WO2018207728A1 - ポリアミド微粒子の製造方法およびポリアミド微粒子 - Google Patents

ポリアミド微粒子の製造方法およびポリアミド微粒子 Download PDF

Info

Publication number
WO2018207728A1
WO2018207728A1 PCT/JP2018/017616 JP2018017616W WO2018207728A1 WO 2018207728 A1 WO2018207728 A1 WO 2018207728A1 JP 2018017616 W JP2018017616 W JP 2018017616W WO 2018207728 A1 WO2018207728 A1 WO 2018207728A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
fine particles
polymer
polymerization
polyamide fine
Prior art date
Application number
PCT/JP2018/017616
Other languages
English (en)
French (fr)
Other versions
WO2018207728A9 (ja
Inventor
浅野到
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201880030995.2A priority Critical patent/CN110612320B/zh
Priority to KR1020197029952A priority patent/KR102538062B1/ko
Priority to US16/606,837 priority patent/US11485822B2/en
Priority to JP2018525495A priority patent/JP6558498B2/ja
Priority to RU2019140599A priority patent/RU2771710C2/ru
Priority to EP18798029.7A priority patent/EP3623411A4/en
Publication of WO2018207728A1 publication Critical patent/WO2018207728A1/ja
Publication of WO2018207728A9 publication Critical patent/WO2018207728A9/ja
Priority to US17/955,169 priority patent/US11807717B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/325Polymers modified by chemical after-treatment with inorganic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/46Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing polyamide fine particles by a simple method and a polyamide fine particle comprising a polyamide having a high crystallization temperature, a smooth surface, a narrow particle size distribution, and a high sphericity.
  • Polyamide fine particles are used for various applications such as powder coatings, taking advantage of the characteristics of high toughness, flexibility and high heat resistance.
  • the solid and smooth surface polyamide 12 fine particles made of polyamide 12 and having no pores in the inside give a good touch feeling derived from the smooth surface shape in addition to the flexibility of the resin itself. It is possible and used for high quality cosmetics and paint applications.
  • polyamide resins having higher crystallization temperatures such as polyamide 6 and polyamide 66, have higher versatility and melting point than polyamide 12, and may be widely used for higher heat resistance applications. Porous fine particles and fine particles with a wide particle size distribution are produced.
  • polyamide 6 fine particles for example, there is a method in which a polyamide 6 is dissolved in a solvent and then a non-solvent and water are added to produce porous polyamide 6 fine particles (Patent Documents 1 and 2). Further, there are a method in which polyamide is strongly stirred in a medium such as polyethylene glycol at a temperature higher than the melting point, and a method in which a polyamide raw material is subjected to a polycondensation reaction in a silicone oil medium (Patent Documents 3 and 4). As another method, an anionic polymerization is performed in a paraffin medium to provide amorphous polyamide 6 fine particles (Patent Document 5).
  • Patent Document 6 JP 2002-80629 A JP 2010-053272 A JP 60-040134 A JP 10-316750 A JP 61-181826 A Japanese Patent Application Laid-Open No. 08-073602
  • Patent Documents 1 and 2 reduce the solubility in a solvent and precipitate polyamide, so that porous fine particles are produced.
  • An object of the present invention is to obtain a polyamide fine particle having a high method of producing polyamide fine particles by a simple method, and further comprising a polyamide having a high crystallization temperature, a smooth surface, a narrow particle size distribution, and a high sphericity.
  • the method for producing polyamide fine particles of the present invention has the following constitution. That is, A method for producing polyamide fine particles by polymerizing a polyamide monomer (A) in the presence of the polymer (B) at a temperature equal to or higher than the crystallization temperature of the obtained polyamide, A method for producing polyamide fine particles in which a polymer (B) is uniformly dissolved and polyamide fine particles are precipitated after polymerization.
  • the polyamide fine particles of the present invention have the following configuration. That is, Polyamide fine particles having a number average particle size of 0.1 to 100 ⁇ m, a sphericity of 90 or more, a particle size distribution index of 3.0 or less, a linseed oil absorption of 100 mL / 100 g or less, and a crystallization temperature of 150 ° C. or more, It is.
  • polyamide fine particles of the present invention it is preferable to produce polyamide fine particles in the presence of a solvent (C) of the monomer (A) and the polymer (B).
  • the square of the solubility parameter difference between the monomer (A) and the polymer (B) is 0.1 to 25, and the square of the solubility parameter difference between the polyamide and the polymer (B) is 0.
  • a range of 1 to 16 is preferable.
  • the solvent (C) is preferably water.
  • the polymer (B) preferably has no polar group or has one selected from a hydroxyl group and a hydroxyl group.
  • the polymer (B) is preferably polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol-polypropylene glycol copolymer, and alkyl ethers thereof.
  • the molecular weight of the polymer (B) is preferably 500 to 500,000.
  • the polyamide constituting the polyamide fine particles is preferably any one selected from polyamide 6, polyamide 66, and copolymers thereof.
  • the polyamide constituting the polyamide fine particles preferably has a weight average molecular weight of 8,000 or more.
  • the production method of the present invention it is possible to produce a polyamide having a high crystallization temperature as a fine sphere with a spherical shape and a smooth surface by a safe and simple method.
  • the polyamide fine particles have a spherical and smooth surface with a narrow particle size distribution, and thus have a slippery property.
  • the heat resistance derived from a high crystallization temperature, a spherical and smooth surface form, and a uniform particle diameter can be applied to highly functional paints such as severe conditions that cannot be used conventionally.
  • the amide group concentration in the polyamide is increased, so that the moisture retention is increased, and it is possible to achieve both a smooth and uniform feel and a moist feeling due to the true spherical shape and uniform particle size.
  • FIG. 2 is a scanning electron micrograph of polyamide fine particles obtained in Example 1.
  • FIG. 3 is a scanning electron micrograph of polyamide fine particles obtained in Example 2.
  • FIG. 2 is a scanning electron micrograph of polyamide fine particles obtained in Example 8.
  • FIG. 2 is a scanning electron micrograph of polyamide fine particles obtained in Example 10.
  • FIG. 4 is a scanning electron micrograph of polyamide fine particles obtained in Comparative Example 3.
  • the present invention produces polyamide fine particles by polymerizing a polyamide monomer (A) in the presence of the polymer (B) at a temperature higher than the crystallization temperature of the polyamide obtained by polymerizing the monomer (A).
  • the polyamide monomer (A) and the polymer (B) are uniformly dissolved at the start of polymerization, and the polyamide fine particles are precipitated after the polymerization.
  • a polyamide having a high melting point and a higher melting point is also characterized by the fact that polyamide particles can be obtained that are spherical, smooth, fine and have a narrow particle size distribution.
  • the polyamide monomer (A) at the start of polymerization is uniformly dissolved in the polymer (B) may be confirmed by visual observation that the reaction vessel is a transparent solution. When it is in a state of being separated into a suspension or two phases at the start of polymerization, it indicates that the polyamide monomer (A) and the polymer (B) are incompatible with each other. Become. In this case, polymerization may be started after the solvent (C) is further used to homogenize the polyamide monomer (A) and the polymer (B). Whether or not the polyamide fine particles are precipitated after the polymerization may be confirmed by visual observation that the reaction tank is a suspension. A homogeneous solution at the end of the polymerization indicates that the polyamide and the polymer (B) are uniformly compatible, and aggregates and porous fine particles are formed by cooling or the like.
  • the polyamide constituting the polyamide fine particles of the present invention refers to a polymer having a structure containing an amide group, and includes a polycondensation reaction of amino acids as polyamide monomers (A), anionic ring-opening polymerization using lactams and an initiator, cation It is produced by ring-opening polymerization or ring-opening polymerization after hydrolysis with water, polycondensation reaction of dicarboxylic acid and diamine, or salts thereof.
  • lactams a uniform solution with the monomer (A) or the polymer (B) is not formed by the initiator, and the initiator is ignitable, so that it is easy to obtain true spherical and smooth polyamide particles.
  • polyamide monomer (A) used as a raw material for the polyamide fine particles in the production method of the present invention include amino acids such as aminohexanoic acid, aminoundecanoic acid, aminododecanoic acid, paramethylbenzoic acid, and ⁇ -caprolactam.
  • Lactams such as lauric acid, oxalic acid, succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 1, Dicarboxylic acids such as 3-cyclohexanedicarboxylic acid and ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decanediamine, From diamines such as decanediamine, dodecanediamine, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane and 3,3'-dimethyl-4,
  • Two or more of these monomers (A) may be used as long as they do not impair the present invention, and other monomers capable of copolymerization may be included.
  • Aminohexanoic acid, ⁇ -caprolactam, hexamethylenediamine, and the like are obtained because the solubility of the monomer (A) and the polymer (B) is improved and the resulting polyamide fine particles have a fine particle size and a narrow particle size distribution.
  • Adipic acid is preferred, aminohexanoic acid and ⁇ -caprolactam are more preferred, and ⁇ -caprolactam is most preferred.
  • polyamide produced by polymerizing the monomer (A) include polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polytetramethylene adipamide ( Polyamide 46), polytetramethylene sebacamide (polyamide 410), polypentamethylene adipamide (polyamide 56), polypentamethylene sebacamide (polyamide 510), polyhexamethylene sebacamide (polyamide 610), polyhexa Methylenedodecanamide (polyamide 612), polydecane methylene adipamide (polyamide 106), polydodecamethylene adipamide (polyamide 126), polydecane methylene sebamide (polyamide 1010), liundecanamide (polyamide 11), poly Dodecamide (Polyamide) 12), polyhexamethylene terephthalamide (polyamide 6T), polydecamethylene terephthalamide (polyamide 10T), polycaproamide / poly
  • the crystallization temperature is 150 ° C. or higher. It is preferable that it is any one selected from polyamide 6, polyamide 66 and copolymers thereof.
  • the range of the weight average molecular weight of the polyamide constituting the polyamide fine particles is preferably 8,000 to 3,000,000. From the viewpoint of inducing phase separation with the polymer (B), the weight average molecular weight is more preferably 10,000 or more, further preferably 15,000 or more, and most preferably 20,000 or more. In the present invention, since the viscosity during polymerization depends on the polymer (B), an increase in viscosity due to an increase in the molecular weight of the polyamide is suppressed. Therefore, there is an advantage that the polymerization time of the polyamide can be extended and the molecular weight can be extremely increased.
  • the weight average molecular weight of the polyamide is more preferably 2,000,000 or less. The following is more preferable.
  • the weight average molecular weight of the polyamide constituting the polyamide fine particles indicates a weight average molecular weight obtained by converting the value measured by gel permeation chromatography using hexafluoroisopropanol as a solvent and converted to polymethyl methacrylate.
  • the polymer (B) in the present invention refers to a polymer that dissolves in the polyamide monomer (A) at the start of polymerization but is incompatible with the polyamide after polymerization. Dissolution is judged by whether or not the polymer (B) and the monomer (A) are uniformly dissolved under conditions of temperature and pressure at which polymerization is initiated. The incompatibility between the polymer (B) and the polyamide is determined by whether the polymer (B) is separated into a suspension or two phases under the conditions of temperature and pressure after polymerization. Judgment as to whether the solution is a homogeneous solution, suspension, or two-phase separation can be made by visually checking the reaction vessel.
  • the polymer (B) is preferably non-reactive with the polyamide monomer from the viewpoint of precipitating the polyamide fine particles from a uniform solution.
  • the polymer (B) does not have a polar group that reacts with a carboxyl group or amino group that forms an amide group of polyamide, or has a polar group that has low reactivity with the carboxyl group or amino group.
  • Examples of polar groups that react with carboxyl groups and amino groups include amino groups, carboxyl groups, epoxy groups, and isocyanate groups.
  • Examples of the polar group having low reactivity with a carboxyl group or an amino group include a hydroxyl group and a hydroxyl group. From the viewpoint of suppressing a crosslinking reaction, these have 4 or less polar groups in the polymer (B).
  • the polymer (B) is incompatible with polyamide from the viewpoint of making the fine particles of the polyamide fine and the solubility in the monomer (A) and narrowing the particle size distribution, but it has an affinity. Higher is preferable.
  • the affinity between the monomer (A) / polymer (B) and between the polymer (B) / polyamide is based on the solubility parameters (hereinafter referred to as SP values) of ⁇ A , ⁇ B , ⁇ PA (J 1 / 2 / cm 3/2 ), the square of the solubility parameter difference between the monomer (A) and the polymer (B), that is, ( ⁇ A ⁇ B ) 2 , the polymer (B) and the polyamide
  • the interval can be expressed by the square of the difference in solubility parameter, that is, ( ⁇ PA ⁇ B ) 2 .
  • ( ⁇ A ⁇ B ) 2 preferably satisfies the range of 0.1 to 25.
  • the lower limit of ( ⁇ A ⁇ B ) 2 is more preferably 0.3 or more, further preferably 0.5 or more, and particularly preferably 1 or more.
  • the upper limit of ( ⁇ A ⁇ B ) 2 is more preferably 16 or less, further preferably 12 or less, particularly preferably 10 or less, and most preferably 7 or less.
  • ( ⁇ PA ⁇ B ) 2 preferably satisfies the range of 0.1 to 16.
  • the lower limit of ( ⁇ PA ⁇ B ) 2 is more preferably 0.3 or more, further preferably 0.5 or more, and particularly preferably 1 or more.
  • the upper limit of ( ⁇ PA ⁇ B ) 2 is more preferably 12 or less, further preferably 10 or less, particularly preferably 7 or less, and most preferably 4 or less.
  • the SP value is Properties of Polymers 4th Edition (written by DW Van Krevelen, published by Elsevier Science 2009), Chapter 7 and P215. .
  • a value calculated from the cohesive energy density of Fedors described in the same chapter P195 and the molar molecular volume is shown.
  • the value which added the product of each SP value and molar fraction is shown.
  • polymers (B) include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polypentamethylene glycol, polyhexamethylene glycol, polyethylene glycol-polypropylene glycol copolymer, polyethylene glycol-polytetramethylene glycol. Copolymerization and hydroxyl groups at one end or both ends were blocked with methyl, ethyl, propyl, isopropyl, butyl, hexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl, etc.
  • alkyl ethers examples thereof include alkyl ethers, alkylphenyl ethers blocked with octylphenyl groups, and the like.
  • polyethylene glycol polyethylene glycol-polypropylene glycol copolymer, polypropylene glycol, polytetramethylene glycol, and These alkyl ethers are preferred, and from the standpoint of excellent compatibility with water used as a solvent for ring-opening polymerization by hydrolysis of the polyamide monomer (A) and polyethylene glycol, polyethylene glycol-polypropylene glycol copolymer.
  • a polymer is more preferred, and polyethylene glycol is most preferred. You may use 2 or more types of these simultaneously in the range which does not impair this invention.
  • the weight average molecular weight of the polymer (B) is preferred from the viewpoint of preventing the viscosity of the uniform solution from becoming too high and extremely slowing the polymerization reaction of the polyamide.
  • the upper limit is 500,000, more preferably 100,000 or less, and even more preferably 50,000 or less.
  • the weight average molecular weight of the polymer (B) is preferably 500 or more, more preferably 1,000 or more. Preferably, 2,000 or more is more preferable.
  • the weight average molecular weight of the polymer (B) indicates a weight average molecular weight obtained by converting a value measured by gel permeation chromatography using water as a solvent into polyethylene glycol.
  • the value measured by gel permeation chromatography using tetrahydrofuran as a solvent is a weight average molecular weight converted to polystyrene.
  • the polymerization is started at a temperature higher than the crystallization temperature of the polyamide obtained by polymerizing the monomer (A). Produces fine particles.
