CN110452184B - 共轭微孔聚合物材料及其制备单体和应用 - Google Patents

共轭微孔聚合物材料及其制备单体和应用 Download PDF

Info

Publication number
CN110452184B
CN110452184B CN201910518240.3A CN201910518240A CN110452184B CN 110452184 B CN110452184 B CN 110452184B CN 201910518240 A CN201910518240 A CN 201910518240A CN 110452184 B CN110452184 B CN 110452184B
Authority
CN
China
Prior art keywords
bistriazine
poly
tetra
conjugated microporous
diphenylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910518240.3A
Other languages
English (en)
Other versions
CN110452184A (zh
Inventor
李维军
徐宁
陈章新
张�诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910518240.3A priority Critical patent/CN110452184B/zh
Publication of CN110452184A publication Critical patent/CN110452184A/zh
Application granted granted Critical
Publication of CN110452184B publication Critical patent/CN110452184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了式(I)所示的聚[4,4’,6,6’‑四(4‑二苯胺基苯基)‑2,2’‑双三嗪]共轭微孔聚合物材料及其制备单体和应用。所述聚[4,4’,6,6’‑四(4‑二苯胺基苯基)‑2,2’‑双三嗪]共轭微孔聚合物材料的制备单体如式(II)所示,其具体按照如下方法制备:以无水三氯化铁为氧化剂,式(Ⅱ)所示的4,4’,6,6’‑四(4‑二苯胺基苯基)‑2,2’‑双三嗪为单体通过氧化聚合反应制得式(I)所示的聚[4,4’,6,6’‑四(4‑二苯胺基苯基)‑2,2’‑双三嗪]共轭微孔有机聚合物材料。本发明提供了所述的聚[4,4’,6,6’‑四(4‑二苯胺基苯基)‑2,2’‑双三嗪]共轭微孔有机聚合物材料作为锂离子电池正极材料的应用以及制得的锂离子电池,表现出较高的比容量和良好的倍率性能。

