WO2011162129A1 - 防汚塗膜の形成方法 - Google Patents

防汚塗膜の形成方法 Download PDF

Info

Publication number
WO2011162129A1
WO2011162129A1 PCT/JP2011/063596 JP2011063596W WO2011162129A1 WO 2011162129 A1 WO2011162129 A1 WO 2011162129A1 JP 2011063596 W JP2011063596 W JP 2011063596W WO 2011162129 A1 WO2011162129 A1 WO 2011162129A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
general formula
parts
group
coating film
Prior art date
Application number
PCT/JP2011/063596
Other languages
English (en)
French (fr)
Inventor
亮 江原
晴康 南
宗一郎 富山
Original Assignee
日本ペイントマリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイントマリン株式会社 filed Critical 日本ペイントマリン株式会社
Priority to CN201180018425XA priority Critical patent/CN102821872A/zh
Priority to EP16172513.0A priority patent/EP3135389B1/en
Priority to EP11798015.1A priority patent/EP2537596B1/en
Priority to SG2012053500A priority patent/SG186048A1/en
Priority to US13/576,865 priority patent/US8936854B2/en
Priority to KR1020127020673A priority patent/KR101255971B1/ko
Publication of WO2011162129A1 publication Critical patent/WO2011162129A1/ja
Priority to US14/586,155 priority patent/US9695324B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • C09D5/165Macromolecular compounds containing hydrolysable groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/483Polyacrylates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/10Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1675Polyorganosiloxane-containing compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to a method of forming an antifouling coating film on an object to be coated such as a ship or a power plant. More specifically, the antifouling coating film having a predetermined dry film thickness is formed almost uniformly and simply. Regarding the method.
  • Antifouling paint is painted on the surface of underwater structures such as ships and power plants to prevent the attachment of aquatic organisms such as barnacles, mussels and algae.
  • Underwater structures to which antifouling paint is applied are usually large, so antifouling paint is often applied using a crane vehicle, but the entire surface of a large area underwater structure It is not easy to apply the antifouling paint uniformly and with a predetermined film thickness.
  • the antifouling paint has a predetermined dry film thickness range (especially the minimum film thickness) necessary for exhibiting the initial coating film performance (such as antifouling performance). If it is less than that, even if the portion where the film thickness is insufficient is a part of the entire surface, the initial antifouling performance cannot be imparted to the underwater structure, and the effective antifouling period is effectively shortened.
  • Patent Document 1 discloses a completely concealing coating film having a color difference between a film thickness judgment antifouling paint and an object to be coated, and a target dry film thickness ( Target dry film thickness-50) Color difference between paint film with dry film thickness of less than ⁇ m and color difference between completely concealed paint film with target dry film thickness and paint film with dry film thickness exceeding (target dry film thickness +50) ⁇ m Discloses a method of forming an antifouling coating film using a film thickness determining antifouling paint in which the content of the antifouling agent and the color pigment is not more than a predetermined value.
  • a film thickness judgment antifouling paint whether or not the coating film has reached a predetermined film thickness can be determined by visually observing the change in color difference between the coating film being coated and the object to be coated. It is possible to apply the antifouling paint almost uniformly and simply without excessive or insufficient film thickness.
  • the film thickness determination antifouling paint described in Patent Document 1 has a relatively small color difference between the coating film having the target dry film thickness and the coating film immediately before the target dry film thickness, In some cases, it may be difficult to determine whether the coating film being applied has reached a predetermined film thickness, and there is room for improvement.
  • the present invention has been made to solve the above-mentioned problems, and the object thereof is to determine very easily whether or not the coating film being coated has reached a predetermined film thickness. It is to provide a method capable of forming a uniform antifouling coating film having a dry film thickness more accurately and more simply.
  • the present invention is a method for forming an antifouling coating film on the surface of an object to be coated, and includes the following steps [1] and [2].
  • a colored antifouling paint comprising a hydrolyzable resin and a coloring pigment, wherein the following conditions (a) to (c):
  • the color difference ⁇ E1 between the paint film formed from the colored antifouling paint having the target dry film thickness T and the paint film formed from the colored antifouling paint having a dry film thickness of 0.8T is 2.0 or more.
  • the hydrolyzable resin includes a hydrolyzable resin (i) and / or a hydrolyzable resin (ii).
  • a step of preparing a colored antifouling paint satisfying [2] A step of applying the colored antifouling paint onto the surface of the object to be coated until the surface of the object to be coated is completely concealed by the coating film made of the colored antifouling paint
  • hydrolyzable resin (i) is represented by the following general formula (I):
  • a and b each independently represent an integer of 2 to 5
  • m represents an integer of 0 to 50
  • n represents an integer of 3 to 80
  • R 1 to R 5 each independently represents an alkyl group, an alkoxy group, a phenyl group, a substituted phenyl group, a phenoxy group or a substituted phenoxy group.
  • c and d each independently represents an integer of 2 to 5, and p represents an integer of 0 to 50.
  • R 6 , R 7 and R 8 each independently represents an alkyl group, R a or R b .
  • R 23 to R 27 are the same or different and each represents an alkyl group).
  • R b is
  • a hydrolyzable resin having at least one silicon-containing group selected from the group consisting of groups represented by formula (I) and a metal atom-containing group containing a divalent metal atom M.
  • the hydrolyzable resin (ii) includes at least one silicon-containing group selected from the group consisting of the groups represented by the general formulas (I), (II), (III) and (IV), The following general formula (V):
  • R 40 , R 41 and R 42 are the same or different and each represents a hydrocarbon residue having 1 to 20 carbon atoms.
  • the color difference ⁇ E1 is preferably 2.5 or more.
  • the colored antifouling paint has the following condition (d): (D) The color difference ⁇ E2 between the coating film formed from the colored antifouling paint having the target dry film thickness T and the coating film formed from the colored antifouling paint having a dry film thickness of 1.2T is less than 1. , It is preferable to satisfy.
  • the color difference ⁇ E2 is more preferably 0.5 or less.
  • the determination as to whether or not the surface of the object to be coated is completely hidden is preferably made by visual observation.
  • the content of the hydrolyzable resin is preferably 30 to 97% by mass in the solid content of the paint.
  • the metal atom-containing group of the hydrolyzable resin (i) is preferably at least one group selected from the group consisting of groups represented by the following general formulas (VI) and (VII).
  • M represents a divalent metal atom
  • R 30 represents an organic acid residue or an alcohol residue.
  • M represents a divalent metal atom.
  • the hydrolyzable resin (i) includes a monomer (a1) represented by the following general formula (I ′), a monomer (a2) represented by the following general formula (II ′), and the following general formula (III ′). ) And at least one silicon-containing polymerizable monomer (a) selected from the group consisting of a monomer (a4) represented by the following general formula (IV ′): And a structural unit derived from a metal atom-containing polymerizable monomer (b) containing a divalent metal atom M is preferable.
  • R 31 represents a hydrogen atom or a methyl group
  • a, b, m, n, and R 1 to R 5 have the same meaning as described above.
  • R 32 represents a hydrogen atom or a methyl group
  • c, d, p, and R 6 to R 8 have the same meaning as described above.
  • R 33 and R 34 represent a hydrogen atom or a methyl group
  • e, f, g, h, q, r, s, and R 9 to R 12 are the same as above. Represents meaning.
  • R 35 and R 36 represent a hydrogen atom or a methyl group
  • i, j, k, l, t, u, v, w, and R 13 to R 22 represent the above Means the same.
  • the metal atom-containing polymerizable monomer (b) containing the divalent metal atom M is a monomer represented by the following general formula (VI ′): monomers (b1) and (VII ′) It is preferable to include at least one selected from the group consisting of (b2).
  • R 37 represents a hydrogen atom or a methyl group
  • M and R 30 represent the same meaning as described above.
  • R 38 and R 39 represent a hydrogen atom or a methyl group, and M represents the same meaning as described above.
  • the hydrolyzable resin (ii) preferably further has at least one metal atom-containing group selected from the group consisting of groups represented by the general formulas (VI) and (VII).
  • the hydrolyzable resin (ii) includes a monomer (a1) represented by the general formula (I ′), a monomer (a2) represented by the general formula (II ′), and the general formula (III). ') And at least one silicon-containing polymerizable monomer (a) selected from the group consisting of the monomer (a3) represented by the general formula (IV') and the monomer (a4) represented by the general formula (IV ').
  • a resin including a structural unit derived and a structural unit derived from a triorganosilyl (meth) acrylate (c) represented by the following general formula (V ′) is preferable.
  • R 43 represents a hydrogen atom or a methyl group
  • R 40 to R 42 have the same meaning as described above.
  • the hydrolyzable resin (ii) is at least one selected from the group consisting of the monomer (b1) represented by the general formula (VI ′) and the monomer (b2) represented by (VII ′). It is preferable to further include a structural unit derived from the metal atom-containing polymerizable monomer (b).
  • the colored antifouling paint can further contain an antifouling agent.
  • the content of the antifouling agent is preferably 10% by mass or less in the solid content of the paint.
  • the colored antifouling paint can further contain a thermoplastic resin and / or a plasticizer.
  • the total content of the thermoplastic resin and the plasticizer is preferably 3 to 100 parts by mass with respect to 100 parts by mass of the hydrolyzable resin.
  • thermoplastic resin is preferably at least one selected from the group consisting of chlorinated paraffin, polyvinyl ether, rosin and vinyl chloride-isobutyl vinyl ether copolymer.
  • the plasticizer is preferably at least one selected from the group consisting of phthalate ester plasticizers and phosphate ester plasticizers.
  • the colored antifouling paint has the above conditions (a) to (c), but can also be prepared by mixing two or more antifouling paints having different color pigment contents.
  • the object to be coated with the colored antifouling paint may have an undercoat film formed from an anticorrosive paint or an antifouling paint on the surface thereof.
  • a colored antifouling paint is applied on the surface of the undercoat coating film.
  • the object to be coated can be a steel, plastic or concrete structure, in particular an underwater structure.
  • a colored antifouling paint having a film thickness judging function, in which a color difference between a paint film having a target dry film thickness and a paint film immediately before the target dry film thickness is large.
  • the method of the present invention using the colored antifouling paint, it is possible to easily determine whether or not the coating film being applied has reached a predetermined film thickness.
  • An antifouling coating film can be formed accurately.
  • paint can be saved.
  • an antifouling coating film excellent in long-term antifouling property and crack resistance can be formed.
  • the method of the present invention since it is possible to avoid the troublesome operation of sequentially measuring the coating film thickness and confirming whether or not the predetermined film thickness has been reached, it is possible to greatly increase the efficiency of the painting operation. In addition, the burden on the painter can be greatly reduced.
  • the method of the present invention can be applied to antifouling coating of various structures (particularly underwater structures).
  • a uniform structure having a predetermined dry film thickness can be applied to a structure that is difficult to paint or a portion thereof, such as when antifouling coating is applied to the outer surface of a large structure such as a ship.
  • An antifouling coating film can be formed accurately and simply.
  • FIG. 6 is a graph showing the relationship between the color difference ⁇ E between the top-coated antifouling coating film having each dry film thickness and the top-coating antifouling coating film having the target dry film thickness in paints 3 to 15 prepared in Examples and Comparative Examples. . It is a figure which expands and shows a part (near target dry film thickness of 125 micrometers) of FIG.
  • a colored antifouling paint containing a predetermined hydrolyzable resin and a color pigment is used as a paint for forming the antifouling coating film.
  • this colored antifouling paint can determine whether or not a predetermined film thickness has been reached by observing changes in the color difference between the coating film being coated and the surface of the object to be coated.
  • the colored antifouling paint used in the present invention will be described in detail.
  • the colored antifouling paint contains hydrolyzable resin (i), hydrolyzable resin (ii), or both as a vehicle component.
  • the hydrolyzable resins (i) and (ii) are excellent in resin transparency, and the vivid color due to the color pigment is not disturbed by the color of the resin. It is possible to impart a clear hue of the antifouling paint. As a result, the color difference between the colored antifouling paint and the surface of the object to be coated can be increased, and the film thickness dependency of the coating film hue, particularly from the point immediately before the target dry film thickness T (about 0.8 T) to the target dry film.
  • the film thickness dependency of the coating film hue over the thickness T can be increased, and an excellent film thickness determination function is imparted to the colored antifouling paint.
  • various vivid hues can be imparted to the antifouling paint (so that the antifouling paint can be multicolored)
  • the color of the surface of the object to which the method of the present invention can be applied is free.
  • the method of the present invention can be applied regardless of the color of the surface to be coated and the surface of the object to be coated.
  • the hydrolyzable resins (i) and (ii) themselves have good antifouling performance based on their hydrolyzability and silicon-containing groups, the hydrolyzable resins (i) and / or ( According to the colored antifouling paint containing ii), even if it does not contain a separate antifouling agent or its blending amount is small, it exhibits high antifouling performance stably over a long period of time (long-term antifouling) An antifouling coating film having excellent soiling properties can be formed.
  • the fact that a separate antifouling agent can be eliminated or that the amount of the antifouling agent can be reduced means that the vivid color due to the coloring pigment can be prevented from being disturbed by the antifouling agent. It is possible to further improve the sharpening, multicoloring, and film thickness determination functions of the dirty paint.
  • the hydrolyzable resin (i) that can be contained in the colored antifouling paint is at least one selected from the group consisting of the groups represented by the general formulas (I), (II), (III), and (IV). It has a silicon-containing group and at least one metal atom-containing group containing a divalent metal atom M.
  • the hydrolyzable resin (i) having such a specific silicon-containing group and metal atom-containing group gradually hydrolyzes in water (particularly in seawater) due to the hydrolyzability of the metal atom-containing group. Show properties.
  • the antifouling coating film formed from the colored antifouling paint using the hydrolyzable resin (i) as a vehicle is self-polished by dipping in water, and thereby the renewability of the coating film surface is obtained.
  • a and b each independently represent an integer of 2 to 5
  • m represents an integer of 0 to 50
  • n represents an integer of 3 to 80.
  • R 1 to R 5 each independently represents an alkyl group, an alkoxy group, a phenyl group, a substituted phenyl group, a phenoxy group or a substituted phenoxy group.
  • c and d each independently represent an integer of 2 to 5, and p represents an integer of 0 to 50.
  • R 6 , R 7 and R 8 each independently represents an alkyl group, R a or R b .
  • R a and R b are as described above.
  • e, f, g and h each independently represent an integer of 2 to 5
  • q and s each independently represent an integer of 0 to 50
  • r is 3 to Represents an integer of 80.
  • R 9 to R 12 each independently represents an alkyl group, an alkoxy group, a phenyl group, a substituted phenyl group, a phenoxy group or a substituted phenoxy group.
  • i, j, k and l each independently represents an integer of 2 to 5, t and u each independently represents an integer of 0 to 50, v and w independently represents an integer of 0 to 20; R 13 to R 22 are the same or different and each represents an alkyl group.
  • the hydrolyzable resin (i) has two or more silicon-containing groups selected from the group consisting of groups represented by the above general formulas (I), (II), (III) and (IV). Also good. In this case, two or more groups represented by the general formula (I), two or more groups represented by the general formula (II), two or more groups represented by the general formula (III), and / or Or you may have 2 or more types of groups shown by the said general formula (IV).