  • the polyamide fine particles are homogeneously induced without crystallizing, so that after the polymerization, spheres, surface smoothness, fineness and narrow particle size distribution are obtained. It is considered that polyamide fine particles are precipitated.
  • the mass ratio of the monomer (A) and the polymer (B) when polymerizing is preferably in the range of 5/95 to 80/20.
  • the lower limit of the mass ratio of monomer (A) / polymer (B) is more preferably 10/90, still more preferably 20/80, and most preferably 30/70.
  • the upper limit of the mass ratio of monomer (A) / polymer (B) is more preferably 70/30, further preferably 60/40, and particularly preferably 50/50.
  • a known method can be used as a method for polymerizing the monomer (A) into polyamide.
  • the method depends on the type of monomer (A), but in the case of lactams, anionic ring-opening polymerization using an alkali metal such as sodium or potassium or an organometallic compound such as butyllithium or butylmagnesium as an initiator, In general, cationic ring-opening polymerization using an acid as an initiator, hydrolyzing-type ring-opening polymerization using water, or the like is generally used.
  • cationic ring-opening polymerization or hydrolytic ring-opening polymerization is preferable.
  • hydrolysis-type ring-opening polymerization is more preferable from the viewpoint of suppressing the coloring of the polyamide by the initiator and the gelation or decomposition reaction due to the crosslinking reaction.
  • the method for ring-opening polymerization of lactams by hydrolysis is not limited as long as it is a known method, but pressurizing in the presence of water to generate amino acids while promoting lactam hydrolysis, and then removing water.
  • a method of performing ring-opening polymerization and polycondensation reaction is preferable.
  • the amount of water to be used is not particularly limited as long as the hydrolysis of the lactam proceeds, but if the total amount of the monomer (A) and the polymer (B) is usually 100 parts by mass, the use of water The amount is preferably 100 parts by mass or less. In order to improve the production efficiency of the polyamide fine particles, the amount of water used is more preferably 70 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 30 parts by mass or less.
  • the lower limit of the amount of water used is preferably 1 part by mass or more, more preferably 2 parts by mass or more, further preferably 5 parts by mass or more, and particularly preferably 10 parts by mass or more.
  • a known method such as a method of removing while flowing an inert gas such as nitrogen at normal pressure or a method of removing under reduced pressure is appropriately used. it can.
  • the monomer (A) is an amino acid, dicarboxylic acid and diamine, or a salt thereof
  • a polycondensation reaction can be used as a polymerization method.
  • these monomers (A) there are combinations that do not dissolve uniformly with the polymer (B).
  • solvent (C) of monomer (A) and polymer (B). it is possible to produce polyamide fine particles by further adding solvent (C) of monomer (A) and polymer (B).
  • Solvent (C) is not particularly limited as long as it is in the above range, but it is necessary to dissolve monomer (A) and polymer (B) and to be discharged out of the system in order to advance the polycondensation reaction. Water is most preferred because it is identical to water.
  • the polymer By adding polyethylene glycol, polyethylene glycol-polypropylene glycol copolymers as B), and their alkyl ethers and water as solvent (C), a uniform solution is formed at the temperature at which polymerization is initiated. Thereafter, the condensed water generated by the progress of the polycondensation with the water of the solvent (C) is discharged out of the reaction tank, so that the polyamide fine particles can be produced while the polymerization proceeds.
  • an amino acid such as aminohexanoic acid or aminododecanoic acid
  • a dicarboxylic acid such as adipic acid and hexamethylenediamine and a diamine
  • the amount of water used as the solvent (C) is preferably 10 to 200 parts by mass. From the viewpoint of preventing the particle diameter from becoming coarse, the amount of water used is more preferably 150 parts by mass or less, and still more preferably 120 parts by mass or less. On the other hand, from the viewpoint of ensuring that it functions as a solvent, the amount of water used is preferably 20 parts by mass or more, and more preferably 40 parts by mass or more.
  • lactams and amino acids and / or dicarboxylic acids or diamines may be used as a mixture of two or more.
  • water functions as a hydrolysis or a solvent (C).
  • the polymerization temperature is not particularly limited as long as the polymerization of the polyamide proceeds, but from the viewpoint of controlling the high crystallization temperature of the polyamide closer to a true sphere and having a smooth surface, the polymerization temperature can be obtained. It is preferable that the temperature be equal to or higher than the crystallization temperature.
  • the polymerization temperature is more preferably the crystallization temperature of the obtained polyamide + 15 ° C. or more, more preferably the crystallization temperature of the obtained polyamide + 30 ° C. or more, and the crystallization temperature of the obtained polyamide + 45 ° C. or more. Is particularly preferred.
  • the polymerization temperature is preferably set to the melting point of the obtained polyamide + 100 ° C. or lower. + 50 ° C. or lower is more preferable, the melting point of the obtained polyamide is more preferably + 20 ° C. or lower, polymerization at the same temperature as the melting point of the obtained polyamide is particularly preferable, and the melting point of the obtained polyamide is ⁇ 10 ° C. or lower. Most preferably.
  • the crystallization temperature of the polyamide constituting the polyamide fine particles is a DSC method, and the temperature is increased at a rate of 20 ° C./minute from 30 ° C. to an endothermic peak showing the melting point of the polyamide at a temperature of 30 ° C. in a nitrogen atmosphere.
  • the peak of the exothermic peak that appears when the temperature is cooled to 30 ° C. at a rate of 20 ° C./min after holding for 1 minute is shown. Further, the peak of the endothermic peak when the temperature is further raised at 20 ° C./min after cooling is defined as the melting point of the polyamide fine particles.
  • the polymerization time can be adjusted as appropriate according to the molecular weight of the polyamide fine particles to be obtained. On the other hand, it is ensured that the polymerization proceeds and the polyamide fine particles are obtained. From the viewpoint of preventing progress such as deterioration of the polymer and (B), it is usually preferably in the range of 0.1 to 70 hours. As a minimum of polymerization time, 0.2 hours or more are more preferred, 0.3 hours or more are still more preferred, and 0.5 hours or more are especially preferred. The upper limit of the polymerization time is more preferably 50 hours or less, further preferably 25 hours or less, and particularly preferably 10 hours or less.
  • a polymerization accelerator may be added as long as the effects of the present invention are not impaired.
  • the accelerator known ones can be used, and examples thereof include phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, polyphosphoric acid, and inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts thereof. It is done. Two or more of these may be used. Although it can select suitably as addition amount, it is preferable to add 1 mass part or less with respect to 100 mass parts of monomers (A).
  • additives for example, surfactants for controlling the particle size of polyamide fine particles, dispersants, modifying the properties of the polyamide fine particles, and improving the stability of the polymer (B) used.
  • Antioxidants, heat stabilizers, weathering agents, lubricants, pigments, dyes, plasticizers, antistatic agents, flame retardants and the like for improvement are included. Two or more of these may be used. Two or more different substances may be used for the purpose of modifying the monomer (A) or polyamide and for the purpose of modifying the polymer (B). Although it can select suitably as addition amount, it is preferable to add 1 mass part or less with respect to a total of 100 mass parts of a monomer (A) and a polymer (B).
  • the polyamide fine particles are homogeneously induced from the uniform solution, fine fine particles can be produced without performing stirring. However, even if stirring is performed to make the particle size control and particle size distribution more uniform. I do not care.
  • a stirring device a known device such as a stirring blade, a melt kneader, or a homogenizer can be used.
  • a stirring blade a propeller, paddle, flat, turbine, cone, anchor, screw, helical type, etc. Can be mentioned.
  • the stirring speed depends on the type and molecular weight of the polymer (B).
  • the stirring speed is 0 to 2,000 rpm. A range is preferable.
  • the lower limit of the stirring speed is more preferably 10 rpm or more, further preferably 30 rpm or more, particularly preferably 50 rpm or more, and the upper limit of the stirring speed is more preferably 1,600 rpm or less, further preferably 1,200 rpm or less, 800 rpm or less is particularly preferable.
  • a method of isolating after discharging the mixture at the time of the polymerization into the poor solvent of the polyamide fine particles, or the polyamide in the reaction vessel The method of isolating after adding the poor solvent of microparticles
  • a method of isolating by adding a poor solvent of polyamide fine particles to the reaction tank and a method of isolating by adding a poor solvent of polyamide fine particles to the reaction tank is more preferable.
  • a known method such as reduced pressure, pressure filtration, decantation, centrifugation, spray drying or the like can be appropriately selected.
  • the poor solvent for the polyamide fine particles is preferably a solvent that does not dissolve the polyamide but further dissolves the monomer (A) or the polymer (B).
  • a solvent can be appropriately selected, but alcohols such as methanol, ethanol and isopropanol, and water are preferable.
  • washing, isolation and drying of the polyamide fine particles can be carried out by known methods.
  • a cleaning method for removing the deposits and inclusions on the polyamide fine particles reslurry cleaning or the like can be used, and heating may be appropriately performed.
  • the solvent used in the washing is not limited as long as it does not dissolve the polyamide fine particles and dissolves the monomer (A) or the polymer (B).
  • methanol, ethanol, isopropanol, and water are usable. Water is most preferable.
  • Isolation can be appropriately selected from reduced pressure, pressure filtration, decantation, centrifugation, spray drying and the like. Drying is preferably carried out below the melting point of the polyamide fine particles, and may be reduced in pressure. Air drying, hot air drying, heat drying, reduced pressure drying, freeze drying and the like are selected.
  • Polyamide fine particles are produced by the above-described method. Particularly in the present invention, polyamide fine particles having a high crystallization temperature, which has been difficult until now, can be produced with a uniform particle diameter, a true sphere and a smooth surface. is there.
  • the high crystallization temperature polyamide constituting the polyamide fine particles of the present invention refers to a crystalline polyamide having a crystallization temperature of 150 ° C. or higher. Since the melting point and chemical resistance resulting from crystallinity increase and the polyamide becomes more heat resistant, the crystallization temperature of the polyamide is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and further preferably 180 ° C. or higher. . From the viewpoint of preventing the shape from becoming porous, the crystallization temperature of the polyamide is preferably 300 ° C. or less, more preferably 280 ° C. or less, and particularly preferably 260 ° C. or less.
  • polycaproamide polyamide 6
  • polyhexamethylene adipamide polyamide 66
  • polytetramethylene adipamide polyamide 46
  • polytetramethylene sebacamide polyamide 410
  • poly Pentamethylene adipamide polyamide 56
  • polypentamethylene sebamide polyamide 510
  • polyhexamethylene sebamide polyamide 610
  • polyhexamethylene dodecamide polyamide 612
  • polydecamethylene adipamide polyamide
  • polyamide 106 polydodecamethylene adipamide
  • polyamide 126 polyhexamethylene terephthalamide
  • polydecamethylene terephthalamide polyamide 10T
  • polycaproamide / polyhexamethylene adipamide copolymer Lyamide 6/66
  • polycaproamide polyamide 6
  • polyhexamethylene adipamide polyamide 66
  • polyhexamethylene sebamide polyamide 610
  • the number average particle diameter of the polyamide fine particles of the present invention is in the range of 0.1 to 100 ⁇ m. When the number average particle diameter exceeds 100 ⁇ m, the surface of the coating film prepared from the particles becomes inhomogeneous.
  • the number average particle diameter of the polyamide fine particles is preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, further preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less. When the number average particle diameter is less than 0.1 ⁇ m, aggregation of particles occurs.
  • the number average particle diameter of the polyamide fine particles is preferably 0.3 ⁇ m or more, more preferably 0.7 ⁇ m or more, further preferably 1 ⁇ m or more, particularly preferably 2 ⁇ m or more, and most preferably 3 ⁇ m or more.
  • the particle size distribution index indicating the particle size distribution of the polyamide fine particles in the present invention is 3.0 or less. When the particle size distribution index exceeds 3.0, the fluidity is inferior in paint or cosmetic applications, and the uniformity of the coating film surface is impaired.
  • the particle size distribution index is preferably 2.0 or less, more preferably 1.5 or less, further preferably 1.3 or less, and most preferably 1.2 or less. The lower limit is theoretically 1.
  • the number average particle diameter of the polyamide fine particles can be calculated by specifying 100 particle diameters randomly from a scanning electron micrograph and calculating the arithmetic average thereof.
  • the maximum diameter of the particle is taken as the particle diameter.
  • it is measured at a magnification of at least 1,000 times, preferably at least 5,000 times.
  • the particle size distribution index is determined based on the following numerical conversion formula for the particle size value obtained above.
  • Di particle diameter of individual particles
  • n number of measurement 100
  • Dn number average particle diameter
  • Dv volume average particle diameter
  • PDI particle diameter distribution index
  • the polyamide fine particles of the present invention have a smooth surface in addition to a true spherical shape, and therefore can impart good slipperiness and fluidity to cosmetics and paints.
  • the sphericity indicating the sphericity of the polyamide fine particles is 90 or more. When the sphericity is less than 90, it is not possible to give a smoother feel in cosmetics and paint applications.
  • the sphericity is preferably 95 or more, more preferably 97 or more, and still more preferably 98 or more.
  • the upper limit is 100.
  • the sphericity of the polyamide fine particles is determined according to the following formula from the minor axis and major axis of 30 particles observed at random from a scanning electron micrograph.
  • S sphericity
  • a major axis
  • b minor axis
  • n number of measurements 30.
  • the smoothness of the polyamide fine particle surface can be expressed by the amount of the polyamide fine particles absorbing linseed oil. That is, the smoother the surface is, the finer particles have no pores on the surface, and the amount of linseed oil absorption that indicates the amount of linseed oil absorbed decreases.
  • the linseed oil absorption of the polyamide fine particles of the present invention is 100 mL / 100 g or less. When the linseed oil absorption amount of the polyamide fine particles exceeds 100 mL / 100 g, good fluidity cannot be imparted to cosmetics and paints.
  • the linseed oil absorption amount of the polyamide fine particles is preferably 90 mL / 100 g or less, more preferably 80 mL / 100 g or less, further preferably 70 mL / 100 g or less, and particularly preferably 60 mL / 100 g or less.
  • the lower limit of the linseed oil absorption is 0 mL / 100 g or more.
  • the oil absorption of linseed oil is measured according to Japanese Industrial Standard (JIS standard) JIS K 5101 “Pigment Test Method Refined Amani Oil Method”.
  • the smoothness of the surface can also be expressed by the BET specific surface area due to gas adsorption.
  • the smoother the surface the smaller the BET specific surface area.
  • it is preferably 10 m 2 / g or less, more preferably 5 m 2 / g or less, still more preferably 3 m 2 / g or less, and particularly preferably 1 m 2 / g or less.
  • it is 0.5 m 2 / g or less.
  • the BET specific surface area is measured according to Japanese Industrial Standard (JIS standard) JIS R 1626 (1996) “Method for measuring specific surface area by gas adsorption BET method”.
  • Average particle diameter and particle diameter distribution index The number average particle diameter of the polyamide fine particles was calculated by randomly identifying 100 particle diameters from a scanning electron micrograph and calculating the arithmetic average thereof. In the above photograph, when the shape is not a perfect circle, that is, when it is oval, the maximum diameter of the particle is taken as the particle diameter. In addition, the particle size distribution index was calculated based on the following numerical conversion formula for the particle size value obtained above.
