WO2018181544A1 - 不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法 - Google Patents

不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法 Download PDF

Info

Publication number
WO2018181544A1
WO2018181544A1 PCT/JP2018/012918 JP2018012918W WO2018181544A1 WO 2018181544 A1 WO2018181544 A1 WO 2018181544A1 JP 2018012918 W JP2018012918 W JP 2018012918W WO 2018181544 A1 WO2018181544 A1 WO 2018181544A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
unsaturated carboxylic
carboxylic acid
catalyst
producing
Prior art date
Application number
PCT/JP2018/012918
Other languages
English (en)
French (fr)
Inventor
充 菅野
純 平田
二宮 航
神谷 裕一
亮一 大友
Original Assignee
三菱ケミカル株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 国立大学法人北海道大学 filed Critical 三菱ケミカル株式会社
Priority to MYPI2019005688A priority Critical patent/MY191922A/en
Priority to KR1020197032140A priority patent/KR102418676B1/ko
Priority to SG11201909138S priority patent/SG11201909138SA/en
Priority to CN201880020732.3A priority patent/CN110505917B/zh
Priority to JP2019510016A priority patent/JP6999909B2/ja
Publication of WO2018181544A1 publication Critical patent/WO2018181544A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst for producing an unsaturated carboxylic acid, a method for producing an unsaturated carboxylic acid, and a method for producing an unsaturated carboxylic acid ester.
  • Patent Document 1 proposes a method of mixing a platinum-supported oxide and solid acid particles as a method for producing a solid acid catalyst useful for a hydrocarbon conversion reaction or the like.
  • Patent Document 2 discloses a catalyst in which zeolite, gold and iron metal oxides are supported on ceramic fibers as a deodorizing catalyst.
  • Patent Document 3 discloses a catalyst in which platinum and iridium are supported on a carrier made of acid-type zeolite and zirconium oxide as a catalyst for oxidizing and removing methane in combustion exhaust gas.
  • JP 2000-102729 A Japanese Unexamined Patent Publication No. 5-131138 JP 2009-56455 A
  • An object of the present invention is to provide a novel catalyst used for obtaining an unsaturated carboxylic acid from an unsaturated aldehyde, a method for producing an unsaturated carboxylic acid using the catalyst, and a method for producing an unsaturated carboxylic acid ester. It is.
  • the present invention includes the following [1] to [18] and [1 ′] to [8 ′].
  • Unsaturated carboxylic acid used to obtain unsaturated carboxylic acid from unsaturated aldehyde comprising component A represented by the following formula (I) and component B which is a compound containing an inorganic acid or an organic acid Catalyst for production.
  • M x M ′ x ′ O y (I) (In the formula (I), M is at least one element selected from the fourth periodic metal elements of the periodic table, M ′ is at least one element selected from metal elements other than the fourth periodic period elements, and O is oxygen.
  • the inorganic acid includes at least one selected from the group consisting of H 3 BO 3 , H 3 PO 4 , H 2 SO 4 , HNO 3 and a heteropolyacid.
  • catalyst for producing methacrylic acid according to any one of [1] to [14], wherein the unsaturated aldehyde is methacrolein and the unsaturated carboxylic acid is methacrylic acid.
  • [1 ′] A catalyst for producing an unsaturated carboxylic acid used for obtaining an unsaturated carboxylic acid from an unsaturated aldehyde, comprising Component A having oxidizing ability and Component B having acid characteristics.
  • the catalyst for producing an unsaturated carboxylic acid according to [1 ′] which further contains Component C, which is an insoluble or hardly soluble component, as a catalyst component.
  • [4 ′] The unsaturated carboxylic acid production catalyst according to any one of [1 ′] to [3 ′], wherein the component A includes at least one selected from Cr, Mn, and Co.
  • the component B includes at least one compound selected from the group consisting of H 3 BO 3 , H 3 PO 4 , H 2 SO 4 , HNO 3 and a heteropolyacid [1 ′] to [5 ′ ]
  • the catalyst for unsaturated carboxylic acid manufacture in any one of.
  • [7 ′] Catalytic gas phase oxidation of unsaturated aldehyde and molecular oxygen or molecular oxygen-containing gas in the presence of the unsaturated carboxylic acid production catalyst according to any one of [1 ′] to [6 ′] A method for producing an unsaturated carboxylic acid.
  • [8 ′] A method for producing an unsaturated carboxylic acid ester, wherein the unsaturated carboxylic acid produced by the method for producing an unsaturated carboxylic acid according to [7 ′] is esterified.
  • a novel catalyst used for obtaining an unsaturated carboxylic acid from an unsaturated aldehyde a method for producing an unsaturated carboxylic acid using the catalyst, and a method for producing an unsaturated carboxylic acid ester.
  • Catalyst for unsaturated carboxylic acid production As a result of intensive studies on a catalyst that can be suitably used for producing an unsaturated carboxylic acid from an unsaturated aldehyde, the present inventors have found that the catalyst includes an oxidizing component and an acid component, and the oxidizing component, the acid component, It was found that an unsaturated carboxylic acid can be produced from an unsaturated aldehyde by using a catalyst having different chemical species, and the present invention was completed.
  • the unsaturated carboxylic acid production catalyst according to the present invention is an unsaturated carboxylic acid production catalyst containing at least two different components A and B used to obtain an unsaturated carboxylic acid from an unsaturated aldehyde.
  • the component A is a component having oxidation ability
  • the component B is a component having acid characteristics.
  • component A and component B coexist as different types of components, so that component A essentially functions as an oxidation catalyst and component B functions as an acid catalyst.
  • component B is believed to contribute to the protonation of unsaturated aldehydes.
  • Component A is believed to contribute to the addition of oxygen atoms to the protonated unsaturated aldehyde. Therefore, it is estimated that the reaction from an unsaturated aldehyde to an unsaturated carboxylic acid proceeds by using the catalyst according to the present invention.
  • Component A is a component having an oxidizing ability, and is a component capable of oxidizing a reaction substrate (unsaturated aldehyde) used in the catalytic reaction represented by the following formula (I). In order to function as a catalyst, it is preferable that its own oxidation-reduction reaction occurs reversibly.
  • M is at least one element selected from the fourth periodic metal elements of the periodic table
  • M ′ is at least one element selected from metal elements other than the fourth periodic period elements
  • O is oxygen
  • X, x ′ and y represent the atomic ratio of each component
  • x is an integer of 1 or more
  • y is 0 or (This is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.)
  • Component A includes a metal or a metal oxide, and contains M as a main component.
  • M is at least one selected from K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ga, which are metal elements in the fourth period of the periodic table. It is an element.
  • M is a transition metal element of the fourth period of the periodic table, Sc, Ti, V, Cr, Mn, Fe, Co, It is preferably at least one element selected from Ni, Cu and Zn, more preferably at least one element selected from Cr, Mn, Co, Cu and Fe, and selected from Cr and Fe More preferably, it is at least one element.
  • M may use 1 type and may use 2 or more types together.
  • M ′ is at least one element selected from metal elements other than the fourth period of the periodic table, and is particularly preferably an element that can form an alloy with M or an element that can form a composite metal oxide with M. .
  • M ′ is more preferably at least one element selected from Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, and Au.
  • Component A may be M element alone (single metal), an alloy composed of two or more kinds of M, an alloy represented by M x M ′ x ′ , or a metal oxide (including a composite metal oxide).
  • a metal oxide is preferable from the viewpoint that the reaction from an unsaturated aldehyde to an unsaturated carboxylic acid is more likely to proceed.
  • metal oxides represented by the following formula (II) are preferable.
  • MO y ' (II) (In the formula (II), M is at least one element selected from the fourth periodic metal elements of the periodic table, and y ′ is an atomic ratio of oxygen corresponding to the valence of M.)
  • M in formula (II) can be exemplified by the same elements as M described in formula (I).
  • M element for example, Cr 2 O 3 , Mn 2 O 3 , Co 3 O 4 , CuO, Fe 2 O 3 , and Cr 2 O 3 , Fe 2 O 3. Is more preferable.
  • Component B is a component having acid characteristics, and is an inorganic acid or an organic acid, and a component exhibiting Bronsted acidity, Lewis acidity, or both.
  • examples of the inorganic acid include H 3 PO 4 , H 3 BO 3 , HNO 3 , H 2 SO 4, and heteropolyacid.
  • examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, citric acid, malic acid, succinic acid and the like.
  • heteropolyacid examples include H 3 PW 12 O 40 , H 4 SiW 12 O 40 , H 3 PMo 12 O 40 , H 6 PV 3 Mo 9 O 40 , H 5 PV 2 Mo 10 O 40 , and H 5 PV 2.
  • W 10 O 40, H 4 PVMo 11 O 40, etc. H 4 PVW 11 O 40 and the like Since the oxidation reaction of unsaturated aldehyde is generally carried out at a high temperature of about 200 to 450 ° C., component B is preferably an inorganic acid.
  • the inorganic acid is boron (B), silicon (Si), germanium (Ge), nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi) and sulfur (S). It is preferable to include at least one element selected from the group consisting of Among these, the inorganic acid is a group consisting of H 3 BO 3 , H 3 PO 4 , H 2 SO 4 , HNO 3 , and heteropoly acid from the viewpoint that the reaction from the unsaturated aldehyde to the unsaturated carboxylic acid is more likely to proceed. It is more preferable to include at least one selected from more.
  • the inorganic acid preferably contains at least one selected from the group consisting of borate ion, phosphate ion, sulfate ion, nitrate ion and heteropolyacid ion.
  • the stronger the acid strength of the inorganic acid the more the protonation of the aldehyde group of the unsaturated aldehyde is promoted, and the subsequent oxidation by the component A is facilitated.
  • These component B may use 1 type and may use 2 or more types together.
  • the catalyst according to the present invention preferably further contains component C, which is an insoluble or hardly soluble component, as a catalyst component.
  • Component C is a solid component for holding component A and component B, which is different from component A and component B, and serves as a catalyst support. That is, component C is a carrier component, and component A and component B can be supported on component C.
  • insoluble means completely insoluble in water.
  • lightly soluble means that the solubility in water at 25 ° C. is 100 mg / 100 mL or less.
