,直至得到澄清透明的所述溴化铅前驱液及所述碘化铅前驱液。
依据本发明一实施例,所述步骤S30包括:
S31取所述油酸铯前驱体和所述硅烷(体积比4:5)加入所述溴化铅前驱液及所述碘化铅前驱液中,得到亮色胶体溶液;
S32将所述亮色胶体溶液加热搅拌5-8 min,进行冰浴以终止反应;以及
S33将所述亮色胶体溶液离心提纯后,再进行低温真空干燥20-40 min,得到干燥的钙钛矿粉末,所述钙钛矿粉末分别为所述绿色钙钛矿微球10G和所述红色钙钛矿微球10R。
依据本发明一实施例,所述硅烷择自下列所组成的群组:原硅酸四乙酯、四氧基硅烷、三乙氧基硅烷、甲基三甲氧基硅烷、以及四丙氧基硅烷;以及所述有机溶剂为十八烯。
进一步,在本发明的一具体实施例中,具有包覆结构的所述钙钛矿微球的制备方法为热注入法,包括以下步骤:
S10 制备油酸铯前驱体:将CsCO3和油酸加入十八烯溶剂中,得到一混合液,其中所述碳酸铯浓度为20-25mg/ml,所述油酸含量为15-20重量%;接着,在所述混合液中通入氮气,在120℃磁力搅拌1小时,直至CsCO3完全溶解成油酸铯前驱体。
S20分别制备溴化铅前驱液及碘化铅前驱液:将PbBr2以及PbI2分别溶解于十八烯中,得到包括10-15mg/ml的PbBr2的所述溴化铅前驱液,以及得到包括20-25mg/ml的PbI2的所述碘化铅前驱液;接着,对所述溴化铅前驱液及所述碘化铅前驱液通入氮气,在120℃的下磁力搅拌1小时,再升温至150℃-170℃;最后加入油胺和油酸(体积比1:1),加热3-5分钟,直至得到澄清透明的所述溴化铅前驱液及所述碘化铅前驱液。
S30将所述溴化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到绿色钙钛矿微球;以及将所述碘化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到红色钙钛矿微球:取所述油酸铯前驱体和所述硅烷(体积比4:5)迅速加入到PbBr2和PbI2前驱液中,透明溶液迅速变成亮色胶体溶液;接着,将所述亮色胶体溶液加热并且磁力搅拌5-8分钟后,停止加热搅拌,进行冰浴以终止反应,至此绿色和红色钙钛矿微球包覆材料已经合成;最后将所述亮色胶体溶液离心提纯后,再进行低温真空干燥30 min,得到干燥的钙钛矿粉末,所述钙钛矿粉末即分别为所述绿色钙钛矿微球和所述红色钙钛矿微球。
依据本发明一实施例,本发明还提供了一种混色光转换薄膜,参见图3。图3为依据本发明一实施例的混色光转换薄膜的示意图。如图3所示,具体而言,本发明的一实施例提供了一种混色光转换薄膜100,其中所述混色光转换薄膜100包括光转换层101,所述光转换层101包括钙钛矿紫外固化胶材料,其中以100重量份所述钙钛矿紫外固化胶材料为基准,所述钙钛矿紫外固化胶材料包括:10至40重量份的红色钙钛矿微球10R及绿色钙钛矿微球10G;以及60至90重量份的紫外固化胶水。
继续参见图3,依据本发明一实施例,本发明更提供了一种所述混色光转换薄膜100的制备方法,包括:
S101提供第一保护膜102及第二保护膜103,其中所述第一保护膜102及所述第二保护膜103的材料包括聚对苯二甲酸乙二酯,且所述所述第一保护膜102及所述第二保护膜103的厚度各自独立地为50μm至150μm;
