WO2018215760A1 - Compositions comprising bacterial strains - Google Patents
Compositions comprising bacterial strains Download PDFInfo
- Publication number
- WO2018215760A1 WO2018215760A1 PCT/GB2018/051391 GB2018051391W WO2018215760A1 WO 2018215760 A1 WO2018215760 A1 WO 2018215760A1 GB 2018051391 W GB2018051391 W GB 2018051391W WO 2018215760 A1 WO2018215760 A1 WO 2018215760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- compositions
- bacterial strain
- strain
- certain embodiments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/135—Bacteria or derivatives thereof, e.g. probiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0031—Rectum, anus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
Definitions
- This invention is in the field of compositions comprising bacterial strains isolated from the mammalian digestive tract and the use of such compositions in the treatment of disease.
- the human intestine is thought to be sterile in utero, but it is exposed to a large variety of maternal and environmental microbes immediately after birth. Thereafter, a dynamic period of microbial colonization and succession occurs, which is influenced by factors such as delivery mode, environment, diet and host genotype, all of which impact upon the composition of the gut microbiota, particularly during early life. Subsequently, the microbiota stabilizes and becomes adult-like [1].
- the human gut microbiota contains more than 1500 different phylotypes, dominated in abundance levels by two major bacterial divisions ⁇ phyla), the Bacteroidetes and the Firmicutes [2-3].
- the successful symbiotic relationships arising from bacterial colonization of the human gut have yielded a wide variety of metabolic, structural, protective and other beneficial functions.
- the enhanced metabolic activities of the colonized gut ensure that otherwise indigestible dietary components are degraded with release of by-products providing an important nutrient source for the host and additional health benefits.
- the immunological importance of the gut microbiota is well -recognized and is exemplified in germfree animals which have an impaired immune system that is functionally reconstituted following the introduction of commensal bacteria [4-6].
- the discovery of the size and complexity of the human microbiome has resulted in an on-going evaluation of many concepts of health and disease.
- the inventors have developed new therapies for treating and preventing autoimmune and inflammatory disorders of the central nervous system.
- the inventors have identified that bacterial strains from the species Blautia hydrogenotrophica can be effective for treating or preventing autoimmune and inflammatory disorders of the central nervous system.
- administration of compositions comprising Blautia hydrogenotrophica may reduce severity and incidence of symptoms in a mouse model of CNS inflammation and multiple sclerosis (MS). Therefore, in a first embodiment, the invention provides a composition comprising a bacterial strain of the species Blautia hydrogenotrophica, for use in a method of treating or preventing an autoimmune or inflammatory disorder of the central nervous system.
- the bacterial strain in the composition is of Blautia hydrogenotrophica. Closely related strains may also be used, such as bacterial strains that have a 16s rRNA sequence that is at least 95%, 96%, 97%, 98%, 99%, 99.5% or 99.9% identical to the 16s rRNA sequence of a bacterial strain of Blautia hydrogenotrophica. Preferably, the bacterial strain has a 16s rRNA sequence that is at least 95%, 96%, 97%, 98%, 99%, 99.5% or 99.9% identical to SEQ ID NO: l . Most preferably, the bacterial strain in the composition is the Blautia hydrogenotrophica strain deposited under accession number DSM 14294.
- the composition of the invention is for use in treating or preventing a demyelinating autoimmune disease or an inflammatory demyelinating disease.
- the composition of the invention is for use in treating or preventing multiple sclerosis.
- the EAE model studied in the examples is particularly relevant to these diseases and especially MS.
- the composition of the invention is for use in a method of reducing disease incidence or disease severity. In further preferred embodiments, the composition is for use in preventing a decline in motor function or for use in improving motor function. The results obtained in the examples demonstrate that the compositions of the invention can be effective for reducing disease incidence and severity and improving motor function.
- the composition of the invention is for oral administration. Oral administration of the strains of the invention can be effective for treating autoimmune or inflammatory disorders of the central nervous system. Also, oral administration is convenient for patients and practitioners and allows delivery to and / or partial or total colonisation of the intestine.
- the composition of the invention comprises one or more pharmaceutically acceptable excipients or carriers.
- the composition of the invention comprises a bacterial strain that has been lyophilised. Lyophilisation is an effective and convenient technique for preparing stable compositions that allow delivery of bacteria.
- the invention provides a food product comprising the composition as described above.
- the invention provides a vaccine composition comprising the composition as described above.
- the invention provides a method of treating or preventing to an immune or inflammatory disorder of the central nervous system, comprising administering a composition comprising a bacterial strain of the species Blautia hydrogenotrophica.
- Figure la EAE clinical scores from day 0 to day 30.
- Figure lb EAE clinical scores from day 0 to day 35.
- Figure 2a Area under the curve (AUC) analysis of EAE clinical scores from day 0 to day 30.
- Figure 2b Area under the curve (AUC) analysis of EAE clinical scores from day 0 to day 35.
- FIG. 3 Spinal cord and brain histopathology score analysis. Data shows mean ⁇ SEM. * p ⁇ 0.05 and *** p ⁇ 0.001 vs. vehicle (PBS) group.
- Figure 4 Representative pictures of spinal cord sections stained with haematoxylin and eosin.
- Figure 5 Representative pictures of brain sections stained with haematoxylin and eosin.
- FIG. 6 Effect of Blautia hydrogenotrophica (10 10 / day for 14 days) on short chain fatty acids production (RMN 3 ⁇ 4) in caecal contents of healthy HIM rats.
- Figure 7 qPCR evaluation of B. hydrogenotrophica population in faecal samples of IBS-HMA rats treated or not with a composition comprising B. hydrogenotrophica (BlautiX) for 28 days.
- Figure 8 Short chain fatty acids (SCFA) concentrations in caecal samples of IBS-HMA rats treated or not with B. hydrogenotrophica (Blautix) for 28 days.
- Figure 8A shows concentration of total SCFA.
- Figure 8B shows concentration of Acetic acid, Propionic acid and Butyric acid.
- compositions of the invention comprise a bacterial strain of the species Blautia hydrogenotrophica.
- the examples demonstrate that bacteria of this species are useful for treating or preventing an autoimmune or inflammatory disorder of the central nervous system, such as multiple sclerosis.
- the Blautia species are Gram-reaction-positive, non-motile bacteria that may be either coccoid or oval and all are obligate anaerobes that produce acetic acid as the major end product of glucose fermentation [20].
- Blautia may be isolated from the human gut, although B. producta was isolated from a septicaemia sample.
- Blautia hydrogenotrophica (previously known as Ruminococcus hydro genotrophicus) has been isolated from the guts of mammals, is strictly anaerobic, and metabolises H2/CO2 to acetate, which may be important for human nutrition.
- GenBank accession number for the 16S rRNA gene sequence of Blautia hydrogenotrophica strain S5a36 is X95624.1 (disclosed herein as SEQ ID NO: 1). This exemplary Blautia hydrogenotrophica strain is described in [20] and [21].
- the S5a33 strain and the S5a36 strain correspond to two subclones of a strain isolated from a faecal sample of a healthy subject. They show identical morphology, physiology and metabolism and have identical 16S rRNA sequences.
- the Blautia hydrogenotrophica for use in the invention has the 16S rRNA sequence of SEQ ID NO: 1.
- strain BH The Blautia hydrogenotrophica bacterium deposited under accession number DSM 14294 was tested in the examples and is also referred to herein as strain BH or Blautix. It is the preferred strain of the invention.
- Strain BH was deposited with the Deutsche Sammlung von Mikroorganismen [German Microorganism Collection] (Mascheroder Weg lb, 38124 Braunschweig, Germany) under accession DSM 14294 as "S5a33" on 10th May 2001.
- the depositor was INRA Laboratoire de Microbiologie CR de Clermont-Ferrand/Theix 63122 Saint Genes Champanelle, France. Ownership of the deposits has passed to 4D Pharma Pic by way of assignment. 4D Pharma Pic has authorised, by way of an agreement, 4D Pharma Research Limited to refer to the deposited biological material in the application and has given its unreserved and irrevocable consent to the deposited material being made available to the public.
- the bacterial strain for use in the invention has a 16s rRNA sequence that is at least 95%, 96%, 97%, 98%, 99%, 99.5% or 99.9% identical to the 16s rRNA sequence of a bacterial strain of Blautia hydrogenotrophica.
- the bacterial strain for use in the invention has a 16s rRNA sequence that is at least 95%, 96%, 97%, 98%, 99%, 99.5% or 99.9% identical to SEQ ID NO: 1.
- Bacterial strains that are biotypes of the bacterium deposited under accession number DSM 14294 are also expected to be effective for treating or preventing autoimmune or inflammatory disorders of the central nervous system.
- a biotype is a closely related strain that has the same or very similar physiological and biochemical characteristics.
- Strains that are biotypes of a bacterium deposited under accession number DSM 14294 and that are suitable for use in the invention may be identified by sequencing other nucleotide sequences for a bacterium deposited under accession number DSM 14294.
- substantially the whole genome may be sequenced and a biotype strain for use in the invention may have at least 95%, 96%, 97%, 98%, 99%, 99.5% or 99.9% sequence identity across at least 80% of its whole genome (e.g. across at least 85%, 90%, 95% or 99%, or across its whole genome).
- a biotype strain has at least 98% sequence identity across at least 98% of its genome or at least 99% sequence identity across 99% of its genome.
- Biotype strains may have sequences with at least 95%, 96%, 97%, 98%, 99%, 99.5% or 99.9% sequence identity to the corresponding sequence of a bacterium deposited under accession number DSM 14294.
- a biotype strain has a sequence with at least 97%, 98%, 99%, 99.5% or 99.9% sequence identity to the corresponding sequence of the Blautia hydrogenotrophica strain deposited as DSM 14294 and comprises a 16S rRNA sequence that is at least 99% identical (e.g.
- a biotype strain has a sequence with at least 97%, 98%, 99%, 99.5% or 99.9% sequence identity to the corresponding sequence of the Blautia hydrogenotrophica strain deposited as DSM 14294 and has the 16S rRNA sequence of SEQ ID NO 1.
- strains that are biotypes of a bacterium deposited under accession number DSM 14294and that are suitable for use in the invention may be identified by using the accession number DSM 14294 deposit and restriction fragment analysis and/or PCR analysis, for example by using fluorescent amplified fragment length polymorphism (FAFLP) and repetitive DNA element (rep)-PCR fingerprinting, or protein profiling, or partial 16S or 23s rDNA sequencing.
- FAFLP fluorescent amplified fragment length polymorphism
- rep repetitive DNA element
- protein profiling or partial 16S or 23s rDNA sequencing.
- such techniques may be used to identify other Blautia hydrogenotrophica strains.
- strains that are biotypes of a bacterium deposited under accession number DSM 14294 and that are suitable for use in the invention are strains that provide the same pattern as a bacterium deposited under accession number DSM 14294 when analysed by amplified ribosomal DNA restriction analysis (ARDRA), for example when using Sau3AI restriction enzyme (for exemplary methods and guidance see, for example, [23]).
- ARDRA amplified ribosomal DNA restriction analysis
- biotype strains are identified as strains that have the same carbohydrate fermentation patterns as a bacterium deposited under accession number DSM 14294.
- Blautia hydrogenotrophica strains that are useful in the compositions and methods of the invention, such as biotypes of a bacterium deposited under accession number DSM 14294, may be identified using any appropriate method or strategy, including the assays described in the examples.
- strains for use in the invention may be identified by culturing bacteria and administering to mice using an EAE model protocol, such as that used in the examples.
- bacterial strains that have similar growth patterns, metabolic type and/or surface antigens to a bacterium deposited under accession number DSM 14294 may be useful in the invention.
- a useful strain will have comparable microbiota modulatory activity to the DSM 14294 strain.
- a biotype strain will elicit comparable effects on autoimmune or inflammatory disorders of the central nervous system to the effects shown in the examples, which may be identified by using the culturing and administration protocols described in the examples.
- a particularly preferred strain of the invention is the Blautia hydrogenotrophica strain deposited under accession number DSM 14294.
- This is the exemplary BH strain tested in the examples and shown to be effective for treating disease. Therefore, the invention provides a cell, such as an isolated cell, of the Blautia hydrogenotrophica strain deposited under accession number DSM 14294, or a derivative thereof, for use in therapy, in particular for the diseases described herein.
- a derivative of the strain deposited under accession number DSM 14294 may be a daughter strain (progeny) or a strain cultured (subcloned) from the original.
- a derivative of a strain of the invention may be modified, for example at the genetic level, without ablating the biological activity.
- a derivative strain of the invention is therapeutically active.
- a derivative strain will have comparable microbiota modulatory activity to the original DSM 14294 strain.
- a derivative strain will elicit comparable effects on autoimmune or inflammatory disorders of the central nervous system to the effects shown in the Examples, which may be identified by using the culturing and administration protocols described in the Examples.
- a derivative of the DSM 14294 strain will generally be a biotype of the DSM 14294 strain.
- references to cells of the Blautia hydrogenotrophica strain deposited under accession number DSM 14294 encompass any cells that have the same safety and therapeutic efficacy characteristics as the strains deposited under accession number DSM 14294, and such cells are encompassed by the invention.
- the bacterial strains in the compositions of the invention are viable and capable of partially or totally colonising the intestine.
- compositions of the inventor are for use in treating or preventing autoimmune or inflammatory disorders of the central nervous system.
- the examples demonstrate that the compositions of the invention achieve a reduction in the disease incidence and disease severity in a mouse model of CNS inflammation (the EAE model), and so they may be useful in the treatment or prevention of such conditions.
- compositions of the invention are for use in treating or preventing a demyelinating autoimmune disease.
- the effects shown in the examples are particularly relevant for such diseases.
- compositions of the invention are for use in treating or preventing an inflammatory demyelinating disease.
- the effects shown in the examples are particularly relevant for such diseases.
- compositions of the invention are for use in treating or preventing multiple sclerosis, as discussed in more detail below.
- the disorder primarily affects the spine. In certain embodiments, the disorder primarily affects the spinal cord. In certain embodiments, the disorder primarily affects the brain.
- treatment with a composition of the invention reduces inflammation in the spinal cord. In certain embodiments, treatment with a composition of the invention reduces inflammation in the brain. In certain embodiments, treatment with a composition of the invention reduces inflammation in the spinal cord and in the brain.
- the compositions is for use in treating or preventing a disease selected from the list consisting of: multiple sclerosis, neuromyelitis optica, anti-MOG autoimmune encephalomyelitis, chronic relapsing inflammatory optic neuritis, acute disseminated encephalomyelitis, acute hemorrhagic leukoencephalitis, balo concentric sclerosis, diffuse myelinoclastic sclerosis, Marburg multiple sclerosis, Tumefactive multiple sclerosis and solitary sclerosis.
- a disease selected from the list consisting of: multiple sclerosis, neuromyelitis optica, anti-MOG autoimmune encephalomyelitis, chronic relapsing inflammatory optic neuritis, acute disseminated encephalomyelitis, acute hemorrhagic leukoencephalitis, balo concentric sclerosis, diffuse myelinoclastic sclerosis, Marburg multiple sclerosis, Tumefactive multiple sclerosis and solitary sclerosis
- compositions are for use in treating or preventing transverse myelitis, Bickerstaff brainstem encephalitis, Miller Fisher syndrome, CNS vasculitis, neurosarcoidosis, neuropsychiatric manifestations of systemic lupus erythematosus, tropical spastic paraparesis (TSP)/HTLV-I-associated myelopathy (HAM), or West Nile virus infection of the CNS.
- transverse myelitis Bickerstaff brainstem encephalitis
- Miller Fisher syndrome CNS vasculitis
- neurosarcoidosis neuropsychiatric manifestations of systemic lupus erythematosus
- TSP tropical spastic paraparesis
- HAM HTLV-I-associated myelopathy
- the compositions of the invention are for use in a patient diagnosed with an infectious disease known to cause autoimmune or inflammatory disorders of the central nervous system, such as Campylobacter jejuni infection.
- treatment with the compositions of the invention results in a reduction in disease incidence or disease severity.
- the compositions of the invention are for use in reducing disease incidence or disease severity.
- treatment with the compositions of the invention prevents a decline in motor function or results in improved motor function.
- the compositions of the invention are for use in preventing a decline in motor function or for use in improving motor function.
- treatment with the compositions of the invention prevents the development of paralysis.
- the compositions of the invention are for use in treating or preventing multiple sclerosis.