  • Component A and component B can be dissolved or dispersed in water or other solvent, and component A and component B can be retained on component C in a solution or slurry state. Therefore, it is preferable that component C hardly dissolves even when mixed with the solution or slurry of component A and component B.
  • Component C is not particularly limited, but is preferably an inorganic compound having high thermal stability. Specifically, SiO 2 , Al 2 O 3 , SiO 2 —Al 2 O 3 , ZrO 2 , various zeolites (zeolites), activated carbon, and the like can be used. These may use 1 type and may use 2 or more types together.
  • the oxidizing power of the metal oxide is evaluated by heat generated - [Delta] H 0 f per oxygen atom indicates that enough oxidizing power - [Delta] H 0 f is less strong.
  • - ⁇ H 0 f of various metal oxides is, for example, Y. Morooka and A.M. Ozaki, J. et al. Catal. 5, 116 (1966), Tetsuro Kiyoyama et al., Catalysts, 8, 306 (1966), and the like.
  • the content ratio of component A and component B (m A / m B , hereinafter referred to as A / B mass ratio) are also preferably from 0.0001 to 1000, more preferably from 0.001 to 500, still more preferably from 0.01 to 400, and particularly preferably from 0.1 to 300, from the viewpoint of the yield of unsaturated carboxylic acid.
  • the content ratio of component A (m A / (m A + m), where m A , m B , and m C are the masses of component A, component B, and component C, respectively.
  • C ) ⁇ 100) is preferably 1 to 99% by mass, more preferably 5 to 90% by mass, further preferably 10 to 85% by mass, particularly preferably 20 to 80% by mass, and most preferably 30 to 60% by mass.
  • the content ratio of component B (m B / (m A + m B + m C ) ⁇ 100) is preferably 0.001 to 99% by mass, more preferably 0.01 to 90% by mass, and 0.1 to 70% by mass. More preferred is 0.1 to 50% by mass.
  • the preferable range of the content ratio of Component C is naturally determined from the preferable range of the content ratio of Component A and Component B described above.
  • a raw material compound of each component there is no restriction
  • a raw material compound of each component Although it does not specifically limit as a raw material of the component A and the component B, For example, the hydroxide, chloride, sulfate, nitrate, oxide, acetate, etc. of a component element are mentioned.
  • a raw material having high solubility in the solvent to be used is preferable.
  • the raw material of component A includes Cr (NO 3 ) 3 , Mn (NO 3 ) 2 , Co (NO 3 ) 2 and hydrates thereof.
  • a solvent is not specifically limited, For example, water, organic solvents, such as ethanol and acetone, are mentioned.
  • step (C) it is preferable to fire the solid content after drying of the solution or solvent dispersion containing component A and component C.
  • the component A is sufficiently immobilized on the component C by firing. Firing is performed, for example, at 200 to 600 ° C. for 1 to 100 hours in an air atmosphere.
  • the component B is preferably mixed with the fired product and fired again.
  • the obtained catalyst may be used as it is for the reaction from unsaturated aldehyde to unsaturated carboxylic acid, or may be used after calcination. The calcination is carried out, for example, at 200 to 600 ° C. for 1 to 100 hours.
  • the catalyst which concerns on this invention can be prepared by the method including the following process, for example.
  • Step (1) The component A raw material is dissolved or dispersed in a solvent to obtain a solution or solvent dispersion.
  • the raw material of the said component A Although it does not specifically limit as a raw material of the said component A, for example, the hydroxide, chloride, sulfate, nitrate, oxide, acetate, etc. of a component element are mentioned.
  • a raw material having high solubility in the solvent to be used is preferable.
  • the raw materials for component A include Cr (NO 3 ) 3 , Mn (NO 3 ) 2 , Co (NO 3 ) 2 , Fe (NO 3 ) 3 , Cu (NO 3 ) 2 and The hydrate etc. are mentioned.
  • a solvent is not specifically limited, For example, water, organic solvents, such as ethanol and acetone, are mentioned.
  • Process (2) As the component C, SiO 2 , Al 2 O 3 , SiO 2 —Al 2 O 3 , ZrO 2 , various zeolites, activated carbon, and the like can be used as described above. These may use 1 type and may use 2 or more types together. As a method for removing the solvent from the solution or solvent dispersion, it is preferable to use vacuum distillation. Moreover, when using the component C, it is preferable to bake solid content i in this process. The component A is sufficiently immobilized on the component C by firing. Firing is performed, for example, at 200 to 600 ° C. for 1 to 100 hours in an air atmosphere.
  • the component B raw material can be dissolved or dispersed in a solvent and added to the solid matter i.
  • a solvent is not specifically limited, For example, water, organic solvents, such as ethanol and acetone, are mentioned.
  • the solid component ii can be obtained by dissolving or dispersing the raw material of the component B in a solvent and adding it to the solid material i, and then removing the solvent. Moreover, what carried the said component B on the said component C can be mixed with the said solid substance i, and solid content ii can also be obtained.
  • the solid content ii may be used as it is for the reaction from an unsaturated aldehyde to an unsaturated carboxylic acid, but is preferably used after firing.
  • the calcination is carried out, for example, at 200 to 600 ° C. for 1 to 100 hours.
  • the catalyst which concerns on this invention can be prepared by the method including the following process, for example.
  • Step (1 ′) The raw material of component A is dissolved or dispersed in a solvent to obtain a solution or solvent dispersion.
  • the raw material of the said component A Although it does not specifically limit as a raw material of the said component A, for example, the hydroxide, chloride, sulfate, nitrate, oxide, acetate, etc. of a component element are mentioned.
  • a raw material having high solubility in the solvent to be used is preferable.
  • the raw materials for component A include Cr (NO 3 ) 3 , Mn (NO 3 ) 2 , Co (NO 3 ) 2 , Fe (NO 3 ) 3 , Cu (NO 3 ) 2 and The hydrate etc. are mentioned.
  • a solvent is not specifically limited, For example, water, organic solvents, such as ethanol and acetone, are mentioned.
  • SiO 2 , Al 2 O 3 , SiO 2 —Al 2 O 3 , ZrO 2 , various zeolites, activated carbon, and the like can be used as described above. These may use 1 type and may use 2 or more types together.
  • a solvent is not specifically limited, For example, water, organic solvents, such as ethanol and acetone, are mentioned.
  • the solvent is preferably removed using vacuum distillation to obtain solid iii.
  • the solid content iii may be used as it is for the reaction from an unsaturated aldehyde to an unsaturated carboxylic acid, but is preferably used after firing.
  • the calcination is carried out, for example, at 200 to 600 ° C. for 1 to 100 hours.
  • the solid content ii or the catalyst obtained in the firing step of the solid content iii is pulverized and sized to have a particle size of several tens to several hundreds of microns ( ⁇ m), or formed into pellets.
  • the catalyst according to the present invention can be applied to any reaction mode such as a fixed bed, a fluidized bed, and a moving bed, but is preferably used for a reaction in a fixed bed. When used in a fixed bed, it is preferable to mix with an inert diluent such as sea sand or silicon carbide for heat removal.
  • a catalytic gas phase oxidation reaction with molecular oxygen of an unsaturated aldehyde or a molecular oxygen-containing gas is performed in the presence of the unsaturated carboxylic acid production catalyst according to the present invention.
  • an unsaturated carboxylic acid can be obtained from an unsaturated aldehyde.
  • the unsaturated aldehyde include (meth) acrolein, crotonaldehyde (also known as ⁇ -methylacrolein), cinnamaldehyde (also known as ⁇ -phenylacrolein), and the like.
  • the unsaturated carboxylic acid produced from the unsaturated aldehyde is an unsaturated carboxylic acid in which the aldehyde group of the unsaturated aldehyde is changed to a carboxyl group.
  • (meth) acrylic acid Is obtained. “(Meth) acrolein” indicates acrolein and methacrolein, and “(meth) acrylic acid” indicates acrylic acid and methacrylic acid.
  • dilution gas nitrogen, carbon dioxide gas, etc. are preferable.
  • the catalytic gas phase oxidation reaction may be carried out under pressure or under reduced pressure, but is preferably carried out at a pressure near atmospheric pressure.
  • the reaction temperature is preferably 200 to 400 ° C, more preferably 220 to 350 ° C.
  • the supply amount of the raw material gas is preferably 100 ⁇ 100000hr -1 at a space velocity (SV), and more preferably 400 ⁇ 30000 hr -1.
  • the unsaturated carboxylic acid obtained by the method according to the present invention is esterified.
  • an unsaturated carboxylic acid ester can be obtained using an unsaturated carboxylic acid obtained from an unsaturated aldehyde.
  • the alcohol to be reacted with the unsaturated carboxylic acid include methanol, ethanol, isopropanol, n-butanol, and isobutanol.
  • Examples of the unsaturated carboxylic acid ester to be obtained include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate and the like.
  • the reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the reaction temperature is preferably 50 to 200 ° C.
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
  • the content ratio of component A and the content ratio of component B in the following examples are defined as follows.
  • Cr, Mn, Co, Cu, and Fe supported on the carrier (component C) are all based on the results of X-ray diffraction measurement, respectively Cr 2 O 3 , Mn 2 O 3 , and Co 3 O. 4 and calculated as CuO, Fe 2 O 3 .
  • m A mass of component A (metal oxide)
  • m B mass of component B (H 3 PW 12 O 40 , H 3 PO 4 or H 2 SO 4 )
  • m C component C (SiO 2 or SiO 2 -Al 2 O 3 ) Mass Note that m A , m B and m C are values determined from the amount of raw materials charged.
  • the content ratio (A / B mass ratio) of the component A and the component B is defined as follows.
  • a / B mass ratio m A / m B.
  • Example 1 (Preparation of catalyst) Cr (NO 3) 3 ⁇ 9H 2 O ( formula weight 400) 9.895g (0.02474mol, Cr Mass: 1.286g) was stirred with ultrapure water 100 mL, and completely dissolved.
  • 3 g of SiO 2 (trade name: Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.) was added and stirred at room temperature for 1 hour.
  • the solution was transferred to an eggplant flask, and the solvent was distilled off under reduced pressure using an evaporator until the solution was dried at about 5 Torr (about 7 ⁇ 10 2 N / m 2 ) and a water bath temperature of 50 ° C.
  • the resulting solid was dried at 100 ° C.
  • phosphotungstic acid manufactured by Nippon Inorganic Chemical Industry Co., Ltd.
  • 100 g of phosphotungstic acid was added to 30 mL of ultrapure water and stirred to dissolve completely. When dissolution was insufficient, ultrapure water was added little by little until completely dissolved.
