WO2018189969A1 - ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔 - Google Patents

ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔 Download PDF

Info

Publication number
WO2018189969A1
WO2018189969A1 PCT/JP2018/000060 JP2018000060W WO2018189969A1 WO 2018189969 A1 WO2018189969 A1 WO 2018189969A1 JP 2018000060 W JP2018000060 W JP 2018000060W WO 2018189969 A1 WO2018189969 A1 WO 2018189969A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimethyl sulfoxide
distillation
distilling
distillation column
liquid containing
Prior art date
Application number
PCT/JP2018/000060
Other languages
English (en)
French (fr)
Inventor
亮嗣 市岡
治男 村野
Original Assignee
東レ・ファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ファインケミカル株式会社 filed Critical 東レ・ファインケミカル株式会社
Priority to US16/463,680 priority Critical patent/US11111211B2/en
Priority to JP2018522820A priority patent/JP7082763B2/ja
Priority to EP18784415.4A priority patent/EP3611162A4/en
Priority to KR1020197016032A priority patent/KR102469913B1/ko
Publication of WO2018189969A1 publication Critical patent/WO2018189969A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • B01D3/106Vacuum distillation with the use of a pump for creating vacuum and for removing the distillate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4277Side-, bottom- and feed stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/06Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/02Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
    • C07C317/04Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a method for distilling dimethyl sulfoxide (DMSO).
  • DMSO dimethyl sulfoxide
  • the present invention relates to a method for distilling a liquid containing dimethyl sulfoxide using a distillation apparatus.
  • the present invention relates to a multistage distillation column for distilling dimethyl sulfoxide.
  • Dimethyl sulfoxide is widely used industrially as a solvent for exfoliation of electronic materials, cleaning solvents, synthesis of medicines and agricultural chemicals, polymer polymerization and spinning. Recovery and reuse of the dimethyl sulfoxide component from the waste liquid once used is widely carried out industrially.
  • the process of purifying methyl sulfoxide by heating and distilling waste liquid containing methyl sulfoxide is an indispensable process for recovering and reusing dimethyl sulfoxide.
  • dimethyl sulfoxide is thermally unstable. It is known that dimethyl sulfoxide partially decomposes when boiling or distilling at normal pressure. When performing distillation purification during the production or recovery of dimethyl sulfoxide, a high vacuum is usually used to lower the heating temperature in order to prevent thermal decomposition products from being present as impurities and reducing the performance of dimethyl sulfoxide as a solvent. Under reduced pressure distillation.
  • continuous distillation equipment that uses a lot of energy for heating and cooling often recovers and effectively uses the sensible heat and latent heat of vaporization of the process liquid and steam to reduce the amount of energy used.
  • latent heat of vaporization in vapor condensation the higher the vapor temperature, the easier it is to be used effectively as a heating medium, and it is widely used in many facilities for heating fluids in other processes and generating medium and high-pressure steam. can do.
  • vacuum distillation of dimethyl sulfoxide under high vacuum has a low vapor temperature, so heat cannot be fully utilized effectively, and part of the heat is often exhausted.
  • the method of adding alkali metal hydroxide to dimethyl sulfoxide is limited to the method of adding 0.003 to 0.5%, granular sodium hydroxide and potassium hydroxide, and more than 0.5% of hydroxide. It is reported that decomposition products increase when sodium or potassium hydroxide is added. In the method in which sodium hydroxide is added to dimethyl sulfoxide and the sodium hydroxide swells and then sodium hydroxide and potassium hydroxide are removed, the amount of sodium hydroxide and potassium hydroxide to be added is reduced to 0.5%. It is limited and it is reported that the decomposition product increases when sodium hydroxide and potassium hydroxide are added in an amount of more than 0.5%.
  • Patent Documents 1, 2, and 3 describe the addition conditions of alkali metal hydroxide from the evaluation results of thermal decomposition of dimethyl sulfoxide by batch distillation.
  • the amount of distillate during operation increases and the base concentration of the can residue increases.
  • the base concentration of the column bottom liquid is higher than the concentration mixed with the distillation raw material.
  • thermal decomposition of dimethyl sulfoxide may proceed due to the presence of a high concentration of base at the bottom of the column.
  • precipitation of base crystals from a high concentration of base causes scaling and crystal deposition on the reboiler heat transfer surface, tower tray, packed bed, disperser, liquid collector, and the like.
  • the slurry concentration of the internal solution is not uniform everywhere in the column, so the thermal decomposition of dimethyl sulfoxide is promoted locally at locations where the base concentration is high. It will be.
  • distillation purification When distillation purification is carried out during the production or recovery process of dimethyl sulfoxide, it is distilled and purified by a continuous distillation process capable of producing or recovering dimethyl sulfoxide in large quantities and obtaining high-quality dimethyl sulfoxide in a high yield.
  • a continuous distillation process usually, a low-boiling tower for distilling and separating a low-boiling component having a boiling point lower than that of dimethyl sulfoxide represented by water, a high-boiling tower for separating a high-boiling component, and at least two or more distillation towers are used.
  • distillation is carried out at a temperature and pressure at which each column does not undergo thermal decomposition of dimethyl sulfoxide.
  • it is desired to reduce the number by integrating the distillation towers to make the process simple and compact.
  • the object of the present invention is to distill dimethyl sulfoxide, which is capable of producing or recovering dimethyl sulfoxide in large quantities and obtaining high quality dimethyl sulfoxide in high yield by a compact and simple process or compact distillation equipment. It is to provide a method.
  • an object of the present invention is to provide a multistage distillation column capable of producing or recovering dimethyl sulfoxide in large quantities and obtaining high-quality dimethyl sulfoxide in a high yield.
  • the present invention is a method of distilling a liquid containing dimethyl sulfoxide using a distillation apparatus, (1) A liquid containing dimethyl sulfoxide at the bottom of the distillation apparatus and a liquid containing dimethyl sulfoxide at the bottom of the distillation apparatus and sodium carbonate in a total amount of 100% by weight are mixed with 0.005 to 25% by weight of sodium carbonate. Heating, (2) A method of distilling dimethyl sulfoxide to obtain a fraction containing dimethyl sulfoxide from a position lower than the position where the liquid containing dimethyl sulfoxide is charged and above the heating unit.
  • the present invention is a multistage distillation column for distilling a liquid containing dimethyl sulfoxide, having a facility for adding sodium carbonate to the bottom of the distillation tower, and a liquid containing dimethyl sulfoxide at the bottom of the distillation tower
  • a device capable of controlling and mixing the sodium carbonate concentration to 0.005 to 25% by weight is provided,
  • This is a multistage distillation column provided with a side cut for discharging a fraction containing dimethyl sulfoxide from a position lower than a supply stage for supplying a liquid containing dimethyl sulfoxide and from an upper position from the heating section.
  • the method for distilling dimethyl sulfoxide according to the present invention is compact in equipment and requires little investment in equipment construction. Furthermore, since the temperature of the process liquid and the vapor in the distillation tower rises, the energy can be reused by recovering these sensible heat and latent heat, and the amount of energy used in the entire equipment can be reduced. As a result, it is possible to economically purify dimethyl sulfoxide with low purification costs.
  • the method for distilling dimethyl sulfoxide according to the present invention can produce dimethyl sulfoxide in a large amount and obtain high-quality dimethyl sulfoxide in a high yield.
  • the method for distilling dimethyl sulfoxide according to the present invention can recover a large amount of dimethyl sulfoxide and obtain high quality dimethyl sulfoxide in high yield.
  • the multi-stage distillation column of the present invention has compact equipment, can produce dimethyl sulfoxide in large quantities, and can obtain high quality dimethyl sulfoxide in high yield.
  • the multi-stage distillation column of the present invention has a compact facility, and can collect a large amount of dimethyl sulfoxide and obtain high-quality dimethyl sulfoxide in a high yield.
  • the temperature of the process liquid and steam in the distillation column increases, so the energy is reused by recovering the sensible heat and latent heat to reduce the amount of energy used in the entire facility. Can be made. As a result, it is possible to economically purify dimethyl sulfoxide with low purification costs.
  • Dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide according to the present invention has few impurities and high purity.
  • Dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide according to the present invention is a photoresist stripping solution for electronic materials, synthesis of medicines and agricultural chemicals, stripping / cleaning solutions for lens molds, cellulose, polyimide, polysulfone, polyurethane, polyacrylonitrile, etc. It can be used as a solvent for polymer polymerization and spinning processes, and as a coating remover.
  • the dimethyl sulfoxide recovered and purified by the multistage distillation column of the present invention has few impurities and high purity.
  • the dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide of the present invention can be widely used as a solvent for exfoliation and washing of electronic materials, synthesis of medicines and agricultural chemicals, polymerization of polymers and spinning.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is drawing explaining the distillation refinement
  • FIG. Dimethyl sulfoxide and sodium carbonate are present at the bottom of the distillation column.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is drawing explaining the distillation refinement
  • FIG. Heating was started, and after distillation started from the top of the column, it was stabilized at total reflux.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is drawing explaining the distillation refinement
  • a water-containing dimethyl sulfoxide stock solution was supplied from the middle stage of the distillation column, and the product dimethyl sulfoxide was extracted from the side cut in the form of a liquid, followed by continuous dehydration distillation.
  • a purification stage is provided under the side cut of the product.
  • Another distillation column is installed in the multistage distillation column of the present invention.
  • the present invention is a method for distilling a liquid containing dimethyl sulfoxide using a distillation apparatus.
  • the liquid containing dimethyl sulfoxide is, for example, a reaction liquid containing dimethyl sulfoxide obtained in the step of synthesizing by oxidation of dimethyl sulfide, a waste liquid containing dimethyl sulfoxide used as a stripping liquid for photoresist of electronic materials, Waste liquid containing dimethyl sulfoxide used as a peeling / cleaning solution for lens molds, waste liquid containing dimethyl sulfoxide used as a synthetic solvent for pharmaceuticals and agricultural chemicals, used in polymerization and spinning processes for polymers such as cellulose, polyimide, polysulfone, polyurethane, polyacrylonitrile, etc. Waste liquid containing dimethyl sulfoxide, and waste liquid containing dimethyl sulfoxide used as a coating remover.
  • the concentration of dimethyl sulfoxide in the liquid containing dimethyl sulfoxide is preferably 10% by weight or more, and 20% by weight. % Or more is more preferable.
  • Water can be contained in the liquid containing dimethyl sulfoxide.
  • the content of water in the liquid containing dimethyl sulfoxide is usually 0.002 to 99.99%.
  • the bottom of the distillation apparatus is the part of the bottom of the distillation apparatus where the process liquid vaporized by the heating of the heater stays at the highest temperature.
  • the sodium carbonate used in the present invention may be anhydrous or hydrated.
  • the hydrate of sodium carbonate is preferably a readily available monohydrate or decahydrate.
  • the mixing amount of sodium carbonate is preferably 0.08% by weight to 20% by weight when the total amount of the solution containing dimethyl sulfoxide and sodium carbonate is 100% by weight.
  • Sodium carbonate can be added in a powder or solid state.
  • sodium carbonate can be mixed with an appropriate solvent such as water and added as an aqueous solution or slurry to the bottom of the distillation apparatus.
  • Sodium carbonate adhering to the inside of the distillation apparatus has a large solubility in water, and can be easily washed with water, warm water, and steam.
  • sodium carbonate adhering to the inside of the distillation apparatus may be recovered and reused.
  • Sodium carbonate does not cause sodium carbonate adhesion, crystal deposition or clogging in the tray, packed bed, disperser, collector, etc. of the distillation apparatus. It is preferable to start the operation after adding it in advance.
  • the liquid containing dimethyl sulfoxide is continuously supplied to the distillation apparatus.
  • the pressure during distillation is preferably from normal pressure to reduced pressure.
  • the difference in boiling point from the impurity to be removed is small, removing the impurity is facilitated by increasing the difference in boiling point between the impurity and dimethyl sulfoxide without greatly reducing the degree of vacuum.
  • the temperature at the bottom of the distillation apparatus is preferably 90 ° C. to 180 ° C. If the temperature at the bottom of the distillation unit is 90 ° C to 180 ° C, the distillation operating temperature range will be widened, so the load on the vacuum vacuum equipment, condenser, and low-temperature refrigerant manufacturing equipment at the top of the tower can be reduced, making it efficient and economical.
  • dimethyl sulfoxide is preferably obtained by continuous dehydration distillation.
  • the liquid containing dimethyl sulfoxide is heated by mixing sodium carbonate with the liquid, and the position below the position where the liquid containing dimethyl sulfoxide is charged, A fraction containing dimethyl sulfoxide is obtained from a position above the heating section.
