WO2018223755A1 - 一种锂离子电池电极材料的制备方法 - Google Patents

一种锂离子电池电极材料的制备方法 Download PDF

Info

Publication number
WO2018223755A1
WO2018223755A1 PCT/CN2018/081106 CN2018081106W WO2018223755A1 WO 2018223755 A1 WO2018223755 A1 WO 2018223755A1 CN 2018081106 W CN2018081106 W CN 2018081106W WO 2018223755 A1 WO2018223755 A1 WO 2018223755A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
lithium ion
ion battery
battery electrode
anthracene
Prior art date
Application number
PCT/CN2018/081106
Other languages
English (en)
French (fr)
Inventor
黄程
王小丽
叶飞
刘俊凯
黄维
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2018223755A1 publication Critical patent/WO2018223755A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a positive electrode of a lithium ion battery, in particular to a design and synthesis of a molecularly controlled conjugated polymer.
  • Lithium-ion batteries have been widely used in portable electronic products due to their high operating voltage, high energy density and power density, long cycle life, wide operating temperature range, no memory effect and good safety performance. After years of research and development and application fields, lithium-ion batteries have begun to move toward diversification, and there is also a huge demand in the fields of electric vehicles and energy storage power stations.
  • Conventional inorganic cathode materials including lithium-containing metal oxides or phosphates, have limited applications in large power batteries due to limited capacity enhancement, poor safety and stability, unfriendly environment, and high cost.
  • green organic electrode materials have attracted much attention as a new class of electrochemical energy storage materials due to their abundant raw materials, renewable resources, strong design at the molecular level and diverse structures.
  • the organic positive electrode material can be classified into a conductive polymer, a sulfur-containing compound, a nitrogen-oxygen radical compound, a carbonyl compound, etc., wherein the organic conjugated carbonyl compound electrode material has the advantages of high specific capacity, low cost, and environmental friendliness. It has become a research hotspot of lithium ion battery electrode materials.
  • organic conjugated carbonyl compounds are further divided into two types: small molecule conjugated carbonyl compounds and conjugated carbonyl compound polymers.
  • the small molecule conjugated carbonyl compound can achieve a high discharge specific capacity, but most of them exhibit poor cycle life and rate performance, which is mainly caused by the dissolution of the electrode material in the organic electrolyte and the inherent low conductivity.
  • researchers have tried a variety of methods to ease dissolution, including: polymerization, grafting, salt formation, and composite carbon sources.
  • increasing the conductive carbon content or salt formation can only slow down the dissolution rate of the active material, and may also cause a decrease in capacity.
  • the polymer is difficult to dissolve in the aprotic and protic solvents compared to the monomer
  • the polymerization method is one of the most effective strategies for solving the problem of solubility of the small molecule conjugated carbonyl compound in the electrolyte.
  • the polymer PAQS has a much improved cycle performance compared to 9,10- ⁇ , and the specific capacity is very close to 9,10- ⁇ .
  • conjugated carbonyl compounds Another important problem faced by conjugated carbonyl compounds is low conductivity, as most are semiconductors. In order to solve this problem and make full use of the active materials, it is often necessary to add a large amount of conductive carbon additive by physical mixing in the electrode preparation process, but this greatly reduces the energy density of the electrode material, and cannot design a high specific capacity at a molecular level, which is high. Conductive conjugated carbonyl polymer.
  • the invention effectively fills the gaps in the energy storage aspect, and regulates the chemical composition of the polymer material and its aggregate structure from the molecular level.
  • the object of the present invention is to solve the deficiencies of the prior art conjugated carbonyl compound as a lithium ion battery electrode material, and to provide a method for preparing a lithium ion battery electrode material, which can regulate the polymer from the molecular level by molecular design of the polymer.
  • the chemical composition of the material and its aggregate structure effectively improve the electrical conductivity of the material and have better cycle and rate performance in the half-cell test.
  • the inventors have selected a multi-provincial fluorene-based polymer (PAQR) having a large conjugated system and a planar structure as a positive electrode material for a lithium ion battery, and the advantage is that an electroactive carbonyl functional group having more reversible redox generation can cause more
  • the electronic reaction mechanism is beneficial to increase the energy density of the lithium ion battery.