S102将所述第一保护膜102的表面及所述第二保护膜103的表面进行真空蒸镀处理,使所述第一保护膜102的表面及所述第二保护膜103的表面分别形成第一阻隔层104及第二阻隔层105,其中所述第一阻隔层104及所述第二阻隔层105的厚度各自独立地为2μm至5μm;
S103在所述第一阻隔层104上涂布所述钙钛矿紫外固化胶材料;
S104在所述钙钛矿紫外固化胶材料上覆盖所述第二保护膜103,其中所述第二阻隔层105位于所述钙钛矿紫外固化胶材料及所述第二保护膜103之间,以得到混色光膜片组;以及
S105对所述混色光膜片组进行紫外固化,得到所述混色光转换膜100。
进一步,在本发明的一具体实施例中,所述混色光转换薄膜100的制备方法,包括下列步骤S1001至步骤S1003:
S1001将制备好的绿色和红色钙钛矿微球粉末与紫外固化胶水组成混合液,其中钙钛矿粉末占所述混合液总重量的10-40%,紫外固化胶水成分包括树脂、单体、光引发剂、以及扩散粒子;将所述混合液搅拌均匀,得到红绿混色钙钛矿胶水,绿色和红色钙钛矿微球材料以稳定的均态纳米微粒形态存在于紫外固化胶水中,赋予混合钙钛矿微球材料良好的成膜性。
进一步,在本发明的一具体实施例的步骤S1001中,以100重量份所述钙钛矿紫外固化胶材料为基准,所述钙钛矿紫外固化胶材料包括:5至10重量份的红色钙钛矿微球10R;10至20重量份的绿色钙钛矿微球10G;以及57至80重量份的紫外固化胶水,所述57至80重量份的紫外固化胶水中包括:35至45重量份的树脂、20至25重量份的紫外光吸收单体、1至5重量份的光引发剂、以及1至5重量份的扩散粒子。
S1002采用聚对苯二甲酸乙二酯(PET)作为所述第一保护膜102及所述第二保护膜103的材料(厚度范围50μm至150μm),先将述第一保护膜102及所述第二保护膜103的PET膜的正面进行真空蒸镀处理,使其表面形成第一阻隔层103及第二阻隔层104(厚度约为2μm至5μm),具有良好阻水阻氧性能。
S1003在第一阻隔层103上涂布配制好的红绿钙钛矿混合胶水,并在钙钛矿胶水层上覆盖上所述第二保护膜103,经过紫外固化后即可得到红绿混色光转换薄膜,如图3所示。最后将制备好的红绿混色光转换薄膜覆盖于蓝光OLED的出光面,即构成了下文中的实施例所提供的白光OLED,如图4所示。
依据本发明一实施例,本发明又提供一种白光有机发光二极体显示器,参见图4。图4为依据本发明一实施例的白光有机发光二极体显示器的示意图。如图4所示,具体而言,本发明的一实施例尚提供了一种白光有机发光二极体显示器1000,包括依序堆叠的:阳极1;空穴注入层2;空穴传输层3;蓝光有机发光层4;电子传输层5;电子注入层6;阴极7;以及依据本发明的混色光转换薄膜100,其中所述混色光转换薄膜100包括依序堆叠的:第一保护层102;第一阻隔层104;所述光转换层101;第二阻隔层105;以及第二保护层103。
图5为依据本发明一实施例的白光有机发光二极体显示器1000的原理示意图。如图5所示,在本发明所提供的实施例中,所述蓝光有机发光层4发射激发光,用来激发所述光转换层101中的所述钙钛矿紫外固化胶材料,得到光致红光以及光致绿光,所述光致红光以及所述光致绿光与未被所述紫外光吸收单体吸收的蓝光混合成白光。
依据本发明的其他实施例,所述蓝光发光层的发光源可选自:蓝光有机发光二极体、蓝光芯片、以及微发光二极体(Micro-LED)。
依据本发明的其他实施例,所述钙钛矿微球材料可为:全无机钙钛矿材料或有机无机杂化钙钛矿材料。