Description

共轭微孔聚合物材料及其制备单体和应用
技术领域
本发明涉及一种聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪](简称pTPADTz)共轭微孔有机聚合物材料及其制备单体和作为锂-有机电池正极材料的应用。
背景技术
当今社会,随着人们对清洁能源的需求,从而使得化学电源的能量密度和功率密度都有了更高的要求。目前市场上商业化应用的锂离子电池正极材料大多是过渡金属氧化物正极材料,比如LiCoO2、LiMn2O4、LiNiO2、LiFeO4和三元材料等。这些无机金属氧化物材料受到理论比容量的限制,很难实现其电池高容量和高能量密度,并且制造过程中的高能耗和污染及材料的不可再生性成为制约锂离子电池发展的瓶颈。有机聚合物材料具有分子结构可设计、原料丰富、储能密度高和柔韧性好易于加工等优点,受到许多学者的关注。因此,高容量、高能量密度的有机或聚合物材料是下一代“绿色电池”的发展方向之一。
在已经报道的有机正极材料中,聚三苯胺具有稳定的化学结构,在充放电过程中三苯胺中的氮原子失去电子后能形成稳定的自由基结构,使得材料表现出良好的循环稳定性,并且在3.6V左右具有稳定的电压平台。然而,聚三苯胺作为理想正极材料还存在如下问题:(1)正极材料能量密度较低。根据能量密度公式,E(能量密度)=C(理论比容量)×V(放电电压),主要是由于聚三苯胺正极材料的理论比容量较低(理论比容量仅109mAh.g-1,低于商品化的 LiCoO2无机正极材料的~140mAh.g-1)。同时,放电电压还有待提高;(2)聚合物的聚集态本质限制了聚合物正极材料内部活性中心与电解质的充分接触,降低了作为活性材料在电池充放电过程中的实际利用率。
本发明旨在设计一种新型的星型三苯胺双三嗪结构的共轭微孔聚合物,从而实现高比能量密度的锂电池正极材料。
发明内容
本发明的第一个目的是提供一种含有三苯胺-双三嗪结构的4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪有机小分子。
本发明的第二个目的是提供一种由4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪有机小分子制备得到的具有疏松的三维网状结构、高比表面积、丰富的微孔结构和多级的微孔介孔分布的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料。
本发明的第三个目的是提供所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料作为锂离子电池正极材料的应用,具有高比容量和良好的倍率性能。
本发明的第四个目的是提供由所述聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料作为正极材料制备的锂离子电池,该锂离子电池具有良好的充放电循环性能。
为实现上述发明目的,本发明采用以下技术方案:
第一方面,本发明提供了一种4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪,其结构如式(II) 所示:
Figure BDA0002095688670000021
本发明提供了一种简便、易操作的4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪的制备方法,所述制备方法包括以下步骤:
(1)由4-硼酸三苯胺和2,4,6-三氯-1,3,5-三嗪经Suzuki偶联反应制得(III)2,4-(N,N- 二苯基苯)-6-氯-1,3,5-三嗪:
Figure BDA0002095688670000022
(2)式(III)所示的2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪在Zn粉、Ni(PPh3)2Cl2、n-Bu4NI 的共同作用下偶联制得式(II)所示的4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪:
Figure BDA0002095688670000031
作为优选,所述的Suzuki偶联反应具体按如下反应:将4-硼酸三苯胺和2,4,6-三氯-1,3,5- 三嗪、Pd(PPh3)2Cl2、K2CO3,在氮气保护下加入去离子水,溶剂采用甲苯,在60-80℃条件下反应3-8h,待反应结束后经后处理得到2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪。
作为进一步的优选,所述反应温度为70℃,相应的反应时间为6h。
作为进一步的优选,所述2,4,6-三氯-1,3,5-三嗪与4-硼酸三苯胺的物质的量比例为1:2~3,更进一步优选为1:2.5。
作为进一步的优选,所述Pd(PPh3)2Cl2的质量用量为反应物4-硼酸三苯胺和2,4,6-三氯 -1,3,5-三嗪总质量用量的2-4%,更进一步优选为2.5%,。
作为进一步的优选,所述K2CO3与去离子水的摩尔体积比为4-6mmol/ml,更进一步优选为5mmol/ml。所述K2CO3与2,4,6-三氯-1,3,5-三嗪的摩尔比为3-10:1,更进一步优选为5:1。
作为进一步的优选,所述甲苯与去离子水的体积比为10-20:1,更进一步优选为15:1。