  • Di particle diameter of individual particles
  • n number of measurement 100
  • Dn number average particle diameter
  • Dv volume average particle diameter
  • PDI particle diameter distribution index
  • S sphericity
  • a major axis
  • b minor axis
  • n number of measurements 30.
  • Linseed oil absorption amount According to Japanese Industrial Standard (JIS standard) JISK5101 “Pigment Test Method Purified Amani Oil Method”, about 100 mg of polyamide fine particles are precisely weighed on a watch glass, and refined linseed oil (Kanto Chemical Co., Ltd.) ) Is gradually added drop-by-drop with a burette, kneaded with a pallet knife, dripping and kneading is repeated until a sample lump is formed, and the point at which the paste becomes smooth is used as the end point. The oil absorption (mL / 100 g) was calculated from the amount of refined linseed oil.
  • Crystallization temperature and melting point of polyamide constituting polyamide fine particles Using a differential scanning calorimeter (DSCQ20) manufactured by TA Instruments, 30 ° C. higher than the endothermic peak indicating the melting point of the polyamide from 30 ° C. in a nitrogen atmosphere. The temperature was raised to a temperature of 20 ° C./min, held for 1 minute, and the peak of the exothermic peak that appeared when the temperature was cooled to 30 ° C. at a rate of 20 ° C./min was taken as the crystallization temperature. The endothermic peak when the temperature was further raised at 20 ° C./min after cooling was taken as the melting point.
  • the polyamide fine particle required for the measurement is about 8 mg.
  • the weight average molecular weight of the polyamide was calculated by using a gel permeation chromatography method and comparing it with a calibration curve using polymethyl methacrylate. A measurement sample was prepared by dissolving about 3 mg of polyamide fine particles in about 3 g of hexafluoroisopropanol.
  • Equipment Waters e-Alliance GPC system Column: Showa Denko HFIP-806M x 2 Mobile phase: 5 mmol / L sodium trifluoroacetate / hexafluoroisopropanol Flow rate: 1.0 ml / min Temperature: 30 ° C Detection: differential refractometer.
  • Molecular weight of polymer (B) The weight average molecular weight of the polymer (B) was calculated by comparing the weight average molecular weight with a calibration curve with polyethylene glycol using a gel permeation chromatography method. A measurement sample was prepared by dissolving about 3 mg of polymer (B) in about 6 g of water. Apparatus: LC-10A series manufactured by Shimadzu Corporation Column: TSKgelG3000PWXL manufactured by Tosoh Corporation Mobile phase: 100 mmol / L sodium chloride aqueous solution Flow rate: 0.8 ml / min Temperature: 40 ° C Detection: differential refractometer.
  • Example 1 In a 100 mL autoclave, 4 g of ⁇ -caprolactam (special grade made by Wako Pure Chemical Industries, SP value 19.5), polyethylene glycol (first grade polyethylene glycol 6,000, molecular weight 7,700, SP value made by Wako Pure Chemical Industries, Ltd.) 21.3) 6 g of water and 10 g of water for hydrolysis were sealed and replaced with nitrogen to 10 kg / cm 2 .
  • the system pressure was adjusted to 0.1 kg / cm 2 while releasing nitrogen, and then the temperature was raised to 240 ° C. In this case, after the pressure of the system it reached 10 kg / cm 2, pressure is controlled while steam was fine discharge pressure so as to maintain a 10 kg / cm 2.
  • the polymerization was started by releasing the pressure at a rate of 0.2 kg / cm 2 ⁇ min. At this point, the inner solution was uniformly transparent. While raising the temperature to 255 ° C. to reduce the pressure in the system until the 0 kg / cm 2, to complete the maintaining thermal polymerization while flowing 3 hours at the same time nitrogen becomes a 0 kg / cm 2. After the polymerization, the inner solution was suspended. Nitrogen was again charged to 10 kg / cm 2 and then cooled to room temperature. Water was added to the obtained solid and heated to 80 ° C. to dissolve the dissolved matter. The obtained slurry was filtered, and 40 g of water was added to the filtered product, followed by washing at 80 ° C.
  • the slurry liquid from which the agglomerate passed through a 200 ⁇ m sieve was removed was filtered again and the filtered product isolated was dried at 80 ° C. for 12 hours to obtain 2.8 g of powder. Moreover, there was no aggregate exceeding 200 ⁇ m.
  • the melting point of the obtained powder was 214 ° C. similar to that of polyamide 6, the crystallization temperature was 172 ° C., and the molecular weight was 38,000.
  • the polyamide 6 powder is in the form of true spherical particles, the number average particle size is 6.6 ⁇ m, the particle size distribution index is 1.08, the sphericity is 96, and the linseed oil absorption is 57 mL / 100 g, the BET specific surface area was 1.0 m 2 / g.
  • the SP value of polyamide 6 is 21.9.
  • FIG. 1 shows a scanning electron micrograph (magnification ⁇ 3000) of the true spherical polyamide 6 fine particles. Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Example 2 Polymerization was performed in the same manner as in Example 1 except that 5 g of ⁇ -caprolactam and 5 g of polyethylene glycol (first grade polyethylene glycol 6,000 manufactured by Wako Pure Chemical Industries, Ltd.) were changed to obtain 0.7 g of powder. . It was a homogeneous solution at the start of polymerization and a suspension after polymerization. The obtained powder had a melting point of 216 ° C. similar to that of polyamide 6, a crystallization temperature of 169 ° C., and a molecular weight of 44,100.
  • the polyamide 6 powder is a true sphere and has a smooth surface fine particle shape, the number average particle size is 12.9 ⁇ m, the particle size distribution index is 1.76, the sphericity is 95, and the linseed oil absorption is It was 54 mL / 100 g.
  • a scanning electron micrograph (magnification x1000) of the true spherical polyamide 6 fine particles is shown in FIG. Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Example 3 Polymerization was performed in the same manner as in Example 1 except that 2 g of ⁇ -caprolactam and 8 g of polyethylene glycol (first grade polyethylene glycol 6,000 manufactured by Wako Pure Chemical Industries, Ltd.) were changed to obtain 1.5 g of powder. . It was a homogeneous solution at the start of polymerization and a suspension after polymerization. The melting point of the obtained powder was 213 ° C. similar to that of polyamide 6, the crystallization temperature was 172 ° C., and the molecular weight was 26,800.
  • the polyamide 6 powder has a spherical shape with a smooth sphere, a number average particle size of 5.3 ⁇ m, a particle size distribution index of 1.24, a sphericity of 95, and linseed oil absorption is It was 59 mL / 100 g.
  • Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Example 4 Polymerization is carried out in the same manner as in Example 1 except that the molecular weight is changed to polyethylene glycol having a different molecular weight (first grade polyethylene glycol 20,000, molecular weight 18,600, SP value 21.3, manufactured by Wako Pure Chemical Industries, Ltd.). 3.3g was obtained. After the polymerization, it was a homogeneous solution, and was a suspension solution at the end of the polymerization. The obtained powder had a melting point of 211 ° C. similar to that of polyamide 6, a crystallization temperature of 170 ° C., and a molecular weight of 35,600.
  • the polyamide 6 powder has a true spherical shape with a smooth surface, a number average particle size of 6.1 ⁇ m, a particle size distribution index of 1.23, a sphericity of 92, and linseed oil absorption.
  • Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Example 5 Polymerization was carried out in the same manner as in Example 1 except that the molecular weight was changed to polyethylene glycol having a different molecular weight (primary polyethylene glycol 35,000 manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 31,000, SP value 21.3). 2.1 g was obtained. It was a homogeneous solution at the start of polymerization and a suspension after polymerization. The obtained powder had a melting point of 210 ° C. similar to that of polyamide 6, a crystallization temperature of 175 ° C., and a molecular weight of 32,500.
  • the polyamide 6 powder is a true sphere and has a smooth surface fine particle shape, the number average particle size is 3.5 ⁇ m, the particle size distribution index is 1.15, the sphericity is 93, and the linseed oil absorption amount was 59 mL / 100 g.
  • Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Polymerization was carried out in the same manner as in Example 1 except that the molecular weight was changed to polyethylene glycol having a different molecular weight (primary polyethylene glycol 2,000, molecular weight 2,300, SP value 21.3, manufactured by Wako Pure Chemical Industries, Ltd.). 2.3 g was obtained.
  • the polyamide 6 powder is a true sphere and has a smooth surface fine particle shape, the number average particle size is 6.1 ⁇ m, the particle size distribution index is 1.34, the sphericity is 93, and the linseed oil absorption is Was 53 mL / 100 g. Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Example 7 Polymerization was carried out in the same manner as in Example 1 except that polyethylene glycol was changed to polypropylene glycol (first grade polypropylene glycol 2,000, molecular weight 3,600, SP value 18.7, manufactured by Wako Pure Chemical Industries, Ltd.). 2.3 g was obtained. It was a homogeneous solution at the start of polymerization and a suspension after polymerization. The obtained powder had a melting point of 216 ° C. similar to that of polyamide 6, a crystallization temperature of 170 ° C., and a molecular weight of 38,000.
  • the polyamide 6 powder is a true sphere and has a smooth surface fine particle shape, the number average particle size is 21.5 ⁇ m, the particle size distribution index is 1.92, the sphericity is 91, and the linseed oil absorption amount was 65 mL / 100 g.
  • Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Example 8 Polymerization was performed in the same manner as in Example 1 except that polyethylene glycol was changed to polytetramethylene glycol (primary polytetramethylene glycol 2,000, molecular weight 7,500, SP value 17.9 manufactured by Wako Pure Chemical Industries, Ltd.). And 2.3 g of powder was obtained. It was a homogeneous solution at the start of polymerization and a suspension after polymerization. The obtained powder had a melting point of 214 ° C. similar to that of polyamide 6, a crystallization temperature of 169 ° C., and a molecular weight of 40,200.
  • the polyamide 6 powder is a true sphere and has a smooth surface fine particle shape, the number average particle size is 31.5 ⁇ m, the particle size distribution index is 2.76, the sphericity is 90, and the linseed oil absorption amount was 63 mL / 100 g.
  • Table 1 shows the properties of the obtained polyamide 6 fine particles.
  • Example 9 In a 100 mL autoclave, 1.7 g of adipic acid (Tokyo Chemical Industry Co., Ltd., SP value 25.4), hexamethylenediamine 50% aqueous solution 2.2 g (Tokyo Chemical Industry Co., Ltd., SP value 19.2), polyethylene glycol (Wako Pure Chemical Industries, Ltd., first grade polyethylene glycol 20,000, molecular weight 18,600) 6 g and 2.6 g of water as a solvent were added and sealed, and then replaced with nitrogen to 10 kg / cm 2 . The system pressure was adjusted to 0.1 kg / cm 2 while releasing nitrogen, and then the temperature was raised to 260 ° C.
  • the obtained powder had a melting point of 267 ° C. similar to that of polyamide 66, a crystallization temperature of 211 ° C., and a molecular weight of 73,600.
  • the polyamide 66 powder is spherical and has a smooth surface fine particle shape by scanning electron microscope observation, the number average particle size is 6.5 ⁇ m, the particle size distribution index is 1.60, the sphericity is 91, and linseed oil absorption The amount was 56 mL / 100 g.
  • FIG. 3 shows a scanning electron micrograph (magnification ⁇ 1500) of the true spherical polyamide 66 fine particles.
  • the SP value of polyamide 66 is 20.6.
  • the properties of the obtained polyamide 66 fine particles are shown in Table 2.
  • Example 10 4 g of aminohexanoic acid (manufactured by Wako Pure Chemical Industries, SP value 17.5), 6 g of polyethylene glycol (primary polyethylene glycol 6,000 manufactured by Wako Pure Chemical Industries, Ltd.) and 10 g of water as a solvent are added to a 100 mL autoclave. A homogeneous solution was sealed after formation and replaced with nitrogen to 10 kg / cm 2 . The system pressure was adjusted to 0.1 kg / cm 2 while releasing nitrogen, and then the temperature was raised to 240 ° C. In this case, after the pressure of the system it reached 10 kg / cm 2, pressure is controlled while steam was fine discharge pressure so as to maintain a 10 kg / cm 2.
  • the polymerization was started by releasing the pressure at a rate of 0.2 kg / cm 2 ⁇ min. While raising the temperature to 255 ° C., the pressure in the system was lowered to 0, and at the same time, heating was maintained while flowing nitrogen for 3 hours to complete the polymerization. After the polymerization, the inner solution was suspended. Nitrogen was again charged to 10 kg / cm 2 and then cooled to room temperature. Water was added to the obtained solid and heated to 80 ° C. to dissolve the dissolved matter. The obtained slurry was filtered, and 40 g of water was added to the filtered product, followed by washing at 80 ° C.
  • the obtained powder had a melting point of 216 ° C. similar to that of polyamide 6, a crystallization temperature of 170 ° C., and a molecular weight of 21,000.
  • the polyamide 6 powder has a spherical fine particle shape, the number average particle size is 13.1 ⁇ m, the particle size distribution index is 1.54, the sphericity is 92, and the linseed oil absorption is 60 mL / 100 g.
  • the properties of the obtained polyamide 6 fine particles are shown in Table 2.
  • Example 11 Implemented except that aminohexanoic acid was changed to aminododecanoic acid (manufactured by Wako Pure Chemical Industries, Ltd., SP value 17.2), polyethylene glycol having a different molecular weight (primary polyethylene glycol 20,000 manufactured by Wako Pure Chemical Industries, Ltd.) Polymerization was performed in the same manner as in Example 10 to obtain 0.8 g of powder. A uniform solution was formed from the time when the temperature was raised to 100 ° C. or higher, and the suspension was a suspension after polymerization. The melting point of the obtained powder was 173 ° C. similar to that of polyamide 12, the crystallization temperature was 139 ° C., and the molecular weight was 110,000.
  • the polyamide 12 powder has a true spherical shape and a smooth surface fine particle shape, the number average particle size is 6.6 ⁇ m, the particle size distribution index is 1.37, the sphericity is 94, and the linseed oil absorption is It was 54 mL / 100 g.
  • FIG. 4 shows a scanning electron micrograph (magnification ⁇ 1000) of the true spherical polyamide 12 fine particles.
  • Table 2 shows the properties of the obtained polyamide 12 fine particles.
  • Example 12 Polymerization was performed in the same manner as in Example 11 except that 2 g of aminododecanoic acid and 8 g of polyethylene glycol were changed to obtain 1.2 g of powder.
  • the melting point of the obtained powder was 175 ° C. similar to that of polyamide 12, the crystallization temperature was 136 ° C., and the molecular weight was 50,000.
  • the polyamide 12 powder has a spherical shape and a fine particle shape with a smooth surface.
  • the number average particle size is 6.0 ⁇ m
  • the particle size distribution index is 1.30
  • the sphericity is 96
  • the linseed oil absorption is It was 58 mL / 100g.
  • Table 2 shows the properties of the obtained polyamide 12 fine particles.
  • Example 1 Example 1 except that polyethylene glycol was changed to dimethyl silicone oil (KF-96H, 10,000 cs, molecular weight 88,400, SP value 14.5, manufactured by Shin-Etsu Chemical Co., Ltd.), and water at the time of washing was changed to toluene. Polymerization was carried out by the method. It separated into two phases at the start of polymerization, and remained coarsely separated into two phases of silicone and polyamide after polymerization. Washing was performed using toluene, but 3.2 g of polyamide aggregates were recovered over 200 ⁇ m, and no particles were obtained.
  • KF-96H 10,000 cs, molecular weight 88,400, SP value 14.5, manufactured by Shin-Etsu Chemical Co., Ltd.
  • FIG. 5 shows a scanning electron micrograph (magnification ⁇ 1000) of the amorphous polyamide 6 fine particles.
  • the properties of the obtained polyamide 6 fine particles are shown in Table 2.
  • the fine sphere surface smooth and narrow particle size distribution of the polyamide fine particles of the present invention has a high crystallization temperature and high heat resistance and chemical resistance inherent to the high crystallization temperature polyamide, and a spherical and smooth surface with a narrow particle size distribution. Therefore, it also has slipperiness, paint, adhesive, ink, toner light diffusing agent, liquid crystal spacer, matting agent, polymer alloy additive, various catalyst carriers, chromatography carriers, automobile parts, It can be suitably used for aircraft parts, electronic parts, cosmetic additives and medical carriers.
  • the heat resistance derived from a high crystallization temperature, a spherical and smooth surface form, and a uniform particle diameter can be applied to highly functional paints such as severe conditions that cannot be used conventionally.
  • the amide group concentration in the polyamide is increased, so that the moisture retention is increased, and it is possible to achieve both a smooth and uniform feel and a moist feeling due to the true spherical shape and uniform particle size.