据此,本发明提供了一种钙钛矿微球和一种混色光转换薄膜、其制备方法,以及显示器,藉由开发一种具有包覆结构的红色和绿色钙钛矿微球,其具有发光效率高、光谱窄、光谱可调等优点,通过包覆材料的保护作用,可提高钙钛矿微球材料的物理光学稳定性,同时抑制不同卤族元素之间的离子交换,使红绿钙钛矿材料混合时,仍保持很好的单色性;采用本发明提供的具有包覆结构的红色和绿色钙钛矿微球,作为白光OLED显示器的光学转换材料,可提高有机发光材料的光子利用率,降低显示功耗,与传统量子点作为光转换层相比,可减少重金属危害,并能窄化光谱,从而提高色纯度及色域;与蒸镀白光OLED相比,大大减少了工艺难度及成本。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种钙钛矿微球,其中所述钙钛矿微球包括:
    多个无机钙钛矿晶体,作为所述钙钛矿微球的球核;以及
    非晶氧化硅球壳,包覆所述多个无机钙钛矿晶体,
    其中所述钙钛矿微球包括绿色钙钛矿微球及红色钙钛矿微球。
  2. 根据权利要求1所述的钙钛矿微球,其中所述绿色钙钛矿微球的其溶液的荧光发射谱的发光峰为515 nm至525 nm,所述发光峰的半高宽为16 nm至20 nm;以及所述红色钙钛矿微球的溶液的荧光发射谱的发光峰为680 nm至690 nm,所述发光峰的半高宽为32 nm至37 nm。
  3. 根据权利要求1所述的钙钛矿微球,其中所述钙钛矿微球的制备方法,包括以下步骤:
    S10 制备油酸铯前驱体;
    S20 分别制备溴化铅前驱液及碘化铅前驱液;以及
    S30 将所述溴化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到绿色钙钛矿微球;以及将所述碘化铅前驱液与所述油酸铯前驱体和硅烷混合,以得到红色钙钛矿微球。
  4. 根据权利要求3所述的钙钛矿微球,其中所述步骤S10包括:
    S11将碳酸铯和油酸加入十八烯溶剂中,得到一混合液,其中所述碳酸铯浓度为20-25mg/ml,所述油酸含量为15-20重量%;以及
    S12在所述混合液中通入氮气,在100℃至140℃的下搅拌,直至所述碳酸铯完全溶解成油酸铯前驱体。
  5. 根据权利要求3所述的钙钛矿微球,其中所述步骤S20包括:
    S21将PbBr2以及PbI2分别溶解于有机溶剂中,得到包括10-15mg/ml的PbBr2的所述溴化铅前驱液,以及得到包括20-25mg/ml的PbI2的所述碘化铅前驱液;
    S22对所述溴化铅前驱液及所述碘化铅前驱液通入氮气,在100℃至140℃的下搅拌40 min至80 min,再升温至150℃-170℃;以及
    S23加入油胺和油酸(体积比1:1)至所述溴化铅前驱液及所述碘化铅前驱液中,加热3-5 min,直至得到澄清透明的所述溴化铅前驱液及所述碘化铅前驱液。
  6. 根据权利要求3所述的钙钛矿微球,其中所述步骤S30包括:
    S31取所述油酸铯前驱体和所述硅烷(体积比4:5)加入所述溴化铅前驱液及所述碘化铅前驱液中,得到亮色胶体溶液;
    S32将所述亮色胶体溶液加热搅拌5-8 min,进行冰浴以终止反应;以及
    S33将所述亮色胶体溶液离心提纯后,再进行低温真空干燥20-40 min,得到干燥的钙钛矿粉末,所述钙钛矿粉末分别为所述绿色钙钛矿微球和所述红色钙钛矿微球。