  • the metal atom-containing group containing the divalent metal atom M of the hydrolyzable resin (i) can stably maintain the self-polishing property of the coating film for a long period of time. Since it is possible to form a coating film having excellent cracking properties and adhesion to the base, it is preferably at least one group selected from the group consisting of the groups represented by the general formulas (VI) and (VII).
  • M represents a divalent metal atom
  • R 30 represents an organic acid residue or an alcohol residue.
  • the hydrolyzable resin (i) may have both groups represented by the general formulas (VI) and (VII). Examples of the divalent metal atom M include Mg, Zn, and Cu, and Zn or Cu is preferable.
  • the hydrolyzable resin (i) is not particularly limited as long as it has the silicon-containing group and the metal atom-containing group, but the monomer (a1) represented by the general formula (I ′) and the general formula (II ′) ), A monomer (a3) represented by the general formula (III ′), and a monomer (a4) represented by the general formula (IV ′).
  • An acrylic resin containing can be preferably used.
  • R 31 represents a hydrogen atom or a methyl group
  • a, b, m, n, and R 1 to R 5 have the same meaning as described above.
  • R 32 represents a hydrogen atom or a methyl group
  • c, d, p, and R 6 to R 8 have the same meaning as described above.
  • R 33 and R 34 represent a hydrogen atom or a methyl group
  • e, f, g, h, q, r, s, and R 9 to R 12 represent the same meaning as described above. .
  • R 35 and R 36 represent a hydrogen atom or a methyl group
  • i, j, k, l, t, u, v, w and R 13 to R 22 have the same meaning as described above. Represents.
  • the monomer (a4) represented by the formula (IV ′) is a silicon-containing polymerizable monomer having a silicon-containing group represented by the general formulas (I), (II), (III) and (IV), respectively. It is.
  • the metal atom-containing polymerizable monomer (b) containing the divalent metal atom M can stably maintain the self-polishing property of the coating film for a long period of time, thereby being excellent in long-term antifouling property, Since a coating film having excellent crack resistance and adhesion to the ground can be formed, from the monomer (b1) represented by the general formula (VI ′) and the monomer (b2) represented by (VII ′) It is preferable to include at least one selected from the group consisting of:
  • R 37 represents a hydrogen atom or a methyl group
  • M and R 30 represent the same meaning as described above.
  • R 38 and R 39 represent a hydrogen atom or a methyl group
  • M represents the same meaning as described above.
  • the monomer (b1) represented by the general formula (VI ′) and the monomer (b2) represented by (VII ′) are each a metal atom-containing group represented by the general formula (VI) and (VII).
  • Silicone-containing polymerizable monomer (a)
  • the silicon-containing polymerizable monomer (a1) that can constitute the hydrolyzable resin (i) is represented by the above general formula (I ′), wherein a and b are each independently 2 to 5 Represents an integer, m represents an integer of 0 to 50, and n represents an integer of 3 to 80.
  • R 1 to R 5 each independently represents an alkyl group, an alkoxy group, a phenyl group, a substituted phenyl group, a phenoxy group or a substituted phenoxy group, and R 31 represents a hydrogen atom or a methyl group.
  • the silicon-containing polymerizable monomer (a1) As the silicon-containing polymerizable monomer (a), a water-containing acrylic resin having a silicon-containing group represented by the general formula (I) in the side chain is used. Degradable resin (i) is obtained.
  • M in the above general formula (I ′) (the same applies to the above general formula (I)) is the average degree of polymerization of the polyether structure and may be 0, but the recoatability with the old coating film is good. It is preferable that the value is larger than 0. Further, m tends to be 50 or less because the water resistance of the coating film tends to be good, and is preferably 30 or less because recoatability with the old coating film tends to be good. A more preferred range is 3 to 25, and a further preferred range is 5 to 20.
  • a in the general formula (I ′) is preferably 2 or 3, and those in which a is 2 and 3 may be used in combination.
  • b is preferably 2 or 3.
  • n represents the average degree of polymerization of the silicon-containing structure and is an integer in the range of 3 to 80.
  • n represents the average degree of polymerization of the silicon-containing structure and is an integer in the range of 3 to 80.
  • n represents the average degree of polymerization of the silicon-containing structure and is an integer in the range of 3 to 80.
  • n is preferably in the range of 5 to 50, more preferably in the range of 8 to 40.
  • R 1 to R 5 in the general formula (I ′) are preferably an alkyl group having 1 to 18 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • silicon-containing polymerizable monomer (a1) represented by the general formula (I ′) include “FM-0711” and “FM-” manufactured by Chisso Corporation, assuming that m is 0. "0721", “FM-0725” (above, trade name), “X-24-8201", “X-22-174DX”, “X-22-2426” (above, trade name) manufactured by Shin-Etsu Chemical Co., Ltd. ) And the like.
  • Examples of m greater than 0 include “F2-254-04” and “F2-254-14” (trade name) manufactured by Nippon Unicar Co., Ltd.
  • the silicon-containing polymerizable monomer (a1) a product manufactured by Nippon Unicar Co., Ltd. was described with its product name.
  • the silicone business at Nippon Unicar Co., Ltd. It has been transferred to Corning Co., Ltd., and equivalent products are now available from the transferee. The same applies to products manufactured by Nippon Unicar Co., Ltd. shown below.
  • the hydrolyzable resin (i) may contain a structural unit derived from two or more silicon-containing polymerizable monomers (a1) as the silicon-containing polymerizable monomer (a).
  • the silicon-containing polymerizable monomer (a2) that can constitute the hydrolyzable resin (i) is represented by the general formula (II ′), wherein c and d are each independently 2 to 5 Represents an integer, and p represents an integer of 0 to 50.
  • R 6 , R 7 and R 8 each independently represents an alkyl group, R a or R b , and R 32 represents a hydrogen atom or a methyl group.
  • R a and R b are as described above.
  • P in the above general formula (II ′) (the same applies to the above general formula (II)) is the average degree of polymerization of the polyether structure and may be 0, but the recoatability with the old coating film is good. It is preferable that the value is larger than 0. Moreover, since it exists in the tendency for the water resistance of a coating film to become favorable, p is 50 or less, and since it exists in the tendency for the recoat property with an old coating film to become favorable, it is preferable that it is 30 or less. A more preferred range is 3 to 25, and a further preferred range is 5 to 20.
  • C in the general formula (II ′) is preferably 2 or 3, and those in which c is 2 and 3 may be used in combination.
  • d is preferably 2 or 3.
  • X and y in the general formula (II ′) represent the average degree of polymerization of the silicon-containing structure or the polyether structure introduced into the side chain, and are each an integer in the range of 0 to 20, an integer in the range of 1 to 20 It is.
  • x and y are preferably in the range of 10 or less, and more preferably in the range of 5 or less.
  • Examples of the alkyl group that can be selected from R 6 to R 8 and R 23 to R 29 in the general formula (II ′) include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. .
  • a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • silicon-containing polymerizable monomer (a2) represented by the general formula (II ′) include, for example, “TM-0701” (trade name) manufactured by Chisso Corporation, assuming that p is 0. "X-22-2404" (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., "F2-250-01", "F2-302-01” (trade name) manufactured by Nippon Unicar Co., Ltd. . Examples of p greater than 0 include “F2-302-04” (trade name) manufactured by Nippon Unicar Co., Ltd.
  • the hydrolyzable resin (i) may contain a structural unit derived from two or more silicon-containing polymerizable monomers (a2) as the silicon-containing polymerizable monomer (a).
  • the silicon-containing polymerizable monomer (a3) that can constitute the hydrolyzable resin (i) is represented by the general formula (III ′), wherein e, f, g, and h are each independently Q represents an integer of 2 to 5, q and s each independently represent an integer of 0 to 50, and r represents an integer of 3 to 80.
  • R 9 to R 12 each independently represents an alkyl group, an alkoxy group, a phenyl group, a substituted phenyl group, a phenoxy group or a substituted phenoxy group, and R 33 and R 34 each represent a hydrogen atom or a methyl group.
  • the silicon-containing polymerizable monomer (a3) As the silicon-containing polymerizable monomer (a), the silicon-containing group represented by the above general formula (III) (this silicon-containing group is a polymer main chain).
  • Q and s in the above general formula (III ′) are the average degree of polymerization of the polyether structure, and may be 0. Is preferably larger than 0, since the value tends to be favorable. Further, since the water resistance of the coating film tends to be good, q and s are 50 or less, and since the recoatability with the old coating film tends to be good, it is preferably 30 or less. . A more preferred range is 3 to 25, and a further preferred range is 5 to 20.
  • E and h in the general formula (III ′) are preferably 2 or 3, and those in which e and h are 2 and 3 may be used in combination.
  • f and g are preferably 2 or 3.
  • r represents the average degree of polymerization of the silicon-containing structure and is an integer in the range of 3 to 80. By setting r to 3 or more, a higher antifouling effect can be exhibited. In addition, by setting r to 80 or less, good compatibility with other polymerizable monomers is exhibited, and the resulting hydrolyzable resin (i) is dissolved in a general organic solvent. Can be improved.
  • r is preferably in the range of 5 to 50, and more preferably in the range of 8 to 40.
  • R 9 to R 12 in the general formula (III ′) are preferably an alkyl group having 1 to 18 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • silicon-containing polymerizable monomer (a3) represented by the general formula (III ′) include, for example, “FM-7711” and “FM-7711” manufactured by Chisso Corporation, assuming that q and s are 0. FM-7721 ",” FM-7725 “(trade name),” F2-311-02 "(trade name) manufactured by Nippon Unicar Co., Ltd., and the like. Further, examples where q and s are greater than 0 include “F2-354-04” (trade name) manufactured by Nippon Unicar Co., Ltd.
  • the hydrolyzable resin (i) may contain a structural unit derived from two or more silicon-containing polymerizable monomers (a3) as the silicon-containing polymerizable monomer (a).
  • the silicon-containing polymerizable monomer (a4) that can constitute the hydrolyzable resin (i) is represented by the general formula (IV ′), in which i, j, k, and l are each independently Represents an integer of 2 to 5, t and u each independently represents an integer of 0 to 50, and v and w each independently represents an integer of 0 to 20.
  • R 13 to R 22 are the same or different and each represents an alkyl group, and R 35 and R 36 each represents a hydrogen atom or a methyl group.
  • T and u in the above general formula (IV ′) is the average degree of polymerization of the polyether structure and may be 0, but the recoatability with the old coating film Is preferably larger than 0, since the value tends to be favorable. Further, since the water resistance of the coating film tends to be good, t and u are 50 or less, and since the recoatability with the old coating film tends to be good, it is preferably 30 or less. . A more preferred range is 3 to 25, and a further preferred range is 5 to 20.
  • I and l in the above general formula (IV ′) are preferably 2 or 3, and those in which i and l are 2 and 3 may be used in combination.
  • j and k are preferably 2 or 3.
  • v and w represent the average degree of polymerization of the silicon-containing structure introduced into the side chain, and are integers in the range of 0-20. By setting v and w to 20 or less, good compatibility with other polymerizable monomers is exhibited, and the resulting hydrolyzable resin (i) is dissolved in common organic solvents. Can be improved. v and w are preferably in the range of 10 or less, and more preferably in the range of 5 or less.
  • Examples of the alkyl group that can be selected from R 13 to R 22 in the general formula (IV ′) include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • silicon-containing polymerizable monomer (a4) represented by the general formula (IV ′) include, for example, “F2-312-01” manufactured by Nippon Unicar Co., Ltd. assuming that t and u are 0. (Product name). Examples of those in which t and u are larger than 0 include “F2-212-04” (trade name) manufactured by Nippon Unicar Co., Ltd.
  • the hydrolyzable resin (i) may contain a structural unit derived from two or more silicon-containing polymerizable monomers (a4) as the silicon-containing polymerizable monomer (a).
  • the hydrolyzable resin (i) is derived from two or more silicon-containing polymerizable monomers selected from silicon-containing polymerizable monomers (a1), (a2), (a3) and (a4). May be included. Among these, as one of preferred embodiments, one terminal (meth) acryl-modified silicon-containing polymerizable monomer [silicon-containing polymerizable monomer (a1) and / or (a2)] and both terminals (meth) The form which uses together an acryl-modified silicon-containing polymerizable monomer [silicon-containing polymerizable monomer (a3) and / or (a4)] can be mentioned.
  • the content of the structural unit derived from the silicon-containing polymerizable monomer (a) in all the structural units constituting the hydrolyzable resin (i) is preferably 1 to 60% by mass, and 5 to 50 More preferably, it is more preferably 10% by mass to 40% by mass. By setting it to 1% by mass or more, there is a tendency to exhibit an antifouling effect even when no antifouling agent is contained separately. By setting it to 60% by mass or less, long-term antifouling properties and adhesion to the base There is a tendency to obtain a good balance with the characteristics.
  • Metal atom-containing polymerizable monomer (b) is a monomer used for introducing a metal atom-containing group containing a divalent metal atom M into the hydrolyzable resin (i). When it does not have a metal atom-containing group, the resulting resin is not sufficiently hydrolyzable. As a result, good self-polishing properties of the coating film cannot be obtained, and it is difficult to obtain a coating film exhibiting high antifouling properties. is there. Moreover, when it does not have a metal atom containing group, it exists in the tendency for adhesiveness with the foundation
  • the divalent metal atom M include Mg, Zn, and Cu, and Zn or Cu is preferable.
  • the metal atom-containing polymerizable monomer (b1) that can constitute the hydrolyzable resin (i) is represented by the general formula (VI ′), in which R 37 represents a hydrogen atom or a methyl group, and M Represents a divalent metal atom, and R 30 represents an organic acid residue or an alcohol residue.
  • V ′ The metal atom-containing polymerizable monomer (b1) as the metal atom-containing polymerizable monomer (b)
  • water is an acrylic resin having a metal atom-containing group represented by the general formula (VI).
  • Degradable resin (i) is obtained.
  • Examples of the organic acid constituting the organic acid residue in R 30 include acetic acid, monochloroacetic acid, monofluoroacetic acid, propionic acid, caproic acid, caprylic acid, 2-ethylhexylic acid, capric acid, versatic acid, isostearic acid, Palmitic acid, crestic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, stearolic acid, ricinoleic acid, ricinoelaidic acid, brassic acid, erucic acid, ⁇ -naphthoic acid, ⁇ -naphthoic acid, benzoic acid, 2 , 4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, quinolinecarboxylic acid, nitrobenzoic acid, nitronaphthalenecarboxylic acid, and purvic acid.
  • a fatty acid-based organic acid residue because it tends to maintain a coating film free from cracks or peeling over a long period of time.
  • metal atom-containing polymerizable monomer (b1) highly plasticized zinc oleate (meth) acrylate or zinc versatate (meth) acrylate is preferably used.
  • monobasic cyclic organic acids other than aromatic organic acids can be mentioned.
  • the monobasic cyclic organic acid include those having a cycloalkyl group such as naphthenic acid, resin acids such as tricyclic resin acids, and salts thereof.
  • the tricyclic resin acid include a monobasic acid having a diterpene hydrocarbon skeleton, and examples of such a tricyclic resin acid include compounds having an abietane, pimaran, isopimaran, and labdane skeletons. Can do.