作为进一步的优选,所述Suzuki偶联反应在70℃下进行,反应时间为4h。
作为进一步的优选,所述Suzuki偶联反应的后处理方法为:冷却至室温,反应粗产物用二氯甲烷和水萃取洗涤多次,无水硫酸镁干燥,然后用薄层色谱柱层析法提纯,得到目标产物1,3,5-三(4-二苯基氨基苯基)苯,为黄色色粉末。
作为优选,所述的步骤(2)具体按照如下实施:将锌粉、Ni(PPh3)2Cl2、n-Bu4NI、2,4- (N,N-二苯基苯)-6-氯-1,3,5-三嗪加入反应容器中,在氮气保护下加入THF,在65-85℃下反应24-36h,反应结束后经后处理得到4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪。
作为进一步的优选,所述的THF为重蒸四氢呋喃,保证溶剂中无水。
作为进一步的优选,所述2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪与锌粉的物质的量比为 1:2~6。
作为进一步的优选,所述Ni(PPh3)2Cl2的摩尔用量为反应物的2-6%,更进一步优选为4%。
作为进一步的优选,所述n-Bu4NI与2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪的摩尔比为 1:0.5-1.5,更一步优选为1:1。
作为进一步的优选,所述锌粉在使用前进行预处理,预处理方法为:锌粉依次用稀盐酸溶液、水、乙醇、丙酮洗涤,用以洗去氧化锌、氯化锌及表面其它杂质,干燥后在惰性气体下保存,防止氧化。
作为进一步的优选,步骤(2)中,反应温度为70℃,反应时间为24h。
作为进一步的优选,步骤(2)中的后处理方法为:冷却至室温,反应粗产物用二氯甲烷和水多次萃取洗涤,用无水硫酸镁干燥,然后用薄层色谱柱层析法提纯,得到目标产物4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪,为黄色粉末。
第二方面,本发明提供了一种聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料,所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]具有如式(I)所示结构式:
Figure BDA0002095688670000041
所述聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料按如下方法制备:
以无水三氯化铁为氧化剂,式(Ⅱ)所示的4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪为单体通过氧化聚合反应制得式(I)所示的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料;
Figure BDA0002095688670000042
作为优选,所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料具体按如下方法制备:
将4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪单体溶于氯仿中,加入氧化剂无水三氯化铁,在氮气保护下、20~60℃反应12~48h,反应结束后加入甲醇使产物沉淀,过滤,然后洗涤、干燥,得到式(I)所示的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料。
作为进一步的优选,所述4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪与无水三氯化铁物质的量比为1:4~6,更进一步优选为1:5。
作为进一步的优选,反应温度为20-40℃,更进一步优选为30℃。
作为进一步的优选,反应时间为24h。
作为进一步的优选,所述氯仿为重蒸氯仿,保证无水无氧环境避免三氯化铁失活。
作为进一步的优选,所述洗涤具体为:用稀盐酸、水和甲醇分别洗涤。
作为优选,所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料的比表面积(P/P0=0.2)为~600-700m2/g,孔径分布以微孔结构为主,微孔孔径分布为 0.57-0.9nm。
第三方面,本发明提供所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料作为锂离子电池正极材料的应用。具体应用中,本领域技术人员可采用常规操作方法制备锂离子正极材料以及锂离子电池。
第四方面,本发明提供以所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料作为正极材料的锂离子电池。
作为优选,所述的锂离子电池为CR2032扣式电池,其制备过程具体如下:
(a)以所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料作为活性物质,乙炔黑作为导电剂,PVDF作为粘结剂,N-甲基吡咯烷酮(NMP)作为溶剂,制备成正极浆料;然后将正极浆料涂在预先处理过的铝箔表面,真空干燥得到正极片;