  • the insoluble polymer backbone can reduce its dissolution in the organic electrolyte; and the conjugate of heteroatom doping is designed and synthesized for the low conductivity of the organic electrode material.
  • the carbonyl polymer is different from the current hetero atom doping method. This method can not only realize one-step synthesis but also control the hetero atom content.
  • the conductivity of the material is effectively improved, and it is used as a positive electrode material for lithium ion batteries.
  • the energy density is high, and the cycle and rate performance are better in the half-cell test, and the mass specific capacity is superior to the current commercial lithium ion battery anode, so that the prior art deficiency can be effectively overcome.
  • a method for preparing a lithium ion battery electrode material comprising the following steps:
  • the weight ratio of the anhydrous aluminum chloride to the sodium chloride is 4 to 5:1, preferably 4.6:1.
  • the fused ring compound is selected from the group consisting of 9,10-fluorene, 1,4-naphthoquinone, 1,4-quinone, 1,8-dihydroxyindole, 1,4,5,8. -tetrahydroxyindole, 5,12-tetrabenzoquinone, 6,13-pentacene quinone, 5,7,12,14-pentacenetetraone, benzoquinone, naphthalene, anthracene, oxalate Bismuth, tetracene, pentacene, naphthacene, anthracene, pyrene, halobenzene, egg benzene, decaphenyl pentacene, 2,6-diphenylbenzo[1,2-b:4,5 -b']Diselenophene, 2,6-diphenylbenzo[1,2-b:4,5-b']dithiophene, 2,6-diphen
  • the acid anhydride is selected from the group consisting of 2,3-naphthalene dianhydride, 2,3-phthalic anhydride, pyromellitic anhydride, 1,4,5,8-naphthalene tetracarboxylic anhydride, 3, 4 , 9,10-tetracarboxylic acid dianhydride, 3,4,5,6-tetrafluorophthalic anhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, melamine anhydride, polyphthalocyanine Any one is preferably pyromellitic anhydride.
  • the heating temperature is 100 to 200 °C.
  • the baking temperature is 200 to 300 ° C and the time is 12 to 48 hours.
  • the hydrochloric acid solution has a mass concentration of 8 to 15%.
  • the vacuum drying temperature is 60 to 100 °C.
  • the invention has the beneficial effects that the preparation method adopted by the invention is simple in process and green and environmentally friendly.
  • the chemical composition of the polymer material and its aggregate structure are regulated at the molecular level.
  • a large conjugated system planar structure a reversible redox electroactive carbonyl functional group, a multi-provincial hydrazine-based polymer (PAQR) that initiates a multi-electron reaction mechanism as a positive electrode material for lithium ion batteries, an insoluble polymer backbone It can reduce its dissolution in organic electrolyte and show good cycle stability.
  • PAQR multi-provincial hydrazine-based polymer
  • For the low conductivity of organic electrode materials we designed and synthesized heteroatom-doped conjugated carbonyl polymer, which is different from current hetero atom doping.
  • This method can not only realize one-step synthesis but also controllable hetero atom content. It can effectively improve the conductivity of the material by doping with nitrogen atoms.
  • As a positive electrode material for lithium ion batteries it has high energy density and is good in half-cell testing. The cycle and rate performance, mass ratio capacity is superior to the current commercial lithium ion battery anode, and the raw materials used in the invention are common raw materials, the source is wide, the manufacturing cost is cheap, the process is simple, meets environmental requirements, and has good practical application prospects.
  • FIG. 1 is an XRD diagram of a positive electrode product of a lithium ion battery according to Embodiment 1 of the present invention.
  • FIG. 3 is a TEM image of a positive electrode product of a lithium ion battery according to Embodiment 1 of the present invention.
  • FIG. 4 is a cycle diagram of a cathode material of a lithium ion battery according to Embodiment 1 of the present invention.
  • FIG. 5 is a magnification diagram of a positive electrode material of a lithium ion battery according to Embodiment 1 of the present invention.
  • FIG. 6 is an XRD diagram of a positive electrode product of a lithium ion battery according to Embodiment 2 of the present invention.
  • FIG. 7 is a STEM diagram of a positive electrode product of a lithium ion battery according to Embodiment 2 of the present invention.
  • FIG. 8 is a N element distribution diagram of a positive electrode product of a lithium ion battery according to Embodiment 2 of the present invention.
  • FIG. 10 is a TEM image of a positive electrode product of a lithium ion battery according to Embodiment 2 of the present invention.
  • FIG. 11 is a total spectrum of XPS of a positive electrode product of a lithium ion battery according to Embodiment 2 of the present invention.
  • FIG. 13 is a cycle diagram of a cathode material of a lithium ion battery according to Embodiment 2 of the present invention.
  • FIG. 14 is a magnification diagram of a positive electrode material of a lithium ion battery according to Embodiment 2 of the present invention.