  • abietic acid More specifically, for example, abietic acid, neoabietic acid, dehydroabietic acid, hydrogenated abietic acid, parastrinic acid, pimaric acid, isopimaric acid, levopimaric acid, dextropimaric acid, sandaracopimaric acid, and salts thereof Can be mentioned.
  • abiotic acid, hydrogenated abietic acid, and salts thereof are preferable because hydrolysis is appropriately performed and long-term antifouling properties are excellent, as well as excellent crack resistance and easy availability of the coating film. .
  • the monobasic cyclic organic acid does not need to be highly purified, and for example, pine resin, pine resin acid, and the like can be used. Examples thereof include rosins, hydrogenated rosins, disproportionated rosins, and naphthenic acid.
  • the rosins here are gum rosin, wood rosin, tall oil rosin and the like. Rosin, hydrogenated rosin and disproportionated rosin are preferred in that they are inexpensive and easily available, have excellent handling properties and exhibit long-term antifouling properties.
  • the acid value of the monobasic cyclic organic acid is preferably from 100 mgKOH / g to 220 mgKOH / g, more preferably from 120 mgKOH / g to 190 mgKOH / g, from 140 mgKOH / g to 185 mgKOH / g. More preferably, it is as follows.
  • a monobasic cyclic organic acid forming R 30 having an acid value within the above range is used, the hydrolysis rate of the hydrolyzable resin (i) becomes moderate, and as a result, self-polishing of the coating film. Therefore, the antifouling effect can be maintained for a longer period of time.
  • the organic acid residue of the metal atom-containing polymerizable monomer (b1) may be composed of only one kind of organic acid or may be composed of two or more kinds of organic acids.
  • Examples of the method for producing a metal atom-containing polymerizable monomer (b1) having an organic acid residue as R 30 include an inorganic metal compound and a carboxyl group-containing radical polymerizable monomer such as (meth) acrylic acid. And a non-polymerizable organic acid (an organic acid constituting the organic acid residue) can be reacted in an organic solvent containing an alcohol compound.
  • the structural unit derived from the metal atom-containing polymerizable monomer (b1) is obtained by polymerizing a monomer mixture containing a carboxyl group-containing radical polymerizable monomer such as (meth) acrylic acid. It can also be formed by a method in which a resin obtained, a metal compound, and a non-polymerizable organic acid (an organic acid constituting the organic acid residue) are reacted.
  • the metal atom-containing polymerizable monomer (b2) that can constitute the hydrolyzable resin (i) is represented by the above general formula (VII ′), wherein R 38 and R 39 are each a hydrogen atom or a methyl group. M represents a divalent metal atom.
  • the metal atom-containing polymerizable monomer (b2) as the metal atom-containing polymerizable monomer (b), the metal atom-containing group represented by the general formula (VII) (this metal atom-containing group is Hydrolyzable resin (i) which is an acrylic resin having a crosslinking group for crosslinking between polymer main chains.
  • the metal atom-containing polymerizable monomer (b2) include, for example, magnesium acrylate [(CH 2 ⁇ CHCOO) 2 Mg], magnesium methacrylate [(CH 2 ⁇ C (CH 3 ) COO) 2 Mg ], Zinc acrylate [(CH 2 ⁇ CHCOO) 2 Zn], zinc methacrylate [(CH 2 ⁇ C (CH 3 ) COO) 2 Zn], copper acrylate [(CH 2 ⁇ CHCOO) 2 Cu], methacryl Examples include acid copper [(CH 2 ⁇ C (CH 3 ) COO) 2 Cu]. These can be used by appropriately selecting one kind or two or more kinds as necessary.
  • the metal atom-containing polymerizable monomer (b2) for example, a polymerizable unsaturated organic acid such as (meth) acrylic acid and a metal compound are mixed with water in an organic solvent containing an alcohol compound.
  • the method of making it react with can be mentioned.
  • the water content in the reaction product is preferably adjusted to a range of 0.01 to 30% by mass.
  • the hydrolyzable resin (i) contains both a structural unit derived from the metal atom-containing polymerizable monomer (b1) and a structural unit derived from the metal atom-containing polymerizable monomer (b2). Also good.
  • the metal atom-containing polymerizable monomer (b1) and the metal atom-containing polymerizable monomer (b2) are used in combination as the monomer constituting the hydrolyzable resin (i), the metal atom-containing polymerizable monomer
  • the ratio of the content in the hydrolyzable resin (i) of the structural unit derived from the monomer (b1) and the structural unit derived from the metal atom-containing polymerizable monomer (b2) is 20/80 to 80 / 20 (molar ratio) is preferable, and a range of 30/70 to 70/30 (molar ratio) is more preferable.
  • the content of structural units derived from the metal atom-containing polymerizable monomer (b) in all the structural units constituting the hydrolyzable resin (i) is preferably 5 to 30% by mass. More preferably, it is 20 mass%.
  • the content of structural units derived from the metal atom-containing polymerizable monomer (b) in all the structural units constituting the hydrolyzable resin (i) is preferably 5 to 30% by mass. More preferably, it is 20 mass%.
  • the ratio of the content of the structural unit derived from the silicon-containing polymerizable monomer (a) and the structural unit derived from the metal atom-containing polymerizable monomer (b) Is preferably in the range of 30/70 to 90/10, more preferably in the range of 45/55 to 85/15, by mass ratio.
  • the ratio is less than 30/70, the flexibility of the obtained coating film may be impaired, or the self-polishing property of the coating film may be too high.
  • the hydrolyzable resin (i) comprises structural units derived from other monomer components (d) other than the silicon-containing polymerizable monomer (a) and the metal atom-containing polymerizable monomer (b). May be included.
  • the other monomer component (d) is particularly limited as long as it is an unsaturated monomer copolymerizable with the silicon-containing polymerizable monomer (a) and the metal atom-containing polymerizable monomer (b).
  • the content of the structural unit derived from the other monomer component (d) is preferably 0.1 to 89% by mass in the total structural units constituting the hydrolyzable resin (i). More preferably, it is ⁇ 75% by mass, and further preferably 10 to 70% by mass.
  • it is 0.1 mass% or more, it becomes possible to arrange the balance of the various characteristics of the antifouling coating composition obtained, and by setting it as 89 mass% or less, it is favorable over the long term to the formed coating film. Hydrolyzability is imparted, and even when no antifouling agent is used, excellent antifouling properties are exhibited, and the balance with the adhesion of the coating film to the base tends to be good.
  • the method for producing the hydrolyzable resin (i) is not particularly limited.
  • the monomer mixture obtained by mixing the above monomers is reacted at 60 to 180 ° C. in the presence of a radical initiator. It can be produced by reacting at a temperature for 5 to 14 hours.
  • the radical initiator include 2,2-azobisisobutyronitrile, 2,2-azobis (2,4-dimethylvaleronitrile), 2,2-azobis (2-methylbutyronitrile), peroxide
  • examples include benzoyl, cumene hydroperoxide, lauryl peroxide, di-t-butyl peroxide, t-butyl peroxide-2-ethylhexanoate.
  • the polymerization method in addition to the solution polymerization method carried out in an organic solvent, an emulsion polymerization method, a suspension polymerization method, etc. can be adopted, but a solution using a general organic solvent such as toluene, xylene, methyl isobutyl ketone, n-butyl acetate, etc.
  • the polymerization method is advantageous from the viewpoint of productivity and performance of the hydrolyzable resin (i).
  • chain transfer agent when using a metal atom-containing polymerizable monomer (b2), use a chain transfer agent to make the antifouling paint highly solid, improve productivity, and suppress the formation of cullet during polymerization. Is preferred.
  • chain transfer agent chain transfer agents other than mercaptans are preferable, and styrene dimers and the like are preferable from the viewpoint of compatibility with the metal atom-containing polymerizable monomer (b).
  • the weight average molecular weight of the hydrolyzable resin (i) varies depending on the polymerization conditions, but is usually in the range of 1000 to 3000000, preferably in the range of 3000 to 100,000, and in the range of 5000 to 50000. More preferably. When the weight average molecular weight is 1000 or more, antifouling properties tend to be exhibited when a coating film is formed, and when the weight average molecular weight is 3000000 or less, the hydrolyzable resin (i) is uniform in the coating composition. It tends to disperse easily.
  • the weight average molecular weight here is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the hydrolyzable resin (i) is a resin containing one or more silicon-containing groups represented by the above general formulas (I) to (IV) (or silicon-containing polymerizable monomers (a1) to (a4)
  • the resin containing a structural unit derived from one or more of ()) can be confirmed using, for example, 1 H-NMR, ICP emission analysis or the like.
  • the hydrolyzable resin (i) is a resin containing one or more metal atom-containing groups represented by the general formulas (VI) to (VII) (metal atom-containing polymerizable monomers (b1) to (b2)
  • the resin containing a structural unit derived from one or more of ()) can be confirmed using, for example, atomic absorption analysis.
  • the hydrolyzable resin (ii) that can be contained in the colored antifouling paint is at least one selected from the group consisting of the groups represented by the general formulas (I), (II), (III), and (IV). It has a silicon-containing group and a triorganosilyloxycarbonyl group represented by the general formula (V).
  • the antifouling coating film formed from the colored antifouling paint using the hydrolyzable resin (ii) as a vehicle is self-polished by dipping in water, and thereby the renewability of the coating film surface is obtained.
  • the antifouling effect due to hydrolysis of the triorganosilyloxycarbonyl group and the antifouling effect exhibited by the silicon-containing group are combined until they are completely consumed. Even when the antifouling agent is not contained, excellent antifouling performance is exhibited.
  • the antifouling paint formed from the colored antifouling paint containing the hydrolyzable resin (ii) is also excellent in crack resistance.
  • R 40 , R 41 and R 42 are the same or different and each represents a hydrocarbon residue having 1 to 20 carbon atoms.
  • the hydrolyzable resin (ii) may have two or more triorganosilyloxycarbonyl groups represented by the general formula (V).
  • hydrocarbon residue having 1 to 20 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group , A pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group or the like, which is a linear or branched alkyl group having 20 or less carbon atoms; a cyclohexyl group And cyclic alkyl groups such as substituted cyclohexyl groups; aryl groups and substituted aryl groups.
  • the substituted aryl group examples include halogen, an aryl group substituted with an alkyl group having up to about 18 carbon atoms, an acyl group, a nitro group, an amino group, and the like.
  • the triorganosilyloxycarbonyl group represented by the general formula (V) can be obtained.
  • the decomposable resin (ii) preferably further has at least one metal atom-containing group selected from the group consisting of the groups represented by the general formulas (VI) and (VII).
  • M represents a divalent metal atom
  • R 30 represents an organic acid residue or an alcohol residue.
  • the hydrolyzable resin (ii) may have both the general formulas (VI) and (VII). Examples of the divalent metal atom M include Mg, Zn, and Cu, and Zn or Cu is preferable.
  • the hydrolyzable resin (ii) is not particularly limited as long as it has the silicon-containing group and the triorganosilyloxycarbonyl group, but the monomer (a1) represented by the general formula (I ′) and the general formula A group consisting of the monomer (a2) represented by (II ′), the monomer (a3) represented by the general formula (III ′) and the monomer (a4) represented by the general formula (IV ′)
  • An acrylic resin containing a structural unit can be preferably used.
  • the triorganosilyl (meth) acrylate (c) represented by the general formula (V ′) is a polymerizable monomer having a triorganosilyloxycarbonyl group represented by the general formula (V).
  • the triorganosilyl (meth) acrylate (c) represented by the general formula (V ′) is used for introducing the triorganosilyloxycarbonyl group represented by the general formula (V) into the hydrolyzable resin (ii).
  • the monomer used By introducing a triorganosilyloxycarbonyl group in addition to the silicon-containing group, good self-polishing properties of the coating film can be obtained, and a coating film having excellent long-term antifouling properties can be obtained.
  • R 40, R 41 and R 42 in the formula (V ') are the same as defined R 40, R 41 and R 42 in the above general formula (V).
  • the total content of the structural units derived from the silicon-containing polymerizable monomer (a) and the triorganosilyl (meth) acrylate (c) is 5 It is preferably ⁇ 90% by mass, more preferably 15 ⁇ 80% by mass. By setting it as 5 mass% or more, it exists in the tendency which can ensure the favorable hydrolyzability of resin, and exists in the tendency which can ensure sufficient hardness of a coating film by setting it as 90 mass% or less.
  • the ratio of the content in the hydrolyzable resin (ii) of the structural unit derived from the silicon-containing polymerizable monomer (a) and the structural unit derived from the triorganosilyl (meth) acrylate (b) Is preferably in the range of 20/80 to 80/20 (mass ratio), and more preferably in the range of 30/70 to 70/30 (mass ratio).
  • the hydrolyzable resin (ii) can stably maintain the self-polishing property of the coating film for a long period of time, thereby being superior in long-term antifouling property and being able to form a coating film that is excellent in crack resistance and adhesion to the ground. Because of the tendency, it contains at least one metal atom selected from the group consisting of the monomer (b1) represented by the general formula (VI ′) and the monomer (b2) represented by (VII ′) It is preferable to further include a structural unit derived from the polymerizable monomer (b).
  • the monomer (b1) represented by the general formula (VI ′) and the monomer (b2) represented by (VII ′) are each a metal atom-containing group represented by the general formula (VI) and (VII).
  • a metal atom-containing polymerizable monomer having Details of the monomers (b1) and (b2) are as described in the hydrolyzable resin (i).
  • the hydrolyzable resin (ii) contains both a structural unit derived from the metal atom-containing polymerizable monomer (b1) and a structural unit derived from the metal atom-containing polymerizable monomer (b2). Also good.
  • the content of structural units derived from the metal atom-containing polymerizable monomer (b) in all structural units constituting the hydrolyzable resin (ii) is preferably 10 to 60% by mass, More preferably, it is 50 mass%. By setting it as 10 mass% or more, it exists in the tendency which can ensure favorable hydrolyzability of resin, and exists in the tendency which can ensure favorable flexibility of a coating film by setting it as 60 mass% or less.
  • the total content of structural units derived from the silicon-containing polymerizable monomer (a) and the triorganosilyl (meth) acrylate (c) and the metal atom-containing polymerizable monomer (b) are derived.
  • the ratio of the content in the hydrolyzable resin (ii) to the constituent unit is preferably in the range of 10/90 to 90/10 (mass ratio).
  • the hydrolyzable resin (ii) is, like the hydrolyzable resin (i), the silicon-containing polymerizable monomer (a), the triorganosilyl (meth) acrylate (c), and the metal atom-containing polymerizable monomer.
  • a structural unit derived from another monomer component (d) other than (b) may be included. The details of the other monomer component (d) are as described in the hydrolyzable resin (i).
  • Hydrolyzable resin (ii) can be produced by a method similar to the method shown for hydrolyzable resin (i).
  • the content of the hydrolyzable resin (the total content of the hydrolyzable resins (i) and (ii)) is 30 to 97 mass in the solid content (hereinafter referred to as paint solid content) contained in the colored antifouling paint. % Is preferred. When the amount is less than 30% by mass, the adhesion of the coating film to the base tends to be lowered, and the antifouling effect tends not to be sufficiently exhibited. Moreover, when it exceeds 97 mass%, it exists in the tendency for the crack resistance of a coating film to fall.
  • (B) Colored pigment As the color pigment to be contained in the colored antifouling paint, conventionally known various color pigments can be used, and by selecting the color pigment, colored antifouling paints of various hues can be realized ( Multi-coloring of colored antifouling paints is possible).
  • the colored antifouling paint used in the present invention can be free of an antifouling agent, or the amount of the antifouling agent can be greatly reduced, and the hydrolyzable resin has high transparency, and thus is derived from a coloring pigment. As mentioned above, the color difference between the colored antifouling paint and the surface of the object can be increased, and the film thickness judgment function is improved. To do.
  • ⁇ Multicolorization of colored antifouling paints increases the degree of color freedom on the surface of the object to which the method of the present invention can be applied.
  • the color difference ⁇ E3 between the colored antifouling paint and the surface of the object to be coated is not so large for a specific object to be coated, which may not be suitable for the method of the present invention.
  • the colored antifouling paint can be applied to other objects to be coated having a sufficiently large color difference ⁇ E3 between the colored antifouling paint and the surface of the object.
  • the type of color pigment added to the colored antifouling paint (the hue of the colored antifouling paint) can be selected according to the surface color of the object to be coated.
  • the color difference ⁇ E3 from the surface of the object to be coated is substantially whatever the color of the surface of the object to be coated. It is possible to prepare a sufficiently large colored antifouling paint.
  • color pigments include, for example, titanium oxide, zircon oxide, basic lead sulfate, tin oxide, carbon black, white lead, graphite, zinc sulfide, zinc oxide, chromium oxide, yellow nickel titanium, yellow chromium titanium, Examples thereof include yellow iron oxide, red iron oxide, black iron oxide, azo red / yellow pigment, chrome yellow, phthalocyanine green, phthalocyanine blue, ultramarine blue, quinacridone, and other colored pigments. These color pigments may be used alone or in combination of two or more.
  • the content of the color pigment can be, for example, 0.3% by mass or more in the solid content of the paint.
  • the upper limit of content of a coloring pigment is not specifically limited, For example, it is 30 mass% or less.
  • the antifouling coating film obtained from the colored antifouling paint has good antifouling performance due to the antifouling effect based on the hydrolyzable resin (i) and / or hydrolyzable resin (ii).
  • an antifouling agent may be added to the colored antifouling paint as necessary.
  • the antifouling agent is not particularly limited, and known ones can be used, and examples thereof include inorganic compounds, organic compounds containing metal, and organic compounds not containing metal.
  • antifouling agent examples include, for example, zinc oxide; cuprous oxide; manganese ethylene bisdithiocarbamate; zinc dimethyldithiocarbamate; 2-methylthio-4-t-butylamino-6-cyclopropylamino-s.
  • the content of the antifouling agent is preferably 10% by mass or less, and more preferably 8% by mass or less, in the solid content of the paint.
  • the content of the antifouling agent exceeds 10% by mass, defects such as cracks and peeling may occur in the antifouling coating film.
  • the hydrolyzable resins (i) and (ii) themselves have good antifouling performance based on their hydrolyzability and silicon-containing groups. Therefore, the amount of the additional antifouling agent can be reduced or not contained. As a result, it is possible to realize a colored antifouling paint having further improved functions of sharpening, multicoloring and film thickness determination.
  • the colored antifouling paint may contain a thermoplastic resin and / or a plasticizer.
  • a thermoplastic resin and / or a plasticizer By containing a thermoplastic resin and / or a plasticizer, the crack resistance of the coating film can be improved. Further, since the polishing rate (polishing rate) of the coating film can be controlled to an appropriate speed, it is advantageous in terms of the long-term antifouling property of the coating film.
  • the hydrolyzable resin (i) is used as the main component of the hydrolyzable resin, it is preferable to use a thermoplastic resin and / or a plasticizer in combination.
  • the antifouling coating film is repeatedly exposed to a cycle of being immersed in water (such as seawater) for a long period of time and then being immersed in water for a certain period of time and then landed. Therefore, the antifouling coating film is required to have flexibility that can withstand such conditions. Therefore, crack resistance is an important characteristic required for coating films.
  • thermoplastic resin examples include chlorinated paraffin; chlorinated polyolefin such as chlorinated rubber, chlorinated polyethylene and chlorinated polypropylene; polyvinyl ether; polypropylene sebacate; partially hydrogenated terphenyl; polyvinyl acetate; Methyl acid copolymer, (Meth) ethyl acrylate copolymer, (Meth) propyl acrylate copolymer, (Meth) butyl acrylate copolymer, (Meth) acrylic acid cyclohexyl copolymer Poly (meth) acrylic acid alkyl ester such as polyether polyol; alkyd resin; polyester resin; vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl propionate copolymer, vinyl chloride-isobutyl vinyl ether copolymer, chloride Vinyl-isopropyl vinyl ether copolymer And vinyl chloride resins such as vinyl chloride-ethyl
  • chlorinated paraffin, polyvinyl ether, polyether polyol, rosin, vinyl chloride-isobutyl vinyl ether copolymer are preferable, and chlorinated paraffin, polyvinyl ether, rosin and vinyl chloride-isobutyl vinyl ether copolymer are particularly preferable. Since it is suitable for adjustment of plasticity of a coating film and coating film consumption, it can be used more preferably.
  • plasticizer examples include phthalate plasticizers such as dioctyl phthalate (DOP), dimethyl phthalate, dicyclohexyl phthalate, and diisodecyl phthalate (DIDP); aliphatic dibasic acid esters such as isobutyl adipate and dibutyl sebacate Plasticizers; Glycol ester plasticizers such as diethylene glycol dibenzoate and pentaerythritol alkyl ester; Phosphate ester plastics such as tricresyl phosphate (tricresyl phosphate), triaryl phosphate (triaryl phosphate), and trichloroethyl phosphate Agents: Epoxy plasticizers such as epoxy soybean oil and octyl epoxy stearate; Organotin plasticizers such as dioctyltin laurate and dibutyltin laurate; Trioctrimate trioctate Le, and tri ace
  • phthalate ester plasticizers such as dioctyl phthalate (DOP), dimethyl phthalate, dicyclohexyl phthalate, diisodecyl phthalate (DIDP), and tricresyl phosphate (tricresyl phosphate), triaryl phosphate (triaryl phosphate), Phosphate ester plasticizers such as trichloroethyl phosphoric acid are particularly excellent in compatibility with the hydrolyzable resin and the thermoplastic resin, and can improve crack resistance uniformly throughout the coating film. Therefore, it can be preferably used.
  • DOP dioctyl phthalate
  • DIDP diisodecyl phthalate
  • tricresyl phosphate triaryl phosphate
  • Phosphate ester plasticizers such as trichloroethyl phosphoric acid
  • the colored antifouling paint may contain only a thermoplastic resin, may contain only a plasticizer, or may contain both a thermoplastic resin and a plasticizer.
  • the combined use of a thermoplastic resin and a plasticizer is preferable because a coating film that is superior in toughness and plasticity can be obtained.
  • thermoplastic resin and the plasticizer are not particularly limited, but can be, for example, 0 to 100 parts by mass, preferably 5 to 50 parts by mass with respect to 100 parts by mass of the hydrolyzable resin. .
  • the total content of the thermoplastic resin and the plasticizer is preferably in the range of 3 to 100 parts by mass, more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the hydrolyzable resin.
  • the total content of the thermoplastic resin and the plasticizer is less than 3 parts by mass with respect to 100 parts by mass of the hydrolyzable resin, the effect of improving the crack resistance due to the addition of the thermoplastic resin and / or the plasticizer is not recognized. If the total content of the thermoplastic resin and plasticizer is extremely low or the thermoplastic resin and plasticizer are not contained, an appropriate polishing rate (polishing rate) cannot be obtained, and long-term protection is achieved. Dirtyness may not be imparted.
  • thermoplastic resin and the plasticizer exceeds 100 parts by mass with respect to 100 parts by mass of the hydrolyzable resin, the adhesion of the coating film to the base tends to decrease, and the antifouling property tends to decrease.
  • Colored antifouling paints are extender pigments, solvents, water binders, anti-sagging agents, anti-coloring agents, anti-settling agents, antifoaming agents, coating consumption regulators, UV absorbers, surfaces It may contain other additives such as a regulator, a viscosity modifier, a leveling agent, a pigment dispersant, and an antifouling agent elution regulator.
  • the content of these other additives is preferably set to such an extent that the clear hue and the background concealing property by the color pigment are not inhibited and the film thickness judgment function of the colored antifouling paint is not deteriorated.
  • extender pigment examples include barium sulfate, talc, clay, chalk, silica white, alumina white, bentonite, calcium carbonate, magnesium carbonate, silicic acid, silicate, aluminum oxide hydrate, and calcium sulfate. Can do. These extender pigments may be used alone or in combination of two or more.
  • the solvent examples include hydrocarbons such as toluene, xylene, ethylbenzene, cyclopentane, octane, heptane, cyclohexane, white spirit; dioxane, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene Ethers such as glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; esters such as butyl acetate, propyl acetate, benzyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate; ethyl isobutyl ketone, methyl isobutyl ketone Ketones such as n-butanol, propyl alcohol Or the like can be mentioned alcohol and the like.
  • hydrocarbons
  • the colored antifouling paint may contain a vehicle component other than the hydrolyzable resins (i) and (ii). However, it is preferable to keep the content to a minimum.
  • the colored antifouling paint includes, for example, the hydrolyzable resin or a resin composition containing the same, a coloring pigment, and, if necessary, an antifouling agent, a thermoplastic resin and / or a plasticizer, and other additives. And can be prepared by mixing using a mixer such as a ball mill, a pebble mill, a roll mill, a sand grind mill, or a high-speed disper.
  • a mixer such as a ball mill, a pebble mill, a roll mill, a sand grind mill, or a high-speed disper.
  • the colored antifouling paint used in the present invention is an antifouling paint excellent in film thickness determination function that satisfies at least the following conditions (a) and (b), preferably further satisfies the following condition (d).
  • (B) The color difference ⁇ E1 between the paint film formed from the colored antifouling paint having the target dry film thickness T and the paint film formed from the colored antifouling paint having a dry film thickness of 0.8T is 2.0 or more.
  • D The color difference ⁇ E2 between the coating film formed from the colored antifouling paint having the target dry film thickness T and the coating film formed from the colored antifouling paint having a dry film thickness of 1.2T is less than 1. .
  • the color differences ⁇ E1 and ⁇ E2 and ⁇ E3, which will be described later, are measured using a color difference meter (color meter) such as a tristimulus color meter SM color meter (model SM-T45, manufactured by Suga Test Instruments Co., Ltd., standard JIS Z 8722). It can be measured by a generally accepted method.
  • the color differences ⁇ E1, ⁇ E2, and ⁇ E3 are all absolute values.
  • the above condition (a) is a coating film formed from a colored antifouling paint (the coating film here is a dry coating film, but the wettability of the wet coating film and the dry coating film is substantially the same).
  • the colored antifouling paint is applied to the surface of the object to be coated, the degree of “through” on the surface of the object to be coated decreases as the coating thickness increases.
  • the hue of the surface of the object to be coated disappears and the hue of the coated surface becomes the same as the hue of the paint film made of the colored antifouling paint, the coating film formed from the colored antifouling paint becomes the surface of the object to be coated. Is judged to be completely hidden.
  • the colored antifouling paint used in the present invention can achieve complete concealment of the surface of the object to be coated when a dry coating film having a target dry film thickness T or more is formed.
  • the above condition (b) defines the color difference ⁇ E1 between when the film thickness is a target dry film thickness T and when it is 0.8 T in a dry coating film formed from a colored antifouling paint. .
  • a coating film having a dry coating thickness of 0.8 T is a coating film immediately before completion of painting. Accordingly, since the color difference ⁇ E1 is as large as 2.0 or more, the film thickness dependency of the coating film hue immediately before the completion of coating (from immediately before the target dry film thickness T (from 0.8 T) to the target dry film thickness T) increases. A dry coating film having the target dry film thickness T can be formed very accurately, and a slight film thickness deficiency can be eliminated.
  • the color difference ⁇ E1 is preferably 2.5 or more.
  • the color difference ⁇ E1 is preferably 10 or less, more preferably 5 or less.
  • the color difference ⁇ E1 “2.0 or more”, further “2.5 or more” is realized by using the hydrolyzable resin (i) and / or (ii) as the hydrolyzable resin. It could not be achieved with a hydrolyzable resin.
  • the target dry film thickness T can be appropriately selected in consideration of the antifouling property required for the article to be coated, and is not particularly limited. For example, one coat (the method of the present invention is used).
  • the dry film thickness of the antifouling coating film 1 layer formed by application can be about 30 ⁇ m or more and 300 ⁇ m or less.
  • the above condition (d) defines the color difference ⁇ E2 between when the film thickness is a target dry film thickness T and when it is 1.2 T in a dry paint film formed from a colored antifouling paint. .
  • a coating film having a dry coating thickness of 1.2 T is a coating film immediately after completion of coating.
  • the color difference ⁇ E2 is preferably 0.5 or less, more preferably 0.4 or less.
  • the color difference ⁇ E3 between the colored antifouling paint itself and the surface of the object to be coated is preferably larger than 0, more preferably 5 or more.
  • the hydrolyzable resin (i) and / or (ii) is used as a vehicle, a colored antifouling paint having a large color difference ⁇ E3 can be easily obtained.
  • a colored antifouling paint satisfying the above conditions can be obtained by selecting the type of color pigment (hue) and adjusting its content, assuming that the hydrolyzable resin (i) and / or (ii) is used as the vehicle. Can do.
  • the target dry film thickness T of the colored antifouling paint can be adjusted according to the content of the colored pigment. That is, basically, the target dry film thickness T of the colored antifouling paint can be increased by reducing the content of the color pigment. In other words, the target dry film thickness T is determined by the film properties such as antifouling performance and crack resistance required for the coating film and the type of the object to be coated. The content of the color pigment is adjusted according to T.
  • two or more kinds of colored antifouling paints having different target dry film thickness T (with different colored pigment contents) (the above conditions (a) to (c), preferably further (d)) are provided.
  • the colored antifouling paint used in the present invention may be prepared by mixing such an antifouling paint.
  • a colored antifouling paint having a target dry film thickness different from the target dry film thickness of the colored antifouling paint to be mixed can be easily obtained.
  • the target dry film thickness T of the obtained colored antifouling paint can be adjusted by the mixing ratio of the colored antifouling paint to be mixed.
  • the colored antifouling paint is applied to the surface of the object while observing changes in the color difference between the coating film being coated and the surface of the object. “Observing the change in color difference between the coating film being coated and the surface of the object to be coated” typically means whether or not “transparency” of the surface of the object to be coated occurs on the coated surface, that is, the coating being painted. This is to observe how much the film (wet coating film) covers the surface of the object to be coated.
  • the hue of the coated surface is the same as the hue of the coating film made of a colored antifouling paint.
  • Coating is performed until the surface of the object to be coated is completely concealed by the coating film made of the colored antifouling paint. Since the base masking property of the wet coating film is substantially the same as the base masking property of the dry coating film, the wet coating film thickness when completely masked is a film thickness corresponding to the target dry film thickness. At this time, since the colored antifouling paint used in the present invention satisfies the above condition (b), there is a color difference between the coating film immediately before completion of coating and the film thickness of the wet coating film corresponding to the target dry coating film. Since it is large, a dry coating film having a target dry film thickness can be formed very accurately. Whether the surface of the object to be coated is completely concealed by the coating film made of the colored antifouling paint can be easily confirmed visually.
  • a uniform antifouling coating film having a predetermined dry film thickness can be formed more accurately than in the past.
  • the antifouling coating film can be formed by coating the colored antifouling paint on the surface of the object to be coated according to a conventional method, and then volatilizing and removing the solvent at room temperature or under heating as necessary. It does not specifically limit as a coating method, For example, conventionally well-known methods, such as a dipping method, a spray method, brush coating, a roller, electrostatic coating, electrodeposition coating, can be mentioned.
  • the material to be coated is not particularly limited.
  • steel materials such as non-treated steel materials, blast-treated steel materials, acid-treated steel materials, galvanized steel materials, and stainless steel materials; non-ferrous metals such as aluminum (alloy) materials and copper (alloy) materials
  • non-ferrous metals such as aluminum (alloy) materials and copper (alloy) materials
  • These steel materials and non-ferrous metal materials may have weld lines.
  • objects to be coated include, for example, ships; port facilities; water intake facilities such as power plants; piping for cooling conduits; bridges; buoys; industrial water systems; submarine bases and other underwater structures. be able to.
  • the surface of the object to be coated with the colored antifouling paint may be pretreated if necessary, and is formed from an anticorrosive paint, another antifouling paint, or a colored antifouling paint.
  • You may have the primer film formed from the binder coating material for improving the adhesiveness of the coating film.
  • the paint that forms the undercoat film may be an old paint film that has been used. In this case, the method of the present invention may be applied for repair of the old coating film.
  • a colored antifouling paint according to the present invention having a different color from the colored antifouling paint to be applied may be used.
  • the antifouling paint for forming the undercoat coating film is not limited as long as the hue of the undercoat paint film produces a sufficiently large color difference (color difference corresponding to the above ⁇ E3) with the colored antifouling paint formed thereon.
  • the same hue as the paint may be used.
  • the “surface of the object to be coated” in the above condition (a) means the surface of the undercoat film.
  • This metal atom-containing polymerizable monomer mixture M1 contains zinc (meth) acrylate which is the monomer (b2) as the metal atom-containing polymerizable monomer (b).
  • This metal atom-containing polymerizable monomer mixture M2 is, as the metal atom-containing polymerizable monomer (b), zinc (meth) acrylate (monomer (b1) represented by the above general formula (VI ′)) ( R 30 is a versatic acid residue), and includes monomer (b2) zinc (meth) acrylate.
  • This metal atom-containing polymerizable monomer mixture M3 is, as the metal atom-containing polymerizable monomer (b), zinc (meth) acrylate (monomer (b1) represented by the general formula (VI ′)) ( R 30 includes one or more of an oleic acid residue, an acetic acid residue, and a propionic acid residue), and zinc (meth) acrylate that is the monomer (b2).
  • the obtained hydrolyzable resin composition S1 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S1 The average molecular weight was 6,800 in terms of polystyrene.
  • the hydrolyzable resin isolated by methanol reprecipitation from the obtained hydrolyzable resin composition S1 was collected in a platinum crucible, sulfuric acid was added, and the mixture was heated in a pressure decomposition vessel. After volatilizing the sulfuric acid, the hydrolyzable resin was completely ashed.
  • the ashed product was allowed to cool and then melted with alkali, and analyzed with an ICP emission spectrometer (“SPS5100” manufactured by Seiko Instruments Inc.). As a result, Si atoms were confirmed. Further, when the hydrolyzable resin was analyzed by an atomic absorption spectrophotometer (“AA6300” manufactured by Shimadzu Corporation), a signal derived from Zn atoms was confirmed.
  • SPS5100 ICP emission spectrometer
  • hydrolyzable resin composition S2 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S2 The average molecular weight was 8800 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S3 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S3 The average molecular weight was 8200 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S4 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S4 The average molecular weight was 7200 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S5 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S5 The average molecular weight was 6400 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S6 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S6 The average molecular weight was 6900 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S7 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S7 The average molecular weight was 7000 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S8 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), and the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S8 was determined.
  • the average molecular weight was 7700 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S9 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), and the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S9 was determined.
  • the average molecular weight was 6000 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S10 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), and the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S10 was determined. The average molecular weight was 5400 in terms of polystyrene. Further, the hydrolyzable resin isolated by reprecipitation of methanol from the obtained hydrolyzable resin composition S10 was collected in a platinum crucible, sulfuric acid was added, and the mixture was heated in a pressure decomposition vessel. After volatilizing the sulfuric acid, the hydrolyzable resin was completely ashed.
  • the ashed product was allowed to cool and then melted with alkali, and analyzed with an ICP emission spectrometer (“SPS5100” manufactured by Seiko Instruments Inc.). As a result, Si atoms were confirmed. Further, when the hydrolyzable resin was analyzed by an atomic absorption spectrophotometer (“AA6300” manufactured by Shimadzu Corporation), a signal derived from Zn atoms was confirmed.
  • SPS5100 ICP emission spectrometer
  • the obtained hydrolyzable resin composition S11 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S11 The average molecular weight was 6200 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S12 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S12 The average molecular weight was 5600 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S13 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), and the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S13 was determined.
  • the average molecular weight was 5500 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S14 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S14 The average molecular weight was 9,000 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S15 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S15 The average molecular weight was 7200 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S16 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S16 The average molecular weight was 6400 in terms of polystyrene.
  • Mixture M1 31.3 parts by mass, xylene 10 parts by mass, chain transfer agent ( ⁇ -methylstyrene dimer) 1.2 parts by mass, AIBN 2.5 parts by mass and AMBN 5.5 parts by mass in 6 hours etc. It was dripped quickly. After completion of the dropwise addition, 0.5 parts by mass of t-butyl peroctoate and 10 parts by mass of xylene were added dropwise over 30 minutes, and the mixture was further stirred for 1 hour and 30 minutes. Resin composition S17 was obtained.
  • the obtained hydrolyzable resin composition S17 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), and the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S17 was determined.
  • the average molecular weight was 5600 in terms of polystyrene.
  • the obtained hydrolyzable resin composition S18 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), and the weight of the hydrolyzable resin contained in the hydrolyzable resin composition S18 was determined.
  • the average molecular weight was 6000 in terms of polystyrene.
  • Tables 1 and 2 show the charged amounts (parts by mass) of the respective raw materials used for the preparation of the hydrolyzable resin compositions S1 to S18, and the Gardner viscosity (Gardner foam viscometer of the hydrolyzable resin compositions S1 to S18). And measured at 25 ° C.) and the solid content (mass%), and the weight average molecular weight of the hydrolyzable resin contained in the composition.
  • 1 1 (molar ratio) mixture of those in which a is 2 and 3 (this monomer was sold by Nippon Unicar Co., Ltd. under the trade name “F2-254-14”) Is).
  • Varnish E 100 parts by mass, zinc acetate 5.9 parts by mass, naphthenic acid (NA-200, acid value 200 mg KOH / g, manufactured by Daiwa Oil & Fats Industries Co., Ltd.) 7.5 parts by mass and xylene 60 parts by mass.
  • the reaction was continued for 18 hours while replenishing the same amount of xylol / n-butanol mixture while removing the distillate mixture of acetic acid, water and solvent.
  • the end point of the reaction was determined by quantifying the amount of acetic acid in the distilled solvent.
  • n-butanol and xylene were added to obtain a hydrolyzable resin composition S23 having a solid content of 53.8% by mass.
  • varnish H 100 parts by mass, copper acetate 5.6 parts by mass, hydrogenated rosin (Hyper CH, acid value 160 mgKOH / g, Arakawa Chemical Industries, Ltd.) 9.4 parts by mass and xylene 60 parts by mass.
  • the reaction was conducted in the same manner as in Production Example S21 except that the parts were used to obtain a hydrolyzable resin composition S26 having a solid content of 55.1% by mass.
  • Table 3 summarizes the amount of monomer used (preparation amount) used in the preparation of varnishes A to I, the solid content of the varnish, and the viscosity.
  • AA acrylic acid.
  • TIPSA triisopropylsilyl acrylate.
  • EHMA 2-ethylhexyl methacrylate.
  • CHMA cyclohexyl methacrylate.
  • M-90G methacrylic acid methoxypolyethylene glycol ester (NK ester M-90G, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • the weight average molecular weight of the resin contained in the resin composition T1 was 8600 in terms of polystyrene. there were.
  • the obtained resin composition T2 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide), and the weight average molecular weight of the resin contained in the resin composition T2 was 8000 in terms of polystyrene. there were.
  • the obtained resin composition T3 was analyzed by GPC (“HLC-8220GPC” manufactured by Tosoh Corporation, eluent: dimethylformamide).
  • the weight average molecular weight of the resin contained in the resin composition T3 was 6500 in terms of polystyrene. there were.
  • composition T4 was obtained. Solid content in obtained resin composition T4 was 50.0 mass%, and the viscosity was 8 poise. The number average molecular weight of the resin contained in the resin composition T4 was 10,000.
  • TIPSA triisopropylsilyl acrylate
  • AA acrylic acid
  • EA ethyl acrylate
  • CHMA cyclohexyl methacrylate
  • a mixed liquid consisting of 1 part by mass, 10.0 parts by mass of methoxypolyethylene glycol ester of methacrylic acid (M-90G) and 2 parts by mass of t-butylperoxy-2-ethylhexanoate was added dropwise at a constant rate over 3 hours. After completion, the mixture was kept warm for 30 minutes.
  • A It is completely transparent, and the black and white boundary of the concealment ratio measuring plate can be easily identified.
  • B It is slightly transparent, and the black-and-white boundary of the concealment ratio measuring plate can be slightly identified.
  • C Completely concealed and the black-and-white boundary of the concealment rate measurement plate cannot be identified.
  • Examples 1 to 13 and Comparative Examples 1 and 2 Preparation of colored antifouling paint According to the composition (parts by mass) shown in Table 4, colored antifouling paints (paints 1 to 15) were prepared by mixing each compounding component with a high speed disper. In addition, the coating material 3 of Example 3 was prepared by mixing the coating materials 1 and 2 with the compounding ratio of Table 4.
  • Antifouling agent 4 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (4,5-dichloro-2-n octyl-3 (2H) isothiazolone) (Rohm and Haas) “Sea Nine 211”).
  • Antifouling agent 5 4-bromo-2- (4-chlorophenyl) -5- (trifluoromethyl) -1H-pyrrole-3-carbonitrile (“Econair” manufactured by Janssen PMP).
  • Titanium oxide “TI-PURE R-900” manufactured by DuPont.
  • Azo-based yellow pigment “Seika First Yellow 2054C” manufactured by Dainichi Seika Kogyo Co., Ltd.
  • Azo-based red pigment “FUJI FAST RED 2305A” manufactured by Fuji Dye Co., Ltd.
  • Phthalocyanine blue “Cyanline Blue G-105” manufactured by Sanyo Dyeing Co., Ltd.
  • Carbon black “SUNBLACK X15” manufactured by Asahi Carbon Co., Ltd.
  • Thermoplastic resin 1 Chlorinated paraffin (“Toyoparax A50” manufactured by Tosoh Corporation).
  • Thermoplastic resin 2 Polyvinyl ether ("Lutnar A25" manufactured by BASF JAPAN).
  • Thermoplastic resin 3 Rosin (“WW Rosin” manufactured by Arakawa Chemical Industries, Ltd.).
  • Thermoplastic resin 4 vinyl chloride-isobutyl vinyl ether copolymer (“LAROFLEX MP25” manufactured by BASF JAPAN).
  • Plasticizer 1 DOP (dioctyl phthalate) (“DOP” manufactured by Mitsubishi Gas Chemical Co., Inc.).
  • Plasticizer 2 DIDP (diisodecyl phthalate) (“DIDP” manufactured by Chisso Corporation).
  • Plasticizer 3 TCP (tricresyl phosphate) (“TCP” manufactured by Daihachi Chemical Industry Co., Ltd.).
  • Plasticizer 4 Triaryl phosphate (“Reophos 65” manufactured by Ajinomoto Co., Inc.).
  • Barium sulfate “Barite Powder FBA” manufactured by Inner and Outer Talc Co., Ltd.
  • Anti-settling agent “Disparon A600-20X” manufactured by Enomoto Kasei Co., Ltd.
  • a colored antifouling paint (any one of paints 1 to 15) as an overcoat paint obtained in each of Examples and Comparative Examples was applied by an airless spray method.
  • the film thickness of the dried coating film of the top coat was 25, 40, 50, 60 ⁇ m in Example 1, 25, 50, 75, 100, 125, 150, 180 ⁇ m in Example 2, Examples 3 to 13 and Comparative Examples In 1-2, it is 25, 50, 75, 100, 125, 150 ⁇ m.
  • the dry film thickness was measured using “MiniTest 3100” (manufactured by ElektroPhysik).
  • a tristimulus colorimeter SM color meter (model SM-T45, manufactured by Suga Test Instruments Co., Ltd., standard) according to JIS K 5600-4-5 Based on the measurement according to JIS Z 8722) and the calculation based on JIS K 5600-4-6, the top antifouling coating film having each dry film thickness and the target dry film thickness T of each paint (the target dry film thickness T of each paint) Were as shown in Table 4 and Tables 5 to 8), and the color difference ⁇ E with the top-coated antifouling coating film was determined.
  • the undercoating property of the topcoat antifouling coating film having each dry film thickness was visually observed and evaluated based on the following criteria. The results are also shown in Tables 5 to 8. A: The whole is transparent. B: The sheer transparency is noticeable. C: See-through is conspicuous. D: Almost concealed but slightly transparent. E: Completely concealed.
  • ⁇ E at a dry film thickness of 0 ⁇ m refers to the color difference ⁇ E3 between each paint and the surface of the undercoat film.
  • the “coating film hue” in the column of the undercoating paint indicates not the hue of the undercoating paint itself but the hue of the surface of the undercoating paint film.
  • FIG. 1 shows the dry film thickness and ⁇ E (top-coat antifouling coating film having each dry film thickness and top-coat antifouling coating film having a target dry film thickness) for paints 3 to 15 shown in Tables 7 and 8.
  • 2 is a graph showing a part of FIG. 1 (near the target dry film thickness of 125 ⁇ m) in an enlarged manner.
  • the paints 1 to 13 of Examples 1 to 13 are colored antifouling paints that satisfy the above conditions (a) to (b) and (d) and have an excellent film thickness determination function. .
  • ⁇ E1 is as large as 2.0 or more, the film thickness dependency of the coating film hue immediately before the completion of coating is increased, so that it is easy to visually determine a change in concealment just before the completion of coating.
  • the method for forming an antifouling coating film of the present invention using the colored antifouling paint having an excellent film thickness judgment function a dry coating film having a target dry film thickness can be formed very accurately, and a slight amount Insufficient film thickness can also be resolved.
  • the coating material 14 of Comparative Example 1 has a small ⁇ E1 of 1.3, it is difficult to visually determine the change in the concealing property immediately before the coating is completed, compared with the coating materials 1 to 13.
  • the paint 15 of Comparative Example 2 has almost no film thickness determination function.
  • Zinc flower “Zinc oxide 2 types” manufactured by Sakai Chemical Industry Co., Ltd.
  • the antifouling coating film formed from each of the obtained antifouling paints was evaluated for long-term antifouling properties, adhesion to the substrate, crack resistance and polishing properties according to the following evaluation methods. The evaluation results are shown in Tables 14-17.
  • the obtained antifouling paint is applied to a blast plate previously coated with a rust-proofing paint so that the dry film thickness is 300 ⁇ m, and is left to stand for two days and nights to dry.
  • a test plate having an antifouling coating was obtained.
  • the obtained test plate was subjected to a biofouling test using a test bowl installed at the Japan Paint Marine Co., Ltd. Rinkai Research Laboratory in Tamano City, Okayama Prefecture, and its antifouling property was evaluated.
  • the number of months in the table indicates the soaking period.
  • surface has shown the ratio (%) (visual determination) which occupies for the coating-film area of a biological adhesion area, and made 15% or less the pass.
  • Adhesion with substrate A test plate A obtained by applying the obtained antifouling paint to a blast plate previously coated with a rust preventive paint so that the dry film thickness is 150 ⁇ m and leaving it in the room for two days and nights; and The test plate A was immersed in sterilized filtered seawater for 3 months, and then dried by leaving it in the room for a day and night. Applying stain paint to a dry film thickness of 150 ⁇ m and leaving it in the room for 2 days to dry, using test plate B, cross-cut adhesion test according to JIS K 5600.5.6 (Gap spacing 2 mm, grid number 25). The numerical values in the table are the test results scored according to the following criteria.
  • Evaluation score 10 Each cut is thin and smooth on both sides, and there is no peeling at a glance between the intersection of the cut and the square. Evaluation score 8: There is slight peeling at the intersection of the cuts, there is no peeling at a glance, and the area of the defect is within 5% of the total square area. Evaluation score 6: There was peeling on both sides of the cut and the intersection, and the area of the defect was 5-15% of the total square area. Evaluation score 4: The width of peeling due to cuts is wide, and the area of the defect is 15 to 35% of the total square area. Evaluation score 2: The width of the peeling due to the cut is wider than 4 points, and the area of the defect is 35 to 65% of the total square area. Evaluation score 0: peeling area is 65% or more of the total square area.
  • polishing properties (coating consumption (polishing rate) test)
  • the obtained antifouling paint is applied to a blast plate coated with a rust-preventing paint in advance so that the dry film thickness is 300 ⁇ m, and it is dried by leaving it in the room for two days and nights to have an antifouling paint film.
  • This test plate is affixed to the side of a cylinder with a diameter of 750 mm and a length of 1200 mm, and is continuously rotated in seawater at a peripheral speed of 15 knots for 24 months.
  • the coating film consumption of the test plate every 3 months (cumulative decrease in coating thickness) Amount [ ⁇ m]).
  • the antifouling coating film obtained from the antifouling paint of the reference example containing the hydrolyzable resin (i) or (ii) has a long-term antifouling property, adhesion to the substrate, and crack resistance. Excellent in properties.
  • the antifouling coating film obtained from the antifouling paint of the comparative reference example has insufficient long-term antifouling properties and sometimes lacks crack resistance and adhesion to the ground.

Abstract

 [1]所定のSi含有加水分解性樹脂および着色顔料を含む着色防汚塗料であって、目標乾燥塗膜を有する塗膜が被塗物の表面を完全に隠蔽し;目標乾燥膜厚を有する塗膜と、乾燥膜厚が0.8Tである塗膜との色差ΔE1が2.0以上;好ましくは目標乾燥膜厚を有する塗膜と、乾燥膜厚が1.2Tである塗膜との色差ΔE2が1未満である着色防汚塗料を調製する工程と、[2]被塗物表面が着色防汚塗料からなる塗膜によって完全に隠蔽されるまで、着色防汚塗料を被塗物表面に塗工する工程を含む防汚塗膜の形成方法が提供される。

Description

防汚塗膜の形成方法
 本発明は、船舶、発電プラント等の被塗物に防汚塗膜を形成する方法に関し、より詳しくは、所定の乾燥膜厚を有する防汚塗膜をほぼ均一に、かつ、簡便に形成する方法に関する。
 船舶、発電プラント等の水中構造物の表面には、フジツボ、イガイ、藻類等の水棲生物の付着を防止するために、防汚塗料が塗装される。防汚塗料が塗装される水中構造物は通常、大型であるため、防汚塗料の塗装は、クレーン車などを利用して行なわれることが多いが、大面積の水中構造物の表面全体に、均一にかつ所定の膜厚で防汚塗料を塗装することは容易ではない。
 防汚塗料には、初期の塗膜性能(防汚性能など)を発揮するために必要な所定の乾燥塗膜厚範囲(特に最低塗膜厚)があり、たとえば、所定の最低塗膜厚を下回ると、たとえ膜厚不足箇所が表面全体の一部であっても、初期の防汚性能を水中構造物に付与することができず、有効防汚期間が事実上短縮されてしまう。
 このような課題に対して、たとえば、特開2000-005692号公報(特許文献1)には、膜厚判定防汚塗料と被塗物との色差、目標乾燥膜厚の完全隠蔽塗膜と(目標乾燥膜厚-50)μm未満の乾燥膜厚の塗膜との色差、および目標乾燥膜厚の完全隠蔽塗膜と(目標乾燥膜厚+50)μm超の乾燥膜厚の塗膜との色差が所定の範囲内であり、かつ防汚剤および着色顔料の含有量が所定値以下である膜厚判定防汚塗料を用いて防汚塗膜を形成する方法が開示されている。かかる膜厚判定防汚塗料によれば、塗膜が所定の膜厚に達したかどうかを、塗装中の塗膜と被塗物との色差の変化を目視観察することにより判定できるため、塗膜厚の過不足なくほぼ均一に、かつ簡便に防汚塗料の塗装を行なうことが可能となる。
 しかしながら、上記特許文献1に記載の膜厚判定防汚塗料は、目標乾燥膜厚の塗膜と目標乾燥膜厚直前の塗膜との色差が比較的小さいために、塗装作業者による目視観察によって、塗装中の塗膜が所定の膜厚に達したかどうかを判定しにくいことがあり、改善の余地があった。
特開2000-005692号公報
 本発明は、上記課題を解決するためになされたものであり、その目的は、塗装中の塗膜が所定の膜厚に達したかどうかを極めて容易に判定することができ、これにより、所定の乾燥膜厚を有する均一な防汚塗膜を、より正確にかつより簡便に形成することができる方法を提供することである。
 本発明は、被塗物の表面に防汚塗膜を形成する方法であり、下記工程[1]および[2]を含むことを特徴とする。
[1]加水分解性樹脂および着色顔料を含む着色防汚塗料であって、下記条件(a)~(c):
 (a)目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜が、被塗物の表面を完全に隠蔽する、
 (b)目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜と、乾燥膜厚が0.8Tである着色防汚塗料から形成される塗膜との色差ΔE1が2.0以上である、
 (c)上記加水分解性樹脂が、加水分解性樹脂(i)および/または加水分解性樹脂(ii)を含む、
を満たす着色防汚塗料を調製する工程、および、
[2]被塗物の表面が着色防汚塗料からなる塗膜によって完全に隠蔽されるまで、着色防汚塗料を被塗物の表面に塗工する工程。
 ここで、上記加水分解性樹脂(i)は、下記一般式(I):
Figure JPOXMLDOC01-appb-C000025
[上記一般式(I)中、aおよびbは、それぞれ独立して2~5の整数を表し、mは0~50の整数、nは3~80の整数を表す。R1~R5は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表す。]
で示される基、下記一般式(II):
Figure JPOXMLDOC01-appb-C000026
[上記一般式(II)中、cおよびdは、それぞれ独立して2~5の整数を表し、pは0~50の整数を表す。R6、R7およびR8は、それぞれ独立してアルキル基、RaまたはRbを表す。
 ここで、Raは、
Figure JPOXMLDOC01-appb-C000027
 (式中、xは0~20の整数を表す。R23~R27は、同一または異なって、アルキル基を表す。)であり、
 Rbは、
Figure JPOXMLDOC01-appb-C000028
 (式中、yは1~20の整数を表す。R28およびR29は、同一または異なって、アルキル基を表す。)である。]
で示される基、下記一般式(III):
Figure JPOXMLDOC01-appb-C000029
[上記一般式(III)中、e、f、gおよびhは、それぞれ独立して2~5の整数を表し、qおよびsは、それぞれ独立して0~50の整数を表し、rは3~80の整数を表す。R9~R12は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表す。]
で示される基、および、下記一般式(IV):
Figure JPOXMLDOC01-appb-C000030
[上記一般式(IV)中、i、j、kおよびlは、それぞれ独立して2~5の整数を表し、tおよびuは、それぞれ独立して0~50の整数を表し、vおよびwは、それぞれ独立して0~20の整数を表す。R13~R22は、同一または異なって、アルキル基を表す。]で示される基からなる群から選択される少なくとも1種のシリコン含有基と、2価の金属原子Mを含有する金属原子含有基とを有する加水分解性樹脂である。
 また、上記加水分解性樹脂(ii)は、上記一般式(I)、(II)、(III)および(IV)で示される基からなる群から選択される少なくとも1種のシリコン含有基と、下記一般式(V):
Figure JPOXMLDOC01-appb-C000031
[上記一般式(V)中、R40、R41およびR42は、同一または異なって、炭素数1~20の炭化水素残基を表す。]
で示されるトリオルガノシリルオキシカルボニル基とを有する加水分解性樹脂である。
 上記色差ΔE1は2.5以上であることが好ましい。また、上記着色防汚塗料は、下記条件(d):
 (d)目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜と、乾燥膜厚が1.2Tである着色防汚塗料から形成される塗膜との色差ΔE2が1未満である、
を満たすことが好ましい。色差ΔE2はより好ましくは0.5以下である。
 本発明の防汚塗膜の形成方法において、被塗物の表面が完全に隠蔽されたか否かの判定は、好ましくは目視観察によってなされる。
 上記加水分解性樹脂の含有量は、塗料固形分中、30~97質量%であることが好ましい。
 上記加水分解性樹脂(i)が有する前記金属原子含有基は、下記一般式(VI)および(VII)で示される基からなる群から選択される少なくとも1種の基であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 ここで、上記一般式(VI)中、Mは2価の金属原子を表し、R30は有機酸残基またはアルコール残基を表す。
Figure JPOXMLDOC01-appb-C000033
 ここで、上記一般式(VII)中、Mは2価の金属原子を表す。
 上記加水分解性樹脂(i)は、下記一般式(I’)で示される単量体(a1)、下記一般式(II’)で示される単量体(a2)、下記一般式(III’)で示される単量体(a3)および下記一般式(IV’)で示される単量体(a4)からなる群から選択される少なくとも1種のシリコン含有重合性単量体(a)から誘導される構成単位と、2価の金属原子Mを含有する金属原子含有重合性単量体(b)から誘導される構成単位とを含む樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000034
 ここで、上記一般式(I’)中、R31は水素原子またはメチル基を表し、a、b、m、nおよびR1~R5は、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000035
 ここで、上記一般式(II’)中、R32は水素原子またはメチル基を表し、c、d、pおよびR6~R8は、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000036
 ここで、上記一般式(III’)中、R33およびR34は水素原子またはメチル基を表し、e、f、g、h、q、r、sおよびR9~R12は、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000037
 ここで、上記一般式(IV’)中、R35およびR36は水素原子またはメチル基を表し、i、j、k、l、t、u、v、wおよびR13~R22は、上記と同じ意味を表す。
 上記2価の金属原子Mを含有する金属原子含有重合性単量体(b)は、下記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)からなる群から選択される少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000038
 ここで、上記一般式(VI’)中、R37は水素原子またはメチル基を表し、MおよびR30は、上記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000039
 ここで、上記一般式(VII’)中、R38およびR39は水素原子またはメチル基を表し、Mは、上記と同じ意味を表す。
 上記加水分解性樹脂(ii)は、上記一般式(VI)および(VII)で示される基からなる群から選択される少なくとも1種の金属原子含有基をさらに有することが好ましい。
 上記記加水分解性樹脂(ii)は、上記一般式(I’)で示される単量体(a1)、上記一般式(II’)で示される単量体(a2)、上記一般式(III’)で示される単量体(a3)および上記一般式(IV’)で示される単量体(a4)からなる群から選択される少なくとも1種のシリコン含有重合性単量体(a)から誘導される構成単位と、下記一般式(V’)で示されるトリオルガノシリル(メタ)アクリレート(c)から誘導される構成単位とを含む樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000040
 ここで、上記一般式(V’)中、R43は水素原子またはメチル基を表し、R40~R42は、上記と同じ意味を表す。
 上記加水分解性樹脂(ii)は、上記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)からなる群から選択される少なくとも1種の金属原子含有重合性単量体(b)から誘導される構成単位をさらに含むことが好ましい。
 上記着色防汚塗料は、防汚剤をさらに含有することができる。この場合、防汚剤の含有量は、塗料固形分中、好ましくは10質量%以下である。
 また、上記着色防汚塗料は、熱可塑性樹脂および/または可塑剤をさらに含有することができる。この場合、熱可塑性樹脂および可塑剤の合計含有量は、上記加水分解性樹脂100質量部に対して3~100質量部であることが好ましい。
 上記熱可塑性樹脂は、塩素化パラフィン、ポリビニルエーテル、ロジンおよび塩化ビニル-イソブチルビニルエーテル共重合体からなる群から選択される少なくとも1種であることが好ましい。
 また、上記可塑剤は、フタル酸エステル系可塑剤およびリン酸エステル系可塑剤からなる群から選択される少なくとも1種であることが好ましい。
 上記着色防汚塗料は、上記条件(a)~(c)を具備するが、互いに着色顔料の含有量が異なる2種以上の防汚塗料を混合することによって調製することもできる。
 上記着色防汚塗料が塗工される被塗物は、その表面に、防食塗料または防汚塗料から形成された下塗り塗膜を有するものであってもよい。この場合、当該下塗り塗膜表面上に、着色防汚塗料が塗工される。被塗物としては、鋼材、プラスチックまたはコンクリート製の構造物、特には水中構造物であることができる。
 本発明により、目標乾燥膜厚の塗膜と目標乾燥膜厚直前の塗膜との色差が従来と比較して大きい、膜厚判定機能を有する着色防汚塗料が提供される。当該着色防汚塗料を用いた本発明の方法によれば、塗装中の塗膜が所定の膜厚に達したかどうかを容易に判定することができるため、所定の乾燥膜厚を有する均一な防汚塗膜を、正確に形成することができる。これにより、従来しばしば発生した膜厚不足による水棲生物の付着などを防止することができる。また、過剰な膜厚を防止することもできるので、塗料の節約を図ることもできる。また、本発明の方法によれば、長期防汚性および耐クラック性に優れた防汚塗膜を形成することが可能となる。
 さらに、本発明の方法によれば、逐次、塗膜厚の測定を行なって所定の膜厚に達したかどうかを確認するという煩雑な作業を回避できるため、塗装作業の大幅な効率化を図ることができるとともに、塗装作業者の大幅な負担軽減を図ることができる。
 本発明の方法は、各種構造物(特には水中構造物)の防汚塗装に適用することができる。本発明の方法によれば、船舶等のような大型構造物の外面に防汚塗装を施す場合など、塗装が困難な構造物またはその部位に対しても、所定の乾燥膜厚を有する均一な防汚塗膜を、正確かつ簡便に形成することができる。
実施例および比較例で調製した塗料3~15における、各乾燥膜厚を有する上塗り防汚塗膜と、目標乾燥膜厚を有する上塗り防汚塗膜との色差ΔEとの関係を示す図である。 図1の一部(目標乾燥膜厚125μm近傍)を拡大して示す図である。
 以下、本発明について詳細に説明する。
 <着色防汚塗料>
 本発明の防汚塗膜の形成方法においては、防汚塗膜を形成する塗料として所定の加水分解性樹脂と着色顔料とを含む着色防汚塗料が用いられる。この着色防汚塗料は、後で詳細を示すように、塗装中の塗膜と被塗物表面との色差の変化を観察することにより、所定の膜厚に達したかどうか判定できる「膜厚判定機能」を有する防汚塗料である。以下、本発明において用いられる着色防汚塗料について詳細に説明する。
 (A)加水分解性樹脂
 着色防汚塗料は、加水分解性樹脂(i)あるいは加水分解性樹脂(ii)、またはこれらの双方をビヒクル成分として含む。加水分解性樹脂(i)および(ii)は、樹脂透明性に優れており、着色顔料による鮮明な色味が樹脂の色味によって妨害されることがないため、着色顔料の色相に応じた各種の鮮明な色相を防汚塗料に付与することが可能となる。これにより、着色防汚塗料と被塗物表面との色差を大きくすることができるとともに、塗膜色相の膜厚依存性、とりわけ、目標乾燥膜厚T直前(0.8T程度)から目標乾燥膜厚Tにかけての塗膜色相の膜厚依存性を大きくすることができ、着色防汚塗料に優れた膜厚判定機能が付与される。また、各種の鮮明な色相を防汚塗料に付与することが可能になる(防汚塗料の多色化が可能になる)ことから、本発明の方法を適用できる被塗物表面の色の自由度が広がり、実質的に被塗物表面がどのような色であっても、本発明の方法を適用することができる。
 さらに、加水分解性樹脂(i)および(ii)はそれ自身、その加水分解性およびシリコン含有基に基づく良好な防汚性能を有しているため、加水分解性樹脂(i)および/または(ii)を含む着色防汚塗料によれば、別途の防汚剤を含有しないか、またはその配合量が少ない場合であっても、高い防汚性能を長期間にわたって安定して発揮する(長期防汚性に優れる)防汚塗膜を形成することができる。別途の防汚剤を不含有にできること、またはその配合量を少なくできることは、着色顔料による鮮明な色味が防汚剤によって妨害されにくくすることができることを意味しており、これにより、着色防汚塗料の鮮明化、多色化および膜厚判定機能をさらに向上させることができる。
 〔加水分解性樹脂(i)〕
 着色防汚塗料に含有され得る加水分解性樹脂(i)は、上記一般式(I)、(II)、(III)および(IV)で示される基からなる群から選択される少なくとも1種のシリコン含有基と、2価の金属原子Mを含有する少なくとも1種の金属原子含有基とを有する。このような特定のシリコン含有基および金属原子含有基を有する加水分解性樹脂(i)は、金属原子含有基の加水分解性に起因して、水中(特には海水中)において徐々に加水分解する性質を示す。したがって、加水分解性樹脂(i)をビヒクルとする着色防汚塗料から形成された防汚塗膜は、水中浸漬によりその表面が自己研磨され、これにより、塗膜表面の更新性が得られるため、生物が付着しにくくなるとともに、金属原子含有基が加水分解されることによる防汚性効果およびシリコン含有基が示す防汚性効果も相俟って、完全に消耗されるまでの間、防汚剤を含有しない場合においても、優れた防汚性能を示すこととなる。
 上記一般式(I)中、aおよびbは、それぞれ独立して2~5の整数を表し、mは0~50の整数、nは3~80の整数を表す。R1~R5は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表す。
 上記一般式(II)中、cおよびdは、それぞれ独立して2~5の整数を表し、pは0~50の整数を表す。R6、R7およびR8は、それぞれ独立してアルキル基、RaまたはRbを表す。RaおよびRbについては、上述のとおりである。
 上記一般式(III)中、e、f、gおよびhは、それぞれ独立して2~5の整数を表し、qおよびsは、それぞれ独立して0~50の整数を表し、rは3~80の整数を表す。R9~R12は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表す。
 また、上記一般式(IV)中、i、j、kおよびlは、それぞれ独立して2~5の整数を表し、tおよびuは、それぞれ独立して0~50の整数を表し、vおよびwは、それぞれ独立して0~20の整数を表す。R13~R22は、同一または異なって、アルキル基を表す。
 加水分解性樹脂(i)は、上記一般式(I)、(II)、(III)および(IV)で示される基からなる群から選択される2種以上のシリコン含有基を有していてもよい。この場合、上記一般式(I)で示される基を2種以上、上記一般式(II)で示される基を2種以上、上記一般式(III)で示される基を2種以上、および/または、上記一般式(IV)で示される基を2種以上有していてもよい。
 加水分解性樹脂(i)が有する2価の金属原子Mを含有する金属原子含有基は、塗膜の自己研磨性を長期間安定して維持でき、これにより長期防汚性に優れるとともに、耐クラック性や下地との密着性にも優れる塗膜を形成できることから、上記一般式(VI)および(VII)で示される基からなる群から選択される少なくとも1種の基であることが好ましい。上記一般式(VI)および(VII)中、Mは2価の金属原子を表し、R30は有機酸残基またはアルコール残基を表す。加水分解性樹脂(i)は、上記一般式(VI)および(VII)で示される基の双方を有していてもよい。2価の金属原子Mとしては、Mg、ZnおよびCuなどを挙げることができ、好ましくは、ZnまたはCuである。
 加水分解性樹脂(i)としては、上記シリコン含有基および金属原子含有基を有する限り特に限定されないが、上記一般式(I’)で示される単量体(a1)、上記一般式(II’)で示される単量体(a2)、上記一般式(III’)で示される単量体(a3)および上記一般式(IV’)で示される単量体(a4)からなる群から選択される少なくとも1種のシリコン含有重合性単量体(a)から誘導される構成単位と、2価の金属原子Mを含有する金属原子含有重合性単量体(b)から誘導される構成単位とを含むアクリル系樹脂を好適に用いることができる。
 ここで、上記一般式(I’)中、R31は水素原子またはメチル基を表し、a、b、m、nおよびR1~R5は、上記と同じ意味を表す。上記一般式(II’)中、R32は水素原子またはメチル基を表し、c、d、pおよびR6~R8は、上記と同じ意味を表す。上記一般式(III’)中、R33およびR34は水素原子またはメチル基を表し、e、f、g、h、q、r、sおよびR9~R12は、上記と同じ意味を表す。上記一般式(IV’)中、R35およびR36は水素原子またはメチル基を表し、i、j、k、l、t、u、v、wおよびR13~R22は、上記と同じ意味を表す。
 上記一般式(I’)で示される単量体(a1)、一般式(II’)で示される単量体(a2)、一般式(III’)で示される単量体(a3)および一般式(IV’)で示される単量体(a4)はそれぞれ、上記一般式(I)、(II)、(III)および(IV)で示されるシリコン含有基を有するシリコン含有重合性単量体である。
 また、上記2価の金属原子Mを含有する金属原子含有重合性単量体(b)は、塗膜の自己研磨性を長期間安定して維持でき、これにより長期防汚性に優れるとともに、耐クラック性や下地との密着性にも優れる塗膜を形成できることから、上記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)からなる群から選択される少なくとも1種を含むことが好ましい。上記一般式(VI’)中、R37は水素原子またはメチル基を表し、MおよびR30は、上記と同じ意味を表す。また、上記一般式(VII’)中、R38およびR39は水素原子またはメチル基を表し、Mは、上記と同じ意味を表す。
 上記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)はそれぞれ、上記一般式(VI)および(VII)で示される金属原子含有基を有する金属原子含有重合性単量体である。
 〔1〕シリコン含有重合性単量体(a)
 加水分解性樹脂(i)を構成し得るシリコン含有重合性単量体(a1)は、上記一般式(I’)で示され、式中、aおよびbは、それぞれ独立して2~5の整数を表し、mは0~50の整数、nは3~80の整数を表す。R1~R5は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表し、R31は水素原子またはメチル基を表す。シリコン含有重合性単量体(a)として、シリコン含有重合性単量体(a1)を用いることにより、上記一般式(I)で示されるシリコン含有基を側鎖に有するアクリル系樹脂である加水分解性樹脂(i)が得られる。
 上記一般式(I’)(上記一般式(I)についても同様、以下同じ。)中のmは、ポリエーテル構造の平均重合度で、0でもよいが、旧塗膜とのリコート性が良好となる傾向にあることから、0より大きいことが好ましい。また、塗膜の耐水性が良好となる傾向にあることから、mは50以下であり、旧塗膜とのリコート性が良好となる傾向にあることから、30以下であることが好ましい。より好ましくは3~25の範囲であり、さらに好ましくは5~20の範囲である。
 上記一般式(I’)中のaは、好ましくは2または3であり、aが2であるものと3であるものとを併用してもよい。bは、好ましくは2または3である。
 上記一般式(I’)中のnは、シリコン含有構造の平均重合度を示し、3~80の範囲の整数である。nを3以上とすることにより、より高い防汚効果を発現させることができる。また、nを80以下とすることにより、他の重合性単量体に対して良好な相溶性を示すようになり、また、得られる加水分解性樹脂(i)の一般的な有機溶剤に対する溶解性を向上させることができる。nは、好ましくは5~50の範囲であり、より好ましくは、8~40の範囲である。
 上記一般式(I’)中のR1~R5は、炭素数1~18のアルキル基であることが好ましく、メチル基またはエチル基がより好ましく、メチル基がさらに好ましい。
 上記一般式(I’)で示されるシリコン含有重合性単量体(a1)の具体例としては、たとえば、mが0のものとして、チッソ(株)製の「FM-0711」、「FM-0721」、「FM-0725」(以上、商品名)、信越化学(株)製の「X-24-8201」、「X-22-174DX」、「X-22-2426」(以上、商品名)などが挙げられる。また、mが0より大きいものとしては、日本ユニカー(株)製の「F2-254-04」、「F2-254-14」(以上、商品名)などが挙げられる。なお、シリコン含有重合性単量体(a1)の具体例として、日本ユニカー(株)製の商品をその商品名で記載したが、日本ユニカー(株)におけるシリコーン事業は、2004年に東レ・ダウコーニング株式会社に譲渡されており、現在では、当該譲渡先から相当品を入手可能である。以下に示す日本ユニカー(株)製の商品についても同様である。
 加水分解性樹脂(i)は、シリコン含有重合性単量体(a)として、2種以上のシリコン含有重合性単量体(a1)から誘導される構成単位を含んでいてもよい。
 加水分解性樹脂(i)を構成し得るシリコン含有重合性単量体(a2)は、上記一般式(II’)で示され、式中、cおよびdは、それぞれ独立して2~5の整数を表し、pは0~50の整数を表す。R6、R7およびR8は、それぞれ独立してアルキル基、RaまたはRbを表し、R32は水素原子またはメチル基を表す。RaおよびRbについては上記のとおりである。シリコン含有重合性単量体(a)として、シリコン含有重合性単量体(a2)を用いることにより、上記一般式(II)で示されるシリコン含有基を側鎖に有するアクリル系樹脂である加水分解性樹脂(i)が得られる。
 上記一般式(II’)(上記一般式(II)についても同様、以下同じ。)中のpは、ポリエーテル構造の平均重合度で、0でもよいが、旧塗膜とのリコート性が良好となる傾向にあることから、0より大きいことが好ましい。また、塗膜の耐水性が良好となる傾向にあることから、pは50以下であり、旧塗膜とのリコート性が良好となる傾向にあることから、30以下であることが好ましい。より好ましくは3~25の範囲であり、さらに好ましくは5~20の範囲である。