- the examples demonstrate that the compositions of the invention achieve a reduction in the disease incidence and disease severity in a mouse model of multiple sclerosis (the EAE model), and so they may be useful in the treatment or prevention of multiple sclerosis.
- Multiple sclerosis is an inflammatory disorder and a demyelinating disease of the central nervous system associated with damage to the myelin sheaths of neurons, particularly in the brain and spinal column.
- Multiple sclerosis is a chronic disease, which is progressively incapacitating and which evolves in episodes.
- MS is usually found in older patients.
- Inflammation consisting of T cell and B cell infiltrates is usually found in the CNS and lesions of MS patients.
- the degree of lymphocyte infiltration is greater in the earlier phases of the disease as opposed to the later phases of the disease.
- CD8+ T cells are the predominant lymphocyte population with lower levels of CD4+ T cells and B cells.
- the compositions of the invention may be particularly effective for preventing or treating multiple sclerosis.
- treatment with the compositions of the invention results in a reduction in MS incidence or MS severity.
- the compositions of the invention are for use in reducing relapse incidence or relapse severity.
- treatment with the compositions of the invention prevents a decline in motor function or results in improved motor function associated with MS.
- the compositions of the invention are for use in preventing a decline in motor function or for use in improving motor function in the treatment of MS.
- treatment with the compositions of the invention prevents the development of paralysis in MS.
- the compositions of the invention are for use in preventing paralysis in the treatment of MS.
- compositions of the invention are for use in preventing multiple sclerosis in a patient that has been identified as at risk of multiple sclerosis, or that has been diagnosed with early-stage multiple sclerosis or "relapsing-remitting" multiple sclerosis.
- the compositions of the invention may be useful for preventing the development of MS.
- the compositions of the invention may be useful for preventing the progression of MS.
- the compositions of the invention are for use in a patient identified as having a genetic predisposition to MS, such as major histocompatibility complex (MHC) class II phenotype, human leukocyte antigen (HLA)-DR2 or HLA- DR4.
- MHC major histocompatibility complex
- HLA human leukocyte antigen
- compositions of the invention may be useful for managing or alleviating multiple sclerosis.
- the compositions of the invention may be particularly useful for reducing symptoms associated with multiple sclerosis.
- Treatment or prevention of multiple sclerosis may refer to, for example, an alleviation of the severity of symptoms or a reduction in the frequency of exacerbations or the range of triggers that are a problem for the patient.
- the compositions of the invention slow or stop progression of the disease.
- compositions of the invention are for use in treating relapsing-remitting MS.
- compositions of the invention are for use in treating progressive MS, such as secondary progressive MS (SPMS), which develops over time following diagnosis of RRMS, primary progressive MS (PPMS) which exhibits gradual continuous neurologic deterioration and progressive relapsing MS (PRMS), which is similar to PPMS but with overlapping relapses.
- SPMS secondary progressive MS
- PPMS primary progressive MS
- PRMS progressive relapsing MS
- compositions of the invention are for use in treating one or more of symptoms of MS selected from the group consisting of: fatigue, vision problems, numbness, tingling, muscle spasms, muscle stiffness, muscle weakness, mobility problems, pain, problems with thinking, learning and planning, depression and anxiety, sexual problems, bladder problems, bowel problems, speech and swallowing difficulties.
- compositions of the invention are for use in combination with a secondary active agent.
- the compositions of the invention are for use in combination with ⁇ -interferon la or lb or glatiramer acetate.
- Other secondary agents include other interferons, dimethyl fumarate, teriflunomide, fingolimod, mitoxantrone, humanized monoclonal antibodies (such as natalizumab, ofatumumab, ocrelizumab, alemtuzumab, daclizumab), stem cells, DNA vaccines, nanoparticles and altered peptide ligands.
- the compositions of the invention may improve the patient's response to the secondary active agent. Histone deacetylase inhibitors such as butyrate have also been proposed for use in the treatment of multiple sclerosis [24].
- the composition of the invention comprising Blautia hydrogenotrophica inhibits neuro-inflammation.
- the composition of the invention comprising Blautia hydrogenotrophica increases the levels of IL-1RA (an inhibitor of the pro-inflammatory IL- 1 ⁇ ).
- the composition of the invention comprising Blautia hydrogenotrophica decreases the levels pro-inflammatory IL- ⁇ and/or TNFa.
- the composition of the invention comprising Blautia hydrogenotrophica increases IL-4 expression, which increases the levels of IL-1RA.
- the composition of the invention comprising Blautia hydrogenotrophica inhibits nuclear factor ⁇ (NF- ⁇ ) activation.
- composition of the invention comprising Blautia hydrogenotrophica may modulate the expression of early immune inflammatory response genes, including IL-1B, TNFa, IL-2, IL-6, IL-8, IL-12, inducible nitric acid synthase, cyclooxygenase-2, intercellular adhesion molecule- 1, T cell receptor-a and MHC class II molecules.
- early immune inflammatory response genes including IL-1B, TNFa, IL-2, IL-6, IL-8, IL-12, inducible nitric acid synthase, cyclooxygenase-2, intercellular adhesion molecule- 1, T cell receptor-a and MHC class II molecules.
- the compositions of the inventor are for use in treating or preventing autoimmune or inflammatory disorders of the central nervous system.
- the disorder to be treated by the composition of the invention is not an autism spectrum disorder (ASDs); child developmental disorder; obsessive compulsive disorder (OCD); major depressive disorder; depression; seasonal affective disorder; an anxiety disorder; chronic fatigue syndrome (myalgic encephalomyelitis); stress disorder; post-traumatic stress disorder; a schizophrenia spectrum disorder; schizophrenia; bipolar disorder; psychosis; mood disorder; dementia; Alzheimer's; Parkinson's disease; chronic pain, motor neuron disease; Huntington's disease; Guillain-Barre syndrome or meningitis.
- ASSDs autism spectrum disorder
- OCD obsessive compulsive disorder
- major depressive disorder depression
- seasonal affective disorder an anxiety disorder
- chronic fatigue syndrome myalgic encephalomyelitis
- stress disorder post-traumatic stress disorder
- a schizophrenia spectrum disorder schizophrenia; bipolar disorder; psychosis; mood disorder; dementia; Alzheimer's; Parkinson's disease; chronic pain, motor neuron disease; Huntington's disease; Guillain-Barre
- compositions of the invention are to be administered to the gastrointestinal tract in order to enable delivery to and / or partial or total colonisation of the intestine with the bacterial strain of the invention.
- compositions of the invention are administered orally, but they may be administered rectally, intranasally, or via buccal or sublingual routes.
- compositions of the invention may be administered as a foam, as a spray or a gel.
- compositions of the invention may be administered as a suppository, such as a rectal suppository, for example in the form of a theobroma oil (cocoa butter), synthetic hard fat (e.g. suppocire, witepsol), glycero-gelatin, polyethylene glycol, or soap glycerin composition.
- the composition of the invention is administered to the gastrointestinal tract via a tube, such as a nasogastric tube, orogastric tube, gastric tube, jejunostomy tube (J tube), percutaneous endoscopic gastrostomy (PEG), or a port, such as a chest wall port that provides access to the stomach, jejunum and other suitable access ports.
- a tube such as a nasogastric tube, orogastric tube, gastric tube, jejunostomy tube (J tube), percutaneous endoscopic gastrostomy (PEG), or a port, such as a chest wall port that provides access to the stomach, jejunum and other suitable access ports.
- compositions of the invention may be administered once, or they may be administered sequentially as part of a treatment regimen. In certain embodiments, the compositions of the invention are to be administered daily.
- administration provides successful colonisation and clinical benefits in treatment of autoimmune or inflammatory disorders of the central nervous system.
- compositions of the invention are administered regularly, such as daily, every two days, or weekly, for an extended period of time, such as for at least one week, two weeks, one month, two months, six months, or one year.
- extended period of time such as for at least one week, two weeks, one month, two months, six months, or one year.
- compositions of the invention are administered for 7 days, 14 days, 16 days, 21 days or 28 days or no more than 7 days, 14 days, 16 days, 21 days or 28 days.
- compositions of the invention are administered for 16 days.
- treatment according to the invention is accompanied by assessment of the patient's gut microbiota. Treatment may be repeated if delivery of and / or partial or total colonisation with the strain of the invention is not achieved such that efficacy is not observed, or treatment may be ceased if delivery and / or partial or total colonisation is successful and efficacy is observed.
- the composition of the invention may be administered to a pregnant animal, for example a mammal such as a human in order to prevent autoimmune or inflammatory disorders of the central nervous system developing in her child in utero and / or after it is born.
- compositions of the invention may be administered to a patient that has been diagnosed with an autoimmune or inflammatory disorder of the central nervous system, or that has been identified as being at risk of such a disorder.
- the compositions may also be administered as a prophylactic measure to prevent the development of disease in a healthy patient.
- compositions of the invention may be administered to a patient that has been identified as having an abnormal gut microbiota.
- the patient may have reduced or absent colonisation by Blautia, and in particular Blautia hydrogenotrophica.
- compositions of the invention may be administered as a food product, such as a nutritional supplement.
- a food product such as a nutritional supplement.
- the compositions of the invention are for the treatment of humans, although they may be used to treat animals including monogastric mammals such as poultry, pigs, cats, dogs, horses or rabbits.
- the compositions of the invention may be useful for enhancing the growth and performance of animals. If administered to animals, oral gavage may be used.
- the subject to whom the composition is to be administered is an adult human. In some embodiments, the subject to whom the composition is to be administered is an infant human.
- the composition of the invention comprises bacteria.
- the composition is formulated in freeze-dried form.
- the composition of the invention may comprise granules or gelatin capsules, for example hard gelatin capsules, comprising a bacterial strain of the invention.
- the composition of the invention comprises lyophilised bacteria. Lyophilisation of bacteria is a well-established procedure and relevant guidance is available in, for example, references [25-27]. Lyophilisate compositions may be particularly effective.
- the compositions of the invention comprises lyophilised bacteria and is for the treatment of MS.
- the composition of the invention may comprise a live, active bacterial culture.
- the bacterial strain in the composition of the invention has not been inactivated, for example, has not been heat-inactivated.
- the bacterial strain in the composition of the invention has not been killed, for example, has not been heat-killed.
- the bacterial strain in the composition of the invention has not been attenuated, for example, has not been heat-attenuated.
- the bacterial strain in the composition of the invention has not been killed, inactivated and/or attenuated.
- the bacterial strain in the composition of the invention is live.
- the bacterial strain in the composition of the invention is viable.
- the bacterial strain in the composition of the invention is capable of partially or totally colonising the intestine.
- the bacterial strain in the composition of the invention is viable and capable of partially or totally colonising the intestine.
- the composition comprises a mixture of live bacterial strains and bacterial strains that have been killed.
- the composition of the invention is encapsulated to enable delivery of the bacterial strain to the intestine.
- Encapsulation protects the composition from degradation until delivery at the target location through, for example, rupturing with chemical or physical stimuli such as pressure, enzymatic activity, or physical disintegration, which may be triggered by changes in pH. Any appropriate encapsulation method may be used. Exemplary encapsulation techniques include entrapment within a porous matrix, attachment or adsorption on solid carrier surfaces, self-aggregation by flocculation or with cross-linking agents, and mechanical containment behind a microporous membrane or a microcapsule. Guidance on encapsulation that may be useful for preparing compositions of the invention is available in, for example, references [28-29].
- the composition may be administered orally and may be in the form of a tablet, capsule or powder. Encapsulated products are preferred because Blautia are anaerobes. Other ingredients (such as vitamin C, for example), may be included as oxygen scavengers and prebiotic substrates to improve the delivery and / or partial or total colonisation and survival in vivo.
- the probiotic composition of the invention may be administered orally as a food or nutritional product, such as milk or whey based fermented dairy product, or as a pharmaceutical product.
- composition may be formulated as a probiotic.
- a composition of the invention includes a therapeutically effective amount of a bacterial strain of the invention.
- a therapeutically effective amount of a bacterial strain is sufficient to exert a beneficial effect upon a patient.
- a therapeutically effective amount of abacterial strain may be sufficient to result in delivery to and / or partial or total colonisation of the patient' s intestine.
- a suitable daily dose of the bacteria may be from about 1 x 10 3 to about 1 x 10 11 colony forming units (CFU); for example, from about 1 x 10 7 to about 1 x 10 10 CFU; in another example from about 1 x 10 6 to about 1 x 10 10 CFU; in another example from about 1 x 10 7 to about 1 x 10 11 CFU; in another example from about 1 x 10 8 to about 1 x 10 10 CFU; in another example from about 1 x 10 8 to about 1 x 10 11 CFU.
- CFU colony forming units
- the dose of the bacteria is at least 10 9 cells per day, such as at least 10 10 , at least 10 11 , or at least 10 12 cells per day.
- the composition contains the bacterial strain in an amount of from about 1 x 10 6 to about 1 x 10 11 CFU/g, respect to the weight of the composition; for example, from about 1 x 10 8 to about 1 x 10 10 CFU/g.
- the dose may be, for example, 1 g, 3g, 5g, and lOg. In some embodiments, the dose may be lg or less, for example, from about 0.5g to about lg, for example, about 0.5g, 0.6g, 0.75g, 0.8g, 0.9g or lg.
- a probiotic such as the composition of the invention
- a probiotic compound is usually a non-digestible carbohydrate such as an oligo- or polysaccharide, or a sugar alcohol, which is not degraded or absorbed in the upper digestive tract.
- Known prebiotics include commercial products such as inulin and transgalacto- oligosaccharides.
- the probiotic composition of the present invention includes a prebiotic compound in an amount of from about 1 to about 30% by weight, respect to the total weight composition, (e.g. from 5 to 20% by weight).
- Carbohydrates may be selected from the group consisting of: fructo- oligosaccharides (or FOS), short-chain fructo-oligosaccharides, inulin, isomalt- oligosaccharides, pectins, xylo-oligosaccharides (or XOS), chitosan-oligosaccharides (or COS), beta- glucans, arable gum modified and resistant starches, polydextrose, D-tagatose, acacia fibers, carob, oats, and citrus fibers.
- FOS fructo- oligosaccharides
- FOS short-chain fructo-oligosaccharides
- inulin isomalt- oligosaccharides
- pectins or xylo-oligosaccharides
- XOS xylo-oligosaccharides
- COS chitosan-oligosaccharides
- the prebiotics are the short-chain fructo-oligosaccharides (for simplicity shown herein below as FOSs-c.c); said FOSs-c.c. are not digestible carbohydrates, generally obtained by the conversion of the beet sugar and including a saccharose molecule to which three glucose molecules are bonded.
- compositions of the invention may comprise pharmaceutically acceptable excipients or carriers.
- suitable excipients may be found in the reference [30].
- Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art and are described, for example, in reference [31].
- suitable carriers include lactose, starch, glucose, methyl cellulose, magnesium stearate, mannitol, sorbitol and the like.
- suitable diluents include ethanol, glycerol and water.
- the choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice.
- the pharmaceutical compositions may comprise as, or in addition to, the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).
- suitable binders include starch, gelatin, natural sugars such as glucose, anhydrous lactose, free-flow lactose, beta-lactose, com sweeteners, natural and synthetic gums, such as acacia, tragacanth or sodium alginate, carboxymethyl cellulose and polyethylene glycol.
- suitable lubricants include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.
- Preservatives, stabilizers, dyes and even flavouring agents may be provided in the pharmaceutical composition.
- preservatives include sodium benzoate, sorbic acid, cysteine and esters of p-hydroxybenzoic acid, for example, in some embodiments the preservative is selected from sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid.
- Antioxidants and suspending agents may be also used.
- a further example of a suitable carrier is saccharose.
- a further example of a preservative is cysteine.
- compositions of the invention may be formulated as a food product.
- a food product may provide nutritional benefit in addition to the therapeutic effect of the invention, such as in a nutritional supplement.
- a food product may be formulated to enhance the taste of the composition of the invention or to make the composition more attractive to consume by being more similar to a common food item, rather than to a pharmaceutical composition.
- the composition of the invention is formulated as a milk-based product.
- milk-based product means any liquid or semi-solid milk- or whey- based product having a varying fat content.
- the milk- based product can be, e.g., cow's milk, goat's milk, sheep's milk, skimmed milk, whole milk, milk recombined from powdered milk and whey without any processing, or a processed product, such as yoghurt, curdled milk, curd, sour milk, sour whole milk, butter milk and other sour milk products.
- milk beverages such as whey beverages, fermented milks, condensed milks, infant or baby milks; flavoured milks, ice cream; milk-containing food such as sweets.