  • step (2) Take 9,10-fluorene and pyromellitic anhydride in a molar ratio of 1:1, then add to the molten salt phase of step (1), mix uniformly and then calcine, calcination temperature 250 ° C, time 20h.
  • Example 1 The product synthesized in Example 1 was observed using XRD as shown in FIG. As can be seen from Fig. 1, there is a broad diffraction peak at about 26.5°, which corresponds to the characteristic diffraction peak of the graphite (002) crystal plane. The morphology of the product was observed using SEM and TEM, as shown in Fig. 2 and Fig. 3. As can be seen from the figure, the synthesized product had a graphite-like sheet structure.
  • Example 2 The product obtained in Example 1, Ketchen Black and polyvinylidene fluoride were weighed according to 4:4:2 mass%, and mixed with 1-methyl-2-pyrrolidone as a solvent, uniformly coated. It is applied on aluminum foil, dried and compacted under infrared light at 60-80 °C, and vacuum dried for 12 h to obtain the positive working electrode of lithium ion battery. The lithium metal plate is used as the counter electrode. Celgard 2400 separator is used, and the electrolyte is used at 1 mol/L. LiPF 6 /EC-DMC (mass ratio 1:1) was assembled into an analog battery in an argon-protected glove box, and its charge and discharge cycle performance was examined on a high-precision battery tester.
  • LiPF 6 /EC-DMC mass ratio 1:1
  • the cycle performance of the battery at a discharge cut-off voltage of 1.5-4V and a current density of 100mAg -1 is shown in Figure 4.
  • the PAQR initial discharge specific capacity is 194.1mAh g -1
  • the discharge specific capacity after 15 cycles is 153.9mAh g. -1
  • the capacity retention rate is 79.29%.
  • the rate capability cathode active material at different current densities shown in Figure 5 it can be seen from the figure, the current density in the electrode material 100mAg -1, 200mAg -1, 500mAg -1 , 1Ag -1, 2Ag -1 reversible capacity 5Ag -1 respectively at 191.8mAh g -1, 166mAh g -1, 106.9mAh g -1, 57.7mAh g -1, 24mAh g -1, 10.7mAh g -1, when the current density returned to At 100 mA g -1 , the specific capacity of the electrode material recovered rapidly, indicating good electrochemical redox reversibility.
  • the raw materials in the step (2) are 9,10-fluorene, phenazine and pyromellitic anhydride, and the molar ratio is 0.5:0.5:1, and the remaining steps and formulations are uniform.
  • the raw materials in the step (2) are 9,10-fluorene, phenazine and pyromellitic anhydride, and the molar ratio is 0.5:0.5:1, and the remaining steps and formulations are uniform. The same as in the first embodiment.
  • Example 2 The product synthesized in Example 2 was observed by XRD. As shown in Fig. 6, a broad diffraction peak was observed at 2 ⁇ of about 26.5°, corresponding to the (002) crystal plane, which is a characteristic peak of carbon or graphite structure. From the STEM image of the product of Figure 7 and the nitrogen element distribution of Figure 8, it is known that the nitrogen atoms are successfully doped and the distribution is relatively uniform. The morphology of the product was observed using SEM and TEM, as shown in Fig. 9 and Fig. 10, and it was seen from the figure that the synthesized product had a graphite-like sheet structure. Figure 11 is a summary of the X-ray photoelectron spectroscopy of the product.
  • Figure 12 is a high resolution N 1s spectrum that can be fitted to three peaks, pyridine type N (399.0 ⁇ 0.2 eV), pyrrole type N (400.8 ⁇ 0.2 eV) and graphite type N (402.5 ⁇ 0.2 eV).
  • the N content was calculated to be 3.49 at%.
  • Battery fabrication and testing The battery fabrication steps were the same as in Example 1, and the experimental and test conditions and methods were the same as in Example 1.
  • the cycle performance of the battery at a discharge cut-off voltage of 1.5-4 V and a current density of 100 mA g -1 is shown in Fig. 13.
  • the initial discharge capacity of the positive electrode material is as high as 261.8 mAh g -1 , and after 100 cycles, the capacity is maintained at 237.3. mAh g -1 , capacity retention rate was 90.64%.
  • the rate capability cathode active material at different current densities of 14 can be seen from the figure, the current density in the electrode material 100mAg -1, 200mAg -1, 500mAg -1 , 1Ag -1, 2Ag -1 reversible capacity 5Ag -1 respectively at 271.9mAh g -1 is, 244.8mAh g -1, 193.2mAh g -1 , 161.4mAh g -1, 135.3mAh g -1, 107.4mAh g -1, again when the current density When returning to 100mAg -1 , the specific capacity of the electrode material recovered rapidly, indicating that the electrochemical redox reversibility of the polymer is very good.
  • the above excellent cycle and rate performance is mainly due to the doping of N atoms, which significantly reduces the charge transfer resistance of the electrode, improves charge transfer and lithium ion diffusion kinetics, introduces a large number of defects, and improves electrochemical activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂离子电池电极材料的制备方法,取无水氯化铝和氯化钠混合均匀,加热升温并搅拌,得到熔盐相;取稠环化合物和酸酐按摩尔比1:1混合均匀,然后加入到熔盐相中,混合均匀后进行焙烧;将焙烧后的产物加入到盐酸溶液中,搅拌酸解12~48h,然后抽滤,得到粗产品;将粗产品依次用去离子水、乙醇、甲苯各回流一次最后进行真空干燥,即得。本发明方法简单易行,成本低廉,绿色环保,可在NaCl-AlCl 3等熔盐体系完成,通过二元或多元共缩聚,在材料中引入缺陷,减少分子间紧密堆积,增强电极材料电化学反应活性,通过掺杂杂原子,有效提高材料导电性;能量密度高,比容量大,倍率和循环性能优越。