Abstract

ポリアミドの単量体(A)をポリマー(B)の存在下、得られるポリアミドの結晶化温度以上で重合しポリアミド微粒子を製造する方法であって、重合開始時にポリアミドの単量体(A)とポリマー(B)に均一に溶解しており、重合後にポリアミド微粒子が析出するポリアミド微粒子の製造方法。数平均粒子径が0.1~100μm、真球度が90以上、粒子径分布指数が3.0以下、アマニ油吸油量が100mL/100g以下、結晶化温度が150℃以上であるポリアミド微粒子。 特に結晶化温度の高いポリアミドを表面が平滑で粒度分布が狭く、真球度の高い微粒子として提供することができる。

Description

ポリアミド微粒子の製造方法およびポリアミド微粒子
 本発明は、簡便な方法でポリアミド微粒子を製造する方法、および、結晶化温度が高いポリアミドからなり、表面が平滑で粒度分布が狭く、真球度が高いポリアミド微粒子に関する。
 ポリアミド微粒子は、高靭性、柔軟性や高い耐熱性といった特徴を活かし、粉体塗料など各種用途に使用されている。中でもポリアミド12を材質とした真球形状で内部に孔の存在しない中実で平滑表面のポリアミド12微粒子は、樹脂自身の柔軟性に加えて、滑らかな表面形状に由来した良好な肌触り感を与えることが可能で、高品質な化粧品や塗料用途に使用されている。
 一方、ポリアミド6やポリアミド66など更に結晶化温度の高いポリアミド樹脂の場合、ポリアミド12に比べて高い汎用性と融点を有するため、より高耐熱な用途などへ広く展開できる可能性があり、異形や多孔質形状の微粒子や粒度分布の広い微粒子が製造されている。
 ポリアミド6微粒子の製法として、例えば、ポリアミド6を溶媒に溶解した後に非溶媒と水を加え多孔質のポリアミド6微粒子を製造する方法がある(特許文献1、2)。またポリアミドをポリエチレングリコールなどの媒体中において融点以上の温度で強撹拌する方法やポリアミド原料をシリコーンオイル媒体中で重縮合反応を行う方法がある(特許文献3、4)。他の方法として、パラフィン媒体中でアニオン重合を行い、不定形なポリアミド6微粒子が提供されている(特許文献5)。さらに媒体を芳香族ハロゲン化合物と炭化水素系のポリマー溶液に変更したアニオン重合によるポリアミド6微粒子の製法が公開されている(特許文献6)。
特開2002-80629号公報 特開2010-053272号公報 特開昭60-040134号公報 特開平10-316750号公報 特開昭61-181826号公報 特開平08-073602号公報
 しかしながら、特許文献1、2の技術は、溶媒中で溶解度を下げポリアミドを析出させるため、多孔質形状の微粒子が製造される。
 特許文献3、4の技術では、混合しない原料同士から粒子を製造するため、粒度分布の広い微粒子しか製造できない。
 特許文献5や特許文献6のアニオン重合による技術については、開始剤が発火性で可燃性の媒体や溶媒を使用するため、高温で重合することが難しく、溶解後が下がり溶媒中でポリアミドが析出することから、不定形状の微粒子が製造される。更に各種媒体、溶媒やポリマーを除去するためには、多量の有機溶媒が必須という複雑な工程が必要である。
 本発明では、簡便な方法でポリアミド微粒子を製造する方法、更には結晶化温度が高いポリアミドからなり、表面が平滑で粒度分布が狭く、真球度が高いポリアミド微粒子を得ることを課題とする。
 上記課題を解決するために本発明のポリアミド微粒子の製造方法は、次の構成を有する。すなわち、
ポリアミドの単量体(A)をポリマー(B)の存在下、得られるポリアミドの結晶化温度以上で重合しポリアミド微粒子を製造する方法であって、重合開始時にポリアミドの単量体(A)とポリマー(B)が均一に溶解しており、重合後にポリアミド微粒子が析出するポリアミド微粒子の製造方法、である。
 また、本発明のポリアミド微粒子は、次の構成を有する。すなわち、
数平均粒子径が0.1~100μm、真球度が90以上、粒子径分布指数が3.0以下、アマニ油吸油量が100mL/100g以下、結晶化温度が150℃以上であるポリアミド微粒子、である。
 本発明のポリアミド微粒子の製造方法は、更に単量体(A)とポリマー(B)の溶媒(C)の存在下でポリアミド微粒子を製造することが好ましい。
 本発明のポリアミド微粒子の製造方法は、単量体(A)とポリマー(B)の溶解度パラメーター差の二乗が0.1~25、かつポリアミドとポリマー(B)の溶解度パラメーター差の二乗が0.1~16の範囲であることが好ましい。
 本発明のポリアミド微粒子の製造方法は、溶媒(C)が水であることが好ましい。
 本発明のポリアミド微粒子の製造方法は、ポリマー(B)が、極性基を有しない、または水酸基および水硫基から選ばれるいずれかを有するものであることが好ましい。
 本発明のポリアミド微粒子の製造方法は、ポリマー(B)が、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体であることが好ましい。
 本発明のポリアミド微粒子の製造方法は、ポリマー(B)の分子量が、500~500,000であることが好ましい。
 本発明のポリアミド微粒子は、ポリアミド微粒子を構成するポリアミドが、ポリアミド6、ポリアミド66、及びそれらの共重合体から選ばれるいずれかであることが好ましい。
 本発明のポリアミド微粒子は、ポリアミド微粒子を構成するポリアミドの重量平均分子量が、8,000以上であることが好ましい。
 本発明の製造方法によって、安全で簡便な方法で、高い結晶化温度のポリアミドを真球で表面平滑な形状の微粒子として製造することが可能である。該ポリアミド微粒子は、結晶化温度の高いポリアミド固有の高い耐熱性や耐薬品性に加えて、狭い粒度分布で真球かつ平滑な表面であることから、滑り性を兼ね備えており、塗料、接着剤、インク、トナー光拡散剤、液晶用スペーサー、艶消し剤、ポリマーアロイ用添加剤、各種触媒の担体、クロマトグラフィー担体、自動車部品、航空機部品、電子部品、化粧品の添加剤および医療用担体などに好適に利用できる。特に高い結晶化温度に由来する耐熱性と真球で平滑な表面形態かつ均一な粒子径によって、従来では使用できない過酷な条件下など高機能性の塗料などに適用することが可能である。さらに化粧品用途においては、ポリアミド中のアミド基濃度が上昇するため保湿性が増し、真球形状と均一粒径による滑らかで均質な感触と潤い感を両立することが可能である。
実施例1により得られたポリアミド微粒子の走査型電子顕微鏡写真である。 実施例2により得られたポリアミド微粒子の走査型電子顕微鏡写真である。 実施例8により得られたポリアミド微粒子の走査型電子顕微鏡写真である。 実施例10により得られたポリアミド微粒子の走査型電子顕微鏡写真である。 比較例3により得られたポリアミド微粒子の走査型電子顕微鏡写真である。
 以下、本発明について詳細を説明する。
 本発明は、ポリアミドの単量体(A)をポリマー(B)の存在下で、単量体(A)を重合して得られるポリアミドの結晶化温度より高い温度で重合しポリアミド微粒子を製造する方法であって、重合開始時にポリアミドの単量体(A)とポリマー(B)が均一に溶解しており、重合後にポリアミド微粒子が析出することで、従来の方法では困難であった結晶化温度が高く融点がより高いポリアミドについても、真球、表面平滑、微細かつ粒度分布が狭いポリアミド微粒子が得られることを特徴とする。
 重合開始時のポリアミドの単量体(A)がポリマー(B)に均一に溶解しているかどうかは、反応槽が透明溶液であることを目視で確認すれば良い。重合開始時に懸濁液または2相に分離した状態であるとポリアミドの単量体(A)とポリマー(B)が非相溶であることを示し、凝集物の生成や強撹拌等が必要になる。この場合、更に溶媒(C)を使用してポリアミドの単量体(A)とポリマー(B)を均一化した後に、重合を開始しても構わない。重合後にポリアミド微粒子が析出しているかどうかは、反応槽が懸濁液であることを目視で確認すれば良い。重合終了時点で均一溶液であると、ポリアミドとポリマー(B)が均一に相溶していることを示し、冷却等によって凝集物や多孔質の微粒子となる。
 本発明のポリアミド微粒子を構成するポリアミドとは、アミド基を含む構造のポリマーを示し、ポリアミドの単量体(A)であるアミノ酸の重縮合反応、ラクタム類と開始剤によるアニオン開環重合、カチオン開環重合や水などによる加水分解後の開環重合、ジカルボン酸とジアミン、またはそれらの塩の重縮合反応などによって製造される。ラクタム類の場合、開始剤による単量体(A)やポリマー(B)との均一溶液化が形成されず、開始剤が発火性であるため、真球で表面平滑なポリアミド微粒子が容易に得られるポリアミドの結晶化温度以上の温度での重合が困難であるため、カチオン重合や水などによる開環重合が好ましく、得られるポリアミドの結晶化温度以上での重合において、開始剤によるポリアミドの着色、架橋物やゲル生成物抑制の観点から水などによる開環重合で実施することが最も好ましい。
 本発明の製造方法においてポリアミド微粒子の原料となる具体的なポリアミドの単量体(A)を例示すると、アミノヘキサン酸、アミノウンデカン酸、アミノドデカン酸、パラメチル安息香酸などのアミノ酸類、ε-カプロラクタムやラウロラクタムなどのラクタム類、シュウ酸、スクシン酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸、イソフタル酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸などのジカルボン酸類とエチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタンや3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンなどのジアミン類からそれぞれ選ばれる混合物やそれらの塩などが挙げられる。これらの単量体(A)は、本発明を損なわない範囲であれば2種以上を使用すること、また共重合可能な他の成分を含むことも構わない。単量体(A)とポリマー(B)との溶解性が向上し、かつ得られるポリアミド微粒子の粒子径が微細かつ粒度分布が狭くなる点から、アミノヘキサン酸、ε-カプロラクタムやヘキサメチレンジアミンとアジピン酸が好ましく、アミノヘキサン酸やε-カプロラクタムがさらに好ましく、ε-カプロラクタムが最も好ましい。
 この単量体(A)を重合することで製造されるポリアミドの具体的な例としては、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンアジパミド(ポリアミド106)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリデカメチレンセバカミド(ポリアミド1010)、リウンデカンアミド(ポリアミド11)、ポリドデカアミド(ポリアミド12)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリカプロアミド/ポリヘキサメチレンアジパミド共重合体(ポリアミド6/66)などが挙げられる。これらは、本発明を損なわない範囲であれば、他の共重合可能な成分を含んでいても構わない。本発明の製造方法においては、得られるポリアミド微粒子の粒子径が微細かつ粒度分布が狭くなり、更に得られるポリアミド微粒子を構成するポリアミドの耐熱性が高くなることから、結晶化温度が150℃以上であることが好ましく、ポリアミド6,ポリアミド66及びこれらの共重合体から選ばれるいずれかであることがさらに好ましい。
 ポリアミド微粒子を構成するポリアミドの重量平均分子量の範囲は、8,000~3,000,000が好ましい。ポリマー(B)との相分離を誘起させる観点から、重量平均分子量は、10,000以上がより好ましく、さらに好ましくは15,000以上であり、最も好ましくは20,000以上である。本発明では、重合中の粘度がポリマー(B)に依存するため、ポリアミドの分子量増加による粘度上昇が抑制される。従って、ポリアミドの重合時間を延長し分子量を極めて高くできる利点がある。しかし重合時間が長すぎると、架橋物などポリアミドの副反応物やポリマー(B)の劣化などが発生するため、ポリアミドの重量平均分子量は2,000,000以下がより好ましく、1,000,000以下がさらに好ましい。
 なおポリアミド微粒子を構成するポリアミドの重量平均分子量とは、ヘキサフルオロイソプロパノールを溶媒にゲルパーミエーションクロマトグラフィーで測定した値をポリメチルメタクリレートで換算した重量平均分子量を示す。
 本発明におけるポリマー(B)とは、重合開始時点でポリアミドの単量体(A)に溶解するが、重合後にポリアミドとは相溶しないポリマーを示す。溶解とは、重合を開始する温度や圧力の条件下でポリマー(B)と単量体(A)が均一に溶解しているかどうかで判断する。ポリマー(B)とポリアミドとの非相溶は、重合後における温度や圧力の条件下で懸濁液または2相に分離しているかどうかで判断する。均一溶液や懸濁液、2相分離であるか否かの判断は、反応槽を目視で確認することで可能である。
 さらに詳しく述べると、ポリマー(B)はポリアミドの単量体と非反応性であることが、均一な溶液からポリアミド微粒子を析出させる観点から好ましい。具体的には、ポリマー(B)がポリアミドのアミド基を形成するカルボキシル基やアミノ基と反応する極性基を有していない、またはカルボキシル基やアミノ基との反応性が低い極性基を有しているものであることが好ましい。カルボキシル基やアミノ基と反応する極性基としては、アミノ基、カルボキシル基、エポキシ基、イソシアネート基などが挙げられる。カルボキシル基やアミノ基との反応性の低い極性基としては、水酸基、水硫基などが挙げられるが、これらは架橋反応を抑制する観点から、ポリマー(B)中の極性基が4個以下であることが好ましく、3個以下がより好ましく、2個以下が最も好ましい。
 またポリマー(B)は、生成するポリアミド微粒子を微細にする観点、および単量体(A)への溶解性が高く、かつ粒度分布を狭くする観点から、ポリアミドと非相溶であるが親和性が高いほうが好ましい。換言すると単量体(A)/ポリマー(B)間やポリマー(B)/ポリアミド間の親和性は、各々の溶解度パラメーター(以下SP値と称する)をδ、δ、δPA(J1/2/cm3/2)とした際に、単量体(A)とポリマー(B)間は、その溶解度パラメーター差の二乗、即ち(δ-δ、ポリマー(B)とポリアミド間は、その溶解度パラメーター差の二乗、即ち(δPA-δで表すことが可能である。ゼロに近いほど親和性が高く、溶解や相溶し易くなるが、単量体(A)とポリアミドのδとδPAは異なるため、ポリアミドが凝集物となりにくく、ポリマー(B)が単量体(A)に溶解せず凝集物が生成するのを防ぐ観点から、(δ-δは0.1~25の範囲を満たすことが好ましい。(δ-δの下限は0.3以上がより好ましく、0.5以上がさらに好ましく、1以上が特に好ましい。(δ-δの上限は、16以下がより好ましく、12以下がさらに好ましく、10以下が特に好ましく、7以下が最も好ましい。一方で、ポリマー(B)が均一に相溶してポリアミド微粒子が得られないことを防ぐ一方、非相溶となってポリアミドが凝集物となることを防ぐ観点から、(δPA-δは0.1~16の範囲を満たすことが好ましい。(δPA-δの下限は0.3以上がより好ましく、0.5以上がさらに好ましく、1以上が特に好ましい。(δPA-δの上限は、12以下がより好ましく、10以下がさらに好ましく、7以下が特に好ましく、4以下が最も好ましい。
 なおSP値は、Properties of Polymers 4th Edition(D.W. Van Krevelen著、Elsevier Science社2009年発行)、Chapter7、P215記載のHoftyzer-Van Krevelenの凝集エネルギー密度とモル分子容から算出した値を示す。本方法で計算できない場合は、同章P195記載のFedorsの凝集エネルギー密度とモル分子容から算出した値を示す。また単量体(A)やポリマー(B)を2種以上使用する場合は、各々のSP値とモル分率の積を加算した値を示す。
 このようなポリマー(B)の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリペンタメチレングリコール、ポリヘキサメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、ポリエチレングリコール-ポリテトラメチレングリコール共重合とこれらの片末端、または両末端の水酸基をメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ヘキサデシル基、オクタデシル基などで封鎖したアルキルエーテル体、オクチルフェニル基などで封鎖したアルキルフェニルエーテル体などが挙げられる。特に、ポリアミド単量体(A)との相溶性に優れ、得られるポリアミド微粒子の粒度分布が狭くなることから、ポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、ポリプロピレングリコール、ポリテトラメチレングリコール、およびこれらのアルキルエーテル体であることが好ましく、ポリアミド単量体(A)を加水分解による開環重合や溶媒として使用する水との相溶性にも優れる観点から、ポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体がさらに好ましく、ポリエチレングリコールが最も好ましい。これらは、本発明を損なわない範囲で2種以上を同時に使用しても構わない。
 得られるポリアミド微粒子の粒子径、粒度分布を狭くできる一方、均一溶液の粘度が高くなり過ぎてポリアミドの重合反応速度が極端に遅くなることを防ぐ観点から、ポリマー(B)の重量平均分子量の好ましい上限は500,000であり、100,000以下がより好ましく、50,000以下がさらに好ましい。ポリマー(B)とポリアミドの相溶性が向上し過ぎすることによってポリアミド微粒子が形成され難くなることを防ぐ観点から、ポリマー(B)の重量平均分子量は、500以上が好ましく、1,000以上がより好ましく、2,000以上がさらに好ましい。
 なお、ポリマー(B)の重量平均分子量とは、水を溶媒としてゲルパーミエーションクロマトグラフィーで測定した値をポリエチレングリコールで換算した重量平均分子量を示す。ポリマー(B)が水に溶解しない場合は、テトラヒドロフランを溶媒としてゲルパーミエーションクロマトグラフィーで測定した値をポリスチレンで換算した重量平均分子量を示す。