  • the mixture was transferred to a separatory funnel, 50 mL of diethyl ether was added, and the mixture was shaken while removing the gas, and then allowed to stand overnight.
  • the lower ether phase was transferred to another separatory funnel, 50 mL of ultrapure water was added thereto, and the mixture was shaken while removing the gas, and then allowed to stand overnight. This operation was performed 5 times in total.
  • the lower ether phase was transferred to an eggplant flask and 50 mL of ultrapure water was added.
  • the solvent was distilled off under reduced pressure under conditions of about 5 Torr (about 7 ⁇ 10 2 N / m 2 ) and a water bath temperature of 40 ° C.
  • the evaporator was temporarily stopped, and 50 mL of ultrapure water was added thereto.
  • the solvent was distilled off under reduced pressure using a rotary evaporator. This operation was repeated 5 times. The fifth time, when a small amount of crystals had precipitated on the liquid surface, the distillation under reduced pressure was stopped.
  • the eggplant flask was immersed in a hot water bath to redissolve the precipitated crystals.
  • the resulting saturated aqueous solution was allowed to stand overnight at room temperature.
  • the produced crystals were separated from the mother liquor by decantation, dried overnight at 60 ° C., and then air-dried at room temperature for 2 days to obtain H 3 PW 12 O 40 ⁇ nH 2 O.
  • the TG-DTA profile of the H 3 PW 12 O 40 ⁇ nH 2 O was measured, and the number of crystal waters (value of n) was calculated. Based on this value, 50 mL of 0.08 mol / L aqueous H 3 PW 12 O 40 solution was prepared.
  • SV space velocity
  • Example 2 Example 1 except that the amount of the H 3 PW 12 O 40 aqueous solution used for loading on CrO x / SiO 2 was changed to 0.868 mL (mass of H 3 PW 12 O 40 : 0.20 g). Similarly, an H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst having a content ratio of Component B of 10.00% by mass was prepared. A catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 3 Example 1 except that the amount of the H 3 PW 12 O 40 aqueous solution used for loading onto CrO x / SiO 2 was changed to 7.81 mL (mass of H 3 PW 12 O 40 : 1.80 g). Similarly, an H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst having a content ratio of Component B of 49.99% by mass was prepared. A catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 4 Example 1 except that the amount of the H 3 PW 12 O 40 aqueous solution used for loading onto CrO x / SiO 2 was changed to 18.2 mL (mass of H 3 PW 12 O 40 : 4.19 g). Similarly, an H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst having a content ratio of Component B of 69.97% by mass was prepared. A catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 1 A catalyst evaluation test was conducted in the same manner as in Example 1 except that CrO x / SiO 2 (solid content i) prepared in Example 1 and having a content ratio of Component A of 38.52% by mass was used as a catalyst. It was. The results of the evaluation test are shown in Table 1.
  • Example 5 A catalyst evaluation test was conducted in the same manner as in Example 1 except that the reaction temperature was changed to 350 ° C. The results of the evaluation test are shown in Table 1.
  • Example 6 A catalyst evaluation test was conducted in the same manner as in Example 1 except that the reaction temperature was changed to 400 ° C. The results of the evaluation test are shown in Table 1.
  • Example 8 Cr (NO 3) in place of 3 ⁇ 9H 2 O, Mn ( NO 3) 2 ⁇ 6H 2 O ( formula weight 287) 6.717g (0.0234mol, Mn mass: 1.286g) except for using the In the same manner as in the preparation of CrO x / SiO 2 in Example 1, MnO x / SiO 2 (solid content i) having a content ratio of Component A of 38.11% by mass was prepared.
  • Component B was prepared in the same manner as in the preparation of the H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst of Example 1, except that the MnO x / SiO 2 was used instead of CrO x / SiO 2 .
  • H 3 PW 12 O 40 —MnO x / SiO 2 catalyst having a content ratio of 33.35% by mass was prepared.
  • X-ray diffraction (using Cu—K ⁇ rays) of the obtained catalyst was measured, a crystal structure of trivalent manganese oxide and H 3 PW 12 O 40 was observed, and at least Mn which is component A having oxidation ability It was confirmed that 2 O 3 and H 3 PW 12 O 40 , which is component B having acid characteristics, were present.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 3 A catalyst evaluation test was conducted in the same manner as in Example 1 except that MnO x / SiO 2 (solid content i) having a content ratio of Component A of 38.11% by mass prepared in Example 8 was used as a catalyst. It was. The results of the evaluation test are shown in Table 1.
  • Example 9 Cr (NO 3) 3 ⁇ 9H 2 O usage of 23.083G, except for changing the amount of ultrapure water 233.28mL is by the same method as the preparation of CrO x / SiO 2 of Example 1 CrO x / SiO 2 (solid content i) having a content ratio of component A of 59.37% by mass was prepared. Except for using the CrO x / SiO 2 , the content ratio of Component B was 33.35% by mass in the same manner as in the preparation of the H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst of Example 1. A H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst was prepared. A catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 10 Instead of SiO 2, SiO 2 -Al 2 O 3 (Catalysis Society reference catalyst, JRC-SAL-2) except for using the components A in the same manner as the preparation of CrO x / SiO 2 of Example 1 CrO x / SiO 2 —Al 2 O 3 (solid content i) having a content ratio of 38.52% by mass was prepared. Except for using the CrO x / SiO 2 —Al 2 O 3 , the content ratio of the component B was changed in the same manner as in the preparation of the H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst of Example 1.
  • Example 11 Cr (NO 3) 3 ⁇ 9H 2 O usage of 53.869G, except for changing the amount of ultrapure water 544.32mL is by the same method as the preparation of CrO x / SiO 2 of Example 1 CrO x / SiO 2 (solid content i) having a content ratio of Component A of 77.33% by mass was prepared. Except for using the CrO x / SiO 2 , the content ratio of Component B was 33.35% by mass in the same manner as in the preparation of the H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst of Example 1. A H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst was prepared. A catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 12 Instead of Cr (NO 3 ) 3 ⁇ 9H 2 O, 12.69 g (0.04360 mol, Co mass: 2.570 g) of Co (NO 3 ) 2 ⁇ 6H 2 O (formula weight 291.03) was used. Except that, CoO x / SiO 2 (solid content i) in which the content ratio of Component A was 53.85% by mass was prepared in the same manner as in the preparation of CrO x / SiO 2 in Example 1. Component B was prepared in the same manner as in the preparation of the H 3 PW 12 O 40 —Cr 2 O 3 / SiO 2 catalyst of Example 1, except that the CoO x / SiO 2 was used instead of CrO x / SiO 2 .
  • H 3 PW 12 O 40 —CoO x / SiO 2 catalyst having a content ratio of 33.35% by mass was prepared.
  • the crystal structure of spinel-type cobalt oxide and H 3 PW 12 O 40 having a mixed valence of divalent and trivalent was found. It was confirmed that Co 3 O 4 as component A having at least oxidizing ability and H 3 PW 12 O 40 as component B having acid characteristics were present.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 4 A catalyst evaluation test was conducted in the same manner as in Example 1 except that CoO x / SiO 2 (solid content i) having a content ratio of Component A of 53.85% by mass prepared in Example 12 was used as a catalyst. It was. The results of the evaluation test are shown in Table 1.
  • Example 13 The content ratio of Component B was 0.15% by mass in the same manner as in Example 1 except that 0.343 mL of a 0.08 mol / L H 3 PO 4 aqueous solution was used instead of the H 3 PW 12 O 40 aqueous solution.
  • An H 3 PO 4 —Cr 2 O 3 / SiO 2 catalyst was prepared.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 14 The content ratio of Component B was 0.22% by mass in the same manner as in Example 1 except that 0.515 mL of 0.08 mol / L H 2 SO 4 aqueous solution was used instead of the H 3 PW 12 O 40 aqueous solution.
  • An H 2 SO 4 —Cr 2 O 3 / SiO 2 catalyst was prepared.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 15 The content ratio of Component B was 1.43% by mass in the same manner as in Example 1 except that 3.34 mL of 0.08 mol / L H 3 PO 4 aqueous solution was used instead of the H 3 PW 12 O 40 aqueous solution.
  • An H 3 PO 4 —Cr 2 O 3 / SiO 2 catalyst was prepared.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 16 The content ratio of Component B was 2.14% by mass in the same manner as in Example 1 except that 5.01 mL of 0.08 mol / L H 2 SO 4 aqueous solution was used instead of the H 3 PW 12 O 40 aqueous solution.
  • An H 2 SO 4 —Cr 2 O 3 / SiO 2 catalyst was prepared.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 18 Except for using 4.889 g (0.020 mol, Cu mass 1.286 g) of Cu (NO 3 ) 2 .3H 2 O (formula weight 241.6) instead of Cr (NO 3 ) 3 .9H 2 O Then, CuO x / SiO 2 (solid content i) having a content ratio of Component A of 34.92% by mass was prepared in the same manner as in the preparation of CrO x / SiO 2 in Example 1. The content ratio of component B was the same as the preparation of the H 3 PW 12 O 40 —CrO x / SiO 2 catalyst of Example 1 except that the CuO x / SiO 2 was used instead of CrO x / SiO 2.
  • H 3 PW 12 O 40 —CuO x / SiO 2 catalyst having a ratio of 33.35% by mass was prepared.
  • X-ray diffraction (using Cu—K ⁇ ray) of the obtained catalyst was measured, a crystal structure of divalent copper oxide and H 3 PW 12 O 40 was observed, and at least CuO as component A having oxidation ability And H 3 PW 12 O 40 , which is Component B having acid characteristics, was confirmed to be present.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • H 3 PW 12 O 40 FeO x / SiO 2 having a mass of 33.35% by mass was prepared.
  • X-ray diffraction using Cu—K ⁇ ray
  • a crystal structure of trivalent iron oxide and H 3 PW 12 O 40 was found, and at least Fe which is component A having oxidation ability It was confirmed that 2 O 3 and H 3 PW 12 O 40 , which is component B having acid characteristics, were present.
  • a catalyst evaluation test was conducted in the same manner as in Example 1 except that the catalyst was used. The results of the evaluation test are shown in Table 1.
  • Example 20 The content ratio of CrO x / SiO 2 (solid content i) prepared in Example 1 having a content ratio of Component A of 38.52% by mass and Component B prepared by the same method as in Comparative Example 2 was 33.52%.
  • H 3 PW 12 O 40 / SiO 2 of 35% by mass was sized to 250 to 500 ⁇ m.
  • 0.5 g of CrO x / SiO 2 and 0.5 g of H 3 PW 12 O 40 / SiO 2 are physically mixed, and the content ratio of A component (mass of A component / (mass of A component + C component (total SiO 2 )) Of 100) is 23.11% by mass, and the content ratio of component B is 16.68% by mass.
  • methacrylic acid could be obtained from methacrolein.
  • methacrylic acid cannot be obtained from methacrolein. It was found that the reaction of producing methacrylic acid from methacrolein proceeds when A and component B coexist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