- compositions of the invention comprise one or more bacterial strains of the genus Blautia and do not contain bacteria from any other genus, or comprise only de minimis or biologically irrelevant amounts of bacteria from another genus.
- compositions of the invention comprise one or more bacterial strains of the species Blautia hydrogenotrophica and do not contain bacteria from any other species, or comprise only de minimis or biologically irrelevant amounts of bacteria from another species.
- the composition of the invention comprises a single strain of Blautia hydrogenotrophica, preferably strain BH, and does not contain bacteria from any other strains, or comprise only de minimis or biologically irrelevant amounts of bacteria from another strain.
- compositions of the invention contain a single bacterial strain or species and do not contain any other bacterial strains or species. Such compositions may comprise only de minimis or biologically irrelevant amounts of other bacterial strains or species. Such compositions may be a culture that is substantially free from other species of organism. In some embodiments, such compositions may be a lyophilisate that is substantially free from other species of organism.
- compositions of the invention comprise one or more bacterial strains of the genus Blautia, for example, a Blautia hydrogenotrophica, and do not contain any other bacterial genus, or which comprise only de minimis or biologically irrelevant amounts of bacteria from another genus.
- compositions of the invention comprise a single species of Blautia, for example, a Blautia hydrogenotrophica, and do not contain any other bacterial species, or which comprise only de minimis or biologically irrelevant amounts of bacteria from another species.
- compositions of the invention comprise a single strain of Blautia, for example, of Blautia hydrogenotrophica, and do not contain any other bacterial strains or species, or which comprise only de minimis or biologically irrelevant amounts of bacteria from another strain or species.
- the compositions of the invention comprise more than one bacterial strain or species.
- the compositions of the invention comprise more than one strain from within the same species (e.g. more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40 or 45 strains), and, optionally, do not contain bacteria from any other species.
- the compositions of the invention comprise less than 50 strains from within the same species (e.g. less than 45, 40, 35, 30, 25, 20, 15, 12, 10, 9, 8, 7, 6, 5, 4 or 3 strains), and, optionally, do not contain bacteria from any other species.
- compositions of the invention comprise 1-40, 1-30, 1-20, 1-19, 1-18, 1-15, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 2-50, 2-40, 2- 30, 2-20, 2-15, 2-10, 2-5, 6-30, 6-15, 16-25, or 31-50 strains from within the same species and, optionally, do not contain bacteria from any other species.
- the compositions of the invention comprise more than one species from within the same genus (e.g. more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, 23, 25, 30, 35 or 40 species), and, optionally, do not contain bacteria from any other genus.
- the compositions of the invention comprise less than 50 species from within the same genus (e.g. less than 50, 45, 40, 35, 30, 25, 20, 15, 12, 10, 8, 7, 6, 5, 4 or 3 species), and, optionally, do not contain bacteria from any other genus.
- the compositions of the invention comprise 1-50, 1-40, 1-30, 1-20, 1-15, 1-10, 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, 2-50, 2-40, 2-30, 2-20, 2-15, 2-10, 2-5, 6-30, 6-15, 16-25, or 31-50 species from within the same genus and, optionally, do not contain bacteria from any other genus.
- the invention comprises any combination of the foregoing.
- the composition comprises a microbial consortium.
- the composition comprises the Blautia hydrogenotrophica bacterial strain as part of a microbial consortium.
- the Blautia hydrogenotrophica bacterial strain is present in combination with one or more (e.g. at least 2, 3, 4, 5, 10, 15 or 20) other bacterial strains from other genera with which it can live symbiotically in vivo in the intestine.
- the composition comprises a bacterial strain of Blautia hydrogenotrophica in combination with a bacterial strain from a different genus.
- the microbial consortium comprises two or more bacterial strains obtained from a faeces sample of a single organism, e.g. a human. In some embodiments, the microbial consortium is not found together in nature.
- the microbial consortium comprises bacterial strains obtained from faeces samples of at least two different organisms. In some embodiments, the two different organisms are from the same species, e.g. two different humans. In some embodiments, the two different organisms are an infant human and an adult human. In some embodiments, the two different organisms are a human and a non-human mammal.
- the composition of the invention additionally comprises a bacterial strain that has the same safety and therapeutic efficacy characteristics as the Blautia hydrogenotrophica strain deposited under accession number DSM 14294, but which is not the Blautia hydrogenotrophica strain deposited under accession number DSM 14294, or which is not a Blautia hydrogenotrophica or which is not a Blautia.
- the composition of the invention comprises more than one bacterial strain, species or genus
- the individual bacterial strains, species or genera may be for separate, simultaneous or sequential administration.
- the composition may comprise all of the more than one bacterial strain, species or genera, or the bacterial strains, species or genera may be stored separately and be administered separately, simultaneously or sequentially.
- the more than one bacterial strains, species or genera are stored separately but are mixed together prior to use.
- the bacterial strain for use in the invention is obtained from human adult faeces. In some embodiments in which the composition of the invention comprises more than one bacterial strain, all of the bacterial strains are obtained from human adult faeces or if other bacterial strains are present they are present only in de minimis amounts.
- the bacteria may have been cultured subsequent to being obtained from the human adult faeces and being used in a composition of the invention.
- the one or more Blautia bacterial strains is/are the only therapeutically active agent(s) in a composition of the invention. In some embodiments, the bacterial strain(s) in the composition is/are the only therapeutically active agent(s) in a composition of the invention.
- compositions for use in accordance with the invention may or may not require marketing approval.
- the invention provides the above pharmaceutical composition, wherein said bacterial strain is lyophilised. In certain embodiments, the invention provides the above pharmaceutical composition, wherein said bacterial strain is spray dried. In certain embodiments, the invention provides the above pharmaceutical composition, wherein the bacterial strain is lyophilised or spray dried and wherein it is live. In certain embodiments, the invention provides the above pharmaceutical composition, wherein the bacterial strain is lyophilised or spray dried and wherein it is viable. In certain embodiments, the invention provides the above pharmaceutical composition, wherein the bacterial strain is lyophilised or spray dried and wherein it is capable of partially or totally colonising the intestine. In certain embodiments, the invention provides the above pharmaceutical composition, wherein the bacterial strain is lyophilised or spray dried and wherein it is viable and capable of partially or totally colonising the intestine.
- the lyophilised or spray dried bacterial strain is reconstituted prior to administration.
- the reconstitution is by use of a diluent described herein.
- compositions of the invention can comprise pharmaceutically acceptable excipients, diluents or carriers.
- the invention provides a pharmaceutical composition
- a pharmaceutical composition comprising: a bacterial strain of the invention; and a pharmaceutically acceptable excipient, carrier or diluent; wherein the bacterial strain is in an amount sufficient to treat a disorder when administered to a subject in need thereof; and wherein the disorder is an autoimmune or inflammatory disorder of the central nervous system.
- the invention provides the above pharmaceutical composition, wherein the amount of the bacterial strain is from about 1 ⁇ 10 3 to about 1 ⁇ 10 11 colony forming units per gram with respect to a weight of the composition.
- the invention provides the above pharmaceutical composition, wherein the composition is administered at a dose of 1 g, 3 g, 5 g or 10 g.
- the invention provides the above pharmaceutical composition, wherein the composition is administered by a method selected from the group consisting of oral, rectal, subcutaneous, nasal, buccal, and sublingual.
- the invention provides the above pharmaceutical composition, comprising a carrier selected from the group consisting of lactose, starch, glucose, methyl cellulose, magnesium stearate, mannitol and sorbitol.
- the invention provides the above pharmaceutical composition, comprising a diluent selected from the group consisting of ethanol, glycerol and water.
- the invention provides the above pharmaceutical composition, comprising an excipient selected from the group consisting of starch, gelatin, glucose, anhydrous lactose, free-flow lactose, beta-lactose, corn sweetener, acacia, tragacanth, sodium alginate, carboxymethyl cellulose, polyethylene glycol, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate and sodium chloride.
- an excipient selected from the group consisting of starch, gelatin, glucose, anhydrous lactose, free-flow lactose, beta-lactose, corn sweetener, acacia, tragacanth, sodium alginate, carboxymethyl cellulose, polyethylene glycol, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate and sodium chloride.
- the invention provides the above pharmaceutical composition, further comprising at least one of a preservative, an antioxidant and a stabilizer.
- the invention provides the above pharmaceutical composition, comprising a preservative selected from the group consisting of sodium benzoate, sorbic acid and esters of p- hydroxybenzoic acid.
- the invention provides the above pharmaceutical composition, wherein said bacterial strain is lyophilised.
- the invention provides the above pharmaceutical composition, wherein when the composition is stored in a sealed container at about 4°C or about 25 °C and the container is placed in an atmosphere having 50% relative humidity, at least 80% of the bacterial strain as measured in colony forming units, remains after a period of at least about: 1 month, 3 months, 6 months, 1 year, 1.5 years, 2 years, 2.5 years or 3 years.
- the composition of the invention is provided in a sealed container comprising a composition as described herein.
- the sealed container is a sachet or bottle.
- the composition of the invention is provided in a syringe comprising a composition as described herein.
- composition of the present invention may, in some embodiments, be provided as a pharmaceutical formulation.
- the composition may be provided as a tablet or capsule.
- the composition may be provided in the form of one tablet or capsule or more than one tablet or capsule, for example, 1, 2, 3, 4, 5 or more tablets or capsules.
- the capsule is a gelatine capsule ("gel-cap").
- compositions of the invention are administered orally.
- Oral administration may involve swallowing, so that the compound enters the gastrointestinal tract, and/or buccal, lingual, or sublingual administration by which the compound enters the blood stream directly from the mouth.
- compositions suitable for oral administration include solid plugs, solid microparticulates, semi-solid and liquid (including multiple phases or dispersed systems) such as tablets; soft or hard capsules containing multi- or nano-particulates, liquids (e.g. aqueous solutions), emulsions or powders; lozenges (including liquid-filled); chews; gels; fast dispersing dosage forms; films; ovules; sprays; and buccal/mucoadhesive patches.
- solid plugs solid microparticulates, semi-solid and liquid (including multiple phases or dispersed systems) such as tablets; soft or hard capsules containing multi- or nano-particulates, liquids (e.g. aqueous solutions), emulsions or powders; lozenges (including liquid-filled); chews; gels; fast dispersing dosage forms; films; ovules; sprays; and buccal/mucoadhesive patches.
- the pharmaceutical formulation is an enteric formulation, i.e. a gastro-resistant formulation (for example, resistant to gastric pH) that is suitable for delivery of the composition of the invention to the intestine by oral administration.
- Enteric formulations may be particularly useful when the bacteria or another component of the composition is acid-sensitive, e.g. prone to degradation under gastric conditions.
- the enteric formulation comprises an enteric coating.
- the formulation is an enteric-coated dosage form.
- the formulation may be an enteric- coated tablet or an enteric-coated capsule, or the like.
- the enteric coating may be a conventional enteric coating, for example, a conventional coating for a tablet, capsule, or the like for oral delivery.
- the formulation may comprise a film coating, for example, a thin film layer of an enteric polymer, e.g. an acid-insoluble polymer.
- the enteric formulation is intrinsically enteric, for example, gastro-resistant without the need for an enteric coating.
- the formulation is an enteric formulation that does not comprise an enteric coating.
- the formulation is a capsule made from a thermogelling material.
- the thermogelling material is a cellulosic material, such as methylcellulose, hydroxymethylcellulose or hydroxypropylmethylcellulose (HPMC).
- the capsule comprises a shell that does not contain any film forming polymer.
- the capsule comprises a shell and the shell comprises hydroxypropylmethylcellulose and does not comprise any film forming polymer (e.g. see [32 ]).
- the formulation is an intrinsically enteric capsule (for example, Vcaps® from Capsugel).
- the formulation is a soft capsule.
- Soft capsules are capsules which may, owing to additions of softeners, such as, for example, glycerol, sorbitol, maltitol and polyethylene glycols, present in the capsule shell, have a certain elasticity and softness.
- Soft capsules can be produced, for example, on the basis of gelatine or starch. Gelatine-based soft capsules are commercially available from various suppliers.
- soft capsules can have various shapes, they can be, for example, round, oval, oblong or torpedo-shaped.
- Soft capsules can be produced by conventional processes, such as, for example, by the Scherer process, the Accogel process or the droplet or blowing process.
- the bacterial strains for use in the present invention can be cultured using standard microbiology techniques as detailed in, for example, references [33-35].
- the solid or liquid medium used for culture may for example be YCFA agar or YCFA medium.
- YCFA medium may include (per 100ml, approximate values): Casitone (1.0 g), yeast extract (0.25 g), NaHCOs (0.4 g), cysteine (0.1 g), K2HPO4 (0.045 g), KH2PO4 (0.045 g), NaCl (0.09 g), (NH 4 ) 2 S04 (0.09 g), MgS0 4 ⁇ 7H2O (0.009 g), CaCh (0.009 g), resazurin (0.1 mg), hemin (1 mg), biotin (1 cobalamin (1 ⁇ g), /?-aminobenzoic acid (3 ⁇ g), folic acid (5 ⁇ g), and pyridoxamine (15 ⁇ g).
- references to a percentage sequence identity between two nucleotide sequences means that, when aligned, that percentage of nucleotides are the same in comparing the two sequences.
- This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of ref. [44].
- a preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62.
- the Smith-Waterman homology search algorithm is disclosed in ref. [45].
- a process or method comprising numerous steps may comprise additional steps at the beginning or end of the method, or may comprise additional intervening steps. Also, steps may be combined, omitted or performed in an alternative order, if appropriate.
- EAE Experimental Autoimmune Encephalomyelitis
- MS human disease
- EAE is the most commonly used experimental model for human MS.
- EAE is also used more generally as a model for CNS-specific autoimmune disorders [46] and for other specific conditions, including acute disseminated encephalomyelitis.
- EAE is induced using immunisation with myelin peptides and adjuvants to elicit an immune and inflammatory response that closely corresponds to the mechanisms underlying many autoimmune and inflammatory disorders of the CNS, and in particular MS.
- Many therapies showing efficacy in EAE have also shown efficacy in treatment of MS in human patients [46].
- EAE reproduces key features of MS, including inflammation, demyelination, axonal loss and gliosis.
- the effects of demyelination are mainly restricted to the spinal cord in EAE, with little alteration of the brain stem and the cerebellum.
- the CD4+ T cells are the dominant cell population found in the CNS.
- Blautia hydrogenotrophica (“Blautix", strain deposited under accession number DSM 14294) was used as a freeze-dried powder and reconstituted as required.
- mice in Groups 2, 3, 8 and 9 were administered with an emulsion containing MOG35-55 and complete Freund's adjuvant (CFA) supplemented with Mycobacterium Tuberculosis H37Ra by subcutaneous injections under gas (isoflurane) anaesthesia.
- CFA complete Freund's adjuvant
- Mycobacterium Tuberculosis H37Ra Mycobacterium Tuberculosis H37Ra
- two subcutaneous injections were performed in the flanks; one in each of the lower quadrant of the back.
- two subcutaneous injections were performed in the flanks, one in each of the upper quadrant of the back.
- mice in Groups 2, 3, 8 and 9 were administered with pertussis toxin (PTx) in phosphate buffered saline (PBS) by intra-peritoneal injections.
- PTx pertussis toxin
- PBS phosphate buffered saline
- PTx administration was performed after MOG injections.
- n/a not applicable, SID: once per day, PO: oral administration (gavage), SC: subcutaneous injection, IP: intra-peritoneal injection, MOG: myelin oligodendrocyte glycoprotein, CFA: complete Freund's adjuvant, PTx: pertussis toxin, PBS: phosphate-buffered saline
- Treatments were administered within 15 minutes of their preparation.
- mice were treated with the Reference dexamethasone as a positive control.
- a dose of 1 mg/kg (5 ml/kg) was used with mice being treated from Day -14 - Day -1 via the PO route with vehicle (PBS) only, 5 times a week (2 Days on, 1 Day off, 3 Days on, 1 Day off); and from Day 0 - End via the SC route with vehicle and Dexamethasone, 5 times a week (2 Days on, 1 Day off, 3 Days on, 1 Day off).
- Blautix was administered at a dose of 2 x 10 8 ; ⁇ /mouse.
- mice were weighed three times per week. From Day 0 until the end of the experiment, animals were weighed daily. From Day 0 until the end of the experiment, animals were scored daily for clinical signs of EAE, including paresis and paralysis of the tail and/or limbs.
- blood samples were collected and processed to isolate serum.