 これら単量体(A)とポリマー(B)を混合し均一溶液を得た後に、単量体(A)を重合して得られるポリアミドの結晶化温度より高い温度で重合を開始することでポリアミド微粒子を製造する。この際、均一な混合溶液中で単量体(A)がポリアミドに変換するに従いポリアミド微粒子が結晶化することなく均質に誘起されるため、重合後に真球、表面平滑、微細かつ粒度分布の狭いポリアミド微粒子が析出すると考えられる。
 重合速度が適度で、重合と共に誘発される相分離が発生して粒子形成が円滑に起こる一方、粒子形成が重合の早期から発生するために凝集物等が多量に生成することを防ぐ観点から、重合を行う際の単量体(A)とポリマー(B)の配合時の質量比は、5/95~80/20の範囲であることが好ましい。単量体(A)/ポリマー(B)の質量比下限は、10/90がより好ましく、20/80がさらに好ましく、30/70が最も好ましい。一方、単量体(A)/ポリマー(B)の質量比上限としては、70/30がより好ましく、60/40がさらに好ましく、50/50が特に好ましい。
 単量体(A)をポリアミドに重合する方法としては、公知の方法を使用することができる。その方法は、単量体(A)の種類によるが、ラクタム類の場合、ナトリウムやカリウムなどのアルカリ金属やブチルリチウム、ブチルマグネシウムなどの有機金属化合物などを開始剤として使用するアニオン開環重合、酸を開始剤とするカチオン開環重合や水などを使用する加水分解型の開環重合などが一般に使用される。真球で表面平滑なポリアミド微粒子が容易に得られるポリアミドの結晶化温度以上の温度で重合を行うことが可能であるため、カチオン開環重合や加水分解型の開環重合が好ましく、得られるポリアミドの結晶化温度以上の温度での重合において、開始剤によるポリアミドの着色、架橋反応によるゲル化や分解反応が抑制される観点から、加水分解型の開環重合がより好ましい。ラクタム類を加水分解で開環重合する方法としては、公知の方法であれば制限されないが、水の共存下に加圧し、ラクタムの加水分解を促進しながらアミノ酸を生成させ、その後水を除去しながら開環重合と重縮合反応を行う方法が好ましい。
 この場合、水が存在していると重縮合反応が起こらないため、水が反応槽の系外に排出されたと同時に重合が開始する。従ってラクタム類の加水分解が進行する範囲であれば、使用する水の量に特に制限は無いが、通常単量体(A)とポリマー(B)の総量を100質量部とすると、水の使用量を100質量部以下とするのが好ましい。ポリアミド微粒子の生産効率が向上するため、水の使用量は70質量部以下がより好ましく、50質量部以下がさらに好ましく、30質量部以下が特に好ましい。ラクタム類の加水分解反応が進行しないのを防ぐため、水の使用量の下限は1質量部以上が好ましく、2質量部以上がより好ましく、5質量部以上がさらに好ましく、10質量部以上が特に好ましい。重縮合中に縮合によって生成する水(縮合水)を除去する方法としては、常圧で窒素などの不活性ガスを流しながら除去する方法や、減圧で除去する方法など、公知の方法を適宜使用できる。
 また単量体(A)がアミノ酸、ジカルボン酸とジアミン、またはそれらの塩の場合、重合方法として重縮合反応を使用できる。一方、これらの単量体(A)の場合、ポリマー(B)と均一に溶解しない組み合わせが存在する。そのような単量体(A)とポリマー(B)においては、更に単量体(A)とポリマー(B)の溶媒(C)を追加することで、ポリアミド微粒子を製造することが可能となる。
 溶媒(C)は、上記の範囲であれば特に限定されないが、単量体(A)とポリマー(B)を溶解し、且つ重縮合反応を進行させるために系外に排出する必要のある縮合水と同一である点から水が最も好ましい。
 具体的には、単量体(A)にアミノヘキサン酸やアミノドデカン酸などのアミノ酸、または単量体(A)にアジピン酸とヘキサメチレンジアミンなどのジカルボン酸とジアミンを使用する場合、ポリマー(B)としてポリエチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体、溶媒(C)として水を加えることで、重合を開始する温度で均一な溶液が形成される。その後、溶媒(C)の水と重縮合の進行によって発生する縮合水を反応槽外に排出することで、重合が進行しながらポリアミド微粒子を製造することが可能となる。この場合、アミノ酸、またはジカルボン酸とジアミンとポリマー(B)の総量を100質量部とすると、溶媒(C)として使用する水の量は10~200質量部であることが好ましい。粒子径が粗大化するのを防ぐ観点から、水の使用量は150質量部以下がより好ましく、120質量部以下がさらに好ましい。一方、溶媒として機能するのを担保する観点から、水の使用量は20質量部以上がより好ましく、40質量部以上がさらに好ましい。
 ラクタム類とアミノ酸および/またはジカルボン酸やジアミンを2種以上混合して使用しても構わないが、この場合は水が、加水分解や溶媒(C)として機能する。
 重合温度は、ポリアミドの重合が進行する範囲であれば特に制限が無いが、高い結晶化温度のポリアミドを真球により近く、かつ表面平滑な形状に制御する観点から、重合温度を、得られるポリアミドの結晶化温度以上の温度とすることが好ましい。重合温度は、得られるポリアミドの結晶化温度+15℃以上とするのがより好ましく、得られるポリアミドの結晶化温度+30℃以上とするのがさらに好ましく、得られるポリアミドの結晶化温度+45℃以上とするのが特に好ましい。3次元架橋物などのポリアミドの副反応や着色やポリマー(B)の劣化などの進行を防ぐ観点から、重合温度は、得られるポリアミドの融点+100℃以下とするのが好ましく、得られるポリアミドの融点+50℃以下とするのがより好ましく、得られるポリアミドの融点+20℃以下とするのがさらに好ましく、得られるポリアミドの融点と同じ温度での重合が特に好ましく、得られるポリアミドの融点-10℃以下とするのが最も好ましい。
 なお、ポリアミド微粒子を構成するポリアミドの結晶化温度とは、DSC法を用いて、窒素雰囲気下、30℃からポリアミドの融点を示す吸熱ピークから30℃高い温度まで20℃/分の速度で昇温した後に1分間保持し、20℃/分の速度で30℃まで温度を冷却させる際に出現する発熱ピークの頂点を示す。また一旦冷却後、さらに20℃/分で昇温した際の吸熱ピークの頂点をポリアミド微粒子の融点とする。
 重合時間としては、得ようとするポリアミド微粒子の分子量に応じて適宜調整可能であるが、重合が進行してポリアミド微粒子を得ることを担保する一方、3次元架橋物などのポリアミドの副反応や着色やポリマー(B)の劣化など進行を防ぐ観点から、通常0.1~70時間の範囲であることが好ましい。重合時間の下限としては、0.2時間以上がより好ましく、0.3時間以上がさらに好ましく、0.5時間以上が特に好ましい。重合時間の上限としては、50時間以下がより好ましく、25時間以下がさらに好ましく、10時間以下が特に好ましい。
 本発明の効果を損なわない範囲で、重合促進剤を加えても構わない。促進剤としては、公知のものが使用でき、例えばリン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸およびこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物が挙げられる。これらは、2種類以上を使用しても構わない。添加量としては適宜選択できるが、単量体(A)100質量部に対して1質量部以下添加することが好ましい。
 また他の添加剤を加えることも可能であり、例えばポリアミド微粒子の粒径制御のための界面活性剤、分散剤、ポリアミド微粒子の特性を改質するためや使用するポリマー(B)の安定性を向上するための酸化防止剤、耐熱安定剤、耐候剤、滑剤、顔料、染料、可塑剤、帯電防止剤、難燃剤などが挙げられる。これらは2種以上を使用しても構わない。また単量体(A)やポリアミドを改質する目的と、ポリマー(B)を改質する目的で異なる物を2種以上使用しても構わない。添加量としては適宜選択できるが、単量体(A)とポリマー(B)の合計100質量部に対して1質量部以下添加することが好ましい。
 本発明では、均一溶液からポリアミド微粒子が均質に誘起されるため、撹拌を実施しなくても微細な微粒子を製造できるが、より粒径の制御や粒度分布を均一にするため撹拌を行っても構わない。撹拌装置としては、撹拌翼や溶融混練機、ホモジナイザーなど公知の装置を使用することが可能であり、例えば撹拌翼の場合、プロペラ、パドル、フラット、タービン、コーン、アンカー、スクリュー、ヘリカル型などが挙げられる。撹拌速度は、ポリマー(B)の種類、分子量によるが、大型装置でも熱を均質に伝える一方、壁面へ液が付着して配合比などが変化することを防ぐ観点から、0~2,000rpmの範囲であることが好ましい。撹拌速度の下限としては、より好ましくは10rpm以上、さらに好ましくは30rpm以上、特に好ましくは50rpm以上であり、撹拌速度の上限としては、1,600rpm以下がより好ましく、1,200rpm以下がさらに好ましく、800rpm以下が特に好ましい。
 重合終了後のポリアミド微粒子とポリマー(B)の混合物からポリアミド微粒子を単離するには、重合終了時点の混合物をポリアミド微粒子の貧溶媒中に吐出した後に単離する方法、または反応槽中にポリアミド微粒子の貧溶媒を加えた後に単離する方法などが挙げられる。ポリアミド微粒子同士が溶融し、合着して粒子径分布が広くなることを防ぐ観点から、ポリアミド微粒子の融点以下、より好ましくは結晶化温度以下にまで冷却した後に、混合物をポリアミド微粒子の貧溶媒中に吐出し単離する方法、または反応槽にポリアミド微粒子の貧溶媒を加え単離する方法などが好ましく、反応槽にポリアミド微粒子の貧溶媒を加え単離する方法がより好ましい。単離方法としては、減圧や加圧ろ過、デカンテーション、遠心分離、スプレードライなど公知の方法を適宜選択できる。
 ポリアミド微粒子の貧溶媒としては、ポリアミドを溶解せず、さらには単量体(A)やポリマー(B)を溶解する溶媒であることが好ましい。このような溶媒としては適宜選択できるが、メタノール、エタノール、イソプロパノールなどのアルコール類や水が好ましい。
 ポリアミド微粒子の洗浄、単離、乾燥は公知の方法で実施することが可能である。ポリアミド微粒子への付着物や内包物を除去するための洗浄方法としては、リスラリー洗浄などを使用することができ、適宜加温しても構わない。洗浄で使用する溶媒としては、ポリアミド微粒子を溶解せず、単量体(A)やポリマー(B)を溶解する溶媒であれば制限はなく、経済性の観点からメタノール、エタノール、イソプロパノールや水が好ましく、最も水が好ましい。単離は、減圧や加圧ろ過、デカンテーション、遠心分離、スプレードライなど適宜選択できる。乾燥は、ポリアミド微粒子の融点以下で実施するのが好ましく、減圧しても構わない。風乾、熱風乾燥、加熱乾燥、減圧乾燥や凍結乾燥などが選択される。
 上記の方法によってポリアミド微粒子が製造されるが、特に本発明では、これまで困難であった結晶化温度の高いポリアミド微粒子を均一な粒子径かつ真球で表面平滑な形状で製造することが可能である。
 本発明のポリアミド微粒子を構成する高い結晶化温度のポリアミドとは、結晶化温度が150℃以上の結晶性ポリアミドを示す。結晶性に起因した融点や耐薬品性などが増加し、より耐熱性の高いポリアミドになるため、ポリアミドの結晶化温度は160℃以上が好ましく、170℃以上がより好ましく、180℃以上がさらに好ましい。形状が多孔状となるのを防ぐ観点から、ポリアミドの結晶化温度は300℃以下が好ましく、280℃以下がより好ましく、260℃以下が特に好ましい。
 具体的に例示するならば、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリテトラメチレンセバカミド(ポリアミド410)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンアジパミド(ポリアミド106)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリカプロアミド/ポリヘキサメチレンアジパミド共重合体(ポリアミド6/66)などが挙げられ、好ましくは、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリデカメチレンアジパミド(ポリアミド106)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリカプロアミド/ポリヘキサメチレンアジパミド共重合体(ポリアミド6/66)、より好ましくは、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリカプロアミド/ポリヘキサメチレンアジパミド共重合体(ポリアミド6/66)である。
 本発明のポリアミド微粒子の数平均粒子径は、0.1~100μmの範囲である。数平均粒子径が100μmを超えると、粒子から作製した塗膜表面が不均質になる。ポリアミド微粒子の数平均粒子径は、80μm以下が好ましく、60μm以下がより好ましく、50μm以下がさらに好ましく、30μm以下が特に好ましい。数平均粒子径が0.1μm未満であると、粒子同士の凝集が発生する。ポリアミド微粒子の数平均粒子径は、0.3μm以上が好ましく、0.7μm以上がより好ましく、1μm以上がさらに好ましく、2μm以上が特に好ましく、3μm以上が最も好ましい。
 本発明におけるポリアミド微粒子の粒子径分布を示す粒子径分布指数としては、3.0以下である。粒子径分布指数が3.0を超えると、塗料や化粧品用途において流動性に劣り、塗膜表面の均質性が損なわれる。粒子径分布指数は2.0以下が好ましく、1.5以下がより好ましく、1.3以下がさらに好ましく、1.2以下が最も好ましい。また、その下限値は、理論上1である。
 なお、ポリアミド微粒子の数平均粒子径は、走査型電子顕微鏡写真から無作為に100個の粒子直径を特定し、その算術平均を求めることにより算出することが出来る。上記写真において、真円状でない場合、即ち楕円状のような場合は、粒子の最大径をその粒子径とする。粒子径を正確に測定するためには、少なくとも1,000倍以上、好ましくは、5,000倍以上の倍率で測定する。また粒子径分布指数は、上記で得られた粒子径の値を、下記数値変換式に基づき、決定される。
Figure JPOXMLDOC01-appb-M000001
 なお、Di:粒子個々の粒子径、n:測定数100、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
 本発明のポリアミド微粒子は、真球な形状に加えて表面が平滑な形態であるため、化粧品や塗料に良好な滑り性や流動性を付与することが可能である。
 ポリアミド微粒子の真球性を示す真球度は、90以上である。真球度が90に満たない場合には、化粧品や塗料の用途において、より滑らかな感触を与えることができない。真球度は、好ましくは95以上、より好ましくは97以上、さらに好ましくは98以上である。またその上限値は、100である。
 なお、ポリアミド微粒子の真球度は、走査型電子顕微鏡写真から無作為に30個の粒子を観察し、その短径と長径から下記数式に従い、決定される。
Figure JPOXMLDOC01-appb-M000002
 なお、S:真球度、a:長径、b:短径、n:測定数30とする。
 ポリアミド微粒子表面の平滑性は、ポリアミド微粒子がアマニ油を吸収する量で表すことが可能である。即ち、表面が平滑であるほど表面に孔の存在しない微粒子となり、アマニ油の吸収量を示すアマニ油吸油量が少なくなる。本発明のポリアミド微粒子のアマニ油吸油量は、100mL/100g以下である。ポリアミド微粒子のアマニ油吸油量が100mL/100gを超えると、化粧品や塗料に良好な流動性を与えることができない。ポリアミド微粒子のアマニ油吸油量は90mL/100g以下が好ましく、80mL/100g以下がより好ましく、70mL/100g以下がさらに好ましく、60mL/100g以下が特に好ましい。アマニ油吸油量の下限は0mL/100g以上である。
 なお、アマニ油吸油量は、日本工業規格(JIS規格)JIS K 5101「顔料試験方法  精製あまに油法」に準じて測定される。
 また表面の平滑性は、ガス吸着によるBET比表面積によっても表すことが可能であり、表面が平滑であるほど、BET比表面積は小さくなる。具体的には、10m/g以下であることが好ましく、より好ましくは5m/g以下であり、さらに好ましくは3m/g以下であり、特に好ましくは1m/g以下であり、最も好ましくは0.5m/g以下でる。
 なおBET比表面積は、日本工業規格(JIS規格)JIS R 1626(1996)「気体吸着BET法による比表面積の測定方法」に準じて測定される。
 以下本発明を実施例に基づき説明するが、本発明はこれらに限定されるものではない。
 (1)平均粒子径および粒子径分布指数
 ポリアミド微粒子の数平均粒子径は、走査型電子顕微鏡写真から無作為に100個の粒子直径を特定し、その算術平均を求めることにより算出した。上記写真において、真円状でない場合、即ち楕円状のような場合は、粒子の最大径をその粒子径とした。また粒子径分布指数は、上記で得られた粒子径の値を、下記数値変換式に基づき算出した。
Figure JPOXMLDOC01-appb-M000003
 なお、Di:粒子個々の粒子径、n:測定数100、Dn:数平均粒子径、Dv:体積平均粒子径、PDI:粒子径分布指数とする。
 (2)真球度
 ポリアミド微粒子の真球度は、走査型電子顕微鏡写真から無作為に30個の粒子を観察し、その短径と長径から下記数式に従い算出した。
Figure JPOXMLDOC01-appb-M000004
 なお、S:真球度、a:長径、b:短径、n:測定数30とする。
 (3)アマニ油吸油量
 日本工業規格(JIS規格)JISK5101“顔料試験方法  精製あまに油法”に準じ、ポリアミド微粒子約100mgを時計皿の上に精秤し、精製アマニ油(関東化学株式会社製)をビュレットで1滴ずつ徐々に加え、パレットナイフで練りこんだ後に、試料の塊ができるまで滴下-練りこみを繰り返し、ペーストが滑らかな硬さになった点を終点とし、滴下に使用した精製アマニ油の量から吸油量(mL/100g)を算出した。
 (4)BET比表面積