下記式(I)で表される成分Aと、無機酸または有機酸を含む化合物である成分Bを含んでなる、不飽和アルデヒドから不飽和カルボン酸を得るために用いる不飽和カルボン酸製造用触媒。 MxM'x'Oy (I) (式(I)中、Mは周期表第4周期金属元素より選択される少なくとも一種の元素、M'は周期表第4周期以外の金属元素から選択される少なくとも一種の元素、Oは酸素を示す。x、x'およびyは各成分の原子比率を表し、xは1以上の整数であり、x'はx=1に対して0≦x'≦0.4であり、yは0又は前記各成分の原子比を満足するのに必要な酸素の原子比率である。)

Description

不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法
 本発明は、不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法に関する。
 酸化能を有する成分と酸特性を有する成分を担持した触媒は様々な反応に用いられている。例えば、特許文献1には炭化水素の変換反応などに有用な固体酸触媒の製造方法として、白金担持酸化物と固体酸粒子とを混合する方法が提案されている。特許文献2には、脱臭触媒としてセラミック繊維に、ゼオライト、金および鉄の金属酸化物を担持した触媒が開示されている。特許文献3には燃焼排ガス中のメタンを酸化除去するための触媒として、酸型のゼオライトと酸化ジルコニウムからなる担体に白金およびイリジウムを担持した触媒が開示されている。
特開2000-102729号公報 特開平5-131138号公報 特開2009-56455号公報
 特許文献1~3に記載の触媒は、異性化や酸化分解反応に用いられている。本発明の目的は、不飽和アルデヒドから不飽和カルボン酸を得るために用いられる新規な触媒、該触媒を使用した不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法を提供することである。
 本発明は、以下の[1]~[18]および[1’]~[8’]である。
 [1]下記式(I)で表される成分Aと、無機酸または有機酸を含む化合物である成分Bを含んでなる、不飽和アルデヒドから不飽和カルボン酸を得るために用いる不飽和カルボン酸製造用触媒。
  MM’x’   (I)
(式(I)中、Mは周期表第4周期金属元素より選択される少なくとも一種の元素、M’は周期表第4周期以外の金属元素から選択される少なくとも一種の元素、Oは酸素を示す。x、x’およびyは各成分の原子比率を表し、xは1以上の整数であり、x’はx=1に対して0≦x’≦0.4であり、yは0又は前記各成分の原子比を満足するのに必要な酸素の原子比率である。)
 [2]前記式(I)において、Mが周期表第4周期の遷移金属元素より選択される少なくとも一種の元素である[1]に記載の不飽和カルボン酸製造用触媒。
 [3]前記式(I)において、MがCr、Mn、Co、CuおよびFeより選択される少なくとも一種である[1]に記載の不飽和カルボン酸製造用触媒。
 [4]前記式(I)において、0≦x’<0.1である[1]から[3]のいずれかに記載の不飽和カルボン酸製造用触媒。
 [5]前記成分Bが無機酸を含む化合物である[1]から[4]のいずれかに記載の不飽和カルボン酸製造用触媒。
 [6]前記無機酸が、B、Si、Ge、N、P、As、Sb、BiおよびSからなる群から選択される少なくとも一種の元素を含む[5]に記載の不飽和カルボン酸製造用触媒。
 [7]前記無機酸がホウ酸イオン、リン酸イオン、硫酸イオン、硝酸イオンおよびヘテロポリ酸イオンからなる群から選択される少なくとも一種を含む[5]に記載の不飽和カルボン酸製造用触媒。
 [8]前記ヘテロポリ酸イオンがリンタングステン酸イオンである[7]に記載の不飽和カルボン酸製造用触媒。
 [9]さらに、不溶性または難溶性の成分Cを含む[1]から[8]のいずれか1項に記載の不飽和カルボン酸製造用触媒。
 [10]成分Cが、SiO、Al、SiO-Al、ZrO、ゼオライト類、活性炭からなる群から選択される少なくとも1種である[9]に記載の不飽和カルボン酸製造用触媒。
 [11]成分Aと成分Bの質量比(A/B)が、0.0001~1000である[1]から[10]のいずれか1項に記載の不飽和カルボン酸製造用触媒。
 [12]前記質量比(A/B)が0.1~300である、[11]に記載の不飽和カルボン酸製造用触媒。
 [13]Cr、MnおよびCo、並びにこれらの酸化物より選択される少なくとも一種からなる成分Aと、無機酸を含む成分Bを含んでなる、不飽和アルデヒドから不飽和カルボン酸を得るために用いる不飽和カルボン酸製造用触媒。
 [14]前記無機酸がHBO、HPO、HSO、HNOおよびヘテロポリ酸からなる群から選択される少なくとも一種を含む[13]に記載の不飽和カルボン酸製造用触媒。
 [15]前記不飽和アルデヒドがメタクロレイン、前記不飽和カルボン酸がメタクリル酸である[1]から[14]のいずれかに記載のメタクリル酸製造用触媒。
 [16][1]から[15]のいずれかに記載の不飽和カルボン酸製造用触媒の存在下で、不飽和アルデヒドと分子状酸素または分子状酸素含有ガスを接触気相酸化する不飽和カルボン酸の製造方法。
 [17][16]に記載の不飽和カルボン酸の製造方法により製造された不飽和カルボン酸をエステル化する不飽和カルボン酸エステルの製造方法。
 [18][1]から[15]のいずれかに記載の不飽和カルボン酸製造用触媒の存在下で、不飽和アルデヒドと分子状酸素または分子状酸素含有ガスを接触気相酸化して不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程とを含む不飽和カルボン酸エステルの製造方法。
 [1’]酸化能を有する成分Aと酸特性を有する成分Bを含んでなる、不飽和アルデヒドから不飽和カルボン酸を得るために用いる不飽和カルボン酸製造用触媒。
 [2’]さらに、不溶性または難溶性の成分である成分Cを触媒成分として含む[1’]に記載の不飽和カルボン酸製造用触媒。
 [3’]前記成分Aが金属または金属酸化物である[1’]または[2’]に記載の不飽和カルボン酸製造用触媒。
 [4’]前記成分Aとして、Cr、MnおよびCoより選択される少なくとも一種を含む[1’]から[3’]のいずれかに記載の不飽和カルボン酸製造用触媒。
 [5’]前記成分Bとして無機酸を含む[1’]から[4’]のいずれかに記載の不飽和カルボン酸製造用触媒。
 [6’]前記成分Bとして、HBO、HPO、HSO、HNOおよびヘテロポリ酸からなる群から選択される少なくとも一種の化合物を含む[1’]から[5’]のいずれかに記載の不飽和カルボン酸製造用触媒。
 [7’][1’]から[6’]のいずれかに記載の不飽和カルボン酸製造用触媒の存在下で、不飽和アルデヒドと分子状酸素または分子状酸素含有ガスを接触気相酸化する不飽和カルボン酸の製造方法。
 [8’][7’]に記載の不飽和カルボン酸の製造方法により製造された不飽和カルボン酸をエステル化する不飽和カルボン酸エステルの製造方法。
 本発明によれば、不飽和アルデヒドから不飽和カルボン酸を得るために用いられる新規な触媒、該触媒を使用した不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法を提供することができる。
 [不飽和カルボン酸製造用触媒]
 本発明者らは、不飽和アルデヒドから不飽和カルボン酸を製造するのに好適に使用できる触媒について鋭意検討した結果、酸化成分および酸成分を含む触媒であって、前記酸化成分と前記酸成分とが異なる化学種である触媒を用いることによって、不飽和アルデヒドから不飽和カルボン酸を製造することができることを見出し、本発明を完成させた。
 すなわち、本発明に係る不飽和カルボン酸製造用触媒は、不飽和アルデヒドから不飽和カルボン酸を得るために用いられる、少なくとも二つの異なる成分Aおよび成分Bを含む不飽和カルボン酸製造用触媒である。ここで、前記成分Aは酸化能を有する成分、前記成分Bは酸特性を有する成分である。不飽和アルデヒドから不飽和カルボン酸を製造する反応において、異なる種類の成分として成分Aと成分Bとが共存することにより、本質的に成分Aは酸化触媒、成分Bは酸触媒として機能すると考えられる。具体的には、成分Bは不飽和アルデヒドのプロトン化に寄与すると考えられる。また、成分Aはプロトン化した不飽和アルデヒドへの酸素原子の付加に寄与すると考えられる。したがって、本発明に係る触媒を用いることで不飽和アルデヒドから不飽和カルボン酸への反応が進行すると推測される。
 (成分A)
 成分Aは酸化能を有する成分であり、下記式(I)で表される、触媒反応に用いる反応基質(不飽和アルデヒド)を酸化することができる成分である。また、触媒として機能させるためには、自身の酸化還元反応が可逆的に起こることが好ましい。
  MM’x’   (I)
(式(I)中、Mは周期表第4周期金属元素より選択される少なくとも一種の元素、M’は周期表第4周期以外の金属元素から選択される少なくとも一種の元素、Oは酸素を示す。x、x’およびyは各成分の原子比率を表し、xは1以上の整数であり、x’はx=1に対して0≦x’≦0.4であり、yは0又は前記各成分の原子比を満足するのに必要な酸素の原子比率である。)
 成分Aは金属または金属酸化物が挙げられ、前記Mを主成分とする。Mは具体的には、周期表第4周期の金属元素である、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、ZnおよびGaより選択される少なくとも一種の元素である。これらの中でも、不飽和アルデヒドから不飽和カルボン酸への反応がより進行しやすい観点から、Mは周期表第4周期の遷移金属元素であるSc、Ti、V、Cr、Mn、Fe、Co、Ni、CuおよびZnより選択される少なくとも一種の元素であることが好ましく、Cr、Mn、Co、CuおよびFeより選択される少なくとも一種の元素であることがより好ましく、CrおよびFeより選択される少なくとも一種の元素であることが更に好ましい。Mは一種を用いてもよく、二種以上を併用してもよい。
 M’は周期表第4周期以外の金属元素から選択される少なくとも一種の元素であり、特にMとともに合金を形成し得る元素、あるいはMとともに複合金属酸化物を形成し得る元素であることが好ましい。M’としては、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Ta、W、Re、Os、Ir、Pt及びAuより選択される少なくとも一種の元素であることがより好ましい。
 前記式(I)において、x=1に対してx’は0≦x’≦0.4を満たし、0≦x’<0.1を満たすことが好ましく、0≦x’≦0.01を満たすことが更に好ましく、x’=0が特に好ましい。
 成分Aは、M元素単独(単体金属)、二種以上のMからなる合金、MM’x’で表される合金、あるいは金属酸化物(複合金属酸化物を含む)であってもよいが、不飽和アルデヒドから不飽和カルボン酸への反応がより進行しやすい観点から、金属酸化物であることが好ましい。中でも、下記式(II)で表される金属酸化物が好ましい。
  MOy’   (II)
(式(II)中、Mは周期表第4周期金属元素より選択される少なくとも一種の元素、y’はMの価数に対応する酸素の原子比である。)
 式(II)中のMは、式(I)で説明したMと同じ元素が例示できる。特に一種のM元素の酸化物、例えば、Cr、Mn、Co、CuO、Feであることが好ましく、Cr、Feであることがより好ましい。
 (成分B)
 成分Bは酸特性を有する成分であり、無機酸または有機酸であって、ブレンステッド酸性またはルイス酸性、或いはその両方を示す成分である。具体的には、無機酸としては例えば、HPO、HBO、HNO、HSOおよびヘテロポリ酸等が挙げられる。有機酸としては例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、クエン酸、リンゴ酸、コハク酸等が挙げられる。前記ヘテロポリ酸としては、例えばHPW1240、HSiW1240、HPMo1240、HPVMo40、HPVMo1040、HPV1040、HPVMo1140、HPVW1140などが挙げられる。不飽和アルデヒドの酸化反応は一般に200~450℃程度の高温で実施されるため、成分Bは無機酸であることが好ましい。また前記無機酸はホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、窒素(N)、リン(P)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)および硫黄(S)からなる群から選択される少なくとも一種の元素を含むことが好ましい。これらの中でも、不飽和アルデヒドから不飽和カルボン酸への反応がより進行しやすい観点から、前記無機酸はHBO、HPO、HSO、HNO、ヘテロポリ酸からなる群より選択される少なくとも一種を含むことがより好ましい。また前記無機酸は、ホウ酸イオン、リン酸イオン、硫酸イオン、硝酸イオンおよびヘテロポリ酸イオンからなる群から選択される少なくとも一種を含むことが好ましい。また、前記無機酸の酸強度が強いほど不飽和アルデヒドのアルデヒド基のプロトン化が促進され、続く成分Aによる酸化が進みやすくなることから、前記無機酸として、構成元素にMoやWを含むヘテロポリ酸を用いることが好ましく、リンタングステン酸イオンを含むヘテロポリ酸を用いることが特に好ましい。これらの成分Bは一種を用いてもよく、二種以上を併用してもよい。
 なお、成分Aと成分Bの両方に該当する成分は存在する。すなわち1つの化合物で成分Aと成分Bの両方を含むものは存在する。しかしながら本発明では成分Aと成分Bとは異なる成分として存在する必要があり、成分Aと成分Bをそれぞれ異なる成分として含む。すなわち、触媒が成分Aと成分Bの両方に該当する成分一種のみを含む場合には本発明の効果を奏することはできず、該成分以外の成分Aまたは成分Bをさらに含むことが求められる。
 (成分C)
 本発明に係る触媒は、成分Aおよび成分B以外に、さらに不溶性または難溶性の成分である成分Cを触媒成分として含むことが好ましい。成分Cは、成分Aおよび成分Bとは異なる、成分Aおよび成分Bを保持するための固体成分であって、触媒担体の役割を果たす。すなわち、成分Cは担体成分であり、成分Aおよび成分Bは成分C上に担持されることができる。ここで、「不溶性」とは水に全く不溶であることを示す。また、「難溶性」とは25℃の水に対する溶解度が100mg/100mL以下であることを示す。成分Aおよび成分Bを水やその他の溶媒に溶解または分散させ、溶液またはスラリーの状態で成分Aおよび成分Bを成分C上に保持することができる。そのため、成分Cは成分Aおよび成分Bの溶液またはスラリーと混合してもほとんど溶解しないことが好ましい。