- Day -14 and Day 35 samples were collected from a caudal (tail) vein in restrained animals. Samples were stored at -20°C until further optional analysis of anti-MOG antibodies by ELISA.
- animals were culled; brains and spinal cords were dissected out, one brain hemisphere and the spinal cord were transferred in tissue fixative then embedded in paraffin and stored in blocks until optional histopathology analysis.
- One brain hemisphere was dissected out and was snap-frozen then stored at -80°C.
- spleens were dissected out, weighed and processed to cell suspension.
- One aliquot per animal was used for cell proliferation assays.
- One aliquot per animal was snap-frozen then stored at -80°C.
- Mouse In addition to: Mouse is moving around the cage, but when placed on its side, is unable to right itself.
- Hind legs are together on one side of body.
- mice with scores judged too severe were culled prior to the scheduled end of the experiment.
- Mice with a score of (5) corresponding to a moribund state, on any occasion were culled immediately.
- Mice with a score of (4) corresponding to a paralysis affecting both hind limbs and a front limb, on two consecutive occasions were culled.
- Mice with a score of (3) corresponding to a paralysis affecting both hind limb, on four consecutive occasions were culled.
- 2 mice in Group 2 were terminated due to EAE scores before the end of the experiment.
- 1 mouse in each of Groups 3 and 8 was terminated due to clinical observations before the end of the experiment. All mice in Groups 1 and 9 were terminated at the end of the experiment.
- Sections of whole brains and longitudinal and cross-sections of spinal cords were stained with haematoxylin and eosin. Sections were evaluated in blinded fashion without knowledge of the experimental protocol.
- Grade 2 Numerous discrete small to medium perivascular cuffs affecting parenchyma and meninges. May be focal demyelination of individual axons associated with mild extension of cuff to surrounding parenchyma.
- Grade 3 Numerous medium to large perivascular cuffs may coalesce and extend significantly into parenchyma. Meninges also involved. May be demyelination of axonal groups associated with extension into parenchyma.
- Figures la and 2a show the results of the study at day 30.
- Figures lb and 2b show the results of the study at day 35.
- Group 9 (Blautix- vehicle) shows that disease induction was successful and the model replicates some of the clinical features of MS with increased clinical scores relative to Group 1 (control).
- Group 3 (Dexamethasone) is a positive control showing successful amelioration of clinical signs.
- Histopathological analysis revealed changes that are expected for this model in spinal cord and brain.
- Group 1 showed no pathology and Group 2 showed the most severe pathology in the highest proportion of animals of any group, as expected.
- Group 3 showed very limited pathology in only 2 animals.
- Groups 8 and 9 were more homogenous, showing less severe pathology than Group 2 affecting relatively fewer animals per group.
- Data was analysed using Mann-Whitney test to compare each treatment group to vehicle (PBS) group. This analysis revealed significantly decreased pathology in the dexamethasone and Blautix groups compared to vehicle (PBS) group (p ⁇ 0.001 and p ⁇ 0.05, respectively; Figure 3).
- Figure 4 shows representative pictures of spinal cord sections stained with haematoxylin and eosin.
- A Mouse 1.12, spinal cord xlO. There are no histological abnormalities.
- B. and C Mouse 2.7, spinal cord xlO and x20. Severe diffuse inflammation and demyelination of peripheral white matter with focal perivascular cuffing.
- D Mouse 3.3, spinal cord x20. Discrete focus inflammation in peripheral white matter.
- I Mouse 9.3, spinal cord, xlO. Diffuse inflammation, demyelination and spheroid formation.
- Group 1 animals showed no histological changes and there was a negligible change in group 3 with only one animal affected and very low mean pathology score. Although there were similar mean severity scores in groups 2, 8 and 9, there were fewer animals affected in groups 8 and 9 compared with group 2. There were some correlations with the spinal cord data (i.e. group 1 normal and group 3 limited pathology), but also some differences (i.e. group 2 has the most severe cord pathology, but not for brain). This is not unexpected for this model, in which cord pathology is often more consistent within groups than that occurring in the brain. Mann-Whitney test revealed significantly lower brain pathology score in the dexamethasone group compared to vehicle (PBS) group (p ⁇ 0.05), as shown in Figure 3.
- PBS vehicle
- Figure 5 shows representative pictures of brain sections stained with haematoxylin and eosin.
- A Mouse 1.1 xlO, normal cerebellum.
- B Mouse 2.7 xlO, score 3.
- H Mouse 8.5 xlO, score 2.
- Blautix significantly improved spinal cord pathology compared to vehicle (PBS). Blautix also statistically significantly reduced inflammation in the spinal cord. There was also a strong trend showing a positive effect in the brain.
- Serum from day -14 animals showed no IgG antibody responses to MOG 35-55 peptide, as expected for naive animals.
- Serum from day 35 animals showed increased IgG antibody responses to MOG 35- 55 in all EAE groups in comparison with control group animals ( Figure 9). The increased antibody responses were not statistically significant, due to variability in antibody titres within each group, which is to be expected in the EAE model.
- spleens from groups 2, 3, 8 and 9 were dissected out and processed to single cell suspensions.
- Splenocytes were cultured in the presence and absence of MOG 35-55 peptide for three days and tritiated thymidine incorporation was quantified to reveal levels of cell proliferation.
- Unstimulated and anti-CD3/anti-CD28 (positive control) stimulated control cultures were also established.
- a two-way ANOVA followed by Sidak's post-test for multiple comparison was used to determine differences within in vivo treatment groups.
- a two-way ANOVA followed by Dunnett's post-test for multiple comparisons was used to determine differences within ex vivo treatment groups (media, MOG 35-55 or anti CD3/CD8).
- MOG T cell proliferative responses in splenocytes at day 35 were increased above unstimulated (media alone) proliferative responses (Figure 10).
- Proliferative responses to an anti-CD3/CD28 stimulus were significantly increased (p ⁇ 0.0001), confirming the viability of the splenocytes and ability to proliferate strongly with a highly positive stimulus.
- Groups of 16 germ-free rats (comprising 8 rats in the control group and 8 rats in the treatment group) were inoculated with the faecal microbiota from a human IBS subject (IBS-HMA rats).
- IBS-HMA rats Three successive experiments were carried out using faecal samples from 3 different IBS patients.
- Half of the IBS-HMA rats were then administered for 28 days with composition comprising the bacterial strain of B. hydro genotrophica according to the invention while the other half animals received a control solution.
- BH lyophilisate was suspended in sterile mineral solution to a concentration of 10 10 bacteria per ml. Two ml of this suspension was administered daily per IBS-HMA rat, by oral gavage, for a 28 days period.
- the control solution was the sterile mineral solution that was administered daily (2 ml per rat) by oral gavage to the control group of IBS-HMA rats.
- Germ-Free male Fisher rats (aged 10 weeks) were inoculated with human faecal microbiota from an IBS subject (IBS-HMA rats). Sixteen rats were inoculated with the same human faecal inoculum. Three successive experiments were performed with faecal samples from three different IBS subjects. Two other groups of ten rats were inoculated with faecal sample from 2 healthy subjects (normo-sensitivity control groups).
- Figure 7 presents the results of qPCR analysis of the B. hydro genotrophica population in faecal samples from IBS-HMA rats receiving control solution or BH lyophilisate. A significant increase in the BH population was observed at the end of the administration period (D 28) in rats receiving the BH lyophilisate, which confirms successful delivery of BH in the colon.
- Figure 8 reports on the impact of administration of BH on the main fermentative metabolites, short chain fatty acids, in caecal samples of IBS-HMA rats.
- a composition described herein containing at least one bacterial strain described herein is stored in a sealed container at 25 ° C or 4 ° C and the container is placed in an atmosphere having 30%, 40%, 50%, 60%, 70%, 75%, 80%, 90% or 95% relative humidity. After 1 month, 2 months, 3 months, 6 months, 1 year, 1.5 years, 2 years, 2.5 years or 3 years, at least 50%, 60%, 70%, 80% or 90% of the bacterial strain shall remain as measured in colony forming units determined by standard protocols.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Psychiatry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Nutrition Science (AREA)
- Pain & Pain Management (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Tropical Medicine & Parasitology (AREA)
- Physiology (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP18727413.9A EP3630139A1 (en) | 2017-05-22 | 2018-05-22 | Compositions comprising bacterial strains |
| JP2019563363A JP7212945B2 (ja) | 2017-05-22 | 2018-05-22 | 細菌株を含む組成物 |
| US16/691,439 US11382936B2 (en) | 2017-05-22 | 2019-11-21 | Compositions comprising bacterial strains |
Applications Claiming Priority (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1708176.1 | 2017-05-22 | ||
| GBGB1708176.1A GB201708176D0 (en) | 2017-05-22 | 2017-05-22 | Compositions comprising bacterial strains |
| GB1714305.8 | 2017-09-06 | ||
| GBGB1714309.0A GB201714309D0 (en) | 2017-09-06 | 2017-09-06 | Compositions comprising bacterial strains |
| GB1714309.0 | 2017-09-06 | ||
| GB1714298.5 | 2017-09-06 | ||
| GBGB1714298.5A GB201714298D0 (en) | 2017-09-06 | 2017-09-06 | Compositions comprising bacterial strains |
| GBGB1714305.8A GB201714305D0 (en) | 2017-09-06 | 2017-09-06 | Compositions comprising bacterial strains |
| GBGB1716493.0A GB201716493D0 (en) | 2017-10-09 | 2017-10-09 | Compositions comprising baterial strains |
| GB1716493.0 | 2017-10-09 | ||
| GB1718551.3 | 2017-11-09 | ||
| GBGB1718551.3A GB201718551D0 (en) | 2017-11-09 | 2017-11-09 | Compositions comprising bacterial strains |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/691,439 Continuation US11382936B2 (en) | 2017-05-22 | 2019-11-21 | Compositions comprising bacterial strains |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018215760A1 true WO2018215760A1 (en) | 2018-11-29 |
Family
ID=62245356
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2018/051386 Ceased WO2018215757A1 (en) | 2017-05-22 | 2018-05-22 | Compositions comprising bacterial strains |
| PCT/GB2018/051389 Ceased WO2018215758A1 (en) | 2017-05-22 | 2018-05-22 | Compositions comprising bacterial strains |
| PCT/GB2018/051391 Ceased WO2018215760A1 (en) | 2017-05-22 | 2018-05-22 | Compositions comprising bacterial strains |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2018/051386 Ceased WO2018215757A1 (en) | 2017-05-22 | 2018-05-22 | Compositions comprising bacterial strains |
| PCT/GB2018/051389 Ceased WO2018215758A1 (en) | 2017-05-22 | 2018-05-22 | Compositions comprising bacterial strains |
Country Status (22)
| Country | Link |
|---|---|
| US (5) | US11382936B2 (enExample) |
| EP (3) | EP3630139A1 (enExample) |
| JP (3) | JP7221538B2 (enExample) |
| KR (1) | KR20200019882A (enExample) |
| CN (1) | CN110913878A (enExample) |
| AU (1) | AU2018272291A1 (enExample) |
| CA (1) | CA3064171A1 (enExample) |
| CY (1) | CY1124286T1 (enExample) |
| DK (1) | DK3630136T3 (enExample) |
| ES (2) | ES2955870T3 (enExample) |
| HR (1) | HRP20210780T1 (enExample) |
| HU (1) | HUE054164T2 (enExample) |
| LT (1) | LT3630136T (enExample) |
| MA (3) | MA48939B1 (enExample) |
| MD (1) | MD3630136T2 (enExample) |
| PL (1) | PL3630136T3 (enExample) |
| PT (1) | PT3630136T (enExample) |
| RS (1) | RS61872B1 (enExample) |
| SI (1) | SI3630136T1 (enExample) |
| SM (1) | SMT202100420T1 (enExample) |
| TW (3) | TWI787272B (enExample) |
| WO (3) | WO2018215757A1 (enExample) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| HUE054164T2 (hu) * | 2017-05-22 | 2021-08-30 | 4D Pharma Res Ltd | Baktériumtörzseket tartalmazó készítmények |
| GB202001336D0 (en) * | 2020-01-31 | 2020-03-18 | Imp College Innovations Ltd | Methods for measuring gut permeability and gastric emptying rate |
| TWI770487B (zh) * | 2020-03-26 | 2022-07-11 | 益福生醫股份有限公司 | 減少行為異常的方法 |
| CN113832069B (zh) * | 2020-11-30 | 2024-01-30 | 河南农业大学 | 丁酸梭菌及其应用 |
| JP7705633B2 (ja) * | 2021-06-01 | 2025-07-10 | 花王株式会社 | 内臓脂肪低減剤 |
| WO2023222924A1 (en) * | 2022-05-20 | 2023-11-23 | Institut Pasteur | Lachnospiraceae spp and ruminococcus lactaris strains for the treatment and prevention of alzheimer's disease and aging |
| WO2024145743A1 (zh) * | 2023-01-03 | 2024-07-11 | 哈尔滨工业大学 | 一类rna引导的内切酶系统及其基因编辑应用 |
| EP4527396A1 (en) | 2023-09-22 | 2025-03-26 | Igen Biolab Group AG | Therapeutic use of a postbiotic composition for psychiatric disorders |