日本工業規格(JIS規格)JISR1626(1996)“気体吸着BET法による比表面積の測定方法”に従い、日本ベル製BELSORP-maxを用いて、ポリアミド微粒子約0.2gをガラスセルに入れ、80℃で約5時間減圧脱気した後に、液体窒素温度におけるクリプトンガス吸着等温線を測定し、BET法により算出した。
 (5)ポリアミド微粒子を構成するポリアミドの結晶化温度と融点
 TAインスツルメント社製示差走査熱量計(DSCQ20)を用いて、窒素雰囲気下、30℃からポリアミドの融点を示す吸熱ピークから30℃高い温度まで20℃/分の速度で昇温した後に1分間保持し、20℃/分の速度で30℃まで温度を冷却させる際に出現する発熱ピークの頂点を結晶化温度とした。冷却後、さらに20℃/分で昇温した際の吸熱ピークを融点とした。測定に要したポリアミド微粒子は約8mgである。
 (6)ポリアミド微粒子を構成するポリアミドの分子量
 ポリアミドの重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリメチルメタクリレートによる校正曲線と対比させて分子量を算出した。測定サンプルは、ポリアミド微粒子約3mgをヘキサフルオロイソプロパノール約3gに溶解し調整した。
装置:Waters e-Alliance GPC system
カラム:昭和電工株式会社製HFIP-806M×2
移動相:5mmol/Lトリフルオロ酢酸ナトリウム/ヘキサフルオロイソプロパノール
流速:1.0ml/min
温度:30℃
検出:示差屈折率計。
 (7)ポリマー(B)の分子量
 ポリマー(B)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法を用い、ポリエチレングリコールによる校正曲線と対比させて分子量を算出した。測定サンプルは、ポリマー(B)約3mgを水約6gに溶解し調整した。
装置:株式会社島津製作所製 LC-10Aシリーズ
カラム:東ソー株式会社製TSKgelG3000PWXL
移動相:100mmol/L塩化ナトリウム水溶液
流速:0.8ml/min
温度:40℃
検出:示差屈折率計。
 [実施例1]
 100mLのオートクレーブにε―カプロラクタム(和光純薬工業株式会社製特級、SP値19.5)4g、ポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール6,000、分子量7,700、SP値21.3)6g、加水分解用に水10gを加え密封後、窒素で10kg/cmまで置換した。窒素を放出させながら系の圧力を0.1kg/cmに調整後、温度を240℃まで昇温させた。この際、系の圧力が10kg/cmに達した後、圧が10kg/cmを維持するよう水蒸気を微放圧させながら制御した。温度が240℃に達した後に、0.2kg/cm・分の速度で放圧させ重合を開始した。この時点で内溶液は均一透明であった。温度を255℃まで上昇させながら系内の圧力を0kg/cmにまで低下させ、0kg/cmになると同時に窒素を3時間流しながら加熱を維持し重合を完了させた。なお重合後は、内溶液が懸濁していた。窒素を再度10kg/cmまで充填後、室温まで冷却させた。得られた固形物に水を加え80℃に加熱し、溶解物を溶かした。得られたスラリー液のろ過を行い、ろ上物に水40gを加え、80℃で洗浄を行った。その後200μmの篩を通過させた凝集物を除いたスラリー液を、再度ろ過して単離したろ上物を80℃で12時間乾燥させ、粉末を2.8g得た。また、200μm超の凝集物は存在しなかった。得られた粉末の融点はポリアミド6と同様の214℃、結晶化温度は172℃であり、分子量は38,000であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球の微粒子形状であり、数平均粒子径は6.6μm、粒子径分布指数は1.08、真球度は96、アマニ油吸油量は57mL/100g、BET比表面積は1.0m/gであった。なおポリアミド6のSP値は、21.9である。該真球ポリアミド6微粒子の走査型電子顕微鏡写真(倍率×3000)を図1に示す。また、得られたポリアミド6微粒子の特性を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 [実施例2]
 ε―カプロラクタムを5g、ポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール6,000)を5gに変更した以外は実施例1と同様の方法で重合を行い、粉末を0.7g得た。重合開始時点では均一溶液、重合後は懸濁溶液であった。得られた粉末の融点はポリアミド6と同様の216℃、結晶化温度は169℃であり、分子量は44,100であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は12.9μm、粒子径分布指数1.76、真球度は95、アマニ油吸油量は54mL/100gであった。該真球ポリアミド6微粒子の走査型電子顕微鏡写真(倍率×1000)を図2に示す。また、得られたポリアミド6微粒子の特性を表1に示す。
 [実施例3]
 ε―カプロラクタムを2g、ポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール6,000)を8gに変更した以外は実施例1と同様の方法で重合を行い、粉末を1.5g得た。重合開始時点では均一溶液、重合後は懸濁溶液であった。得られた粉末の融点はポリアミド6と同様の213℃、結晶化温度は172℃であり、分子量は26,800であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は5.3μm、粒子径分布指数1.24、真球度は95、アマニ油吸油量は59mL/100gであった。また、得られたポリアミド6微粒子の特性を表1に示す。
 [実施例4]
 分子量の異なるポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール20,000、分子量18,600、SP値21.3)に変更した以外は実施例1と同様の方法で重合を行い、粉末を3.3g得た。重合後は均一溶液、重合終了時点では懸濁溶液であった。得られた粉末の融点はポリアミド6と同様の211℃、結晶化温度は170℃であり、分子量は35,600であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は6.1μm、粒子径分布指数は1.23、真球度は92、アマニ油吸油量は60mL/100gであった。また、得られたポリアミド6微粒子の特性を表1に示す。
 [実施例5]
 分子量の異なるポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール35,000、分子量31,000、SP値21.3)に変更した以外は実施例1と同様の方法で重合を行い、粉末を2.1g得た。重合開始時点では均一溶液、重合後は懸濁溶液であった。得られた粉末の融点はポリアミド6と同様の210℃、結晶化温度は175℃であり、分子量は32,500であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は3.5μm、粒子径分布指数は1.15、真球度は93、アマニ油吸油量は59mL/100gであった。また、得られたポリアミド6微粒子の特性を表1に示す。
[実施例6]
 分子量の異なるポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール2,000、分子量2,300、SP値21.3)に変更した以外は実施例1と同様の方法で重合を行い、粉末を2.3g得た。重合開始時点では均一溶液、重合後は懸濁溶液であった。得られた粉末の融点はポリアミド6と同様の212℃、結晶化温度は171℃であり、分子量は41,700であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は6.1μm、粒子径分布指数は1.34、真球度は93、アマニ油吸油量は53mL/100gであった。また、得られたポリアミド6微粒子の特性を表1に示す。
 [実施例7]
 ポリエチレングリコールをポリプロピレングリコール(和光純薬工業株式会社製1級ポリプロピレングリコール2,000、分子量3,600、SP値18.7)に変更した以外は実施例1と同様の方法で重合を行い、粉末を2.3g得た。重合開始時点では均一溶液、重合後は懸濁溶液であった。得られた粉末の融点はポリアミド6と同様の216℃、結晶化温度は170℃であり、分子量は38,000であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は21.5μm、粒子径分布指数は1.92、真球度は91、アマニ油吸油量は65mL/100gであった。また、得られたポリアミド6微粒子の特性を表1に示す。
 [実施例8]
 ポリエチレングリコールをポリテトラメチレングリコール(和光純薬工業株式会社製1級ポリテトラメチレングリコール2,000、分子量7,500、SP値17.9)に変更した以外は実施例1と同様の方法で重合を行い、粉末を2.3g得た。重合開始時点では均一溶液、重合後は懸濁溶液であった。得られた粉末の融点はポリアミド6と同様の214℃、結晶化温度は169℃であり、分子量は40,200であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は31.5μm、粒子径分布指数は2.76、真球度は90、アマニ油吸油量は63mL/100gであった。また、得られたポリアミド6微粒子の特性を表1に示す。
 [実施例9]
 100mLのオートクレーブにアジピン酸1.7g(東京化成工業株式会社製、SP値25.4)、ヘキサメチレンジアミン50%水溶液2.2g(東京化成工業株式会社製、SP値19.2)、ポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール20,000、分子量18,600)6g、溶媒として水2.6gを加え密封後、窒素で10kg/cmまで置換した。窒素を放出させながら系の圧力を0.1kg/cmに調整後、温度を260℃まで昇温させた。この際、系の圧力が17.5kg/cmに達した後、圧が17.5kg/cmを維持するよう微放圧させながら制御した。温度が260℃に達した後に、0.6kg/cm・分の速度で放圧させ重合を開始した。この時点で内溶液は均一透明であった。温度を280℃まで上昇させながら系内の圧力を0にまで低下させ、0になると同時に窒素を1時間流しながら加熱を維持し重合を完了させた。なお重合後は、内溶液が懸濁していた。得られたスラリー液のろ過を行い、ろ上物に水40gを加え、80℃で洗浄を行った。その後200μmの篩を通過させた凝集物を除いたスラリー液を、再度ろ過して単離したろ上物を80℃で12時間乾燥させ、粉末を2.3g得た。また、200μm超の凝集物は存在しなかった。得られた粉末の融点はポリアミド66と同様の267℃、結晶化温度は211℃であり、分子量は73,600であった。また操走査型電子顕微鏡観察からポリアミド66粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は6.5μm、粒子径分布指数は1.60、真球度は91、アマニ油吸油量は56mL/100gであった。該真球ポリアミド66微粒子の走査型電子顕微鏡写真(倍率×1500)を図3に示す。なおポリアミド66のSP値は、20.6である。また、得られたポリアミド66微粒子の特性を表2に示す。
Figure JPOXMLDOC01-appb-T000006
 [実施例10]
 100mLのオートクレーブにアミノヘキサン酸(和光純薬工業株式会社製、SP値17.5)4g、ポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール6,000)6g、溶媒として水10gを加え均一な溶液を形成後に密封し、窒素で10kg/cmまで置換した。窒素を放出させながら系の圧力を0.1kg/cmに調整後、温度を240℃まで昇温させた。この際、系の圧力が10kg/cmに達した後、圧が10kg/cmを維持するよう水蒸気を微放圧させながら制御した。温度が240℃に達した後に、0.2kg/cm・分の速度で放圧させ重合を開始した。温度を255℃まで上昇させながら系内の圧力を0にまで低下させ、0になると同時に窒素を3時間流しながら加熱を維持し重合を完了させた。なお重合後は、内溶液が懸濁していた。窒素を再度10kg/cmまで充填後、室温まで冷却させた。得られた固形物に水を加え80℃に加熱し、溶解物を溶かした。得られたスラリー液のろ過を行い、ろ上物に水40gを加え、80℃で洗浄を行った。その後200μmの篩を通過させた凝集物を除いたスラリー液を、再度ろ過して単離したろ上物を80℃で12時間乾燥させ、粉末を1.4g得た。また、200μm超の凝集物は存在しなかった。得られた粉末の融点はポリアミド6と同様の216℃、結晶化温度は170℃であり、分子量は21,000であった。また走査型電子顕微鏡観察からポリアミド6粉末は真球の微粒子形状であり、数平均粒子径は13.1μm、粒子径分布指数は1.54、真球度は92、アマニ油吸油量は60mL/100gであった。また、得られたポリアミド6微粒子の特性を表2に示す。
 [実施例11]
 アミノヘキサン酸をアミノドデカン酸(和光純薬工業株式会社製、SP値17.2)、分子量の異なるポリエチレングリコール(和光純薬工業株式会社製1級ポリエチレングリコール20,000)に変更した以外は実施例10と同様の方法で重合を行い、粉末を0.8g得た。なお温度を100℃以上に昇温した時点から均一な溶液を形成し、重合後は懸濁溶液であった。得られた粉末の融点はポリアミド12と同様の173℃、結晶化温度は139℃であり、分子量は110,00であった。また走査型電子顕微鏡観察からポリアミド12粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は6.6μm、粒子径分布指数1.37、真球度は94、アマニ油吸油量は54mL/100gであった。該真球ポリアミド12微粒子の走査型電子顕微鏡写真(倍率×1000)を図4に示す。また、得られたポリアミド12微粒子の特性を表2に示す。
 [実施例12]
 アミノドデカン酸を2g、ポリエチレングリコールを8gに変更した以外は実施例11と同様の方法で重合を行い、粉末を1.2g得た。得られた粉末の融点はポリアミド12と同様の175℃、結晶化温度は136℃であり、分子量は50,000であった。また走査型電子顕微鏡観察からポリアミド12粉末は真球で表面平滑な微粒子形状であり、数平均粒子径は6.0μm、粒子径分布指数1.30、真球度は96、アマニ油吸油量は58mL/100gであった。また、得られたポリアミド12微粒子の特性を表2に示す。
 [比較例1]
 ポリエチレングリコールをジメチルシリコーンオイル(信越化学工業株式会社製KF-96H、10,000cs、分子量88,400、SP値14.5)、洗浄時の水をトルエンに変更した以外は実施例1と同様の方法で重合を行った。重合開始時点で2相に分離しており、重合後はシリコーンとポリアミドの2相に粗大分離したままであった。トルエンを使用して洗浄を行ったが、200μm超にポリアミド凝集物が3.2g回収され、粒子は得られなかった。
 [比較例2]
 ポリエチレングリコールをポリスチレン(アルドリッチ株式会社製ポリスチレンMw=280,000、分子量278,400、SP値16.6)、洗浄時の水をトルエンに変更した以外は実施例1と同様の方法で重合を行った。重合開始時点で2相に分離しており、重合後はポリスチレンとポリアミドの2相に粗大分離したままであった。トルエンを使用して洗浄を行ったが、200μm超にポリアミド凝集物が3.3g回収され、粒子は得られなかった。
 [比較例3]
 撹拌機を備え付けた反応容器に流動パラフィン355mL、ε-カプロラクタム109g、N,N‘-エチレンビスアデアラアミド0.6g、微細シリカ0.5gを加え、650rpmで撹拌した。容器を100℃まで加熱し200トルの真空下で流動パラフィン31mLを留去させ、残存水分を取り除いた。系を大気圧に戻した後に、窒素流入下で水素化ナトリウム0.5gを加え密封後、60分間撹拌した。温度を110℃に昇温後、1時間かけて温度を130℃まで昇温させ重合を開始すると同時に、ステアリルイソシアネート2.9gを0.02g/分の速度で系中にポンプを介して送液した。なお、重合開始時点で溶液は懸濁していた。重合は、130℃まで昇温後に2時間維持して重合を完了させた。温度を室温まで冷却後に、トルエンで流動パラフィンを洗浄後に、粉末を85g得た。得られた粉末の融点はポリアミド6と同様の210℃、結晶化温度は165℃であり、分子量は34,400であった。また操作型電子顕微鏡観察からポリアミド6粉末は不定形の微粒子であり、数平均粒子径は18.0μm、粒度分布指数は1.30、真球度は68であった。該不定形ポリアミド6微粒子の走査型電子顕微鏡写真(倍率×1000)を図5に示す。また、得られたポリアミド6微粒子の特性を表2に示す。
 [比較例4]
 水を使用しないこと以外は実施例10と同様の方法で重合を行ったが、重合開始時点で2相に分離しており、重合後はポリアミド6とポリエチレングリコールの2相に粗大分離し、ポリアミド6粒子は得られなかった。
 [比較例5]
 水を使用しないこと以外は実施例11と同様の方法で重合を行ったが、重合開始時点で2相に分離しており、重合後はポリアミド12とポリエチレングリコールの2相に粗大分離し、ポリアミド12粒子は得られなかった。
 本発明の真球表面平滑な狭い粒度分布の結晶化温度の高いポリアミド微粒子は、高い結晶化温度のポリアミド固有の高い耐熱性や耐薬品性に加えて、狭い粒度分布で真球かつ平滑な表面であることから、滑り性を兼ね備えており、塗料、接着剤、インク、トナー光拡散剤、液晶用スペーサー、艶消し剤、ポリマーアロイ用添加剤、各種触媒の担体、クロマトグラフィー担体、自動車部品、航空機部品、電子部品、化粧品の添加剤および医療用担体などに好適に利用できる。特に高い結晶化温度に由来する耐熱性と真球で平滑な表面形態かつ均一な粒子径によって、従来では使用できない過酷な条件下など高機能性の塗料などに適用することが可能である。さらに化粧品用途においては、ポリアミド中のアミド基濃度が上昇するため保湿性が増し、真球形状と均一粒径による滑らかで均質な感触と潤い感を両立することが可能である。