(b)以步骤(a)制备的正极片作为正极,金属锂片为负极,1M LiPF6的EC:DMC:EMC=1:1:1(v/v)溶液作为电解质溶液,聚丙烯微孔膜作为隔膜,在充满氩气的手套箱中(湿度<10ppm)组装成CR2032扣式电池,组装顺序如下排列(以下层优先):负极壳-弹簧片-垫片-金属锂片-电解液-隔膜-电解液-正极片-电解液-正极壳,结束后用2032型纽扣电池封口机进行封口,并静置12-36h。
作为进一步的优选,在金属锂片上加入的电解液为3-6滴,优选为4滴;隔膜上加入的电解液为2-5滴,优选为4滴;正极片加入的电解液为1-3滴,优选为2滴。
作为进一步的优选,封口前,纽扣电池尽量保持在无水无氧环境中。
作为进一步的优选,静置时间为24h。
与现有技术相比,本发明的有益效果在于:
(1)本发明设计了一种4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪小分子化合物,并以其作为单体通过氧化聚合反应制得了的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料,该有机聚合物材料具有疏松的三维网状结构、高比表面积、丰富的微孔结构和多级的微孔介孔分布。
(2)以所述聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]用作锂离子电池正极材料时,其聚合物电极表现出较高的比容量(首圈比容量高达220mAh g-1)和良好的倍率性能。
附图说明
图1为实施例2制备的4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪的核磁氢谱谱图。
图2为实施例2制备的4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪的质谱谱图。
图3为实施例2制备的4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪与聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料的红外光谱图。
图4为实施例2制备的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]和实施例4电极片的扫描电镜图,其中a、b为聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪],c、d为电极片。
图5-1和5-2为实施例2制备的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]的BET吸附脱附曲线及孔径分布。
图6为实施例4制备的锂离子电池的循环性能图。
图7为实施例4制备的锂离子电池的倍率性能图。
具体实施方式
以下通过实施例进一步说明本发明的技术方案,但本发明的保护范围不限于此。
实施例1:锌粉预处理
在洁净的大烧杯中加入10g锌粉,100ml稀盐酸(质量分数:2%),搅拌1min后过滤,再用 100ml相同浓度的稀盐酸反复洗涤,用水、乙醇、丙酮各淋洗三次,然后在60℃下真空干燥 2h,研磨后装入密封瓶中待用。
实施例2
2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪的合成:在预先洗涤干燥处理的100ml双口烧瓶中加入4-硼酸三苯胺(1.445g),2,4,6-三氯-1,3,5-三嗪(0.369g),Pd(PPh3)2Cl2(46mg), K2CO3(1.38g),氮气保护后加入去离子水2ml、甲苯30ml,升温至70℃反应4h。反应结束后冷却至室温,用二氯甲烷和水萃取洗涤多次,用无水硫酸镁干燥,随后用薄层色谱层析法 (展开剂石油醚:二氯甲烷=2:1),得到黄色产物0.96g,产率为80%。1H NMR(500MHz,CDCl3),δ8.40(d,J=8.5Hz,4H),7.34(t,J=7.8Hz,8H),7.19(d,J=7.7Hz,8H),7.16(t,J=7.3 Hz,4H),7.10–7.05(m,4H)。
4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪的合成:在预先洗涤干燥处理的25ml两口烧瓶中加入2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪(0.72g)、实施例1预处理后的锌粉(0.23g)、 Ni(PPh3)2Cl2(0.026g)和n-Bu4NI(0.44g),在氮气保护下加入重蒸四氢呋喃15ml,升温至 70℃,反应36h。反应结束后冷却至室温,用二氯甲烷和水萃取洗涤多次,用无水硫酸镁干燥,随后用薄层色谱层析法(展开剂石油醚:二氯甲烷=1:1)得到黄色产物0.315g,产率 46.5%。1HNMR(500MHz,CDCl3),δ8.62(d,J=8.8Hz,6H),7.33(t,J=7.9Hz,12H),7.21(d,J =7.6Hz,12H),7.17–7.11(m,12H).MS(MADLI-TOF):m/z=1132.47。
聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]的合成:将0.2g 4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪单体溶于20ml重蒸氯仿中,在氮气氛围下加入摩尔量为单体摩尔量5倍的无水三氯化铁粉末,在30℃下反应进行24h。反应结束后加入大量的甲醇沉淀,然后过滤,用稀盐酸、水和甲醇分别洗涤,过滤,将得到的滤饼60℃下真空干燥24h,得到土黄色固体粉末,产量0.172g,产率86%。