| WO2025115128A1 (ja) * | 2023-11-29 | 2025-06-05 | 正志 大原 | アルツハイマー型認知症リスクの評価方法および評価装置 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015033305A1 (en) * | 2013-09-06 | 2015-03-12 | Sofar S.P.A. | Use of a composition comprising microorganisms to increase the intestinal production of butyric acid, folic acid or niacin and/or decrease the intestinal production of succinic acid |
| US20160143961A1 (en) * | 2014-11-25 | 2016-05-26 | Epiva Biosciences, Inc. | Probiotic and prebiotic compositions, and methods of use thereof for treatment and prevention of graft versus host disease |
| WO2016203218A1 (en) * | 2015-06-15 | 2016-12-22 | 4D Pharma Research Limited | Compositions comprising bacterial strains |
| WO2017148596A1 (en) * | 2016-03-04 | 2017-09-08 | 4D Pharma Plc | Compositions comprising bacterial blautia strains for treating visceral hypersensitivity |
Family Cites Families (364)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| NL154598B (nl) | 1970-11-10 | 1977-09-15 | Organon Nv | Werkwijze voor het aantonen en bepalen van laagmoleculire verbindingen en van eiwitten die deze verbindingen specifiek kunnen binden, alsmede testverpakking. |
| US3817837A (en) | 1971-05-14 | 1974-06-18 | Syva Corp | Enzyme amplification assay |
| US3939350A (en) | 1974-04-29 | 1976-02-17 | Board Of Trustees Of The Leland Stanford Junior University | Fluorescent immunoassay employing total reflection for activation |
| US3996345A (en) | 1974-08-12 | 1976-12-07 | Syva Company | Fluorescence quenching with immunological pairs in immunoassays |
| US4275149A (en) | 1978-11-24 | 1981-06-23 | Syva Company | Macromolecular environment control in specific receptor assays |
| US4277437A (en) | 1978-04-05 | 1981-07-07 | Syva Company | Kit for carrying out chemically induced fluorescence immunoassay |
| US4366241A (en) | 1980-08-07 | 1982-12-28 | Syva Company | Concentrating zone method in heterogeneous immunoassays |
| NL8300698A (nl) | 1983-02-24 | 1984-09-17 | Univ Leiden | Werkwijze voor het inbouwen van vreemd dna in het genoom van tweezaadlobbige planten; agrobacterium tumefaciens bacterien en werkwijze voor het produceren daarvan; planten en plantecellen met gewijzigde genetische eigenschappen; werkwijze voor het bereiden van chemische en/of farmaceutische produkten. |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
| DK122686D0 (da) | 1986-03-17 | 1986-03-17 | Novo Industri As | Fremstilling af proteiner |
| FR2613624B1 (fr) | 1987-04-10 | 1990-11-23 | Roussy Inst Gustave | Composition pharmaceutique, administrable par voie orale, destinee a reduire les effets des b-lactamines |
| US5443826A (en) | 1988-08-02 | 1995-08-22 | Borody; Thomas J. | Treatment of gastro-intestinal disorders with a fecal composition or a composition of bacteroides and E. Coli |
| EP0433299B1 (en) | 1988-08-02 | 1998-05-06 | Gastro Services Pty. Limited (ACN 002 994 890) | Treatment of gastro-intestinal disorders |
| KR100225087B1 (ko) | 1990-03-23 | 1999-10-15 | 한스 발터라벤 | 피타아제의 식물내 발현 |
| JP3110452B2 (ja) | 1990-05-09 | 2000-11-20 | ノボ ノルディスク アクティーゼルスカブ | エンドグルカナーゼ酵素を含んでなるセルラーゼ調製物 |
| GB9107305D0 (en) | 1991-04-08 | 1991-05-22 | Unilever Plc | Probiotic |
| CA2100919A1 (en) | 1992-07-20 | 1994-01-21 | Takaharu Yamamoto | Species-specific oligonucleotides for bifidobacteria and a method of detection using the same |
| JPH08504327A (ja) | 1992-12-10 | 1996-05-14 | ギスト ブロカデス ナムローゼ フェンノートシャップ | 糸状菌における異種タンパクの生産 |
| US5741665A (en) | 1994-05-10 | 1998-04-21 | University Of Hawaii | Light-regulated promoters for production of heterologous proteins in filamentous fungi |
| US5599795A (en) | 1994-08-19 | 1997-02-04 | Mccann; Michael | Method for treatment of idiopathic inflammatory bowel disease (IIBD) |
| AUPM823094A0 (en) | 1994-09-16 | 1994-10-13 | Goodman Fielder Limited | Probiotic compositions |
| AUPM864894A0 (en) | 1994-10-07 | 1994-11-03 | Borody, Thomas Julius | Treatment of bowel-dependent neurological disorders |
| RU2078815C1 (ru) | 1995-01-17 | 1997-05-10 | Московский научно-исследовательский институт эпидемиологии и микробиологии им.Г.Н.Габричевского | Штамм бактерий bifidobacterium breve, используемый для получения бактерийных лечебно-профилактических бифидосодержащих препаратов |
| JPH08259450A (ja) | 1995-03-17 | 1996-10-08 | Nichinichi Seiyaku Kk | インターフェロン産生増強剤 |
| US6861053B1 (en) | 1999-08-11 | 2005-03-01 | Cedars-Sinai Medical Center | Methods of diagnosing or treating irritable bowel syndrome and other disorders caused by small intestinal bacterial overgrowth |
| AUPN698495A0 (en) | 1995-12-06 | 1996-01-04 | Pharma Pacific Pty Ltd | Improved therapeutic formulation and method |
| SE508045C2 (sv) | 1996-02-26 | 1998-08-17 | Arla Ekonomisk Foerening | Adhesionsinhibitorer, preparat innehållande desamma och förfarande för framställning därav |
| JP4282763B2 (ja) | 1996-03-20 | 2009-06-24 | ザ、ユニバーシティ、オブ、ニュー、サウス、ウェイルズ | 消化管内の微生物個体数の変更 |
| AUPN881396A0 (en) | 1996-03-20 | 1996-04-18 | Arnott's Biscuits Limited | Enhancement of microbial colonization of the gastrointestinal tract |
| DE69735199T2 (de) | 1996-03-27 | 2006-09-21 | Novozymes A/S | Alkaline-phosphatase-defiziente, filamentöse pilze |
| US6033864A (en) | 1996-04-12 | 2000-03-07 | The Regents Of The University Of California | Diagnosis, prevention and treatment of ulcerative colitis, and clinical subtypes thereof, using microbial UC pANCA antigens |
| AU6773598A (en) | 1997-03-26 | 1998-10-20 | Institut Pasteur | Treatment of gastrointestinal disease with ppar modulators |
| SE511524C2 (sv) | 1997-06-02 | 1999-10-11 | Essum Ab | Lactobacillus casei rhamnosus-stam samt farmaceutisk beredning för bekämpning av patogena tarmbakterier |
| US5925657A (en) | 1997-06-18 | 1999-07-20 | The General Hospital Corporation | Use of PPARγ agonists for inhibition of inflammatory cytokine production |
| AUPO758297A0 (en) | 1997-06-27 | 1997-07-24 | Rowe, James Baber | Control of acidic gut syndrome |
| US5951977A (en) | 1997-10-14 | 1999-09-14 | The United States Of America, As Represented By The Secretary Of Agriculture | Competitive exclusion culture for swine |
| IT1298918B1 (it) | 1998-02-20 | 2000-02-07 | Mendes Srl | Uso di batteri dotati di arginina deiminasi per indurre apoptosi e/o ridurre una reazione infiammatoria e composizioni farmaceutiche |
| DE19826928A1 (de) | 1998-06-17 | 1999-12-23 | Novartis Consumer Health Gmbh | Arzneimittel, lebensfähige anaerobe Bakterien enthaltend, die die Sulfatreduktion sulfatreduzierender Bakterien hemmen |
| ID29150A (id) | 1999-01-15 | 2001-08-02 | Entpr Ireland Cs | Penggunaan lactobacillus salivarius |
| US7090973B1 (en) | 1999-04-09 | 2006-08-15 | Oscient Pharmaceuticals Corporation | Nucleic acid sequences relating to Bacteroides fragilis for diagnostics and therapeutics |
| US6417212B1 (en) | 1999-08-27 | 2002-07-09 | Eli Lilly & Company | Modulators of peroxisome proliferator activated receptors |
| PL203212B1 (pl) | 2000-02-08 | 2009-09-30 | Dsm Ip Assets Bv | Zastosowanie trwałej w kwasie proteazy w karmie zwierzęcej oraz w wytwarzaniu kompozycji do stosowania w karmie zwierzęcej, dodatek do karmy zwierzęcej, kompozycja karmy zwierzęcej i sposób obróbki białek roślinnych |
| FR2808689B1 (fr) | 2000-05-11 | 2004-09-03 | Agronomique Inst Nat Rech | Utilisation de souches acetogenes hydrogenotrophes pour la prevention ou le traitement de troubles digestifs |
| US20020013270A1 (en) | 2000-06-05 | 2002-01-31 | Bolte Ellen R. | Method for treating a mental disorder |
| AUPQ899700A0 (en) | 2000-07-25 | 2000-08-17 | Borody, Thomas Julius | Probiotic recolonisation therapy |
| WO2002042328A2 (en) | 2000-11-27 | 2002-05-30 | Washington University | Method for studying the effects of commensal microflora on mammalian intestine and treatments of gastrointestinal-associated disease based thereon |
| DE10101793A1 (de) | 2001-01-17 | 2002-08-01 | Manfred Nilius | Verwendung von SLPI zur Behandlung chronisch-entzündlicher Darmerkrankungen |
| EP1227152A1 (en) | 2001-01-30 | 2002-07-31 | Société des Produits Nestlé S.A. | Bacterial strain and genome of bifidobacterium |
| CN1133810C (zh) | 2001-02-16 | 2004-01-07 | 郗大光 | 电动燃油喷射装置 |
| KR100437497B1 (ko) | 2001-03-07 | 2004-06-25 | 주식회사 프로바이오닉 | 로타바이러스 및 유해 미생물 억제 활성을 가지는 신규내산성 락토바실러스 루테리 프로바이오-16 및 이를함유하는 생균활성제 |
| EP1243273A1 (en) | 2001-03-22 | 2002-09-25 | Societe Des Produits Nestle S.A. | Composition comprising a prebiotic for decreasing infammatory process and abnormal activation of non-specific immune parameters |
| WO2002085933A1 (en) | 2001-04-20 | 2002-10-31 | The Institute For Systems Biology | Toll-like receptor 5 ligands and methods of use |
| EP1260227A1 (en) | 2001-05-23 | 2002-11-27 | Societe Des Produits Nestle S.A. | Lipoteichoic acid from lactic acid bacteria and its use to modulate immune responses mediated by gram-negative bacteria, potential pathogenic gram-positive bacteria |
| US20030092163A1 (en) | 2001-07-26 | 2003-05-15 | Collins John Kevin | Probiotic bifidobacterium strains |
| EP1432426A2 (en) | 2001-09-05 | 2004-06-30 | ACTIAL Farmaceutica Lda. | USE OF UNMETHYLATED CpG |
| GB0127916D0 (en) | 2001-11-21 | 2002-01-16 | Rowett Res Inst | Method |
| JP2005518195A (ja) | 2001-11-27 | 2005-06-23 | ワシントン・ユニバーシティ | 治療用タンパク質および治療方法 |
| DK1581119T3 (da) | 2001-12-17 | 2013-05-13 | Corixa Corp | Sammensætninger og fremgangsmåder til terapi og diagnose af inflammatoriske tarmsygdomme |
| US7101565B2 (en) | 2002-02-05 | 2006-09-05 | Corpak Medsystems, Inc. | Probiotic/prebiotic composition and delivery method |
| DE10206995B4 (de) | 2002-02-19 | 2014-01-02 | Orthomol Pharmazeutische Vertriebs Gmbh | Mikronährstoffkombinationsprodukt mit Pro- und Prebiotika |
| JP2003261453A (ja) | 2002-03-11 | 2003-09-16 | Nippon Berumu Kk | E.フェカリスからなる抗腫瘍剤及び放射線防護剤 |
| EP1565547B2 (en) | 2002-06-28 | 2012-09-19 | Biosearch S.A. | Probiotic strains, a process for the selection of them, compositions thereof, and their use |
| US20040005304A1 (en) | 2002-07-08 | 2004-01-08 | Mak Wood, Inc. | Novel compositions and methods for treating neurological disorders and associated gastrointestinal conditions |
| GB0307026D0 (en) | 2003-03-27 | 2003-04-30 | Rowett Res Inst | Bacterial supplement |
| EP1481681A1 (en) | 2003-05-30 | 2004-12-01 | Claudio De Simone | Lactic acid bacteria combination and compositions thereof |
| GB0316915D0 (en) | 2003-07-18 | 2003-08-20 | Glaxo Group Ltd | Compounds |
| WO2005007834A1 (en) | 2003-07-23 | 2005-01-27 | Probionic Corp. | Acid tolerant probiotic lactobacillus plantarum probio-38 that can suppress the growth of pathogenic microorganism and tge coronavirus |
| US7485325B2 (en) | 2003-08-06 | 2009-02-03 | Gayle Dorothy Swain | Animal food supplement compositions and methods of use |
| JP4683881B2 (ja) | 2003-08-27 | 2011-05-18 | 有限会社アーク技研 | 抗腫瘍活性剤 |
| US8192733B2 (en) | 2003-08-29 | 2012-06-05 | Cobb & Associates | Probiotic composition useful for dietary augmentation and/or combating disease states and adverse physiological conditions |
| US20050163764A1 (en) | 2003-09-22 | 2005-07-28 | Yale University | Treatment with agonists of toll-like receptors |
| GB0323039D0 (en) | 2003-10-01 | 2003-11-05 | Danisco | Method |
| US20070207132A1 (en) | 2003-10-24 | 2007-09-06 | N.V. Nutricia | Synbiotic Composition For Infants |
| US20050239706A1 (en) | 2003-10-31 | 2005-10-27 | Washington University In St. Louis | Modulation of fiaf and the gastrointestinal microbiota as a means to control energy storage in a subject |
| CA2550106A1 (en) | 2003-12-17 | 2005-06-30 | N.V. Nutricia | Lactic acid producing bacteria and lung function |
| ES2235642B2 (es) | 2003-12-18 | 2006-03-01 | Gat Formulation Gmbh | Proceso de multi-microencapsulacion continuo para la mejora de la estabilidad y almacenamiento de ingredientes biologicamente activos. |
| CA2557800A1 (en) | 2004-03-22 | 2005-10-06 | Yossef Raviv | Cellular and viral inactivation |
| US20080248068A1 (en) | 2004-05-07 | 2008-10-09 | Hans-Gustaf Ljunggren | Use of Flagellin as an Adjuvant for Vaccine |
| US7638513B2 (en) | 2004-06-02 | 2009-12-29 | Schering Corporation | Compounds for the treatment of inflammatory disorders |
| PE20060426A1 (es) | 2004-06-02 | 2006-06-28 | Schering Corp | DERIVADOS DE ACIDO TARTARICO COMO INHIBIDORES DE MMPs, ADAMs, TACE Y TNF-alfa |
| CA2611377C (en) | 2004-06-07 | 2019-04-09 | Harold David Gunn | Bacterial compositions for the treatment of cancer |
| PT1629850E (pt) | 2004-08-24 | 2007-08-14 | Nutricia Nv | Composição nutricional que compreende a administração de oligossacarídeos indigeríveis |
| US20060062773A1 (en) | 2004-09-21 | 2006-03-23 | The Procter & Gamble Company | Compositions for maintaining and restoring normal gastrointestinal flora |
| KR100468522B1 (ko) | 2004-10-12 | 2005-01-31 | 주식회사 프로바이오닉 | 코로나바이러스와 돼지 써코바이러스 2형의 생육을 억제하는 신규한 내산성 프로바이오틱 엔테로코커스훼시움 프로바이오-63 |
| US20060115465A1 (en) | 2004-10-29 | 2006-06-01 | Macfarlane George | Treatment of gastrointestinal disorders |
| ITMI20042189A1 (it) | 2004-11-16 | 2005-02-16 | Anidral Srl | Composizione a base di batteri probiotici e suo uso nella prevenzione e-o nel trattamento di patologie e-o infezioni respiratorie e nel miglioramento della funzionalita' intestinale |
| TR201820329T4 (tr) | 2005-02-28 | 2019-01-21 | Nutricia Nv | Probiyotik İçeren Besin Bileşimi |
| WO2006102350A1 (en) | 2005-03-23 | 2006-09-28 | Washington University In St. Louis | The use of archaea to modulate the nutrient harvesting functions of the gastrointestinal microbiota |