Claims (10)

  1. ポリアミドの単量体(A)をポリマー(B)の存在下、得られるポリアミドの結晶化温度以上で重合しポリアミド微粒子を製造する方法であって、重合開始時にポリアミドの単量体(A)とポリマー(B)が均一に溶解しており、重合後にポリアミド微粒子が析出するポリアミド微粒子の製造方法。
  2. 更に単量体(A)とポリマー(B)の溶媒(C)の存在下でポリアミド微粒子を製造する請求項1記載のポリアミド微粒子の製造方法。
  3. 単量体(A)とポリマー(B)の溶解度パラメーター差の二乗が0.1~25、かつポリアミドとポリマー(B)の溶解度パラメーター差の二乗が0.1~16の範囲である請求項1または2記載のポリアミド微粒子の製造方法。
  4. 溶媒(C)が水である請求項2または3記載のポリアミド微粒子の製造方法。
  5. ポリマー(B)が、極性基を有しない、または水酸基および水硫基から選ばれるいずれかを有するものである請求項1~4のいずれか記載のポリアミド微粒子の製造方法。
  6. ポリマー(B)が、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体、およびこれらのアルキルエーテル体である請求項1~5のいずれか記載のポリアミド微粒子の製造方法。
  7. ポリマー(B)の重量平均分子量が、500~500,000である請求項1~6のいずれか記載のポリアミド微粒子の製造方法。
  8. 数平均粒子径が0.1~100μm、真球度が90以上、粒子径分布指数が3.0以下、アマニ油吸油量が100mL/100g以下、結晶化温度が150℃以上であるポリアミド微粒子。
  9. ポリアミド微粒子を構成するポリアミドが、ポリアミド6、ポリアミド66、及びそれらの共重合体から選ばれるいずれかである請求項8記載のポリアミド微粒子。
  10. ポリアミド微粒子を構成するポリアミドの重量平均分子量が、8,000以上である請求項8または9記載のポリアミド微粒子。
PCT/JP2018/017616 2017-05-12 2018-05-07 ポリアミド微粒子の製造方法およびポリアミド微粒子 WO2018207728A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880030995.2A CN110612320B (zh) 2017-05-12 2018-05-07 聚酰胺微粒的制造方法及聚酰胺微粒
KR1020197029952A KR102538062B1 (ko) 2017-05-12 2018-05-07 폴리아미드 미립자의 제조 방법 및 폴리아미드 미립자
US16/606,837 US11485822B2 (en) 2017-05-12 2018-05-07 Method of producing polyamide fine particles, and polyamide fine particles
JP2018525495A JP6558498B2 (ja) 2017-05-12 2018-05-07 ポリアミド微粒子の製造方法
RU2019140599A RU2771710C2 (ru) 2017-05-12 2018-05-07 Способ получения мелких частиц полиамида и мелкие частицы полиамида
EP18798029.7A EP3623411A4 (en) 2017-05-12 2018-05-07 PROCESS FOR PRODUCING FINE PARTICLES FROM POLYAMIDE AND FINE PARTICLES FROM POLYAMIDE
US17/955,169 US11807717B2 (en) 2017-05-12 2022-09-28 Method of producing polyamide fine particles, and polyamide fine particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-095286 2017-05-12
JP2017095286 2017-05-12
JP2018-014437 2018-01-31
JP2018014437 2018-01-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/606,837 A-371-Of-International US11485822B2 (en) 2017-05-12 2018-05-07 Method of producing polyamide fine particles, and polyamide fine particles
US17/955,169 Division US11807717B2 (en) 2017-05-12 2022-09-28 Method of producing polyamide fine particles, and polyamide fine particles