 成分Cとしては特に制限はないが、無機化合物であって熱安定性が高いものが好ましい。具体的には、SiO、Al、SiO-Al、ZrO、各種ゼオライト(ゼオライト類)、活性炭などを用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 なお、金属酸化物の中には成分Aとしても成分Cとしても使用可能なものが存在するが、これらが共存する場合、より酸化力が強い方が酸化反応に働く。従って、より酸化力の強い方を成分A、より酸化力の弱い方を成分Cと見なす。ここで、金属酸化物の酸化力は、酸素原子あたりの生成熱-ΔH によって評価され、-ΔH が小さいほど酸化力が強いことを示す。なお、各種金属酸化物の-ΔH は、例えばY.Morooka and A.Ozaki,J.Catal.,5,116(1966)、清山哲郎ほか、触媒,8,306(1966)等に記載されている。
 (含有比率)
 本発明に係る触媒に含まれる、成分Aと成分Bの各質量をそれぞれm、mとしたとき、成分Aと成分Bとの含有比率(m/m、以下A/B質量比とも示す)は、不飽和カルボン酸収率の観点から、0.0001~1000が好ましく、0.001~500がより好ましく、0.01~400がさらに好ましく、0.1~300が特に好ましい。
 本発明に係る触媒が成分Cを含む場合、成分A、成分Bおよび成分Cの各質量をそれぞれm、m、mとしたとき、成分Aの含有比率(m/(m+m)×100)は1~99質量%が好ましく、5~90質量%がより好ましく、10~85質量%がさらに好ましく、20~80質量%が特に好ましく、30~60質量%が最も好ましい。成分Bの含有比率(m/(m+m+m)×100)は0.001~99質量%が好ましく、0.01~90質量%がより好ましく、0.1~70質量%がさらに好ましく、0.1~50質量%が特に好ましい。なお、成分Cの含有比率の好ましい範囲は、前述した成分Aおよび成分Bの含有比率の好ましい範囲より自ずと定まる。
 [触媒の製造方法]
 本発明に係る触媒の製造方法は特に限定されないが、例えば下記工程を含む方法により調製することができる。
工程(A):成分Aを溶媒に溶解または分散させて、溶液または溶媒分散液を得る。
工程(B):工程(A)で得られた溶液または溶媒分散液に成分Cを加えて撹拌し、減圧留去などにより溶媒を除去して固形分を得る。
工程(C):工程(B)で得られた固形分を焼成して焼成物を得る。
工程(D):成分Bを溶媒に溶解または分散させて、溶液または溶媒分散液を得る。
工程(E):工程(C)で得られた焼成物に工程(D)で得られた溶液または溶媒分散液を加えて撹拌し、乾燥して溶媒を除去して固形分を得る。
工程(F):工程(E)で得られた固形分を焼成して焼成物を得る。
 各成分の原料化合物としては特に制限はない。成分Aおよび成分Bの原料としては特に限定されないが、例えば成分元素の水酸化物、塩化物、硫酸塩、硝酸塩、酸化物、酢酸塩等が挙げられる。成分Cを用いる場合には、成分Cとの混合のしやすさを考えると、用いる溶媒への溶解性が高い原料が好ましい。例えば水を溶媒として用いる場合、成分Aの原料としては、Cr(NO、Mn(NO、Co(NOおよびその水和物などが挙げられる。また、成分Bの原料としては、HPW1240、HSiW1240、HPMo1240、HPVMo40、HPVMo1040、HPV1040、HPVMo1140、HPVW1140、HBO、HPO、HSO、HNOなど成分Bをそのまま、又は溶媒で希釈したものが挙げられる。溶媒は特に限定されないが、例えば水や、エタノール、アセトンなどの有機溶媒が挙げられる。
 また、成分Cを用いる場合には、工程(C)に示されるように、成分Aと成分Cとを含む溶液または溶媒分散液の乾燥後の固形分を焼成することが好ましい。焼成により、成分Aが成分C上に十分に固定化される。焼成は例えば、空気雰囲気下、200~600℃で1~100時間実施される。また、工程(F)に示されるように、成分Bは、成分Aと成分Cとを含む焼成物を得た後に、該焼成物と混合して再度焼成することが好ましい。
 得られた触媒はそのまま不飽和アルデヒドから不飽和カルボン酸への反応に用いてもよいが、焼成してから用いてもよい。焼成は、例えば200~600℃で1~100時間実施される。
 また、本発明に係る触媒は、例えば下記工程を含む方法により調製することができる。
工程(1):成分Aの原料を溶媒に溶解または分散させて、溶液または溶媒分散液を得る。
工程(2):前記溶液または溶媒分散液に成分Cを加え、溶媒を除去して固形分iを得る。
工程(3):前記固形物iに成分Bの原料を含む化合物を加え、成分A、成分Bおよび成分Cを含む固形分iiを得る。
 (工程(1))
 前記成分Aの原料としては特に限定されないが、例えば成分元素の水酸化物、塩化物、硫酸塩、硝酸塩、酸化物、酢酸塩等が挙げられる。成分Cを用いる場合には、成分Cとの混合のしやすさを考えると、用いる溶媒への溶解性が高い原料が好ましい。例えば水を溶媒として用いる場合、成分Aの原料としては、Cr(NO、Mn(NO、Co(NO、Fe(NO、Cu(NOおよびその水和物などが挙げられる。溶媒は特に限定されないが、例えば水や、エタノール、アセトンなどの有機溶媒が挙げられる。
 (工程(2))
 前記成分Cとしては、前述の通りSiO、Al、SiO-Al、ZrO、各種ゼオライト、活性炭などを用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 また前記溶液または溶媒分散液から溶媒を除去する方法としては、減圧蒸留を用いることが好ましい。
 また、成分Cを用いる場合には、本工程において固形分iを焼成することが好ましい。焼成により、成分Aが成分C上に十分に固定化される。焼成は例えば、空気雰囲気下、200~600℃で1~100時間実施される。
 (工程(3))
 前記成分Bの原料としては、HPW1240、HSiW1240、HPMo1240、HPVMo40、HPVMo1040、HPV1040、HPVMo1140、HPVW1140、HBO、HPO、HSO、HNOなどが挙げられる。
 本工程において、前記成分Bの原料は溶媒に溶解又は分散させて前記固形物iに添加することができる。溶媒は特に限定されないが、例えば水や、エタノール、アセトンなどの有機溶媒が挙げられる。この場合、前記成分Bの原料を溶媒に溶解又は分散させて前記固形物iに添加した後、溶媒を除去することにより固形分iiを得ることができる。
 また前記成分Bを前記成分Cに担持させたものを前記固形物iに混合し、固形分iiを得ることもできる。
 (焼成工程)
 前記固形分iiはそのまま不飽和アルデヒドから不飽和カルボン酸への反応に用いてもよいが、焼成してから用いることが好ましい。焼成は、例えば200~600℃で1~100時間実施される。
 また、本発明に係る触媒は、例えば下記工程を含む方法により調製することができる。
工程(1’):成分Aの原料を溶媒に溶解または分散させて、溶液または溶媒分散液を得る。
工程(2’):前記溶液または溶媒分散液に成分Cおよび成分Bの原料を加え、溶媒を除去して成分A、成分Bおよび成分Cを含む固形分iiiを得る。
 (工程(1’))
 前記成分Aの原料としては特に限定されないが、例えば成分元素の水酸化物、塩化物、硫酸塩、硝酸塩、酸化物、酢酸塩等が挙げられる。成分Cを用いる場合には、成分Cとの混合のしやすさを考えると、用いる溶媒への溶解性が高い原料が好ましい。例えば水を溶媒として用いる場合、成分Aの原料としては、Cr(NO、Mn(NO、Co(NO、Fe(NO、Cu(NOおよびその水和物などが挙げられる。溶媒は特に限定されないが、例えば水や、エタノール、アセトンなどの有機溶媒が挙げられる。
 (工程(2’))
 前記成分Cとしては、前述の通りSiO、Al、SiO-Al、ZrO、各種ゼオライト、活性炭などを用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 前記成分Bの原料としては、HPW1240、HSiW1240、HPMo1240、HPVMo40、HPVMo1040、HPV1040、HPVMo1140、HPVW1140、HBO、HPO、HSO、HNOなどが挙げられる。これらは溶媒に溶解又は分散させて前記固形物iに添加することができる。溶媒は特に限定されないが、例えば水や、エタノール、アセトンなどの有機溶媒が挙げられる。
 また溶媒は減圧蒸留を用いて除去し、固形物iiiを得ることが好ましい。
 (焼成工程)
 前記固形分iiiはそのまま不飽和アルデヒドから不飽和カルボン酸への反応に用いてもよいが、焼成してから用いることが好ましい。焼成は、例えば200~600℃で1~100時間実施される。
 また、前記固形分ii又は前記固形分iiiの焼成工程において得られた触媒は、粉砕、整粒してその粒子径を数十~数百ミクロン(μm)としたり、ペレット状に成形したりして使用することができる。本発明に係る触媒は、固定床、流動床、移動床等のいずれの反応様式にも適用できるが、固定床での反応に用いることが好ましい。固定床で使用する場合、除熱のため、海砂、シリコンカーバイドなどの不活性な希釈剤と混合して用いることが好ましい。
 [不飽和カルボン酸の製造方法]
 本発明に係る不飽和カルボン酸の製造方法は、本発明に係る不飽和カルボン酸製造用触媒の存在下で、不飽和アルデヒドの分子状酸素または分子状酸素含有ガスによる接触気相酸化反応を行う。該方法によれば、不飽和アルデヒドから不飽和カルボン酸を得ることができる。不飽和アルデヒドとしては、例えば(メタ)アクロレイン、クロトンアルデヒド(別名:β-メチルアクロレイン)、シンナムアルデヒド(別名:β-フェニルアクロレイン)等が挙げられる。中でも(メタ)アクロレインが好適である。不飽和アルデヒドから製造される不飽和カルボン酸は、該不飽和アルデヒドのアルデヒド基がカルボキシル基に変化した不飽和カルボン酸であり、例えば不飽和アルデヒドが(メタ)アクロレインの場合、(メタ)アクリル酸が得られる。なお、「(メタ)アクロレイン」はアクロレインおよびメタクロレインを示し、「(メタ)アクリル酸」はアクリル酸およびメタクリル酸を示す。
 前記接触気相酸化反応における原料ガス組成は、特に限定されないが、不飽和アルデヒド:酸素:水蒸気:希釈ガス=1:0.1~10:0~30:0~60(モル比)が好ましい。ここで、希釈ガスとしては、窒素、炭酸ガス等が好ましい。接触気相酸化反応は、加圧下または減圧下で実施してもよいが、大気圧付近の圧力で実施することが好ましい。反応温度は200~400℃が好ましく、220~350℃がより好ましい。原料ガスの供給量は、空間速度(SV)で100~100000hr-1が好ましく、400~30000hr-1がより好ましい。
 [不飽和カルボン酸エステルの製造方法]
 本発明に係る不飽和カルボン酸エステルの製造方法は、本発明に係る方法により得られる不飽和カルボン酸のエステル化を行う。該方法によれば、不飽和アルデヒドから得られる不飽和カルボン酸を用いて、不飽和カルボン酸エステルを得ることができる。不飽和カルボン酸と反応させるアルコールとしては、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られる不飽和カルボン酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、その趣旨を越えない限り以下の実施例に限定されるものではない。なお、以下の実施例における成分Aの含有比率および成分Bの含有比率は以下のように定義される。ここで、担体(成分C)上に担持されたCr、Mn、Co、Cu、Feについては、X線回折測定の結果を基に、それぞれすべてCr、Mn、Co、CuO、Feとして計算している。
  成分Aの含有比率(質量%)=m/(m+m)×100。
  成分Bの含有比率(質量%)=m/(m+m+m)×100。
 m:成分A(金属酸化物)の質量
 m:成分B(HPW1240、HPOまたはHSO)の質量
 m:成分C(SiOまたはSiO-Al)の質量
 なお、m、mおよびmは原料の仕込み量から求めた値とする。
 また、成分Aと成分Bとの含有比率(A/B質量比)は以下のように定義される。
  A/B質量比=m/m
 また、以下の実施例におけるメタクリル酸収率は次の通り定義される。
  メタクリル酸収率(モル%)=(生成したメタクリル酸のモル数)/(供給したメタクロレインのモル数)×100。
 [実施例1]
 (触媒の調製)
 Cr(NO・9HO(式量400)9.895g(0.02474mol、Crの質量:1.286g)を超純水100mLに加えて撹拌し、完全に溶解させた。この水溶液にSiO(商品名:アエロジル300、日本アエロジル株式会社製)3gを加え、室温で1時間撹拌した。ナスフラスコに移し、エバポレーターを用いて約5Torr(約7×10N/m)、ウォーターバス温度50℃で乾固するまで溶媒を減圧留去した。得られた固体を100℃で一晩乾燥させた。マッフル炉にて空気中、550℃(昇温速度10℃/min)にて5時間焼成し、成分Aの含有比率が38.52質量%であるCrO/SiO(固形分i)を得た。
 リンタングステン酸(日本無機化学工業(株)製)100gを超純水30mLに加えて撹拌し、完全に溶解させた。溶解が不十分な場合は、完全に溶解するまで超純水を少しずつ加えた。分液漏斗に移し、ジエチルエーテル50mLを加え、気体を抜き取りながら振り混ぜ、その後一晩静置した。下層のエーテル相を別の分液漏斗に移し、そこへ超純水50mLを加えて、気体を抜き取りながら振り混ぜ、その後一晩静置した。この操作を合計5回行った。下層のエーテル相をナスフラスコに移し、超純水50mLを加えた。エバポレーターを用いて、約5Torr(約7×10N/m)、ウォーターバス温度40℃の条件で溶媒を減圧留去した。固体が析出し溶液がシャーベット状になったところで一旦エバポレーターを止め、そこに超純水50mLを加えた。再び、ロータリーエバポレーターを使い溶媒を減圧留去した。この操作を5回繰り返した。5回目は液面に少量の結晶が析出したところで減圧留去を止めた。ナスフラスコを湯浴に浸けて析出した結晶を再溶解させた。得られた飽和水溶液を室温で一晩静置した。生成した結晶をデカンテーションによって母液から分離し、60℃で一晩乾燥した後、さらに室温で2日間風乾し、HPW1240・nHOを得た。該HPW1240・nHOのTG-DTAプロファイルを測定し、結晶水の数(nの値)を算出した。この値に基づいて0.08mol/LのHPW1240水溶液50mLを調製した。