| US20090233888A1 (en) | 2005-03-23 | 2009-09-17 | Usc Stevens, University Of Southern California | Treatment of disease conditions through modulation of hydrogen sulfide produced by small intestinal bacterial overgrowth |
| JP2006265212A (ja) | 2005-03-25 | 2006-10-05 | Institute Of Physical & Chemical Research | Il−21産生誘導剤 |
| US20100233312A9 (en) | 2005-04-11 | 2010-09-16 | The Procter & Gamble Company | Compositions comprising probiotic and sweetener components |
| EP1714660A1 (en) | 2005-04-21 | 2006-10-25 | N.V. Nutricia | Uronic acid and probiotics |
| ATE549394T1 (de) | 2005-04-26 | 2012-03-15 | Teagasc Agric Food Dev Authori | Für tiere geeignete probiotische zusammensetzung |
| DK2161336T4 (en) | 2005-05-09 | 2017-04-24 | Ono Pharmaceutical Co | Human monoclonal antibodies for programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapies |
| US7572474B2 (en) | 2005-06-01 | 2009-08-11 | Mead Johnson Nutrition Company | Method for simulating the functional attributes of human milk oligosaccharides in formula-fed infants |
| US8075934B2 (en) | 2008-10-24 | 2011-12-13 | Mead Johnson Nutrition Company | Nutritional composition with improved digestibility |
| JP2007084533A (ja) | 2005-08-24 | 2007-04-05 | Prima Meat Packers Ltd | 免疫応答調節組成物及び該組成物を有効成分とする食品 |
| US7625704B2 (en) | 2005-08-31 | 2009-12-01 | Fred Hutchinson Cancer Research Center | Methods and compositions for identifying bacteria associated with bacteria vaginosis |
| WO2007027761A2 (en) | 2005-09-01 | 2007-03-08 | Schering Corporation | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
| US20090028840A1 (en) | 2005-09-23 | 2009-01-29 | Gwangju Institute Of Sciecne And Technology | Compositions For Preventing Or Treating Arthritis Comprising Lactic Acid Bacteria and Collangen As Active Ingredients |
| EP1776877A1 (en) | 2005-10-21 | 2007-04-25 | N.V. Nutricia | Method for stimulating the intestinal flora |
| MY144556A (en) | 2005-10-24 | 2011-09-30 | Nestec Sa | Dietary fiber formulation and method of administration |
| JP2007116991A (ja) | 2005-10-28 | 2007-05-17 | Eternal Light General Institute Inc | 機能性食品 |
| US7767420B2 (en) | 2005-11-03 | 2010-08-03 | Momenta Pharmaceuticals, Inc. | Heparan sulfate glycosaminoglycan lyase and uses thereof |
| US7553864B2 (en) | 2005-12-01 | 2009-06-30 | Schering Corporation | Compounds for the treatment of inflammatory disorders and microbial diseases |
| WO2007098371A2 (en) | 2006-02-16 | 2007-08-30 | Wayne State University | Use of flagellin to prevent and treat gram negative bacterial infection |
| US20080260906A1 (en) | 2006-03-17 | 2008-10-23 | Marko Stojanovic | Compositions comprising probiotic and sweetener components |
| JP5031249B2 (ja) | 2006-03-22 | 2012-09-19 | 学校法人北里研究所 | 炎症抑制作用のある菌体含有組成物 |
| WO2007136719A2 (en) | 2006-05-18 | 2007-11-29 | Biobalance Llc | Biotherapeutic compositions comprising probiotic escherichia coli and uses thereof |
| CA2655665A1 (en) | 2006-05-26 | 2007-12-06 | Nestec S.A. | Methods of use and nutritional compositions of touchi extract |
| WO2007140613A1 (en) | 2006-06-06 | 2007-12-13 | Mcgill University | Fermented milk product and use thereof |
| TW200819540A (en) | 2006-07-11 | 2008-05-01 | Genelux Corp | Methods and compositions for detection of microorganisms and cells and treatment of diseases and disorders |
| CN101795579A (zh) | 2006-08-04 | 2010-08-04 | Shs国际有限公司 | 无蛋白配方 |
| WO2008031438A2 (en) | 2006-09-13 | 2008-03-20 | Region Hovedstaden V/Gentofte Hospital | Treatment of asthma, eczema and/or allergy using non-pathogenic organisms |
| US20080069861A1 (en) | 2006-09-19 | 2008-03-20 | National Starch And Chemical Investment Holding Corporation | Probiotic/Non-Probiotic Combinations |
| MX2009004434A (es) | 2006-10-27 | 2009-05-08 | Pfizer Prod Inc | Capsulas duras de hidroxipropilmetilcelulosa y procedimiento de fabricacion. |
| US20080118473A1 (en) | 2006-11-01 | 2008-05-22 | The Procter & Gamble Company | Methods of treating a respiratory condition comprising probiotic treatment |
| EP1920782A1 (en) | 2006-11-10 | 2008-05-14 | Glycotope Gmbh | Carboyhdrate specific cellular immunity inducing microorganisms and fractions thereof |
| WO2008064489A1 (en) | 2006-12-01 | 2008-06-05 | Mcmaster University | Probiotics to inhibit inflammation |
| EP2102350A4 (en) | 2006-12-18 | 2012-08-08 | Univ St Louis | DARMMICROBIOMA AS A BIOMARKER AND THERAPEUTIC OBJECT FOR THE TREATMENT OF ADIPOSITAS OR ADIPOSITASCONDUCTIVE DISEASES |
| DE102006062250A1 (de) | 2006-12-22 | 2008-06-26 | Roland Saur-Brosch | Verwendung einer Zusammensetzung aus Mineralstoffen und/oder Vitaminen und gegebenenfalls acetogenen und/oder butyrogenen Bakterien zur oralen oder rektalen Verabreichung für die Behandlung und Vorbeugung von abdominalen Beschwerden |
| WO2008083157A2 (en) | 2006-12-29 | 2008-07-10 | Washington University In St. Louis | Altering pgc-1alapha, ampk, fiaf, or the gastrointestinal microbiota as a means to modulate body fat and/or weight loss in a subject |
| JP2008195635A (ja) | 2007-02-09 | 2008-08-28 | Crossfield Bio Inc | 馬用乳酸菌製剤 |
| BRPI0808145A2 (pt) | 2007-02-28 | 2021-03-23 | Mead Johnson Nutrition Company | Produto contendo probiótico inativado para crianças ou lactentes. |
| MX2009010419A (es) | 2007-03-28 | 2010-02-18 | Alimentary Health Ltd | Cepas de bacterias bifidas probioticas. |
| CA2682327A1 (en) | 2007-03-28 | 2008-10-02 | Alimentary Health Limited | Probiotic bifidobacterium strains |
| JP5185996B2 (ja) | 2007-04-24 | 2013-04-17 | ケミン、インダストリーズ、インコーポレーテッド | ラクトバシラス・ジョンソニイd115の広いスペクトルの抗菌および抗真菌活性 |
| EP1997499A1 (en) | 2007-05-31 | 2008-12-03 | Puleva Biotech, S.A. | Mammalian milk microorganisms, compositions containing them and their use for the treatment of mastitis |
| EP1997906A1 (en) | 2007-06-01 | 2008-12-03 | Friesland Brands B.V. | Lactobacillus |
| EP1997907A1 (en) | 2007-06-01 | 2008-12-03 | Friesland Brands B.V. | Bifidobacteria |
| EP1997905A1 (en) | 2007-06-01 | 2008-12-03 | Friesland Brands B.V. | Nucleic acid amplification |
| WO2008153377A1 (en) | 2007-06-15 | 2008-12-18 | N.V. Nutricia | Nutrition with non-viable bifidobacterium and non-digestible oligosaccharide |
| ES2523575T3 (es) | 2007-06-27 | 2014-11-27 | Laboratorios Ordesa, S.L. | Una nueva cepa de bifidobacterium y peptidos acitvos contra infecciones por rotavirus |
| HUP0700552A2 (en) | 2007-08-27 | 2009-03-30 | Janos Dr Feher | Method and composition inhibiting inflammation |
| WO2009030254A1 (en) | 2007-09-04 | 2009-03-12 | Curevac Gmbh | Complexes of rna and cationic peptides for transfection and for immunostimulation |
| WO2009043856A2 (en) | 2007-10-01 | 2009-04-09 | University College Cork, National University Of Ireland, Cork | Modulation of tissue fatty acid composition of a host by human gut bacteria |
| EP2203551B1 (en) | 2007-10-20 | 2013-08-21 | Université de Liège | Bifidobacterial species |
| US9371510B2 (en) | 2007-10-26 | 2016-06-21 | Brenda E. Moore | Probiotic compositions and methods for inducing and supporting weight loss |
| WO2009059284A2 (en) | 2007-11-02 | 2009-05-07 | Momenta Pharmaceuticals, Inc. | Non-anticoagulant polysaccharide compositions |
| EP2065048A1 (en) | 2007-11-30 | 2009-06-03 | Institut Pasteur | Use of a L. casei strain, for the preparation of a composition for inhibiting mast cell activation |
| CN101969966B (zh) | 2007-12-07 | 2013-05-08 | 努特里希亚公司 | 用于尘螨变态反应的双歧杆菌 |
| US20100330190A1 (en) | 2007-12-17 | 2010-12-30 | Compans Richard W | Immunogenic compositions and methods of use thereof |
| ES2343499B1 (es) | 2007-12-24 | 2011-06-10 | Consejo Superior De Investigaciones Cientificas | Microorganismos para mejorar el estado de salud de individuos con desordenes relacionados con la ingesta de gluten. |
| MX2010008720A (es) | 2008-02-06 | 2010-08-30 | Procter & Gamble | Composiciones, metodos y estuches para mejorar la respuesta inmunitaria a una enfermedad respiratoria. |
| EP2103226A1 (en) | 2008-03-18 | 2009-09-23 | Friesland Brands B.V. | Long-life probiotic food product |
| SG190562A1 (en) | 2008-04-18 | 2013-06-28 | Vaxinnate Corp | Deletion mutants of flagellin and methods of use |
| JP2011520435A (ja) | 2008-05-13 | 2011-07-21 | グリコトープ ゲーエムベーハー | 発酵プロセス |
| MX2008006546A (es) | 2008-05-21 | 2009-11-23 | Sigma Alimentos Sa De Cv | Bifidobacteria productora de ácido fólico, composición alimenticia y uso de la bifidobacteria. |
| CN101590081A (zh) | 2008-05-28 | 2009-12-02 | 青岛东海药业有限公司 | 凸腹真杆菌和两形真杆菌制剂及其应用 |
| CN102940652B (zh) | 2008-05-28 | 2015-03-25 | 青岛东海药业有限公司 | 两形真杆菌制剂及其应用 |
| WO2009149149A1 (en) | 2008-06-04 | 2009-12-10 | Trustees Of Dartmouth College | Prevention or treatment of immune-relevant disease by modification of microfloral populations |
| EP2133088A3 (en) | 2008-06-09 | 2010-01-27 | Nestec S.A. | Rooibos and inflammation |
| WO2009151315A1 (en) | 2008-06-13 | 2009-12-17 | N.V. Nutricia | Nutritional composition for infants delivered via caesarean section |
| WO2009154463A2 (en) | 2008-06-20 | 2009-12-23 | Stichting Top Institute Food And Nutrition | Butyrate as a medicament to improve visceral perception in humans |
| EP2138186A1 (en) | 2008-06-24 | 2009-12-30 | Nestec S.A. | Probiotics, secretory IgA and inflammation |
| WO2010002241A1 (en) | 2008-06-30 | 2010-01-07 | N.V. Nutricia | Nutritional composition for infants delivered via caesarean section |
| KR101017448B1 (ko) | 2008-09-18 | 2011-02-23 | 주식회사한국야쿠르트 | 대장의 건강 증진 효능을 갖는 비피도박테리움 롱검 에이취와이8004 및 이를 유효성분으로 함유하는 제품 |
| US8137718B2 (en) | 2008-09-19 | 2012-03-20 | Mead Johnson Nutrition Company | Probiotic infant products |
| US20100074870A1 (en) | 2008-09-19 | 2010-03-25 | Bristol-Myers Squibb Company | Probiotic infant products |
| KR101057357B1 (ko) | 2008-09-22 | 2011-08-17 | 광주과학기술원 | 유산균 및 콜라겐을 유효성분으로 포함하는 관절염 예방 또는 치료용 약제학적 조성물 및 식품 조성물 |
| US9603876B2 (en) | 2008-09-25 | 2017-03-28 | New York University | Compositions and methods for restoring gastrointestinal microbiota following antibiotic treatment |
| WO2010037408A1 (en) | 2008-09-30 | 2010-04-08 | Curevac Gmbh | Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof |
| US10369204B2 (en) | 2008-10-02 | 2019-08-06 | Dako Denmark A/S | Molecular vaccines for infectious disease |
| US20110223137A1 (en) | 2008-12-05 | 2011-09-15 | Nestec S.A. | Compositions for use in low-birth weight infants |
| RU2011129812A (ru) | 2008-12-19 | 2013-01-27 | Нестек С.А. | Профилактика и лечение ротавирусной диареи |
| IT1392672B1 (it) | 2009-01-12 | 2012-03-16 | Wyeth Consumer Healthcare S P A | Composizioni comprendenti componenti probiotici e prebiotici e sali minerali, con lactoferrina |
| EP2810652A3 (en) | 2009-03-05 | 2015-03-11 | AbbVie Inc. | IL-17 binding proteins |
| JP5710876B2 (ja) | 2009-03-26 | 2015-04-30 | クロスフィールドバイオ株式会社 | 新規ビフィドバクテリウム属微生物およびその利用 |
| MX2011011659A (es) | 2009-05-07 | 2012-02-28 | Tate & Lyle Ingredients France SAS | Composiciones y metodos para elaborar alfa-(1,6) oligodextranos ramificados en alfa-(1,2). |
| EP2251022A1 (en) | 2009-05-11 | 2010-11-17 | Nestec S.A. | Non-replicating micro-organisms and their immune boosting effect |
| ES2559008T3 (es) | 2009-05-11 | 2016-02-10 | Nestec S.A. | Bifidobacterium longum NCC2705 no replicante y trastornos inmunitarios |
| EP2251020A1 (en) | 2009-05-11 | 2010-11-17 | Nestec S.A. | Short-time high temperature treatment generates microbial preparations with anti-inflammatory profiles |
| KR20100128168A (ko) | 2009-05-27 | 2010-12-07 | 중앙대학교 산학협력단 | 공액 리놀레산 생산능이 우수한 신규한 균주 |
| US20100311686A1 (en) | 2009-06-03 | 2010-12-09 | Kasper Lloyd H | Nutraceutical composition and methods for preventing or treating multiple sclerosis |
| WO2010143940A1 (en) | 2009-06-12 | 2010-12-16 | N.V. Nutricia | Synergistic mixture of beta-galacto-oligosaccharides with beta-1,3 and beta-1,4/1,6 linkages |
| EP2443259A4 (en) | 2009-06-16 | 2012-10-10 | Univ Columbia | BIOMARKERS ASSOCIATED WITH AUTISM AND USES THEREOF |
| WO2011005756A1 (en) | 2009-07-06 | 2011-01-13 | Puretech Ventures, Llc | Delivery of agents targeted to microbiota niches |
| EP2456891A4 (en) | 2009-07-24 | 2013-04-03 | Southwest Regional Pcr Llc | DIAGNOSIS, DETECTION, QUANTIFICATION UNIVERSAL MICROBIENS, AND TARGETED THERAPY ON A SAMPLE |
| ES2664724T3 (es) | 2009-08-18 | 2018-04-23 | Nestec S.A. | Composición nutricional que comprende cepas de Bifidobacterium longum y que reduce los síntomas de alergia alimentaria, especialmente en lactantes y niños |
| US20110053829A1 (en) | 2009-09-03 | 2011-03-03 | Curevac Gmbh | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
| CN102711819A (zh) | 2009-09-23 | 2012-10-03 | 托马斯·朱利叶斯·波洛迪 | 肠道感染疗法 |
| EP2308498A1 (en) | 2009-09-30 | 2011-04-13 | Nestec S.A. | Administration of Bifidobacterium breve during infancy to prevent inflammation later in life |
| WO2011043654A1 (en) | 2009-10-05 | 2011-04-14 | Aak Patent B.V. | Methods for diagnosing irritable bowel syndrome |
| EP2485742A4 (en) | 2009-10-06 | 2013-03-20 | Scott Dorfner | ANTIBIOTIC FORMULATIONS WITH REDUCED SIDE EFFECTS ON STOMACH AND DARM |
| EP2498789B1 (en) | 2009-11-11 | 2016-06-22 | Alimentary Health Limited | Probiotic bifidobacterium strain |
| BR112012013571A2 (pt) | 2009-12-18 | 2015-09-15 | Hills Pet Nutrition Inc | composições alimentares para animais de estimação,incluindo probióticos e os métodos de fabricação e á sua uitlização. |