  7. 根据权利要求3所述的钙钛矿微球,其中所述硅烷择自下列所组成的群组:原硅酸四乙酯、四氧基硅烷、三乙氧基硅烷、甲基三甲氧基硅烷、以及四丙氧基硅烷;以及所述有机溶剂为十八烯。
  8. 一种混色光转换薄膜,其中所述混色光转换薄膜包括光转换层,所述光转换层包括钙钛矿紫外固化胶材料,其中以100重量份所述钙钛矿紫外固化胶材料为基准,所述钙钛矿紫外固化胶材料包括:
    5至10重量份的根据权利要求1所述的红色钙钛矿微球;
    10至20重量份的根据权利要求1所述的绿色钙钛矿微球;以及
    57至80重量份的紫外固化胶水,所述57至80重量份的紫外固化胶水中包括:35至45重量份的树脂、20至25重量份的紫外光吸收单体、1至5重量份的光引发剂、以及1至5重量份的扩散粒子。
  9. 根据权利要求8所述的混色光转换薄膜,其中所述混色光转换薄膜的制备方法包括:
    S101提供第一保护膜及第二保护膜,其中所述第一保护膜及所述第二保护膜的材料包括聚对苯二甲酸乙二酯,且所述所述第一保护膜及所述第二保护膜的厚度各自独立地为50μm至150μm;
    S102将所述第一保护膜的表面及所述第二保护膜的表面进行真空蒸镀处理,使所述第一保护膜的表面及所述第二保护膜的表面分别形成第一阻隔层及第二阻隔层,其中所述第一阻隔层及所述第二阻隔层的厚度各自独立地为2μm至5μm;
    S103在所述第一阻隔层上涂布所述钙钛矿紫外固化胶材料;
    S104在所述钙钛矿紫外固化胶材料上覆盖所述第二保护膜,其中所述第二阻隔层位于所述钙钛矿紫外固化胶材料及所述第二保护膜之间,以得到混色光膜片组;以及
    S105对所述混色光膜片组进行紫外固化,得到所述混色光转换膜。
  10. 一种显示器,其中所述显示器为白光有机发光二极体显示器,包括依序堆叠的:
    阳极;
    空穴注入层;
    空穴传输层;
    蓝光有机发光层;
    电子传输层;
    电子注入层;
    阴极;以及
    根据权利要求8所述的混色光转换薄膜,
    其中所述混色光转换薄膜包括依序堆叠的:第一保护层;第一阻隔层;所述光转换层;第二阻隔层;以及第二保护层,以及
    其中所述蓝光有机发光层发射激发光,用来激发所述光转换层中的所述钙钛矿紫外固化胶材料,得到光致红光以及光致绿光,所述光致红光以及所述光致绿光与未被所述紫外光吸收单体吸收的蓝光混合成白光。
PCT/CN2019/125038 2019-11-27 2019-12-13 钙钛矿微球、混色光转换薄膜、以及显示器 WO2021103169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/625,828 US20210332292A1 (en) 2019-11-27 2019-12-13 Perovskite microsphere material, mixed-color light conversion film, and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911184389.9A CN110922961B (zh) 2019-11-27 2019-11-27 钙钛矿微球、混色光转换薄膜、以及显示器
CN201911184389.9 2019-11-27