Description

一种锂离子电池电极材料的制备方法 技术领域
本发明涉及一种锂离子电池正极的制备方法,尤其是涉及分子调控共轭聚合物的设计合成。
背景技术
锂离子电池具有工作电压高,能量密度和功率密度大,循环寿命长,操作温度范围宽,无记忆效应和安全性能好等优点,已经在便携式电子产品中得到广泛的应用。经过近几年的研究技术以及应用领域的拓展,锂离子电池开始朝向多元化的方向推进,在电动汽车及储能电站等领域也存在巨大的需求。传统的无机正极材料,包括含锂的金属氧化物或磷酸盐等,由于存在容量提升有限,安全稳定性差,环境不友好,成本高等问题,使其在大动力电池中的应用受到限制。与无机正极材料相比,绿色有机电极材料因原材料丰富,资源可再生,分子水平上可设计性强,结构多样等优点,将作为一类新兴的电化学储能材料受到人们关注。
按照正极材料分类,有机正极材料可分为导电聚合物、含硫化合物、氮氧自由基化合物和羰基化合物等,其中有机共轭羰基化合物电极材料具有高比容量、低成本和环境友好等优点,已经成为锂离子电池电极材料研究热点。其中,有机共轭羰基化合物又分为两类:小分子共轭羰基化合物和共轭羰基化合物聚合物。1969年,有机共轭羰基电极材料,三氯异氰尿酸(DCA)首次被Williams等报道,但是由于DCA在电解液中溶解和热稳定性差等原因,导致它作为一次锂电池的正极材料时循环性能很差。
小分子共轭羰基化合物能够获得很高的放电比容量,但大都呈现出较差的循环寿命和倍率性能,这主要是由电极材料在有机电解液中的溶解以及固有的 低导电性引起的。研究者们尝试了多种方法来缓解溶解,包括:聚合,接枝,成盐,复合碳源。但从本质上来讲,增加导电炭含量或者成盐仅能减缓活性物质的溶解速率,可能还会造成容量降低。而聚合物与单体相比很难溶解在质子惰性和质子溶剂中,因此,聚合的方法是解决小分子共轭羰基化合物在电解液中的溶解性问题最有效的策略之一。例如,聚合物PAQS与9,10-蒽醌相比,循环性能大大改善,比容量与9,10-蒽醌也很接近。
共轭羰基化合物面临的另一重要问题是低的导电性,因为大多数都是半导体。为了解决这一问题,充分利用活性材料,在电极制备过程中往往需要通过物理混合加入大量的导电碳添加剂,但这大大降低了电极材料的能量密度,无法从分子水平上设计高比容量,高导电性的共轭羰基聚合物。
本发明有效地填补了用于储能方面的,从分子水平调控聚合物材料的化学组成及其聚集态结构的不足。
______________________________________________________________
发明内容
本发明的目的是解决现有技术中共轭羰基化合物作为锂离子电池电极材料时存在的不足,提供一种锂离子电池电极材料的制备方法,通过对聚合物的分子设计,从分子水平调控聚合物材料的化学组成及其聚集态结构,有效提高了材料导电性能,并且在半电池测试中具有较好的循环和倍率性能。
本发明人选择具有大共轭体系和平面型结构的多省并醌类聚合物(PAQR)作为锂离子电池正极电极材料,优势在于具有较多可逆发生氧化还原的电活性羰基官能团,可以引发多电子反应机制,有利于提高锂离子电池的能量密度,具有不溶性的聚合物骨架可以减少其在有机电解液中的溶解;并针对有机电极材料导电率低,设计合成了杂原子掺杂的共轭羰基聚合物,与目前杂原子掺杂 方式不同,这种方法不仅可以实现一步合成而且杂原子含量可控,通过掺杂氮原子,有效提高了材料导电性能,作为锂离子电池的正极材料,具有能量密度高,在半电池测试中具有较好的循环和倍率性能,质量比容量优于目前商业锂离子电池正极,从而可以有效克服现有技术不足。
本发明所采用的技术方案是:
一种锂离子电池电极材料的制备方法,包括如下步骤:
(1)取无水氯化铝和氯化钠混合均匀,加热升温并搅拌,得到熔盐相;
(2)取稠环化合物和酸酐按摩尔比1:1混合均匀,然后加入到步骤(1)的熔盐相中,混合均匀后进行焙烧;
(3)将步骤(2)焙烧后的产物加入到盐酸溶液中,搅拌酸解12~48h,然后抽滤,得到粗产品;
(4)将步骤(3)得到的粗产品依次用去离子水、乙醇、甲苯各回流一次,各自的回流时间为12~24h,最后进行真空干燥,得到产物。
步骤(1)中,所述无水氯化铝和氯化钠的重量比为4-5:1,优选为4.6:1。