通过红外光谱表征4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪单体与聚合物(见附图3),从图中可以看出,该化合物单体和聚合物同时具备三苯胺单元的特征峰和三嗪环的特征峰。位于1599cm-1处的吸收峰是苯环上C=C键的伸缩振动峰,1490cm-1处的吸收峰是苯环上的 C-C键的伸缩振动峰,1328cm-1上的吸收峰是由于苯环上的C-H键的弯曲震动所引起的,出现在1276cm-1和820cm-1处的吸收峰分别是归属于叔胺C-N键的伸缩振动和1,4-双取代苯环上的C-H键的面外摇摆振动。1362cm-1处出现的吸收峰则可以认为是三嗪环骨架振动特征峰,而1420cm-1处出现的是C=N键的伸缩振动峰。因此可以认定该单体是目标产物。在815cm-1处出现的吸收峰为对位取代苯C-H面外弯曲振动,在755cm-1处出现的吸收峰为苯环单取代 C-H面外弯曲振动,从这两处的吸收峰强度变化可知该聚合物已经成功合成。
通过扫描电镜观察聚合物表面形貌(见附图4),聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’- 双三嗪]呈现出片状堆积的花形结构,分布比较均匀,这种堆积使得聚合物可能具有较大的比表面积;聚合物与PVDF、乙炔黑混合后,其形貌并未发生太大的改变。
通过比表面积分析仪(BET)测试材料的比表面积和孔结构(见附图5-1 和附图 5-2 ),聚[4,4’,6,6’- 四(4-二苯胺基苯基)-2,2’-双三嗪]的吸附曲线是典型的IV型曲线,其特点是吸附量在较低的相对压力下迅速增加,并且达到吸附平台,表明聚合物孔径分布以微孔为主。聚[4,4’,6,6’-四(4- 二苯胺基苯基)-2,2’-双三嗪]的比表面积为675m2/g,从BJH脱附孔径分布来看,其微孔分布在0.57-0.9nm左右。
实施例3
2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪的合成:在预先洗涤干燥处理的100ml双口烧瓶中加入4-硼酸三苯胺(1.445g),2,4,6-三氯-1,3,5-三嗪(0.369g),Pd(PPh3)2Cl2(46mg),K2CO3 (1.38g),氮气保护后加入甲苯30ml,去离子水水2ml,升温至70℃反应6h。反应结束后冷却至室温,用二氯甲烷和水萃取洗涤多次,用无水硫酸镁干燥,随后用薄层色谱层析法得到黄色产物0.81g,产率为67.5%。
4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪的合成:在预先洗涤干燥处理的25ml两口烧瓶中加入2,4-(N,N-二苯基苯)-6-氯-1,3,5-三嗪(0.72g),锌粉(0.23g),Ni(PPh3)2Cl2(0.026g), n-Bu4NI(0.44g),在氮气保护下加入重蒸四氢呋喃15ml,升温至70℃,反应24h。反应结束后冷却至室温,用二氯甲烷和水萃取洗涤多次,用无水硫酸镁干燥,随后用薄层色谱层析法得到黄色产物0.31g,产率45.7%。
实施例4
以实施例1制得的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]作为正极材料的活性物质,按照如下步骤制备锂离子电池:
我们采用涂膜法进行制备正极片,以预先制备好的聚合物作为活性物质,乙炔黑作为导电剂,PVDF作为粘结剂。按活性物质、导电剂、粘结剂的质量比为50/40/10的比例碾磨均匀混合,滴加适量的N-甲基吡咯烷酮(NMP)溶解,研磨搅拌使之形成正极浆料。然后,将制备好的浆料用涂布器涂在预先处理过的铝箔表面,在真空干燥箱中在60℃下真空干燥24h,得到正极片。
以制得的正极片作正极,金属锂片作负极,1M LiPF6的EC:DMC:EMC=1:1:1(v/v)溶液作为电解质溶液,聚丙烯微孔膜(Celgard 2300)作为隔膜,在充满氩气的手套箱中(H2O<0.5 ppm,O2<0.5ppm)组装成CR2032扣式电池。组装顺序如下排列(以下层优先):负极壳- 弹簧片-垫片-金属锂片-电解液-隔膜-电解液-正极片-电解液-正极壳,在金属锂片上加入的电解液为4滴,隔膜上加入的电解液为4滴,正极片加入的电解液为2滴。结束后用2032型纽扣电池封口机进行封口,并静置24h。
对制得的电池进行电化学测试,在充放电测试中(图6)聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]在3.8V和2V左右出现两个电压平台,在工作电压1.5-4.2V下,首次比容量达到220mAh/g,循环50圈后,仍然具有95mAh/g的比容量;在倍率性能测试中(图7)聚 [4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]在50-500mA/g的电流密度下,具有良好的倍率性能。
以上结果表明,本发明所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔聚合具有丰富的微孔结构和良好的电化学性能,是一种具有潜在应用价值的共轭微孔聚合物材料。