 先に調製した成分Aの含有比率が38.52質量%であるCrO/SiO(1.8g)に、先に調製した0.08mol/LのHPW1240水溶液3.91mL(HPW1240の物質量:0.3128mmol、HPW1240の質量:0.901g)をincipient wetness法で担持した。具体的には、ビーカーに量り取ったCrO/SiOの粉体に、前記粉体の全体が適度に湿る程度の少量のHPW1240水溶液をパスツールピペットを用いて滴下し、ガラス棒で良くかき混ぜた。その後、100℃で15~30分程度乾燥させた。HPW1240水溶液の全量を滴下するまでこの操作を繰り返した。得られた粉末(固形分ii)を60℃で一晩乾燥させた後、マッフル炉を用いて空気中、250℃(昇温速度10℃/min)で2時間焼成し、成分Bの含有比率が33.35質量%であるHPW1240-CrO/SiO触媒を得た。得られた触媒のX線回折(Cu-Kα線を使用)を測定したところ、三価の酸化クロムおよびHPW1240の結晶構造が認められ、少なくとも酸化能を有する成分AであるCrと、酸特性を有する成分BであるHPW1240とが存在していることが確認された。
 (触媒評価試験)
 得られたHPW1240-Cr/SiO触媒を250~500μmに整粒した。触媒1gと、250~500μmに整粒した海砂(和光純薬工業(株)製)3gとを物理混合し、ガラス製反応管内に充填し、反応装置に接続した。O:HO:N=10.7:17.9:71.4(体積比)の混合ガスを空間速度(SV)1680hr-1で流しながら320℃に昇温し、1時間加熱した。その後、反応浴温度(反応温度)300℃にて、メタクロレイン:酸素:水蒸気:窒素=3:6:13:78(モル比)の原料ガスを空間速度(SV)4320hr-1の条件で流し、メタクリル酸収率の評価を行った。評価試験の結果を表1に示す。
 [実施例2]
 CrO/SiOへの担持の際に使用したHPW1240水溶液の量を0.868mL(HPW1240の質量:0.20g)に変更した以外は、実施例1と同様にして成分Bの含有比率が10.00質量%であるHPW1240-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例3]
 CrO/SiOへの担持の際に使用したHPW1240水溶液の量を7.81mL(HPW1240の質量:1.80g)に変更した以外は、実施例1と同様にして成分Bの含有比率が49.99質量%であるHPW1240-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例4]
 CrO/SiOへの担持の際に使用したHPW1240水溶液の量を18.2mL(HPW1240の質量:4.19g)に変更した以外は、実施例1と同様にして成分Bの含有比率が69.97質量%であるHPW1240-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [比較例1]
 実施例1において調製した、成分Aの含有比率が38.52質量%であるCrO/SiO(固形分i)を触媒として用いたこと以外は、実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [比較例2]
 CrOを担持していないSiOに対して、実施例1と同様の方法によりHPW1240水溶液をincipient wetness法で担持し、成分Bの含有比率が33.35質量%であるHPW1240/SiO触媒を得た。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例5]
 反応温度を350℃に変更した以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例6]
 反応温度を400℃に変更した以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例7]
 実施例1における触媒評価試験後、続けて温度300℃のままで水蒸気の供給を停止し、原料ガス組成をメタクロレイン:酸素:窒素=3:6:76(モル比)、空間速度(SV)を3670hr-1に変更してメタクリル酸収率の評価を行った。評価試験の結果を表1に示す。
 [実施例8]
 Cr(NO・9HOに代えて、Mn(NO・6HO(式量287)6.717g(0.0234mol、Mnの質量:1.286g)を用いた以外は、実施例1のCrO/SiOの調製と同様の方法により成分Aの含有比率が38.11質量%であるMnO/SiO(固形分i)を調製した。CrO/SiOに代えて前記MnO/SiOを用いた以外は、実施例1のHPW1240-Cr/SiO触媒の調製と同様の方法により、成分Bの含有比率が33.35質量%であるHPW1240-MnO/SiO触媒を調製した。得られた触媒のX線回折(Cu-Kα線を使用)を測定したところ、三価の酸化マンガンおよびHPW1240の結晶構造が認められ、少なくとも酸化能を有する成分AであるMnと、酸特性を有する成分BであるHPW1240とが存在していることが確認された。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [比較例3]
 実施例8において調製した、成分Aの含有比率が38.11質量%であるMnO/SiO(固形分i)を触媒として用いたこと以外は、実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例9]
 Cr(NO・9HOの使用量を23.083g、超純水の使用量を233.28mLに変更した以外は、実施例1のCrO/SiOの調製と同様の方法により成分Aの含有比率が59.37質量%であるCrO/SiO(固形分i)を調製した。前記CrO/SiOを用いた以外は、実施例1のHPW1240-Cr/SiO触媒の調製と同様の方法により、成分Bの含有比率が33.35質量%であるHPW1240-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例10]
 SiOに代えて、SiO-Al(触媒学会参照触媒、JRC-SAL-2)を用いた以外は、実施例1のCrO/SiOの調製と同様の方法により成分Aの含有比率が38.52質量%であるCrO/SiO-Al(固形分i)を調製した。前記CrO/SiO-Alを用いた以外は、実施例1のHPW1240-Cr/SiO触媒の調製と同様の方法により、成分Bの含有比率が33.35質量%であるHPW1240-Cr/SiO-Al触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例11]
 Cr(NO・9HOの使用量を53.869g、超純水の使用量を544.32mLに変更した以外は、実施例1のCrO/SiOの調製と同様の方法により成分Aの含有比率が77.33質量%であるCrO/SiO(固形分i)を調製した。前記CrO/SiOを用いた以外は、実施例1のHPW1240-Cr/SiO触媒の調製と同様の方法により、成分Bの含有比率が33.35質量%であるHPW1240-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例12]
 Cr(NO・9HOに代えて、Co(NO・6HO(式量291.03)12.69g(0.04360mol、Coの質量:2.570g)を用いた以外は、実施例1のCrO/SiOの調製と同様の方法により成分Aの含有比率が53.85質量%であるCoO/SiO(固形分i)を調製した。CrO/SiOに代えて前記CoO/SiOを用いた以外は、実施例1のHPW1240-Cr/SiO触媒の調製と同様の方法により、成分Bの含有比率が33.35質量%であるHPW1240-CoO/SiO触媒を調製した。得られた触媒のX線回折(Cu-Kα線を使用)を測定したところ、二価と三価の混合原子価となっているスピネル型の酸化コバルトおよびHPW1240の結晶構造が認められ、少なくとも酸化能を有する成分AであるCoと、酸特性を有する成分BであるHPW1240とが存在していることが確認された。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [比較例4]
 実施例12において調製した、成分Aの含有比率が53.85質量%であるCoO/SiO(固形分i)を触媒として用いたこと以外は、実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例13]
 HPW1240水溶液に代えて、0.08mol/LのHPO水溶液0.343mLを用いた以外は、実施例1と同様にして成分Bの含有比率が0.15質量%であるHPO-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例14]
 HPW1240水溶液に代えて、0.08mol/LのHSO水溶液0.515mLを用いた以外は、実施例1と同様にして成分Bの含有比率が0.22質量%であるHSO-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例15]
 HPW1240水溶液に代えて、0.08mol/LのHPO水溶液3.34mLを用いた以外は、実施例1と同様にして成分Bの含有比率が1.43質量%であるHPO-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例16]
 HPW1240水溶液に代えて、0.08mol/LのHSO水溶液5.01mLを用いた以外は、実施例1と同様にして成分Bの含有比率が2.14質量%であるHSO-Cr/SiO触媒を調製した。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例17]
 Cr(NO・9HO(式量400)9.895g(0.02474mol、Crの質量:1.286g)を超純水100mLに加えて撹拌し、完全に溶解させた。この水溶液にSiO(商品名:アエロジル300、日本アエロジル株式会社製)を3g加え、さらに0.08mol/LのHPW1240水溶液9.02mL(HPW1240の物質量0.7216mmol、HPW1240の質量2.078g)を加え1時間、室温で撹拌した。その後、ナスフラスコに移し、エバポレーターを用いて約5Torr、ウォーターバス温度50℃で乾固するまで溶媒を減圧留去した。得られた固体(固形分iii)を100℃で一晩乾燥させた。マッフル炉にて空気中、250℃にて1時間焼成し、成分Aの含有比率が38.52質量%、成分Bの含有比率が29.87質量%であるHPW1240-CrO/SiO触媒を得た。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例18]
 Cr(NO・9HOに代えてCu(NO・3HO(式量 241.6)4.889g(0.020mol、Cuの質量1.286g)を用いた以外は、実施例1のCrO/SiOの調製と同様の方法により成分Aの含有比率が34.92質量%であるCuO/SiO(固形分i)を調製した。CrO/SiOに代えて前記CuO/SiOを用いた以外は、実施例1のHPW1240-CrO/SiO触媒の調製と同様の方法により、成分Bの含有比率が33.35質量%であるHPW1240-CuO/SiO触媒を調製した。得られた触媒のX線回折(Cu-Kα線を使用)を測定したところ、二価の酸化銅およびHPW1240の結晶構造が認められ、少なくとも酸化能を有する成分AであるCuOと、酸特性を有する成分BであるHPW1240とが存在していることが確認された。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例19]
 Cr(NO・9HOに代えてFe(NO・9HO(式量 404.0)9.301g(0.023mol、Feの質量1.286g)を用いた以外は、実施例1のCrO/SiOの調製と同様の方法により成分Aの含有比率が37.99質量%であるFeO/SiO(固形分i)を調製した。CrO/SiOに代えて前記FeO/SiOを用いた以外は、実施例1のHPW1240-CrO/SiO触媒の調製と同様の方法により、成分Bの含有比率が33.35質量%であるHPW1240-FeO/SiOを調製した。得られた触媒のX線回折(Cu-Kα線を使用)を測定したところ、三価の酸化鉄およびHPW1240の結晶構造が認められ、少なくとも酸化能を有する成分AであるFeと、酸特性を有する成分BであるHPW1240とが存在していることが確認された。前記触媒を用いた以外は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
 [実施例20]
 実施例1において調製した、成分Aの含有比率が38.52質量%であるCrO/SiO(固形分i)と、比較例2と同様の方法により調製した成分Bの含有比率が33.35質量%であるHPW1240/SiOを、それぞれ250~500μmに整粒した。0.5gのCrO/SiOと0.5gのHPW1240/SiOを物理混合し、A成分の含有比率(A成分の質量/(A成分の質量+C成分(全SiO)の質量)×100)が23.11質量%、成分Bの含有比率が16.68質量%であるCrO/SiO-HPW1240/SiO(固形分ii)を得た。この触媒に250~500μmに整粒した海沙3.0gをさらに物理混合し、ガラス製反応管内に充填した。その後は実施例1と同様に触媒評価試験を行った。評価試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
*1 成分Aと成分C中の含有比率
*2 成分A~C中の含有比率
*3 原料ガス組成 メタクロレイン:酸素:窒素=3:6:76(モル比)。その他はメタクロレイン:酸素:水蒸気:窒素=3:6:13:78(モル比)。
 酸化能を有する成分Aと酸特性を有する成分Bを含む触媒を用いた実施例ではいずれもメタクロレインからメタクリル酸を得ることができた。一方、触媒に成分Bを含まない比較例1、3および4、並びに触媒に成分Aを含まない比較例2では、いずれもメタクロレインからメタクリル酸を得ることはできず、異なる種類の成分として成分Aと成分Bとが共存することにより、メタクロレインからメタクリル酸を製造する反応が進行することがわかった。
 この出願は、2017年3月31日に出願された日本出願特願2017-070810、2017年5月12日に出願された日本出願特願2017-095617及び2017年11月22日に出願された日本出願特願2017-225100を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (18)