步骤(2)中,所述稠环化合物选自9,10-蒽醌、1,4-萘醌、1,4-蒽醌、1,8-二羟基蒽醌、1,4,5,8-四羟基蒽醌、5,12-四并苯醌、6,13-五并苯醌、5,7,12,14-并五苯四酮、壬苯并六醌、萘、蒽、氧杂蒽、并四苯、并五苯、并七苯、芘、苝、晕苯、卵苯、十苯基并五苯、2,6-二苯基苯并[1,2-b:4,5-b']二硒吩、2,6-二苯基苯并[1,2-b:4,5-b']二噻吩、2,6-二苯基苯并[1,2-b:4,5-b']二碲吩、单溴并五苯、单氯并五苯、二氯并五苯、四氟并五苯、1,2-萘醌、1,2-蒽醌、9,10-菲醌、1,2-菲二酮、1-苊酮、苊醌、9-芴酮、芘-4,5,9,10-四酮、苯并芘二酮、薁、茚、苊烯、萉、菲、苊、芴、二苯并呋喃、[14]轮烯共轭体系、
Figure PCTCN2018081106-appb-000001
、荧蒽、苯并[k]荧蒽、奥林匹克烯、茚并[1,2,3-cd]芘、释迦牟尼分子、狗烯、2,1,9,8,7-蒽苯并萘、奥林匹克烃、苯并 芘、六苯并蔻、三苯基甲烷、四苯基甲烷、[18]轮烯、十星苯、9,9'-螺二芴、9'-螺二[9h-9硅芴]、螺(芴-9,9'-氧杂蒽)、红荧烯、不纯红荧烯、四苯基并五苯、双酚芴、酚酞、萘酚酞、C28、C32、C50、C60、C70、凯库勒烯类大环、[n]环对苯撑、杯芳烃类、柱芳烃类、芳香族双环分子、碳纳米环分子、螺旋型(18,14)碳纳米管、扶手椅型(16,16)碳纳米管、吩嗪、吖啶、吩噻嗪、噻蒽、5,10-二氢吩嗪、蝶啶、9,10-二氢吖啶、5,6-二酮-吡啶[3,4]喹啉、2-苯基苯并咪唑、2-苯基苯并噁唑、2-苯基苯并噻唑、2,5-二苯基苯并噁唑、1,4-二苯基-2,3,5,6-哌嗪四酮、喹吖啶酮、吲哚、异吲哚、咔唑、二苯并噻吩、1,10-邻二氮杂菲、1,10-邻二氮杂菲-5,6-二酮、2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲、2,4,7-三硝基芴酮、1,4-二(5-苯基-1,3,4-氧二唑-2-基)苯、5,5'-二苯基-2,2'-二(1,3,4-氧二唑)、5,5'-二苯基-2,2'-噻吩、三苯胺、均三芳基三嗪环、2,3-,2',3'-对二氨萘基吩嗪、N,N'-二(α-萘基)-N,N'-二苯基-4,4'-联苯胺、1,3,5-三(9-咔唑基)苯、9-叔丁基-N 3,N 3,N 6,N 6-四甲苯基-3,6-二氨基咔唑、1,3,5-三苯胺基苯、4,4',4”-三(咔唑-9-基)三苯胺、4,4',4”-三(1-芘基)三苯胺、2-螺二芴-3,4二氮杂螺二芴、2,2',7,7'-四氮唑-螺二芴、四苯基卟啉、酞菁、酞菁铜中的一种或两种以上任意比例的混合物。所述稠环化合物优选为9,10-蒽醌和吩嗪摩尔比为1:1的混合物。
步骤(2)中,所述酸酐选自2,3-萘二酐、2,3-蒽二甲酸酐、均苯四甲酸酐、1,4,5,8-萘四甲酸酐、3,4,9,10-苝四甲酸二酐、3,4,5,6-四氟苯酐、3,3',4,4'-联苯四甲酸二酐、蜜石酸酐、聚酞菁酮中的任意一种,优选为均苯四甲酸酐。
进一步,步骤(1)中,加热温度为100-200℃。
进一步,步骤(2)中,焙烧温度为200-300℃,时间为12-48h。
进一步,步骤(3)中,所述盐酸溶液的质量浓度为8-15%。
进一步,步骤(4)中,所述真空干燥的温度为60~100℃。
本发明的有益效果:本发明采用的制备方法工艺简单,绿色环保。从分子水平调控聚合物材料的化学组成及其聚集态结构。通过将具有大共轭体系平面型结构,可逆发生氧化还原的电活性羰基官能团,引发多电子反应机制的多省并醌类聚合物(PAQR)作为锂离子电池正极电极材料,不溶性的聚合物骨架可以减少其在有机电解液中的溶解,显示了良好的循环稳定性;针对有机电极材料导电率低,我们设计合成了杂原子掺杂的共轭羰基聚合物,与目前杂原子掺杂方式不同,这种方法不仅可以实现一步合成而且杂原子含量可控,通过掺杂氮原子,有效提高了材料导电性能,作为锂离子电池的正极材料,具有能量密度高,在半电池测试中具有较好的循环和倍率性能,质量比容量优于目前商业锂离子电池正极,且本发明所用原料均为普通原料,来源广泛,制造成本廉价,流程工艺简便,符合环境要求,具有良好的实际应用前景。
附图说明
如图1为本发明实施例1中锂离子电池正极产物的XRD图;
如图2为本发明实施例1中锂离子电池正极产物的SEM图;
如图3为本发明实施例1中锂离子电池正极产物的TEM图;
如图4为本发明实施例1中锂离子电池正极材料的循环图;
如图5为本发明实施例1中锂离子电池正极材料的倍率图;
如图6为本发明实施例2中锂离子电池正极产物的XRD图;
如图7为本发明实施例2中锂离子电池正极产物的STEM图;
如图8为本发明实施例2中锂离子电池正极产物的N元素分布图;
如图9为本发明实施例2中锂离子电池正极产物的SEM图;
如图10为本发明实施例2中锂离子电池正极产物的TEM图;
如图11为本发明实施例2中锂离子电池正极产物的XPS总谱图;