Publications (1)

Publication Number Publication Date
WO2021103169A1 true WO2021103169A1 (zh) 2021-06-03

Family

ID=69847598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125038 WO2021103169A1 (zh) 2019-11-27 2019-12-13 钙钛矿微球、混色光转换薄膜、以及显示器

Country Status (3)

Country Link
US (1) US20210332292A1 (zh)
CN (1) CN110922961B (zh)
WO (1) WO2021103169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI840942B (zh) 2021-09-10 2024-05-01 瑞士商艾芬塔馬公司 具有殼層之發光晶體

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725409A (zh) * 2020-06-04 2020-09-29 Tcl华星光电技术有限公司 白光发光二极管器件及其制作方法
US20220102441A1 (en) * 2020-09-29 2022-03-31 Universal Display Corporation High Color Gamut OLED Displays
CN112251221B (zh) * 2020-11-10 2023-03-24 上海比英半导体科技有限公司 基于原位巯基硅烷钝化制备铯铅卤钙钛矿量子点的方法
EP4180499A1 (en) * 2022-10-27 2023-05-17 Avantama AG Color conversion film with separation layer

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246734A1 (en) * 2006-04-10 2007-10-25 Samsung Electro-Mechanics Co., Ltd. Multilayered white light emitting diode using quantum dots and method of fabricating the same
JP2008050603A (ja) * 2006-08-21 2008-03-06 Samsung Electronics Co Ltd 複合発光材料およびこれを含む発光素子
CN105883909A (zh) * 2016-01-22 2016-08-24 重庆大学 一种CsPbBrxI3-x纳米棒的制备方法
CN106025042A (zh) * 2016-07-25 2016-10-12 吉林大学 基于二氧化硅包覆钙钛矿量子点的稳定白光led及制备方法
CN106064830A (zh) * 2016-05-30 2016-11-02 重庆大学 一种CsPb2Br5纳米片及其制备方法
CN106910814A (zh) * 2017-03-27 2017-06-30 武汉华星光电技术有限公司 一种量子点薄膜及其制备方法
CN107104194A (zh) * 2017-05-26 2017-08-29 吉林大学 一种双面发光的无机钙钛矿量子点led及其制备方法
WO2018097153A1 (ja) * 2016-11-25 2018-05-31 コニカミノルタ株式会社 発光性膜、有機エレクトロルミネッセンス素子、有機材料組成物及び有機エレクトロルミネッセンス素子の製造方法
CN108219771A (zh) * 2017-12-28 2018-06-29 深圳市华星光电技术有限公司 量子点复合物及其制备方法和包括其的显示装置
CN108251117A (zh) * 2018-02-09 2018-07-06 纳晶科技股份有限公司 核壳量子点及其制备方法、及含其的电致发光器件
CN108319077A (zh) * 2018-02-08 2018-07-24 深圳市华星光电技术有限公司 量子点增强膜及其制备方法、量子点背光模组及显示装置
CN109709769A (zh) * 2019-02-25 2019-05-03 深圳扑浪创新科技有限公司 一种光刻胶,含有其的像素化光致发光彩膜及其用途
CN110265557A (zh) * 2019-06-05 2019-09-20 南京邮电大学 一种柔性白光器件及其制备方法
CN209626258U (zh) * 2019-05-30 2019-11-12 深圳扑浪创新科技有限公司 一种发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195741B (zh) * 2017-04-06 2019-02-26 南京理工大学 一种全无机量子点背光led的制备方法
CN107966855A (zh) * 2017-11-24 2018-04-27 宁波东旭成新材料科技有限公司 一种绿色量子点膜及其背光模组