  • the dimethyl sulfoxide is present at a position lower than the position where the liquid containing dimethyl sulfoxide is charged, and from the position above the heating unit, rather than the feedstock to the distillation apparatus. Get a rich fraction.
  • the distillation apparatus is preferably a single multistage distillation column.
  • a low-boiling component containing water is extracted from the top of the column, and a high-boiling component is extracted from the bottom of the column, and a fraction rich in dimethyl sulfoxide is extracted from the bottom of the distillation raw material supply by side cut.
  • the vapor or liquid inside the distillation apparatus is preferably used as a heating source for another facility.
  • a low boiling component containing water and a high boiling component are continuously distilled and separated simultaneously in one distillation apparatus.
  • the dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide according to the present invention has a high purity with few impurities.
  • Dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide according to the present invention is a photoresist stripping solution for electronic materials, synthesis of medicines and agricultural chemicals, stripping / cleaning solutions for lens molds, cellulose, polyimide, polysulfone, polyurethane, polyacrylonitrile, etc. It can be used as a solvent for polymer polymerization and spinning processes, and as a coating remover.
  • the multistage distillation column of the present invention is a multistage distillation column for distilling a liquid containing dimethyl sulfoxide.
  • the multi-stage distillation column of the present invention is preferably a distillation column that performs gas-liquid contact for concentration purification, a condenser that condenses low-boiling-component vapor containing water to obtain a condensate, and dimethyl sulfoxide by heating and vaporizing the liquid. It consists of a reboiler that generates steam.
  • the multistage distillation column of the present invention has equipment for adding sodium carbonate to the bottom of the distillation column.
  • sodium carbonate is preferably replenished to the bottom of the column continuously or intermittently so that sodium carbonate is present within a certain concentration range.
  • the multistage distillation column of the present invention preferably has equipment for directly adding sodium carbonate to the bottom of the distillation column.
  • Sodium carbonate may be supplied as a crystalline solid from a facility to which sodium carbonate is directly added, or may be supplied as a solution or a suspension slurry mixed with dimethyl sulfoxide.
  • a low-boiling component containing water is extracted from the top of the column, and a high-boiling component is extracted from the bottom of the column. Extract.
  • the multistage distillation column of the present invention is a fraction rich in dimethyl sulfoxide by removing a low-boiling point component containing water from the top of the column and a high-boiling point component from the bottom of the column, and by side-cutting from below the supply stage of the distillation raw material.
  • the number of distillation towers is one by the method of extracting water. More preferably, the multistage distillation column of the present invention continuously separates low-boiling components and high-boiling components containing water by a single distillation apparatus.
  • the number of stages of gas-liquid contact of the distillation column is preferably 2 to 50, more preferably 3 to 40.
  • the tray structure is exemplified by a tray type or a packed bed type.
  • the packed bed type that can shorten the flow residence time in the column and can reduce the pressure loss in terms of stable operation is preferable, and the regular packed bed type is particularly preferable.
  • the multistage distillation column of the present invention has a concentration of sodium carbonate in a liquid containing dimethyl sulfoxide at the bottom of the distillation column and a liquid containing dimethyl sulfoxide at the bottom of the distillation column when the total amount of sodium carbonate is 100% by weight. Is provided with a device that can be controlled and mixed to 0.005 to 25% by weight.
  • the multi-stage distillation column of the present invention has a side cut that flows out from the supply stage for supplying the liquid containing dimethyl sulfoxide, and flows out the fraction containing dimethyl sulfoxide from the position above the heating section.
  • Either liquid or steam can be used to extract the fraction containing dimethyl sulfoxide from the side cut. If the fraction containing dimethyl sulfoxide is a vapor, the product is obtained at a desired temperature and form through a condenser, and when the fraction containing dimethyl sulfoxide is a liquid, it is passed through a condenser.
  • the multi-stage distillation column of the present invention is preferably provided with a dimethyl sulfoxide purification stage on at least one of the upper part and the lower part of the side cut from which the fraction containing dimethyl sulfoxide flows out.
  • the concentration unit and the recovery unit of the distillation column may be either a tray method or a packed bed method, and the packed bed may be either an irregular packing or a regular packing.
  • a disperser In the distillation column, a disperser, a liquid collector, and a packed bed support are installed as necessary.
  • the kettle-type reboiler In the illustration, the kettle-type reboiler is directly installed at the bottom of the distillation column as an example, but as another method, the distillation tower and the reboiler are connected independently by piping, and a thermosiphon or pump circulation between the two In this case, the liquid or vapor may be transferred.
  • the multistage distillation column of the present invention preferably has a distillation column bottom temperature of 90 ° C. to 180 ° C. Further, when the sensible heat and latent heat of vaporization of the process liquid / vapor are recovered and effectively used to save energy, it is preferable to continuously distill at a distillation column bottom temperature of 150 ° C. to 180 ° C.
  • a vapor at the top of the distillation column is condensed by a condenser provided, a part of the condensate is returned to the distillation column as reflux, and a pipe for discharging a part as waste liquid is provided.
  • a vacuum generator such as a vacuum pump or an ejector.
  • the multi-stage distillation column of the present invention preferably has a condenser for the top vapor, and the condenser for the top vapor has a function of a heater for other fluids, a boiler, or a reboiler.
  • the multistage distillation column of the present invention suppresses the decomposition of dimethyl sulfoxide without forced circulation and stirring at the bottom of the column.
  • the multistage distillation column of the present invention can be stably operated for a long time because there is no scaling, crystal deposition, or clogging of the decomposition inhibitor in the tray, packed bed, disperser, liquid collector, etc. of the distillation column.
  • Dimethyl sulfoxide obtained using the multistage distillation column of the present invention has few impurities and has a high purity.
  • Dimethyl sulfoxide obtained using the multi-stage distillation column of the present invention is a photoresist stripping solution for electronic materials, synthesis of medicines and agricultural chemicals, stripping and cleaning solutions for lens molds, cellulose, polyimide, polysulfone, polyurethane, polyacrylonitrile. It can be used as a solvent for polymer polymerization and spinning process, and as a coating remover.
  • FIG. 1 An example of a distillation apparatus used in the method for distilling dimethyl sulfoxide of the present invention is shown in FIG.
  • the distillation apparatus shown in FIG. 1 is also an example of the multistage distillation column of the present invention.
  • the multistage distillation column shown in FIG. 1 draws low-boiling components containing water from the top and high-boiling components from the bottom, and is a liquid containing dimethyl sulfoxide before distillation from the distillation raw material supply pipe in FIG. Is supplied.
  • Sodium carbonate which is a decomposition inhibitor, is charged from the decomposition inhibitor (sodium carbonate) addition pipe of (13) to the bottom of the distillation column to which the reboiler of the distillation column is attached.
  • the purified dimethyl sulfoxide heated in the reboiler of FIG. 1 (3) is extracted from the product dimethyl sulfoxide side cut extraction pipe of FIG. 1 (11).
  • the product dimethyl sulfoxide side cut extraction pipe is installed below the distillation raw material supply pipe.
  • a distillation column having a purification stage provided under a side cut for extracting a product as shown in FIG. 7 is preferable.
  • FIG. 8 shows an example of a distillation apparatus when the latent heat of vaporization of the process steam at the top of the tower is recovered and effectively used for energy saving in the present invention.
  • the distillation apparatus shown in FIG. 8 is also an example of the multistage distillation column of the present invention.
  • the multistage distillation column of the present invention reduces the heating energy of another distillation column by exchanging heat between the bottom liquid of another distillation column and the process vapor at the top of the multistage distillation column of the present invention. .
  • the distillation temperature of dimethyl sulfoxide that is, the temperature of the process steam at the top of the column can be increased, the versatility of energy saving by waste heat recovery can be enhanced.
  • the gas chromatographic purity (area%) of dimethyl sulfoxide was measured by a gas chromatographic method under the following conditions.
  • sodium carbonate stably decomposes dimethyl sulfoxide in a much wider concentration range than sodium hydroxide, which is conventionally known as a decomposition inhibitor, even at high temperatures close to the atmospheric boiling point. It turns out that the effect which suppresses is expressed.
  • Example 1 33% by weight hydrated dimethyl sulfoxide is added to the continuous distillation facility shown in FIG. 1 (distillation tower: tower diameter 65 mm, packed tower with 5 stages of regular packing in the upper concentrating part and lower collecting part from the raw material supply). Then, continuous dehydration distillation purification was performed. Example 1 will be described with reference to the drawings.
  • Table 3 shows the impurity concentration of dimethyl sulfoxide in the stock solution, the impurity concentration of dimethyl sulfoxide obtained as a product, the moisture content of dimethyl sulfoxide obtained as a product, and the yield of the dimethyl sulfoxide product.
  • the moisture content was measured with a Karl Fischer moisture meter.
  • Example 2 The procedure was the same as Example 1 except that the distillation pressure was adjusted so that the column bottom temperature was 108 ° C. The results are shown in Table 3.
  • Example 3 For the purpose of strengthening the purification and removal of high boiling components, the same procedure as in Example 2 was performed except that a regular packing equivalent to 5 stages was further filled under the side cut from which the product dimethyl sulfoxide was removed. The results are shown in Table 3.
  • Example 1 The procedure was the same as Example 1 except that nothing was added to the tower bottom and the distillation pressure was adjusted so that the tower bottom temperature was 94 ° C. The results are shown in Table 3.
  • dimethyl sulfoxide with less impurities could be obtained by stable continuous distillation.
  • Continuous distillation could be performed under high temperature conditions of 95-108 ° C.
  • ethylmethyl sulfoxide and dimethyl sulfone which were high boiling components, could be removed more stably.
  • the method for distilling dimethyl sulfoxide according to the present invention is compact in equipment and requires little investment in equipment construction. Furthermore, since the temperature of the process liquid and the vapor in the distillation tower rises, the energy can be reused by recovering these sensible heat and latent heat, and the amount of energy used in the entire equipment can be reduced. As a result, it is possible to economically purify dimethyl sulfoxide with low purification costs.
  • Dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide according to the present invention has few impurities and high purity.
  • Dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide according to the present invention is a photoresist stripping solution for electronic materials, synthesis of medicines and agricultural chemicals, stripping / cleaning solutions for lens molds, cellulose, polyimide, polysulfone, polyurethane, polyacrylonitrile, etc. It can be used as a solvent for polymer polymerization and spinning processes, and as a coating remover.
  • the temperature of the process liquid and steam in the distillation column increases, so the energy is reused by recovering the sensible heat and latent heat to reduce the amount of energy used in the entire facility. Can be made. As a result, it is possible to economically purify dimethyl sulfoxide with low purification costs.
  • the dimethyl sulfoxide recovered and purified by the multistage distillation column of the present invention has few impurities and high purity.
  • the dimethyl sulfoxide obtained by the method of distilling dimethyl sulfoxide of the present invention can be widely used as a solvent for exfoliation and washing of electronic materials, synthesis of medicines and agricultural chemicals, polymerization of polymers and spinning.
  • Distillation column main body 2 stages (in the case of the figure, packed bed) 3 Reboiler 4 Condenser 5 Raw material supply pipe 6 Distillation tower top steam condenser pipe 7 Condenser vent pipe 8 Condensate falling pipe 9 Condensate discharge pipe 10 Condensate recirculation pipe 11 Product dimethyl sulfoxide side cut extraction pipe 12 High boiling matter extraction pipe 13 Decomposition inhibitor (sodium carbonate) addition pipe 14 Distillation column body 15 of another distillation apparatus Separate distillation Equipment stage (filled bed in the figure) 16 Waste heat recovery condenser 17 Condenser of another distillation apparatus 18 Raw material supply pipe 19 of another distillation apparatus 19 Pipe 20 connected to the distillation column overhead vapor condenser of another distillation apparatus 20 Condenser vent pipe 21 of another distillation apparatus Condensate spill piping of another distillation unit 22 Condensate discharge pipe 23 of another distillation apparatus Condensate reflux pipe 24 of another distillation apparatus Circulation pipe 25 for heating the bottom liquid of another distillation apparatus 25 High-b