如图12为本发明实施例2中锂离子电池正极产物高分辨率N 1s XPS谱图;
如图13为本发明实施例2中锂离子电池正极材料的循环图;
如图14为本发明实施例2中锂离子电池正极材料的倍率图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)取无水氯化铝和氯化钠按重量比4.6:1混合均匀,加热至100~200℃搅拌10~50min形成熔盐相;
(2)取9,10-蒽醌和均苯四甲酸酐按摩尔比1:1混合均匀,然后加入到步骤(1)的熔盐相中,混合均匀后进行焙烧,焙烧温度250℃,时间20h。
(3)将步骤(2)焙烧后的产物加入到50mL10wt%的盐酸溶液中,搅拌酸解30h,然后抽滤,得到粗产品;
(4)将步骤(3)得到的粗产品依次用去离子水、乙醇、甲苯各回流一次,各自的回流时间为12~24h,最后60~100℃下进行真空干燥,得到的黑色固体粉末即为产物。
使用XRD对实施例1合成的产物进行观察,如图1所示。从图1可以看出,在26.5°左右有较宽的衍射峰,与石墨(002)晶面的特征衍射峰对应。使用SEM和TEM对产物得形貌进行观察,如图2和图3所示,从图中可以看出,合成的产物具有类石墨的片层结构。
电池制作与测试:按照4:4:2质量百分比称取实施例1所得产物、科琴黑和聚偏氟乙烯,以1-甲基-2-吡咯烷酮为溶剂,混合成浆料,均匀地涂敷在铝箔上,红外灯下60~80℃烘干、压实,并真空干燥12h,得到锂离子电池正极 工作电极,以金属锂片为对电极,选用Celgard 2400隔膜,电解液使用1mol/L LiPF 6/EC-DMC(质量比1:1),在氩气保护的手套箱中,组装成模拟电池,在高精度电池测试仪上考察其充放电循环性能。测得电池在放电截止电压1.5-4V,电流密度为100mAg -1时的循环性能如图4所示,PAQR初始放电比容量为194.1mAh g -1,100次循环后放电比容量为153.9mAh g -1,容量保持率是79.29%。此外,正极活性材料在不同电流密度下的倍率性能如图5所示,从图中可以看出,电极材料在电流密度100mAg -1,200mAg -1,500mAg -1,1Ag -1,2Ag -1,5Ag -1下的可逆容量分别为191.8mAh g -1,166mAh g -1,106.9mAh g -1,57.7mAh g -1,24mAh g -1,10.7mAh g -1,当电流密度重新回到100mA g -1时,电极材料的比容量迅速恢复,表明有较好的电化学氧化还原可逆性。
实施例2
与上述实施例1中不同之处在于,步骤(2)中原料为9,10-蒽醌,吩嗪和均苯四甲酸酐,按摩尔比0.5:0.5:1混合均匀,其余步骤与配方均与实施例1相同。
使用XRD对实施例2合成的产物进行观察,如图6所示,在2θ大约26.5°处观察到较宽的衍射峰,对应于(002)晶面,是碳或石墨结构的特征峰。从图7产物的STEM图和图8氮元素分布图可知,氮原子成功掺杂,并且分布相对均匀。使用SEM和TEM对产物得形貌进行观察,如图9和图10所示,从图中看出,合成的产物具有类石墨的片层结构。图11为产物的X射线光电子能谱总谱,从图中看出,结合能位于285eV,532eV和399eV显示了三个峰,分别归因于C 1s,O 1s和N 1s。图12为高分辨N 1s谱图,可以拟合成三个峰,分别为吡啶型N(399.0±0.2eV),吡咯型N(400.8±0.2eV)和石墨型N(402.5±0.2eV)。N含量经过计算为3.49at%。
电池制作与测试:电池制作步骤与实施例1相同,实验与测试条件、方法与实施例1相同。测得电池在放电截止电压1.5-4V,电流密度为100mA g -1时的循环性能如图13所示,正极材料的初始放电容量高达261.8mAh g -1,100次循环后,容量保持在237.3mAh g -1,容量保持率为90.64%。此外,正极活性材料在不同电流密度下的倍率性能如图14所示,从图中可以看出,电极材料在电流密度100mAg -1,200mAg -1,500mAg -1,1Ag -1,2Ag -1,5Ag -1下的可逆容量分别为271.9mAh g -1,244.8mAh g -1,193.2mAh g -1,161.4mAh g -1,135.3mAh g -1,107.4mAh g -1,当电流密度重新回到100mAg -1时,电极材料的比容量迅速恢复,表明聚合物的电化学氧化还原可逆性很好。上述优异的循环和倍率性能,主要是因为掺杂N原子,显著降低了电极的电荷转移电阻,提高了电荷转移和锂离子扩散动力学,引入了大量缺陷,提高了电化学活性。

Claims (8)

  1. 一种锂离子电池电极材料的制备方法,其特征在于,包括如下步骤:
    (1)取无水氯化铝和氯化钠混合均匀,加热升温并搅拌,得到熔盐相;
    (2)取稠环化合物和酸酐按摩尔比1:1混合均匀,然后加入到步骤(1)的熔盐相中,混合均匀后进行焙烧;
    (3)将步骤(2)焙烧后的产物加入到盐酸溶液中,搅拌酸解12~48h,然后抽滤,得到粗产品;
    (4)将步骤(3)得到的粗产品依次用去离子水、乙醇、甲苯各回流一次,各自的回流时间为12~24h,最后进行真空干燥,得到产物;
    步骤(1)中,所述无水氯化铝和氯化钠的重量比为4-5:1;
    步骤(2)中,所述稠环化合物选自9,10-蒽醌、1,4-萘醌、1,4-蒽醌、1,8-二羟基蒽醌、1,4,5,8-四羟基蒽醌、5,12-四并苯醌、6,13-五并苯醌、5,7,12,14-并五苯四酮、壬苯并六醌、萘、蒽、氧杂蒽、并四苯、并五苯、并七苯、芘、苝、晕苯、卵苯、十苯基并五苯、2,6-二苯基苯并[1,2-b:4,5-b']二硒吩、2,6-二苯基苯并[1,2-b:4,5-b']二噻吩、2,6-二苯基苯并[1,2-b:4,5-b']二碲吩、单溴并五苯、单氯并五苯、二氯并五苯、四氟并五苯、1,2-萘醌、1,2-蒽醌、9,10-菲醌、1,2-菲二酮、1-苊酮、苊醌、9-芴酮、芘-4,5,9,10-四酮、苯并芘二酮、薁、茚、苊烯、萉、菲、苊、芴、二苯并呋喃、[14]轮烯共轭体系、
    Figure PCTCN2018081106-appb-100001
    荧蒽、苯并[k]荧蒽、奥林匹克烯、茚并[1,2,3-cd]芘、释迦牟尼分子、狗烯、2,1,9,8,7-蒽苯并萘、奥林匹克烃、苯并芘、六苯并蔻、三苯基甲烷、四苯基甲烷、[18]轮烯、十星苯、9,9'-螺二芴、9'-螺二[9h-9硅芴]、螺(芴-9,9'-氧杂蒽)、红荧烯、不纯红荧烯、四苯基并五苯、双酚芴、酚酞、萘酚酞、C28、C32、C50、C60、C70、凯库勒烯类大环、[n]环对苯撑、杯芳烃类、柱芳烃类、芳香族双环分子、碳纳米环分子、螺旋型(18,14)碳纳米管、扶手椅型(16,16)碳纳米管、吩嗪、吖啶、吩噻嗪、噻蒽、5,10-二 氢吩嗪、蝶啶、9,10-二氢吖啶、5,6-二酮-吡啶[3,4]喹啉、2-苯基苯并咪唑、2-苯基苯并噁唑、2-苯基苯并噻唑、2,5-二苯基苯并噁唑、1,4-二苯基-2,3,5,6-哌嗪四酮、喹吖啶酮、吲哚、异吲哚、咔唑、二苯并噻吩、1,10-邻二氮杂菲、1,10-邻二氮杂菲-5,6-二酮、2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲、2,4,7-三硝基芴酮、1,4-二(5-苯基-1,3,4-氧二唑-2-基)苯、5,5'-二苯基-2,2'-二(1,3,4-氧二唑)、5,5'-二苯基-2,2'-噻吩、三苯胺、均三芳基三嗪环、2,3-,2',3'-对二氨萘基吩嗪、N,N'-二(α-萘基)-N,N'-二苯基-4,4'-联苯胺、1,3,5-三(9-咔唑基)苯、9-叔丁基-N 3,N 3,N 6,N 6-四甲苯基-3,6-二氨基咔唑、1,3,5-三苯胺基苯、4,4',4”-三(咔唑-9-基)三苯胺、4,4',4”-三(1-芘基)三苯胺、2-螺二芴-3,4二氮杂螺二芴、2,2',7,7'-四氮唑-螺二芴、四苯基卟啉、酞菁、酞菁铜中的一种或两种以上任意比例的混合物;
    步骤(2)中,所述酸酐选自2,3-萘二酐、2,3-蒽二甲酸酐、均苯四甲酸酐、1,4,5,8-萘四甲酸酐、3,4,9,10-苝四甲酸二酐、3,4,5,6-四氟苯酐、3,3',4,4'-联苯四甲酸二酐、蜜石酸酐、聚酞菁酮中的任意一种。
  2. 如权利要求1所述的锂离子电池电极材料的制备方法,其特征在于,步骤(1)中,所述无水氯化铝和氯化钠的重量比为4.6:1。
  3. 如权利要求1所述的锂离子电池电极材料的制备方法,其特征在于,步骤(2)中,所述稠环化合物为9,10-蒽醌和吩嗪摩尔比为1:1的混合物。
  4. 如权利要求1所述的锂离子电池电极材料的制备方法,其特征在于,步骤(2)中,所述酸酐为均苯四甲酸酐。
  5. 如权利要求1所述的锂离子电池电极材料的制备方法,其特征在于,步骤(1)中,加热温度为100-200℃。
  6. 如权利要求1所述的锂离子电池电极材料的制备方法,其特征在于,步骤(2)中,焙烧温度为200-300℃,时间为12-48h。
  7. 如权利要求1所述的锂离子电池电极材料的制备方法,其特征在于,步骤(3)中,所述盐酸溶液的质量浓度为8-15%。
  8. 如权利要求1至7任一项所述的锂离子电池电极材料的制备方法,其特征在于,步骤(4)中,所述真空干燥的温度为60~100℃。
PCT/CN2018/081106 2017-06-05 2018-03-29 一种锂离子电池电极材料的制备方法 WO2018223755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710413331.1 2017-06-05
CN201710413331.1A CN106981661B (zh) 2017-06-05 2017-06-05 一种锂离子电池电极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2018223755A1 true WO2018223755A1 (zh) 2018-12-13

Family

ID=59343240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081106 WO2018223755A1 (zh) 2017-06-05 2018-03-29 一种锂离子电池电极材料的制备方法

Country Status (2)

Country Link
CN (1) CN106981661B (zh)
WO (1) WO2018223755A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981661B (zh) * 2017-06-05 2019-08-23 南京工业大学 一种锂离子电池电极材料的制备方法
CN107317032A (zh) * 2017-06-23 2017-11-03 南京工业大学 一种有机微孔聚合物电极材料的制备方法
CN107317022A (zh) * 2017-06-28 2017-11-03 南京工业大学 一种锂离子电池正极的制备方法
CN107845798B (zh) * 2017-11-03 2020-06-26 南京工业大学 一种锂离子电池正极材料的制备办法
CN108711624B (zh) * 2018-07-17 2021-06-22 常州大学 用于锂电池的有机正极材料的多羰基氮杂环有机化合物及其制备方法
CN109698335B (zh) * 2018-12-19 2021-09-17 扬州大学 一种柱[5]芳烃复合硫锂硫正极材料的制备方法
CN110350193B (zh) * 2019-07-02 2022-09-06 华南师范大学 一种双离子嵌入型交联网状三苯胺聚合物锂离子电池正极材料及其制备方法
CN110474051B (zh) * 2019-07-11 2021-01-15 北京工业大学 一种常见染料罗丹明b作为锂离子电池有机正极材料的应用
CN110606936B (zh) * 2019-09-23 2022-03-15 天津大学 聚[降冰片烯1,4-二甲基联萘醌]及制备方法和应用
CN110951054A (zh) * 2019-12-23 2020-04-03 黑龙江大学 含联苯结构的三苯胺类异靛蓝聚合物及其制备方法和应用
CN111261872B (zh) * 2020-01-21 2022-11-29 天津大学 有机电极材料及其制备方法和应用
CN111333855B (zh) * 2020-04-03 2021-11-30 华南师范大学 一种1,5-二羟基蒽醌铜配位聚合物/石墨烯复合物及制备与应用
CN113173945B (zh) * 2021-03-10 2023-04-07 西北师范大学 一种刚性螺环噻咯化合物的有机相电化学发光体系的构建方法
CN115207344B (zh) * 2021-04-12 2023-05-05 南京工业大学 一种FexSey@CN复合材料的制备及其电化学储能应用
CN113501956B (zh) * 2021-07-08 2022-09-16 兰州大学 具有高倍率性能的d-a型苝基共轭聚合物锂离子电池正极材料及其制备方法
CN115466398B (zh) * 2022-08-10 2023-11-24 东南大学 一种水系锌离子电池用有机醌类聚合物正极材料pppa的制备方法及应用
CN115323779B (zh) * 2022-08-18 2024-04-26 南通大学 一种光诱导清除甲醛棉织物的制备方法
CN115873247A (zh) * 2022-12-06 2023-03-31 哈尔滨师范大学 一种的三维3-n杂环萘醌及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557978A (en) * 1983-12-12 1985-12-10 Primary Energy Research Corporation Electroactive polymeric thin films
CN103965993A (zh) * 2014-04-27 2014-08-06 青岛科技大学 一种空心球电流变液及其制备方法
CN106981661A (zh) * 2017-06-05 2017-07-25 南京工业大学 一种锂离子电池电极材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821304A (zh) * 2006-02-13 2006-08-23 南京大学 一种高介电常数复合物及其制法和用途
EP2561568A1 (en) * 2010-04-21 2013-02-27 Basf Se Novel metal-organic frameworks as electrode material for lithium ion accumulators
CN103531810B (zh) * 2013-11-05 2016-01-13 南京工业大学 一类芳香杂环酮类化合物的锂离子二次电池正极材料及应用
CN103779568B (zh) * 2014-02-19 2015-12-02 南开大学 一种用于锂离子电池的柱醌正极材料及其应用
CN106654200B (zh) * 2016-12-08 2019-09-06 南方科技大学 一种电极材料、其制备方法及用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557978A (en) * 1983-12-12 1985-12-10 Primary Energy Research Corporation Electroactive polymeric thin films
CN103965993A (zh) * 2014-04-27 2014-08-06 青岛科技大学 一种空心球电流变液及其制备方法
CN106981661A (zh) * 2017-06-05 2017-07-25 南京工业大学 一种锂离子电池电极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Study on Structure and Character of Polyacene Quinine Radical Polymer", JOURNAL OF FUNCTIONAL MATERIALS, vol. 42, no. 10, 20 October 2011 (2011-10-20), ISSN: 1001-9731 *
WANG, YUNLONG ET AL.: "Synthesis of Polyacene Quinone Radical Polymers with the New Method of Molten Salt", EXPERIMENT SCIENCE AND TECHNOLOGY, vol. 9, no. 5, 28 October 2011 (2011-10-28), ISSN: 1672-4550 *

Also Published As

Publication number Publication date
CN106981661A (zh) 2017-07-25
CN106981661B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2018223755A1 (zh) 一种锂离子电池电极材料的制备方法
Liu et al. A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17%
CN112993256A (zh) 一种共价有机框架材料在锂金属负极保护中的应用
CN110452184B (zh) 共轭微孔聚合物材料及其制备单体和应用
CN110964198A (zh) 一种聚酰亚胺材料及其制备方法与应用
CN103531810A (zh) 一类芳香杂环酮类化合物的锂离子二次电池正极材料及应用
CN108461752B (zh) 一种侧链带有共轭羰基化合物的三苯胺聚合物及制备与应用
CN114883559A (zh) 一种萘醌-喹喔啉有机电极材料及其在水系锌离子电池中的应用
Chen et al. Recent Progress and Design Principles for Rechargeable Lithium Organic Batteries
CN106207182A (zh) 一种应用于锂电池的微介孔聚三苯胺衍生物及其制备方法
CN110600699B (zh) 一种三维有序介孔mof材料的制备方法
CN111138640A (zh) 受体聚合物、光活性层、能量器件及制备方法与应用
Lu et al. Perspectives on the Redox Chemistry of Organic Electrode Materials in Lithium Batteries
Zhu et al. C3-symmetric trimeric imidazole naphthoquinone derivative with dual redox-active sites for high-performance cathodic lithium storage
CN110590789B (zh) 富氮三苯胺衍生物共轭聚合物材料及其单体的制备和应用
CN109776769B (zh) 一种基于噻吩、苝二酰亚胺和异靛蓝单元的三元共聚物及其制备方法
CN113173936B (zh) 一种基于稠环吸电子母核的非掺杂空穴传输材料及其合成方法和应用
CN112072062B (zh) 一种用于质子电池的多羰基氮杂稠环材料及其电极的制备方法
CN111211327B (zh) 一种用于锂离子电池正极材料的化合物及制备方法和应用
CN107845798A (zh) 一种锂离子电池正极材料的制备办法
Liu et al. Oxocarbon Organic Conjugated Compounds for Lithium-Ion Batteries and Solar Cells: Progress and Perspectives
Lv et al. A novel A–DA′ D–A bifunctional small molecule for organic solar cell applications with impressive photovoltaic performance
CN112111061B (zh) 一种聚酰亚胺的制备方法及其水系锂离子电池应用
CN115745972B (zh) 一种含氮有机正极材料及其制备方法和应用
CN114621255B (zh) 一种PTCDI2-2Se化合物、其制备方法及其在钾离子电池中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814117

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 28.01.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18814117

Country of ref document: EP

Kind code of ref document: A1