| US20150104418A1 (en) | 2014-12-18 | 2015-04-16 | Microbios, Inc. | Bacterial composition |
| FR2955774A1 (fr) | 2010-02-02 | 2011-08-05 | Aragan | Preparation destinee a traiter l'exces ponderal et les desordres associes et applications de ladite preparation |
| NL2004201C2 (en) | 2010-02-05 | 2011-08-08 | Friesland Brands Bv | Use of sialyl oligosaccharides to modulate the immune system. |
| NL2004200C2 (en) | 2010-02-05 | 2011-08-08 | Friesland Brands Bv | Use of sialyl oligosaccharides in weight management. |
| IT1398553B1 (it) | 2010-03-08 | 2013-03-01 | Probiotical Spa | Composizione comprendente batteri probiotici per il trattamento di patologie associate con le alterazioni del sistema immunitario. |
| JP5737646B2 (ja) | 2010-03-24 | 2015-06-17 | 森下仁丹株式会社 | 抗アレルギー剤 |
| EP2552464B1 (en) | 2010-03-30 | 2018-02-28 | Assistance Publique - Hôpitaux de Paris | Use of bifidobacteria for preventing allergy in breastfed infants |
| US8951512B2 (en) | 2010-05-04 | 2015-02-10 | New York University | Methods for treating bone disorders by characterizing and restoring mammalian bacterial microbiota |
| WO2011149335A1 (en) | 2010-05-25 | 2011-12-01 | N.V. Nutricia | Immune imprinting nutritional composition |
| WO2011153226A2 (en) | 2010-06-01 | 2011-12-08 | Moore Research Enterprises Llc | Cellular constituents from bacteroides, compositions thereof, and therapeutic methods employing bacteroides or cellular constituents thereof |
| WO2011151941A1 (ja) | 2010-06-04 | 2011-12-08 | 国立大学法人東京大学 | 制御性t細胞の増殖または集積を誘導する作用を有する組成物 |
| TWI417054B (zh) | 2010-06-15 | 2013-12-01 | Jen Shine Biotechnology Co Ltd | 新穎糞腸球菌ljs-01及其益生用途 |
| EP2397145A1 (en) | 2010-06-18 | 2011-12-21 | Nestec S.A. | L. johnsonii La1, B. longum NCC2705 and immune disorders |
| FR2962045B1 (fr) | 2010-07-05 | 2012-08-17 | Bifinove | Complexe macromoleculaire d'origine bacterienne et utilisation dudit complexe moleculaire pour prevenir et traiter les rhumatismes inflammatoires |
| TWI401086B (zh) | 2010-07-20 | 2013-07-11 | Univ China Medical | 胚芽乳酸桿菌及其用途 |
| RU2722357C2 (ru) | 2010-07-26 | 2020-05-29 | Кью Байолоджикс Инк. | Иммуногенные противовоспалительные композиции |
| CA2807242C (en) | 2010-08-04 | 2017-05-02 | Thomas Julius Borody | Compositions for fecal floral transplantation and methods for making and using them and devices for delivering them |
| US9386793B2 (en) | 2010-08-20 | 2016-07-12 | New York University | Compositions and methods for treating obesity and related disorders by characterizing and restoring mammalian bacterial microbiota |
| KR101250463B1 (ko) | 2010-10-12 | 2013-04-15 | 대한민국 | 신생아 분변에서 분리한 내산소성 비피도박테리움 롱검 비피더스 유산균 및 이를 이용한 프로바이오틱 조성물 |
| US20130230856A1 (en) | 2010-10-27 | 2013-09-05 | Quantibact A/S | Capture of target dna and rna by probes comprising intercalator molecules |
| CN102031235B (zh) | 2010-11-09 | 2012-07-25 | 中国农业大学 | 一种粪肠球菌anse228及其应用 |
| EP2455092A1 (en) | 2010-11-11 | 2012-05-23 | Nestec S.A. | Non-replicating probiotic micro-organisms protect against upper respiratory tract infections |
| WO2012071380A1 (en) | 2010-11-24 | 2012-05-31 | Oragenics, Inc. | Use of bacteria to treat and prevent respiratory infections |
| CN102093967B (zh) | 2010-12-02 | 2013-01-30 | 中国农业科学院特产研究所 | 一株水貂源屎肠球菌及其应用 |
| ES2389547B1 (es) | 2010-12-07 | 2013-08-08 | Consejo Superior De Investigaciones Científicas (Csic) | Bifidobacterium cect 7765 y su uso en la prevención y/o tratamiento del sobrepeso, la obesidad y patologías asociadas. |
| MX361355B (es) | 2011-01-10 | 2018-12-04 | Cleveland Biolabs Inc | Uso del agonista del receptor tipo toll para el tratamiento del cáncer. |
| ES2610908T3 (es) | 2011-01-31 | 2017-05-04 | Synformulas Gmbh | Cepas de bifidobacterium bifidum para su aplicación en enfermedades gastrointestinales |
| JP5840368B2 (ja) | 2011-02-02 | 2016-01-06 | カルピス株式会社 | 関節炎予防改善用物質 |
| BR112013020312B1 (pt) | 2011-02-09 | 2021-03-23 | Synbiotics Ab | Composições simbióticas para restauração e reconstituição da microbiota intestinal |
| AU2012225305B2 (en) | 2011-03-09 | 2017-06-08 | Regents Of The University Of Minnesota | Compositions and methods for transplantation of colon microbiota |
| BRPI1100857A2 (pt) | 2011-03-18 | 2013-05-21 | Alexandre Eduardo Nowill | agente imunomodulador e suas combinaÇÕes, seu uso e mÉtodo imunoterÁpico para a recontextualizaÇço, reprogramaÇço e reconduÇço do sistema imune em tempo real |
| WO2012140636A1 (en) | 2011-04-11 | 2012-10-18 | Alimentary Health Limited | A probiotic formulation |
| WO2012142605A1 (en) | 2011-04-15 | 2012-10-18 | Samaritan Health Services | Rapid recolonization deployment agent |
| KR20140053887A (ko) | 2011-04-20 | 2014-05-08 | 미코 바이오, 인크. | 면역 반응을 증진시키는 조성물 및 방법 |
| US9567361B2 (en) | 2011-05-13 | 2017-02-14 | Glycosyn LLC | Use of purified 2′-fucosyllactose, 3-fucosyllactose and lactodifucotetraose as prebiotics |
| KR20120133133A (ko) | 2011-05-30 | 2012-12-10 | 한국 한의학 연구원 | 생약 추출물 또는 이의 유산균 발효물을 포함하는 호흡기 질환의 예방 또는 치료용 조성물 |
| US20140171339A1 (en) | 2011-06-06 | 2014-06-19 | The University Of North Carolina At Chapel Hill | Methods and kits for detecting adenomas, colorectal cancer, and uses thereof |
| GB201110095D0 (en) | 2011-06-15 | 2011-07-27 | Danisco | Method of treatment |
| JP2013005759A (ja) | 2011-06-24 | 2013-01-10 | Kyodo Milk Industry Co Ltd | マウス腸内菌叢の推測方法 |
| JP6222626B2 (ja) | 2011-07-07 | 2017-11-01 | 長岡香料株式会社 | フルクトース吸収阻害剤 |
| GB201112091D0 (en) | 2011-07-14 | 2011-08-31 | Gt Biolog Ltd | Bacterial strains isolated from pigs |
| WO2013008102A2 (en) | 2011-07-14 | 2013-01-17 | R.E.D. Laboratories N.V../ S.A. | Methods and compositions for evaluating and/or treating chronic immune diseases |
| US20130022575A1 (en) | 2011-07-19 | 2013-01-24 | Microbial Rx | Systems and methods of replacing intestinal flora |
| CN102304483A (zh) | 2011-08-12 | 2012-01-04 | 北京金泰得生物科技股份有限公司 | 一株饲用屎肠球菌及其应用 |
| KR101261872B1 (ko) | 2011-08-23 | 2013-05-14 | 대한민국 (식품의약품안전처장) | 장내 미생물 효소복합체 및 이의 제조방법 |
| ES2662793T3 (es) | 2011-09-14 | 2018-04-09 | Nubiyota Llc | Complementos de medio y métodos para cultivar microorganismos anaerobios gastrointestinales humanos |
| GB201117313D0 (en) | 2011-10-07 | 2011-11-16 | Gt Biolog Ltd | Bacterium for use in medicine |
| WO2013053836A1 (en) | 2011-10-11 | 2013-04-18 | Quantum Pharmaceuticals Sa | Composition comprising anaerobically cultivated human intestinal microbiota |
| CN103082292B (zh) | 2011-11-02 | 2015-03-04 | 深圳华大基因研究院 | 罗斯氏菌(Roseburia)在治疗和预防肥胖相关疾病中的应用 |
| CN102373172B (zh) | 2011-11-03 | 2013-03-20 | 北京龙科方舟生物工程技术有限公司 | 一株屎肠球菌及其应用 |
| JP6306507B2 (ja) | 2011-12-01 | 2018-04-18 | 国立大学法人 東京大学 | 制御性t細胞の増殖または集積を誘導するヒト由来細菌 |
| JP2013119546A (ja) | 2011-12-09 | 2013-06-17 | Meiji Co Ltd | 不安及び/又は多動性の改善剤 |
| ES2408279B1 (es) | 2011-12-15 | 2014-09-09 | Universidad De Las Palmas De Gran Canaria | Bacteria acido láctica probiótica |
| ITBG20120010A1 (it) | 2012-02-24 | 2013-08-25 | Milano Politecnico | Dispositivo per l'addestramento chirurgico |
| ITMI20120471A1 (it) | 2012-03-26 | 2013-09-27 | Giovanni Mogna | Composizione a base di ceppi di batteri bifidobacterium longum in grado di aiutare il prolungamento della vita |
| JP5792105B2 (ja) | 2012-03-27 | 2015-10-07 | 森永乳業株式会社 | ラクト−n−ビオースiの製造方法 |
| WO2013146319A1 (ja) | 2012-03-30 | 2013-10-03 | 味の素株式会社 | 糖尿病誘起細菌 |
| US20130280724A1 (en) | 2012-04-11 | 2013-10-24 | Nestec Sa | Methods for diagnosing impending diarrhea |
| GB201206599D0 (en) | 2012-04-13 | 2012-05-30 | Univ Manchester | Probiotic bacteria |
| US20150265661A1 (en) | 2012-04-13 | 2015-09-24 | Trustees Of Boston College | Prebiotic effect of sialyllactose |
| EP3686284A1 (en) | 2012-05-18 | 2020-07-29 | Genome Research Limited | Methods and groups |
| ES2436251B1 (es) | 2012-05-25 | 2014-10-08 | Consejo Superior De Investigaciones Científicas (Csic) | Bacteroides cect 7771 y su uso en la prevención y tratamiento de sobrepeso, obesidad y alteraciones metabólicas e inmunológicas. |
| CA2875681A1 (en) | 2012-06-04 | 2013-12-12 | Gaurav Agrawal | Compositions and methods for treating crohn's disease and related conditions and infections |
| CN102743420A (zh) | 2012-06-06 | 2012-10-24 | 上海交通大学 | 改善肠道菌群结构的方法及应用 |
| WO2014001368A1 (en) | 2012-06-25 | 2014-01-03 | Orega Biotech | Il-17 antagonist antibodies |
| CA2877811C (en) | 2012-07-31 | 2019-07-23 | Nestec S.A. | Nutritional composition for promoting musculoskeletal health in patients with inflammatory bowel disease (ibd) |
| US20150211053A1 (en) | 2012-08-01 | 2015-07-30 | Bgi-Shenzhen | Biomarkers for diabetes and usages thereof |
| CN104768560A (zh) | 2012-08-29 | 2015-07-08 | 加州理工学院 | 孤独症谱系障碍的诊断和治疗 |
| HK1212222A1 (en) | 2012-08-29 | 2016-06-10 | Salix Pharmaceuticals, Inc. | Laxative compositions and methods for treating constipation and related gastrointestinal diseases and conditions |
| EP2894985A4 (en) | 2012-09-13 | 2016-09-28 | Massachusetts Inst Technology | PROGRAMMABLE ACTIVE COMPOUND PROFILES OF TUMORED BACTERIA |
| KR101473058B1 (ko) | 2012-09-19 | 2014-12-16 | 주식회사 쎌바이오텍 | 과민성 대장 증후군 예방 또는 치료용 조성물 |
| CN103652322B (zh) | 2012-09-21 | 2016-02-10 | 临沂思科生物科技有限公司 | 一种含乳酸菌的复合益生菌饲料添加剂的制备方法 |
| US20150299776A1 (en) | 2012-10-03 | 2015-10-22 | Metabogen Ab | Identification of a Person having Risk for Atherosclerosis and Associated Disease by the Person's Gut Microbiome and the Prevention of such Diseases |
| FR2997091B1 (fr) | 2012-10-22 | 2016-05-06 | Fond Mediterranee Infection | Utilisation d'un compose antioxydant pour la culture de bacteries sensibles a la tension en oxygene |
| US20150290140A1 (en) | 2012-10-30 | 2015-10-15 | Nestec S.A. | Compositions comprising microparticles and probiotics to deliver a synergistic immune effect |
| US9839657B2 (en) | 2012-10-30 | 2017-12-12 | Deerland Enzymes, Inc. | Prebiotic compositions comprising one or more types of bacteriophage |
| AU2013338774B2 (en) | 2012-11-01 | 2017-03-02 | Academisch Ziekenhuis Groningen | Methods and compositions for stimulating beneficial bacteria in the gastrointestinal tract |
| WO2014075745A1 (en) | 2012-11-19 | 2014-05-22 | Université Catholique de Louvain | Use of akkermansia for treating metabolic disorders |
| EP4233545A3 (en) | 2012-11-23 | 2023-10-18 | Seres Therapeutics, Inc. | Synergistic bacterial compositions and methods of production and use thereof |
| US8906668B2 (en) | 2012-11-23 | 2014-12-09 | Seres Health, Inc. | Synergistic bacterial compositions and methods of production and use thereof |
| KR20150103012A (ko) | 2012-11-26 | 2015-09-09 | 토마스 줄리어스 보로디 | 분변 마이크로바이오타 복원을 위한 조성물 및 이의 제조 및 사용 방법 |
| CN105209621B (zh) | 2012-12-12 | 2021-05-25 | 布罗德研究所有限公司 | 对用于序列操纵的改进的系统、方法和酶组合物进行的工程化和优化 |
| EP4299741A3 (en) | 2012-12-12 | 2024-02-28 | The Broad Institute, Inc. | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
| EP2931898B1 (en) | 2012-12-12 | 2016-03-09 | The Broad Institute, Inc. | Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains |
| US20140193464A1 (en) | 2013-01-08 | 2014-07-10 | Imagilin Technology, Llc | Effects of probiotics on humans and animals under environmental or biological changes |
| HK1218559A1 (zh) | 2013-02-04 | 2017-02-24 | Seres Therapeutics, Inc. | 抑制致病细菌生长的配方和方法 |
| HK1218560A1 (zh) | 2013-02-04 | 2017-02-24 | Seres Therapeutics, Inc. | 组成与方法 |
| WO2014130540A1 (en) | 2013-02-22 | 2014-08-28 | The Regents Of The University Of California | Compositions and methods for promoting growth of beneficial microbes to treat or prevent disease or prolong life |
| MX2015011700A (es) | 2013-03-05 | 2016-07-20 | Univ Groningen | Uso de la bacteria faecalibacterium prausnitzii htf-f (dsm 26943) para suprimir la inflamacion. |
| CA2904389C (en) | 2013-03-14 | 2018-09-18 | Jerome J. Schentag | Targeted gastrointestinal tract delivery of probiotic organisms and/or therapeutic agents |
| WO2014153194A2 (en) | 2013-03-14 | 2014-09-25 | Seres Health, Inc. | Methods for pathogen detection and enrichment from materials and compositions |
| US9669059B2 (en) | 2013-03-15 | 2017-06-06 | University Of Florida Research Foundation, Incorporated | Butyrogenic bacteria as probiotics to treat clostridium difficile |
| HK1220326A1 (zh) | 2013-03-15 | 2017-05-05 | Seres Therapeutics, Inc. | 基於网络微生物组成和方法 |
| CN103156888A (zh) | 2013-03-18 | 2013-06-19 | 广州知光生物科技有限公司 | 脆弱拟杆菌在制备治疗炎症性肠病组合物中的应用 |
| CN103142656A (zh) | 2013-03-18 | 2013-06-12 | 广州知光生物科技有限公司 | 脆弱拟杆菌在制备防治结肠癌组合物中的应用 |
| CN103146620A (zh) | 2013-03-25 | 2013-06-12 | 广州知光生物科技有限公司 | 具有益生菌特性的脆弱拟杆菌 |
| JP2014196260A (ja) | 2013-03-29 | 2014-10-16 | 公立大学法人奈良県立医科大学 | 慢性閉塞性肺疾患の予防又は治療用組成物 |
| GB201306536D0 (en) | 2013-04-10 | 2013-05-22 | Gt Biolog Ltd | Polypeptide and immune modulation |
| EP2994161B1 (en) | 2013-05-10 | 2020-10-28 | California Institute of Technology | Probiotic prevention and treatment of colon cancer |
| US9511099B2 (en) | 2013-06-05 | 2016-12-06 | Rebiotix, Inc. | Microbiota restoration therapy (MRT), compositions and methods of manufacture |
| PT3003330T (pt) | 2013-06-05 | 2018-10-10 | Rebiotix Inc | Terapêutica da restauração da microbiota (trm), composições e processos de fabrico |
| WO2014201037A2 (en) | 2013-06-10 | 2014-12-18 | New York University | Methods for manipulating immune responses by altering microbiota |
| WO2014200334A1 (en) | 2013-06-14 | 2014-12-18 | N.V. Nutricia | Synbiotic composition for treatment of infections in allergic patients |
| WO2015003001A1 (en) | 2013-07-01 | 2015-01-08 | The Washington University | Methods for identifying supplements that increase gut colonization by an isolated bacterial species, and compositions derived therefrom |
| WO2015003305A1 (zh) | 2013-07-08 | 2015-01-15 | 吉瑞高新科技股份有限公司 | 电子烟盒 |
| EP3019181A4 (en) | 2013-07-09 | 2016-09-21 | Puretech Ventures Llc | COMPOSITIONS WITH COMBINATIONS OF BIOACTIVE MOLECULARS DERIVED FROM MICROBOTS FOR TREATING DISEASES |
| GB2535034A (en) | 2013-07-21 | 2016-08-10 | Whole Biome Inc | Methods and systems for microbiome characterization, monitoring and treatment |
| US20160192689A1 (en) | 2013-07-31 | 2016-07-07 | Wikifoods, Inc. | Encapsulated functional food compositions |
| CN105658226B (zh) | 2013-08-16 | 2019-05-14 | 港大科桥有限公司 | 使用益生菌治疗癌症的方法和组合物 |
| CN103509741B (zh) | 2013-08-22 | 2015-02-18 | 河北农业大学 | 布劳特菌auh-jld56及其在牛蒡苷元转化中的应用 |
| WO2015038731A1 (en) | 2013-09-12 | 2015-03-19 | The Johns Hopkins University | Biofilm formation to define risk for colon cancer |
| CA2962736C (en) | 2013-10-18 | 2021-08-31 | Innovachildfood Ab | A nutritionally balanced composite meal for infants and small children and a method of producing said meal |
| PL229020B1 (pl) | 2013-11-13 | 2018-05-30 | Inst Biotechnologii Surowic I Szczepionek Biomed Spolka Akcyjna | Nowy szczep Bifidobacterium breve |
| PT3074027T (pt) | 2013-11-25 | 2025-03-20 | Nestle Sa | Composições bacterianas sinérgicas e métodos de produção e utilização das mesmas |
| EP3082431A4 (en) | 2013-12-16 | 2017-11-15 | Seres Therapeutics, Inc. | Bacterial compositions and methods of use thereof for treatment of immune system disorders |
| CN103981115B (zh) | 2013-12-24 | 2018-10-26 | 北京大伟嘉生物技术股份有限公司 | 一株高抗逆性屎肠球菌及其应用 |
| CN103981117B (zh) | 2013-12-24 | 2018-10-26 | 北京大伟嘉生物技术股份有限公司 | 一株高抗逆性屎肠球菌及其培养方法和应用 |
| CN103820363B (zh) | 2014-01-27 | 2016-02-24 | 福建省农业科学院生物技术研究所 | 一种屎肠球菌菌粉的制备与应用 |
| CN103865846B (zh) | 2014-02-27 | 2016-03-30 | 扬州绿保生物科技有限公司 | 一种屎肠球菌及其制备方法 |
| CN103849590B (zh) | 2014-03-25 | 2016-07-06 | 上海交通大学 | 一株耐酸短双歧杆菌BB8dpH及其应用 |
| KR101683474B1 (ko) | 2014-03-26 | 2016-12-08 | 주식회사 쎌바이오텍 | 과민성 대장 증후군 예방 또는 치료용 조성물 |
| US9783858B2 (en) | 2014-04-02 | 2017-10-10 | Northwestern University | Altered microbiome of chronic pelvic pain |
| KR101583546B1 (ko) | 2014-04-09 | 2016-01-11 | 국립암센터 | 유전자 다형성을 이용한 소라페닙 치료에 대한 반응성 예측방법 |
| EP3129035B1 (en) | 2014-04-10 | 2024-09-18 | Riken | Compositions and methods for induction of th17 cells |
| CN104195075B (zh) | 2014-08-14 | 2017-04-19 | 生合生物科技股份有限公司 | 一种屎肠球菌ef08及包含它的饲料添加物和饲料 |
| WO2015168534A1 (en) | 2014-05-02 | 2015-11-05 | Novogy, Inc. | Therapeutic treatment of gastrointestinal microbial imbalances through competitive microbe displacement |
| SG11201608835VA (en) | 2014-05-08 | 2016-11-29 | Panoptes Pharma Ges M B H | Compounds for treating ophthalmic diseases and disorders |
| WO2016019506A1 (en) | 2014-08-05 | 2016-02-11 | BGI Shenzhen Co.,Limited | Use of eubacterium in the prevention and treatment for colorectal cancer related diseases |
| WO2016033439A2 (en) | 2014-08-28 | 2016-03-03 | Yale University | Compositions and methods for the treating an inflammatory disease or disorder |
| DK3194567T3 (da) * | 2014-08-29 | 2020-01-13 | Chr Hansen As | Probiotiske Bifidobacterium adolescentis-stammer |
| US20160058808A1 (en) | 2014-09-03 | 2016-03-03 | California Institute Of Technology | Microbe-based modulation of serotonin biosynthesis |
| CN104546934B (zh) | 2014-09-30 | 2019-04-09 | 深圳华大基因科技有限公司 | 粪副拟杆菌在治疗或预防类风湿性关节炎或其相关疾病中的应用 |
| CN104546942A (zh) | 2014-09-30 | 2015-04-29 | 深圳华大基因科技有限公司 | 多氏拟杆菌在治疗或预防类风湿性关节炎或其相关疾病中的应用 |
| CN104546940A (zh) | 2014-09-30 | 2015-04-29 | 深圳华大基因科技有限公司 | 平常拟杆菌在治疗或预防类风湿性关节炎或其相关疾病中的应用 |
| CN104546932A (zh) | 2014-09-30 | 2015-04-29 | 深圳华大基因科技有限公司 | 卵形拟杆菌在治疗或预防类风湿性关节炎或其相关疾病中的应用 |
| CN104546935A (zh) | 2014-09-30 | 2015-04-29 | 深圳华大基因科技有限公司 | 多形拟杆菌在治疗或预防类风湿性关节炎或其相关疾病中的应用 |
| CN104546933A (zh) | 2014-09-30 | 2015-04-29 | 深圳华大基因科技有限公司 | 粪拟杆菌在治疗或预防类风湿性关节炎或其相关疾病中的应用 |
| WO2016057671A1 (en) | 2014-10-07 | 2016-04-14 | University Of Virginia Patent Foundation | Compositions and methods for preventing and treating infection |
| WO2016065324A1 (en) | 2014-10-24 | 2016-04-28 | Evolve Biosystems Inc. | Activated bifidobacteria and methods of use thereof |
| EP3212207A4 (en) | 2014-10-30 | 2018-06-13 | California Institute of Technology | Compositions and methods comprising bacteria for improving behavior in neurodevelopmental disorders |
| AU2015339290B8 (en) | 2014-10-30 | 2021-08-26 | California Institute Of Technology | Compositions and methods comprising bacteria for improving behavior in neurodevelopmental disorders |
| EP4529950A3 (en) | 2014-10-31 | 2025-08-20 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment |
| CN104435000A (zh) | 2014-11-12 | 2015-03-25 | 江南大学 | 乳酸菌对支气管哮喘治疗中的应用 |
| DK3223835T3 (en) | 2014-11-25 | 2025-02-17 | Memorial Sloan Kettering Cancer Center | Intestinal microbiota and gvhd |
| CA2970234A1 (en) | 2014-12-23 | 2016-06-30 | 4D Pharma Research Limited | Pirin polypeptide and immune modulation |
| EA202090948A1 (ru) | 2014-12-23 | 2020-11-30 | 4Д Фарма Рисерч Лимитед | Иммуномодуляция |
| CN104560820B (zh) | 2014-12-30 | 2017-10-20 | 杭州师范大学 | 屎肠球菌kq2.6及应用 |
| MX387817B (es) | 2015-01-23 | 2025-03-11 | Univ Temple | Uso de acidos grasos de cadena corta en prevencion de cancer. |
| CN105982919A (zh) | 2015-02-26 | 2016-10-05 | 王汉成 | 生物减速剂抗癌技术 |
| WO2016139217A1 (en) | 2015-03-04 | 2016-09-09 | Ab-Biotics, S.A. | Composition comprising anaerobically cultivated human intestinal microbiota |
| SG11201707657UA (en) | 2015-03-18 | 2017-10-30 | Whole Biome Inc | Methods and compositions relating to microbial treatment and diagnosis of skin disorders |
| US20180078587A1 (en) | 2015-03-18 | 2018-03-22 | Trustees Of Tufts College | Compositions and methods for preventing colorectal cancer |
| RU2017134547A (ru) * | 2015-04-23 | 2019-04-09 | Калейдо Байосайенсиз, Инк. | Регуляторы микробиома и соответствующие варианты их применения |
| US20160339065A1 (en) * | 2015-05-22 | 2016-11-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods for Treating Autism Spectrum Disorder and Associated Symptoms |
| KR20240059639A (ko) | 2015-06-01 | 2024-05-07 | 더 유니버서티 오브 시카고 | 공생 미생물총의 조작에 의한 암의 치료 |
| MA55434B1 (fr) | 2015-06-15 | 2022-02-28 | 4D Pharma Res Ltd | Compositions comprenant des souches bactériennes |
| PT3307288T (pt) | 2015-06-15 | 2019-10-17 | 4D Pharma Res Ltd | Composições compreendendo estirpes bacterianas |
| MA41010B1 (fr) | 2015-06-15 | 2020-01-31 | 4D Pharma Res Ltd | Compositions comprenant des souches bactériennes |
| MA41060B1 (fr) | 2015-06-15 | 2019-11-29 | 4D Pharma Res Ltd | Compositions comprenant des souches bactériennes |
| CN105012350B (zh) * | 2015-08-06 | 2018-09-25 | 温州医科大学 | 益生菌丁酸梭菌菌株 |
| CN105112333A (zh) | 2015-08-31 | 2015-12-02 | 江南大学 | 一种具有良好肠道定殖能力的长双歧杆菌及筛选方法和应用 |
| GB201520497D0 (en) | 2015-11-20 | 2016-01-06 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
| BR112018010089A2 (pt) | 2015-11-20 | 2018-11-13 | 4D Pharma Res Ltd | composições compreendendo cepas bacterianas |
| GB201520631D0 (en) | 2015-11-23 | 2016-01-06 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
| GB201520638D0 (en) | 2015-11-23 | 2016-01-06 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
| AU2016361583B2 (en) | 2015-11-25 | 2021-05-13 | Memorial Sloan-Kettering Cancer Center | Methods and compositions for reducing vancomycin-resistant enterococci infection or colonization |
| JP6675752B2 (ja) | 2016-02-23 | 2020-04-01 | 国立大学法人佐賀大学 | 腸内Blautia coccoides増殖刺激剤 |
| EP3429604A1 (en) | 2016-03-14 | 2019-01-23 | Holobiome, Inc. | Modulation of the gut microbiome to treat mental disorders or diseases of the central nervous system |
| TW201821093A (zh) | 2016-07-13 | 2018-06-16 | 英商4D製藥有限公司 | 包含細菌菌株之組合物 |
| GB201621123D0 (en) | 2016-12-12 | 2017-01-25 | 4D Pharma Plc | Compositions comprising bacterial strains |
| WO2018112363A1 (en) | 2016-12-16 | 2018-06-21 | Evelo Biosciences, Inc. | Methods of treating cancer using parabacteroides |
| WO2018112365A2 (en) | 2016-12-16 | 2018-06-21 | Evelo Biosciences, Inc. | Methods of treating colorectal cancer and melanoma using parabacteroides goldsteinii |
| CA3058943C (en) * | 2017-04-03 | 2023-10-17 | Gusto Global, Llc | Rational design of microbial-based biotherapeutics |
| HUE054164T2 (hu) * | 2017-05-22 | 2021-08-30 | 4D Pharma Res Ltd | Baktériumtörzseket tartalmazó készítmények |
| WO2018215782A1 (en) | 2017-05-24 | 2018-11-29 | 4D Pharma Research Limited | Compositions comprising bacterial strain |
| CN111356464A (zh) | 2017-07-05 | 2020-06-30 | 伊夫罗生物科学公司 | 使用动物双歧杆菌乳亚种治疗癌症的组合物及方法 |
| SG11202100228XA (en) * | 2018-07-16 | 2021-02-25 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
-
2018
- 2018-05-22 HU HUE18727408A patent/HUE054164T2/hu unknown
- 2018-05-22 TW TW107117439A patent/TWI787272B/zh not_active IP Right Cessation
- 2018-05-22 RS RS20210627A patent/RS61872B1/sr unknown
- 2018-05-22 JP JP2019563457A patent/JP7221538B2/ja active Active
- 2018-05-22 PL PL18727408T patent/PL3630136T3/pl unknown
- 2018-05-22 ES ES18727411T patent/ES2955870T3/es active Active
- 2018-05-22 HR HRP20210780TT patent/HRP20210780T1/hr unknown
- 2018-05-22 WO PCT/GB2018/051386 patent/WO2018215757A1/en not_active Ceased
- 2018-05-22 CN CN201880046299.0A patent/CN110913878A/zh active Pending
- 2018-05-22 ES ES18727408T patent/ES2877726T3/es active Active
- 2018-05-22 AU AU2018272291A patent/AU2018272291A1/en not_active Abandoned
- 2018-05-22 KR KR1020197037538A patent/KR20200019882A/ko not_active Ceased
- 2018-05-22 WO PCT/GB2018/051389 patent/WO2018215758A1/en not_active Ceased
- 2018-05-22 MD MDE20200313T patent/MD3630136T2/ro not_active IP Right Cessation
- 2018-05-22 SI SI201830283T patent/SI3630136T1/sl unknown
- 2018-05-22 MA MA48939A patent/MA48939B1/fr unknown
- 2018-05-22 EP EP18727413.9A patent/EP3630139A1/en active Pending
- 2018-05-22 TW TW107117436A patent/TW201907928A/zh unknown
- 2018-05-22 EP EP18727408.9A patent/EP3630136B1/en active Active
- 2018-05-22 EP EP18727411.3A patent/EP3630137B1/en active Active
- 2018-05-22 MA MA048940A patent/MA48940A/fr unknown
- 2018-05-22 JP JP2019563398A patent/JP2020520911A/ja active Pending
- 2018-05-22 MA MA048941A patent/MA48941A/fr unknown
- 2018-05-22 LT LTEP18727408.9T patent/LT3630136T/lt unknown
- 2018-05-22 PT PT187274089T patent/PT3630136T/pt unknown
- 2018-05-22 CA CA3064171A patent/CA3064171A1/en active Pending
- 2018-05-22 WO PCT/GB2018/051391 patent/WO2018215760A1/en not_active Ceased
- 2018-05-22 TW TW107117437A patent/TW201907929A/zh unknown
- 2018-05-22 SM SM20210420T patent/SMT202100420T1/it unknown
- 2018-05-22 JP JP2019563363A patent/JP7212945B2/ja active Active
- 2018-05-22 DK DK18727408.9T patent/DK3630136T3/da active
-
2019
- 2019-11-21 US US16/691,439 patent/US11382936B2/en active Active
- 2019-11-21 US US16/691,169 patent/US11123378B2/en not_active Expired - Fee Related
- 2019-11-22 US US16/692,667 patent/US11376284B2/en active Active
-
2021
- 2021-06-14 CY CY20211100527T patent/CY1124286T1/el unknown
- 2021-07-22 US US17/382,426 patent/US20220016184A1/en not_active Abandoned
- 2021-11-19 US US17/530,517 patent/US20220184145A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015033305A1 (en) * | 2013-09-06 | 2015-03-12 | Sofar S.P.A. | Use of a composition comprising microorganisms to increase the intestinal production of butyric acid, folic acid or niacin and/or decrease the intestinal production of succinic acid |
| US20160143961A1 (en) * | 2014-11-25 | 2016-05-26 | Epiva Biosciences, Inc. | Probiotic and prebiotic compositions, and methods of use thereof for treatment and prevention of graft versus host disease |
| WO2016203218A1 (en) * | 2015-06-15 | 2016-12-22 | 4D Pharma Research Limited | Compositions comprising bacterial strains |
| WO2017148596A1 (en) * | 2016-03-04 | 2017-09-08 | 4D Pharma Plc | Compositions comprising bacterial blautia strains for treating visceral hypersensitivity |
Non-Patent Citations (2)
| Title |
|---|
| BHARGAVA PAVAN ET AL: "Gut Microbiome and Multiple Sclerosis", CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, PHILADELPHIA, PA. : CURRENT SCIENCE INC, US, vol. 14, no. 10, 10 September 2014 (2014-09-10), pages 1 - 8, XP035394087, ISSN: 1528-4042, [retrieved on 20140910], DOI: 10.1007/S11910-014-0492-2 * |
| C. LIU ET AL: "Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 58, no. 8, 1 August 2008 (2008-08-01), pages 1896 - 1902, XP055005236, ISSN: 1466-5026, DOI: 10.1099/ijs.0.65208-0 * |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11382936B2 (en) | Compositions comprising bacterial strains | |
| US10898526B2 (en) | Compositions comprising bacterial strains | |
| JP7160333B2 (ja) | 細菌株を含む組成物 | |
| HK1246670A1 (en) | Compositions comprising bacterial blautia strains for treating visceral hypersensitivity | |
| US20230302062A1 (en) | Compositions comprising bacterial strains | |
| US11224620B2 (en) | Compositions comprising bacterial strains | |
| JP2022525394A (ja) | 細菌株を含む組成物 | |
| HK40011505A (en) | Compositions comprising bacterial blautia strains for treating visceral hypersensitivity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18727413 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019563363 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2018727413 Country of ref document: EP Effective date: 20200102 |