Abstract

本発明は、ジメチルスルホキシドを含む液体を、蒸留装置を使って蒸留する方法であって、 (1)蒸留装置底部のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、蒸留装置底部のジメチルスルホキシドを含む液体に、炭酸ナトリウムを0.005重量~25重量%混合して、加熱し、(2)ジメチルスルホキシドを含む液体を仕込む位置よりも下部の位置であって、加熱部より上部の位置から、ジメチルスルホキシドを含む留分を得るジメチルスルホキシドを蒸留する方法である。 本発明のジメチルスルホキシドを蒸留する方法は、設備がコンパクトとなり設備建設の投資額が少ない。更に、蒸留塔内のプロセス液と蒸気の温度が上がることから、これらの顕熱と潜熱回収により、エネルギーを再活用して、設備全体では、エネルギーの使用量を減少させることができる。この結果、精製コストが低く、経済的なジメチルスルホキシドの蒸留精製が可能となる。本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、不純物が少なく、高純度である。

Description

ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔
 本発明は、ジメチルスルホキシド(DMSO)を蒸留する方法に関する。特に、本発明は、ジメチルスルホキシドを含む液体を、蒸留装置を使って蒸留する方法に関する。
 さらに、本発明は、ジメチルスルホキシドを蒸留する多段式蒸留塔に関する。
 ジメチルスルホキシドは、電子材料の剥離、洗浄溶剤、医農薬の合成、ポリマーの重合や紡糸等、工業的に溶媒として幅広く使用されている。一旦使用した廃液からのジメチルスルホキシド成分の回収再利用は工業的に広く行われている。メチルスルホキシドを含む廃液を加熱蒸留して、メチルスルホキシドを精製する工程は、ジメチルスルホキシドを回収して再利用する上で、必要不可欠な工程である。
 しかしながら、ジメチルスルホキシドは熱的に不安定である。ジメチルスルホキシドは、常圧で沸騰もしくは蒸留すると、一部分のジメチルスルホキシドが分解することが知られている。ジメチルスルホキシドの製造または回収過程で蒸留精製を行う際、熱分解生成物が不純物として存在し、ジメチルスルホキシドの溶媒としての性能を低下させるのを防ぐため、通常、加熱温度を下げるために、高真空下で減圧蒸留を行われている。
 一般的に、ジメチルスルホキシドを減圧蒸留する場合、蒸留運転条件の減圧度が大きくなるほど、塔内を上昇する蒸気の体積が増加することから、安定運転ができるようにするため、蒸気流速を下げる必要がある。蒸気流速を下げることは、既設の蒸留塔であれば、供給量を下げる必要があるので、ジメチルスルホキシドの回収コストが増大する。蒸留塔を新設する場合、蒸気流速を下げるために塔径を大きくすることとなり、設備全体のサイズが大きくなるので、設備建設投資額を増大させる要因となる。
 また、加熱や冷却に多くのエネルギーを使用する連続蒸留設備は、プロセス液や蒸気が持つ顕熱や蒸発潜熱を回収して有効利用し、エネルギー使用量の低減を図ることが多い。特に蒸気凝縮での蒸発潜熱利用においては、蒸気温度が高いほど加熱媒体として、有効活用がしやすくなり、多くの設備で、別のプロセスの流体の加熱や、中圧・高圧スチーム発生に広く利用することができる。しかし、高真空下でのジメチルスルホキシドの減圧蒸留は、蒸気温度が低いので、熱を十分に有効利用することができず、一部の熱が排熱される場合が多い。
 更に、ジメチルスルホキシドの減圧蒸留は、廃液に水のようなジメチルスルホキシドより沸点の低い低沸成分が多く含まれている場合、真空度が高くなるほど、低沸成分の蒸留分離では蒸気凝縮温度が下がるという問題点があった。蒸気凝縮温度が下がることにより、コンデンサーの冷媒に、単価の高い冷凍水、冷凍塩水のような低温冷媒を用いることとなり、蒸留のコストが高くなり、低温冷媒製造装置の負荷が増加する。
 効率良く、経済的なジメチルスルホキシドの蒸留精製を行う目的で、ジメチルスルホキシドを蒸留する時の圧力や温度を上げるため、ジメチルスルホキシドの分解抑制剤に関する検討が行われている。
 ジメチルスルホキシドを蒸留精製する場合、塩基を加えて蒸留する方法が知られている。例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムなどのアルカリ金属水酸化物を添加する方法(特許文献1、2参照)、粒状の水酸化ナトリウム、水酸化カリウムを投入し、水酸化ナトリウム、水酸化カリウムを膨潤してから除去する方法(特許文献3参照)が知られている。
 しかしながら、アルカリ金属水酸化物をジメチルスルホキシドに添加する方法では、0.003~0.5%、粒状の水酸化ナトリウム、水酸化カリウムを投入する方法に限定され、0.5%より多く水酸化ナトリウム、水酸化カリウムを添加すると分解生成物が増大すると報告されている。水酸化ナトリウムをジメチルスルホキシドに添加し、水酸化ナトリウムが膨潤してから、水酸化ナトリウム、水酸化カリウムを除去する方法では、添加する水酸化ナトリウム、水酸化カリウムの量は、0.5%に限定され、0.5%より多く水酸化ナトリウム、水酸化カリウムを添加すると分解生成物が増大すると報告されている。
 特許文献1、2、3は、バッチ式の蒸留によるジメチルスルホキシドの熱分解の評価結果から、アルカリ金属水酸化物の添加条件を記載している。しかし、バッチ式蒸留の場合は、運転中留出量が増えてくるとともに、缶残液の塩基濃度が高くなる。連続蒸留の場合は、塔底液の塩基濃度は、蒸留原料に混合した濃度よりも高くなる。この結果、連続蒸留の場合は、塔底では、塩基が濃縮されるため、塔底の高濃度の塩基の存在により、ジメチルスルホキシドの熱分解が進む場合がある。さらに、高濃度の塩基から塩基結晶が析出することにより、再沸器伝熱面、塔のトレイ、充填層、分散器、集液器等にスケーリングや結晶堆積が起きる。特に、連続蒸留の場合は、蒸留塔内部において塩基結晶が析出すると内液のスラリー濃度が塔内の随所で均一でないため、局所的に塩基濃度の高い箇所で、ジメチルスルホキシドの熱分解を促進させることとなる。そこで、連続蒸留の場合は、ジメチルスルホキシドの熱分解を防止するため、通常、ジメチルスルホキシドの回収率を落として、塩基濃縮度の上昇を抑制し、さらに、塔底部の塩基濃縮度を下げるため、攪拌機や大流量のポンプ液循環等の設備を設置する例が多い。
 ジメチルスルホキシドの製造または回収過程で蒸留精製を行う場合、ジメチルスルホキシドを大量に製造または回収し、高品質のジメチルスルホキシドを高収率で得ることが可能な連続蒸留プロセスにより、蒸留精製される。連続蒸留プロセスにおいて、通常、水に代表されるジメチルスルホキシドより沸点の低い低沸点成分を蒸留分離する低沸塔と、高沸点成分を分離する高沸塔と、少なくとも2本以上の蒸留塔を用い、各塔それぞれジメチルスルホキシド熱分解が起きない温度・圧力で蒸留を行うのが一般的である。しかしながら、蒸留設備の建設投資額削減のためには、蒸留塔統合により本数を少なくしてコンパクトでシンプルなプロセスにすることが、望まれている。
特公昭43-3765号公報 特公昭38-20721号公報 特公昭60-1302号公報
 本発明の目的は、コンパクトでシンプルなプロセス、あるいは、コンパクトな蒸留設備により、ジメチルスルホキシドを大量に製造または回収し、高品質のジメチルスルホキシドを高収率で得ることが可能なジメチルスルホキシドを蒸留する方法を提供することにある。
 さらに、本発明の目的は、ジメチルスルホキシドを大量に製造または回収し、高品質のジメチルスルホキシドを高収率で得ることが可能な多段式蒸留塔を提供することにある。
 本発明は、ジメチルスルホキシドを含む液体を、蒸留装置を使って蒸留する方法であって、
(1)蒸留装置底部のジメチルスルホキシドを含む液体に、蒸留装置底部のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、炭酸ナトリウムを0.005重量~25重量%混合して、加熱し、
(2)ジメチルスルホキシドを含む液体を仕込む位置よりも下部の位置であって、加熱部より上部の位置から、ジメチルスルホキシドを含む留分を得るジメチルスルホキシドを蒸留する方法である。
 さらに、本発明は、ジメチルスルホキシドを含む液体を蒸留する多段式蒸留塔であって、蒸留塔の塔底に、炭酸ナトリウムを添加する設備を有し、蒸留塔の塔底のジメチルスルホキシドを含む液体に、蒸留塔の塔底のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、炭酸ナトリウムの濃度を0.005重量~25重量%に制御混合して加熱できる装置を設け、ジメチルスルホキシドを含む液体を供給する供給段よりも下部の位置であって、加熱部より上部の位置から、ジメチルスルホキシドを含む留分を流出するサイドカットが設けられた多段式蒸留塔である。
 本発明のジメチルスルホキシドを蒸留する方法は、設備がコンパクトとなり設備建設の投資額が少ない。更に、蒸留塔内のプロセス液と蒸気の温度が上がることから、これらの顕熱と潜熱回収により、エネルギーを再活用して、設備全体では、エネルギーの使用量を減少させることができる。この結果、精製コストが安い、経済的なジメチルスルホキシドの蒸留精製が可能となる。
 本発明のジメチルスルホキシドを蒸留する方法は、ジメチルスルホキシドを大量に製造し、高品質のジメチルスルホキシドを高収率で得ることが可能である。
 本発明のジメチルスルホキシドを蒸留する方法は、ジメチルスルホキシドを大量に回収し、高品質のジメチルスルホキシドを高収率で得ることが可能である。
 本発明の多段式蒸留塔は、設備がコンパクトであり、ジメチルスルホキシドを大量に製造し、高品質のジメチルスルホキシドを高収率で得ることが可能である。
 本発明の多段式蒸留塔は、設備がコンパクトであり、ジメチルスルホキシドを大量に回収し、高品質のジメチルスルホキシドを高収率で得ることが可能である。
 本発明の多段式蒸留塔は、蒸留塔内のプロセス液や蒸気の温度が上がることから、これらの顕熱や潜熱回収により、エネルギーを再活用して、設備全体では、エネルギーの使用量を減少させることができる。この結果、精製コストが安い、経済的なジメチルスルホキシドの蒸留精製が可能となる。
 本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、不純物が少なく、高純度である。本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、電子材料のフォトレジストの剥離液、医農薬の合成、レンズモールドなどの剥離・洗浄液、セルロース、ポリイミド、ポリスルホン、ポリウレタン、ポリアクリロニトリルなどのポリマーの重合や紡糸工程の溶剤、また塗料の剥離液として利用できる。
 本発明の多段式蒸留塔により回収・精製されたジメチルスルホキシドは、不純物が少なく、高純度である。本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、電子材料の剥離、洗浄、医農薬の合成、ポリマーの重合や紡糸などの溶剤として幅広く使用することができる。
本発明のジメチルスルホキシドを蒸留する方法に使用する蒸留装置の例示であり、本発明の多段式蒸留塔の例示である。 実施例1のジメチルスルホキシドの蒸留精製を説明する図面である。加熱開始前に再沸器がつけられた蒸留塔底部には、予めジメチルスルホキシドを2kg張りこんだ。 実施例1のジメチルスルホキシドの蒸留精製を説明する図面である。蒸留塔底部に炭酸ナトリウムを添加した。 実施例1のジメチルスルホキシドの蒸留精製を説明する図面である。蒸留塔底部にジメチルスルホキシドおよび炭酸ナトリウムが存在する。 実施例1のジメチルスルホキシドの蒸留精製を説明する図面である。加熱を開始して、塔頂より留出が始まった後は全還流にて安定化させた。 実施例1のジメチルスルホキシドの蒸留精製を説明する図面である。蒸留塔中段から含水ジメチルスルホキシド原液を供給し、サイドカットから液の形で製品ジメチルスルホキシドを抜き出し、連続脱水蒸留をした。 本発明のジメチルスルホキシドを蒸留する方法に使用する蒸留装置の例示であり、本発明の多段式蒸留塔の例示である。製品抜き出しのサイドカットの下に精製段を設けられている。 本発明のジメチルスルホキシドを蒸留する方法に使用する蒸留装置の例示であり、本発明の多段式蒸留塔の例示である。本発明の多段式蒸留塔に、別の蒸留塔が設置されている。
 本発明は、ジメチルスルホキシドを含む液体を、蒸留装置を使って蒸留する方法である。
 本発明において、ジメチルスルホキシドを含む液体は、例えば、ジメチルスルフィドの酸化等により合成する工程で得られたジメチルスルホキシドを含む反応液、電子材料のフォトレジストの剥離液として使用したジメチルスルホキシドを含む廃液、レンズモールドなどの剥離・洗浄液として使用したジメチルスルホキシドを含む廃液、医農薬の合成溶媒に使用したジメチルスルホキシドを含む廃液、セルロース、ポリイミド、ポリスルホン、ポリウレタン、ポリアクリロニトリルなどのポリマーの重合や紡糸工程で使用したジメチルスルホキシドを含む廃液、また、塗料の剥離液として使用したジメチルスルホキシドを含む廃液などである。
 ジメチルスルホキシドを含む液体中のジメチルスルホキシドの濃度が低くすぎるとジメチルスルホキシド以外の成分の蒸留にコストがかかるので、ジメチルスルホキシドを含む液体中のジメチルスルホキシドの濃度は、10重量%以上が好ましく、20重量%以上がより好ましい。
 ジメチルスルホキシドを含む液体中に水を含有することができる。ジメチルスルホキシドを含む液体中の水の含有量は、通常、0.002~99.99%である。
 本発明のジメチルスルホキシドを蒸留する方法では、蒸留装置底部のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、蒸留装置の底部で、ジメチルスルホキシドを含む液体に、炭酸ナトリウムを0.005重量~25重量%混合する。
 本発明において、蒸留装置底部とは、蒸留装置底部のうち加熱器の加熱により気化されるプロセス液が最も高温となって滞留する部分である。
 本発明で使用される炭酸ナトリウムは、無水物でも水和物でも良い。炭酸ナトリウムの水和物は、容易に入手可能な1水和物、または、10水和物が好ましい。
 蒸留装置底部のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、蒸留装置の底部で、ジメチルスルホキシドを含む液体に、炭酸ナトリウムを、0.005重量%~25重量%混合する。炭酸ナトリウムの混合量が0.005重量%より低いと、ジメチルスルホキシドが分解しやすい。また、炭酸ナトリウムの混合量が25重量%を超えると蒸留装置の底部のスラリー性状が悪化し、蒸留装置の底部の結晶堆積や再沸器伝熱面のスケーリング、抜き出し時の詰まり発生が著しくなり、運転面、作業面で困難が生じる。炭酸ナトリウムの混合量は、ジメチルスルホキシドを含む液、炭酸ナトリウムの総計を100重量%としたとき、0.08重量%~20重量%が好ましい。
 炭酸ナトリウムは、粉末、固体の状態で添加することができる。また、炭酸ナトリウムを水などの適当な溶媒と混合して、水溶液あるいはスラリーとして、蒸留装置の底部に添加することもできる。蒸留装置の内部に付着した炭酸ナトリウムは、水に対して大きな溶解度を持っているため、水、温水、水蒸気により容易に洗浄できる。本発明では、蒸留装置の内部に付着した炭酸ナトリウムを回収再利用しても良い。
 本発明のジメチルスルホキシドを蒸留する方法では、蒸留装置の底部に、炭酸ナトリウムを直接添加することが好ましい。
 炭酸ナトリウムは、蒸留装置のトレイ・充填層・分散器・集液器等で炭酸ナトリウムの付着や結晶堆積、詰まりを起こさないために、蒸留装置の再沸器がつけられている塔底液中に予め添加してから運転を開始することが好ましい。
 本発明のジメチルスルホキシドを蒸留する方法では、好ましくは、蒸留装置に、ジメチルスルホキシドを含む液体を仕込んだ後、ジメチルスルホキシドを含む液体を、蒸留装置に連続供給する。
 本発明では、蒸留時の圧力は、常圧から減圧が好ましい。特に除去したい不純物との沸点差が小さい場合には、真空度を、大きく下げないで、不純物とジメチルスルホキシドの沸点の差を大きくすることで、不純物の除去が容易になる。
 本発明のジメチルスルホキシドを蒸留する方法では、高温でもジメチルスルホキシドを分解しないので、従来よりも高真空度を必要としない。本発明のジメチルスルホキシドを蒸留する方法では、好ましくは、蒸留装置底部の温度を、90℃~180℃とする。蒸留装置底部の温度が、90℃~180℃であると、蒸留運転温度範囲が広がることから、塔頂の減圧真空設備やコンデンサ、低温冷媒製造設備の負荷を下げることができ、効率的・経済的な蒸留精製方法として工業的に好ましい。
 本発明では、常圧で蒸留する場合は、不活性ガス雰囲気で蒸留することが好ましく、窒素、または、アルゴン雰囲気で蒸留することがより好ましい。
 本発明のジメチルスルホキシドを蒸留する方法では、好ましくは、連続脱水蒸留して、ジメチルスルホキシドを得る。
 本発明のジメチルスルホキシドを蒸留する方法では、蒸留装置の底部で、ジメチルスルホキシドを含む液体に、炭酸ナトリウムを混合して加熱し、ジメチルスルホキシドを含む液体を仕込む位置よりも下部の位置であって、加熱部より上部の位置から、ジメチルスルホキシドを含む留分を得る。
 本発明のジメチルスルホキシドを蒸留する方法では、好ましくは、ジメチルスルホキシドを含む液体を仕込む位置よりも下部の位置であって、加熱部より上部の位置から、蒸留装置への供給原料よりもジメチルスルホキシドが富む留分を得る。
 本発明のジメチルスルホキシドを蒸留する方法では、蒸留装置が、1本の多段式蒸留塔であることが好ましい。
 本発明では、好ましくは、塔頂より水を含む低沸点成分、塔底より高沸点成分を抜き、蒸留原料の供給段より下からサイドカットによりジメチルスルホキシドに富んだ留分を抜き出す。
 本発明のジメチルスルホキシドを蒸留する方法では、好ましくは、蒸留装置の内部の蒸気または液体を、別の設備の加熱源として利用する。
 本発明のジメチルスルホキシドを蒸留する方法では、好ましくは、1つの蒸留装置で、水を含む低沸成分と、高沸成分を同時に連続蒸留分離する。
 本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、不純物が少なく高純度である。本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、電子材料のフォトレジストの剥離液、医農薬の合成、レンズモールドなどの剥離・洗浄液、セルロース、ポリイミド、ポリスルホン、ポリウレタン、ポリアクリロニトリルなどのポリマーの重合や紡糸工程の溶剤、また塗料の剥離液として利用できる。
 本発明の多段式蒸留塔は、ジメチルスルホキシドを含む液体を蒸留する多段式蒸留塔である。
 本発明の多段式蒸留塔は、好ましくは、気液接触させて濃縮精製を行う蒸留塔、水を含む低沸成分の蒸気を凝縮させ凝縮液を得る凝縮器、液を加熱気化させてジメチルスルホキシド蒸気を発生させる再沸器からなる。
 本発明の多段式蒸留塔は、蒸留塔の塔底に、炭酸ナトリウムを添加する設備を有する。本発明の多段式蒸留塔は、好ましくは、炭酸ナトリウムが一定の濃度範囲内に存在させるため、連続あるいは間欠的に炭酸ナトリウムを塔底部に補充する。本発明の多段式蒸留塔は、好ましくは、蒸留塔底部に、炭酸ナトリウムを直接添加する設備を有する。炭酸ナトリウムは、炭酸ナトリウムを直接添加する設備から結晶固体のまま供給してもよいし、溶液あるいはジメチルスルホキシドと混合した懸濁スラリーで供給してもよい。
 本発明の多段式蒸留塔は、好ましくは、塔頂より水を含む低沸点成分、塔底より高沸点成分を抜き、蒸留原料の供給段より下からサイドカットによりジメチルスルホキシドに富んだ留分を抜き出す。
 本発明の多段式蒸留塔は、より好ましくは、塔頂より水を含む低沸点成分、塔底より高沸点成分を抜き、蒸留原料の供給段より下からサイドカットによりジメチルスルホキシドに富んだ留分を抜き出す方式により、蒸留塔は1本である。本発明の多段式蒸留塔は、より好ましくは、1つの蒸留装置で、水を含む低沸成分と高沸成分を同時に連続蒸留分離する。
 本発明の多段式蒸留塔では、蒸留塔の気液接触させる段数は、2~50段の蒸留塔で行うことが好ましく、さらに好適には、3~40段の蒸留塔が好ましい。
 本発明の多段式蒸留塔は、段の構造はトレイ式あるいは充填層式が例示される。ジメチルスルホキシド熱劣化を少なくするため、塔内流動滞留時間を短くでき、且つ安定運転の点で圧損を小さくできる充填層式の方が好ましく、特に規則充填層式が好ましい。
 本発明の多段式蒸留塔は、蒸留塔の塔底のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、蒸留塔の塔底のジメチルスルホキシドを含む液体に、炭酸ナトリウムの濃度を0.005重量~25重量%に制御混合して加熱できる装置を設ける。
 本発明の多段式蒸留塔は、ジメチルスルホキシドを含む液体を供給する供給段よりも下部の位置であって、加熱部より上部の位置から、ジメチルスルホキシドを含む留分を流出するサイドカットを有する。
 サイドカットからジメチルスルホキシドを含む留分を抜き出すのは、液・蒸気どちらでもよい。ジメチルスルホキシドを含む留分が蒸気であれば、凝縮器、ジメチルスルホキシドを含む留分が液の場合は、冷却器を通して、所望の温度、形態で製品を得る。
 本発明の多段式蒸留塔は、好ましくは、ジメチルスルホキシドを含む留分を流出するサイドカットの上部と下部の少なくともどちらかにジメチルスルホキシドの精製段が設けられる。
 本発明の多段式蒸留塔は、蒸留塔の濃縮部、回収部はトレイ方式、充填層方式のどちらでもよく、充填層は不規則充填物、規則充填物どちらを使用してもよい。
 蒸留塔内部には、必要に応じて、分散器、集液器、充填層サポートが備え付けられる。説明図は一例として蒸留塔底部にケトル型再沸器が直接備え付けられているが、他の方式として配管で繋げて蒸留塔と再沸器をそれぞれ独立させ、両者間をサーモサイフォンあるいはポンプ循環等で液や蒸気を移送させる構造でもよい。
 本発明の多段式蒸留塔は、蒸留塔底部温度が、90℃~180℃であることが好ましい。更に、プロセス液・蒸気が持つ顕熱・蒸発潜熱を回収して有効利用し省エネを図る場合は、蒸留塔底部温度を150℃~180℃で連続蒸留するのが好ましい。
 本発明の多段式蒸留塔は、好ましくは、蒸留塔塔頂の蒸気は備え付けられた凝縮器で凝縮させ、凝縮液の一部を還流として蒸留塔へ戻し、一部は廃液として払い出す配管がそれぞれ備え付けられる。本発明の多段式蒸留塔は、好ましくは、凝縮器のベント配管は真空ポンプやエジェクターなど真空発生装置につながる構造となっている。
 本発明の多段式蒸留塔は、好ましくは、塔頂ベーパーのコンデンサを有し、塔頂ベーパーのコンデンサが他の流体のヒーター、またはボイラー、またはリボイラーの機能を持つ。
 本発明の多段式蒸留塔は、塔底部を強制循環・攪拌をしなくても、ジメチルスルホキシドの分解を抑制する。
 本発明の多段式蒸留塔は、蒸留塔のトレイ・充填層・分散器・集液器等で分解抑制剤のスケーリングや結晶堆積、詰まりがないため、長時間の安定運転が可能である。
 本発明の多段式蒸留塔を使用して得られたジメチルスルホキシドは、不純物が少なく高純度である。本発明の多段式蒸留塔を使用して得られたジメチルスルホキシドは、電子材料のフォトレジストの剥離液、医農薬の合成、レンズモールドなどの剥離・洗浄液、セルロース、ポリイミド、ポリスルホン、ポリウレタン、ポリアクリロニトリルなどのポリマーの重合や紡糸工程の溶剤、また塗料の剥離液として利用できる。
 本発明のジメチルスルホキシドを蒸留する方法に使用する蒸留装置の例を図1に示した。図1に示した蒸留装置は、本発明の多段式蒸留塔の例示でもある。
 図1に示した多段式蒸留塔は、塔頂より水を含む低沸点成分、塔底より高沸点成分を抜き、図1(5)の蒸留原料供給配管より、蒸留前のジメチルスルホキシドを含む液体が供給される。分解抑制剤である炭酸ナトリウムは、(13)の分解抑制剤(炭酸ナトリウム)添加用配管から、蒸留塔の再沸器がつけられている蒸留塔底部に投入する。図1(3)の再沸器で加熱されて、精製されたジメチルスルホキシドは、図1(11)の製品ジメチルスルホキシドサイドカット抜出配管から抜き出す。製品ジメチルスルホキシドサイドカット抜出配管は、蒸留原料供給配管より、下部に設置されている。高沸成分の精製除去を強化する場合は、好ましくは、図7に示すように製品抜き出しのサイドカットの下に精製段を設けた蒸留塔となる。
 また本発明で塔頂のプロセス蒸気が持つ蒸発潜熱を回収して有効利用し省エネを図る場合の蒸留装置の例を図8に示す。図8に示した蒸留装置は、本発明の多段式蒸留塔の例示でもある。本発明の多段式蒸留塔は別の蒸留塔の塔底液と本発明の多段式蒸留塔の塔頂のプロセス蒸気と熱交換させることにより、別の蒸留塔の加熱エネルギーを低減させるものである。本発明ではジメチルスルホキシドの蒸留温度、すなわち塔頂のプロセス蒸気の温度を高くすることが可能となるため、廃熱回収による省エネの汎用性を高めることができる。
 以下、実施例により本発明を具体的に説明する。
 本実施例において、以下の条件のガスクロマトグラフ法により、ジメチルスルホキシドのガスクロマトグラフ純度(面積%)を測定した。
  ・使用機器 島津製作所GC-2010(FID)
  ・カラム DB-WAX 0.25mm×60m、膜厚 0.25μm
・キャリアガス He 165.7kPa
・カラム昇温条件 35℃ → 7℃/分 → 140℃×10分 → 15℃/分 → 
250℃×10分
・注入口温度   200℃
・検出器温度 250℃
・FID  Air    400ml/min
      H2     40ml/min
        メークアップ 30ml/min
・スプリット比 14
・分析サンプル調製 サンプルを0.5μmのPTFE製シリンジフィルターでろ過した。