Claims (4)

1.4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪,其结构如式(II)所示:
Figure FDA0002697596130000011
2.聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料,其特征在于:所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]具有如式(I)所示结构式:
Figure FDA0002697596130000012
3.如权利要求2所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料作为锂离子电池正极材料的应用。
4.以权利要求2所述的聚[4,4’,6,6’-四(4-二苯胺基苯基)-2,2’-双三嗪]共轭微孔有机聚合物材料作为正极材料的锂离子电池。
CN201910518240.3A 2019-06-14 2019-06-14 共轭微孔聚合物材料及其制备单体和应用 Active CN110452184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910518240.3A CN110452184B (zh) 2019-06-14 2019-06-14 共轭微孔聚合物材料及其制备单体和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910518240.3A CN110452184B (zh) 2019-06-14 2019-06-14 共轭微孔聚合物材料及其制备单体和应用

Publications (2)

Publication Number Publication Date
CN110452184A CN110452184A (zh) 2019-11-15
CN110452184B true CN110452184B (zh) 2020-12-25

Family

ID=68480695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910518240.3A Active CN110452184B (zh) 2019-06-14 2019-06-14 共轭微孔聚合物材料及其制备单体和应用

Country Status (1)

Country Link
CN (1) CN110452184B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029579B (zh) * 2019-12-12 2020-12-25 深圳先进技术研究院 钙离子电池正极材料、正极和钙离子电池
CN113394511B (zh) * 2021-06-11 2022-09-09 中国科学院兰州化学物理研究所 一种用于锂-硫电池的共轭微孔聚合物改性隔膜的制备方法
CN114479017A (zh) * 2021-12-23 2022-05-13 青海大学 一种有机硼-噻吩共轭聚合物及其制备方法和应用
CN114702648B (zh) * 2022-03-15 2024-03-12 阿尔特汽车技术股份有限公司 铁掺杂富氮共轭微孔聚合、制备方法,及电池正极催化剂

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006862B2 (ja) * 1998-12-22 2007-11-14 コニカミノルタホールディングス株式会社 新規アミノ化合物とその製造方法、及び用途
CN105037691B (zh) * 2014-04-24 2017-12-29 浙江工业大学 聚二联三苯胺、其应用及由其制得的锂离子电池
CN104558540B (zh) * 2014-12-19 2017-04-12 浙江工业大学 聚四联三苯胺及其作为锂离子电池正极材料的应用
CN108623787B (zh) * 2017-03-15 2020-05-26 浙江工业大学 新型共轭微孔有机聚合物及其合成与应用
CN108794406A (zh) * 2018-01-05 2018-11-13 吉林大学 一类具有亲核反应活性的双氟单体、制备方法及其在制备聚芳醚中的应用
CN108976393B (zh) * 2018-05-28 2021-07-27 浙江工业大学 聚[1,3,5-三(4-二苯基氨基苯基)苯]有机微介孔聚合物材料及其制备和应用
CN109134283B (zh) * 2018-07-20 2020-10-27 北京理工大学 一种有机小分子空穴传输材料、制备方法及钙钛矿太阳能电池

Also Published As

Publication number Publication date
CN110452184A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN110452184B (zh) 共轭微孔聚合物材料及其制备单体和应用
CN108565464B (zh) 一种载硫mof@导电聚合物材料及其制备方法和应用
CN111554862B (zh) 一种碳硼烷类共价有机框架材料的修饰隔膜与锂硫电池
KR20180056310A (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
CN111446414B (zh) 一种共价有机框架材料、制备方法及其应用
CN111205460B (zh) 聚酰亚胺结构的有机席夫碱聚合物锂离子电池负极材料、制备方法及其应用
CN114927663A (zh) 一种五元层状氧化物钠离子电池正极材料及其制备方法和应用
Zhang et al. Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries
CN115894948B (zh) 超分子相互作用的固态聚合物电解质、制备方法及应用
CN108623787B (zh) 新型共轭微孔有机聚合物及其合成与应用
CN114920930B (zh) 一种含吡嗪-苯醌结构的聚合物及其在锂离子/水系锌离子电池中的应用
CN110600699B (zh) 一种三维有序介孔mof材料的制备方法
CN113979957B (zh) 一种自交联十字形的有机正极材料及其制备方法和应用
CN110590789B (zh) 富氮三苯胺衍生物共轭聚合物材料及其单体的制备和应用
CN110247041B (zh) 一种ZnNiO/C复合纳米材料及其制备方法
CN117038903A (zh) 杂原子掺杂煤基硬碳复合材料及其制备方法、钠离子电池
CN111883746A (zh) 一种改性的富锂锰基氧化物正极材料及其制备方法和应用
CN109265682B (zh) 一类快速充放电正极活性材料及其制备方法和应用
CN108976393B (zh) 聚[1,3,5-三(4-二苯基氨基苯基)苯]有机微介孔聚合物材料及其制备和应用
CN111211327B (zh) 一种用于锂离子电池正极材料的化合物及制备方法和应用
CN115057478A (zh) 钠离子电池用硫酸根型聚阴离子正极材料及制备方法
JP7354740B2 (ja) 蓄電デバイスの製造方法及び蓄電デバイス用電極の活性化方法
Xie et al. Poly (2, 5-dihydroxyterephthalic acid) interlayer polymer as an advanced anode material for lithium/sodium storage
CN115894917B (zh) 一种聚芳硫醚聚合物及其制备方法和应用
CN114920929B (zh) 锂离子电池正极材料、锂离子电池正极、锂离子电池及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant