WO2018181429A1 - (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物 - Google Patents

(メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物 Download PDF

Info

Publication number
WO2018181429A1
WO2018181429A1 PCT/JP2018/012652 JP2018012652W WO2018181429A1 WO 2018181429 A1 WO2018181429 A1 WO 2018181429A1 JP 2018012652 W JP2018012652 W JP 2018012652W WO 2018181429 A1 WO2018181429 A1 WO 2018181429A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
acrylate
following formula
integer
Prior art date
Application number
PCT/JP2018/012652
Other languages
English (en)
French (fr)
Inventor
佳奈 谷口
中村 淳一
匠 勝間田
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201880021086.2A priority Critical patent/CN110506064B/zh
Priority to KR1020197027421A priority patent/KR102246138B1/ko
Priority to EP18776410.5A priority patent/EP3604369B1/en
Priority to JP2019509947A priority patent/JP7056648B2/ja
Priority to SG11201908747Y priority patent/SG11201908747YA/en
Publication of WO2018181429A1 publication Critical patent/WO2018181429A1/ja
Priority to US16/582,074 priority patent/US11414508B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D155/00Coating compositions based on homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C09D123/00 - C09D153/00
    • C09D155/005Homopolymers or copolymers obtained by polymerisation of macromolecular compounds terminated by a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/046Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • C09D5/165Macromolecular compounds containing hydrolysable groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon

Definitions

  • the present invention relates to a (meth) acrylic copolymer, a production method thereof, a resin composition, and an antifouling coating composition.
  • antifouling paints are applied to offshore structures and ships for the purpose of preventing adhesion of marine organisms that cause corrosion of a portion in contact with seawater and a decrease in navigation speed.
  • self-polishing antifouling paints are known as antifouling paints.
  • the self-polishing antifouling paint typically contains a hydrolyzable resin and an antifouling agent.
  • the coating film obtained from such an antifouling paint has a coating surface that is gradually dissolved in seawater and renewed (self-polishing), and the antifouling agent is always exposed on the coating film surface. Demonstrate the effect.
  • self-polishing antifouling paints for example, those using a composition for antifouling paints containing a vinyl polymer having a hemiacetal ester group and / or a hemiketal ester group in the side chain and an organic solvent have been proposed.
  • Patent Document 1 The vinyl polymer has hydrolyzability, and a coating film containing the vinyl polymer exhibits self-polishing properties.
  • Such a composition is mixed with an antifouling agent or the like to form an antifouling paint.
  • Non-polishing antifouling paints include, for example, a copolymer having a structural unit derived from a silicon-containing polymerizable monomer and a structural unit derived from a metal atom-containing polymerizable monomer containing a divalent metal atom.
  • a coating composition containing a polymer Patent Document 2
  • an antifouling coating composition containing a hydrolyzable resin having a silicon-containing group and a triorganosilyloxycarbonyl group Patent Document 3
  • a coating film using such an antifouling coating composition exhibits self-polishing properties and has a small surface energy by including a silicon structure. Therefore, even if it does not contain an antifouling agent, it exhibits an antifouling effect.
  • VOC volatile organic compounds
  • the antifouling paint composition of Patent Document 1 contains a large amount of an organic solvent, and the antifouling paint using this antifouling paint composition has a high VOC content. If the content of the organic solvent is reduced, the VOC is reduced, but the viscosity increases due to an increase in the solid content, making it difficult to prepare and paint the antifouling paint. Furthermore, when trying to lower the viscosity of the antifouling coating composition, it is necessary to lower the molecular weight or lower the glass transition temperature (Tg). In that case, there is a problem that the hardness of the coating film is insufficient and the wood resistance is poor.
  • Tg glass transition temperature
  • An object of the present invention is to use a (meth) acrylic copolymer, which can form an organic solvent solution having a high solid content and a low viscosity, and can form a coating film with good hardness, and the (meth) acrylic copolymer.
  • Another object of the present invention is to provide a resin composition and an antifouling paint composition, and a method for producing the (meth) acrylic copolymer.
  • Structural unit (A1) having at least one structure (I) represented by the following formula (1), the following formula (2) or the following formula (3), a structural unit having a triorganosilyloxycarbonyl group (A2) and at least one structural unit (A) selected from the group consisting of structural units (A3) having at least one structure (III) represented by the following formula (4) or formula (5):
  • R 43 to R 47 are each independently a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alicyclic group, an unsubstituted or substituted aryl group, an unsubstituted group Or a substituted heteroaryl group, an unsubstituted or substituted non-aromatic heterocyclic group, an unsubstituted or substituted aralkyl group, an unsubstituted or substituted alkaryl group, or Represents an unsubstituted or substituted organosilyl group, R 48 has an unsubstituted or substituted aryl group or an unsubstituted or substituted group A heteroaryl group.
  • a resin composition comprising the (meth) acrylic copolymer according to any one of [1] to [3].
  • the resin composition according to [5] further comprising silicone oil.
  • the (meth) acrylic copolymer has the structural unit (A1), It further includes at least one compound (Y) selected from the group consisting of a compound represented by the following formula (31), a compound represented by the following formula (32), and a compound represented by the following formula (33).
  • Y compound selected from the group consisting of a compound represented by the following formula (31), a compound represented by the following formula (32), and a compound represented by the following formula (33).
  • X represents —O—, —S— or —NR 14 —
  • R 14 represents a hydrogen atom or an alkyl group
  • R 7 represents a hydrogen atom or a carbon number of 1 to 9 represents an alkyl group
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 9 and R 11 represent an alkyl group, a cycloalkyl group or an aryl group having 1 to 20 carbon atoms, respectively.
  • R 10 represents a single bond or an alkylene group having 1 to 9 carbon atoms
  • R 12 represents an alkylene group having 1 to 9 carbon atoms.
  • a (meth) acrylic copolymer capable of forming an organic solvent solution having a high solid content and a low viscosity and capable of forming a coating film having a good hardness, the (meth) acrylic copolymer is used.
  • the resin composition and antifouling paint composition, and the method for producing the (meth) acrylic copolymer can be provided.
  • Structural unit means a structural unit derived from a polymerizable monomer formed by polymerization of a polymerizable monomer, or a part of the structural unit is converted into another structure by treating a polymer.
  • (Meth) acrylate” is a generic term for acrylate and methacrylate
  • (meth) acrylic acid” is a generic term for acrylic acid and methacrylic acid
  • (meth) acryloyl group is an acryloyl group and a methacryloyl group. It is a general term and “(meth) acrylamide” is a general term for acrylamide and methacrylamide.
  • the “(meth) acrylic copolymer” means a copolymer in which at least a part of the structural unit is a structural unit derived from a (meth) acrylic monomer.
  • the (meth) acrylic polymer may further have a structural unit derived from a monomer other than the (meth) acrylic monomer (for example, a vinyl monomer such as styrene).
  • “(Meth) acrylic monomer” means a monomer having an acryloyl group or a methacryloyl group.
  • Volatile organic compound (VOC)” means an organic compound (volatile organic compound) that easily volatilizes at normal temperature and pressure. The normal temperature and normal pressure are 10 ° C. to 30 ° C. and 1000 Pa to 1050 Pa.
  • the (meth) acrylic copolymer of the present invention (hereinafter also referred to as “copolymer (X)”) comprises the following structural unit (A), structural unit (B), and structural unit (C).
  • the copolymer (X) further has a structural unit other than the structural unit (A), the structural unit (B), and the structural unit (C) (hereinafter also referred to as “structural unit (D)”). May be.
  • At least a part of the structural unit of the copolymer (X) is a structural unit derived from a (meth) acrylic monomer.
  • the ratio of the structural unit derived from the (meth) acrylic monomer to the total (100% by mass) of all the structural units in the copolymer (X) is preferably 20 to 100% by mass, more preferably 40 to 100% by mass. preferable.
  • the structural unit (A) is at least one structural unit selected from the group consisting of the structural unit (A1), the structural unit (A2), and the structural unit (A3).
  • the structural unit (A1), the structural unit (A2), and the structural unit (A3) are common in that they have a hydrolyzable structure.
  • the copolymer (X) has hydrolyzability, and the coating film containing the copolymer (X) exhibits self-polishing properties in water (especially in seawater). . That is, the copolymer (X) has any one or more of the structure (I), the triorganosilyloxycarbonyl group and the structure (III).
  • the copolymer (X) does not dissolve in seawater or the like.
  • this structure is hydrolyzed by contact, a carboxy group or the like is generated and can be dissolved in seawater or the like.
  • the coating surface is renewed (self-polishing) by gradually dissolving the coating surface in seawater.
  • the structural unit (A1) is a structural unit having at least one type of structure (I).
  • the structure (I) is represented by the following formula (1), the following formula (2), or the following formula (3). In each formula, of the single lines extending from the carbon atom of the carbonyl group, the line not bonded to the oxygen atom represents a bond.
  • X represents —O—, —S— or —NR 14 —
  • R 14 represents a hydrogen atom or an alkyl group
  • R 1 and R 2 each represents a hydrogen atom or R 1 represents an alkyl group having 1 to 10 carbon atoms
  • R 3 and R 5 each represents an alkyl group, a cycloalkyl group, or an aryl group having 1 to 20 carbon atoms
  • R 4 and R 6 each represents 1 to 10 carbon atoms.
  • X may be any of —O— (etheric oxygen atom), —S— (sulfide sulfur atom), —NR 14 —, and is preferably —O—. .
  • examples of the alkyl group having 1 to 10 carbon atoms in R 1 and R 2 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, 2 -Ethylhexyl group and the like.
  • the number of carbon atoms of the alkyl group in R 1 and R 2 is preferably 1 to 4, more preferably 1 to 3, and still more preferably 1 or 2.
  • R 1 and R 2 include a combination of a hydrogen atom and a methyl group, a combination of a methyl group and a methyl group, a hydrogen atom and an alkyl group having 2 to 10 carbon atoms (hereinafter also referred to as “long-chain alkyl group”). .), A combination of a methyl group and a long chain alkyl group, a combination of a hydrogen atom and a hydrogen atom, a combination of a long chain alkyl group and a long chain alkyl group, and the like. Among these, a combination of a hydrogen atom and a methyl group is preferable in terms of hydrolyzability.
  • examples of the alkyl group having 1 to 20 carbon atoms in R 3 include the alkyl groups, decyl groups, dodecyl groups, and tetradecyl groups mentioned as the alkyl groups having 1 to 10 carbon atoms. .
  • the number of carbon atoms of the alkyl group in R 3 is preferably 1-10.
  • the cycloalkyl group is preferably a cycloalkyl group having 4 to 8 carbon atoms, and examples thereof include a cyclohexyl group and a cyclopentyl group.
  • the aryl group an aryl group having 6 to 20 carbon atoms is preferable, and examples thereof include a phenyl group and a naphthyl group.
  • R 3 is preferably an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group.
  • the alkyl group, cycloalkyl group or aryl group may be substituted with a substituent selected from the group consisting of a cycloalkyl group, an aryl group, an alkoxy group, an alkanoyloxy group, an aralkyl group and an acetoxy group.
  • a substituent selected from the group consisting of a cycloalkyl group, an aryl group, an alkoxy group, an alkanoyloxy group, an aralkyl group and an acetoxy group.
  • the number of substituents may be one or two or more.
  • Examples of the cycloalkyl group and aryl group as substituents are the same as those described above.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • Examples of the alkanoyloxy group include an ethanoyloxy group.
  • the aralkyl group include
  • examples of the alkylene group having 1 to 10 carbon atoms in R 4 include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
  • the alkylene group in R 4 preferably has 2 to 7 carbon atoms, and more preferably 3 to 4 carbon atoms.
  • the alkylene group may be substituted with a substituent selected from the group consisting of a cycloalkyl group, an aryl group, an alkoxyl group, an alkanoyloxy group, an aralkyl group, and an acetoxy group. When substituted by a substituent, the number of substituents may be one or two or more. Specific examples of the substituent that may be substituted on the alkylene group include the same substituents as those described for R 3 .
  • R 5 is the same as R 3 in formula (1), and the preferred embodiment is also the same.
  • R 6 is the same as R 4 in formula (2), and the preferred embodiment is also the same.
  • Examples of the structural unit (A1) include structural units derived from the polymerizable monomer (a1) having the structure (I).
  • the polymerizable monomer (a1) typically has a structure (I) and an ethylenically unsaturated bond (polymerizable carbon-carbon double bond).
  • the polymerizable monomer (a1) may be a monofunctional monomer having one ethylenically unsaturated bond from the viewpoint of lowering the viscosity when the copolymer (X) is dissolved in an organic solvent. preferable.
  • Examples of the polymerizable monomer (a1) include a compound represented by the following formula (a11), a compound represented by the following formula (a12), a compound represented by the following formula (a13), and the like.
  • R 14 represents a hydrogen atom or an alkyl group, and R 1 to R 6 are as defined above.
  • CH 2 ⁇ CH—COO— is an acryloyloxy group
  • CH 2 ⁇ C (CH 3 ) —COO— is a methacryloyloxy group.
  • CH (CH 3 ) ⁇ CH—COO— is a crotonoyloxy group (ethylenically unsaturated bond is trans-type) or an isocrotonoyloxy group (ethylenically unsaturated bond is cis-type).
  • CHR X CH-COO- is a maleoyloxy group (ethylenically unsaturated bond is cis type) or a fumaroyloxy group (ethylenically unsaturated bond is trans), wherein the carboxy group is substituted with the structure (I) or an alkyl ester group. Type).
  • Structure in R X (I) is as defined above.
  • R X preferably has the same structure as the group to which Z is bonded.
  • R X is preferably a group represented by —CR 1 R 2 —OR 3 .
  • the alkyl ester group in R X is represented by —COOR X1 .
  • R X1 represents an alkyl group.
  • alkyl group for R X1 an alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group is particularly preferable.
  • CH 2 ⁇ C (CH 2 R X ) —COO— or CH 2 ⁇ CR X —CH 2 COO— is an itaconoyloxy group in which the carboxy group is substituted with the structure (I) or an alkyl ester group.
  • R X is the same as described above.
  • Z is preferably CH 2 ⁇ CH—COO— or CH (CH 3 ) ⁇ CH—COO—.
  • polymerizable monomer (a1) examples include the following.
  • the polymerizable monomer (a1) a commercially available product can be purchased and used, or can be appropriately synthesized using a known method.
  • the polymerizable monomer (a1) can be synthesized by converting the carboxy group of the polymerizable monomer (m0) having a carboxy group into the structure (I).
  • the monomer (m0) include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, monomethyl maleate, monomethyl fumarate, and the like.
  • the polymerizable monomer (m0) As a method for converting the carboxy group of the polymerizable monomer (m0) into the structure (I), for example, the polymerizable monomer (m0), a compound represented by the following formula (31), and the following formula (32) And a method of reacting (addition reaction) with at least one compound (Y) selected from the group consisting of a compound represented by the following formula (33). You may use a compound (Y) individually or in combination of 2 or more types.
  • X represents —O—, —S— or —NR 14 —
  • R 14 represents a hydrogen atom or an alkyl group
  • R 7 represents a hydrogen atom or a carbon number of 1 to 9 represents an alkyl group
  • R 8 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 9 and R 11 represent an alkyl group, a cycloalkyl group or an aryl group having 1 to 20 carbon atoms, respectively.
  • R 10 represents a single bond or an alkylene group having 1 to 9 carbon atoms
  • R 12 represents an alkylene group having 1 to 9 carbon atoms.
  • R 1 in the formula (a11) is CH 2 R 7
  • R 2 is R 8
  • 3 compound is R 9 is obtained.
  • the alkyl group having 1 to 9 carbon atoms in R 7 is the same as the alkyl group having 1 to 10 carbon atoms in R 1 except that it has 9 or less carbon atoms.
  • R 8 and R 9 are the same as R 2 and R 3 in formula (a11), respectively.
  • Examples of the compound represented by the formula (31) include 1-alkenylalkyl ether in which X in the formula (31) is —O—, and 1-alkenylalkyl in which X in the formula (31) is —S—. Examples thereof include sulfides and 1-alkenyldialkylamines in which X in the formula (31) is —NR 14 —.
  • 1-alkenyl alkyl ethers examples include vinyl ethers such as alkyl vinyl ethers (eg, ethyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether) and cycloalkyl vinyl ethers (eg, cyclohexyl vinyl ether).
  • alkyl vinyl ethers eg, ethyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether
  • cycloalkyl vinyl ethers eg, cyclohexyl vinyl ether
  • 1-propenyl ethers such as ethyl-1-propenyl ether
  • 1-butenyl ethers such as ethyl-1-butenyl ether; and the like.
  • Examples of 1-alkenylalkyl sulfide include 1- (ethenylthio) ethane, 1- (ethenylthio) propane, 1- (ethenylthio) butane, 2- (ethenylthio) butane, 1- (ethenylthio) -2-methylpropane, 1 1-alkenyl alkyl sulfides such as-(propylthio) -1-propene and 2- (propylthio) -1-propene;
  • Examples of 1-alkenyldialkylamines include 1-alkenyldialkylamines such as N, N-dimethylethenamine, N-methyl-N-ethylethenamine, N, N-diethylethenamine, and N-vinylpyrrolidine. . Of these, 1-alkenyl alkyl ether is preferable, and vinyl ethers and 1-propenyl ethers are more preferable.
  • Examples of the compound represented by the formula (32) include dihydrofurans such as 2,3-dihydrofuran and 5-methyl-2,3-dihydrofuran; 3,4-dihydro-2H-pyran, 5,6 Dihydropyrans such as dihydro-4-methoxy-2H-pyran; dihydrothiophenes such as 2,3-dihydrothiophene; dihydrothiopyrans such as 3,4-dihydro-2H-thiopyran; 2,3-dihydro- Dihydropyrroles such as 1-methylpyrrole; tetrahydropyridines such as 1,2,3,4-tetrahydro-1-methylpyridine; and the like. Of these, dihydrofurans and dihydropyrans are preferable, and dihydropyrans are more preferable.
  • R 5 in the formula (a13) is R 11 and R 6 is CH 2 -R 12 as the polymerizable monomer (a1). A compound is obtained.
  • R 11 is the same as R 5 .
  • R 12 is the same as R 6 except that the number of carbon atoms is 9 or less.
  • Examples of the compound represented by the formula (33) include 1-methoxy-1-cyclopentene, 1-methoxy-1-cyclohexene, 1-methoxy-1-cycloheptene, 1-ethoxy-1-cyclopentene, 1-ethoxy- 1-alkoxy-1-cycloalkylenes such as 1-cyclohexene, 1-butoxy-1-cyclopentene, 1-butoxy-1-cyclohexene; 1-alkoxy having substituents such as 1-ethoxy-3-methyl-1-cyclohexene 1-cycloalkylenes; 1- (alkylthio) -1-cycloalkylenes such as 1- (methylthio) -1-cyclopentene and 1- (methylthio) -1-cyclohexene; 1- (1-pyrrolidinyl) -1- 1- (1-pyrrolidinyl) such as cyclopentene, 1- (1-pyrrolidinyl) -1-cyclohexene 1-cycloalkylene ethers; and the like.
  • the reaction between the polymerizable monomer (m0) and the compound (Y) proceeds under relatively mild conditions.
  • the desired product can be obtained by carrying out the reaction for 5 to 10 hours while maintaining the reaction temperature at 40 to 100 ° C. in the presence or absence of an acidic catalyst such as hydrochloric acid, sulfuric acid or phosphoric acid.
  • an acidic catalyst such as hydrochloric acid, sulfuric acid or phosphoric acid.
  • the objective monomer can be recovered by distillation under reduced pressure under predetermined conditions.
  • the structural unit (A2) is a structural unit having a triorganosilyloxycarbonyl group.
  • Examples of the triorganosilyloxycarbonyl group include a group represented by the following formula (II). —CO—O—SiR 14 R 15 R 16 (II) (In the formula (II), R 14 to R 16 each represents a hydrocarbon group having 1 to 20 carbon atoms.)
  • examples of the hydrocarbon group represented by R 14 to R 16 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • cyclohexyl group such as cyclohexyl group
  • aryl groups such as a phenyl group and a naphthyl group.
  • substituent include a halogen atom, an alkyl group, an acyl group, a nitro group, and an amino group.
  • the alkyl group as a substituent preferably has about 1 to 18 carbon atoms.
  • R 14 to R 16 may be the same or different. It is preferable that at least one of R 14 to R 16 is an isopropyl group in that a coating film showing a stable polishing rate (polishing rate) can be obtained and the antifouling performance can be stably maintained for a long period of time.
  • An isopropyl group is particularly preferred.
  • Examples of the structural unit (A2) include a structural unit derived from a polymerizable monomer (a2) having a triorganosilyloxycarbonyl group.
  • the polymerizable monomer (a2) typically has a triorganosilyloxycarbonyl group and an ethylenically unsaturated bond (polymerizable carbon-carbon double bond).
  • the polymerizable monomer (a2) may be a monofunctional monomer having one ethylenically unsaturated bond from the viewpoint of lowering the viscosity when the copolymer (X) is dissolved in an organic solvent. preferable.
  • Examples of the polymerizable monomer (a2) include a monomer represented by the following formula (a21), a monomer represented by the following formula (a22), and the like. Among these, the compound represented by the formula (a21) is preferable.
  • CH 2 C (R 17 ) —CO—O—SiR 14 R 15 R 16 (a21)
  • CH (COOR 18 ) C (R 17 ) —CO—O—SiR 14 R 15 R 16 (a22) (In formula (a22), R 14 to R 16 are as defined above, R 17 represents a hydrogen atom or a methyl group, and R 18 represents an alkyl group.)
  • Specific examples of the monomer represented by the formula (a21) include the following. Trimethylsilyl (meth) acrylate, triethylsilyl (meth) acrylate, tri-n-propylsilyl (meth) acrylate, tri-n-butylsilyl (meth) acrylate, tri-n-amylsilyl (meth) acrylate, tri-n-hexylsilyl (Meth) acrylate, tri-n-octylsilyl (meth) acrylate, tri-n-dodecylsilyl (meth) acrylate, triphenylsilyl (meth) acrylate, tri-p-methylphenylsilyl (meth) acrylate, tribenzylsilyl (Meth) acrylate, triisopropylsilyl (meth) acrylate, triisobutylsilyl (meth) acrylate, tri-s-butylsilyl
  • examples of the alkyl group for R 18 include alkyl groups having 1 to 5 carbon atoms.
  • Specific examples of the compound represented by the formula (a22) include those shown below. Triisopropylsilylmethyl malate, triisopropylsilylamyl malate, tri-n-butylsilyl-n-butylmalate, t-butyldiphenylsilylmethylmalate, t-butyldiphenylsilyl-n-butylmalate, triisopropylsilylmethyl fumarate, Triisopropylsilyl amyl fumarate, tri-n-butylsilyl-n-butyl fumarate, t-butyldiphenylsilylmethyl fumarate, t-butyldiphenylsilyl-n-butyl fumarate, etc.
  • the polymerizable monomer (a2) can be purchased as a commercial product, and can be appropriately synthesized using
  • the structural unit (A3) is a structural unit having at least one of the structures (III) represented by the following formula (4) or (5). -COO-M-OCO- (4) -COO-MR 22 (5) (In formulas (4) and (5), M represents Zn, Cu, Mg, or Ca, and R 22 represents a monovalent organic acid residue.)
  • M is preferably Zn or Cu.
  • the organic acid residue of R 22 refers to the remaining part obtained by removing one proton from the organic acid (for example, the remaining part obtained by removing the proton from the carboxy group of the carboxylic acid). Are ionically bonded to M.
  • the organic acid a carboxylic acid is preferable.
  • R 22 is preferably an organic acid residue other than a (meth) acryloyloxy group in terms of storage stability.
  • R 22 is preferably a fatty acid residue having 1 to 20 carbon atoms (aliphatic monocarboxylic acid residue) from the viewpoint of obtaining a highly durable coating film that can prevent cracking and peeling over a long period of time.
  • Examples of the structural unit (A3) include a structural unit derived from the polymerizable monomer (a3) having the structure (III).
  • the polymerizable monomer (a3) for example, a monomer in which a vinyl group having an unsubstituted or substituted group is bonded to both ends of the group represented by the formula (4), the formula (5) Examples thereof include a monomer in which a vinyl group having an unsubstituted or substituted group is bonded to one end of the group represented (on the side opposite to the R 22 side).
  • M represents Zn, Cu, Mg, or Ca
  • R 21 represents a hydrogen atom or a methyl group
  • R 22 represents a monovalent organic acid residue.
  • M and R 22 are the same as described above, and the preferred embodiments are also the same.
  • any one of these may be used alone, or two or more may be used in combination.
  • zinc (meth) acrylate and copper (meth) acrylate are preferred because the transparency of the copolymer (X) tends to be high and the color tone of the coating film containing the copolymer (X) tends to be beautiful.
  • Monomers (a32) include, for example, monochloro magnesium acetate (meth) acrylate, monochloro calcium acetate (meth) acrylate, monochloro zinc acetate (meth) acrylate, monochloro copper acetate (meth) acrylate; monofluoro magnesium acetate (meth) Acrylate, calcium monofluoroacetate (meth) acrylate, zinc monofluoroacetate (meth) acrylate, copper monofluoroacetate (meth) acrylate; magnesium acetate (meth) acrylate, calcium acetate (meth) acrylate, zinc acetate (meth) acrylate, Copper acetate (meth) acrylate; magnesium propionate (meth) acrylate, calcium propionate (meth) acrylate, zinc propionate (meth) acrylate, copper propionate (meta Acrylate; magnesium octylate (meth) acrylate, calcium octylate (
  • a zinc-containing monomer in which M is Zn is preferable because the transparency of the copolymer (X) tends to be high and the color tone of the coating film containing the copolymer (X) tends to be beautiful.
  • the polymerizable monomer (a3) is both a monomer (a31) and a monomer (a32) in that the self-polishing property of the resulting coating film is maintained over a long period of time and good antifouling properties are obtained.
  • the copolymer (X) is a structural unit derived from the monomer (a31) (hereinafter also referred to as “monomer (a31) unit”) and a structural unit derived from the monomer (a32) (hereinafter referred to as “monomer (a31) unit”). (Also referred to as “monomer (a32) unit”).
  • a combination of the monomer (a31) and the monomer (a32) a combination of zinc (meth) acrylate and fatty acid zinc (meth) acrylate, or (meth) acrylic acid copper and fatty acid copper (meth) acrylate The combination with is preferable.
  • copolymer (X) has both monomer (a31) unit and monomer (a32) unit, monomer (a31) unit and monomer (a32) in copolymer (X)
  • this ratio is 90/10 or less, the coating film is excellent in crack resistance and adhesion, and when it is 10/90 or more, the coating tends to have a low viscosity.
  • the polymerizable monomer (a3) one produced by a known method may be used, or a commercially available one may be used.
  • the monomer (a31) is, for example, an inorganic metal compound containing a metal element corresponding to M in the formula (a31) and (meth) acrylic acid, a diluent such as an organic solvent, or an ethylenically unsaturated monomer. It is obtained by a method of reacting in a reactive diluent having a polymerizable unsaturated group such as a body.
  • the mixture containing the metal-containing polymerizable monomer obtained by this method is excellent in compatibility with organic solvents and other monomers, and can be easily polymerized.
  • the reaction is preferably performed in the presence of water, and the water content in the reaction product is preferably in the range of 0.01 to 30% by mass.
  • the inorganic metal compound include oxides, hydroxides, and chlorides of metals selected from Zn, Cu, Mg, and Ca.
  • Monomer (a32) are, for example, an inorganic metal compound containing a metal element corresponding to M in formula (a32), (meth) acrylic acid, corresponds to the organic acid residue R 22 in the formula (a32) It is obtained by a method in which an organic acid to be reacted is reacted in a diluent such as an organic solvent or a reactive diluent having a polymerizable unsaturated group such as an ethylenically unsaturated monomer.
  • a diluent such as an organic solvent or a reactive diluent having a polymerizable unsaturated group such as an ethylenically unsaturated monomer.
  • the monomer mixture containing the monomer (a31) and the monomer (a32) includes, for example, an inorganic metal compound containing a metal element corresponding to M in the formulas (a31) to (a32), and (meta ) acrylic acid, a method of reacting an organic acid corresponding to the organic acid residue R 22 in the formula (a32), in a reactive diluent such as a diluent or ethylenically unsaturated monomers such as an organic solvent Etc.
  • the amount of the organic acid corresponding to R 22 is preferably 0.01 to 3 times mol, more preferably 0.01 to 0.95 times mol, and 0.1 More preferably, the molar amount is 0.7 times.
  • the content of the organic acid is 0.01 times mol or more, solid precipitation is suppressed in the production process of the monomer mixture, and self-polishing properties and crack resistance of the obtained coating film are better. It becomes.
  • the amount is 3 times or less, the antifouling property of the resulting coating film tends to be maintained for a longer period.
  • the structural unit (B) is a structural unit derived from the polysiloxane block-containing polymerizable monomer (b) (hereinafter also referred to as “polymerizable monomer (b)”). Since the copolymer (X) has the structural unit (B), the coating film containing the copolymer (X) contains a polysiloxane block, and marine organisms and various kinds of dirt adhere to the surface of the coating film. It becomes difficult. Therefore, even if this coating film does not contain an antifouling agent, it will exhibit antifouling properties.
  • the polymerizable monomer (b) is a group consisting of the following polymerizable monomer (b1), polymerizable monomer (b2), polymerizable monomer (b3) and polymerizable monomer (b4). Is at least one selected from Among these, the polymerizable monomers (b1) and (b2) are one-end type having an ethylenically unsaturated bond at one end of the polysiloxane block, and are polymerizable monomers (b3) and (b4). ) Is a double-ended type having an ethylenically unsaturated bond at both ends of the polysiloxane block.
  • R 3a represents a hydrogen atom or a methyl group
  • u represents an integer of 2 to 5
  • v represents a number of 0 to 50
  • w represents an integer of 2 to 5
  • x represents 3 R 3b to R 3f each represents an alkyl group, an alkoxy group, a phenyl group, a substituted phenyl group, a phenoxy group, or a substituted phenoxy group.
  • the alkyl group and the alkoxy group each preferably have 1 to 18 carbon atoms.
  • the substituent in the substituted phenyl group and the substituted phenoxy group include an alkyl group and an alkoxy group.
  • R 3b to R 3f are each preferably an alkyl group having 1 to 18 carbon atoms, more preferably a methyl group or an ethyl group, and particularly preferably a methyl group.
  • u is an integer of 2 to 5, and 2 or 3 is preferable from the viewpoint of low cost. It is also possible to use a combination of u 2 and 3.
  • v is a number from 0 to 50, preferably greater than 0 and 30 or less, more preferably greater than 0 and 25 or less, and particularly preferably greater than 0 and 20 or less. If v is not more than the upper limit of the above range, the water resistance of the coating film tends to be good. In particular, it is preferably 20 or less because of excellent recoatability with the old coating film.
  • w is an integer of 2 to 5, and 2 or 3 is preferable.
  • x is the average degree of polymerization of the polysiloxane structure. If x is not less than the lower limit of the above range, even if the antifouling coating composition containing the copolymer (X) does not contain an antifouling agent, the antifouling effect tends to be exhibited in the coating film, If it is below the upper limit of the above range, the compatibility between the polymerizable monomer (b1) and the polymerizable monomer not containing the polysiloxane block (for example, the polymerizable monomer forming the structural unit (A)). The solvent solubility of copolymer (X) tends to be good. x is preferably 5 to 50, more preferably 7 to 40, and particularly preferably 8 to 30. Note that R 3a to R 3f , u, v, w, and x are independent of each other, and may be different when the same symbol exists in or between molecules.
  • the polymerizable monomer (b2) is represented by the following formula (b2).
  • CH 2 CR 4a -CO-O- (C u 'H 2u' -O) v '-C w' H 2w '-Si (OSiR 4b R 4c R 4d) 3 ⁇ (b2)
  • R 4a represents a hydrogen atom or a methyl group
  • u ′ represents an integer of 2 to 5
  • v ′ represents a number of 0 to 50
  • w ′ represents an integer of 2 to 5
  • R 4b to R 4d are each an alkyl group
  • — (OSiR 51 R 52 ) y —OSiR 53 R 54 R 55 (where y is an integer of 0 to 20, and R 51 to R 55 are alkyl groups)
  • Or —R 56 — (OC 2 H 4 ) y ′ —OR 57 (where y ′ represents an integer of 1 to 20, R 56 represents an alkylene group, and R 57 represents an alkyl group).
  • the alkyl group in R 4b to R 4d is the same as the alkyl group in R 3b to R 3f , and the preferred embodiment is also the same.
  • y and y ′ are the average degree of polymerization of the polysiloxane structure, respectively. If y and y ′ are not more than the above upper limit values, the compatibility between the polymerizable monomer (b2) and the polymerizable monomer not containing the polysiloxane block and the solvent solubility of the copolymer (X) are good. Tend to be. y and y ′ are each preferably 10 or less, and more preferably 5 or less.
  • alkyl group for R 51 to R 55 and R 57 examples include the same alkyl groups as those for R 4b to R 4d , and preferred embodiments are also the same.
  • the alkylene group preferably has 1 to 18 carbon atoms.
  • u ′ is an integer of 2 to 5, and 2 or 3 is preferable from the viewpoint of low cost. It is also possible to use both u ′ of 2 and 3 in combination.
  • v ′ is the same as v in the formula (b1), and the preferred range is also the same.
  • w ′ is an integer of 2 to 5, preferably 2 or 3. Note that R 4a to R 4d , u ′, v ′, w ′, y, and y ′ are each independent, and they may be different when the same symbol exists in or between molecules.
  • polymerizable monomer (b2) examples include, for example, those having v ′ of 0, TM-0701 (trade name) manufactured by JNC, and X-22-2404 (trade name) manufactured by Shin-Etsu Chemical. Etc.
  • R 2a and R 2l each represent a hydrogen atom or a methyl group
  • k ′ and p ′ each represent an integer of 2 to 5
  • l ′ and q ′ each represent 0 to 50
  • M ′ and o ′ each represent an integer of 2 to 5
  • r and s each represent a number from 0 to 20
  • R 2b to R 2k each represents an alkyl group.
  • the alkyl group for R 2b to R 2k is the same as the alkyl group for R 3b to R 3f , and the preferred embodiment is also the same.
  • k ′ and p ′ are integers of 2 to 5, and 2 or 3 is preferable from the viewpoint of low cost. It is also possible to use a combination of k ′ and p ′ of 2 and 3.
  • l ′ and q ′ are each the same as v in the formula (b1), and the preferred range is also the same.
  • m ′ and o ′ are integers of 2 to 5, with 2 or 3 being preferred.
  • r and s are the average degree of polymerization of the polysiloxane structure, respectively. If r and s are not more than the above upper limit values, the compatibility between the polymerizable monomer (b3) and the polymerizable monomer not containing the polysiloxane block, and the solvent solubility of the copolymer (X) will be good. Tend to be. r and s are each preferably 10 or less, and more preferably 5 or less. Note that R 2a to R 21 , k ′, l ′, m ′, n ′, o ′, p ′, q ′, r, and s are independent of each other, and the same sign is used in or between molecules. If present, they may be different.
  • the polymerizable monomer (b4) is represented by the following formula (b4).
  • CH 2 CR 1a -CO-O- (C k H 2k -O) l -C m H 2m - (SiR 1b R 1c -O) n -SiR 1d R 1e -C THER H 2 Ltd - (O-C p H 2p ) q —O—CO—CR 1f ⁇ CH 2 (b4)
  • R 1a and R 1f each represent a hydrogen atom or a methyl group
  • k and p each represent an integer of 2 to 5
  • l and q each represent a number from 0 to 50
  • m and o each represent an integer of 2 to 5
  • n represents a number of 3 to 80
  • R 1b to R 1e represent an alkyl group, an alkoxy group, a phenyl group, a substituted phenyl group, a phenoxy group, or a substituted phenoxy group, respectively. Indicates a group.
  • R 1b to R 1e are the same as R 3b to R 3f , respectively, and the preferred embodiments are also the same.
  • k and p are integers of 2 to 5, and 2 or 3 is preferable from the viewpoint of inexpensiveness. It is also possible to use those having k and p of 2 and 3.
  • l and q are respectively the same as v in the formula (b1), and the preferred range is also the same.
  • m and o are integers of 2 to 5, and 2 or 3 is preferable.
  • n is the same as x in the formula (b1), and the preferred range is also the same.
  • R 1a to R 1f , k, l, m, n, o, p, and q are each independent, and they may be different when the same symbol exists in or between molecules. .
  • polymerizable monomer (b4) examples include, for example, FM-7711, FM-7721, FM-7725 (above, trade names) manufactured by JNC, where l and q are 0. .
  • the polymerizable monomer (b) preferably contains the polymerizable monomer (b1) from the viewpoint of good antifouling properties.
  • the polymerizable monomer (b1) may be used in combination with any one or more of the polymerizable monomers (b2) to (b4).
  • the structural unit (C) is a structural unit derived from the macromonomer (c).
  • the copolymer (X) can be made into an organic solvent solution having a high solid content and a low viscosity.
  • the coating film containing copolymer (X) shows favorable hardness.
  • the macromonomer (c) is a compound having two or more structural units derived from a monomer having a radical polymerizable group and having a radical polymerizable group (hereinafter also referred to as “monomer (c1)”). Two or more structural units of the macromonomer (c) may be the same or different.
  • the radical polymerizable group possessed by the macromonomer (c) is preferably a group having an ethylenically unsaturated bond.
  • the group having an ethylenically unsaturated bond include CH 2 ⁇ C (COOR) —CH 2 —, (meth) acryloyl group, 2- (hydroxymethyl) acryloyl group, vinyl group and the like.
  • R represents a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alicyclic group, an unsubstituted or substituted aryl group, or an unsubstituted or substituted group.
  • the heterocyclic group which has is shown.
  • alkyl group in R examples include branched or straight chain alkyl groups having 1 to 20 carbon atoms. Specific examples of the branched or straight chain alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, i-butyl group, and pentyl.
  • the alicyclic group in R may be monocyclic or polycyclic, and examples thereof include alicyclic groups having 3 to 20 carbon atoms.
  • the alicyclic group is preferably a saturated alicyclic group such as a cycloalkyl group, and specific examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a bicyclo [2.2.1].
  • a heptyl group, a cyclooctyl group, an adamantyl group, etc. are mentioned.
  • aryl group for R examples include aryl groups having 6 to 18 carbon atoms. Specific examples of the aryl group having 6 to 18 carbon atoms include a phenyl group and a naphthyl group.
  • heterocyclic group for R examples include heterocyclic groups having 5 to 18 carbon atoms.
  • Specific examples of the heterocyclic group having 5 to 18 carbon atoms include oxygen atom-containing heterocyclic groups such as ⁇ -butyrolactone group and ⁇ -caprolactone group, nitrogen atoms such as pyridyl group, carbazolyl group, pyrrolidinyl group, and pyrrolidone group.
  • Examples thereof include a containing heterocyclic group and a morpholino group.
  • the alkyl group, alicyclic group, aryl group, and heterocyclic group each may have a substituent.
  • substituents include an alkyl group (except when R is an alkyl group having a substituent), an aryl group, —COOR 51 , a cyano group, —OR 52 , —NR 53 R 54 , —CONR 55 R 56 , at least one selected from the group consisting of a halogen atom, an allyl group, an epoxy group, a siloxy group, and a group exhibiting hydrophilicity or ionicity.
  • R 51 to R 56 each independently represent a hydrogen atom, an alkyl group, an alicyclic group, or an aryl group. Each of these groups may be the same as described above.
  • R 51 of —COOR 51 in the substituent is preferably a hydrogen atom or an alkyl group. That is, —COOR 51 is preferably a carboxy group or an alkoxycarbonyl group. Examples of the alkoxycarbonyl group include a methoxycarbonyl group.
  • R 52 of —OR 52 in the substituent is preferably a hydrogen atom or an unsubstituted alkyl group. That is, —OR 52 is preferably a hydroxy group or an alkoxy group. Examples of the alkoxy group include an alkoxy group having 1 to 12 carbon atoms, and specific examples include a methoxy group.
  • Examples of —NR 53 R 54 in the substituent include an amino group, a monomethylamino group, and a dimethylamino group.
  • Examples of —CONR 55 R 56 in the substituent include a carbamoyl group (—CONH 2 ), an N-methylcarbamoyl group (—CONHCH 3 ), an N, N-dimethylcarbamoyl group (dimethylamide group: —CON (CH 3 ) 2 ) and the like.
  • halogen atom in the said substituent, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, for example.
  • hydrophilic or ionic group in the substituent include, for example, alkali salts of carboxy groups or alkali salts of sulfoxy groups, poly (alkylene oxide) groups such as polyethylene oxide groups and polypropylene oxide groups, and quaternary ammonium bases.
  • alkali salts of carboxy groups or alkali salts of sulfoxy groups include, for example, alkali salts of carboxy groups or alkali salts of sulfoxy groups, poly (alkylene oxide) groups such as polyethylene oxide groups and polypropylene oxide groups, and quaternary ammonium bases.
  • alkali salts of carboxy groups or alkali salts of sulfoxy groups include, for example, alkali salts of carboxy groups or alkali salts of s
  • an alkyl group or a saturated alicyclic group is preferable, and an alkyl group or a saturated alicyclic group which is unsubstituted or has an alkyl group as a substituent is more preferable.
  • methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, pentyl, hexyl, heptyl and octyl are preferred because of their availability.
  • a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, cyclopropyl group, cyclobutyl group, isobornyl group and adamantyl group are preferred.
  • the radically polymerizable group possessed by the monomer (c1) a group having an ethylenically unsaturated bond is preferred, like the radically polymerizable group possessed by the macromonomer (c).
  • the monomer (c1) various monomers can be used.
  • structural unit (c ′) As the structural unit derived from the monomer (c1), a structural unit represented by the following formula (c ′) (hereinafter also referred to as “structural unit (c ′)”) is preferable. That is, the macromonomer (c) preferably has a radical polymerizable group and has two or more structural units (c ′).
  • R 41 represents a hydrogen atom, a methyl group or CH 2 OH
  • R 42 represents OR 43 , a halogen atom, COR 44 , COOR 45 , CN, CONR 46 R 47 or R 48 .
  • R 43 to R 47 are each independently a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alicyclic group, an unsubstituted or substituted aryl group, an unsubstituted group Or a substituted heteroaryl group, an unsubstituted or substituted non-aromatic heterocyclic group, an unsubstituted or substituted aralkyl group, an unsubstituted or substituted alkaryl group, or Represents an unsubstituted or substituted organosilyl group, R 48 has an unsubstituted or substituted aryl group or an unsubstituted or substituted group A heteroaryl group.
  • Examples of the alkyl group, alicyclic group, and aryl group in R 43 to R 47 are the same as the alkyl group, alicyclic group, and aryl group in R described above.
  • Examples of the heteroaryl group include a pyridyl group and a carbazolyl group.
  • Examples of the non-aromatic heterocyclic group include a pyrrolidinyl group and a pyrrolidone group.
  • Examples of the aralkyl group include a benzyl group and a phenylethyl group.
  • Examples of the organosilyl group include a triorganosilyl group. Examples of the triorganosilyl group include those similar to the triorganosilyl group (for example, —SiR 14 R 15 R 16 ) in the triorganosilyloxycarbonyl group of the structural unit (A2).
  • the alkyl group, alicyclic group, aryl group, heteroaryl group, non-aromatic heterocyclic group, aralkyl group, alkaryl group, and organosilyl group each may have a substituent.
  • substituents include carboxylic acid group (COOH), carboxylic acid ester group, epoxy group, hydroxy group, alkoxy group, primary amino group, secondary amino group, tertiary amino group, isocyanato group, sulfonic acid group (SO 3 H), halogen atoms and the like.
  • Examples of the carboxylic acid ester group include groups in which R 51 of —COOR 51 mentioned in the description of R is an alkyl group, an alicyclic group, or an aryl group.
  • the alkoxy group, R 52 of the -OR 52 and the like groups are alkyl groups.
  • Examples of the secondary amino group include groups in which R 53 of the —NR 53 R 54 is a hydrogen atom, and R 54 is an alkyl group, an alicyclic group, or an aryl group.
  • Examples of the tertiary amino group include groups in which R 53 and R 54 of —NR 53 R 54 are each an alkyl group, an alicyclic group, or an aryl group.
  • Examples of the alkyl group, aryl group, and halogen atom are the same as those described above.
  • Examples of the aryl group and heteroaryl group for R 48 are the same as those described above.
  • the aryl group and heteroaryl group each may have a substituent.
  • Examples of the substituent include a carboxylic acid group, a carboxylic acid ester group, an epoxy group, a hydroxy group, an alkoxy group, a primary amino group, a secondary amino group, a tertiary amino group, an isocyanato group, a sulfonic acid group, and a halogen atom. It is done.
  • Examples of the carboxylic acid ester group, alkoxy group, primary amino group, secondary amino group, tertiary amino group, alkyl group, aryl group and halogen atom are the same as those described above.
  • As an olefin group an allyl group etc. are mentioned, for example.
  • the olefin group may have a substituent. Examples of the substituent in the olefin group include those similar to the substituent
  • R 41 is a hydrogen atom or a methyl group and R 42 is COOR 45 is preferable.
  • R 45 is preferably a hydrogen atom, an alkyl group, a saturated alicyclic group, an aryl group, a heteroaryl group or a non-aromatic heterocyclic group.
  • the structural unit (c ′) is a structural unit derived from CH 2 ⁇ CR 41 R 42 .
  • Substituted or unsubstituted alkyl (meth) acrylate [for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i -Butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, 1-methyl-2-methoxyethyl ( Meth) acrylate, 3-methoxybutyl (meth) acrylate, 3-methyl-3-meth
  • the macromonomer (c) may further have a structural unit other than the structural unit (c ′).
  • Preferable specific examples of other structural units include structural units derived from the following monomers.
  • the macromonomer (c) is preferably a macromonomer in which a radical polymerizable group is introduced at the end of the main chain containing two or more structural units (c ′), and is represented by the following formula (c-1) Is more preferable.
  • R is as defined above, Q represents a main chain portion containing two or more structural units (c ′), and E represents a terminal group.
  • R is the same as R in the aforementioned CH 2 ⁇ C (COOR) —CH 2 —, and the preferred embodiments are also the same.
  • two or more structural units (c ′) contained in Q may be the same or different.
  • Q may consist of only the structural unit (c ′), or may further include another structural unit other than the structural unit (c ′).
  • the number of structural units constituting Q is preferably such that the number average molecular weight of the macromonomer (c) falls within a preferred range described later.
  • E includes, for example, a hydrogen atom, a group derived from a radical polymerization initiator, a radical polymerizable group, and the like, similarly to a terminal group of a polymer obtained by known radical polymerization.
  • a macromonomer represented by the following formula (c-2) is particularly preferable.
  • R, R 41 , R 45 and E have the same meanings as described above, and n represents a natural number of 2 or more.
  • n is preferably in the range where the number average molecular weight (Mn) of the macromonomer (c) is 500 to 50,000.
  • Mn number average molecular weight
  • a more preferable range of the number average molecular weight is as follows.
  • the n R 41 s may be the same or different.
  • the n R 45s may be the same or different.
  • the number average molecular weight (Mn) of the macromonomer (c) is preferably 500 to 50000, more preferably 500 or more and less than 50000, further preferably 800 to 30000, and particularly preferably 1000 to 20000.
  • the number average molecular weight of the macromonomer (c) is not less than the lower limit of the above range, the hardness and water resistance of the coating film are more excellent.
  • the number average molecular weight of the macromonomer (c) is not more than the upper limit of the above range, the viscosity of the solution of the copolymer (X), the resin composition containing it, and the antifouling coating composition tends to decrease.
  • the number average molecular weight of the macromonomer (c) is measured by gel filtration chromatography (GPC) using polystyrene as a reference substance.
  • the number average molecular weight of the macromonomer (c) can be adjusted by the amount of polymerization initiator and chain transfer agent used in the production of the macromonomer (c).
  • the macromonomer (c) is preferably a macromonomer having two or more structural units (c ′) and a number average molecular weight (Mn) of 500 to 50,000.
  • the preferred type of the structural unit (c ′) in this macromonomer and the more preferred range of the number average molecular weight are the same as described above.
  • the glass transition temperature of the macromonomer (c) is preferably ⁇ 50 to 120 ° C., more preferably ⁇ 20 to 100 ° C., and further preferably 20 to 80 ° C. If the glass transition temperature of the macromonomer (c) is equal to or higher than the lower limit of the above range, the hardness and water resistance of the coating film are more excellent. If the glass transition temperature of the macromonomer (c) is not more than the upper limit of the above range, the solution of the copolymer (X) and the storage stability of the composition (resin composition, antifouling paint composition) containing the same Is better. Moreover, it is easy to make those solutions and compositions have a low viscosity even at a high solid content.
  • the glass transition temperature of the macromonomer (c) can be measured with a differential scanning calorimeter (DSC). The glass transition temperature of the macromonomer (c) can be adjusted by the composition of the monomer forming the macromonomer (c).
  • the macromonomer (c) one produced by a known method may be used, or a commercially available one may be used.
  • the method for producing the macromonomer (c) include a method using a cobalt chain transfer agent, a method using an ⁇ -substituted unsaturated compound such as ⁇ -methylstyrene dimer as a chain transfer agent, and radical polymerization of the polymer. Examples thereof include a method of chemically bonding groups, a method by thermal decomposition, and the like.
  • a method for producing the macromonomer (c) a method using a cobalt chain transfer agent is preferable because a catalyst having a small number of production steps and a high chain transfer constant is used. Note that the macromonomer (c) produced using a cobalt chain transfer agent has a structure represented by the formula (c-1).
  • Examples of the method for producing the macromonomer (c) using a cobalt chain transfer agent include a bulk polymerization method, a solution polymerization method, and an aqueous dispersion polymerization method such as a suspension polymerization method and an emulsion polymerization method.
  • An aqueous dispersion polymerization method is preferred from the viewpoint that the recovery step is simple.
  • As a method for chemically bonding a radical polymerizable group to a polymer for example, it is produced by substituting a halogen group of a polymer having a halogen group with a compound having a radical polymerizable carbon-carbon double bond.