Publications (2)

Publication Number Publication Date
WO2018207728A1 true WO2018207728A1 (ja) 2018-11-15
WO2018207728A9 WO2018207728A9 (ja) 2019-03-21

Family

ID=64104749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017616 WO2018207728A1 (ja) 2017-05-12 2018-05-07 ポリアミド微粒子の製造方法およびポリアミド微粒子

Country Status (6)

Country Link
US (2) US11485822B2 (ja)
EP (1) EP3623411A4 (ja)
JP (2) JP6558498B2 (ja)
KR (1) KR102538062B1 (ja)
CN (1) CN110612320B (ja)
WO (1) WO2018207728A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095702A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 ポリアミド微粒子の製造方法、およびポリアミド微粒子
WO2021090768A1 (ja) * 2019-11-05 2021-05-14 東レ株式会社 3次元造形物を製造するためのポリマー粉末、ポリマー粉末を用いて粉末床溶融結合方式によって3次元造形物を製造する方法、および3次元造形物
WO2021132091A1 (ja) 2019-12-23 2021-07-01 東レ株式会社 熱硬化性樹脂組成物、熱硬化性樹脂硬化物、プリプレグ及び繊維強化複合材料
WO2021131740A1 (ja) 2019-12-26 2021-07-01 東レ株式会社 プリプレグ
WO2022004586A1 (ja) 2020-06-30 2022-01-06 東レ株式会社 繊維強化複合材料およびプリプレグの製造方法
WO2022181634A1 (ja) 2021-02-25 2022-09-01 東レ株式会社 樹脂粉粒体を用いた3次元造形物の製造方法、3次元造形物、並びに樹脂粉粒体
WO2022181633A1 (ja) 2021-02-25 2022-09-01 東レ株式会社 ポリマー粉末およびその製造方法、並びに3次元造形物の製造方法
WO2023008357A1 (ja) 2021-07-27 2023-02-02 東レ株式会社 炭素繊維強化複合材料
WO2023074733A1 (ja) 2021-10-27 2023-05-04 東レ株式会社 炭素繊維強化複合材料
WO2024043029A1 (ja) * 2022-08-23 2024-02-29 東レ株式会社 3次元造形物を製造するためのポリマー粒子およびポリマー粒子組成物、およびポリマー粒子の製造方法、ならびに3次元造形物とその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102309284B1 (ko) * 2018-08-03 2021-10-06 주식회사 엘지에너지솔루션 고분자 솔루션의 미용해물 측정법
CN113354942B (zh) * 2020-03-02 2022-10-18 中国科学院化学研究所 一种聚合物粉体及其制备方法
CN113337105B (zh) * 2020-03-02 2022-09-23 中国科学院化学研究所 一种聚合物粉体及其制备方法
CN112876674A (zh) * 2021-03-17 2021-06-01 滨州学院 一种原位水解开环制备聚酰胺微球的方法
CN116113656A (zh) * 2021-07-13 2023-05-12 东丽先端材料研究开发(中国)有限公司 一种聚酰胺微粒及其制备方法
CN114621485B (zh) * 2022-04-12 2023-04-07 滨州学院 树莓状多孔聚酰胺微球制备方法及制备的聚酰胺材料
CN115093584A (zh) * 2022-07-22 2022-09-23 贵州省冶金化工研究所 一种选择性激光打印用均匀球化尼龙粉末制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040134A (ja) 1983-08-13 1985-03-02 Showa Denko Kk ポリアミド樹脂微粒子の製造法
JPS61181826A (ja) 1985-01-30 1986-08-14 エルフ アトケム ソシエテ アノニム ポリアミド粉末の製造方法
JPH0873602A (ja) 1994-09-09 1996-03-19 Shinto Paint Co Ltd ポリアミド粉体の製造方法
JPH10316750A (ja) 1997-03-18 1998-12-02 Ube Ind Ltd 球状ポリアミドおよびその製法
JP2000248028A (ja) * 1999-03-03 2000-09-12 Mitsubishi Chemicals Corp 水性分散液及びその製造方法
JP2002080629A (ja) 2000-06-14 2002-03-19 Ube Ind Ltd ポリアミド多孔質球状粒子およびその製造方法
JP2003171682A (ja) * 2001-12-10 2003-06-20 Shinto Fine Co Ltd 滑 剤
JP2007119632A (ja) * 2005-10-28 2007-05-17 Toray Ind Inc 新規ポリアミド微粒子およびそれを含む化粧品
JP2010053272A (ja) 2008-08-29 2010-03-11 Ube Ind Ltd 紫外線防除機能を有する複合化ポリアミド多孔質微粒子およびその製造方法
WO2012161174A1 (ja) * 2011-05-25 2012-11-29 独立行政法人産業技術総合研究所 物性が改質された2-ピロリドンの重合体又は共重合体及びその製造方法
WO2016102879A1 (fr) * 2014-12-22 2016-06-30 Arkema France Fabrication de poudres de polyamide par aminolyse d'ester
JP2016186068A (ja) * 2015-03-19 2016-10-27 株式会社リコー ポリアミド粒子及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2742440A (en) * 1952-02-26 1956-04-17 Polymer Corp Method of preparing finely divided polyamides
US3446782A (en) * 1965-04-14 1969-05-27 Toray Industries Method of manufacture of powdery synthetic linear polyamides
FR2856692B1 (fr) * 2003-06-26 2005-08-05 Rhodia Polyamide Intermediates Procede de preparation de particules spheriques a base de polyamide.
WO2006082908A1 (ja) * 2005-02-02 2006-08-10 Ube Industries, Ltd. 多孔質球状ポリアミド粒子の製造方法
JP2006328208A (ja) * 2005-05-26 2006-12-07 Daicel Degussa Ltd 真球状熱可塑性樹脂微粒子の製造法
JP5073214B2 (ja) * 2006-03-13 2012-11-14 ダイセル・エボニック株式会社 樹脂粒子の製造方法及び樹脂粒子
JP5029313B2 (ja) * 2006-11-21 2012-09-19 東レ株式会社 ポリカプロアミド樹脂複合微粒子
JP5648740B2 (ja) * 2012-02-15 2015-01-07 東レ株式会社 複合ポリアミド微粒子およびその製造方法
EP2949689A4 (en) * 2013-01-28 2016-09-07 Toray Industries PREPREG, FIBER-REINFORCED COMPOSITE AND THERMOPLASTIC RESIN PARTICLE
CN104045826B (zh) * 2014-06-25 2016-03-30 江苏科技大学 一种聚酰胺微球的环保型制备方法
CN105622932B (zh) * 2014-11-07 2019-12-06 合肥杰事杰新材料股份有限公司 一种纳米尼龙微球及其制备方法
JP6256487B2 (ja) * 2014-12-24 2018-01-10 東レ株式会社 ポリアミド微粒子
US10138344B2 (en) 2015-03-19 2018-11-27 Ricoh Company, Ltd. Particulate polyamide, and method for preparing the particulate polyamide

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040134A (ja) 1983-08-13 1985-03-02 Showa Denko Kk ポリアミド樹脂微粒子の製造法
JPS61181826A (ja) 1985-01-30 1986-08-14 エルフ アトケム ソシエテ アノニム ポリアミド粉末の製造方法
JPH0873602A (ja) 1994-09-09 1996-03-19 Shinto Paint Co Ltd ポリアミド粉体の製造方法
JPH10316750A (ja) 1997-03-18 1998-12-02 Ube Ind Ltd 球状ポリアミドおよびその製法
JP2000248028A (ja) * 1999-03-03 2000-09-12 Mitsubishi Chemicals Corp 水性分散液及びその製造方法
JP2002080629A (ja) 2000-06-14 2002-03-19 Ube Ind Ltd ポリアミド多孔質球状粒子およびその製造方法
JP2003171682A (ja) * 2001-12-10 2003-06-20 Shinto Fine Co Ltd 滑 剤
JP2007119632A (ja) * 2005-10-28 2007-05-17 Toray Ind Inc 新規ポリアミド微粒子およびそれを含む化粧品
JP2010053272A (ja) 2008-08-29 2010-03-11 Ube Ind Ltd 紫外線防除機能を有する複合化ポリアミド多孔質微粒子およびその製造方法
WO2012161174A1 (ja) * 2011-05-25 2012-11-29 独立行政法人産業技術総合研究所 物性が改質された2-ピロリドンの重合体又は共重合体及びその製造方法
WO2016102879A1 (fr) * 2014-12-22 2016-06-30 Arkema France Fabrication de poudres de polyamide par aminolyse d'ester
JP2016186068A (ja) * 2015-03-19 2016-10-27 株式会社リコー ポリアミド粒子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.W. VAN KREVELEN: "Properties of Polymers", 2009, ELSEVIER SCIENCE, pages: 215

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095702A1 (ja) * 2018-11-09 2020-05-14 東レ株式会社 ポリアミド微粒子の製造方法、およびポリアミド微粒子
JP6702516B1 (ja) * 2018-11-09 2020-06-03 東レ株式会社 ポリアミド微粒子の製造方法、およびポリアミド微粒子
US11685813B2 (en) 2018-11-09 2023-06-27 Toray Industries, Inc. Method of producing polyamide fine particles, and polyamide fine particles
WO2021090768A1 (ja) * 2019-11-05 2021-05-14 東レ株式会社 3次元造形物を製造するためのポリマー粉末、ポリマー粉末を用いて粉末床溶融結合方式によって3次元造形物を製造する方法、および3次元造形物
WO2021132091A1 (ja) 2019-12-23 2021-07-01 東レ株式会社 熱硬化性樹脂組成物、熱硬化性樹脂硬化物、プリプレグ及び繊維強化複合材料
WO2021131740A1 (ja) 2019-12-26 2021-07-01 東レ株式会社 プリプレグ
WO2022004586A1 (ja) 2020-06-30 2022-01-06 東レ株式会社 繊維強化複合材料およびプリプレグの製造方法
WO2022181634A1 (ja) 2021-02-25 2022-09-01 東レ株式会社 樹脂粉粒体を用いた3次元造形物の製造方法、3次元造形物、並びに樹脂粉粒体
WO2022181633A1 (ja) 2021-02-25 2022-09-01 東レ株式会社 ポリマー粉末およびその製造方法、並びに3次元造形物の製造方法
WO2023008357A1 (ja) 2021-07-27 2023-02-02 東レ株式会社 炭素繊維強化複合材料
WO2023074733A1 (ja) 2021-10-27 2023-05-04 東レ株式会社 炭素繊維強化複合材料
WO2024043029A1 (ja) * 2022-08-23 2024-02-29 東レ株式会社 3次元造形物を製造するためのポリマー粒子およびポリマー粒子組成物、およびポリマー粒子の製造方法、ならびに3次元造形物とその製造方法

Also Published As

Publication number Publication date
US11807717B2 (en) 2023-11-07
EP3623411A4 (en) 2021-01-20
EP3623411A1 (en) 2020-03-18
JPWO2018207728A1 (ja) 2019-06-27
RU2019140599A3 (ja) 2021-07-01
JP2019167545A (ja) 2019-10-03
US20230034929A1 (en) 2023-02-02
WO2018207728A9 (ja) 2019-03-21
KR20190141664A (ko) 2019-12-24
JP6558498B2 (ja) 2019-08-14
CN110612320A (zh) 2019-12-24
US20200048413A1 (en) 2020-02-13
CN110612320B (zh) 2022-04-15
US11485822B2 (en) 2022-11-01
KR102538062B1 (ko) 2023-05-30
RU2019140599A (ru) 2021-06-15
JP6756390B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6558498B2 (ja) ポリアミド微粒子の製造方法
CN107108906B (zh) 聚酰胺微粒
TWI631150B (zh) 聚苯硫微粒子、含有其之分散液、及聚苯硫微粒子之製造方法
WO2021090768A1 (ja) 3次元造形物を製造するためのポリマー粉末、ポリマー粉末を用いて粉末床溶融結合方式によって3次元造形物を製造する方法、および3次元造形物
JP6702516B1 (ja) ポリアミド微粒子の製造方法、およびポリアミド微粒子
JP5821213B2 (ja) ポリフェニレンサルファイド樹脂微粒子分散液の製造方法
JP4093142B2 (ja) ポリアミド多孔質粒子の製造方法
WO2022181633A1 (ja) ポリマー粉末およびその製造方法、並びに3次元造形物の製造方法
RU2771710C2 (ru) Способ получения мелких частиц полиамида и мелкие частицы полиамида
JP4528482B2 (ja) ポリアミド粒子及びその製造方法
JP2021091861A (ja) ポリアミド微粒子の製造方法
CN116887972A (zh) 聚合物粉末及其制造方法以及3维造型物的制造方法
US20240132666A1 (en) Polymer powder, method of producing same and method of producing 3-dimensional model object
WO2024043029A1 (ja) 3次元造形物を製造するためのポリマー粒子およびポリマー粒子組成物、およびポリマー粒子の製造方法、ならびに3次元造形物とその製造方法
WO2023284585A1 (zh) 一种聚酰胺微粒及其制备方法
JP2021070710A (ja) 樹脂粒子、および樹脂粒子の製造方法
JP2021070709A (ja) 樹脂粒子、および樹脂粒子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525495

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197029952

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018798029

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018798029

Country of ref document: EP

Effective date: 20191212