  1.  下記式(I)で表される成分Aと、無機酸または有機酸を含む化合物である成分Bを含んでなる、不飽和アルデヒドから不飽和カルボン酸を得るために用いる不飽和カルボン酸製造用触媒。
      MM’x’   (I)
    (式(I)中、Mは周期表第4周期金属元素より選択される少なくとも一種の元素、M’は周期表第4周期以外の金属元素から選択される少なくとも一種の元素、Oは酸素を示す。x、x’およびyは各成分の原子比率を表し、xは1以上の整数であり、x’はx=1に対して0≦x’≦0.4であり、yは0又は前記各成分の原子比を満足するのに必要な酸素の原子比率である。)
  2.  前記式(I)において、Mが周期表第4周期の遷移金属元素より選択される少なくとも一種の元素である請求項1に記載の不飽和カルボン酸製造用触媒。
  3.  前記式(I)において、MがCr、Mn、Co、CuおよびFeより選択される少なくとも一種である請求項1に記載の不飽和カルボン酸製造用触媒。
  4.  前記式(I)において、0≦x’<0.1である請求項1から3のいずれか1項に記載の不飽和カルボン酸製造用触媒。
  5.  前記成分Bが無機酸を含む化合物である請求項1から4のいずれか1項に記載の不飽和カルボン酸製造用触媒。
  6.  前記無機酸が、B、Si、Ge、N、P、As、Sb、BiおよびSからなる群から選択される少なくとも一種の元素を含む請求項5に記載の不飽和カルボン酸製造用触媒。
  7.  前記無機酸が、ホウ酸イオン、リン酸イオン、硫酸イオン、硝酸イオンおよびヘテロポリ酸イオンからなる群から選択される少なくとも一種を含む請求項5に記載の不飽和カルボン酸製造用触媒。
  8.  前記ヘテロポリ酸イオンがリンタングステン酸イオンである請求項7に記載の不飽和カルボン酸製造用触媒。
  9.  さらに、不溶性または難溶性の成分Cを含む請求項1から8のいずれか1項に記載の不飽和カルボン酸製造用触媒。
  10.  成分Cが、SiO、Al、SiO-Al、ZrO、ゼオライト類、活性炭からなる群から選択される少なくとも1種である請求項9に記載の不飽和カルボン酸製造用触媒。
  11.  成分Aと成分Bの質量比(A/B)が、0.0001~1000である請求項1から10のいずれか1項に記載の不飽和カルボン酸製造用触媒。
  12.  前記質量比(A/B)が0.1~300である、請求項11に記載の不飽和カルボン酸製造用触媒。
  13.  Cr、MnおよびCo、並びにこれらの酸化物より選択される少なくとも一種からなる成分Aと、無機酸を含む成分Bを含んでなる、不飽和アルデヒドから不飽和カルボン酸を得るために用いる不飽和カルボン酸製造用触媒。
  14.  前記無機酸がHBO、HPO、HSO、HNOおよびヘテロポリ酸からなる群から選択される少なくとも一種を含む請求項13に記載の不飽和カルボン酸製造用触媒。
  15.  前記不飽和アルデヒドがメタクロレインであり、前記不飽和カルボン酸がメタクリル酸である請求項1から14のいずれか1項に記載のメタクリル酸製造用触媒。
  16.  請求項1から15のいずれか1項に記載の不飽和カルボン酸製造用触媒の存在下で、不飽和アルデヒドと分子状酸素または分子状酸素含有ガスを接触気相酸化する不飽和カルボン酸の製造方法。
  17.  請求項16に記載の不飽和カルボン酸の製造方法により製造された不飽和カルボン酸をエステル化する不飽和カルボン酸エステルの製造方法。
  18.  請求項1から15のいずれか1項に記載の不飽和カルボン酸製造用触媒の存在下で、不飽和アルデヒドと分子状酸素または分子状酸素含有ガスを接触気相酸化して不飽和カルボン酸を製造する工程と、該不飽和カルボン酸をエステル化する工程とを含む不飽和カルボン酸エステルの製造方法。
PCT/JP2018/012918 2017-03-31 2018-03-28 不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法 WO2018181544A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MYPI2019005688A MY191922A (en) 2017-03-31 2018-03-28 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic ester
KR1020197032140A KR102418676B1 (ko) 2017-03-31 2018-03-28 불포화 카복실산 제조용 촉매, 불포화 카복실산의 제조 방법, 및 불포화 카복실산 에스터의 제조 방법
SG11201909138S SG11201909138SA (en) 2017-03-31 2018-03-28 Catalyst for producing unsaturated carboxylic acid, method for producing unsaturated carboxylic acid, and method for producing unsaturated carboxylic ester
CN201880020732.3A CN110505917B (zh) 2017-03-31 2018-03-28 不饱和羧酸制造用催化剂、不饱和羧酸的制造方法和不饱和羧酸酯的制造方法
JP2019510016A JP6999909B2 (ja) 2017-03-31 2018-03-28 不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017070810 2017-03-31
JP2017-070810 2017-03-31
JP2017095617 2017-05-12
JP2017-095617 2017-05-12
JP2017-225100 2017-11-22
JP2017225100 2017-11-22