  • a method, a method of reacting a vinyl monomer having an acid group and a vinyl polymer having an epoxy group, a method of reacting a vinyl polymer having an epoxy group and a vinyl monomer having an acid group examples include a method of reacting a vinyl polymer having a hydroxyl group with a diisocyanate compound to obtain a vinyl polymer having an isocyanate group, and reacting this vinyl polymer with a vinyl monomer having a hydroxyl group. Any method may be used.
  • the structural unit (D) is not particularly limited, and examples thereof include a polymerizable monomer (a1), a polymerizable monomer (a2), a polymerizable monomer (a3), and a polymerizable monomer (b). And units derived from other polymerizable monomers other than the macromonomer (c) (hereinafter also referred to as “polymerizable monomer (d)”).
  • the polymerizable monomer (d) includes a polymerizable monomer (a1), a polymerizable monomer (a2), a polymerizable monomer (a3), a polymerizable monomer (b), and a macromonomer ( It is not particularly limited as long as it is copolymerizable with c) and the like, and various monomers having a radical polymerizable group such as an ethylenically unsaturated bond can be used. For example, the thing similar to the monomer (c1) for obtaining the macromonomer (c) mentioned above can be used.
  • the structural unit (D) is a structural unit derived from a monofunctional monomer having one ethylenically unsaturated bond from the viewpoint that when the copolymer (X) is dissolved in an organic solvent, it tends to have a low viscosity even at a high solid content. It is preferable that the ethylenically unsaturated bond is derived from an acryloyl group. That is, the structural unit (D) is particularly preferably a structural unit derived from a monofunctional monomer having one acryloyl group.
  • the structural unit (D) is hydrophobic group-containing (meta) in that the flexibility, crack resistance and peel resistance of the formed coating film and long-term self-polishing properties can be improved in a good balance. It is preferable that the structural unit derived from an acrylate ester is included.
  • the hydrophobic group-containing (meth) acrylic acid ester include those similar to those exemplified above for CH 2 ⁇ CR 41 R 42 , and alkyl (meth) acrylates are preferable.
  • the structural unit (D) preferably includes a structural unit derived from an oxyethylene group-containing (meth) acrylic acid ester from the viewpoint that the solubility and crack resistance of the coating film to be formed are more excellent.
  • a compound represented by the following formula (d1) is preferable.
  • Z 1- (CH 2 CH 2 O) f R 50 (d1) (In the formula (d1), Z 1 represents an acryloyloxy group or a methacryloyloxy group, R 50 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group, and n represents an integer of 1 to 15) .)
  • the acryloyloxy group when Z 1 is an acryloyloxy group and when it is a methacryloyloxy group, the acryloyloxy group tends to have a higher hydrolysis rate, and is arbitrarily selected according to the dissolution rate. be able to.
  • examples of the alkyl group having 1 to 10 carbon atoms and aryl group for R 50 are the same as those described above for R 1 and R 3 .
  • f is preferably an integer of 1 to 10, more preferably an integer of 1 to 5, further preferably an integer of 1 to 3, and particularly preferably 1 or 2 from the viewpoint of water resistance and crack resistance. preferable.
  • the polymerizable monomer (d) can be purchased as a commercial product, and can be appropriately synthesized using a known method.
  • the content of the structural unit (A) in the copolymer (X) is preferably 1 to 60% by weight, more preferably 5 to 50% by weight, based on the total (100% by weight) of all the structural units. More preferred is mass%. If content of a structural unit (A) is more than the lower limit of the said range, the self-polishing property of the coating film formed will be more excellent. If the content of the structural unit (A) is less than or equal to the upper limit of the above range, the formed coating film has moderate hydrolyzability, maintains self-polishing properties over a long period of time, and has a better antifouling effect. It will be a thing.
  • the content of the structural unit (B) in the copolymer (X) is preferably 1 to 80% by weight, more preferably 2 to 70% by weight, based on the total (100% by weight) of all the structural units. More preferred is mass%. If content of a structural unit (B) is more than the lower limit of the said range, the antifouling property of the coating film formed will be more excellent. If content of a structural unit (u2) is below the upper limit of the said range, the crack resistance of the coating film formed will be more excellent.
  • the content of the structural unit (C) in the copolymer (X) is preferably more than 0% by mass and 88% by mass or less, based on the total of all the structural units (100% by mass). Is more preferable, and 5 to 50% by mass is even more preferable. If the content of the structural unit (C) is not less than the lower limit of the above range, the viscosity of the solution when the copolymer (X) is dissolved in an organic solvent and the resin composition or antifouling coating composition containing this solution The viscosity is lower. Moreover, the hardness and water resistance of the coating film formed are more excellent. If content of a structural unit (C) is below the upper limit of the said range, crack resistance and polymerization stability will be more excellent.
  • the copolymer (X) is at least one polymerizable monomer (a) selected from the group consisting of a polymerizable monomer (a1), a polymerizable monomer (a2), and a polymerizable monomer (a3). ), A polymerizable monomer (b), and a macromonomer (c), and is preferably a copolymer obtained by polymerizing a monomer mixture ( ⁇ 1).
  • a monomer mixture ( ⁇ 1) containing a monomer (m0) having an ethylenically unsaturated bond and a carboxy group
  • a polymerizable monomer (b) and a macromonomer (c).
  • the weight average molecular weight (Mw) of the copolymer (X) is preferably 1,000 to 100,000, more preferably 2,000 to 80,000, and still more preferably 3,000 to 60,000. If the weight average molecular weight is less than or equal to the upper limit of the above range, the viscosity of the solution obtained by dissolving the copolymer (X) in an organic solvent becomes lower, and the resin composition or antifouling coating composition has a high solid content and a low viscosity. Easy to get things. Moreover, the antifouling property of the coating film formed is more excellent. If a weight average molecular weight is more than the lower limit of the said range, the hardness and durability of the coating film formed will be more excellent.
  • the number average molecular weight (Mn) of the copolymer (X) is preferably 500 to 50,000, more preferably 1,000 to 40,000.
  • the molecular weight distribution (Mw / Mn) of the copolymer (X) is preferably 1.5 to 5.0, more preferably 2.2 to 3.0.
  • the weight average molecular weight and number average molecular weight of the copolymer (X) are each measured by gel filtration chromatography (GPC) using polystyrene as a reference resin.
  • the acid value of the copolymer (X) is preferably 1 to 140 mgKOH / g, more preferably 5 to 130 mgKOH / g, and still more preferably 10 to 120 mgKOH / g. If the acid value of copolymer (X) is below the upper limit of the said range, the water resistance and crack resistance of a coating film will be more excellent.
  • the acid value of the copolymer (X) is measured by a known method such as neutralization titration with a potassium hydroxide solution.
  • the copolymer (X) is preferably a chain polymer having no cross-linked structure.
  • the viscosity of the organic solvent solution of the copolymer (X) is lower than that in the case of having a crosslinked structure.
  • Method for producing copolymer (X) As a manufacturing method of copolymer (X), the following manufacturing methods ((alpha)) are mentioned, for example.
  • the monomer mixture ( ⁇ 1) may further contain a polymerizable monomer (d).
  • the composition of the monomer mixture ( ⁇ 1) that is, the type of monomer constituting the monomer mixture ( ⁇ 1) and the content (% by mass) of each monomer with respect to the total mass of all monomers are:
  • the composition (X) is the same as the composition (% by mass) of each constituent unit relative to the total mass of the constituent units derived from the monomers constituting the copolymer (X) and the total mass of all constituent units. Therefore, the monomer mixture ( ⁇ 1) is composed of 1 to 60% by mass of the polymerizable monomer (a), 1 to 60% by mass of the polymerizable monomer (b), and 0% by mass of the macromonomer (c).
  • each monomer is preferably composed of 88% by mass or less and a polymerizable monomer (d) of 0% by mass or more and less than 98% by mass.
  • the content of each monomer is a ratio with respect to the total amount of the monomer mixture ( ⁇ 1), and the polymerizable monomer (a), the polymerizable monomer (b), the macromonomer (c), and the polymerizable monomer.
  • the total with the monomer (d) is 100% by mass.
  • the range of the more preferable content of each polymerizable monomer (a) to (b) and the macromonomer (c) is the same as the preferable range of the content of the structural unit corresponding to each monomer.
  • the polymerization method of the monomer mixture ( ⁇ 1) is not particularly limited, and a known polymerization method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the solution polymerization method is preferable in terms of productivity and coating film performance.
  • the polymerization may be performed by a known method using a known polymerization initiator. For example, a method of reacting the above monomer components in the presence of a radical initiator at a reaction temperature of 60 to 120 ° C. for 4 to 14 hours can be mentioned. In the polymerization, a chain transfer agent may be used as necessary.
  • radical polymerization initiator known ones can be used.
  • 2,2-azobis isobutyronitrile
  • 2,2-azobis (2 Azo compounds such as -methylbutyronitrile
  • organic peroxides such as benzoyl peroxide, cumene hydroperoxide, lauryl peroxide, di-t-butyl peroxide, t-butylperoxy-2-ethylhexanoate And the like.
  • the content of the polymerization initiator is not particularly limited and can be set as appropriate.
  • chain transfer agent known ones can be used, and examples thereof include mercaptans such as n-dodecyl mercaptan, thioglycolic acid esters such as octyl thioglycolate, ⁇ -methylstyrene dimer, terpinolene and the like.
  • the content of the chain transfer agent is not particularly limited and can be set as appropriate.
  • a general organic solvent such as toluene, xylene, methyl isobutyl ketone, n-butyl acetate can be used.
  • the manufacturing method of copolymer (X) is not limited to the said manufacturing method ((alpha)).
  • the copolymer (X) can also be produced by the following production method ( ⁇ ).
  • the polymerizable monomer (m0) is the same as that described in the description of the polymerizable monomer (a1).
  • the monomer mixture ( ⁇ 1) may further contain a polymerizable monomer (d).
  • the composition of the monomer mixture ( ⁇ 1) is the same as that of the monomer mixture ( ⁇ 1) except that the polymerizable monomer (a) is a polymerizable monomer (m0).
  • the polymerization of the monomer mixture ( ⁇ 1) can be performed in the same manner as the polymerization of the monomer mixture ( ⁇ 1) in the production method ( ⁇ ).
  • Examples of the method for converting the carboxy group of the copolymer (X0) into the structure (I) include a method of reacting (addition reaction) the copolymer (X0) and the compound (Y).
  • the reaction between the copolymer (X0) and the compound (Y) can be carried out in the same manner as the reaction between the polymerizable monomer (m0) and the compound (Y).
  • Examples of the method for converting the carboxy group of the copolymer (X0) into the structure (III) include a method of reacting the copolymer (X0) with an organic acid metal salt such as copper acetate or zinc acetate. .
  • the metal of the organic acid metal salt corresponds to M.
  • the reaction between the copolymer (X0) and the organic acid metal salt is carried out, for example, by raising the temperature to the reflux temperature and removing the distillate of an organic acid such as acetic acid, water and an organic solvent, The reaction can be carried out by continuing the reaction for 10 to 20 hours while replenishing the solvent.
  • the copolymer (X) has a structural unit (A) and contains any one or more of the structure (I), triorganosilyloxycarbonyl group and structure (III). Is possible. Therefore, the coating film containing the copolymer (X) exhibits self-polishing properties in seawater or the like. Moreover, since it has a structural unit (B) and contains a polysiloxane block, it is difficult for marine organisms and other dirt to adhere to the surface of the coating film containing the copolymer (X). Therefore, the coating film containing the copolymer (X) can exhibit an excellent antifouling effect even when the antifouling agent is not included.
  • the copolymer (X) since the copolymer (X) has the structural unit (C), the organic solvent solution can have a high solid content and a low viscosity. Moreover, the coating film containing copolymer (X) has high hardness. Therefore, excellent wood resistance is expected. Such an effect is considered to be due to the use of the macromonomer (c) and the coating film forming a microphase separation structure.
  • the resin composition of the present invention contains the copolymer (X) described above.
  • the copolymer (X) contained in the resin composition may be one type or two or more types.
  • the content of the copolymer (X) in the resin composition of the present invention is not particularly limited, but is preferably 45% by mass or more, more preferably 50% by mass or more, and 55% by mass with respect to the total amount of the resin composition. The above is more preferable. If content of copolymer (X) is more than the said lower limit, an antifouling paint composition with little VOC content can be obtained easily.
  • the upper limit of content of copolymer (X) is not specifically limited, 100 mass% may be sufficient. When a resin composition contains a solvent, it is preferable to contain in the quantity from which the viscosity in 25 degreeC of a resin composition becomes below the preferable upper limit mentioned later.
  • the content of the solvent is preferably 85% by mass or less based on the total amount of the resin composition, although it varies depending on the weight average molecular weight, the glass transition temperature, the presence or absence of a crosslinked structure, and the like of the copolymer (X). 80 mass% or less is more preferable.
  • the resin composition of the present invention further comprises at least one selected from the group consisting of a compound that reacts with an acid, a basic compound, an acidic compound, and a dehydrating agent. It is preferable to include. Thereby, the storage stability of the resin composition and the antifouling coating composition containing the resin composition is improved.
  • the structure (I) is not intended during storage. May break down. When structure (I) decomposes, a carboxylic acid is produced.
  • the glass transition temperature of the copolymer (X) is increased, or the carboxylic acid and other components in the coating form a crosslinked structure, so that the viscosity of the solution of the copolymer (X) and the coating including the same is increased. Or rise.
  • free carboxylic acid is generated, dissolution stability and water resistance in an organic solvent are reduced.
  • the generated carboxylic acid catalyzes the hydrolysis reaction as an acid, whereby the structure (I) is further decomposed.
  • the carboxylic acid is captured by the compound that reacts with the acid.
  • Storage stability is improved. Further, in the high pH region and the low pH region, the storage stability is lowered by promoting the decomposition of the structure (I). In the high pH region, the storage stability also decreases due to a decrease in the reactivity between the compound (Y) and the carboxylic acid.
  • the pH of the resin composition By adjusting the pH of the resin composition by adding a basic compound or an acidic compound, decomposition of the structure (I) can be suppressed, and a decrease in storage stability can be suppressed.
  • moisture promotes decomposition (hydrolysis) of the structure (I). By containing a dehydrating agent in the resin composition, moisture in the resin composition can be captured and deterioration in storage stability can be suppressed.
  • Examples of the compound that reacts with an acid include the aforementioned compound (Y), a basic compound, and a compound having an epoxy group.
  • Examples of the basic compound include dimethylamine, diethylamine, trimethylamine, triethylamine, aniline, pyridine and the like.
  • Examples of the compound containing an epoxy group include 2-ethyloxirane, 2,3-dimethyloxirane, 2,2-dimethyloxirane, glycidyl (meth) acrylate, glycidyl ⁇ -ethylacrylate, and (meth) acrylic acid 3,4. -Epoxybutyl and the like.
  • the compound that reacts with the acid is preferably the compound (Y) from the viewpoint of storage stability.
  • the compound (Y) is preferably a 1-alkenyl alkyl ether in which X in the formula (31) is —O— in that the effect of improving storage stability is more preferable. More preferred are vinyl ethers such as vinyl ether and isobutyl vinyl ether.
  • Acidic compounds include abietic acid, neoabietic acid, parastrinic acid, pimaric acid, isopimaric acid, levopimaric acid, dextropimaric acid, sandaracopimaric acid, acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, linoleic acid, oleic acid Chloroacetic acid, fluoroacetic acid and the like.
  • Examples of the dehydrating agent include silicate-based, isocyanate-based, orthoester-based, and inorganic-based materials. More specifically, methyl orthoformate, ethyl orthoformate, methyl orthoacetate, orthoborate ester, tetraethyl orthosilicate, anhydrous gypsum, calcined gypsum, synthetic zeolite (molecular sieve) and the like can be mentioned. Molecular sieve is particularly preferable.
  • additives can be used alone or in combination of two or more.
  • combinations of two or more additives include a combination of a compound (Y) and a dehydrating agent, a combination of a compound (Y), an acidic compound and a dehydrating agent, a compound (Y), a basic compound, an acidic compound and a dehydrating agent.
  • the content of the compound (Y) in the resin composition is 20 mol% or more based on the structure (I) of the copolymer (X). Preferably, it is 30 to 1000 mol%, more preferably 40 to 800 mol%. If content of a compound (Y) is in the said range, the improvement effect of storage stability will be more excellent.
  • the content of the basic compound and / or acidic compound in the resin composition is such that the pH measured in water is 2 from the viewpoint of storage stability.
  • An amount of basic compound at a concentration of ⁇ 12 is preferred, and an amount of basic compound at a concentration of 6 ⁇ 9 is more preferred.
  • the pH measured in water is specifically a value measured by adding a basic compound in water.
  • the pH is a value at 23 ° C.
  • the content of the dehydrating agent in the resin composition is preferably 0.1 to 40% by mass, more preferably 1 to 20% by mass with respect to the total mass of the resin composition. . If content of a dehydrating agent is more than the lower limit of the said range, storage stability will be more excellent. If content of a dehydrating agent is below the upper limit of the said range, melt
  • the resin composition of the present invention may further contain silicone oil.
  • silicone oil When the resin composition contains silicone oil, the antifouling property of the formed coating film is more excellent.
  • the silicone oil include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil, and modified silicone oils.
  • the modified silicone oil is a silicone oil in which an organic group other than a methyl group and a phenyl group (hereinafter also referred to as “modified group”) is introduced into a part of silicon atoms of a straight silicone oil.
  • modifying group examples include chlorophenyl group, methylstyrene group, long chain alkyl group (for example, alkyl group having 2 to 18 carbon atoms), polyether group, carbinol group, aminoalkyl group, epoxy group, (meth) acryloyl Groups and the like. These silicone oils can be used alone or in combination of two or more.
  • silicone oil A commercially available product can be used as the silicone oil.
  • silicone oils include “KF-96”, “KF-50”, “KF-54”, “KF-56”, “KF-6016” (above, manufactured by Shin-Etsu Chemical Co., Ltd.), “ “TSF451” (made by Momentive Performance Materials), “Fluid47” (made by Rhone Plan (France)), “SH200”, “SH510”, “SH550”, “SH710", “DC200”, “ST-114PA” ",” FZ209 “(manufactured by Toray Dow Corning).
  • the resin composition of the present invention preferably contains an organic solvent.
  • the organic solvent is not particularly limited as long as it can dissolve the copolymer (X).
  • hydrocarbon solvents such as toluene and xylene; the compound (Y), propylene glycol monomethyl ether-2-acetate
  • An ether solvent such as methyl isobutyl ketone; an ester solvent such as n-butyl acetate; and the like. Any of these may be used alone or in combinations of two or more.
  • the content of the organic solvent in the resin composition of the present invention is preferably 55% by mass or less, and preferably 50% by mass or less, based on the total amount of the resin composition, from the viewpoint of reducing the VOC content of the antifouling coating composition. More preferred is 45% by mass or less.
  • the content of the organic solvent is preferably such that the viscosity at 25 ° C. of the resin composition is not more than the preferred upper limit value described later, and also depends on the weight average molecular weight of the copolymer (X), the glass transition temperature, the presence or absence of a crosslinked structure, and the like. Although different, 15 mass% or more is preferable with respect to the whole quantity of a resin composition, and 20 mass% or more is more preferable.
  • the compound (Y) can also function as an organic solvent. Therefore, when a resin composition contains a compound (Y), content of a compound (Y) is contained in content of an organic solvent.
  • the resin composition of the present invention may further contain other components other than the copolymer (X), a compound that reacts with an acid, a basic compound, an acidic compound, a dehydrating agent, silicone oil, and an organic solvent.
  • other components include the same components as the other components in the antifouling coating composition described later.
  • the content of other components is preferably 200% by mass or less, and may be 0% by mass with respect to the copolymer (X).
  • the solid content of the resin composition of the present invention is preferably 45% by mass or more, more preferably 50% by mass or more, and further preferably 55% by mass or more.
  • the VOC content of the antifouling coating composition is sufficiently low.
  • the upper limit of the solid content of the resin composition is not particularly limited, and may be 100% by mass.
  • the content is preferably 85% by mass or less, and more preferably 80% by mass or less from the viewpoint of the viscosity of the resin composition.
  • the solid content of the resin composition is measured by the measurement method described in Examples described later.
  • the viscosity (hereinafter also referred to as “B-type viscosity”) measured by a B-type viscometer at 25 ° C. of the resin composition is less than 5000 mPa ⁇ s. Preferably, it is less than 3000 mPa ⁇ s, more preferably less than 2,000 mPa ⁇ s, and particularly preferably less than 1,000 mPa ⁇ s.
  • the viscosity of the resin composition measured by a Gardner bubble viscometer at 25 ° C. (hereinafter also referred to as “Gardner viscosity”) is preferably Z3 or less, and more preferably V or less.
  • the viscosity (B-type viscosity or Gardner viscosity) of the resin composition is less than or equal to the above upper limit, an antifouling agent or the like may be blended or applied without adding a solvent for dilution to the resin composition.
  • an antifouling coating composition having a low VOC content can be obtained.
  • the resin composition has a viscosity at a solid content of at least 50% by mass, not more than the preferable upper limit.
  • the lower limit of the viscosity of the resin composition is not particularly limited. From the viewpoint of suppressing the sagging of the paint during coating, the B-type viscosity at 25 ° C. is preferably 100 mPa ⁇ s or more.
  • the B-type viscosity at 25 ° C. of the resin composition is preferably 100 mPa ⁇ s or more and less than 5,000 mPa ⁇ s, more preferably 100 mPa ⁇ s or more and less than 3,000 mPa ⁇ s, and more preferably 100 mPa ⁇ s or more and 2,000 mPa ⁇ s. Less than s is more preferable, and 100 mPa ⁇ s or more and less than 1,000 mPa ⁇ s is particularly preferable.
  • the viscosity of the resin composition depends on the solid content of the resin composition (contents of the copolymer (X) and other components), the weight average molecular weight of the copolymer (X), the glass transition temperature, the presence or absence of a crosslinked structure, and the like. Can be adjusted. For example, the lower the solid content, particularly the content of the copolymer (X), the lower the viscosity. Moreover, there exists a tendency for it to become low viscosity, so that the weight average molecular weight of copolymer (X) is small or a glass transition temperature is low.
  • the resin composition of the present invention has a decomposition rate of the structure (I) in the copolymer (X) after storage at 40 ° C. for 30 days. It is preferably 20% or less, more preferably 7% or less, further preferably 4% or less, particularly preferably 3% or less, and most preferably 2% or less. If the decomposition rate of the structure (I) after storing the resin composition at 40 ° C. for 30 days is not more than the above upper limit value, the storage stability of the resin composition and the antifouling coating composition containing the resin composition is excellent.
  • a resin composition contains the organic solvent, it is excellent also in the melt stability with respect to the organic solvent of copolymer (X).
  • the decomposition rate is preferably as low as possible, and the lower limit may be 0%.
  • the decomposition rate of structure (I) after storage at 40 ° C. for 30 days can be reduced to 20% or less, for example, by adding a compound that reacts with an acid, a basic compound, an acidic compound, a dehydrating agent, or the like to the resin composition.
  • the storage of the resin composition means that the resin composition is sealed in a glass bottle and left in a dry environment in a shielded environment.
  • the decomposition rate of the structure (I) is determined when the structure (I) contained in the copolymer (X) is not completely decomposed from the measured solid acid value (a) of the resin composition (after storage at 40 ° C. for 30 days).
  • the value obtained by subtracting the theoretical solid acid value (b) is divided by the theoretical acid value (c) when the structure (I) contained in the copolymer (X) is completely decomposed.
  • (Decomposition rate) ⁇ (Measured solid acid value (a)) ⁇ (Theoretical solid acid value (b)) ⁇ / (Theoretical solid acid value (c)) ⁇ 100
  • the measured solid acid value will be described in the item of solid acid value in Examples described later.
  • the theoretical solid acid value can be calculated by the following formula.
  • (Theoretical solid acid value) ⁇ (561 ⁇ 100 / Mw i ⁇ w i )
  • Mw i is an acid functional group. This represents the molecular weight of the monomer having a group.
  • the acid functional group is a functional group such as carboxylic acid.
  • the acid value at the time of decomposition is calculated as a monomer having an acid functional group.
  • the acid value when not decomposed is calculated as a monomer having no acid functional group.
  • the resin composition of this invention can be manufactured using a well-known method.
  • the copolymer (X) is produced by the aforementioned production method ( ⁇ ) or ( ⁇ ), and if necessary, the obtained copolymer (X) is reacted with an acid, a basic compound,
  • a resin composition can be prepared by blending an acidic compound, a dehydrating agent, silicone oil, an organic solvent, other components, and the like.
  • the timing of compounding the compound (Y) may be during the production of the copolymer (X) or after the production of the copolymer (X).
  • Well not particularly limited.
  • the compound (Y) may be allowed to coexist during the polymerization of the monomer mixture, or the compound (Y) may be added after the polymerization is completed.
  • the copolymer (X0) is obtained by reacting the produced copolymer (X0) with the compound (Y) to obtain the copolymer (X0).
  • the compound (Y) may be added in an amount larger than the equivalent amount with respect to the carboxy group of) so that the unreacted compound (Y) remains.
  • the compound (Y) undergoes radical polymerization when the compound (Y) is allowed to coexist during the polymerization reaction, a method of adding the compound (Y) after completion of the polymerization is preferable.
  • a raw material for the polymerizable monomer (b) or the like a material containing silicone oil may be used.
  • the polymerization product contains copolymer (X) and silicone oil.
  • the resin composition of the present invention can be used as it is or mixed with an antifouling agent or the like as necessary to obtain an antifouling coating composition.
  • the resin composition of the present invention can be used for an anti-fogging coating composition as well as an anti-fouling coating composition. Since the coating film using the resin composition of the present invention exhibits an excellent antifouling effect in seawater or the like, the resin composition of the present invention is suitable for an antifouling coating composition.
  • the antifouling coating composition of the present invention contains the above-described resin composition of the present invention. Therefore, the copolymer (X) is contained.
  • the antifouling paint composition of this embodiment further comprises at least one selected from the group consisting of a compound that reacts with an acid, a basic compound, an acidic compound, and a dehydrating agent from the viewpoint of the storage stability of the antifouling paint composition. But you can. Examples of the compound that reacts with an acid, a basic compound, an acidic compound, and a dehydrating agent are the same as those described above. The preferable content is also the same.
  • the antifouling coating composition of this embodiment may further contain silicone oil from the viewpoint of the antifouling property of the coating film.
  • the antifouling paint composition of this embodiment may contain an organic solvent.
  • Examples of the organic solvent are the same as described above.
  • the antifouling coating composition of this embodiment may further contain an antifouling agent.
  • the antifouling coating composition of this embodiment further comprises other components other than the copolymer (X), a compound that reacts with an acid, a basic compound, an acidic compound, a dehydrating agent, a silicone oil, an organic solvent, and an antifouling agent. But you can.
  • the antifouling coating composition contains a compound that reacts with an acid, a basic compound, an acidic compound, a dehydrating agent, a silicone oil, an organic solvent, other components, etc.
  • these components are derived from the resin composition, respectively. It may be a thing, it may not be derived (a thing mix
  • Antifouling agent examples include inorganic antifouling agents, organic antifouling agents, and the like, and one or more types can be appropriately selected and used according to the required performance.
  • Antifouling agents include, for example, copper-based antifouling agents such as cuprous oxide, thiocyanic copper and copper powder, compounds of other metals (lead, zinc, nickel, etc.), amine derivatives such as diphenylamine, nitrile compounds, benzothiazole Compounds, maleimide compounds, pyridine compounds, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • an antifouling agent 4-bromo-2- (4-chlorophenyl) -5- (trifluoromethyl) -1H-pyrrole-3-carbonitrile, Manganese ethylene bisdithiocarbamate, zinc dimethyldithio Carbamate, 2-methylthio-4-t-butylamino-6-cyclopropylamino-s-triazine, 2,4,5,6-tetrachloroisophthalonitrile, N, N-dimethyldichlorophenylurea, zinc ethylenebisdithiocarbamate Rhodan copper, 4,5-dichloro-2-noctyl-3 (2H) isothiazolone, N- (fluorodichloromethylthio) phthalimide, N, N′-dimethyl-N′-phenyl- (N-fluorodichloromethylthio) sulfamide , 2-pyridinethiol-1-oxide zinc salt, Tet Methylthiuram
  • the content of the antifouling agent in the antifouling coating composition is not particularly limited, but is 2 to 200 parts by mass with respect to 100 parts by mass of the copolymer (X). Part is preferable, and 10 to 150 parts by weight is more preferable.
  • the content of the antifouling agent is at least the lower limit of the above range, the antifouling effect of the formed coating film is more excellent.
  • the content of the antifouling agent is not more than the upper limit of the above range, the coating film properties are excellent.
  • Examples of other components include other resins than the copolymer (X).
  • Other resin is resin which does not have at least 1 sort (s) of a structural unit (A), a structural unit (B), and a structural unit (C).
  • a thermoplastic resin etc. are mentioned, for example.
  • the antifouling coating composition of the present invention preferably contains a thermoplastic resin other than the copolymer (X).
  • the coating film properties such as crack resistance and water resistance are more excellent.
  • thermoplastic resin other than the copolymer (X) examples include chlorinated paraffin; chlorinated polyolefin such as chlorinated rubber, chlorinated polyethylene and chlorinated polypropylene; polyvinyl ether; polypropylene sebacate; partially hydrogenated terphenyl; Vinyl acetate; (meth) methyl acrylate copolymer, (meth) ethyl acrylate copolymer, (meth) propyl acrylate copolymer, (meth) butyl acrylate copolymer, (meth) Poly (meth) acrylic acid alkyl ester such as cyclohexyl acrylate copolymer; polyether polyol; alkyd resin; polyester resin; vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl propionate copolymer, vinyl chloride- Isobutyl vinyl ether copolymer, vinyl chloride-isopropyl vinyl Vinyl chloride resins such as
  • wax examples include animal-derived waxes such as beeswax; plant-derived waxes; semi-synthetic waxes such as amide waxes; synthetic waxes such as oxidized polyethylene waxes.
  • animal-derived waxes such as beeswax
  • plant-derived waxes such as plant-derived waxes
  • semi-synthetic waxes such as amide waxes
  • synthetic waxes such as oxidized polyethylene waxes.
  • thermoplastic resins may be used alone or in combination of two or more.
  • the content of the thermoplastic resin other than the copolymer (X) in the antifouling coating composition is not particularly limited, but is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the copolymer (X). 0.1 to 10 parts by mass is more preferable. If the content of the thermoplastic resin other than the copolymer (X) is not less than the lower limit of the above range, the coating film properties such as crack resistance and water resistance are more excellent, and if not more than the upper limit of the above range, More hydrolyzable.
  • the antifouling coating composition of the present invention is a silicone compound such as dimethylpolysiloxane and silicone oil, a fluorine-containing compound such as fluorinated hydrocarbon, etc. for the purpose of imparting lubricity to the coating film surface and preventing biological adhesion May be included.
  • the antifouling coating composition of the present invention comprises various pigments, antifoaming agents, leveling agents, pigment dispersants (for example, anti-settling agents), anti-sagging agents, matting agents, ultraviolet absorbers, antioxidants, and heat resistance.
  • An improver, slip agent, preservative, plasticizer, viscosity control agent, and the like may be included.
  • the pigment include zinc oxide, talc, silica, barium sulfate, potassium feldspar, aluminum hydroxide, magnesium carbonate, mica, carbon black, dial, titanium oxide, phthalocyanine blue, kaolin, gypsum and the like.
  • anti-settling agents and anti-sagging agents other than thermoplastic resins include bentonite-based, finely divided silica-based, stearate salt, lecithin salt, alkyl sulfonate, and the like.
  • plasticizers other than thermoplastic resins include phthalate plasticizers such as dioctyl phthalate, dimethyl phthalate, dicyclohexyl phthalate, and diisodecyl phthalate; aliphatic dibasic ester plasticizers such as isobutyl adipate and dibutyl sebacate ; Glycol ester plasticizers such as diethylene glycol dibenzoate and pentaerythritol alkyl ester; phosphate ester plasticizers such as tricresyl phosphate (TCP), triaryl phosphate and trichloroethyl phosphate; epoxy soybean oil, octyl epoxy stearate, etc.
  • phthalate plasticizers such as dioctyl phthalate, dimethyl phthalate, dicyclohexyl phthalate, and diisodecyl phthalate
  • aliphatic dibasic ester plasticizers such as isobutyl
  • organic tin plasticizers such as dioctyltin laurate and dibutyltin laurate
  • trioctyl trimellitic acid triacetylene and the like.
  • the content of VOC in the antifouling coating composition of the present invention is preferably 450 g / L or less, more preferably 420 g / L or less, and still more preferably 400 g / L or less.
  • the VOC content is calculated from the following formula using the specific gravity and the solid content of the antifouling coating composition.
  • VOC content (g / L) specific gravity of composition ⁇ 1000 ⁇ (100 ⁇ solid content) / 100
  • the specific gravity of the antifouling paint composition is calculated by filling the antifouling paint composition in a specific gravity cup having a capacity of 100 mL at 25 ° C. and measuring the mass.
  • the solid content (heating residue) of the antifouling coating composition is measured by the method described in Examples described later.
  • the VOC content can be adjusted by the content of the organic solvent. By increasing the solid content of the resin composition for an antifouling paint, the VOC content can be lowered even if the antifouling paint has the same viscosity.
  • the solid content of the antifouling coating composition of the present invention is preferably 50 to 100% by mass, more preferably 55 to 90% by mass, and further preferably 60 to 80% by mass. If the solid content of the antifouling coating composition is at least the lower limit of the above range, the VOC content will be sufficiently low. If solid content is below the upper limit of the said range, it will be easy to make the viscosity of an antifouling coating composition low.
  • the viscosity of the antifouling coating composition of the present invention measured with a B-type viscometer at 25 ° C. is preferably less than 10,000 mPa ⁇ s, preferably less than 7,000 mPa ⁇ s, and 5,000 mPa ⁇ s. Less than is more preferable. If the viscosity of the antifouling coating composition is not more than the above upper limit value, coating is easy.
  • the lower limit of the viscosity of the antifouling coating composition is not particularly limited, but is preferably 100 mPa ⁇ s or more in terms of physical properties of the coating film.
  • the viscosity of the antifouling coating composition can be adjusted by the viscosity of the resin composition, the amount of solvent added to the resin composition, and the like.
  • the antifouling coating composition of the present invention can be prepared by preparing the resin composition of the present invention, adding an antifouling agent, other components, and a solvent as necessary, and mixing them.
  • the antifouling paint composition of the present invention is used for forming a coating film (antifouling coating film) on the surface of a base material such as an underwater structure such as a ship, various fishing nets, a port facility, an oil fence, a bridge, and a submarine base. Can be used.
  • the coating film using the antifouling coating composition of the present invention can be formed on the substrate surface directly or via a base coating film.
  • the undercoat film can be formed using a wash primer, a primer such as a chlorinated rubber or an epoxy, an intermediate coating, or the like.
  • the coating film can be formed by a known method.
  • an antifouling coating composition is applied to the surface of a substrate or a base coating on the substrate by means of brush coating, spray coating, roller coating, immersion coating, or the like, and dried to dry the coating film.
  • the coating amount of the antifouling coating composition can generally be set to an amount that results in a dry coating film thickness of 10 to 400 ⁇ m.
  • the coating film can be usually dried at room temperature, and may be heat-dried as necessary.
  • ⁇ Evaluation method> Weight average molecular weight (Mw) of macromonomer, number average molecular weight (Mn) Measurement was performed using gel permeation chromatography (GPC) (HLC-8320 manufactured by Tosoh Corporation). A tetrahydrofuran solution is prepared so that the macromonomer is 0.2% by mass, and 10 ⁇ l of the above solution is injected into an apparatus equipped with a Tosoh column (TSKgelSuperHZM-M ⁇ HZM-M ⁇ HZ2000, TSKguardcolumn superHZ-L).
  • GPC gel permeation chromatography
  • the flow rate was 0.35 ml / min, the eluent was tetrahydrofuran (stabilizer BHT), and the column temperature was 40 ° C.
  • the weight average molecular weight (Mw) or number average molecular weight (Mn) was calculated in terms of standard polystyrene.
  • a tetrahydrofuran solution was prepared so that the (meth) acrylic copolymer was 0.4% by mass, and a Tosoh column (TSKgel G4000HXL * G2000HXL (Tosoh Corp., 7.8 mm ⁇ 30 cm), TSKguardcolumn HXL-L (Tosoh) 100 ⁇ l of the above solution was injected into an apparatus equipped with a product of 6.0 mm ⁇ 4 cm) manufactured by Co., Ltd., and measurement was performed under the condition of column temperature: 40 ° C.
  • the weight average molecular weight (Mw) or number average molecular weight (Mn) was calculated in terms of standard polystyrene.
  • the molecular weight distribution (Mw / Mn) was calculated from the calculated Mw and Mn.
  • the sample (resin composition) was put in the dried viscosity tube (Gardner bubble viscosity tube) up to the indication line of the viscosity tube, and then plugged with a cork stopper.
  • the viscosity tube from which this sample was collected was immersed in a constant temperature water bath adjusted to a specified temperature (25.0 ⁇ 0.1 ° C.) vertically for at least 2 hours to make the sample constant temperature, and the viscosity tube and sample serving as a reference tube
  • the viscosity tube containing was rotated 180 ° at the same time, and the viscosity (Gardner viscosity) was determined by comparing the milling speed of the sample with that of the reference tube.
  • the sample (antifouling paint composition) was applied to a hard vinyl chloride plate of 50 mm x 50 mm x 2 mm (thickness) with an applicator so as to have a dry film thickness of 120 ⁇ m, and dried to form a coating film.
  • the degree of wear is preferably in the range of 1 to 150 ⁇ m / M.
  • Coating hardness A test plate on which a sample coating film is formed by applying a sample (resin composition) on a glass substrate using a 500 ⁇ m applicator so that the dry film thickness is 80 to 150 ⁇ m and drying at 25 ° C. for one week. Got. With respect to the coating film of this test plate, the coating film hardness (Martens hardness) was measured at 25 ° C. with an ultra-micro hardness meter (trade name: HM2000, manufactured by Fisher Instruments Co., Ltd.).
  • the coating film hardness (Martens hardness) was measured at three different points on the coating film of the test plate, and the average value thereof was taken as the hardness of the coating film.
  • the Martens hardness is preferably in the range of 3.0 to 40.0 N / mm 2 , and preferably in the range of 4.0 to 20.0 N / mm 2 . If it is 3.0 N / mm 2 or more, the coating film hardness is sufficiently high, and if it is 40.0 N / mm 2 or less, the cracking property of the coating film is good.
  • a test plate was prepared by applying a sample (resin composition or antifouling paint composition) to a sandblast plate to which a rust preventive paint had been applied in advance so that the dry film thickness was 200 ⁇ m.
  • the coating film was immersed for 3 months in a bay in Aichi Prefecture, and the adhesion area of the attached organism (the ratio of the area where the organism adhered to the total area of the coating film) was examined.
  • the antifouling property was evaluated according to the following criteria.
  • Adhesion area is less than 5% ⁇ (Good): Adhesion area is 5% or more and less than 20% ⁇ (possible): Adhesion area is 20% or more and less than 40% x (Bad): Adhesion area is 40% more than
  • ⁇ Production Example 3 Production of Dispersant 1>
  • a polymerization apparatus equipped with a stirrer, a condenser, and a thermometer, 900 parts of deionized water, 60 parts of sodium 2-sulfoethyl methacrylate, 10 parts of potassium methacrylate and 12 parts of methyl methacrylate (MMA) are stirred.
  • the temperature was raised to 50 ° C. while the inside of the polymerization apparatus was purged with nitrogen. Thereto was added 0.08 part of 2,2′-azobis (2-methylpropionamidine) dihydrochloride as a polymerization initiator, and the temperature was further raised to 60 ° C.
  • MMA was continuously added dropwise at a rate of 0.24 part / minute for 75 minutes using a dropping pump.
  • the reaction solution was held at 60 ° C. for 6 hours and then cooled to room temperature to obtain Dispersant 1 having a solid content of 10% by mass as a transparent aqueous solution.
  • the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing the polymer.
  • This aqueous suspension was filtered through a nylon filter cloth having an opening of 45 ⁇ m, and the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain Macromonomer 1.
  • the number average molecular weight of the macromonomer 1 was 3000, and the weight average molecular weight was 7000.
  • the inside of the polymerization apparatus was purged with nitrogen, heated to 80 ° C. and reacted for 1 hour, and further heated to 90 ° C. and held for 1 hour in order to increase the polymerization rate. Thereafter, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing the polymer.
  • This aqueous suspension was filtered through a nylon filter cloth having an opening of 45 ⁇ m, and the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain Macromonomer 2.
  • the number average molecular weight of the macromonomer 2 was 2000, and the weight average molecular weight was 3800.
  • Example 1 A reaction vessel equipped with a stirrer, a temperature controller, and a dropping funnel was charged with 34 parts of xylene, 15 parts of PGM, 4 parts of EA, and 18.5 parts of Macromonomer 1, and the temperature was raised to 100 ° C. while stirring.
  • Examples 2-5 Comparative Examples 1-2> Resin composition in the same manner as in Example 1 except that the type and amount (parts) of the macromonomer charged into the reaction vessel and the composition of the mixture dropped after the temperature increase were changed as shown in Tables 2 and 4 below. The thing was manufactured.
  • Example 6 In a reaction vessel equipped with a stirrer, a temperature controller, and a dropping funnel, 50 parts of xylene and 20 parts of macromonomer 2 were charged and heated to 90 ° C. while stirring. Subsequently, a mixture consisting of 25 parts of IBEMA, 20 parts of FM-0711 (trade name, manufactured by JNC), 35 parts of ethyl acrylate, and 0.5 parts of AMBN was dropped from the dropping funnel over a period of 4 hours. . After completion of the dropwise addition, 2.0 parts of AMBN and 4.0 parts of xylene were dropped at a constant rate over 30 minutes, and the mixture was further stirred for 2 hours.
  • Example 7 Comparative Examples 3 to 4> Resin composition in the same manner as in Example 6 except that the type and amount (parts) of macromonomer charged into the reaction vessel and the composition of the mixture dropped after the temperature increase were changed as shown in Tables 2 and 4 below. The thing was manufactured.
  • Examples 27 to 28> The resin composition was produced in the same manner as in Example 6 except that the type and amount (parts) of the macromonomer charged into the reaction vessel and the composition of the mixture dropped after the temperature increase were changed as shown in Table 4 below. did.
  • Example 29 to 30> A resin composition was produced in the same manner as in Example 7 except that the type and amount (parts) of macromonomer charged into the reaction vessel and the composition of the mixture dropped after the temperature increase were changed as shown in Table 4 below. did.
  • Tables 2 to 4 below show the characteristics (viscosity, solid content (% by mass)) of the resin compositions obtained in Examples 1 to 32 and Comparative Examples 1 to 4, and the copolymer contained in each resin composition. Characteristics (number average molecular weight (Mn), weight average molecular weight (Mw), molecular weight distribution), and evaluation results (coating film hardness) are described.
  • Macromonomers 1 and 2 Macromonomers 1 and 2 obtained in Production Examples 5 and 6, respectively.
  • MMA methyl methacrylate.
  • EA ethyl acrylate.
  • MM-Zn1 Metal atom-containing monomer mixture obtained in Production Example 1 (MM-Zn1).
  • MM-Zn2 Metal atom-containing monomer mixture obtained in Production Example 2 (MM-Zn2).
  • IBMA Synthetic product obtained in Production Example 7, 1-isobutoxyethyl methacrylate.
  • FM-0711 trade name, manufactured by JNC Corporation (in the formula (b1), v is 0, R 3a to R 3f are methyl groups, w is 3, and x is 10) Monomer).
  • X-24-8201 trade name, manufactured by Shin-Etsu Chemical Co., Ltd. (containing one-end polysiloxane block in which v is 0, R 3a to R 3f are methyl groups, w is 3 and x is 25 in the formula (b1)) Polymerizable monomer).
  • FM-7721 Trade name, manufactured by JNC Corporation (both in the formula (b4), v is 0, R 3a to R 3f are methyl groups, w is 3, and x is 65. Monomer).
  • AIBN 2,2′-azobis (isobutyronitrile).
  • AMBN 2,2′-azobis (2-methylbutyronitrile).
  • NOFMER MSD trade name, manufactured by NOF Corporation, ⁇ -methylstyrene dimer.
  • CHMA cyclohexyl methacrylate.
  • BA Butyl acrylate.
  • MTA 2-methoxyethyl acrylate.
  • AA-6 MMA macromonomer manufactured by Toa Gosei (number average molecular weight 6000).
  • Examples 33 to 71, Comparative Examples 5 to 8> According to the formulations shown in Tables 5 to 8 below, the respective components were mixed with a high speed disper to obtain an antifouling paint composition. The obtained antifouling paint composition was used and the antifouling consumption was evaluated. The results are shown in Tables 5 to 8 below.
  • the abbreviations shown in Tables 5 to 8 indicate the following materials, respectively. Moreover, the numerical value described in each column shows the preparation amount (part) of each material.
  • the charged amounts of the resin compositions A-1 to A-11 indicate the total mass of each resin composition.
  • KF-6016 trade name, manufactured by Shin-Etsu Chemical Co., Ltd., polyether-modified silicone oil.
  • Toyoparax (registered trademark) 150 manufactured by Tosoh Corporation, chlorinated paraffin.
  • Disparon (registered trademark) 4200-20 manufactured by Enomoto Kasei Co., Ltd., oxidized polyethylene wax.
  • Disparon A603-20X Polyamide wax manufactured by Enomoto Kasei Co., Ltd.
  • the resin compositions of Examples 1 to 32 had a high solid content and a low viscosity. It was also confirmed that the coating film hardness was sufficiently high. Since Comparative Examples 1 and 2 having the structural unit (A3) did not use a macromonomer, the viscosity was higher than that of Examples 1 to 5 despite the low solid content. Moreover, the coating film hardness was also inferior. Similarly, Comparative Example 3 having the structural unit (A1) and Comparative Example 4 having the structural unit (A2) are less solid than Example 6, respectively. High viscosity. Moreover, the coating film hardness was also inferior. All of the coating films of the antifouling coating compositions of Examples 33 to 71 using the resin compositions of Examples 1 to 32 showed good wear and antifouling properties.

Abstract

本発明の(メタ)アクリル系共重合体は、式(1)、式(2)又は式(3)で表される構造(I)の少なくとも1種を有する構成単位(A1)、トリオルガノシリルオキシカルボニル基を有する構成単位(A2)、及び式(4)又は式(5)で表される構造(III)の少なくとも1種を有する構成単位(A3)からなる群から選ばれる少なくとも1種の構成単位(A)と、特定のポリシロキサンブロック含有重合性単量体(b)由来の構成単位(B)と、マクロモノマー(c)由来の構成単位(C)と、を有する。

Description

(メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物
 本発明は、(メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物に関する。
本出願は、2017年3月29日に日本に出願された特願2017-066013号に基づき、優先権を主張し、その内容をここに援用する。
 海洋構造物や船舶には、海水と接する部分の腐食や航行速度低下の原因となる海中生物の付着防止を目的として、防汚塗料を塗装することが知られている。従来から、防汚塗料として、自己研磨型の防汚塗料が知られている。
 自己研磨型の防汚塗料は、典型的には、加水分解性樹脂と、防汚剤とを含む。このような防汚塗料から得られる塗膜は、塗膜表面が徐々に海水に溶解して表面更新(自己研磨)され、塗膜表面に常に防汚剤が露出することにより、長期にわたって防汚効果を発揮する。
 自己研磨型の防汚塗料として、例えば、側鎖にヘミアセタールエステル基及び/又はヘミケタールエステル基を有するビニル重合体と有機溶剤とを含有する防汚塗料用組成物を用いたものが提案されている(特許文献1)。前記ビニル重合体は加水分解性を有しており、これを含む塗膜は自己研磨性を示す。かかる組成物は、防汚剤等が配合されて防汚塗料とされる。
 他の自己研磨型の防汚塗料として、例えば、シリコン含有重合性単量体由来の構成単位と、2価の金属原子を含有する金属原子含有重合性単量体由来の構成単位とを有する共重合体を含有する塗料組成物(特許文献2)、シリコン含有基とトリオルガノシリルオキシカルボニル基とを有する加水分解性樹脂を含有する防汚塗料組成物(特許文献3)等が提案されている。かかる防汚塗料組成物を用いた塗膜は、自己研磨性を示し、また、シリコン構造を含むことで表面エネルギーが小さくなっている。そのため、防汚剤を含まなくても防汚効果を発揮する。
 また、近年、環境等への影響から、揮発性有機化合物(Volatile Organic Compound;以下、「VOC」ともいう。)の低減が重要になっており、防汚塗料についてもVOCの低減が検討されている。
特開平4-103671号公報 特開2004-300410号公報 国際公開第2011/046087号
 特許文献1の防汚塗料用組成物には有機溶剤が多量に含まれており、この防汚塗料用組成物を用いた防汚塗料はVOC含有量が多い。有機溶剤の含有量を減らせばVOCは低減されるが、固形分が増えることで粘度が上昇し、防汚塗料の調製や塗装が困難となる。さらに、この防汚塗料組成物の粘度を低くしようとした場合、分子量を下げたり、ガラス転移温度(Tg)を下げる必要がある。その場合、塗膜の硬度が不足し、耐盤木性に劣る問題がある。具体的には、塗装後の船舶等を盤木上に仮置きしたときに、塗膜の盤木が当たっている部分に跡が残ったり、その部分の周囲が盛り上がったりして塗膜の欠陥が生じやすい。特許文献2~3記載の塗料組成物においても同様の問題がある。
 本発明の目的は、高固形分かつ低粘度の有機溶剤溶液とすることができ、硬度が良好な塗膜を形成できる(メタ)アクリル系共重合体、前記(メタ)アクリル系共重合体を用いた樹脂組成物及び防汚塗料組成物、ならびに前記(メタ)アクリル系共重合体の製造方法を提供することにある。
 本発明は、以下の態様を有する。
 〔1〕下記式(1)、下記式(2)又は下記式(3)で表される構造(I)の少なくとも1種を有する構成単位(A1)、トリオルガノシリルオキシカルボニル基を有する構成単位(A2)、及び下記式(4)又は下記式(5)で表される構造(III)の少なくとも1種を有する構成単位(A3)からなる群から選ばれる少なくとも1種の構成単位(A)と、
 下記式(b1)で表される重合性単量体、下記式(b2)で表される重合性単量体、下記式(b3)で表される重合性単量体及び下記式(b4)で表される重合性単量体からなる群から選ばれる少なくとも1種のポリシロキサンブロック含有重合性単量体(b)由来の構成単位(B)と、
 マクロモノマー(c)由来の構成単位(C)と、
を有する、(メタ)アクリル系共重合体。
Figure JPOXMLDOC01-appb-C000005
 -COO-M-OCO-  ・・・(4)
 -COO-M-R22  ・・・(5)
 CH=CR3a-CO-O-(C2u-O)-C2w-(SiR3b3c-O)-SiR3d3e3f ・・・(b1)
 CH=CR4a-CO-O-(Cu’2u’-O)v’-Cw’2w’-Si(OSiR4b4c4d ・・・(b2)
 CH=CR2a-CO-O-(Ck’2k’-O)l’-Cm’2m’-Si((OSiR2b2c-OSiR2d2e2f-OSi((OSiR2g2h-OSiR2i2j2k-Cо’2о’-(O-Cp’2p’q’-O-CO-CR2l=CH ・・・(b3)
 CH=CR1a-CO-O-(C2k-O)-C2m-(SiR1b1c-O)-SiR1d1e-Cо2о-(O-C2p-O-CO-CR1f=CH ・・・(b4)
(式(1)~(5),(b1)~(b4)中、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、R及びRはそれぞれ、水素原子又は炭素数1~10のアルキル基を示し、R及びRはそれぞれ、炭素数1~20のアルキル基、シクロアルキル基又はアリール基を示し、R及びRはそれぞれ、炭素数1~10のアルキレン基を示し、
 MはZn、Cu、Mg又はCaを示し、R22は一価の有機酸残基を示し、
 R3aは水素原子又はメチル基を示し、uは2~5の整数を示し、vは0~50の数を示し、wは2~5の整数を示し、xは3~80の数を示し、R3b~R3fはそれぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示し、
 R4aは水素原子又はメチル基を示し、u’は2~5の整数を示し、v’は0~50の数を示し、w’は2~5の整数を示し、R4b~R4dはそれぞれアルキル基、-(OSiR5152-OSiR535455(ここで、yは0~20の整数、R51~R55はアルキル基を示す。)、又は-R56-(OCy’-OR57(ここで、y’は1~20の整数、R56はアルキレン基、R57はアルキル基を示す。)を示し、
 R2a及びR2lはそれぞれ水素原子又はメチル基を示し、k’及びp’はそれぞれ2~5の整数を示し、l’及びq’はそれぞれ0~50の数を示し、m’及びo’はそれぞれ2~5の整数を示し、r及びsはそれぞれ0~20の数を示し、R2b~R2kはそれぞれアルキル基を示し、
 R1a及びR1fはそれぞれ水素原子又はメチル基を示し、k及びpはそれぞれ2~5の整数を示し、l及びqはそれぞれ0~50の数を示し、m及びoはそれぞれ2~5の整数を示し、nは3~80の数を示し、R1b~R1eはそれぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示す。)
 〔2〕前記マクロモノマー(c)が、下記式(c’)で表される構成単位を2以上有する、〔1〕に記載の(メタ)アクリル系共重合体。
Figure JPOXMLDOC01-appb-C000006
(式(c’)中、R41は水素原子、メチル基又はCHOHを示し、R42はOR43、ハロゲン原子、COR44、COOR45、CN、CONR4647又はR48を示す。R43~R47はそれぞれ独立に水素原子、非置換の若しくは置換基を有するアルキル基、非置換の若しくは置換基を有する脂環式基、非置換の若しくは置換基を有するアリール基、非置換の若しくは置換基を有するへテロアリール基、非置換の若しくは置換基を有する非芳香族の複素環式基、非置換の若しくは置換基を有するアラルキル基、非置換の若しくは置換基を有するアルカリール基、又は非置換の若しくは置換基を有するオルガノシリル基を示し、R48は非置換の若しくは置換基を有するアリール基又は非置換の若しくは置換基を有するヘテロアリール基を示す。)
 〔3〕前記マクロモノマー(c)の数平均分子量が500~50000である、〔1〕又は〔2〕に記載の(メタ)アクリル系共重合体。
 〔4〕前記構造(I)の少なくとも1種を有する重合性単量体(a1)、トリオルガノシリルオキシカルボニル基を有する重合性単量体(a2)、及び前記構造(III)の少なくとも1種を有する重合性単量体(a3)からなる群から選ばれる少なくとも1種の重合性単量体(a)と、
 前記ポリシロキサンブロック含有重合性単量体(b)と、
 マクロモノマー(c)と、
を含む単量体混合物を重合して(メタ)アクリル系共重合体を得る工程を有する、(メタ)アクリル系共重合体の製造方法。
 〔5〕前記〔1〕~〔3〕のいずれかに記載の(メタ)アクリル系共重合体を含む樹脂組成物。
 〔6〕シリコーンオイルをさらに含む〔5〕に記載の樹脂組成物。
 〔7〕有機溶剤をさらに含む〔5〕又は〔6〕に記載の樹脂組成物。
 〔8〕前記(メタ)アクリル系共重合体が、前記構成単位(A1)を有し、
 下記式(31)で表される化合物、下記式(32)で表される化合物、及び下記式(33)で表される化合物からなる群から選ばれる少なくとも1種の化合物(Y)をさらに含む〔5〕~〔7〕のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000007
(式(31)~(33)中、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、Rは、水素原子又は炭素数1~9のアルキル基を示し、Rは、水素原子又は炭素数1~10のアルキル基を示し、R及びR11はそれぞれ、炭素数1~20のアルキル基、シクロアルキル基又はアリール基を示し、R10は、単結合、又は炭素数1~9のアルキレン基を示し、R12は、炭素数1~9のアルキレン基を示す。)
 〔9〕前記〔5〕~〔8〕のいずれかに記載の樹脂組成物を含む防汚塗料組成物。
 〔10〕防汚剤をさらに含む〔9〕に記載の防汚塗料組成物。
 〔11〕前記(メタ)アクリル系共重合体以外の熱可塑性樹脂をさらに含む〔9〕又は〔10〕に記載の防汚塗料組成物。
 本発明によれば、高固形分かつ低粘度の有機溶剤溶液とすることができ、硬度が良好な塗膜を形成できる(メタ)アクリル系共重合体、前記(メタ)アクリル系共重合体を用いた樹脂組成物及び防汚塗料組成物、ならびに前記(メタ)アクリル系共重合体の製造方法を提供できる。
 以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
 「構成単位」とは、重合性単量体が重合することによって形成された重合性単量体由来の構成単位、又は重合体を処理することによって構成単位の一部が別の構造に変換された構成単位を意味する。
 「(メタ)アクリレート」は、アクリレート及びメタクリレートの総称であり、「(メタ)アクリル酸」は、アクリル酸とメタクリル酸の総称であり、「(メタ)アクリロイル基」は、アクリロイル基とメタクリロイル基の総称であり、「(メタ)アクリルアミド」は、アクリルアミドとメタクリルアミドの総称である。
 「(メタ)アクリル系共重合体」は、構成単位の少なくとも一部が(メタ)アクリル系単量体由来の構成単位である共重合体を意味する。(メタ)アクリル系重合体は、(メタ)アクリル系単量体以外の単量体(例えばスチレン等のビニル系単量体)由来の構成単位をさらに有していてもよい。
 「(メタ)アクリル系単量体」は、アクリロイル基又はメタクリロイル基を有する単量体を意味する。
 「揮発性有機化合物(VOC)」とは、常温常圧で容易に揮発する有機化合物(揮発性有機化合物)を意味する。なお、常温常圧とは、10℃~30℃、1000Pa~1050Paをいう。
〔(メタ)アクリル系共重合体〕
 本発明の(メタ)アクリル系共重合体(以下、「共重合体(X)」ともいう。)は、下記の構成単位(A)と、構成単位(B)と、構成単位(C)とを有する。
 共重合体(X)は、構成単位(A)、構成単位(B)及び構成単位(C)以外の他の構成単位(以下、「構成単位(D)」ともいう。)をさらに有していてもよい。
 共重合体(X)が有する構成単位の少なくとも一部は(メタ)アクリル系単量体由来の構成単位である。共重合体(X)中の全構成単位の合計(100質量%)に対する(メタ)アクリル系単量体由来の構成単位の割合は、20~100質量%が好ましく、40~100質量%がより好ましい。
<構成単位(A)>
 構成単位(A)は、構成単位(A1)、構成単位(A2)及び構成単位(A3)からなる群から選ばれる少なくとも1種の構成単位である。
 構成単位(A1)、構成単位(A2)及び構成単位(A3)は、加水分解可能な構造を有する点で共通する。構成単位(A)を有することで、共重合体(X)が加水分解性を有し、共重合体(X)を含む塗膜が水中(特に海水中)で自己研磨性を示すものとなる。すなわち、共重合体(X)は、構造(I)、トリオルガノシリルオキシカルボニル基及び構造(III)のいずれか1以上を有しており、この状態では海水等に溶解しないが、海水等との接触によりこの構造が加水分解すると、カルボキシ基等が生成し、海水等に溶解可能となる。塗膜表面が徐々に海水に溶解することで塗膜が表面更新(自己研磨)される。
 (構成単位(A1))
 構成単位(A1)は、構造(I)の少なくとも1種を有する構成単位である。
 構造(I)は、下記式(1)、下記式(2)又は下記式(3)で表される。各式中、カルボニル基の炭素原子から伸びる一重線のうち、酸素原子に結合していない線は、結合手を示す。
Figure JPOXMLDOC01-appb-C000008
(式(1)~(3)中、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、R及びRはそれぞれ、水素原子又は炭素数1~10のアルキル基を示し、R及びRはそれぞれ、炭素数1~20のアルキル基、シクロアルキル基又はアリール基を示し、R及びRはそれぞれ、炭素数1~10のアルキレン基を示す。)
 式(1)~(3)中、Xは、-O-(エーテル性酸素原子)、-S-(スルフィド系硫黄原子)、-NR14-のいずれであってもよく、-O-が好ましい。
 式(1)中、R及びRにおける炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基等が挙げられる。
 R及びRにおけるアルキル基の炭素数は、1~4が好ましく、1~3がより好ましく、1又は2がさらに好ましい。
 R及びRの好ましい組み合わせとして、水素原子とメチル基との組み合わせ、メチル基とメチル基との組み合わせ、水素原子と炭素数2~10のアルキル基(以下、「長鎖アルキル基」ともいう。)との組み合わせ、メチル基と長鎖アルキル基との組み合わせ、水素原子と水素原子との組み合わせ、長鎖アルキル基と長鎖アルキル基との組み合わせ等が挙げられる。これらの中でも、加水分解性の点で、水素原子とメチル基との組み合わせが好ましい。
 式(1)中、Rにおける炭素数1~20のアルキル基としては、例えば、前述の炭素数1~10のアルキル基として挙げたアルキル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。Rにおけるアルキル基の炭素数は、1~10が好ましい。
 シクロアルキル基としては、炭素数4~8のシクロアルキル基が好ましく、例えばシクロヘキシル基、シクロペンチル基等が挙げられる。
 アリール基としては、炭素数6~20のアリール基が好ましく、例えばフェニル基、ナフチル基等が挙げられる。
 Rとしては、炭素数1~10のアルキル基、シクロアルキル基が好ましい。
 前記アルキル基、シクロアルキル基又はアリール基は、シクロアルキル基、アリール基、アルコキシ基、アルカノイルオキシ基、アラルキル基及びアセトキシ基からなる群から選ばれる置換基により置換されていてもよい。置換基により置換されている場合、置換基の数は1つでもよく2つ以上でもよい。
 置換基としてのシクロアルキル基、アリール基はそれぞれ、前記と同様のものが挙げられる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。アルカノイルオキシ基としては、エタノイルオキシ基等が挙げられる。アラルキル基としては、ベンジル基等が挙げられる。
 式(2)中、Rにおける炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
 Rにおけるアルキレン基の炭素数は、2~7が好ましく、3~4がより好ましい。
 前記アルキレン基は、シクロアルキル基、アリール基、アルコキシル基、アルカノイルオキシ基、アラルキル基及びアセトキシ基からなる群から選ばれる置換基により置換されていてもよい。置換基により置換されている場合、置換基の数は1つでもよく2つ以上でもよい。アルキレン基に置換してもよい置換基の具体例としては、Rで挙げた置換基と同様のものが挙げられる。
 式(3)中、Rは、式(1)中のRと同様であり、好ましい態様も同様である。
 Rは、式(2)中のRと同様であり、好ましい態様も同様である。
 構成単位(A1)としては、構造(I)を有する重合性単量体(a1)由来の構成単位が挙げられる。重合性単量体(a1)は、典型的には、構造(I)とエチレン性不飽和結合(重合性炭素-炭素二重結合)とを有する。
 重合性単量体(a1)は、共重合体(X)を有機溶剤に溶解したときの粘度がより低くなる点から、エチレン性不飽和結合を1つ有する単官能単量体であることが好ましい。
 重合性単量体(a1)としては、例えば、下記式(a11)で表される化合物、下記式(a12)で表される化合物、下記式(a13)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式(a11)~(a13)中、Zは、CH=CH-COO-、CH=C(CH)-COO-、CHR=CH-COO-、CH=C(CH)-COO-又はCH=CR-CHCOO-を示し、Rは、前記構造(I)又はアルキルエステル基を示し、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、R~Rは前記と同義である。)
 式(a11)~(a13)中のZにおいて、CH=CH-COO-はアクリロイルオキシ基、CH=C(CH)-COO-はメタクリロイルオキシ基である。
 CH(CH)=CH-COO-は、クロトノイルオキシ基(エチレン性不飽和結合がトランス型)又はイソクロトノイルオキシ基(エチレン性不飽和結合がシス型)である。
 CHR=CH-COO-は、カルボキシ基が構造(I)又はアルキルエステル基に置換された、マレイノイルオキシ基(エチレン性不飽和結合がシス型)又はフマロイルオキシ基(エチレン性不飽和結合がトランス型)である。
 Rにおける構造(I)は前記と同様である。Rは、Zが結合した基と同じ構造を有することが好ましい。例えば、式(a11)で表される化合物の場合、Rは、-CR-ORで表される基であることが好ましい。
 Rにおけるアルキルエステル基は、-COORX1で表される。RX1はアルキル基を示す。RX1のアルキル基としては、炭素数1~6のアルキル基が好ましく、メチル基が特に好ましい。
 CH=C(CH)-COO-又はCH=CR-CHCOO-は、カルボキシ基が構造(I)又はアルキルエステル基に置換されたイタコノイルオキシ基である。
は前記と同様である。
Zとしては、CH=CH-COO-又はCH(CH)=CH-COO-が好ましい。
 重合性単量体(a1)の具体例として、以下に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
 重合性単量体(a1)は、市販品を購入して用いることも可能であり、公知の方法を利用して適宜合成することも可能である。
 例えば、カルボキシ基を有する重合性単量体(m0)のカルボキシ基を構造(I)に変換することにより、重合性単量体(a1)を合成できる。
 単量体(m0)としては、例えば、(メタ)アクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸、マレイン酸モノメチル、フマル酸モノメチル等が挙げられる。
 重合性単量体(m0)のカルボキシ基を構造(I)に変換する方法としては、例えば、重合性単量体(m0)と、下記式(31)で表される化合物、下記式(32)で表される化合物、及び下記式(33)で表される化合物からなる群から選ばれる少なくとも1種の化合物(Y)とを反応(付加反応)させる方法が挙げられる。化合物(Y)は、単独で又は二種以上組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000011
(式(31)~(33)中、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、Rは、水素原子又は炭素数1~9のアルキル基を示し、Rは、水素原子又は炭素数1~10のアルキル基を示し、R及びR11はそれぞれ、炭素数1~20のアルキル基、シクロアルキル基又はアリール基を示し、R10は、単結合、又は炭素数1~9のアルキレン基を示し、R12は、炭素数1~9のアルキレン基を示す。)
 化合物(Y)として式(31)で表される化合物を用いると、重合性単量体(a1)として、前記式(a11)中のRがCH、RがR、RがRである化合物が得られる。
 式(31)中、Rにおける炭素数1~9のアルキル基は、炭素数が9以下である以外は、Rにおける炭素数1~10のアルキル基と同様である。
 式(31)中、R、Rはそれぞれ、前記式(a11)におけるR、Rと同様である。
 式(31)で表される化合物としては、例えば、式(31)中のXが-O-である1-アルケニルアルキルエーテル、式(31)中のXが-S-である1-アルケニルアルキルスルフィド、式(31)中のXが-NR14-である1-アルケニルジアルキルアミン等が挙げられる。1-アルケニルアルキルエーテルとしては、例えば、アルキルビニルエーテル(例えば、エチルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、t-ブチルビニルエーテル、2-エチルヘキシルビニルエーテル)、シクロアルキルビニルエーテル(例えば、シクロへキシルビニルエーテル)等のビニルエーテル類;エチル-1-プロペニルエーテル等の1-プロペニルエーテル類;エチル-1-ブテニルエーテル等の1-ブテニルエーテル類;等が挙げられる。1-アルケニルアルキルスルフィドとしては、例えば、1-(エテニルチオ)エタン、1-(エテニルチオ)プロパン、1-(エテニルチオ)ブタン、2-(エテニルチオ)ブタン、1-(エテニルチオ)-2-メチルプロパン、1-(プロピルチオ)-1-プロペン、2-(プロピルチオ)-1-プロペン等の1-アルケニルアルキルスルフィド類;等が挙げられる。1-アルケニルジアルキルアミンとしては、例えば、N,N-ジメチルエテナミン、N-メチル-N-エチルエテナミン、N,N-ジエチルエテナミン、N-ビニルピロリジン等の1-アルケニルジアルキルアミン類等が挙げられる。
 これらのなかでは、1-アルケニルアルキルエーテルが好ましく、ビニルエーテル類、1-プロペニルエーテル類がより好ましい。
 化合物(Y)として式(32)で表される化合物を用いると、重合性単量体(a1)として、前記式(a12)中のRがCH-R10である化合物が得られる。
 式(32)中、R10における炭素数1~9のアルキレン基は、炭素数が9以下である以外は、Rと同様である。
 式(32)で表される化合物としては、例えば、2,3-ジヒドロフラン、5-メチル-2,3-ジヒドロフラン等のジヒドロフラン類;3,4-ジヒドロ-2H-ピラン、5,6-ジヒドロ-4-メトキシ-2H-ピラン等のジヒドロピラン類;2,3-ジヒドロチオフェン等のジヒドロチオフェン類;3,4-ジヒドロ-2H-チオピラン等のジヒドロチオピラン類;2,3-ジヒドロ-1-メチルピロール等のジヒドロピロール類;1,2,3,4-テトラヒドロ-1-メチルピリジン等のテトラヒドロピリジン類;等が挙げられる。
 これらのなかでは、ジヒドロフラン類、ジヒドロピラン類が好ましく、ジヒドロピラン類がより好ましい。
 化合物(Y)として式(33)で表される化合物を用いると、重合性単量体(a1)として、前記式(a13)中のRがR11、RがCH-R12である化合物が得られる。
 式(33)中、R11は、Rと同様である。R12は、炭素数が9以下である以外は、Rと同様である。
 式(33)で表される化合物としては、例えば、1-メトキシ-1-シクロペンテン、1-メトキシ-1-シクロヘキセン、1-メトキシ-1-シクロヘプテン、1-エトキシ-1-シクロペンテン、1-エトキシ-1-シクロヘキセン、1-ブトキシ-1-シクロペンテン、1-ブトキシ-1-シクロヘキセン等の1-アルコキシ-1-シクロアルキレン類;1-エトキシ-3-メチル-1-シクロヘキセン等の置換基含有1-アルコキシ-1-シクロアルキレン類;1-(メチルチオ)-1-シクロペンテン、1-(メチルチオ)-1-シクロヘキセン等の1-(アルキルチオ)-1-シクロアルキレン類;1-(1-ピロリジニル)-1-シクロペンテン、1-(1-ピロリジニル)-1-シクロヘキセン等の1-(1-ピロリジニル)-1-シクロアルキレン類;等が挙げられる。
 化合物(Y)は、市販品を購入して用いることも可能であり、適宜合成することも可能である。
 重合性単量体(m0)と化合物(Y)との反応は、比較的マイルドな条件で進行する。
例えば、塩酸、硫酸、燐酸などの酸性触媒の存在下又は非存在下に、40~100℃の反応温度に保って5~10時間反応させることにより目的物を得ることができる。
反応終了後、所定の条件で減圧蒸留を行って目的の単量体を回収することができる。
(構成単位(A2))
構成単位(A2)は、トリオルガノシリルオキシカルボニル基を有する構成単位である。
トリオルガノシリルオキシカルボニル基としては、例えば、下記式(II)で表される基が挙げられる。
-CO-O-SiR141516 ・・・(II)
(式(II)中、R14~R16はそれぞれ、炭素数1~20の炭化水素基を示す。)
式(II)中、R14~R16における炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基等の炭素数1~20のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、ナフチル基等のアリール基等が挙げられる。
シクロアルキル基、アリール基はそれぞれ、置換基を有していてもよい。置換基としては、例えばハロゲン原子、アルキル基、アシル基、ニトロ基、アミノ基等が挙げられる。
置換基としてのアルキル基の炭素数は、1~18程度が好ましい。
14~R16はそれぞれ同一でもよく異なってもよい。
安定したポリッシングレート(研磨速度)を示す塗膜が得られ、防汚性能を長期間安定して維持できる点で、R14~R16のうち少なくとも1つがイソプロピル基であることが好ましく、全てがイソプロピル基であることが特に好ましい。
構成単位(A2)としては、例えば、トリオルガノシリルオキシカルボニル基を有する重合性単量体(a2)由来の構成単位が挙げられる。重合性単量体(a2)は、典型的には、トリオルガノシリルオキシカルボニル基とエチレン性不飽和結合(重合性炭素-炭素二重結合)とを有する。
重合性単量体(a2)は、共重合体(X)を有機溶剤に溶解したときの粘度がより低くなる点から、エチレン性不飽和結合を1つ有する単官能単量体であることが好ましい。
重合性単量体(a2)としては、例えば、下記式(a21)で表される単量体、下記式(a22)で表される単量体等が挙げられる。これらの中でも前記式(a21)で表される化合物が好ましい。
CH=C(R17)-CO-O-SiR141516 ・・・(a21)
CH(COOR18)=C(R17)-CO-O-SiR141516 ・・・(a22)
(式(a22)中、R14~R16は前記と同義であり、R17は水素原子又はメチル基を示し、R18はアルキル基を示す。)
 前記式(a21)で表される単量体の具体例として、以下に示すものが挙げられる。
 トリメチルシリル(メタ)アクリレート、トリエチルシリル(メタ)アクリレート、トリ-n-プロピルシリル(メタ)アクリレート、トリ-n-ブチルシリル(メタ)アクリレート、トリ-n-アミルシリル(メタ)アクリレート、トリ-n-ヘキシルシリル(メタ)アクリレート、トリ-n-オクチルシリル(メタ)アクリレート、トリ-n-ドデシルシリル(メタ)アクリレート、トリフェニルシリル(メタ)アクリレート、トリ-p-メチルフェニルシリル(メタ)アクリレート、トリベンジルシリル(メタ)アクリレート、トリイソプロピルシリル(メタ)アクリレート、トリイソブチルシリル(メタ)アクリレート、トリ-s-ブチルシリル(メタ)アクリレート、トリ-2-メチルイソプロピルシリル(メタ)アクリレート、トリ-t-ブチルシリル(メタ)アクリレート、エチルジメチルシリル(メタ)アクリレート、n-ブチルジメチルシリル(メタ)アクリレート、ジイソプロピル-n-ブチルシリル(メタ)アクリレート、n-オクチルジ-n-ブチルシリル(メタ)アクリレート、ジイソプロピルステアリルシリル(メタ)アクリレート、ジシクロヘキシルフェニルシリル(メタ)アクリレート、t-ブチルジフェニルシリル(メタ)アクリレート、ラウリルジフェニルシリル(メタ)アクリレート等。
 前記式(a22)中、R18におけるアルキル基としては、例えば炭素数1~5のアルキル基が挙げられる。
 前記式(a22)で表される化合物の具体例として、以下に示すものが挙げられる。
 トリイソプロピルシリルメチルマレート、トリイソプロピルシリルアミルマレート、トリ-n-ブチルシリル-n-ブチルマレート、t-ブチルジフェニルシリルメチルマレート、t-ブチルジフェニルシリル-n-ブチルマレート、トリイソプロピルシリルメチルフマレート、トリイソプロピルシリルアミルフマレート、トリ-n-ブチルシリル-n-ブチルフマレート、t-ブチルジフェニルシリルメチルフマレート、t-ブチルジフェニルシリル-n-ブチルフマレート等。
 重合性単量体(a2)は、市販品を購入することも可能であり、公知の方法を利用して適宜合成することも可能である。
 (構成単位(A3))
 構成単位(A3)は、下記式(4)又は(5)で表される構造(III)の少なくとも1種を有する構成単位である。
 -COO-M-OCO-  ・・・(4)
 -COO-M-R22  ・・・(5)
(式(4),(5)中、MはZn、Cu、Mg又はCaを示し、R22は一価の有機酸残基を示す。)
 式(4),(5)中、Mとしては、Zn又はCuが好ましい。
 式(5)中、R22の有機酸残基は、有機酸からプロトン1つを除いた残りの部分(例えばカルボン酸のカルボキシ基からプロトンを除いた残りの部分)をいい、このプロトンの代わりにMとイオン結合している。
 有機酸としては、カルボン酸が好ましく、例えば、モノクロル酢酸、モノフルオロ酢酸、酢酸、プロピオン酸、オクチル酸、バーサチック酸、イソステアリン酸、パルミチン酸、クレソチン酸、α-ナフトエ酸、β-ナフトエ酸、安息香酸、2,4,5-トリクロロフェノキシ酢酸、2,4-ジクロロフェノキシ酢酸、キノリンカルボン酸、ニトロ安息香酸、ニトロナフタレンカルボン酸、ピルビン酸、ナフテン酸、アビエチン酸、水添アビエチン酸、(メタ)アクリル酸等のモノカルボン酸等が挙げられる。
 R22としては、貯蔵安定性の点では、(メタ)アクリロイルオキシ基以外の有機酸残基が好ましい。
 R22としては、長期にわたりクラックや剥離を防止できる耐久性の高い塗膜が得られる点で、炭素数1~20の脂肪酸残基(脂肪族モノカルボン酸残基)が好ましい。
 構成単位(A3)としては、構造(III)を有する重合性単量体(a3)由来の構成単位が挙げられる。
 重合性単量体(a3)としては、例えば、前記式(4)で表される基の両末端に、非置換又は置換基を有するビニル基が結合した単量体、前記式(5)で表される基の片末端(R22側とは反対側)に、非置換又は置換基を有するビニル基が結合した単量体等が挙げられる。
 前記式(4)で表される基の両末端に前記ビニル基が結合した単量体として、例えば、下記式(a31)で表される単量体(以下、「単量体(a31)」ともいう。)が挙げられる。
 前記式(5)で表される基の片末端に前記ビニル基が結合した単量体として、例えば、下記式(a32)で表される単量体(以下、「単量体(a32)」ともいう。)が挙げられる。
 (CH=C(R21)-CO-O)M ・・・(a31)
  CH=C(R21)-CO-O-M-R22 ・・・(a32)
 式(a31),(a32)中、MはZn、Cu、Mg又はCaを示し、R21は水素原子又はメチル基を示し、R22は一価の有機酸残基を示す。
 M及びR22はそれぞれ前記と同様であり、好ましい態様も同様である。
 単量体(a31)としては、例えば、アクリル酸亜鉛[(CH=CHCOO)Zn]、メタクリル酸亜鉛[(CH=C(CH)COO)Zn]、アクリル酸銅[(CH=CHCOO)Cu]、メタクリル酸銅[(CH=C(CH)COO)Cu]、アクリル酸マグネシウム[(CH=CHCOO)Mg]、メタクリル酸マグネシウム[(CH=C(CH)COO)Mg]、アクリル酸カルシウム[(CH=CHCOO)Ca]、メタクリル酸カルシウム[(CH=C(CH)COO)Ca]等が挙られる。これらは、いずれか1種を単独で用いてもよく、2種以上を組合わせて用いてもよい。
 中でも、共重合体(X)の透明性が高くなり、これを含む塗膜の色調が美しくなる傾向にある点から、(メタ)アクリル酸亜鉛、(メタ)アクリル酸銅が好ましい。
 単量体(a32)としては、例えば、モノクロル酢酸マグネシウム(メタ)アクリレート、モノクロル酢酸カルシウム(メタ)アクリレート、モノクロル酢酸亜鉛(メタ)アクリレート、モノクロル酢酸銅(メタ)アクリレート;モノフルオロ酢酸マグネシウム(メタ)アクリレート、モノフルオロ酢酸カルシウム(メタ)アクリレート、モノフルオロ酢酸亜鉛(メタ)アクリレート、モノフルオロ酢酸銅(メタ)アクリレート;酢酸マグネシウム(メタ)アクリレート、酢酸カルシウム(メタ)アクリレート、酢酸亜鉛(メタ)アクリレート、酢酸銅(メタ)アクリレート;プロピオン酸マグネシウム(メタ)アクリレート、プロピオン酸カルシウム(メタ)アクリレート、プロピオン酸亜鉛(メタ)アクリレート、プロピオン酸銅(メタ)アクリレート;オクチル酸マグネシウム(メタ)アクリレート、オクチル酸カルシウム(メタ)アクリレート、オクチル酸亜鉛(メタ)アクリレート、オクチル酸銅(メタ)アクリレート;バーサチック酸マグネシウム(メタ)アクリレート、バーサチック酸カルシウム(メタ)アクリレート、バーサチック酸亜鉛(メタ)アクリレート、バーサチック酸銅(メタ)アクリレート;イソステアリン酸マグネシウム(メタ)アクリレート、イソステアリン酸カルシウム(メタ)アクリレート、イソステアリン酸亜鉛(メタ)アクリレート、イソステアリン酸銅(メタ)アクリレート;パルミチン酸マグネシウム(メタ)アクリレート、パルミチン酸カルシウム(メタ)アクリレート、パルミチン酸亜鉛(メタ)アクリレート、パルミチン酸銅(メタ)アクリレート;クレソチン酸マグネシウム(メタ)アクリレート、クレソチン酸カルシウム(メタ)アクリレート、クレソチン酸亜鉛(メタ)アクリレート、クレソチン酸銅(メタ)アクリレート;α-ナフトエ酸マグネシウム(メタ)アクリレート、α-ナフトエ酸カルシウム(メタ)アクリレート、α-ナフトエ酸亜鉛(メタ)アクリレート、α-ナフトエ酸銅(メタ)アクリレート;β-ナフトエ酸マグネシウム(メタ)アクリレート、β-ナフトエ酸カルシウム(メタ)アクリレート、β-ナフトエ酸亜鉛(メタ)アクリレート、β-ナフトエ酸銅(メタ)アクリレート;安息香酸マグネシウム(メタ)アクリレート、安息香酸カルシウム(メタ)アクリレート、安息香酸亜鉛(メタ)アクリレート、安息香酸銅(メタ)アクリレート;2,4,5-トリクロロフェノキシ酢酸マグネシウム(メタ)アクリレート、2,4,5-トリクロロフェノキシ酢酸カルシウム(メタ)アクリレート、2,4,5-トリクロロフェノキシ酢酸亜鉛(メタ)アクリレート、2,4,5-トリクロロフェノキシ酢酸銅(メタ)アクリレート;2,4-ジクロロフェノキシ酢酸マグネシウム(メタ)アクリレート、2,4-ジクロロフェノキシ酢酸カルシウム(メタ)アクリレート、2,4-ジクロロフェノキシ酢酸亜鉛(メタ)アクリレート、2,4-ジクロロフェノキシ酢酸銅(メタ)アクリレート;キノリンカルボン酸マグネシウム(メタ)アクリレート、キノリンカルボン酸カルシウム(メタ)アクリレート、キノリンカルボン酸亜鉛(メタ)アクリレート、キノリンカルボン酸銅(メタ)アクリレート;ニトロ安息香酸マグネシウム(メタ)アクリレート、ニトロ安息香酸カルシウム(メタ)アクリレート、ニトロ安息香酸亜鉛(メタ)アクリレート、ニトロ安息香酸銅(メタ)アクリレート;ニトロナフタレンカルボン酸マグネシウム(メタ)アクリレート、ニトロナフタレンカルボン酸カルシウム(メタ)アクリレート、ニトロナフタレンカルボン酸亜鉛(メタ)アクリレート、ニトロナフタレンカルボン酸銅(メタ)アクリレート;ピルビン酸マグネシウム(メタ)アクリレート、ピルビン酸カルシウム(メタ)アクリレート、ピルビン酸亜鉛(メタ)アクリレート、ピルビン酸銅(メタ)アクリレート等が挙げられる。これらは、いずれか1種を単独で用いてもよく、2種以上を組合わせて用いてもよい。
 上記の中では、共重合体(X)の透明性が高くなり、これを含む塗膜の色調が美しくなる傾向にある点から、MがZnである亜鉛含有モノマーが好ましい。さらに、得られる塗膜の耐久性の点から、脂肪酸亜鉛(メタ)アクリレート(式(a32)中のMがZn、R22が脂肪酸残基であるもの)、又は脂肪酸銅(メタ)アクリレート(式(a32)中のMがCu、R22が脂肪酸残基であるもの)がより好ましい。
 重合性単量体(a3)は、得られる塗膜の自己研磨性が長期にわたり維持され、良好な防汚性が得られる点から、単量体(a31)及び単量体(a32)の両方を含むことができる。すなわち、共重合体(X)は、単量体(a31)由来の構成単位(以下、「単量体(a31)単位」ともいう。)及び単量体(a32)由来の構成単位(以下、「単量体(a32)単位」ともいう。)の両方を有することができる。
 単量体(a31)と単量体(a32)との組み合わせとしては、(メタ)アクリル酸亜鉛と脂肪酸亜鉛(メタ)アクリレートとの組み合わせ、又は(メタ)アクリル酸銅と脂肪酸銅(メタ)アクリレートとの組み合わせが好ましい。
 共重合体(X)が単量体(a31)単位及び単量体(a32)単位の両方を有する場合、共重合体(X)中の単量体(a31)単位と単量体(a32)単位との比率(モル比)は、単量体(a31)単位/単量体(a32)単位=10/90~90/10が好ましく、20/80~80/20がより好ましく、30/70~70/30がさらに好ましい。
この比率が90/10以下であると、塗膜の耐クラック性や密着性が優れ、10/90以上であると、塗料が低粘度化しやすい傾向にある。
 重合性単量体(a3)は、公知の方法により製造したものを用いてもよく、市販のものを用いてもよい。
 単量体(a31)は、例えば、式(a31)中のMに対応する金属元素を含む無機金属化合物と、(メタ)アクリル酸とを、有機溶剤等の希釈剤又はエチレン性不飽和単量体等の重合性不飽和基を有する反応性希釈剤中で反応させる方法により得られる。この方法で得られる金属含有重合性単量体を含有する混合物は、有機溶剤や他の単量体との相溶性に優れ、重合を容易に行うことができる。前記反応は、水の存在下で行うことが好ましく、反応物中の水の含有量を0.01~30質量%の範囲とすることが好ましい。前記無機金属化合物としては、例えば、Zn、Cu、Mg及びCaから選ばれる金属の酸化物、水酸化物、塩化物等が挙げられる。
 単量体(a32)は、例えば、式(a32)中のMに対応する金属元素を含む無機金属化合物と、(メタ)アクリル酸と、式(a32)中の有機酸残基R22に対応する有機酸とを、有機溶剤等の希釈剤あるいはエチレン性不飽和単量体等の重合性不飽和基を有する反応性希釈剤中で反応させる方法により得られる。前記無機金属化合物としては、単量体(a31)を得るための無機金属化合物と同様のものが挙げられる。
 単量体(a31)と単量体(a32)とを含有する単量体混合物は、例えば、式(a31)~(a32)中のMに対応する金属元素を含む無機金属化合物と、(メタ)アクリル酸と、式(a32)中の有機酸残基R22に対応する有機酸とを、有機溶剤等の希釈剤あるいはエチレン性不飽和単量体等の反応性希釈剤中で反応する方法等により得られる。
 その際、R22に対応する有機酸の使用量は、無機金属化合物に対して0.01~3倍モルであることが好ましく、0.01~0.95倍モルがより好ましく、0.1~0.7倍モルがさらに好ましい。この有機酸の含有量が0.01倍モル以上であると、この単量体混合物の製造工程において固体の析出が抑制されると共に、得られる塗膜の自己研磨性、耐クラック性がより良好となる。3倍モル以下であると、得られる塗膜の防汚性がより長期間維持される傾向にある。
<構成単位(B)>
 構成単位(B)は、ポリシロキサンブロック含有重合性単量体(b)(以下、「重合性単量体(b)」ともいう。)由来の構成単位である。
 共重合体(X)が構成単位(B)を有することで、共重合体(X)を含む塗膜がポリシロキサンブロックを含み、該塗膜の表面に海洋生物や各種の汚れ等が付着しにくくなる。
そのため、該塗膜は、防汚剤を含まなくても防汚性を示すものとなる。
重合性単量体(b)は、下記の重合性単量体(b1)、重合性単量体(b2)、重合性単量体(b3)及び重合性単量体(b4)からなる群から選ばれる少なくとも1種である。これらのうち、重合性単量体(b1)、(b2)は、ポリシロキサンブロックの一方の末端にエチレン性不飽和結合を有する片末端型であり、重合性単量体(b3)、(b4)は、ポリシロキサンブロックの両方の末端にエチレン性不飽和結合を有する両末端型である。
(重合性単量体(b1))
重合性単量体(b1)は、下記式(b1)で表される。
CH=CR3a-CO-O-(C2u-O)-C2w-(SiR3b3c-O)-SiR3d3e3f ・・・(b1)
式(b1)中、R3aは水素原子又はメチル基を示し、uは2~5の整数を示し、vは0~50の数を示し、wは2~5の整数を示し、xは3~80の数を示し、R3b~R3fはそれぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示す。
式(b1)中、R3b~R3fにおいて、アルキル基、アルコキシ基の炭素数はそれぞれ、1~18が好ましい。置換フェニル基、置換フェノキシ基における置換基としては、アルキル基、アルコキシ基等が挙げられる。
3b~R3fはそれぞれ、炭素数1~18のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が特に好ましい。
uは2~5の整数であり、安価な点で、2又は3が好ましい。uが2のものと3のものとを併用することも可能である。
vは0~50の数であり、0より大きく30以下であることが好ましく、0より大きく25以下であることがより好ましく、0より大きく20以下であることが特に好ましい。vが前記範囲の上限値以下であれば、塗膜の耐水性が良好となる傾向にある。特に20以下であることが、旧塗膜とのリコート性に優れることから好ましい。
wは2~5の整数であり、2又は3が好ましい。
xはポリシロキサン構造の平均重合度である。xが前記範囲の下限値以上であれば、共重合体(X)を含有する防汚塗料組成物が防汚剤を含まない場合でも、その塗膜に防汚効果が発現する傾向にあり、前記範囲の上限値以下であれば、重合性単量体(b1)とポリシロキサンブロックを含まない重合性単量体(例えば構成単位(A)を形成する重合性単量体)との相溶性、共重合体(X)の溶剤溶解性が良好になる傾向にある。xは5~50が好ましく、7~40がより好ましく、8~30が特に好ましい。
なお、R3a~R3f、u、v、w及びxはそれぞれ独立であり、また、分子中又は分子間において同一符号が存在する場合、それらは異なっていてもよい。
 重合性単量体(b1)の具体例としては、例えば、vが0のものとして、JNC社製のFM-0711、FM-0721、FM-0725(以上、商品名)、信越化学社製のX-24-8201、X-22-174ASX、X-22-174DX、X-22-2426(以上、商品名)等が挙げられる。
(重合性単量体(b2))
重合性単量体(b2)は、下記式(b2)で表される。
CH=CR4a-CO-O-(Cu’2u’-O)v’-Cw’2w’-Si(OSiR4b4c4d ・・・(b2)
式(b2)中、R4aは水素原子又はメチル基を示し、u’は2~5の整数を示し、v’は0~50の数を示し、w’は2~5の整数を示し、R4b~R4dはそれぞれアルキル基、-(OSiR5152-OSiR535455(ここで、yは0~20の整数、R51~R55はアルキル基を示す。)、又は-R56-(OCy’-OR57(ここで、y’は1~20の整数、R56はアルキレン基、R57はアルキル基を示す)。
式(b2)中、R4b~R4dにおけるアルキル基は、前記R3b~R3fにおけるアルキル基と同様であり、好ましい態様も同様である。
y及びy’は、それぞれポリシロキサン構造の平均重合度である。y及びy’が前記上限値以下であれば、重合性単量体(b2)とポリシロキサンブロックを含まない重合性単量体との相溶性、共重合体(X)の溶剤溶解性が良好になる傾向にある。y及びy’は、それぞれ10以下が好ましく、5以下がより好ましい。
51~R55、R57におけるアルキル基としては、R4b~R4dにおけるアルキル基と同様のものが挙げられ、好ましい態様も同様である。R56において、アルキレン基の炭素数は、1~18が好ましい。
式(b2)中、u’は2~5の整数であり、安価な点で、2又は3が好ましい。また、u’が2のものと3のものとを併用することも可能である。
式(b2)中、v’は前記式(b1)中のvと同様であり、好ましい範囲も同様である。
w’は2~5の整数であり、2又は3が好ましい。
なお、R4a~R4d、u’、v’、w’、y及びy’はそれぞれ独立であり、また、分子中又は分子間において同一符号が存在する場合、それらは異なっていてもよい。
重合性単量体(b2)の具体例としては、例えば、v’が0のものとして、JNC社製のTM-0701(商品名)、信越化学社製のX-22-2404(商品名)等が挙げられる。
(重合性単量体(b3))
 重合性単量体(b3)は、下記式(b3)で表される。
 CH=CR2a-CO-O-(Ck’2k’-O)l’-Cm’2m’-Si((OSiR2b2c-OSiR2d2e2f-OSi((OSiR2g2h-OSiR2i2j2k-Cо’2о’-(O-Cp’2p’q’-O-CO-CR2l=CH ・・・(b3)
 式(b3)中、R2a及びR2lは、それぞれ水素原子又はメチル基を示し、k’及びp’は、それぞれ2~5の整数を示し、l’及びq’は、それぞれ0~50の数を示し、m’及びo’は、それぞれ2~5の整数を示し、r及びsは、それぞれ0~20の数を示し、R2b~R2kは、それぞれアルキル基を示す。
 R2b~R2kにおけるアルキル基は、前記R3b~R3fにおけるアルキル基と同様であり、好ましい態様も同様である。
 k’及びp’は2~5の整数であり、安価な点で、2又は3が好ましい。k’及びp’が2のものと3のものとを併用することも可能である。
 l’及びq’は、それぞれ前記式(b1)中のvと同様であり、好ましい範囲も同様である。
 m’及びo’は2~5の整数であり、2又は3が好ましい。
 r及びsはそれぞれ、ポリシロキサン構造の平均重合度である。r及びsが前記上限値以下であれば、重合性単量体(b3)とポリシロキサンブロックを含まない重合性単量体との相溶性、共重合体(X)の溶剤溶解性が良好になる傾向にある。r及びsはそれぞれ10以下が好ましく、5以下がより好ましい。
 なお、R2a~R2l、k’、l’、m’、n’、o’、p’、q’、r及びsは、それぞれ独立であり、また、分子中又は分子間において同一符号が存在する場合、それらは異なっていてもよい。
(重合性単量体(b4))
 重合性単量体(b4)は、下記式(b4)で表される。
 CH=CR1a-CO-O-(C2k-O)-C2m-(SiR1b1c-O)-SiR1d1e-Cо2о-(O-C2p-O-CO-CR1f=CH ・・・(b4)
 式(b4)中、R1a及びR1fは、それぞれ水素原子又はメチル基を示し、k及びpは、それぞれ2~5の整数を示し、l及びqは、それぞれ0~50の数を示し、m及びoは、それぞれ2~5の整数を示し、nは3~80の数を示し、R1b~R1eは、それぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示す。
 式(b4)中、R1b~R1eは、それぞれ前記R3b~R3fと同様であり、好ましい態様も同様である。
 k及びpは2~5の整数であり、安価な点で、2又は3が好ましい。k及びpが2のものと3のものとを併用することも可能である。
 l及びqはそれぞれ前記式(b1)中のvと同様であり、好ましい範囲も同様である。
 m及びoは2~5の整数であり、2又は3が好ましい。
 nは前記式(b1)中のxと同様であり、好ましい範囲も同様である。
 なお、R1a~R1f、k、l、m、n、o、p及びqは、それぞれ独立であり、また、分子中又は分子間において同一符号が存在する場合、それらは異なっていてもよい。
 重合性単量体(b4)の具体例としては、例えば、l及びqが0のものとして、JNC社製のFM-7711、FM-7721、FM-7725(以上、商品名)等が挙げられる。
 重合性単量体(b)は、防汚性が良好となる点で、重合性単量体(b1)を含むことが好ましい。重合性単量体(b1)と、重合性単量体(b2)~(b4)のいずれか1以上とを併用してもよい。
<構成単位(C)>
 構成単位(C)は、マクロモノマー(c)由来の構成単位である。共重合体(X)が構成単位(C)を有することで、共重合体(X)を高固形分かつ低粘度の有機溶剤溶液とすることができる。また、共重合体(X)を含む塗膜が良好な硬度を示す。
 マクロモノマー(c)は、ラジカル重合性基を有し、かつラジカル重合性基を有する単量体(以下「単量体(c1)」ともいう)由来の構成単位を2以上有する化合物である。
マクロモノマー(c)が有する2以上の構成単位はそれぞれ同じでも異なってもよい。
 マクロモノマー(c)が有するラジカル重合性基としては、エチレン性不飽和結合を有する基が好ましい。エチレン性不飽和結合を有する基としては、例えば、CH=C(COOR)-CH-、(メタ)アクリロイル基、2-(ヒドロキシメチル)アクリロイル基、ビニル基等が挙げられる。
 ここで、Rは水素原子、非置換の若しくは置換基を有するアルキル基、非置換の若しくは置換基を有する脂環式基、非置換の若しくは置換基を有するアリール基又は非置換の若しくは置換基を有する複素環基を示す。
 Rにおけるアルキル基としては、例えば、炭素数1~20の分岐又は直鎖アルキル基が挙げられる。炭素数1~20の分岐又は直鎖アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、i-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基及びイコシル基等が挙げられる。
 Rにおける脂環式基としては、単環式のものでも多環式のものでもよく、例えば、炭素数3~20の脂環式基が挙げられる。脂環式基としては、シクロアルキル基等の飽和脂環式基が好ましく、具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ビシクロ[2.2.1]ヘプチル基、シクロオクチル基、及びアダマンチル基等が挙げられる。
 Rにおけるアリール基としては、例えば、炭素数6~18のアリール基が挙げられる。
炭素数6~18のアリール基の具体例としては、フェニル基及びナフチル基が挙げられる。
Rにおける複素環式基としては、例えば、炭素数5~18の複素環式基が挙げられる。
炭素数5~18の複素環式基の具体例としては、γ-ブチロラクトン基及びε-カプロラクトン基等の酸素原子含有複素環式基、ピリジル基、カルバゾリル基、ピロリジニル基、ピロリドン基等の窒素原子含有複素環式基、モルホリノ基等が挙げられる。
前記アルキル基、脂環式基、アリール基、複素環基はそれぞれ置換基を有していてもよい。置換基としては、例えば、アルキル基(ただしRが置換基を有するアルキル基である場合を除く)、アリール基、-COOR51、シアノ基、-OR52、-NR5354、-CONR5556、ハロゲン原子、アリル基、エポキシ基、シロキシ基、及び親水性又はイオン性を示す基からなる群から選択される少なくとも1種が挙げられる。
ここで、R51~R56はそれぞれ独立に、水素原子、アルキル基、脂環式基又はアリール基を示す。これらの基はそれぞれ、前記と同様のものが挙げられる。
前記置換基としてのアルキル基、アリール基は、それぞれ、Rにおけるアルキル基、アリール基と同様のものが挙げられる。
前記置換基における-COOR51のR51としては、水素原子又はアルキル基が好ましい。すなわち、-COOR51は、カルボキシ基又はアルコキシカルボニル基が好ましい。アルコキシカルボニル基としては、例えば、メトキシカルボニル基が挙げられる。
前記置換基における-OR52のR52としては、水素原子又は非置換のアルキル基が好ましい。すなわち、-OR52は、ヒドロキシ基又はアルコキシ基が好ましい。アルコキシ基としては、例えば、炭素数1~12のアルコキシ基が挙げられ、具体例としては、メトキシ基が挙げられる。
前記置換基における-NR5354としては、例えば、アミノ基、モノメチルアミノ基、ジメチルアミノ基等が挙げられる。
前記置換基における-CONR5556としては、例えば、カルバモイル基(-CONH),N-メチルカルバモイル基(-CONHCH)、N,N-ジメチルカルバモイル基(ジメチルアミド基:-CON(CH)等が挙げられる。
前記置換基におけるハロゲン原子としては、例えば、ふっ素原子、塩素原子、臭素原子及びよう素原子等が挙げられる。
前記置換基における親水性又はイオン性を示す基としては、例えば、カルボキシ基のアルカリ塩又はスルホキシ基のアルカリ塩、ポリエチレンオキシド基、ポリプロピレンオキシド基等のポリ(アルキレンオキシド)基及び四級アンモニウム塩基等のカチオン性置換基が挙げられる。
Rとしては、アルキル基又は飽和脂環式基が好ましく、アルキル基、又は非置換の若しくは置換基としてアルキル基を有する飽和脂環式基がより好ましい。
上記の中でも、入手のし易さから、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基及びオクチル基が好ましく、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基、イソボルニル基及びアダマンチル基が好ましい。
単量体(c1)が有するラジカル重合性基としては、マクロモノマー(c)が有するラジカル重合性基と同様に、エチレン性不飽和結合を有する基が好ましい。
単量体(c1)としては、種々のものが用いられ得るが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸3,5,5-トリメチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、テルペンアクリレートやその誘導体、水添ロジンアクリレートやその誘導体、(メタ)アクリル酸ドコシル等の炭化水素基含有(メタ)アクリル酸エステル;
(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、グリセロール(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル;
(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシプロピルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシプロピルフタル酸、2-(メタ)アクリロイルオキシエチルマレイン酸、2-(メタ)アクリロイルオキシプロピルマレイン酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシプロピルコハク酸、クロトン酸、フマル酸、マレイン酸、イタコン酸、シトラコン酸、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノオクチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル、イタコン酸モノオクチル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノブチル、フマル酸モノオクチル、シトラコン酸モノエチル等のカルボキシル基含有ビニル系単量体;無水マレイン酸、無水イタコン酸等の酸無水物基含有ビニル系単量体;ジメチルマレート、ジブチルマレート、ジメチルフマレート、ジブチルフマレート、ジブチルイタコネート、ジパーフルオロシクロヘキシルフマレート等の不飽和ジカルボン酸ジエステル単量体;
(メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル等のエポキシ基含有ビニル系単量体;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリル酸エステル系のビニル系単量体;(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-イソプロピルアクリルアミド、ヒドロキシエチルアクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ダイアセトンアクリルアミド、マレイン酸アミド、マレイミド等のアミド基を含有するビニル系単量体;
スチレン、α-メチルスチレン、ビニルトルエン、(メタ)アクリロニトリル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル等のビニル系単量体;ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、アリル(メタ)アクリレート、トリアリルシアヌレート、マレイン酸ジアリル、ポリプロピレングリコールジアリルエーテル、N,N’-メチレンビス(メタ)アクリルアミド等の多官能性のビニル系単量体;
アクリロイルモルホリン、(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸n-ブトキシエチル、(メタ)アクリル酸イソブトキシエチル、(メタ)アクリル酸t-ブトキシエチル、(メタ)アクリル酸エトキシエトキシエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ノニルフェノキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸アセトキシエチル、「プラクセルFM」(ダイセル化学(株)製カプロラクトン付加モノマー、商品名)、「ブレンマーPME-100」(日油(株)製メトキシポリエチレングリコールメタクリレート(エチレングリコールの連鎖が2であるもの)、商品名)、「ブレンマーPME-200」(日油(株)製メトキシポリエチレングリコールメタクリレート(エチレングリコールの連鎖が4であるもの)、商品名)、「ブレンマーPME-400」(日油(株)製メトキシポリエチレングリコールメタクリレート(エチレングリコールの連鎖が9であるもの)、商品名)、「ブレンマー50POEP-800B」(日油(株)製オクトキシポリエチレングリコール-ポリプロピレングリコール-メタクリレート(エチレングリコールの連鎖が8であり、プロピレングリコールの連鎖が6であるもの)、商品名)及び「ブレンマー20ANEP-600」(日油(株)製ノニルフェノキシ(エチレングリコール-ポリプロピレングリコール)モノアクリレート、商品名)、「ブレンマーAME-100」(日油(株)製、商品名)、「ブレンマーAME-200」(日油(株)製、商品名)及び「ブレンマー50AOEP-800B」(日油(株)製、商品名)、サイラプレーンFM-0711(JNC(株)製、商品名)、サイラプレーンFM-0721(JNC(株)製、商品名)、サイラプレーンFM-0725(JNC(株)製、商品名)、サイラプレーンTM-0701(JNC(株)製、商品名)、サイラプレーンTM-0701T(JNC(株)製、商品名)、X-22-174DX(信越化学工業(株)製、商品名)、X-22-2426(信越化学工業(株)製、商品名)、X-22-2475(信越化学工業(株)製、商品名)、
3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等のシランカップリング剤含有モノマー、
 前記単量体(a2)等の、シランカップリング剤含有モノマー以外のオルガノシリル基含有モノマー;
塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、クロロトリフルオロエチレン等のハロゲン化オレフィン、
2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロフェニル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、3-(パーフルオロブチル)-2-ヒドロキシプロピル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)メタクリレート、1H,1H,2H,2H-トリデカフルオロオクチル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、1,2,2,2-テトラフルオロー1-(トリフルオロメチル)エチル(メタ)アクリレート等のフッ素含有モノマー(ただしハロゲン化オレフィンを除く)、
1-ブトキシエチル(メタ)アクリレート、1-(2-エチルへキシルオキシ)エチル(メタ)アクリレート、1-(シクロへキシルオキシ)エチルメタクリレート、2-テトラヒドロピラニル(メタ)アクリレート等のアセタール構造を持つモノマー、4-メタクリロイルオキシベンゾフェノン、(メタ)アクリル酸2-イソシアナトエチル等が挙げられる。これらの単量体は1種を単独で用いてもよく2種以上を併用してもよい。
 単量体(c1)の少なくとも一部は(メタ)アクリル系単量体であることが好ましい。
 単量体(c1)由来の構成単位としては、下記式(c’)で示される構成単位(以下「構成単位(c’)」ともいう)が好ましい。すなわち、マクロモノマー(c)は、ラジカル重合性基を有し、かつ構成単位(c’)を2以上有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(c’)中、R41は水素原子、メチル基又はCHOHを示し、R42はOR43、ハロゲン原子、COR44、COOR45、CN、CONR4647又はR48を示す。R43~R47はそれぞれ独立に水素原子、非置換の若しくは置換基を有するアルキル基、非置換の若しくは置換基を有する脂環式基、非置換の若しくは置換基を有するアリール基、非置換の若しくは置換基を有するへテロアリール基、非置換の若しくは置換基を有する非芳香族の複素環式基、非置換の若しくは置換基を有するアラルキル基、非置換の若しくは置換基を有するアルカリール基、又は非置換の若しくは置換基を有するオルガノシリル基を示し、R48は非置換の若しくは置換基を有するアリール基又は非置換の若しくは置換基を有するヘテロアリール基を示す。)
 R43~R47におけるアルキル基、脂環式基、アリール基はそれぞれ、前述のRにおけるアルキル基、脂環式基、アリール基と同様のものが挙げられる。
 ヘテロアリール基としては、例えば、ピリジル基、カルバゾリル基等が挙げられる。
 非芳香族の複素環式基としては、例えば、ピロリジニル基、ピロリドン基等が挙げられる。
 アラルキル基としては、例えばベンジル基、フェニルエチル基等が挙げられる。
 オルガノシリル基としては、例えばトリオルガノシリル基が挙げられる。トリオルガノシリル基としては、構成単位(A2)のトリオルガノシリルオキシカルボニル基におけるトリオルガノシリル基(例えば、-SiR141516)と同様のものが挙げられる。
 前記アルキル基、脂環式基、アリール基、ヘテロアリール基、非芳香族の複素環式基、アラルキル基、アルカリール基、オルガノシリル基は、それぞれ置換基を有していてもよい。置換基としては、カルボン酸基(COOH)、カルボン酸エステル基、エポキシ基、ヒドロキシ基、アルコキシ基、1級アミノ基、2級アミノ基、3級アミノ基、イソシアナト基、スルホン酸基(SOH)、ハロゲン原子等が挙げられる。
 カルボン酸エステル基としては、例えば、前記Rの説明で挙げた-COOR51のR51がアルキル基、脂環式基又はアリール基である基が挙げられる。
 アルコキシ基としては、前記-OR52のR52がアルキル基である基が挙げられる。
 2級アミノ基としては、前記-NR5354のR53が水素原子、R54がアルキル基、脂環式基又はアリール基である基が挙げられる。
 3級アミノ基としては、前記-NR5354のR53及びR54がそれぞれアルキル基、脂環式基又はアリール基である基が挙げられる。
 アルキル基、アリール基、ハロゲン原子は、それぞれ前記と同様のものが挙げられる。
 R48におけるアリール基、ヘテロアリール基は、それぞれ前記と同様のものが挙げられる。
 前記アリール基、ヘテロアリール基は、それぞれ置換基を有していてもよい。置換基としては、カルボン酸基、カルボン酸エステル基、エポキシ基、ヒドロキシ基、アルコキシ基、1級アミノ基、2級アミノ基、3級アミノ基、イソシアナト基、スルホン酸基、ハロゲン原子等が挙げられる。
 カルボン酸エステル基、アルコキシ基、1級アミノ基、2級アミノ基、3級アミノ基、アルキル基、アリール基及びハロゲン原子は、それぞれ前記と同様のものが挙げられる。
 オレフィン基としては、例えば、アリル基等が挙げられる。オレフィン基は置換基を有していてもよい。オレフィン基における置換基としては、R48における置換基と同様のものが挙げられる。
 構成単位(c’)としては、R41が水素原子又はメチル基であり、R42がCOOR45である構成単位が好ましい。R45は、水素原子、アルキル基、飽和脂環式基、アリール基、ヘテロアリール基又は非芳香族の複素環式基が好ましい。
 構成単位(c’)は、CH=CR4142に由来する構成単位である。CH=CR4142の具体例としては、以下のものが挙げられる。
 置換又は非置換のアルキル(メタ)アクリレート[例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、1-メチル-2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、3-メチル-3-メトキシブチル(メタ)アクリレート]、置換又は非置換のアラルキル(メタ)アクリレート[例えば、ベンジル(メタ)アクリレート、m-メトキシフェニルエチル(メタ)アクリレート、p-メトキシフェニルエチル(メタ)アクリレート]、置換又は非置換のアリール(メタ)アクリレート[例えば、フェニル(メタ)アクリレート、m-メトキシフェニル(メタ)アクリレート、p-メトキシフェニル(メタ)アクリレート、o-メトキシフェニルエチル(メタ)アクリレート]、脂環式(メタ)アクリレート[例えば、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート]、ハロゲン原子含有(メタ)アクリレート[例えば、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチル(メタ)アクリレート、パーフルオロシクロヘキシル(メタ)アクリレート]等の疎水基含有(メタ)アクリル酸エステル単量体;
 2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(2-エチルヘキサオキシ)エチル(メタ)アクリレート等のオキシエチレン基含有(メタ)アクリル酸エステル単量体;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロール(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル単量体;
 メトキシポリエチレングリコールアリルエーテル、メトキシポリプロピレングリコールアリルエーテル、ブトキシポリエチレングリコールアリルエーテル、ブトキシポリプロピレングリコールアリルエーテル、メトキシポリエチレングリコール-ポリプロピレングリコールアリルエーテル、ブトキシポリエチレングリコール-ポリプロピレングリコールアリルエーテル等の末端アルコキシアリル化ポリエーテル単量体;
 (メタ)アクリル酸グリシジル、α-エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル等のエポキシ基含有ビニル単量体;
 ブチルアミノエチル(メタ)アクリレート、(メタ)アクリルアミド等の第一級または第二級アミノ基含有ビニル単量体;
 ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジメチルアミノブチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等の第三級アミノ基含有ビニル単量体;
 ビニルピロリドン、ビニルピリジン、ビニルカルバゾール等の複素環系塩基性単量体;
 トリメチルシリル(メタ)アクリレート、トリエチルシリル(メタ)アクリレート、トリ-n-プロピルシリル(メタ)アクリレート、トリ-n-ブチルシリル(メタ)アクリレート、トリ-n-アミルシリル(メタ)アクリレート、トリ-n-ヘキシルシリル(メタ)アクリレート、トリ-n-オクチルシリル(メタ)アクリレート、トリ-n-ドデシルシリル(メタ)アクリレート、トリフェニルシリル(メタ)アクリレート、トリ-p-メチルフェニルシリル(メタ)アクリレート、トリベンジルシリル(メタ)アクリレート、トリイソプロピルシリル(メタ)アクリレート、トリイソブチルシリル(メタ)アクリレート、トリ-s-ブチルシリル(メタ)アクリレート、トリ-2-メチルイソプロピルシリル(メタ)アクリレート、トリ-t-ブチルシリル(メタ)アクリレート、エチルジメチルシリル(メタ)アクリレート、n-ブチルジメチルシリル(メタ)アクリレート、ジイソプロピル-n-ブチルシリル(メタ)アクリレート、n-オクチルジ-n-ブチルシリル(メタ)アクリレート、ジイソプロピルステアリルシリル(メタ)アクリレート、ジシクロヘキシルフェニルシリル(メタ)アクリレート、t-ブチルジフェニルシリル(メタ)アクリレート、ラウリルジフェニルシリル(メタ)アクリレート等のオルガノシリル基含有ビニル単量体;
 メタクリル酸、アクリル酸、ビニル安息香酸、テトラヒドロフタル酸モノヒドロキシエチル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシプロピル(メタ)アクリレート、テトラヒドロフタル酸モノヒドロキシブチル(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、フタル酸モノヒドロキシプロピル(メタ)アクリレート、コハク酸モノヒドロキシエチル(メタ)アクリレート、コハク酸モノヒドロキシプロピル(メタ)アクリレート、マレイン酸モノヒドロキシエチル(メタ)アクリレート、マレイン酸モノヒドロキシプロピル(メタ)アクリレート等のカルボキシ基含有エチレン性不飽和単量体;
 アクリロニトリル、メタクリロニトニル等のシアノ基含有ビニル単量体;
 アルキルビニルエーテル[例えば、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、2-エチルヘキシルビニルエーテル等]、シクロアルキルビニルエーテル[例えば、シクロヘキシルビニルエーテル等]等のビニルエーテル単量体;
 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル単量体;
 スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル単量体;
 塩化ビニル、フッ化ビニル等のハロゲン化オレフィン;等。
 マクロモノマー(c)は、構成単位(c’)以外の他の構成単位をさらに有していてもよい。他の構成単位としては、例えば、前述の単量体(c1)のうちCH=CR414に該当しない単量体に由来する構成単位が挙げられる。
 他の構成単位の好ましい具体例として、以下の単量体由来の構成単位が挙げられる。
 トリイソプロピルシリルメチルマレート、トリイソプロピルシリルアミルマレート、トリ-n-ブチルシリル-n-ブチルマレート、t-ブチルジフェニルシリルメチルマレート、t-ブチルジフェニルシリル-n-ブチルマレート、トリイソプロピルシリルメチルフマレート、トリイソプロピルシリルアミルフマレート、トリ-n-ブチルシリル-n-ブチルフマレート、t-ブチルジフェニルシリルメチルフマレート、t-ブチルジフェニルシリル-n-ブチルフマレート等のオルガノシリル基含有ビニル単量体;
 無水マレイン酸、無水イタコン酸等の酸無水物基含有ビニル単量体;
 クロトン酸、フマル酸、イタコン酸、マレイン酸、シトラコン酸、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、マレイン酸モノオクチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル、イタコン酸モノオクチル、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノブチル、フマル酸モノオクチル、シトラコン酸モノエチル等のカルボキシ基含有エチレン性不飽和単量体;
 ジメチルマレート、ジブチルマレート、ジメチルフマレート、ジブチルフマレート、ジブチルイタコネート、ジパーフルオロシクロヘキシルフマレート等の不飽和ジカルボン酸ジエステル単量体;
 塩化ビニリデン、フッ化ビニリデン、クロロトリフルオロエチレン等のハロゲン化オレフィン;
 エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、アリルメタクリレート、トリアリルシアヌレート、マレイン酸ジアリル、ポリプロピレングリコールジアリルエーテル等の多官能単量体等。
 マクロモノマー(c)としては、2以上の構成単位(c’)を含む主鎖の末端にラジカル重合性基が導入されたマクロモノマーが好ましく、下記式(c-1)で表されるマクロモノマーがより好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(c-1)中、Rは前記と同義であり、Qは2以上の構成単位(c’)を含む主鎖部分を示し、Eは末端基を示す。)
 式(c-1)中、Rは、前述のCH=C(COOR)-CH-におけるRと同様であり、好ましい態様も同様である。
 式(c-1)中、Qに含まれる2以上の構成単位(c’)は、それぞれ、同じでもよく異なってもよい。
 Qは、構成単位(c’)のみからなるものでもよく、構成単位(c’)以外の他の構成単位をさらに含むものであってもよい。
 Qを構成する構成単位の数は、マクロモノマー(c)の数平均分子量が後述する好ましい範囲内となる値が好ましい。
 式(c-1)中、Eとしては、例えば、公知のラジカル重合で得られるポリマーの末端基と同様に、水素原子、ラジカル重合開始剤に由来する基、ラジカル重合性基等が挙げられる。
 マクロモノマー(c)としては、下記式(c-2)で表されるマクロモノマーが特に好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(c-2)中、R、R41、R45及びEはそれぞれ前記と同義であり、nは2以上の自然数を示す。)
 式(c-2)中、nは、マクロモノマー(c)の数平均分子量(Mn)が500~50000となる範囲内であることが好ましい。数平均分子量のより好ましい範囲は下記のとおりである。
 n個のR41はそれぞれ同じでも異なってもよい。n個のR45はそれぞれ同じでも異なってもよい。
 マクロモノマー(c)の数平均分子量(Mn)は、500~50000が好ましく、500以上50000未満がより好ましく、800~30000がさらに好ましく、1000~20000が特に好ましい。マクロモノマー(c)の数平均分子量が前記範囲の下限値以上であれば、塗膜の硬度、耐水性がより優れる。マクロモノマー(c)の数平均分子量が前記範囲の上限値以下であれば、共重合体(X)の溶液や、これを含む樹脂組成物、防汚塗料組成物の粘度が下がりやすい。
 マクロモノマー(c)の数平均分子量は、ゲルろ過クロマトグラフィー(GPC)により、ポリスチレンを基準物質として測定される。
 マクロモノマー(c)の数平均分子量は、マクロモノマー(c)の製造時における重合開始剤や連鎖移動剤の使用量等によって調整できる。
 したがって、マクロモノマー(c)としては、構成単位(c’)を2以上有する、数平均分子量(Mn)が500~50000であるマクロモノマーが好ましい。このマクロモノマーにおける構成単位(c’)の好ましい種類、より好ましい数平均分子量の範囲は前記と同様である。
 マクロモノマー(c)のガラス転移温度は、-50~120℃が好ましく、-20~100℃がより好ましく、20~80℃がさらに好ましい。マクロモノマー(c)のガラス転移温度が前記範囲の下限値以上であれば、塗膜の硬度、耐水性がより優れる。マクロモノマー(c)のガラス転移温度が前記範囲の上限値以下であれば、共重合体(X)の溶液や、これを含む組成物(樹脂組成物、防汚塗料組成物)の貯蔵安定性がより優れる。また、それらの溶液や組成物を高固形分でも低粘度のものとしやすい。
 マクロモノマー(c)のガラス転移温度は、示差走査熱量計(DSC)で測定することができる。
 マクロモノマー(c)のガラス転移温度は、マクロモノマー(c)を形成する単量体の組成等によって調整できる。
 マクロモノマー(c)は、公知の方法により製造したものを用いてもよく、市販のものを用いてもよい。
 マクロモノマー(c)の製造方法としては、例えば、コバルト連鎖移動剤を用いて製造する方法、α-メチルスチレンダイマー等のα置換不飽和化合物を連鎖移動剤として用いる方法、重合体にラジカル重合性基を化学的に結合させる方法、熱分解による方法等が挙げられる。
 これらの中で、マクロモノマー(c)の製造方法としては、製造工程数が少なく、連鎖移動定数の高い触媒を使用する点で、コバルト連鎖移動剤を用いて製造する方法が好ましい。なお、コバルト連鎖移動剤を用いて製造した場合のマクロモノマー(c)は、前記式(c-1)で表される構造を有する。
 コバルト連鎖移動剤を用いてマクロモノマー(c)を製造する方法としては、例えば、塊状重合法、溶液重合法、及び懸濁重合法、乳化重合法等の水系分散重合法が挙げられる。回収工程が簡便である点から、水系分散重合法が好ましい。
 重合体にラジカル重合性基を化学的に結合させる方法としては、例えば、ハロゲン基を有する重合体のハロゲン基を、ラジカル重合性の炭素-炭素二重結合を有する化合物で置換することにより製造する方法、酸基を有するビニル系単量体とエポキシ基を有するビニル系重合体とを反応させる方法、エポキシ基を有するビニル系重合体と酸基を有するビニル系単量体とを反応させる方法、水酸基を有するビニル系重合体とジイソシアネート化合物とを反応させ、イソシアネート基を有するビニル系重合体を得て、このビニル系重合体と水酸基を有するビニル系単量体とを反応させる方法等が挙げられ、いずれの方法によって製造されても構わない。
<構成単位(D)>
 構成単位(D)としては、特に限定されず、例えば、重合性単量体(a1)、重合性単量体(a2)、重合性単量体(a3)、重合性単量体(b)及びマクロモノマー(c)以外の他の重合性単量体(以下、「重合性単量体(d)」ともいう。)由来の単位が挙げられる。
 重合性単量体(d)としては、重合性単量体(a1)、重合性単量体(a2)、重合性単量体(a3)、重合性単量体(b)及びマクロモノマー(c)等と共重合可能なものであれば特に限定されず、エチレン性不飽和結合等のラジカル重合性基を有する種々の単量体を用いることができる。例えば、前記で挙げたマクロモノマー(c)を得るための単量体(c1)と同様のものを用いることができる。
 構成単位(D)は、共重合体(X)を有機溶剤に溶解したときに高固形分でも低粘度としやすい点から、エチレン性不飽和結合を1つ有する単官能単量体由来の構成単位であることが好ましく、エチレン性不飽和結合が、アクリロイル基に由来するものであることが特に好ましい。すなわち構成単位(D)は、アクリロイル基を1つ有する単官能単量体由来の構成単位であることが特に好ましい。
 構成単位(D)は、形成される塗膜の可撓性や耐クラック性及び耐剥離性と、長期の自己研磨性とをバランスよく良好にすることができる点では、疎水基含有(メタ)アクリル酸エステル由来の構成単位を含むことが好ましい。
 疎水基含有(メタ)アクリル酸エステルとしては、上記のCH=CR4142の例として挙げたものと同様のものが挙げられ、アルキル(メタ)アクリレートが好ましい。
 構成単位(D)は、形成される塗膜の溶解性や耐クラック性がより優れる点では、オキシエチレン基含有(メタ)アクリル酸エステル由来の構成単位を含むことが好ましい。
 オキシエチレン基含有(メタ)アクリル酸エステルとしては、下記式(d1)で表される化合物が好ましい。
 Z-(CHCHO)50  ・・・(d1)
(式(d1)中、Zはアクリロイルオキシ基又はメタクリロイルオキシ基を示し、R50は水素原子、炭素数1~10のアルキル基、又はアリール基を示し、nは1~15の整数を示す。)
 前記式(d1)中、Zがアクリロイルオキシ基の場合とメタクリロイルオキシ基の場合とでは、アクリロイルオキシ基の場合の方が加水分解速度を速い傾向があり、溶解速度にあわせて任意に選択することができる。
 式(d1)中、R50における炭素数1~10のアルキル基、アリール基は、それぞれ前記R、Rで挙げたものと同様のものが挙げられる。
 式(d1)中、fは、耐水性、耐クラック性の点から、1~10の整数が好ましく、1~5の整数がより好ましく、1~3の整数がさらに好ましく、1又は2が特に好ましい。
 重合性単量体(d)は、市販品を購入することも可能であり、公知の方法を利用して適宜合成することも可能である。
(各構成単位の含有量)
 共重合体(X)における構成単位(A)の含有量は、全構成単位の合計(100質量%)に対し、1~60質量%が好ましく、5~50質量%がより好ましく、10~40質量%がさらに好ましい。構成単位(A)の含有量が前記範囲の下限値以上であれば、形成される塗膜の自己研磨性がより優れる。構成単位(A)の含有量が前記範囲の上限値以下であれば、形成される塗膜が適度な加水分解性を有し、長期にわたって自己研磨性が維持され、防汚効果がより優れたものとなる。
 共重合体(X)における構成単位(B)の含有量は、全構成単位の合計(100質量%)に対し、1~80質量%が好ましく、2~70質量%がより好ましく、5~60質量%がさらに好ましい。構成単位(B)の含有量が前記範囲の下限値以上であれば、形成される塗膜の防汚性がより優れる。構成単位(u2)の含有量が前記範囲の上限値以下であれば、形成される塗膜の耐クラック性がより優れる。
 共重合体(X)における構成単位(C)の含有量は、全構成単位の合計(100質量%)に対し、0質量%より多く88質量%以下であることが好ましく、2~70質量%がより好ましく、5~50質量%がさらに好ましい。構成単位(C)の含有量が前記範囲の下限値以上であれば、共重合体(X)を有機溶剤に溶解したときの溶液粘度及びこの溶液を含む樹脂組成物や防汚塗料組成物の粘度がより低くなる。また、形成される塗膜の硬度、耐水性がより優れる。構成単位(C)の含有量が前記範囲の上限値以下であれば、耐クラック性及び重合安定性がより優れる。
 共重合体(X)は、重合性単量体(a1)、重合性単量体(a2)及び重合性単量体(a3)からなる群から選ばれる少なくとも1種の重合性量体(a)と、重合性単量体(b)と、マクロモノマー(c)とを含む単量体混合物(α1)を重合して得られた共重合体であることが好ましい。このような共重合体であれば、エチレン性不飽和結合及びカルボキシ基を有する単量体(m0)と重合性単量体(b)とマクロモノマー(c)とを含む単量体混合物(β1)を重合し、カルボキシ基を有する共重合体(X0)を得て、この共重合体(X0)のカルボキシ基を構造(I)、トリオルガノシリルオキシカルボニル基及び構造(III)のいずれかに変換して得られた共重合体に比べて、形成される塗膜の耐水性がより優れる。
 単量体混合物(α1)、単量体混合物(β1)については後で詳しく説明する。
 共重合体(X)の重量平均分子量(Mw)は、1,000~100,000が好ましく、2,000~80,000がより好ましく、3,000~60,000がさらに好ましい。重量平均分子量が前記範囲の上限値以下であれば、共重合体(X)を有機溶剤に溶解した溶液の粘度がより低くなり、樹脂組成物や防汚塗料組成物として高固形分かつ低粘度のものを得やすい。また、形成される塗膜の防汚性がより優れる。重量平均分子量が前記範囲の下限値以上であれば、形成される塗膜の硬度、耐久性がより優れる。
 共重合体(X)の数平均分子量(Mn)は、500~50,000が好ましく、1,000~40,000がより好ましい。
 共重合体(X)の分子量分布(Mw/Mn)は、1.5~5.0が好ましく、2.2~3.0がより好ましい。
 共重合体(X)の重量平均分子量及び数平均分子量は、それぞれ、ゲルろ過クロマトグラフィー(GPC)により、ポリスチレンを基準樹脂として測定される。
 共重合体(X)の酸価は、1~140mgKOH/gが好ましく、5~130mgKOH/gがより好ましく、10~120mgKOH/gがさらに好ましい。共重合体(X)の酸価が前記範囲の上限値以下であれば、塗膜の耐水性、耐クラック性がより優れる。
 共重合体(X)の酸価は、水酸化カリウム溶液による中和滴定等公知の手法により測定される。
 共重合体(X)は、架橋構造を有しない鎖状の重合体であることが好ましい。鎖状であると、架橋構造を有する場合に比べて、共重合体(X)の有機溶剤溶液の粘度が低くなる。
(共重合体(X)の製造方法)
 共重合体(X)の製造方法としては、例えば、以下の製造方法(α)が挙げられる。
 製造方法(α):重合性単量体(a1)、重合性単量体(a2)及び重合性単量体(a3)からなる群から選ばれる少なくとも1種の重合性量体(a)と、重合性単量体(b)と、マクロモノマー(c)とを含む単量体混合物(α1)を重合する方法。
 単量体混合物(α1)は、重合性単量体(d)をさらに含んでもよい。
 単量体混合物(α1)の組成、すなわち単量体混合物(α1)を構成する単量体の種類及び全単量体の合計質量に対する各単量体の含有量(質量%)は、共重合体(X)の組成、すなわち共重合体(X)を構成する各単量体由来の構成単位の種類及び全構成単位の合計質量に対する各構成単位の含有量(質量%)と同様である。
 したがって、単量体混合物(α1)は、重合性単量体(a)1~60質量%と、重合性単量体(b)1~60質量%と、マクロモノマー(c)0質量%より多く88質量%以下と、重合性単量体(d)0質量%以上98質量%未満とからなることが好ましい。各単量体の含有量は、単量体混合物(α1)の全量に対する割合であり、重合性単量体(a)と重合性単量体(b)とマクロモノマー(c)と重合性単量体(d)との合計は100質量%である。各重合性単量体(a)~(b)及びマクロモノマー(c)のより好ましい含有量の範囲は、各単量体に対応する構成単位の好ましい含有量の範囲と同様である。
 単量体混合物(α1)の重合方法としては、特に限定されず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法等の公知の重合方法を用いることができる。生産性、塗膜性能の点で、溶液重合法が好ましい。
 重合は、公知の重合開始剤を用いて、公知の方法で行えばよい。例えば、上記した単量体成分をラジカル開始剤の存在下に60~120℃の反応温度で4~14時間反応させる方法が挙げられる。重合の際、必要に応じて、連鎖移動剤を用いてもよい。
 ラジカル重合開始剤としては、公知のものを使用でき、例えば、2,2-アゾビス(イソブチロニトリル)、2,2-アゾビス(2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-メチルブチロニトリル)等のアゾ系化合物;過酸化ベンゾイル、クメンヒドロペルオキシド、ラウリルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機過酸化物;等が挙げられる。重合開始剤の含有量は、特に限定されず、適宜設定することができる。
 連鎖移動剤としては、公知のものを使用でき、例えば、n-ドデシルメルカプタン等のメルカプタン類、チオグリコール酸オクチル等のチオグリコール酸エステル類、α-メチルスチレンダイマー、ターピノーレン等が挙げられる。連鎖移動剤の含有量は、特に限定されず、適宜設定することができる。
 溶液重合で用いられる溶媒としては、例えば、トルエン、キシレン、メチルイソブチルケトン、酢酸n-ブチル等の一般の有機溶剤を使用する事ができる。
 ただし、共重合体(X)の製造方法は、上記製造方法(α)に限定されるものではない。
 例えば、以下の製造方法(β)によっても共重合体(X)を製造できる。
 製造方法(β):エチレン性不飽和結合及びカルボキシ基を有する重合性単量体(m0)と、重合性単量体(b)とマクロモノマー(c)とを含む単量体混合物(β1)を重合し、カルボキシ基を有する共重合体(X0)を得て、この共重合体(X0)のカルボキシ基を構造(I)、トリオルガノシリルオキシカルボニル基及び構造(III)のいずれかに変換する方法。
 重合性単量体(m0)は、前記重合性単量体(a1)の説明で挙げたものと同様である。
 単量体混合物(β1)は、重合性単量体(d)をさらに含んでもよい。
 単量体混合物(β1)の組成は、重合性単量体(a)が重合性単量体(m0)である以外は、単量体混合物(α1)の組成と同様である。
 単量体混合物(β1)の重合は、製造方法(α)における単量体混合物(α1)の重合と同様にして行うことができる。
 共重合体(X0)のカルボキシ基を構造(I)に変換する方法としては、例えば、共重合体(X0)と、前記化合物(Y)とを反応(付加反応)させる方法が挙げられる。共重合体(X0)と前記化合物(Y)との反応は、前記重合性単量体(m0)と前記化合物(Y)との反応と同様にして行うことができる。
 共重合体(X0)のカルボキシ基を構造(III)に変換する方法としては、例えば、共重合体(X0)と、酢酸銅、酢酸亜鉛等の有機酸金属塩とを反応させる方法が挙げられる。有機酸金属塩の金属は前記Mに対応する。共重合体(X0)と有機酸金属塩との反応は、例えば、還流温度まで昇温し、留出する酢酸等の有機酸、水及び有機溶剤の混合液を除去しつつ、同量の有機溶剤を補充しながら、反応を10~20時間継続すること等で行うことができる。
 共重合体(X)にあっては、構成単位(A)を有し、構造(I)、トリオルガノシリルオキシカルボニル基及び構造(III)のいずれか1以上を含むため、海水中等における加水分解が可能である。そのため、共重合体(X)を含む塗膜は、海水中等で自己研磨性を示す。また、構成単位(B)を有し、ポリシロキサンブロックを含むため、共重合体(X)を含む塗膜表面には海中生物やその他の汚れが付着しにくい。したがって、共重合体(X)を含む塗膜は、防汚剤を含まない場合でも、優れた防汚効果を発揮できる。
 また、共重合体(X)にあっては、構成単位(C)を有するため、高固形分かつ低粘度の有機溶剤溶液とすることができる。また、共重合体(X)を含む塗膜は、硬度が高い。
そのため、優れた耐盤木性が期待される。かかる効果を奏するのは、マクロモノマー(c)を用いていることで、塗膜がミクロ相分離構造を形成しているためと考えられる。
〔樹脂組成物〕
 本発明の樹脂組成物は、上述した共重合体(X)を含む。樹脂組成物に含まれる共重合体(X)は1種でもよく2種以上でもよい。
本発明の樹脂組成物中の共重合体(X)の含有量は、特に限定されないが、樹脂組成物の全量に対して45質量%以上が好ましく、50質量%以上がより好ましく、55質量%以上がさらに好ましい。共重合体(X)の含有量が前記下限値以上であれば、VOC含有量の少ない防汚塗料組成物を容易に得ることができる。
共重合体(X)の含有量の上限は、特に限定されず、100質量%であってもよい。樹脂組成物が溶剤を含む場合は、樹脂組成物の25℃における粘度が、後述する好ましい上限値以下となる量で含むことが好ましい。具体的には、共重合体(X)の重量平均分子量、ガラス転移温度、架橋構造の有無等によっても異なるが、溶剤の含有量は、樹脂組成物の全量に対して85質量%以下が好ましく、80質量%以下がより好ましい。
共重合体(X)が構成単位(A1)を有する場合、本発明の樹脂組成物は、酸と反応する化合物、塩基性化合物、酸性化合物及び脱水剤からなる群から選ばれる少なくとも1種をさらに含むことが好ましい。これにより、樹脂組成物やこれを含む防汚塗料組成物の貯蔵安定性が向上する。
共重合体(X)が構成単位(A1)を有する場合、共重合体(X)を含む樹脂組成物やこれを含む防汚塗料組成物においては、貯蔵中に構造(I)が意図せずに分解してしまうことがある。構造(I)が分解すると、カルボン酸が生成する。これによって、共重合体(X)のガラス転移温度が上昇したり、カルボン酸と塗料中の他成分とが架橋構造を形成し、共重合体(X)の溶液やこれを含む塗料の粘度が上昇したりする。また、フリーのカルボン酸が生成することにより、有機溶剤に対する溶解安定性や耐水性が低下する。また発生したカルボン酸が酸として触媒的に加水分解反応を促進させることにより、構造(I)のさらなる分解が進行する。樹脂組成物に酸と反応する化合物を含有させることにより、共重合体(X)中の構造(I)が分解してカルボン酸が生成したときに、酸と反応する化合物によってカルボン酸が捕捉され、貯蔵安定性が向上する。
また、高pH領域や低pH領域では、構造(I)の分解が促進されることにより貯蔵安定性が低下する。高pH領域では、化合物(Y)とカルボン酸との反応性が低下することによっても貯蔵安定性が低下する。塩基性化合物又は酸性化合物の添加によって樹脂組成物のpHを調整することで、構造(I)の分解を抑制し、貯蔵安定性の低下を抑制することができる。
また、水分は、構造(I)の分解(加水分解)を促進する。樹脂組成物に脱水剤を含有させることにより、樹脂組成物中の水分を捕捉し、貯蔵安定性の低下を抑制することができる。
酸と反応する化合物としては、前述の化合物(Y)、塩基性化合物、エポキシ基を有する化合物等が挙げられる。
塩基性化合物としては、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、アニリン、ピリジン等が挙げられる。
エポキシ基を含有する化合物としては、2-エチルオキシラン、2,3-ジメチルオキシラン、2,2-ジメチルオキシラン、(メタ)アクリル酸グリシジル、α―エチルアクリル酸グリシジル、(メタ)アクリル酸3,4-エポキシブチル等が挙げられる。
酸と反応する化合物としては、貯蔵安定性の観点で、化合物(Y)が好ましい。化合物(Y)としては、前記で挙げたもののなかでも、貯蔵安定性の向上効果がより優れる点で、前記式(31)中のXが-O-である1-アルケニルアルキルエーテルが好ましく、ブチルビニルエーテルやイソブチルビニルエーテル等のビニルエーテル類がより好ましい。
pH調整のための塩基性化合物としては、前述の塩基性化合物と同様のものが挙げられる。
酸性化合物としては、アビエチン酸、ネオアビエチン酸、パラストリン酸、ピマル酸、イソピマル酸、レボピマル酸、デキストロピマル酸、サンダラコピマル酸、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、リノール酸、オレイン酸、クロル酢酸、フルオロ酢酸等が挙げられる。
脱水剤としては、シリケート系、イソシアネート系、オルソエステル系、無機系等が挙げられる。より具体的には、オルトギ酸メチル、オルトギ酸エチル、オルト酢酸メチル、オルトホウ酸エステル、オルト珪酸テトラエチル、無水石膏、焼石膏、合成ゼオライト(モレキュラーシーブ)等が挙げられる。特にモレキュラーシーブが好ましい。
これらの添加剤は、1種を単独で、或いは2種以上を組み合わせて使用できる。
2種以上の添加剤の組み合わせ例としては、化合物(Y)と脱水剤との組み合わせ、化合物(Y)と酸性化合物と脱水剤との組み合わせ、化合物(Y)と塩基性化合物と酸性化合物と脱水剤との組み合わせ、塩基性化合物と脱水剤との組み合わせ等が挙げられる。
樹脂組成物に化合物(Y)を含有させる場合、樹脂組成物中の化合物(Y)の含有量は、共重合体(X)が有する構造(I)に対して20モル%以上であることが好ましく、30~1000モル%がより好ましく、40~800モル%がさらに好ましい。化合物(Y)の含有量が前記範囲内であれば、貯蔵安定性の向上効果がより優れる。
樹脂組成物に塩基性化合物又は/及び酸性化合物を含有させる場合、樹脂組成物中の塩基性化合物又は/及び酸性化合物の含有量は、貯蔵安定性の観点から、水中で測定されるpHが2~12となる濃度の塩基性化合物量が好ましく、前記pHが6~9となる濃度の塩基性化合物量がより好ましい。
ここで、水中で測定されるpHとは、具体的には、水中に塩基性化合物を添加することにより測定される値である。前記pHは、23℃における値である。
樹脂組成物に脱水剤を含有させる場合、樹脂組成物中の脱水剤の含有量は、樹脂組成物の総質量に対し、0.1~40質量%が好ましく、1~20質量%がより好ましい。脱水剤の含有量が前記範囲の下限値以上であれば、貯蔵蔵安定性がより優れる。脱水剤の含有量が前記範囲の上限値以下であれば、溶解安定性が良好である。
本発明の樹脂組成物は、シリコーンオイルをさらに含んでもよい。樹脂組成物がシリコーンオイルを含むと、形成される塗膜の防汚性がより優れる。
シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル、変性シリコーンオイル等が挙げられる。変性シリコーンオイルは、ストレートシリコーンオイルのケイ素原子の一部にメチル基及びフェニル基以外の有機基(以下「変性基」ともいう。)が導入されたシリコーンオイルである。変性基としては、例えば、クロロフェニル基、メチルスチレン基、長鎖アルキル基(例えば、炭素数2~18のアルキル基)、ポリエーテル基、カルビノール基、アミノアルキル基、エポキシ基、(メタ)アクリロイル基等が挙げられる。これらのシリコーンオイルはいずれか1種を単独で、又は2種以上を組合わせて用いることができる。
シリコーンオイルとしては市販品を用いることができる。市販のシリコーンオイルとしては、例えば「KF-96」、「KF-50」、「KF-54」、「KF-56」、「KF-6016」(以上、信越化学工業(株)製)、「TSF451」(モメンティブ・パフォーマンス・マテリアルズ社製)、「Fluid47」((仏)ローヌプラン社製)、「SH200」、「SH510」、「SH550」、「SH710」、「DC200」、「ST-114PA」、「FZ209」(以上、東レ・ダウコーニング社製)等が挙げられる。
本発明の樹脂組成物は、有機溶剤を含むことが好ましい。樹脂組成物が有機溶剤を含むと、これを用いた防汚塗料組成物の塗工適性、形成される塗膜の耐水性、成膜性等がより優れる。
有機溶剤としては、共重合体(X)を溶解できるものであれば、特に限定されず、例えば、トルエン、キシレン等の炭化水素系溶剤;前記化合物(Y)、プロピレングリコールモノメチルエーテル-2-アセタート等のエーテル系溶剤;メチルイソブチルケトン等のケトン系溶剤;酢酸n-ブチル等のエステル系溶剤;等が挙げられる。これらは、いずれか1種を単独で、又は2種以上を組合わせて用いることができる。
本発明の樹脂組成物中の有機溶剤の含有量は、防汚塗料組成物のVOC含有量の低減の観点から、樹脂組成物の全量に対して55質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下がさらに好ましい。
有機溶剤の含有量は、樹脂組成物の25℃における粘度が後述する好ましい上限値以下となる量が好ましく、共重合体(X)の重量平均分子量、ガラス転移温度、架橋構造の有無等によっても異なるが、樹脂組成物の全量に対して15質量%以上が好ましく、20質量%以上がより好ましい。
なお、前記化合物(Y)は、有機溶剤としても機能し得る。したがって、樹脂組成物が化合物(Y)を含む場合、化合物(Y)の含有量は有機溶剤の含有量に含まれる。
本発明の樹脂組成物は、共重合体(X)、酸と反応する化合物、塩基性化合物、酸性化合物、脱水剤、シリコーンオイル及び有機溶剤以外の他の成分をさらに含んでもよい。
他の成分としては、例えば、後述する防汚塗料組成物における他の成分と同様のものが挙げられる。
他の成分の含有量は、共重合体(X)に対して200質量%以下が好ましく、0質量%であってもよい。
本発明の樹脂組成物の固形分は、45質量%以上が好ましく、50質量%以上がより好ましく、55質量%以上がさらに好ましい。樹脂組成物の固形分が前記範囲の下限値以上であれば、防汚塗料組成物のVOC含有量が充分に低くなる。
樹脂組成物の固形分の上限は特に限定されず、100質量%であってもよい。樹脂組成物が有機溶剤を含む場合は、樹脂組成物の粘度の観点から、85質量%以下が好ましく、80質量%以下がより好ましい。
樹脂組成物の固形分は、後述する実施例に記載の測定方法により測定される。
本発明の樹脂組成物が有機溶剤を含む場合、この樹脂組成物の25℃にてB型粘度計で測定される粘度(以下、「B型粘度」ともいう。)は、5000mPa・s未満が好ましく、3000mPa・s未満がより好ましく、2,000mPa・s未満がさらに好ましく、1,000mPa・s未満が特に好ましい。
前記樹脂組成物の25℃にてガードナー気泡粘度計により測定される粘度(以下、「ガードナー粘度」ともいう。)は、Z3以下であることが好ましく、V以下であることがより好ましい。
樹脂組成物の粘度(B型粘度又はガードナー粘度)が前記上限値以下であれば、樹脂組成物に希釈のための溶剤を加えなくても、防汚剤等を配合したり塗装したりすることができ、VOC含有量の少ない防汚塗料組成物が得られる。
樹脂組成物は、固形分が少なくとも50質量%での粘度が上記の好ましい上限値以下であることが好ましい。
前記樹脂組成物の粘度の下限は特に限定されない。塗装時の塗料タレ抑制の点では、25℃におけるB型粘度が100mPa・s以上であることが好ましい。
したがって、前記樹脂組成物の25℃におけるB型粘度は、100mPa・s以上5,000mPa・s未満が好ましく、100mPa・s以上3,000mPa・s未満がより好ましく、100mPa・s以上2,000mPa・s未満がさらに好ましく、100mPa・s以上1,000mPa・s未満が特に好ましい。
樹脂組成物の粘度は、樹脂組成物の固形分量(共重合体(X)及び他の成分の含有量)、共重合体(X)の重量平均分子量、ガラス転移温度、架橋構造の有無等によって調整できる。例えば、固形分量、特に共重合体(X)の含有量が少ないほど、低粘度になる傾向がある。また、共重合体(X)の重量平均分子量が小さいほど、又はガラス転移温度が低いほど、低粘度になる傾向がある。
<構造(I)の分解率>
 共重合体(X)が構成単位(A1)を有する場合、本発明の樹脂組成物にあっては、40℃30日間貯蔵後における共重合体(X)中の構造(I)の分解率が20%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることがさらに好ましく、3%以下であることが特に好ましく、2%以下であることが最も好ましい。樹脂組成物を40℃30日間貯蔵した後の構造(I)の分解率が上記上限値以下であれば、樹脂組成物や、これを含む防汚塗料組成物の貯蔵安定性が優れる。また、樹脂組成物が有機溶剤を含む場合に、共重合体(X)の有機溶剤に対する溶解安定性にも優れる。前記分解率は低い程好ましく、下限は0%であってもよい。
 40℃30日間貯蔵後における構造(I)の分解率は、例えば、樹脂組成物に酸と反応する化合物、塩基性化合物、酸性化合物、脱水剤等を含有させることによって20%以下に低減できる。
 構造(I)の分解率の測定において、樹脂組成物の貯蔵とは、樹脂組成物をガラス瓶に入れて密封し、乾燥庫内で遮蔽の環境下にて放置することを示す。
 構造(I)の分解率は、樹脂組成物(40℃30日間貯蔵後)の測定固形酸価(a)から、共重合体(X)に含まれる構造(I)が全て分解していない際の理論固形酸価(b)を引いた値を、共重合体(X)に含まれる構造(I)が全て分解した際の理論酸価(c)で除した下記の値として定義される。
(分解率)={(測定固形酸価(a))-(理論固形酸価(b))}/(理論固形酸価(c))×100
 測定固形酸価に関しては後述する実施例の固形酸価の項目で説明する。
 理論固形酸価は以下の式で計算できる。
 (理論固形酸価)=Σ(561×100/Mw×w
 上記理論固形酸価の計算式中、wは、共重合体(X)を構成する単量体のうち酸官能基を有する単量体iの質量分率を表し、Mwは、酸官能基を有する単量体の分子量を表す。酸官能基はカルボン酸等の官能基である。
 分解した際の酸価としては、酸官能基を有する単量体として扱い計算する。
 分解していない際の酸価としては、酸官能基を有しない単量体として扱い計算する。
(樹脂組成物の製造方法)
 本発明の樹脂組成物は、公知の方法を用いて製造できる。例えば、前述の製造方法(α)又は(β)により共重合体(X)を製造し、必要に応じて、得られた共重合体(X)に、酸と反応する化合物、塩基性化合物、酸性化合物、脱水剤、シリコーンオイル、有機溶剤、他の成分等を配合することにより樹脂組成物を調製できる。
 樹脂組成物が化合物(Y)を含む場合、化合物(Y)を配合するタイミングは、共重合体(X)の製造時であってもよく、共重合体(X)の製造後であってもよく、特に限定されない。例えば、前記製造方法(α)において、単量体混合物の重合時に化合物(Y)を共存させてもよく、重合終了後に化合物(Y)を添加してもよい。前記製造方法(β)において、単量体混合物の重合終了後、生成した共重合体(X0)に化合物(Y)を反応させて共重合体(X)を得る際に、共重合体(X0)のカルボキシ基に対して等量よりも多い化合物(Y)を添加して、未反応の化合物(Y)が残存するようにしてもよい。重合反応時に化合物(Y)を共存させると化合物(Y)の一部がラジカル重合するため、重合終了後に化合物(Y)を添加する方法が好ましい。
 重合性単量体(b)等の原料として、シリコーンオイルが含まれるものを用いてもよい。この場合、重合生成物は共重合体(X)及びシリコーンオイルを含む。
 本発明の樹脂組成物は、そのまま、又は必要に応じて防汚剤等と混合して、防汚塗料組成物とすることができる。
 本発明の樹脂組成物は、防汚塗料組成物のほか、防曇塗料組成物等に用いることもできる。
 本発明の樹脂組成物を用いた塗膜は、海水中等で優れた防汚効果を発揮することから、本発明の樹脂組成物は防汚塗料組成物用として好適である。
〔防汚塗料組成物〕
 本発明の防汚塗料組成物は、前述の本発明の樹脂組成物を含有する。したがって、共重合体(X)を含有する。
 本態様の防汚塗料組成物は、防汚塗料組成物の貯蔵安定性の観点から、酸と反応する化合物、塩基性化合物、酸性化合物及び脱水剤からなる群から選ばれる少なくとも1種をさらに含んでもよい。酸と反応する化合物、塩基性化合物、酸性化合物及び脱水剤はそれぞれ前記と同様のものが挙げられる。好ましい含有量も同様である。
 本態様の防汚塗料組成物は、塗膜の防汚性の観点から、シリコーンオイルをさらに含んでもよい。シリコーンオイルは前記と同様のものが挙げられる。
 本態様の防汚塗料組成物は、有機溶剤を含んでもよい。有機溶剤は前記と同様のものが挙げられる。
 本態様の防汚塗料組成物は、防汚剤をさらに含んでもよい。
 本態様の防汚塗料組成物は、共重合体(X)、酸と反応する化合物、塩基性化合物、酸性化合物、脱水剤、シリコーンオイル、有機溶剤及び防汚剤以外の他の成分をさらに含んでもよい。
 防汚塗料組成物が酸と反応する化合物、塩基性化合物、酸性化合物、脱水剤、シリコーンオイル、有機溶剤、他の成分等を含む場合、これらの成分は、それぞれ、前記樹脂組成物に由来するものであってもよく、由来しないもの(防汚塗料組成物の製造時に配合されたもの)であってもよく、それらの混合物であってもよい。
<防汚剤>
 防汚剤としては、無機防汚剤、有機防汚剤等が挙げられ、要求性能に応じて1種又は2種以上を適宜選択して使用することができる。
 防汚剤としては、例えば、亜酸化銅、チオシアン銅、銅粉末等の銅系防汚剤、他の金属(鉛、亜鉛、ニッケル等)の化合物、ジフェニルアミン等のアミン誘導体、ニトリル化合物、ベンゾチアゾール系化合物、マレイミド系化合物、ピリジン系化合物等が挙げられる。これらは、1種を単独で、或いは2種以上を組み合わせて使用できる。
 防汚剤として、より具体的には、4-ブロモ-2-(4-クロロフェニル)-5-(トリフルオロメチル)-1H-ピロール-3-カルボニトリル、マンガニーズエチレンビスジチオカーバメイト、ジンクジメチルジチオカーバメート、2-メチルチオ-4-t-ブチルアミノ-6-シクロプロピルアミノ-s-トリアジン、2,4,5,6-テトラクロロイソフタロニトリル、N,N-ジメチルジクロロフェニル尿素、ジンクエチレンビスジチオカーバメイト、ロダン銅、4,5-ジクロロ-2-nオクチル-3(2H)イソチアゾロン、N-(フルオロジクロロメチルチオ)フタルイミド、N,N’-ジメチル-N’-フェニル-(N-フルオロジクロロメチルチオ)スルファミド、2-ピリジンチオール-1-オキシド亜鉛塩、テトラメチルチウラムジサルファイド、Cu-10%Ni固溶合金、2,4,6-トリクロロフェニルマレイミド2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン、3-ヨード-2-プロピニルブチルカーバメイト、ジヨードメチルパラトリルスルホン、ビスジメチルジチオカルバモイルジンクエチレンビスジチオカーバメート、フェニル(ビスピリジル)ビスマスジクロライド、2-(4-チアゾリル)-ベンゾイミダゾール、メデトミジン、ピリジン-トリフェニルボラン等が挙げられる。
 防汚塗料組成物が防汚剤を含有する場合、防汚塗料組成物中の防汚剤の含有量は、特に制限されないが、共重合体(X)100質量部に対し、2~200質量部が好ましく、10~150質量部がより好ましい。防汚剤の含有量が前記範囲の下限値以上であれば、形成される塗膜の防汚効果がより優れる。防汚剤の含有量が前記範囲の上限値以下であれば、塗膜物性が優れる。
<他の成分>
 他の成分としては、例えば、共重合体(X)以外の他の樹脂が挙げられる。他の樹脂は、構成単位(A)、構成単位(B)及び構成単位(C)のうちの少なくとも1種を有しない樹脂である。他の樹脂としては、例えば、熱可塑性樹脂等が挙げられる。
 本発明の防汚塗料組成物は、共重合体(X)以外の熱可塑性樹脂を含むことが好ましい。防汚塗料組成物が共重合体(X)以外の熱可塑性樹脂を含むと、耐クラック性や耐水性等の塗膜物性がより優れる。
 共重合体(X)以外の熱可塑性樹脂としては、例えば、塩素化パラフィン;塩化ゴム、塩素化ポリエチレン、塩素化ポリプロピレン等の塩素化ポリオレフィン;ポリビニルエーテル;ポリプロピレンセバケート;部分水添ターフェニル;ポリ酢酸ビニル;(メタ)アクリル酸メチル系共重合体、(メタ)アクリル酸エチル系共重合体、(メタ)アクリル酸プロピル系共重合体、(メタ)アクリル酸ブチル系共重合体、(メタ)アクリル酸シクロヘキシル系共重合体等のポリ(メタ)アクリル酸アルキルエステル;ポリエーテルポリオール;アルキド樹脂;ポリエステル樹脂;塩化ビニル-酢酸ビニル共重合体、塩化ビニル-プロピオン酸ビニル共重合体、塩化ビニル-イソブチルビニルエーテル共重合体、塩化ビニル-イソプロピルビニルエーテル共重合体、塩化ビニル-エチルビニルエーテル共重合体等の塩化ビニル系樹脂;ワックス;ワックス以外の常温で固体の油脂、ひまし油等の常温で液体の油脂及びそれらの精製物;ワセリン;流動パラフィン;ロジン、水添ロジン、ナフテン酸、脂肪酸及びこれらの2価金属塩;等が挙げられる。ワックスとしては、例えば、蜜蝋等の動物由来のワックス;植物由来のワックス;アマイド系ワックス等の半合成ワックス;酸化ポリエチレン系ワックス等の合成ワックス等が挙げられる。これらの熱可塑性樹脂は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 防汚塗料組成物中の共重合体(X)以外の熱可塑性樹脂の含有量は、特に制限されないが、共重合体(X)100質量部に対し、0.1~50質量部が好ましく、0.1~10質量部がより好ましい。共重合体(X)以外の熱可塑性樹脂の含有量が前記範囲の下限値以上であれば、耐クラック性や耐水性等の塗膜物性がより優れ、前記範囲の上限値以下であれば、加水分解性がより優れる。
 本発明の防汚塗料組成物は、塗膜表面に潤滑性を付与し、生物の付着を防止する目的で、ジメチルポリシロキサン、シリコーンオイル等のシリコン化合物、フッ素化炭化水素等の含フッ素化合物等を含んでもよい。
 本発明の防汚塗料組成物は、各種の顔料、消泡剤、レベリング剤、顔料分散剤(例えば、沈降防止剤)、たれ防止剤、艶消し剤、紫外線吸収剤、酸化防止剤、耐熱性向上剤、スリップ剤、防腐剤、可塑剤、粘性制御剤等を含んでもよい。
 顔料としては、酸化亜鉛、タルク、シリカ、硫酸バリウム、カリ長石、水酸化アルミニウム、炭酸マグネシウム、マイカ、カーボンブラック、弁柄、酸化チタン、フタロシアニンブルー、カオリン、石膏等が挙げられる。
 熱可塑性樹脂以外の沈降防止剤やたれ防止剤としては、ベントナイト系、微粉シリカ系、ステアレート塩、レシチン塩、アルキルスルホン酸塩等が挙げられる。
 熱可塑性樹脂以外の可塑剤としては、例えば、ジオクチルフタレート、ジメチルフタレート、ジシクロヘキシルフタレート、ジイソデシルフタレート等のフタル酸エステル系可塑剤;アジピン酸イソブチル、セバシン酸ジブチル等の脂肪族二塩基酸エステル系可塑剤;ジエチレングリコールジベンゾエート、ペンタエリスリトールアルキルエステル等のグリコールエステル系可塑剤;トリクレジルホスフェート(TCP)、トリアリールホスフェート、トリクロロエチルホスフェート等のリン酸エステル系可塑剤;エポキシ大豆油、エポキシステアリン酸オクチル等のエポキシ系可塑剤;ジオクチルすずラウリレート、ジブチルすずラウリレート等の有機すず系可塑剤;トリメリット酸トリオクチル、トリアセチレン等が挙げられる。防汚塗料組成物に可塑剤を含有させることによって塗膜の耐クラック性や耐剥離性を高めることができる。
<防汚塗料組成物の諸特性>
 本発明の防汚塗料組成物のVOCの含有量は、450g/L以下が好ましく、420g/L以下がより好ましく、400g/L以下がさらに好ましい。
 VOC含有量は、防汚塗料組成物の比重及び固形分の値を用いて、下記式から算出される。
 VOC含有量(g/L)=組成物の比重×1000×(100-固形分)/100
 防汚塗料組成物の比重は、25℃において、容量が100mLの比重カップに、防汚塗料組成物を満たし、質量を測定することにより算出される。防汚塗料組成物の固形分(加熱残分)は、後述する実施例に記載の方法により測定される。
 VOC含有量は、有機溶剤の含有量により調整できる。防汚塗料用樹脂組成物の固形分を上げることで、防汚塗料の粘度が同じであってもVOC含有量を下げることができる。
 本発明の防汚塗料組成物の固形分は、50~100質量%が好ましく、55~90質量%がより好ましく、60~80質量%がさらに好ましい。
 防汚塗料組成物の固形分が前記範囲の下限値以上であれば、VOC含有量が充分に低くなる。固形分が前記範囲の上限値以下であれば、防汚塗料組成物の粘度を低くしやすい。
 本発明の防汚塗料組成物の、25℃においてB型粘度計で測定される粘度は、10,000mPa・s未満であることが好ましく、7,000mPa・s未満が好ましく、5,000mPa・s未満がより好ましい。防汚塗料組成物の粘度が前記上限値以下であれば、塗装しやすい。
 防汚塗料組成物の粘度の下限は特に限定されないが、塗膜物性の点では、100mPa・s以上が好ましい。
 防汚塗料組成物の粘度は、樹脂組成物の粘度、樹脂組成物への溶剤の添加量等によって調整できる。
 本発明の防汚塗料組成物は、本発明の樹脂組成物を調製し、必要に応じて防汚剤や他の成分、溶剤を添加し、混合することにより調製できる。
 本発明の防汚塗料組成物は、船舶や各種の漁網、港湾施設、オイルフェンス、橋梁、海底基地等の水中構造物等の基材表面に塗膜(防汚塗膜)を形成する用途に使用できる。
 本発明の防汚塗料組成物を用いた塗膜は、基材表面に、直接に、又は下地塗膜を介して形成することができる。
 下地塗膜としては、ウォッシュプライマー、塩化ゴム系やエポキシ系等のプライマー、中塗り塗料等を用いて形成できる。
 塗膜の形成は、公知の方法により行うことができる。例えば、基材表面又は基材上の下地塗膜の上に、防汚塗料組成物を、刷毛塗り、吹き付け塗り、ローラー塗り、沈漬塗り等の手段で塗布し、乾燥することにより塗膜を形成できる。
 防汚塗料組成物の塗布量は、一般的には乾燥塗膜として10~400μmの厚さになる量に設定できる。
 塗膜の乾燥は、通常、室温で行うことができ、必要に応じて加熱乾燥を行ってもよい。
 以下、本発明を実施例及び比較例によりさらに詳しく説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、実施例中の部は質量部を表す。
 実施例中で用いた評価方法を以下に示す。
<評価方法>
(マクロモノマーの重量平均分子量(Mw)、数平均分子量(Mn))
 ゲル透過クロマトグラフィー(GPC)(東ソー株式会社製HLC-8320)を用いて測定した。マクロモノマーを0.2質量%になるようにテトラヒドロフラン溶液を調製し、東ソー社製カラム(TSKgelSuperHZM-M×HZM-M×HZ2000、TSKguardcolumn SuperHZ-L)が装着された装置に上記の溶液10μlを注入し、流量:0.35ml/分、溶離液:テトラヒドロフラン(安定剤BHT)、カラム温度:40℃の条件で測定を行った。標準ポリスチレン換算にて重量平均分子量(Mw)または数平均分子量(Mn)を算出した。
(共重合体の重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn))
 ゲル透過クロマトグラフィー(GPC)(東ソー株式会社製HLC-8320)を用いて測定した。(メタ)アクリル系共重合体を0.4質量%になるようにテトラヒドロフラン溶液を調製し、東ソー社製カラム(TSKgelG4000HXL*G2000HXL(東ソー株式会社製、7.8mm×30cm)、TSKguardcolumnHXL-L(東ソー株式会社製、6.0mm×4cm))が装着された装置に上記の溶液100μlを注入し、カラム温度:40℃の条件で測定を行った。標準ポリスチレン換算にて重量平均分子量(Mw)または数平均分子量(Mn)を算出した。算出したMw、Mnから分子量分布(Mw/Mn)を算出した。
(粘度)
 乾燥した粘度管(ガードナー気泡粘度管)に試料(樹脂組成物)を粘度管の指示線まで入れコルク栓で栓をした。この試料を採取した粘度管を、規定の温度(25.0±0.1℃)に調節した恒温水槽中に少なくとも2時間垂直に浸漬して試料を恒温にし、基準管となる粘度管と試料を入れた粘度管を同時に180°回転させ、試料のアワ上昇速度を基準管と比較することで粘度(ガードナー粘度)を決定した。
(固形分(加熱残分))
 試料(樹脂組成物)0.50gをアルミニウム製の皿に測りとり、トルエン3mLをスポイトで加えて皿の底に一様に広げ、予備乾燥を行った。予備乾燥は、測定試料を皿全体にのばし、本乾燥で溶剤を揮発させやすくするための処理である。予備乾燥では、70~80℃の水浴上で測定試料及びトルエンを加熱溶解させ、蒸発乾固させた。予備乾燥後、105℃の熱風乾燥機で2時間の本乾燥を行った。測定試料の予備乾燥前の質量(乾燥前質量)と、本乾燥後の質量(乾燥後質量)とから、以下の式により固形分(加熱残分)を求めた。
 固形分(質量%)=乾燥後質量/乾燥前質量×100
(消耗度)
 試料(防汚塗料組成物)を、50mm×50mm×2mm(厚さ)の硬質塩化ビニル板に、乾燥膜厚120μmになるようにアプリケーターで塗布し、乾燥して塗膜を形成し、試験板を得た。この試験板を、人工海水中に設置した回転ドラムに取り付け、周速7.7m/s(15ノット)で回転させて6カ月後の塗膜の膜厚を測定し、測定された膜厚から1ヶ月当りの消耗膜厚(μm/M){=(120-測定された膜厚(μm))/6}を算出した。消耗度は、1~150μm/Mの範囲内が好ましい。
(塗膜硬度)
 ガラス基板上に、500μmアプリケーターを用いて試料(樹脂組成物)を乾燥膜厚が80~150μmとなるように塗布し、25℃で1週間乾燥させて、試料の塗膜が形成された試験板を得た。この試験板の塗膜について、25℃において、超微小硬度計(株式会社フィッシャー・インストルメンツ製、商品名:HM2000)により塗膜硬度(マルテンス硬さ)を測定した。
 測定条件は、dQRST(F)/dt=一定、F(試験力)=10mN/10秒、C(最大荷重クリープ時間)=5秒、最大押し込み荷重=10mN、最大押し込み深さ=6μmとした。試験板の塗膜のそれぞれ異なる3カ所について塗膜硬度(マルテンス硬さ)を測定し、それらの平均値を塗膜の硬度とした。
 なお、マルテンス硬度は3.0~40.0N/mmの範囲であることが好ましく、4.0~20.0N/mmの範囲であることが好ましい。3.0N/mm以上であれば、塗膜硬度が十分に高く、40.0N/mm以下であれば、塗膜のクラック性が良好である。
(防汚性)
 あらかじめ防さび塗料が塗布してあるサンドブラスト板に試料(樹脂組成物又は防汚塗料組成物)を、乾燥膜厚が200μmになるように塗布して試験板を作製した。この塗膜に対し、愛知県内の湾にて3か月静置浸漬し、付着生物の付着面積(塗膜の全面積に対する、生物が付着している面積の割合)を調べた。以下の基準で防汚性を評価した。
◎(優):付着面積が5%未満
○(良):付着面積が5%以上~20%未満
△(可):付着面積が20%以上40%未満
×(不良):付着面積が40%以上
<製造例1:金属含有重合性単量体混合物(MM-Zn1)の製造>
 撹拌機、温度調整機、滴下ロートを備えた反応容器にPGM(プロピレングリコールメチルエーテル)85.4部及び酸化亜鉛40.7部を仕込み、撹拌しながら75℃に昇温した。続いて、滴下ロートからメタクリル酸43.1部、アクリル酸36.1部、水5部からなる混合物を3時間で等速滴下した。さらに2時間撹拌した後、PGMを36部添加して、固形分44.8質量%の透明な金属原子含有単量体混合物(MM-Zn1)を得た。
<製造例2:金属含有重合性単量体混合物(MM-Zn2)の製造>
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコにPGM72.4部および酸化亜鉛40.7部を仕込み、撹拌しながら75℃に昇温した。続いて、滴下ロートからメタクリル酸30.1部、アクリル酸25.2部、バーサチック酸51.6部からなる混合物を3時間で等速滴下した。さらに2時間撹拌した後PGMを11部添加して、固形分59.6質量%の透明な金属原子含有重合性単量体混合物(MM-Zn2)を得た。
<製造例3:分散剤1の製造>
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水900部、メタクリル酸2-スルホエチルナトリウム60部、メタクリル酸カリウム10部及びメチルメタクリレート(MMA)12部を入れて撹拌し、重合装置内を窒素置換しながら、50℃に昇温した。その中に、重合開始剤として2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩0.08部を添加し、更に60℃に昇温した。昇温後、滴下ポンプを使用して、MMAを0.24部/分の速度で75分間連続的に滴下した。反応溶液を60℃で6時間保持した後、室温に冷却して、透明な水溶液である固形分10質量%の分散剤1を得た。
<製造例4:連鎖移動剤1の製造>
 撹拌装置を備えた合成装置中に、窒素雰囲気下で、酢酸コバルト(II)四水和物1.00g及びジフェニルグリオキシム1.93g、あらかじめ窒素バブリングにより脱酸素したジエチルエーテル80mlを入れ、室温で30分間攪拌した。ついで、三フッ化ホウ素ジエチルエーテル錯体10mlを加え、さらに6時間攪拌した。混合物をろ過し、固体をジエチルエーテルで洗浄し、15時間真空乾燥して、赤褐色固体である連鎖移動剤1を2.12g得た。
<製造例5:マクロモノマー1の製造>
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.1部及び分散剤1(固形分10質量%)0.25部を入れて撹拌し、均一な水溶液とした。次に、MMAを100部、連鎖移動剤1を0.004部及び1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート(パーオクタO(登録商標)、日油株式会社製)0.40部を加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、80℃に昇温して1時間反応し、さらに重合率を上げるため、90℃に昇温して1時間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥することにより、マクロモノマー1を得た。マクロモノマー1の数平均分子量は3000、重量平均分子量は7000であった。
<製造例6:マクロモノマー2の製造>
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.1部及び分散剤1(固形分10質量%)0.25部を入れて撹拌し、均一な水溶液とした。次に、MMAの75部、2-メトキシエチルメタクリレート(2-MTMA)の25部、連鎖移動剤1の0.010部及び1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート(パーオクタO、日油株式会社製)の1.50部を加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、80℃に昇温して1時間反応し、さらに重合率を上げるため、90℃に昇温して1時間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥することにより、マクロモノマー2を得た。マクロモノマー2の数平均分子量は2000、重量平均分子量は3800であった。
<製造例7:マクロモノマー3の製造>
反応容器に仕込むマクロモノマーの種類及び仕込み量(部)、昇温後に滴下する混合物の組成を下記表1に示すように変更した点以外は、実施例1と同様にして、樹脂組成物を製造した。
Figure JPOXMLDOC01-appb-T000015
<製造例7>
 イソブチルビニルエーテル90.1部(0.9mol)、ヒドロキノン0.14部、フェノチアジン0.28部を室温で撹拌して均一になるまで混合した。空気(10ml/min)を吹込みながら、メタクリル酸51.7部(0.6mol)を、反応液の温度が60℃以下を保つようにして滴下した。滴下後、反応液の温度を80℃まで上げて、6時間反応させた。反応液にt-ブチルメチルエーテル158.7部(1.8mol)を加えて混合し、有機相を20質量%炭酸カリウム水溶液200部で1回洗浄した。有機相に4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル0.03部を加え、エバポレータにより低沸分を留出させた。得られた残渣を減圧蒸留して、沸点60℃/3torrの1-イソブトキシエチルメタクリレート(IBEMA)97.5部(0.52mol)を得た。
<実施例1>
 撹拌機、温度調整機、滴下ロートを備えた反応容器に、キシレン34部、PGM15部、EA4部、マクロモノマー1の18.5部を仕込み、撹拌しながら100℃に昇温した。続いて、滴下ロートから、エチルアクリレート(EA)の51.8部、金属原子含有単量体混合物(MM-Zn1)の21.6部、ポリシロキサンブロック含有重合性単量体(JNC(株)製、FM-0711)20部、2,2-アゾビス(イソブチロニトリル)(AIBN)の0.5部、2,2-アゾビス(2-メチルブチロニトリル)(AMBN)の0.7部、連鎖移動剤(日油株式会社製、ノフマー(登録商標)MSD、α-メチルスチレンダイマー)の1.2部、キシレン5部からなる混合物を6時間かけて等速滴下した。
滴下終了後、キシレン3部を添加した後、t-ブチルパーオキシオクトエート0.5部とキシレン4部を30分間隔で4回滴下し、さらに1時間撹拌した後、キシレン8部を添加し、固形分56.0質量%、粘度STの溶液状の樹脂組成物を得た。
<実施例2~5、比較例1~2>
 反応容器に仕込むマクロモノマーの種類及び仕込み量(部)、昇温後に滴下する混合物の組成を下記表2及び表4に示すように変更した点以外は、実施例1と同様にして、樹脂組成物を製造した。
<実施例6>
 撹拌機、温度調整機、滴下ロートを備えた反応容器に、キシレンの50部、マクロモノマー2の20部を仕込み、撹拌しながら90℃に昇温した。続いて、滴下ロートからIBEMAの25部、FM-0711(商品名、JNC(株)製)の20部、エチルアクリレートの35部、AMBN0.5部からなる混合物を4時間かけて等速滴下した。滴下終了後、AMBN2.0部とキシレン4.0部を30分かけて等速滴下し、さらに2時間撹拌した後、イソブチルビニルエーテル6.7部、酢酸ブチル3部を添加し、固形分61.0質量%、ガードナー粘度+Jの重合体溶液(樹脂組成物)A-6を得た。
<実施例7、比較例3~4>
 反応容器に仕込むマクロモノマーの種類及び仕込み量(部)、昇温後に滴下する混合物の組成を下記表2及び表4に示すように変更した点以外は、実施例6と同様にして、樹脂組成物を製造した。
<実施例8~26,31,32>
反応容器に仕込むマクロモノマーの種類及び仕込み量(部)、昇温後に滴下する混合物の組成を下記表2~表4に示すように変更した点以外は、実施例1と同様にして、樹脂組成物を製造した。
<実施例27~28>
反応容器に仕込むマクロモノマーの種類及び仕込み量(部)、昇温後に滴下する混合物の組成を下記表4に示すように変更した点以外は、実施例6と同様にして、樹脂組成物を製造した。
<実施例29~30>
 反応容器に仕込むマクロモノマーの種類及び仕込み量(部)、昇温後に滴下する混合物の組成を下記表4に示すように変更した点以外は、実施例7と同様にして、樹脂組成物を製造した。
 下記表2~表4に、実施例1~32、比較例1~4で得られた樹脂組成物の特性(粘度、固形分(質量%))、各樹脂組成物に含まれる共重合体の特性(数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布)、及び評価結果(塗膜硬度)を記載した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表2~4中、仕込み単量体、混合物組成の欄に示す略号はそれぞれ以下の材料を示す。また、各欄に記載の数値は、各材料の仕込み量(部)を示す。
 マクロモノマー1、2:各々、製造例5、6で得たマクロモノマー1、2。
 MMA:メチルメタクリレート。
 EA:エチルアクリレート。
 MM-Zn1:製造例1で得た金属原子含有単量体混合物(MM-Zn1)。
 MM-Zn2:製造例2で得た金属原子含有単量体混合物(MM-Zn2)。
 IBEMA:製造例7で得た合成品、1-イソブトキシエチルメタクリレート。
 FM-0711:商品名、JNC株式会社製(前記式(b1)中のvが0、R3a~R3fがメチル基、wが3、xが10である片末端型ポリシロキサンブロック含有重合性単量体)。
 X-24-8201:商品名、信越化学社製(前記式(b1)中のvが0、R3a~R3fがメチル基、wが3、xが25である片末端型ポリシロキサンブロック含有重合性単量体)。
 FM-7721:商品名、JNC株式会社製(前記式(b4)中のvが0、R3a~R3fがメチル基、wが3、xが65である両末端型ポリシロキサンブロック含有重合性単量体)。
 AIBN:2,2’-アゾビス(イソブチロニトリル)。
 AMBN:2,2’-アゾビス(2-メチルブチロニトリル)。
 ノフマーMSD:商品名、日油株式会社製、α-メチルスチレンダイマー。
CHMA:シクロヘキシルメタクリレート。
BA:ブチルアクリレート。
MTA:2-メトキシエチルアクリレート。
AA-6:東亜合成製MMAマクロモノマー(数平均分子量6000)。
<実施例33~71、比較例5~8>
 下記表5~8に示す配合に従い、各成分を高速ディスパーにより混合して、防汚塗料組成物を得た。得られた防汚塗料組成物を用いて及び防汚性消耗度を評価した。結果を下記表5~8に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 表5~8中に示す略号はそれぞれ以下の材料を示す。また、各欄に記載の数値は、各材料の仕込み量(部)を示す。樹脂組成物A-1~A-11の仕込み量は、各樹脂組成物の総質量を示す。
 KF-6016:商品名、信越化学工業(株)製、ポリエーテル変性シリコーンオイル。
 トヨパラックス(登録商標)150:東ソー(株)製、塩素化パラフィン。
 ディスパロン(登録商標)4200-20:楠本化成(株)製、酸化ポリエチレンワックス。
 ディスパロンA603-20X:楠本化成(株)製、ポリアマイドワックス。
 実施例1~32の樹脂組成物は、高固形分かつ低粘度であった。また、塗膜硬度が充分に高いことが確認できた。
 構成単位(A3)を有する比較例1~2は、マクロモノマーを併用していないため、実施例1~5等と比べて低固形分であるにもかかわらず、高粘度であった。また、塗膜硬度も劣っていた。
 同様に、構成単位(A1)を有する比較例3、構成単位(A2)を有する比較例4はそれぞれ、実施例6と比べて、実施例7と比べて低固形分であるにもかかわらず、高粘度であった。また、塗膜硬度も劣っていた。
 実施例1~32の樹脂組成物を用いた実施例33~71の防汚塗料組成物の塗膜はいずれも、良好な消耗度及び防汚性を示した。

Claims (11)

  1.  下記式(1)、下記式(2)又は下記式(3)で表される構造(I)の少なくとも1種を有する構成単位(A1)、トリオルガノシリルオキシカルボニル基を有する構成単位(A2)、及び下記式(4)又は下記式(5)で表される構造(III)の少なくとも1種を有する構成単位(A3)からなる群から選ばれる少なくとも1種の構成単位(A)と、
     下記式(b1)で表される重合性単量体、下記式(b2)で表される重合性単量体、下記式(b3)で表される重合性単量体及び下記式(b4)で表される重合性単量体からなる群から選ばれる少なくとも1種のポリシロキサンブロック含有重合性単量体(b)由来の構成単位(B)と、
     マクロモノマー(c)由来の構成単位(C)と、
    を有する、(メタ)アクリル系共重合体。
    Figure JPOXMLDOC01-appb-C000001
     -COO-M-OCO-  ・・・(4)
     -COO-M-R22  ・・・(5)
     CH=CR3a-CO-O-(C2u-O)-C2w-(SiR3b3c-O)-SiR3d3e3f ・・・(b1)
     CH=CR4a-CO-O-(Cu’2u’-O)v’-Cw’2w’-Si(OSiR4b4c4d ・・・(b2)
     CH=CR2a-CO-O-(Ck’2k’-O)l’-Cm’2m’-Si((OSiR2b2c-OSiR2d2e2f-OSi((OSiR2g2h-OSiR2i2j2k-Cо’2о’-(O-Cp’2p’q’-O-CO-CR2l=CH ・・・(b3)
     CH=CR1a-CO-O-(C2k-O)-C2m-(SiR1b1c-O)-SiR1d1e-Cо2о-(O-C2p-O-CO-CR1f=CH ・・・(b4)
    (式(1)~(5),(b1)~(b4)中、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、R及びRはそれぞれ、水素原子又は炭素数1~10のアルキル基を示し、R及びRはそれぞれ、炭素数1~20のアルキル基、シクロアルキル基又はアリール基を示し、R及びRはそれぞれ、炭素数1~10のアルキレン基を示し、
     MはZn、Cu、Mg又はCaを示し、R22は一価の有機酸残基を示し、
     R3aは水素原子又はメチル基を示し、uは2~5の整数を示し、vは0~50の数を示し、wは2~5の整数を示し、xは3~80の数を示し、R3b~R3fはそれぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示し、
     R4aは水素原子又はメチル基を示し、u’は2~5の整数を示し、v’は0~50の数を示し、w’は2~5の整数を示し、R4b~R4dはそれぞれアルキル基、-(OSiR5152-OSiR535455(ここで、yは0~20の整数、R51~R55はアルキル基を示す。)、又は-R56-(OCy’-OR57(ここで、y’は1~20の整数、R56はアルキレン基、R57はアルキル基を示す。)を示し、
     R2a及びR2lはそれぞれ水素原子又はメチル基を示し、k’及びp’はそれぞれ2~5の整数を示し、l’及びq’はそれぞれ0~50の数を示し、m’及びo’はそれぞれ2~5の整数を示し、r及びsはそれぞれ0~20の数を示し、R2b~R2kはそれぞれアルキル基を示し、
     R1a及びR1fはそれぞれ水素原子又はメチル基を示し、k及びpはそれぞれ2~5の整数を示し、l及びqはそれぞれ0~50の数を示し、m及びoはそれぞれ2~5の整数を示し、nは3~80の数を示し、R1b~R1eはそれぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示す。)
  2.  前記マクロモノマー(c)が、下記式(c’)で表される構成単位を2以上有する、請求項1に記載の(メタ)アクリル系共重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式(c’)中、R41は水素原子、メチル基又はCHOHを示し、R42はOR43、ハロゲン原子、COR44、COOR45、CN、CONR4647又はR48を示す。R43~R47はそれぞれ独立に水素原子、非置換の若しくは置換基を有するアルキル基、非置換の若しくは置換基を有する脂環式基、非置換の若しくは置換基を有するアリール基、非置換の若しくは置換基を有するへテロアリール基、非置換の若しくは置換基を有する非芳香族の複素環式基、非置換の若しくは置換基を有するアラルキル基、非置換の若しくは置換基を有するアルカリール基、又は非置換の若しくは置換基を有するオルガノシリル基を示し、R48は非置換の若しくは置換基を有するアリール基又は非置換の若しくは置換基を有するヘテロアリール基を示す。)
  3.  前記マクロモノマー(c)の数平均分子量が500~50000である、請求項1又は2に記載の(メタ)アクリル系共重合体。
  4.  下記式(1)、下記式(2)又は下記式(3)で表される構造(I)の少なくとも1種を有する重合性単量体(a1)、トリオルガノシリルオキシカルボニル基を有する重合性単量体(a2)、及び下記式(4)又は下記式(5)で表される構造(III)の少なくとも1種を有する重合性単量体(a3)からなる群から選ばれる少なくとも1種の重合性単量体(a)と、
     下記式(b1)で表される重合性単量体、下記式(b2)で表される重合性単量体、下記式(b3)で表される重合性単量体及び下記式(b4)で表される重合性単量体からなる群から選ばれる少なくとも1種のポリシロキサンブロック含有重合性単量体(b)と、
     マクロモノマー(c)と、
    を含む単量体混合物を重合して(メタ)アクリル系共重合体を得る工程を有する、(メタ)アクリル系共重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     -COO-M-OCO-  ・・・(4)
     -COO-M-R22  ・・・(5)
     CH=CR3a-CO-O-(C2u-O)-C2w-(SiR3b3c-O)-SiR3d3e3f ・・・(b1)
     CH=CR4a-CO-O-(Cu’2u’-O)v’-Cw’2w’-Si(OSiR4b4c4d ・・・(b2)
     CH=CR2a-CO-O-(Ck’2k’-O)l’-Cm’2m’-Si((OSiR2b2c-OSiR2d2e2f-OSi((OSiR2g2h-OSiR2i2j2k-Cо’2о’-(O-Cp’2p’q’-O-CO-CR2l=CH ・・・(b3)
     CH=CR1a-CO-O-(C2k-O)-C2m-(SiR1b1c-O)-SiR1d1e-Cо2о-(O-C2p-O-CO-CR1f=CH ・・・(b4)
    (式(1)~(5),(b1)~(b4)中、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、R及びRはそれぞれ、水素原子又は炭素数1~10のアルキル基を示し、R及びRはそれぞれ、炭素数1~20のアルキル基、シクロアルキル基又はアリール基を示し、R及びRはそれぞれ、炭素数1~10のアルキレン基を示し、
     MはZn、Cu、Mg又はCaを示し、R22は一価の有機酸残基を示し、
     R3aは水素原子又はメチル基を示し、uは2~5の整数を示し、vは0~50の数を示し、wは2~5の整数を示し、xは3~80の数を示し、R3b~R3fはそれぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示し、
     R4aは水素原子又はメチル基を示し、u’は2~5の整数を示し、v’は0~50の数を示し、w’は2~5の整数を示し、R4b~R4dはそれぞれアルキル基、-(OSiR5152-OSiR535455(ここで、yは0~20の整数、R51~R55はアルキル基を示す。)、又は-R56-(OCy’-OR57(ここで、y’は1~20の整数、R56はアルキレン基、R57はアルキル基を示す。)を示し、
     R2a及びR2lはそれぞれ水素原子又はメチル基を示し、k’及びp’はそれぞれ2~5の整数を示し、l’及びq’はそれぞれ0~50の数を示し、m’及びo’はそれぞれ2~5の整数を示し、r及びsはそれぞれ0~20の数を示し、R2b~R2kはそれぞれアルキル基を示し、
     R1a及びR1fはそれぞれ水素原子又はメチル基を示し、k及びpはそれぞれ2~5の整数を示し、l及びqはそれぞれ0~50の数を示し、m及びoはそれぞれ2~5の整数を示し、nは3~80の数を示し、R1b~R1eはそれぞれアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基又は置換フェノキシ基を示す。)
  5.  請求項1~3のいずれか一項に記載の(メタ)アクリル系共重合体を含む樹脂組成物。
  6.  シリコーンオイルをさらに含む請求項5に記載の樹脂組成物。
  7.  有機溶剤をさらに含む請求項5又は6に記載の樹脂組成物。
  8.  前記(メタ)アクリル系共重合体が、前記構成単位(A1)を有し、
     下記式(31)で表される化合物、下記式(32)で表される化合物、及び下記式(33)で表される化合物からなる群から選ばれる少なくとも1種の化合物(Y)をさらに含む請求項5~7のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(31)~(33)中、Xは-O-、-S-又は-NR14-を示し、R14は水素原子又はアルキル基を示し、Rは、水素原子又は炭素数1~9のアルキル基を示し、Rは、水素原子又は炭素数1~10のアルキル基を示し、R及びR11はそれぞれ、炭素数1~20のアルキル基、シクロアルキル基又はアリール基を示し、R10は、単結合、又は炭素数1~9のアルキレン基を示し、R12は、炭素数1~9のアルキレン基を示す。)
  9.  請求項5~8のいずれか一項に記載の樹脂組成物を含む防汚塗料組成物。
  10.  防汚剤をさらに含む請求項9に記載の防汚塗料組成物。
  11.  前記(メタ)アクリル系共重合体以外の熱可塑性樹脂をさらに含む請求項9又は10に記載の防汚塗料組成物。
PCT/JP2018/012652 2017-03-29 2018-03-28 (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物 WO2018181429A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880021086.2A CN110506064B (zh) 2017-03-29 2018-03-28 (甲基)丙烯酸系共聚物、其制造方法、树脂组合物和防污涂料组合物
KR1020197027421A KR102246138B1 (ko) 2017-03-29 2018-03-28 (메트)아크릴계 공중합체, 그의 제조 방법, 수지 조성물 및 방오 도료 조성물
EP18776410.5A EP3604369B1 (en) 2017-03-29 2018-03-28 (meth)acrylic copolymer, method for producing same, resin composition and antifouling paint composition
JP2019509947A JP7056648B2 (ja) 2017-03-29 2018-03-28 樹脂組成物、その製造方法及び防汚塗料組成物
SG11201908747Y SG11201908747YA (en) 2017-03-29 2018-03-28 (meth)acrylic copolymer, method for producing same, resin composition and antifouling paint composition
US16/582,074 US11414508B2 (en) 2017-03-29 2019-09-25 Resin composition with a (meth)acrylic copolymer, antifouling paint composition, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066013 2017-03-29
JP2017-066013 2017-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/582,074 Continuation US11414508B2 (en) 2017-03-29 2019-09-25 Resin composition with a (meth)acrylic copolymer, antifouling paint composition, and method for producing same

Publications (1)

Publication Number Publication Date
WO2018181429A1 true WO2018181429A1 (ja) 2018-10-04

Family

ID=63677273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012652 WO2018181429A1 (ja) 2017-03-29 2018-03-28 (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物

Country Status (8)

Country Link
US (1) US11414508B2 (ja)
EP (1) EP3604369B1 (ja)
JP (1) JP7056648B2 (ja)
KR (1) KR102246138B1 (ja)
CN (1) CN110506064B (ja)
SG (1) SG11201908747YA (ja)
TW (1) TWI758448B (ja)
WO (1) WO2018181429A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062555A (ja) * 2016-10-12 2018-04-19 三菱ケミカル株式会社 (メタ)アクリル系共重合体、樹脂組成物、防汚塗料組成物および(メタ)アクリル系共重合体の製造方法
CN110527099A (zh) * 2019-09-02 2019-12-03 陕西宝塔山油漆股份有限公司 一种零异氰酸酯室温固化的聚硅氧烷接枝改性丙烯酸酯树脂及合成方法
WO2019230675A1 (ja) * 2018-06-01 2019-12-05 三菱ケミカル株式会社 防汚塗料組成物
US11905432B2 (en) * 2022-06-28 2024-02-20 Nippon Paint Marine Coatings Co., Ltd. Coating composition and coating film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109952328A (zh) * 2016-11-17 2019-06-28 三菱化学株式会社 (甲基)丙烯酸系共聚物、涂料组合物、涂装物及复层涂膜的形成方法
US20240124630A1 (en) * 2019-11-21 2024-04-18 Dow Global Technologies Llc Multistage polymer
CN111607092B (zh) * 2020-04-02 2022-04-26 安徽嘉智信诺化工股份有限公司 一种环氧基硅油改性丙烯酸酯防涂鸦乳液的制备方法
CN112619204B (zh) * 2020-12-31 2022-04-08 浙江锦华新材料股份有限公司 一种深度脱水干燥剂及其在合成甲基三丁酮肟基硅烷的应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103671A (ja) 1990-08-24 1992-04-06 Dainippon Ink & Chem Inc 防汚塗料用組成物
JPH07102193A (ja) * 1993-09-30 1995-04-18 Nippon Oil & Fats Co Ltd 塗料組成物
JPH08269389A (ja) * 1995-03-30 1996-10-15 Nippon Oil & Fats Co Ltd 塗料組成物
JPH08269388A (ja) * 1995-03-29 1996-10-15 Nippon Oil & Fats Co Ltd 塗料組成物
JPH11116857A (ja) * 1997-10-17 1999-04-27 Nof Corp 塗料組成物
JP2000248029A (ja) * 1998-12-28 2000-09-12 Chugoku Marine Paints Ltd シリル(メタ)アクリレート共重合体およびその製造方法
JP2004300410A (ja) 2003-03-14 2004-10-28 Mitsubishi Rayon Co Ltd 塗料組成物及び共重合体
WO2011046087A1 (ja) 2009-10-13 2011-04-21 日本ペイントマリン株式会社 防汚塗料組成物、ならびに防汚塗膜、複合塗膜および水中構造物
JP2011523969A (ja) * 2008-06-11 2011-08-25 ヨツン エーエス 防汚塗料組成物用バインダーおよびバインダーを含む防汚塗料組成物
WO2011162129A1 (ja) * 2010-06-23 2011-12-29 日本ペイントマリン株式会社 防汚塗膜の形成方法
WO2013108880A1 (ja) * 2012-01-18 2013-07-25 三菱レイヨン株式会社 ビニル系ポリマーの製造方法およびビニル系ポリマーを含む水性防汚塗料用樹脂組成物
WO2017051922A1 (ja) * 2015-09-25 2017-03-30 三菱レイヨン株式会社 (メタ)アクリル系共重合体、重合体溶液、重合体含有組成物、防汚塗料組成物及び(メタ)アクリル系共重合体の製造方法
JP2017066013A (ja) 2015-10-02 2017-04-06 アイカ工業株式会社 セメント混和用アクリル樹脂エマルジョン
WO2017065172A1 (ja) * 2015-10-13 2017-04-20 三菱レイヨン株式会社 (メタ)アクリル系共重合体、樹脂組成物、防汚塗料組成物及び(メタ)アクリル系共重合体の製造方法
JP2018062555A (ja) * 2016-10-12 2018-04-19 三菱ケミカル株式会社 (メタ)アクリル系共重合体、樹脂組成物、防汚塗料組成物および(メタ)アクリル系共重合体の製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556672B1 (ja) 1971-07-19 1980-02-19
US4659781A (en) 1983-05-19 1987-04-21 Nippon Paint Co., Ltd. Reactive acrylic oligomer, grafted acrylic resinous composition based on said oligomer and coating composition containing the same
JPH01103671A (ja) 1987-07-06 1989-04-20 Aisin Chem Co Ltd 高防錆クリア塗膜
US5053461A (en) 1988-08-31 1991-10-01 Mitsubishi Rayon Co., Ltd. Preparation method of comb copolymer, acrylic comb copolymer, and impact resistant resin composition
JP2802076B2 (ja) 1988-08-31 1998-09-21 三菱レイヨン株式会社 くし形共重合体の製造方法
JPH0656751B2 (ja) * 1989-10-13 1994-07-27 日本電子株式会社 二次電子検出器
JPH0656A (ja) * 1992-06-17 1994-01-11 Satoru Nakajima 鮭の骨を活用した缶詰の製法
US5258189A (en) * 1992-08-28 1993-11-02 General Mills, Inc. Method for making vitamin enriched cereal
EP0759946B1 (en) 1994-05-19 2005-01-26 E.I. Du Pont De Nemours And Company Coatings comprising self-stabilized lattices prepared in an aqueous carrier
JP3358872B2 (ja) 1994-06-28 2002-12-24 日本エヌエスシー株式会社 プライマー用水性液
MY115462A (en) 1995-06-01 2003-06-30 Chugoku Marine Paints Antifouling coating composition, coating film formed from said antifouling coating composition, antifouling method using said antifouling coating composition and hull or underwater structure coated with said coating film
CA2210042A1 (en) 1996-07-23 1998-01-23 Edward Ewart Lafleur Compatible and miscible copolymer compositions
JP2000063708A (ja) 1998-08-25 2000-02-29 Kansai Paint Co Ltd 防汚塗料組成物
PL200670B1 (pl) * 1998-12-28 2009-01-30 Chugoku Marine Paints Kopolimer sililo(met)akrylanowy, sposób jego wytwarzania, przeciwporostowa kompozycja do malowania zawierająca kopolimer sililo(met)akrylanowy oraz jej zastosowanie
JP4647060B2 (ja) * 2000-05-12 2011-03-09 中国塗料株式会社 防汚塗料組成物、防汚塗膜、該防汚塗膜で被覆された船舶または水中構造物ならびに船舶外板または水中構造物の防汚方法
JP3483524B2 (ja) 2000-06-28 2004-01-06 三菱レイヨン株式会社 金属含有樹脂組成物および防汚性塗料組成物
JP4361239B2 (ja) 2002-03-06 2009-11-11 中国塗料株式会社 防汚塗料組成物、該組成物からなる塗膜、該塗膜で被覆された基材、および防汚方法
JP2003277680A (ja) 2002-03-27 2003-10-02 Kansai Paint Co Ltd 水性防汚樹脂組成物
TWI303654B (en) 2003-03-14 2008-12-01 Mitsubishi Rayon Co Antifouling coating composition
JP4303566B2 (ja) 2003-11-19 2009-07-29 共栄社化学株式会社 熱硬化被膜形成組成物用の表面調整剤
JP5466347B2 (ja) 2004-09-08 2014-04-09 中国塗料株式会社 防汚塗料組成物、その塗膜、該塗膜で被覆された船舶または水中構造物及び防汚方法
JP2011026357A (ja) 2007-11-21 2011-02-10 Nitto Kasei Co Ltd 防汚塗料組成物、該組成物の製造方法、該組成物を用いて形成される防汚塗膜、該塗膜を表面に有する塗装物、及び該塗膜を形成する防汚処理方法
WO2009145223A1 (ja) 2008-05-27 2009-12-03 関西ペイント株式会社 水性塗料組成物
JP5489273B2 (ja) * 2010-02-12 2014-05-14 河西工業株式会社 車両用内装部品
US20130058889A1 (en) 2010-04-06 2013-03-07 Mitsubishi Rayon Co., Ltd. Antifouling paint composition, production method of antifouling paint film, and antifouling paint film
CN103052492B (zh) 2010-08-06 2014-12-31 综研化学株式会社 纳米压印用树脂制模具
IN2014DN03423A (ja) 2011-11-14 2015-06-05 Chugoku Marine Paints
KR101447775B1 (ko) 2012-05-08 2014-10-06 (주)엘지하우시스 감촉 특성이 우수한 코팅 조성물, 그 제조방법 및 이를 이용한 전사시트
JP5958157B2 (ja) 2012-08-02 2016-07-27 株式会社Lixil 塗膜形成方法
JP5452756B1 (ja) * 2013-07-02 2014-03-26 Hoya株式会社 親水性表面を有するシリコーン含有共重合体成形品を作製する方法及び親水性表面を有するシリコーンハイドロゲルコンタクトレンズ
TWI773060B (zh) 2013-11-29 2022-08-01 日商三菱化學股份有限公司 黏著劑組成物及黏著片
SG11201707659QA (en) 2015-04-16 2017-10-30 Mitsubishi Chem Corp Antifouling coating composition

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103671A (ja) 1990-08-24 1992-04-06 Dainippon Ink & Chem Inc 防汚塗料用組成物
JPH07102193A (ja) * 1993-09-30 1995-04-18 Nippon Oil & Fats Co Ltd 塗料組成物
JPH08269388A (ja) * 1995-03-29 1996-10-15 Nippon Oil & Fats Co Ltd 塗料組成物
JPH08269389A (ja) * 1995-03-30 1996-10-15 Nippon Oil & Fats Co Ltd 塗料組成物
JPH11116857A (ja) * 1997-10-17 1999-04-27 Nof Corp 塗料組成物
JP2000248029A (ja) * 1998-12-28 2000-09-12 Chugoku Marine Paints Ltd シリル(メタ)アクリレート共重合体およびその製造方法
JP2004300410A (ja) 2003-03-14 2004-10-28 Mitsubishi Rayon Co Ltd 塗料組成物及び共重合体
JP2011523969A (ja) * 2008-06-11 2011-08-25 ヨツン エーエス 防汚塗料組成物用バインダーおよびバインダーを含む防汚塗料組成物
WO2011046087A1 (ja) 2009-10-13 2011-04-21 日本ペイントマリン株式会社 防汚塗料組成物、ならびに防汚塗膜、複合塗膜および水中構造物
WO2011162129A1 (ja) * 2010-06-23 2011-12-29 日本ペイントマリン株式会社 防汚塗膜の形成方法
WO2013108880A1 (ja) * 2012-01-18 2013-07-25 三菱レイヨン株式会社 ビニル系ポリマーの製造方法およびビニル系ポリマーを含む水性防汚塗料用樹脂組成物
WO2017051922A1 (ja) * 2015-09-25 2017-03-30 三菱レイヨン株式会社 (メタ)アクリル系共重合体、重合体溶液、重合体含有組成物、防汚塗料組成物及び(メタ)アクリル系共重合体の製造方法
JP2017066013A (ja) 2015-10-02 2017-04-06 アイカ工業株式会社 セメント混和用アクリル樹脂エマルジョン
WO2017065172A1 (ja) * 2015-10-13 2017-04-20 三菱レイヨン株式会社 (メタ)アクリル系共重合体、樹脂組成物、防汚塗料組成物及び(メタ)アクリル系共重合体の製造方法
JP2018062555A (ja) * 2016-10-12 2018-04-19 三菱ケミカル株式会社 (メタ)アクリル系共重合体、樹脂組成物、防汚塗料組成物および(メタ)アクリル系共重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604369A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062555A (ja) * 2016-10-12 2018-04-19 三菱ケミカル株式会社 (メタ)アクリル系共重合体、樹脂組成物、防汚塗料組成物および(メタ)アクリル系共重合体の製造方法
WO2019230675A1 (ja) * 2018-06-01 2019-12-05 三菱ケミカル株式会社 防汚塗料組成物
JPWO2019230675A1 (ja) * 2018-06-01 2021-06-03 三菱ケミカル株式会社 防汚塗料組成物
JP7413781B2 (ja) 2018-06-01 2024-01-16 三菱ケミカル株式会社 防汚塗料組成物
CN110527099A (zh) * 2019-09-02 2019-12-03 陕西宝塔山油漆股份有限公司 一种零异氰酸酯室温固化的聚硅氧烷接枝改性丙烯酸酯树脂及合成方法
US11905432B2 (en) * 2022-06-28 2024-02-20 Nippon Paint Marine Coatings Co., Ltd. Coating composition and coating film

Also Published As

Publication number Publication date
JPWO2018181429A1 (ja) 2020-02-06
TW201837110A (zh) 2018-10-16
US20200017617A1 (en) 2020-01-16
KR20190115088A (ko) 2019-10-10
SG11201908747YA (en) 2019-10-30
EP3604369B1 (en) 2021-09-01
CN110506064B (zh) 2022-06-03
US11414508B2 (en) 2022-08-16
TWI758448B (zh) 2022-03-21
EP3604369A1 (en) 2020-02-05
EP3604369A4 (en) 2020-04-01
KR102246138B1 (ko) 2021-04-30
JP7056648B2 (ja) 2022-04-19
CN110506064A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
US11643489B2 (en) (Meth)acrylic copolymer, polymer solution, polymer-containing composition, anti-fouling coating composition, and method for producing (meth)acrylic copolymer
CN107207819B (zh) 防污涂料组合物
WO2018181429A1 (ja) (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物
JP7327605B2 (ja) (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物
CN108137751B (zh) (甲基)丙烯酸系共聚物及其制造方法、树脂组合物、防污涂料组合物
JP6866603B2 (ja) 樹脂組成物、防汚塗料組成物および樹脂組成物の製造方法
WO2022210547A1 (ja) 化合物、重合体及び防汚塗料組成物
JP6922349B2 (ja) 防汚塗料組成物および防汚塗料組成物の製造方法
WO2022210521A1 (ja) 化合物、重合体及び防汚塗料組成物
WO2019230675A1 (ja) 防汚塗料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509947

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018776410

Country of ref document: EP

Effective date: 20191029