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246734A1 (en) * 2006-04-10 2007-10-25 Samsung Electro-Mechanics Co., Ltd. Multilayered white light emitting diode using quantum dots and method of fabricating the same
JP2008050603A (ja) * 2006-08-21 2008-03-06 Samsung Electronics Co Ltd 複合発光材料およびこれを含む発光素子
CN105883909A (zh) * 2016-01-22 2016-08-24 重庆大学 一种CsPbBrxI3-x纳米棒的制备方法
CN106064830A (zh) * 2016-05-30 2016-11-02 重庆大学 一种CsPb2Br5纳米片及其制备方法
CN106025042A (zh) * 2016-07-25 2016-10-12 吉林大学 基于二氧化硅包覆钙钛矿量子点的稳定白光led及制备方法
WO2018097153A1 (ja) * 2016-11-25 2018-05-31 コニカミノルタ株式会社 発光性膜、有機エレクトロルミネッセンス素子、有機材料組成物及び有機エレクトロルミネッセンス素子の製造方法
CN106910814A (zh) * 2017-03-27 2017-06-30 武汉华星光电技术有限公司 一种量子点薄膜及其制备方法
CN107104194A (zh) * 2017-05-26 2017-08-29 吉林大学 一种双面发光的无机钙钛矿量子点led及其制备方法
CN108219771A (zh) * 2017-12-28 2018-06-29 深圳市华星光电技术有限公司 量子点复合物及其制备方法和包括其的显示装置
CN108319077A (zh) * 2018-02-08 2018-07-24 深圳市华星光电技术有限公司 量子点增强膜及其制备方法、量子点背光模组及显示装置
CN108251117A (zh) * 2018-02-09 2018-07-06 纳晶科技股份有限公司 核壳量子点及其制备方法、及含其的电致发光器件
CN109709769A (zh) * 2019-02-25 2019-05-03 深圳扑浪创新科技有限公司 一种光刻胶,含有其的像素化光致发光彩膜及其用途
CN209626258U (zh) * 2019-05-30 2019-11-12 深圳扑浪创新科技有限公司 一种发光器件
CN110265557A (zh) * 2019-06-05 2019-09-20 南京邮电大学 一种柔性白光器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI840942B (zh) 2021-09-10 2024-05-01 瑞士商艾芬塔馬公司 具有殼層之發光晶體

Also Published As

Publication number Publication date
CN110922961B (zh) 2020-11-10
US20210332292A1 (en) 2021-10-28
CN110922961A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
WO2021103169A1 (zh) 钙钛矿微球、混色光转换薄膜、以及显示器
Yan et al. Synthesis of 0D manganese‐based organic–inorganic hybrid perovskite and its application in lead‐free red light‐emitting diode
WO2018018696A1 (zh) 一种量子点液晶背光源
CN108922906A (zh) Oled显示器
WO2019010988A1 (zh) 一种卤素钝化钙钛矿量子点及其制备方法和qled器件
US9257600B2 (en) White light quantum dot complex particle and process for preparing same
Cai et al. A facile synthesis of water‐resistant CsPbBr3 perovskite quantum dots loaded poly (methyl methacrylate) composite microspheres based on in situ polymerization
WO2015158096A1 (zh) 一种有机发光显示装置
CN105097878A (zh) 有机电致发光显示面板及制备方法、显示装置
CN1296295A (zh) 发光元件用基板与发光元件以及发光元件的制造方法
CN107053780A (zh) 一种应用于背光模组中的量子点膜及其制备方法
Zhang et al. Strong linearly polarized photoluminescence and electroluminescence from halide perovskite/azobenzene dye composite film for display applications
CN107093662A (zh) 一种新型的全无机钙钛矿量子点硅胶透镜及其制备方法
CN106833614A (zh) 量子点复合荧光粉的制备方法
CN108258104A (zh) 一种掺锰的卤化铅铯荧光玻璃薄膜的静电制备方法
Zhang et al. Multidentate ligand passivation enabled enhanced photoluminescence and stability of CsPbBr3 nanocrystals for white light-emitting diodes
He et al. Swelling‐deswelling microencapsulation‐enabled ultrastable perovskite− polymer composites for photonic applications
TW200838974A (en) Luminous device of fluorescent powder composition
Xue et al. MAPbBrxCl3-x quantum dots in Pb (OH) Br for stable blue light-emitting devices
Li et al. Novel and stable CsPbX3-TS-1 (X= Br, I) nanocomposites for light-emitting diodes
Mun et al. Light-extraction enhancement of white LEDs with different phases of TiO2: 0.01 Eu3+ spheres
WO2022222181A1 (zh) 背光模组及量子点显示装置
Lee et al. Realization of high-color-quality white-by-blue organic light-emitting diodes with yellow and red phosphor films
CN113583661A (zh) 一种类球状氟化物荧光粉及其制备方法、混合物和发光器件
CN101892049B (zh) 用于白光led的单一基质白光荧光粉的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954494

Country of ref document: EP

Kind code of ref document: A1