Publications (1)

Publication Number Publication Date
WO2018181544A1 true WO2018181544A1 (ja) 2018-10-04

Family

ID=63676027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012918 WO2018181544A1 (ja) 2017-03-31 2018-03-28 不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法

Country Status (6)

Country Link
JP (1) JP6999909B2 (ja)
KR (1) KR102418676B1 (ja)
CN (1) CN110505917B (ja)
MY (1) MY191922A (ja)
SG (1) SG11201909138SA (ja)
WO (1) WO2018181544A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608406B (zh) * 2021-07-13 2023-12-08 中国石油化工股份有限公司 用于合成甲基丙烯酸甲酯的催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586243A (ja) * 1981-07-02 1983-01-13 Ube Ind Ltd メタクリル酸製造用触媒の製法
JP2001137709A (ja) * 1999-10-01 2001-05-22 Rohm & Haas Co 触 媒
JP2005058909A (ja) * 2003-08-12 2005-03-10 Mitsubishi Rayon Co Ltd メタクリル酸合成用触媒の製造方法
WO2009136537A1 (ja) * 2008-04-16 2009-11-12 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造方法
CN104001542A (zh) * 2014-06-09 2014-08-27 中国科学院过程工程研究所 一种用于甲基丙烯醛氧化制甲基丙烯酸催化剂的制备方法
JP2015120133A (ja) * 2013-12-25 2015-07-02 株式会社日本触媒 アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
WO2016035573A1 (ja) * 2014-09-02 2016-03-10 東亞合成株式会社 (メタ)アクリル酸エステル混合物の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001316A (en) * 1973-06-15 1977-01-04 Nippon Kayaku Kabushiki Kaisha Method for manufacture of methacrylic acid
JPS58110559A (ja) * 1981-12-25 1983-07-01 Sagami Chem Res Center 1−(置換ナフチル)−2−スルホニルオキシ−1−アルカノン
JP2827627B2 (ja) 1991-11-12 1998-11-25 松下電器産業株式会社 脱臭触媒体
TW349033B (en) * 1994-05-31 1999-01-01 Nippon Catalytic Chem Ind Catalyst for production of methacrylic acid and method for production of methacrylic acid by the use of the catalysta catalyst for the production of methacrylic acid by the vapor-phase catalytic oxidation and/or oxidative dehydrogenation of at least one compound
JPH0873753A (ja) * 1994-07-01 1996-03-19 Sekisui Chem Co Ltd マイクロ波融着用樹脂組成物及びマイクロ波融着継手
US5599631A (en) * 1995-03-08 1997-02-04 Eastman Kodak Company Fluorinated elastomer/fluorinated resin compositions for toner fusing members
JP2000102729A (ja) 1998-07-28 2000-04-11 Japan Energy Corp 固体酸触媒の製造方法
AU2002349756A1 (en) * 2001-12-05 2003-06-17 Mitsubishi Chemical Corporation Method of purifying (meth)acrylic ester
KR100477894B1 (ko) * 2002-06-04 2005-03-18 한국과학기술연구원 헤테로폴리산 촉매의 제조방법과 이를 이용하는 메타크릴산의 제조방법
CN100430141C (zh) * 2004-03-23 2008-11-05 三菱化学株式会社 复合氧化物催化剂的制备方法
CN101611505B (zh) 2007-02-19 2012-06-27 大日本印刷株式会社 有机电致发光元件
JP5030880B2 (ja) 2007-08-08 2012-09-19 大阪瓦斯株式会社 排ガス中のメタンの酸化除去用触媒および排ガス中のメタンの酸化除去方法
JP5684818B2 (ja) 2009-10-15 2015-03-18 日本化薬株式会社 グリセリンの脱水反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造するのに使用する触媒の製造方法と、この方法で得られる触媒
JP2014226614A (ja) * 2013-05-23 2014-12-08 住友化学株式会社 メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
US9725400B2 (en) 2015-08-18 2017-08-08 Shin-Etsu Chemical Co., Ltd. (E)-2-isopropyl-5-methyl-3,5-hexadienoate compound, method for producing the same, and methods for producing (E)-2-isopropyl-5-methyl-3,5-hexadienol and (E)-2-isopropyl-5-methyl-3,5-hexadienyl carboxylate by using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586243A (ja) * 1981-07-02 1983-01-13 Ube Ind Ltd メタクリル酸製造用触媒の製法
JP2001137709A (ja) * 1999-10-01 2001-05-22 Rohm & Haas Co 触 媒
JP2005058909A (ja) * 2003-08-12 2005-03-10 Mitsubishi Rayon Co Ltd メタクリル酸合成用触媒の製造方法
WO2009136537A1 (ja) * 2008-04-16 2009-11-12 日本化薬株式会社 グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造方法
JP2015120133A (ja) * 2013-12-25 2015-07-02 株式会社日本触媒 アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
CN104001542A (zh) * 2014-06-09 2014-08-27 中国科学院过程工程研究所 一种用于甲基丙烯醛氧化制甲基丙烯酸催化剂的制备方法
WO2016035573A1 (ja) * 2014-09-02 2016-03-10 東亞合成株式会社 (メタ)アクリル酸エステル混合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IWAKURA HIROKI ET AL.: "Selective oxidation of methacrolein using silica-supported chromium oxide catalyst with added tungstophosphoric acid", 120TH ANNUAL MEETING OF THE CATALYSIS SOCIETY OF JAPAN, no. 120, 5 September 2017 (2017-09-05), pages 270 *
ZHOU,L. ET AL.: "Effect of vanadyl species in Keggin-type heteropoly catalysts in selective oxidation of methacrolein to methacrylic acid", JOURNAL OF CATALYSIS, vol. 329, 29 June 2015 (2015-06-29) - September 2015 (2015-09-01), pages 431 - 440, XP055612899 *

Also Published As

Publication number Publication date
CN110505917A (zh) 2019-11-26
SG11201909138SA (en) 2019-10-30
JPWO2018181544A1 (ja) 2020-02-20
CN110505917B (zh) 2023-06-06
KR102418676B1 (ko) 2022-07-07
KR20190134713A (ko) 2019-12-04
MY191922A (en) 2022-07-18
JP6999909B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
JP5160421B2 (ja) メタクロレインを酸化するための触媒およびその製造方法と使用方法
JP5379475B2 (ja) メタクロレインを酸化するための触媒およびその製造方法と使用方法
JP6038169B2 (ja) プロパンをアクリル酸に転化するための二元機能部分酸化触媒およびその製造方法
JP2009502927A (ja) 混合アルデヒド供給原料のメタクリル酸への酸化のための触媒およびその製造方法と使用方法
JP5612202B2 (ja) ヘテロポリ酸を含む飽和および不飽和アルデヒド類の不飽和カルボン酸への酸化のための触媒、その製造方法および使用方法
JP5574434B2 (ja) メタクリル酸の製造方法及びメタクリル酸製造用触媒
WO1996019290A1 (fr) Procede de preparation d'un catalyseur fixe sur support, pour la synthese de la methacroleine et de l'acide methacrylique
JP4478107B2 (ja) メタクリル酸製造用触媒及びその製法
JP6387341B2 (ja) メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法
US20070010394A1 (en) Process for producing catalyst for methacrylic acid production
CN104437638A (zh) 将饱和和不饱和醛氧化为不饱和羧酸的催化剂、其制备方法和使用方法
JP2841324B2 (ja) メタクロレインの製造方法
JP6653871B2 (ja) メタクリル酸製造用触媒及びその製造方法、並びにメタクリル酸の製造方法
JP5384940B2 (ja) 飽和および不飽和アルデヒドの不飽和カルボン酸への酸化のための触媒およびその製造方法と使用方法
WO2018181544A1 (ja) 不飽和カルボン酸製造用触媒、不飽和カルボン酸の製造方法、および不飽和カルボン酸エステルの製造方法
JP6837749B2 (ja) メタクリル酸製造用触媒
CN112619645A (zh) 用于制备丙烯酸的催化剂及其制备方法和应用
JP4666334B2 (ja) 酸化又はアンモ酸化用酸化物触媒の製造方法
JP6628386B1 (ja) 不飽和カルボン酸製造用触媒
JP2011011099A (ja) 不飽和アルデヒド及び不飽和カルボン酸製造用触媒の製造方法
JP3257818B2 (ja) メタクロレインの製造方法、メタクロレインの製造に用いる触媒及びその触媒の製造方法
CS264284B2 (en) Catalyst for preparing maleic acid anhydride and process for preparing thereof
WO2022163725A1 (ja) 触媒及びそれを用いた不飽和カルボン酸の製造方法
JP2695480B2 (ja) メタクリル酸製造用触媒およびその製造方法
CN112547082A (zh) 用于丙烯醛氧化制丙烯酸的催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032140

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18775627

Country of ref document: EP

Kind code of ref document: A1