・注入量  1.0μl 。
 (参考例1)
 単蒸留操作に必要なジムロートコンデンサー、留出液用の受器、攪拌機、温度計を備えた1L4つ口フラスコに、含水ジメチルスルホキシド(水分33.3重量%、ジメチルスルホキシド66.7重量%、水分量はカールフィッシャー水分計で測定を行った)200g、添加剤として炭酸ナトリウム量を、仕込み濃度として、0.02重量%添加した(仕込み濃度の計算式は下記に示す)。
仕込み濃度(%)=[炭酸ナトリウム添加重量(g)]/[含水ジメチルスルホキシド仕込み重量(g)+炭酸ナトリウム添加重量(g)]×100   。
 窒素でフラスコ内を置換した後、ジムロートコンデンサーの上部に窒素を充填したゴム風船を取り付けて密閉状態にした。192℃のオイルバスで加熱を開始し、水を含む留分を80g留出させた後、内温が180℃に到達するように加熱し、その後、180±2℃で24時間加熱を行った。表1において、180±2℃で24時間の加熱保持中のフラスコ内液中の炭酸ナトリウム濃度は、原料仕込み時から80g減量していることから、仕込み濃度の1.67倍(=200g/(200g-80g))とした。
 25℃以下まで冷却後、フラスコの壁についた液とフラスコの内液を混ぜ合わせた。加熱後の内液のジメチルスルホキシドのガスクロマトグラフ純度(面積%)を測定し、
分解速度=[加熱前ジメチルスルホキシドのガスクロマトグラフ純度(%)-加熱後ジメチルスルホキシドのガスクロマトグラフ純度(%)]/加熱前ジメチルスルホキシドのガスクロマトグラフ純度(%)×100
に従って算出されたジメチルスルホキシドの分解速度(面積%/hr)を表1に示した。
 (参考例2~6)
 炭酸ナトリウムの濃度を、表1に記載したように変えたこと以外は、参考例1と同様にした。結果を表1に示した。
 (参考例7)
 炭酸ナトリウムを添加しなかったこと以外は、参考例1と同様にした。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 (参考例8)
 添加剤として、炭酸ナトリウムを添加せず、水酸化ナトリウムを、仕込み濃度として、0.01重量%添加した(仕込み濃度の計算式は下記に示す)こと以外は、参考例1と同様にした。結果を表2に示した。
仕込み濃度(%)=[水酸化ナトリウム添加重量(g)]/[含水ジメチルスルホキシド仕込み重量(g)+水酸化ナトリウム添加重量(g)]×100  。
表2において、180±2℃で24時間の加熱保持中のフラスコ内液中の水酸化ナトリウム濃度は、原料仕込み時から80g減量していることから、仕込み濃度の1.67倍(=200g/(200g-80g))とした。
 参考例1と同様にして、25℃以下まで冷却後、フラスコの壁についた液とフラスコの内液を混ぜ合わせた。加熱後の内液のジメチルスルホキシドのガスクロマトグラフ純度(面積%)を測定し、
分解速度=[加熱前ジメチルスルホキシドのガスクロマトグラフ純度(%)-加熱後ジメチルスルホキシドのガスクロマトグラフ純度(%)]/加熱前ジメチルスルホキシドのガスクロマトグラフ純度(%)×100
に従って算出されたジメチルスルホキシドの分解速度(面積%/hr)を表2に示した。
 (参考例9~10)
 水酸化ナトリウムの濃度を、表2に記載したように変えたこと以外は、参考例8と同様にした。結果を表2に示した。
 参考例1~10から、常圧沸点に近い高温下においても、炭酸ナトリウムは、従来分解抑制剤として知られている水酸化ナトリウムよりも非常に広い濃度範囲で、安定的に、ジメチルスルホキシドの分解を抑制する効果を発現することがわかる。
Figure JPOXMLDOC01-appb-T000002
 実施例1
 33重量%含水ジメチルスルホキシドを図1に示す連続蒸留設備(蒸留塔:塔径65mm、原料供給より上部の濃縮部、下部の回収部にそれぞれ5段相当の規則充填物を入れた充填塔)にて連続脱水蒸留精製を行った。実施例1について、図面を使って説明する。
 加熱開始前に再沸器がつけられた蒸留塔底部には、予めジメチルスルホキシドを2kg張りこんだ(図2)。これに炭酸ナトリウムを1.2g添加した(図3)。蒸留塔底部の炭酸ナトリウム濃度はジメチルスルホキシドおよび炭酸ナトリウムの仕込み量から、1.2g/(2000g+1.2g)より計算し、0.06重量%とした(図4)。その後蒸留塔を減圧にし、加熱を開始して炊き上げ、塔頂より留出が始まった後は全還流にて30分間安定化させた(図5)。
 次に、33重量%の含水ジメチルスルホキシド原液を蒸留塔中段から1kg/hで連続供給し、塔頂部から水を含む低沸成分、回収部すぐ下のサイドカットから液の形で製品ジメチルスルホキシドを抜き出し、連続脱水蒸留を開始した(図6)。製品として得られたジメチルスルホキシドの収率94%(原液中のジメチルスルホキシド純分基準)がなるように、塔頂、サイドカットの抜き出し量を調整し、塔底部からの抜き出しは行わずホールドした。還流比は3.0とし、塔ボトム温度が108℃となるよう蒸留圧力を調整した。
 表3に、原液中のジメチルスルホキシドの不純物濃度、製品として得られたジメチルスルホキシドの不純物濃度、製品として得られたジメチルスルホキシドの水分率、ジメチルスルホキシド製品の収率を示した。水分量はカールフィッシャー水分計で測定した。
 実施例2
 塔底温度が108℃となるよう蒸留圧力を調整した以外は、実施例1と同様にした。結果を表3に示した。
 実施例3
 高沸成分の精製除去強化を目的として、製品ジメチルスルホキシドを抜くサイドカットの下に、更に5段相当の規則充填物を充填した以外は実施例2と同様とした。結果を表3に示した。
 (比較例1)
 塔底部に何も添加せず、塔底温度が94℃となるよう蒸留圧力を調整した以外は、実施例1と同様にした。結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
 分解抑制剤として炭酸ナトリウムを蒸留塔塔底に存在させることで、不純物の少ないジメチルスルホキシドを、安定した連続蒸留により、得ることができた。連続蒸留は、95~108℃という高温条件で実施することができた。またサイドカットの下に精製段を追加して同じ108℃で実施すると、安定して高沸成分であるエチルメチルスフォキシド、ジメチルスルフォンをより除去することができた。
 本発明のジメチルスルホキシドを蒸留する方法は、設備がコンパクトとなり設備建設の投資額が少ない。更に、蒸留塔内のプロセス液と蒸気の温度が上がることから、これらの顕熱と潜熱回収により、エネルギーを再活用して、設備全体では、エネルギーの使用量を減少させることができる。この結果、精製コストが安い、経済的なジメチルスルホキシドの蒸留精製が可能となる。
 本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、不純物が少なく、高純度である。本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、電子材料のフォトレジストの剥離液、医農薬の合成、レンズモールドなどの剥離・洗浄液、セルロース、ポリイミド、ポリスルホン、ポリウレタン、ポリアクリロニトリルなどのポリマーの重合や紡糸工程の溶剤、また塗料の剥離液として利用できる。
 本発明の多段式蒸留塔は、蒸留塔内のプロセス液や蒸気の温度が上がることから、これらの顕熱や潜熱回収により、エネルギーを再活用して、設備全体では、エネルギーの使用量を減少させることができる。この結果、精製コストが安い、経済的なジメチルスルホキシドの蒸留精製が可能となる。
 本発明の多段式蒸留塔により回収・精製されたジメチルスルホキシドは、不純物が少なく、高純度である。本発明のジメチルスルホキシドを蒸留する方法により得られたジメチルスルホキシドは、電子材料の剥離、洗浄、医農薬の合成、ポリマーの重合や紡糸などの溶剤として幅広く使用することができる。
1  蒸留塔本体
2  段(図の場合は充填層)
3  再沸器
4  凝縮器
5  原料供給配管
6  蒸留塔塔頂蒸気凝縮器行き配管
7  凝縮器ベント配管
8  凝縮液落液配管 
9  凝縮液払出配管
10 凝縮液還流配管
11 製品ジメチルスルホキシドサイドカット抜出配管
12 高沸物抜出配管
13 分解抑制剤(炭酸ナトリウム)添加用配管
14 別の蒸留装置の蒸留塔本体
15 別の蒸留装置の段(図の場合は充填層)
16 廃熱回収用凝縮器
17 別の蒸留装置の凝縮器
18 別の蒸留装置の原料供給配管
19 別の蒸留装置の蒸留塔塔頂蒸気凝縮器行き配管
20 別の蒸留装置の凝縮器ベント配管
21 別の蒸留装置の凝縮液落液配管 
22 別の蒸留装置の凝縮液払出配管
23 別の蒸留装置の凝縮液還流配管
24 別の蒸留装置の塔底液加熱用循環配管
25 別の蒸留装置の高沸物抜出配管

Claims (15)

  1. ジメチルスルホキシドを含む液体を、蒸留装置を使って蒸留する方法であって、
    (1)蒸留装置底部のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、蒸留装置底部のジメチルスルホキシドを含む液体に、炭酸ナトリウムを0.005重量~25重量%混合して、加熱し、
    (2)ジメチルスルホキシドを含む液体を仕込む位置よりも下部の位置であって、加熱部より上部の位置から、ジメチルスルホキシドを含む留分を得るジメチルスルホキシドを蒸留する方法。
  2. ジメチルスルホキシドを含む液体を仕込む位置よりも下部の位置であって、加熱部より上部の位置から、蒸留装置への供給原料よりもジメチルスルホキシドが富む留分を得る請求項1に記載のジメチルスルホキシドを蒸留する方法。
  3. 蒸留装置が、1本の多段式蒸留塔である請求項1または2に記載のジメチルスルホキシドを蒸留する方法。
  4. 蒸留装置底部の温度を、90℃~180℃とする請求項1または2に記載のジメチルスルホキシドを蒸留する方法。
  5. 蒸留装置の底部に、炭酸ナトリウムを直接添加する請求項1または2に記載のジメチルスルホキシドを蒸留する方法。
  6. 蒸留装置に、ジメチルスルホキシドを含む液体を仕込んだ後、ジメチルスルホキシドを含む液体を、蒸留装置に連続供給する請求項1または2に記載のジメチルスルホキシドを蒸留する方法。
  7. 連続脱水蒸留して、ジメチルスルホキシドを得る請求項1または2に記載のジメチルスルホキシドを蒸留する方法。
  8. 蒸留装置の内部の蒸気または液体を別の設備の加熱源として利用する請求項1または2に記載のジメチルスルホキシドを蒸留する方法。
  9. 1つの蒸留装置で、水を含む低沸成分と高沸成分を同時に連続蒸留分離する請求項1または2に記載のジメチルスルホキシドを蒸留する方法。
  10. ジメチルスルホキシドを含む液体を蒸留する多段式蒸留塔であって、
    蒸留塔の塔底に、炭酸ナトリウムを添加する設備を有し、
    蒸留塔の塔底のジメチルスルホキシドを含む液体に、蒸留塔の塔底のジメチルスルホキシドを含む液体、炭酸ナトリウムの総計を100重量%としたとき、炭酸ナトリウムの濃度を0.005重量~25重量%に制御混合して加熱できる装置を設け、
    ジメチルスルホキシドを含む液体を供給する供給段よりも下部の位置であって、加熱部より上部の位置から、ジメチルスルホキシドを含む留分を流出するサイドカットが設けられた多段式蒸留塔。
  11. 塔頂より水を含む低沸点成分、塔底より高沸点成分を抜き、蒸留原料の供給段より下からサイドカットによりジメチルスルホキシドに富んだ留分を抜き出す請求項10に記載の多段式蒸留塔。
  12. 蒸留塔底部温度が、90℃~180℃である請求項10に記載の多段式蒸留塔。
  13. 蒸留塔底部に、炭酸ナトリウムを直接添加する設備を有する請求項10に記載の多段式蒸留塔。
  14. ジメチルスルホキシドを含む留分を流出するサイドカットの上部と下部の少なくともどちらかにジメチルスルホキシドの精製段が設けられた請求項10~13のいずれか1項に記載の多段式蒸留塔。
  15. 蒸留塔に、塔頂ベーパーのコンデンサを有し、塔頂ベーパーのコンデンサが、他の流体のヒーター、またはボイラー、またはリボイラーの機能を持つ請求項10~13のいずれか1項に記載の多段式蒸留塔。
PCT/JP2018/000060 2017-04-12 2018-01-05 ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔 WO2018189969A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/463,680 US11111211B2 (en) 2017-04-12 2018-01-05 Method of distilling dimethyl sulfoxide and multistage distillation tower
JP2018522820A JP7082763B2 (ja) 2017-04-12 2018-01-05 ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔
EP18784415.4A EP3611162A4 (en) 2017-04-12 2018-01-05 METHOD OF DIMETHYL SULFOXIDE DISTILLATION AND MULTI-STAGE DISTILLATION COLUMN
KR1020197016032A KR102469913B1 (ko) 2017-04-12 2018-01-05 디메틸술폭시드를 증류하는 방법, 및 다단식 증류탑

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-078881 2017-04-12
JP2017078881 2017-04-12

Publications (1)

Publication Number Publication Date
WO2018189969A1 true WO2018189969A1 (ja) 2018-10-18

Family

ID=63792447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000060 WO2018189969A1 (ja) 2017-04-12 2018-01-05 ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔

Country Status (7)

Country Link
US (1) US11111211B2 (ja)
EP (1) EP3611162A4 (ja)
JP (1) JP7082763B2 (ja)
KR (1) KR102469913B1 (ja)
CN (2) CN108686397B (ja)
TW (1) TWI802566B (ja)
WO (1) WO2018189969A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469913B1 (ko) * 2017-04-12 2022-11-23 도오레 화인케미칼 가부시키가이샤 디메틸술폭시드를 증류하는 방법, 및 다단식 증류탑
CN114478330A (zh) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 二甲基亚砜的回收精制方法和系统
CN113289364B (zh) * 2021-05-18 2023-04-11 重庆宏大化工科技有限公司 一种用于双氧水生产的浓缩装置及其使用方法
CN115611783B (zh) * 2021-07-14 2024-04-09 南京理工大学 一种安全回收含奥克托今的二甲基亚砜溶剂的装置及其方法
KR20240022874A (ko) 2022-08-12 2024-02-20 주식회사 패리티 냉각장치를 이용한 초저온 증류시스템
KR20240025975A (ko) 2022-08-19 2024-02-27 주식회사 패리티 냉각장치 및 열교환유닛을 이용한 초저온 증류시스템
KR20240028601A (ko) 2022-08-25 2024-03-05 주식회사 패리티 극저온 냉동 어셈블리 및 이를 포함하는 증류 컬럼
KR20240029211A (ko) 2022-08-26 2024-03-05 주식회사 패리티 냉각장치 및 저장장치를 이용한 초저온 증류시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601302B2 (ja) 1980-09-18 1985-01-14 旭化成株式会社 ジメチルスルホオキシドの再利用法
JPH0433765U (ja) 1990-07-16 1992-03-19
JP3820721B2 (ja) 1996-12-27 2006-09-13 カシオ計算機株式会社 ビット同期回路及びビット同期方法
CN204342710U (zh) * 2014-07-21 2015-05-20 天津中福工程技术有限公司 一种用于回收、纯化二甲基亚砜的装置
JP2015145359A (ja) * 2014-01-06 2015-08-13 東レ・ファインケミカル株式会社 ジメチルスルホキシドの精製方法
WO2017064910A1 (ja) * 2015-10-14 2017-04-20 東レ・ファインケミカル株式会社 ジメチルスルホキシドの分解を抑制する方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1046420A (en) * 1963-12-09 1966-10-26 Crown Zellerbach Corp Treatment of dialkyl sulfoxides
JPS5829946B2 (ja) * 1980-10-31 1983-06-25 東海電化工業株式会社 ジヒドロキシジフエニルスルホンの精製方法
JPS601302A (ja) 1983-06-18 1985-01-07 Kobe Steel Ltd ラジアルガスタ−ビンロ−タ
US4964957A (en) * 1988-12-06 1990-10-23 Phillips Petroleum Company Purification of high boiling alkyl sulfides
FR2682045B1 (fr) * 1991-10-02 1993-12-10 Elf Aquitaine Prod Ste Nale Recuperation des solvants polaires aprotiques a partir de leurs solutions aqueuses salines.
FR2741341B1 (fr) * 1995-11-17 1997-12-26 Elf Aquitaine Procede de purification du dimethylsulfoxyde (dmso)
FR2763332B1 (fr) * 1997-05-15 1999-06-25 Elf Aquitaine Procede de purification de dimethylsulfoxyde (dmso)
US5905175A (en) * 1998-05-20 1999-05-18 The Nutrasweet Company Synthesis and purification of 3,3-dimethylbutyraldehyde via oxidation of 1-chloro-3,3-dimethylbutane with dimethyl sulfoxide
JP3692497B2 (ja) * 1999-09-24 2005-09-07 東レ・ファインケミカル株式会社 ジメチルスルホキシドの回収方法
TW583013B (en) * 2002-05-13 2004-04-11 Toray Finechemicals Co Ltd Recovery method of dimethyl sulfoxide and amines
JP4345082B2 (ja) * 2002-05-13 2009-10-14 東レ・ファインケミカル株式会社 高純度ジメチルスルホキシドと、ジメチルスルホキシドとアミン類の混合物の精製方法
US7252756B2 (en) * 2002-12-18 2007-08-07 Bp Corporation North America Inc. Preparation of components for refinery blending of transportation fuels
CN103097348B (zh) * 2011-02-21 2015-10-14 旭化成化学株式会社 羰基化合物的制造方法
JP5793157B2 (ja) * 2013-03-04 2015-10-14 日本リファイン株式会社 溶液処理装置
CN104817481B (zh) * 2015-03-13 2017-02-22 烟台国邦化工机械科技有限公司 一种从dmso水溶液中回收dmso的工艺方法
MX2018006911A (es) * 2015-12-09 2018-08-16 Toray Finechemicals Co Ltd Metodo para purificar sulfoxido de dimetilo.
CN106008291B (zh) * 2016-05-23 2017-09-05 中国工程物理研究院化工材料研究所 一种含炸药二甲基亚砜废液回收二甲亚砜的方法
CN106220536A (zh) * 2016-08-31 2016-12-14 烟台国邦化工机械科技有限公司 一种新型精馏方法
KR102469913B1 (ko) * 2017-04-12 2022-11-23 도오레 화인케미칼 가부시키가이샤 디메틸술폭시드를 증류하는 방법, 및 다단식 증류탑

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601302B2 (ja) 1980-09-18 1985-01-14 旭化成株式会社 ジメチルスルホオキシドの再利用法
JPH0433765U (ja) 1990-07-16 1992-03-19
JP3820721B2 (ja) 1996-12-27 2006-09-13 カシオ計算機株式会社 ビット同期回路及びビット同期方法
JP2015145359A (ja) * 2014-01-06 2015-08-13 東レ・ファインケミカル株式会社 ジメチルスルホキシドの精製方法
CN204342710U (zh) * 2014-07-21 2015-05-20 天津中福工程技术有限公司 一种用于回收、纯化二甲基亚砜的装置
WO2017064910A1 (ja) * 2015-10-14 2017-04-20 東レ・ファインケミカル株式会社 ジメチルスルホキシドの分解を抑制する方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SANTOSUSSO, M. THOMAS ET AL.: "Acid Catalysis in Dimethyl Sulfoxide Reactions. A Generally Unrecognized Factor", J. ORG. CHEM., vol. 41, no. 16, August 1976 (1976-08-01), pages 2762 - 2768, XP055389183, ISSN: 0022-3263 *
See also references of EP3611162A4

Also Published As

Publication number Publication date
KR102469913B1 (ko) 2022-11-23
KR20190132344A (ko) 2019-11-27
CN108686397A (zh) 2018-10-23
CN208511899U (zh) 2019-02-19
JPWO2018189969A1 (ja) 2020-02-27
TW201841882A (zh) 2018-12-01
CN108686397B (zh) 2021-10-26
TWI802566B (zh) 2023-05-21
EP3611162A1 (en) 2020-02-19
EP3611162A4 (en) 2020-12-23
JP7082763B2 (ja) 2022-06-09
US20200308108A1 (en) 2020-10-01
US11111211B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2018189969A1 (ja) ジメチルスルホキシドを蒸留する方法、および、多段式蒸留塔
RU2007138831A (ru) Способ и устройство для производства ароматических карбоновых кислот (варианты)
KR100733400B1 (ko) 아세트산, 메틸아세테이트 및 물을 분리하기 위한공비증류공정
CN104119256A (zh) 一种二甲基亚砜提纯方法和设备
CN105693467B (zh) 一种季戊四醇节能生产方法
CN110862330B (zh) 一种用于dmac废液回收的高效节能精馏工艺
WO2012033055A1 (ja) ジトリメチロールプロパンの製造方法
CN100447120C (zh) 三羟甲基丙烷精制的工艺方法
JP4271423B2 (ja) ジメチルアミド化合物とカルボン酸を蒸留分離する方法及びその装置
CN104844420B (zh) 新戊二醇缩合水洗母液的连续化处理工艺与装置
CN106496069B (zh) 乙腈精制系统的节能装置和节能方法
JP5530516B2 (ja) 化学装置
JPS6261006B2 (ja)
US5929255A (en) Process for coproducing fumaric acid and maleic anhydride
JP2003160530A (ja) (メタ)アクリル酸の精製方法
JPS6127938A (ja) ソルビン酸の製法
KR101947130B1 (ko) 방향족 화합물 산화 공정에서 초산을 회수하는 방법
JPH08325178A (ja) 高次塩素化メタンの製造方法
JP2004175797A (ja) テレフタル酸の製造方法
CN113698275A (zh) 一种从碳酸二甲酯、乙酸甲酯、甲醇体系中回收甲醇的装置与方法
JPH06228127A (ja) トリオキサンの製造方法
JP2022520198A (ja) 4,4’-ジクロロジフェニルスルホキシドの精製方法
CN114014743A (zh) 一种连续生产六氟丁二烯的方法
JP2991273B2 (ja) 2,6−ナフタレンジカルボン酸ジメチルの製造法
JP4171426B2 (ja) 高純度フェナントレンを得る方法及びそのシステム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522820

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016032

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018784415

Country of ref document: EP

Effective date: 20191112