 上記一般式(II’)中のcは、好ましくは2または3であり、cが2であるものと3であるものとを併用してもよい。dは、好ましくは2または3である。
 上記一般式(II’)中のxおよびyは、側鎖に導入されたシリコン含有構造またはポリエーテル構造の平均重合度を示し、それぞれ0~20の範囲の整数、1~20の範囲の整数である。xおよびyを20以下とすることにより、他の重合性単量体に対して良好な相溶性を示すようになり、また、得られる加水分解性樹脂(i)の一般的な有機溶剤に対する溶解性を向上させることができる。xおよびyは、好ましくは10以下の範囲であり、より好ましくは、5以下の範囲である。
 上記一般式(II’)中のR6~R8およびR23~R29で選択され得るアルキル基としては、たとえば、メチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられる。メチル基またはエチル基が好ましく、メチル基がより好ましい。
 上記一般式(II’)で示されるシリコン含有重合性単量体(a2)の具体例としては、たとえば、pが0のものとして、チッソ(株)製の「TM-0701」(商品名)、信越化学(株)製の「X-22-2404」(商品名)、日本ユニカー(株)製の「F2-250-01」、「F2-302-01」(商品名)などが挙げられる。また、pが0より大きいものとしては、日本ユニカー(株)製の「F2-302-04」(以上、商品名)などが挙げられる。
 加水分解性樹脂(i)は、シリコン含有重合性単量体(a)として、2種以上のシリコン含有重合性単量体(a2)から誘導される構成単位を含んでいてもよい。
 加水分解性樹脂(i)を構成し得るシリコン含有重合性単量体(a3)は、上記一般式(III’)で示され、式中、e、f、gおよびhは、それぞれ独立して2~5の整数を表し、qおよびsは、それぞれ独立して0~50の整数を表し、rは3~80の整数を表す。R9~R12は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表し、R33およびR34は水素原子またはメチル基を表す。シリコン含有重合性単量体(a)として、シリコン含有重合性単量体(a3)を用いることにより、上記一般式(III)で示されるシリコン含有基(このシリコン含有基は、ポリマー主鎖間を架橋する架橋基である。)を有するアクリル系樹脂である加水分解性樹脂(i)が得られる。
 上記一般式(III’)(上記一般式(III)についても同様、以下同じ。)中のqおよびsは、ポリエーテル構造の平均重合度で、0でもよいが、旧塗膜とのリコート性が良好となる傾向にあることから、0より大きいことが好ましい。また、塗膜の耐水性が良好となる傾向にあることから、qおよびsは50以下であり、旧塗膜とのリコート性が良好となる傾向にあることから、30以下であることが好ましい。より好ましくは3~25の範囲であり、さらに好ましくは5~20の範囲である。
 上記一般式(III’)中のeおよびhは、好ましくは2または3であり、eおよびhが2であるものと3であるものとを併用してもよい。fおよびgは、好ましくは2または3である。
 上記一般式(III’)中のrは、シリコン含有構造の平均重合度を示し、3~80の範囲の整数である。rを3以上とすることにより、より高い防汚効果を発現させることができる。また、rを80以下とすることにより、他の重合性単量体に対して良好な相溶性を示すようになり、また、得られる加水分解性樹脂(i)の一般的な有機溶剤に対する溶解性を向上させることができる。rは、好ましくは5~50の範囲であり、より好ましくは、8~40の範囲である。
 上記一般式(III’)中のR9~R12は、炭素数1~18のアルキル基であることが好ましく、メチル基またはエチル基がより好ましく、メチル基がさらに好ましい。
 上記一般式(III’)で示されるシリコン含有重合性単量体(a3)の具体例としては、たとえば、qおよびsが0のものとして、チッソ(株)製の「FM-7711」、「FM-7721」、「FM-7725」(以上、商品名)、日本ユニカー(株)製の「F2-311-02」(商品名)などが挙げられる。また、qおよびsが0より大きいものとして、日本ユニカー(株)製の「F2-354-04」(商品名)などが挙げられる。
 加水分解性樹脂(i)は、シリコン含有重合性単量体(a)として、2種以上のシリコン含有重合性単量体(a3)から誘導される構成単位を含んでいてもよい。
 加水分解性樹脂(i)を構成し得るシリコン含有重合性単量体(a4)は、上記一般式(IV’)で示され、式中、i、j、kおよびlは、それぞれ独立して2~5の整数を表し、tおよびuは、それぞれ独立して0~50の整数を表し、vおよびwは、それぞれ独立して0~20の整数を表す。R13~R22は、同一または異なって、アルキル基を表し、R35およびR36は水素原子またはメチル基を表す。シリコン含有重合性単量体(a)として、シリコン含有重合性単量体(a4)を用いることにより、上記一般式(IV)で示されるシリコン含有基(このシリコン含有基は、ポリマー主鎖間を架橋する架橋基である。)を有するアクリル系樹脂である加水分解性樹脂(i)が得られる。
 上記一般式(IV’)(上記一般式(IV)についても同様、以下同じ。)中のtおよびuは、ポリエーテル構造の平均重合度で、0でもよいが、旧塗膜とのリコート性が良好となる傾向にあることから、0より大きいことが好ましい。また、塗膜の耐水性が良好となる傾向にあることから、tおよびuは50以下であり、旧塗膜とのリコート性が良好となる傾向にあることから、30以下であることが好ましい。より好ましくは3~25の範囲であり、さらに好ましくは5~20の範囲である。
 上記一般式(IV’)中のiおよびlは、好ましくは2または3であり、iおよびlが2であるものと3であるものとを併用してもよい。jおよびkは、好ましくは2または3である。
 上記一般式(IV’)中のvおよびwは、側鎖に導入されたシリコン含有構造の平均重合度を示し、0~20の範囲の整数である。vおよびwを20以下とすることにより、他の重合性単量体に対して良好な相溶性を示すようになり、また、得られる加水分解性樹脂(i)の一般的な有機溶剤に対する溶解性を向上させることができる。vおよびwは、好ましくは10以下の範囲であり、より好ましくは、5以下の範囲である。
 上記一般式(IV’)中のR13~R22で選択され得るアルキル基としては、たとえば、メチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられる。メチル基またはエチル基が好ましく、メチル基がより好ましい。
 上記一般式(IV’)で示されるシリコン含有重合性単量体(a4)の具体例としては、たとえば、tおよびuが0のものとして、日本ユニカー(株)製の「F2-312-01」(商品名)などが挙げられる。また、tおよびuが0より大きいものとしては、日本ユニカー(株)製の「F2-312-04」(商品名)などが挙げられる。
 加水分解性樹脂(i)は、シリコン含有重合性単量体(a)として、2種以上のシリコン含有重合性単量体(a4)から誘導される構成単位を含んでいてもよい。
 また、加水分解性樹脂(i)は、シリコン含有重合性単量体(a1)、(a2)、(a3)および(a4)から選択される2種以上のシリコン含有重合性単量体から誘導される構成単位を含んでいてもよい。なかでも、好ましい実施形態の1つとして、片末端(メタ)アクリル変性シリコン含有重合性単量体〔シリコン含有重合性単量体(a1)および/または(a2)〕と、両末端(メタ)アクリル変性シリコン含有重合性単量体〔シリコン含有重合性単量体(a3)および/または(a4)〕とを併用する形態を挙げることができる。
 加水分解性樹脂(i)を構成する全構成単位中、シリコン含有重合性単量体(a)から誘導される構成単位の含有量は、1~60質量%であることが好ましく、5~50質量%であることがより好ましく、10~40質量%であることがさらに好ましい。1質量%以上とすることにより、防汚剤を別途に含有させない場合においても防汚効果を発現する傾向があり、60質量%以下とすることにより、長期の防汚性と、下地との密着性との良好なバランスが得られる傾向がある。
 〔2〕金属原子含有重合性単量体(b)
 金属原子含有重合性単量体(b)は、加水分解性樹脂(i)に2価の金属原子Mを含有する金属原子含有基を導入するために用いられる単量体である。金属原子含有基を有しない場合には、得られる樹脂の加水分解性が十分でない結果、塗膜の良好な自己研磨性が得られず、高い防汚性を示す塗膜を得ることが困難である。また、金属原子含有基を有しない場合、塗膜の下地との密着性および耐クラック性が不良となる傾向にある。2価の金属原子Mとしては、Mg、ZnおよびCuなどを挙げることができ、好ましくは、ZnまたはCuである。
 加水分解性樹脂(i)を構成し得る金属原子含有重合性単量体(b1)は、上記一般式(VI’)で示され、式中、R37は水素原子またはメチル基を表し、Mは2価の金属原子を表し、R30は有機酸残基またはアルコール残基を表す。金属原子含有重合性単量体(b)として、金属原子含有重合性単量体(b1)を用いることにより、上記一般式(VI)で示される金属原子含有基を有するアクリル系樹脂である加水分解性樹脂(i)が得られる。
 R30において、有機酸残基を構成する有機酸としては、たとえば、酢酸、モノクロル酢酸、モノフルオロ酢酸、プロピオン酸、カプロン酸、カプリル酸、2-エチルヘキシル酸、カプリン酸、バーサチック酸、イソステアリン酸、パルミチン酸、クレソチン酸、オレイン酸、エライジン酸、リノール酸、リノレン酸、ステアロール酸、リシノール酸、リシノエライジン酸、ブラシジン酸、エルカ酸、α-ナフトエ酸、β-ナフトエ酸、安息香酸、2,4,5-トリクロロフェノキシ酢酸、2,4-ジクロロフェノキシ酢酸、キノリンカルボン酸、ニトロ安息香酸、ニトロナフタレンカルボン酸、プルビン酸等の一塩基有機酸が挙げられる。なかでも、有機酸残基が脂肪酸系のものを使用すると、長期にわたりクラックや剥離のない塗膜を維持することができる傾向にあり好ましい。特に、金属原子含有重合性単量体(b1)として、可塑性の高いオレイン酸亜鉛(メタ)アクリレートやバーサチック酸亜鉛(メタ)アクリレートが好ましく用いられる。
 また、他の好ましい有機酸として、芳香族有機酸以外の一塩基環状有機酸を挙げることができる。一塩基環状有機酸としては、たとえば、ナフテン酸等のシクロアルキル基を有するもののほか、三環式樹脂酸等の樹脂酸およびこれらの塩等を挙げることができる。三環式樹脂酸としては、たとえば、ジテルペン系炭化水素骨格を有する一塩基酸等を挙げることができ、このようなものとしては、たとえば、アビエタン、ピマラン、イソピマラン、ラブダン骨格を有する化合物を挙げることができる。より具体的には、たとえば、アビエチン酸、ネオアビエチン酸、デヒドロアビエチン酸、水添アビエチン酸、パラストリン酸、ピマル酸、イソピマル酸、レボピマル酸、デキストロピマル酸、サンダラコピマル酸、およびこれらの塩等を挙げることができる。これらのうち、加水分解が適度に行なわれるので長期防汚性に優れるほか、塗膜の耐クラック性、入手容易性にも優れることから、アビエチン酸、水添アビエチン酸、およびこれらの塩が好ましい。
 また、上記一塩基環状有機酸は、高度に精製されたものである必要はなく、たとえば、松脂、松の樹脂酸等を使用することもできる。このようなものとしては、たとえば、ロジン類、水添ロジン類、不均化ロジン類等やナフテン酸を挙げることができる。ここでいうロジン類とは、ガムロジン、ウッドロジン、トール油ロジン等である。ロジン類、水添ロジン類および不均化ロジン類は、廉価で入手しやすく、取り扱い性に優れ、長期防汚性を発揮する点で好ましい。
 上記一塩基環状有機酸の酸価は、100mgKOH/g以上、220mgKOH/g以下であることが好ましく、120mgKOH/g以上、190mgKOH/g以下であることがより好ましく、140mgKOH/g以上、185mgKOH/g以下であることがさらに好ましい。R30を形成する一塩基環状有機酸として、上記範囲内の酸価を有するものを使用すると、加水分解性樹脂(i)の加水分解速度が適度なものとなり、その結果、塗膜の自己研磨性を長期間安定して維持できるようになるため、防汚効果をより長期間維持することができる。
 金属原子含有重合性単量体(b1)が有する有機酸残基は、1種のみの有機酸から構成されていてもよく、2種以上の有機酸から構成されていてもよい。
 R30として有機酸残基を有する金属原子含有重合性単量体(b1)の製造方法としては、たとえば、無機金属化合物と、(メタ)アクリル酸のようなカルボキシル基含有ラジカル重合性単量体と、非重合性有機酸(上記の有機酸残基を構成する有機酸)とを、アルコール系化合物を含有する有機溶剤中で反応させる方法を挙げることができる。また、金属原子含有重合性単量体(b1)から誘導される構成単位は、(メタ)アクリル酸のようなカルボキシル基含有ラジカル重合性単量体を含む単量体混合物を重合させることにより得られる樹脂と、金属化合物と、非重合性有機酸(上記の有機酸残基を構成する有機酸)とを反応させる方法によっても形成することができる。
 加水分解性樹脂(i)を構成し得る金属原子含有重合性単量体(b2)は、上記一般式(VII’)で示され、式中、R38およびR39は水素原子またはメチル基を表し、Mは2価の金属原子を表す。金属原子含有重合性単量体(b)として、金属原子含有重合性単量体(b2)を用いることにより、上記一般式(VII)で示される金属原子含有基(この金属原子含有基は、ポリマー主鎖間を架橋する架橋基である。)を有するアクリル系樹脂である加水分解性樹脂(i)が得られる。
 金属原子含有重合性単量体(b2)の具体例としては、たとえば、アクリル酸マグネシウム[(CH2=CHCOO)2Mg]、メタクリル酸マグネシウム[(CH2=C(CH3)COO)2Mg]、アクリル酸亜鉛[(CH2=CHCOO)2Zn]、メタクリル酸亜鉛[(CH2=C(CH3)COO)2Zn]、アクリル酸銅[(CH2=CHCOO)2Cu]、メタクリル酸銅[(CH2=C(CH3)COO)2Cu]等を挙げることができる。これらは、1種または2種以上を必要に応じて適宜選択して用いることができる。
 金属原子含有重合性単量体(b2)の製造方法としては、たとえば、(メタ)アクリル酸のような重合性不飽和有機酸と、金属化合物とをアルコール系化合物を含有する有機溶剤中で水とともに反応させる方法を挙げることができる。この場合、反応物中の水の含有量を0.01~30質量%の範囲に調整することが好ましい。
 加水分解性樹脂(i)は、金属原子含有重合性単量体(b1)から誘導される構成単位および金属原子含有重合性単量体(b2)から誘導される構成単位の双方を含んでいてもよい。加水分解性樹脂(i)を構成する単量体として金属原子含有重合性単量体(b1)と、金属原子含有重合性単量体(b2)とを併用する場合、金属原子含有重合性単量体(b1)から誘導される構成単位と金属原子含有重合性単量体(b2)から誘導される構成単位との加水分解性樹脂(i)における含有量の比率は、20/80~80/20(モル比)の範囲とすることが好ましく、30/70~70/30(モル比)の範囲とすることがより好ましい。含有量の比率をこの範囲に調整することにより、防汚剤を含有しないか、または配合量が少ない場合であっても、長期間にわたって高い防汚性を発揮するとともに、耐クラック性および下地との密着性にも優れる防汚塗膜が得られやすい傾向にある。
 加水分解性樹脂(i)を構成する全構成単位中、金属原子含有重合性単量体(b)から誘導される構成単位の含有量は、5~30質量%であることが好ましく、10~20質量%であることがより好ましい。5質量%以上とすることにより、下地との密着性が向上するとともに、形成される塗膜の自己研磨性がより長期間安定的に維持される傾向があり、30質量%以下とすることにより、長期の自己研磨性と、海水浸漬後の耐クラック性や下地に対する密着性とのバランスを向上させる効果が顕著となり、長期の自己研磨性を維持し、塗膜物性が向上する傾向がある。
 加水分解性樹脂(i)において、シリコン含有重合性単量体(a)から誘導される構成単位と、金属原子含有重合性単量体(b)から誘導される構成単位との含有量の比は、質量比で、30/70~90/10の範囲内であることが好ましく、45/55~85/15の範囲内であることがより好ましい。当該比を30/70以上とすることにより、防汚剤を別途に含有させない場合においても防汚効果を発現する傾向がある。当該比が30/70未満である場合、得られる塗膜の可撓性が損なわれたり、塗膜の自己研磨性が高すぎる場合がある。また、当該比を90/10以下とすることにより、長期の防汚性と、下地との密着性との良好なバランスが得られる傾向がある。当該比が90/10を超える場合、得られる塗膜の加水分解が損なわれる場合があるために塗膜の自己研磨性が損なわれる可能性がある。
 〔3〕その他の単量体成分(d)
 加水分解性樹脂(i)は、上記シリコン含有重合性単量体(a)および金属原子含有重合性単量体(b)以外のその他の単量体成分(d)から誘導される構成単位を含んでいてもよい。
 その他の単量体成分(d)としては、上記シリコン含有重合性単量体(a)および金属原子含有重合性単量体(b)と共重合可能な不飽和単量体である限り特に限定されず、たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(2-エチルヘキサオキシ)エチル(メタ)アクリレート、1-メチル-2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、3-メチル-3-メトキシブチル(メタ)アクリレート、m-メトキシフェニル(メタ)アクリレート、p-メトキシフェニル(メタ)アクリレート、o-メトキシフェニルエチル(メタ)アクリレート、m-メトキシフェニルエチル(メタ)アクリレート、p-メトキシフェニルエチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、グリシジル(メタ)アクリレート等の(メタ)アクリル酸エステル単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有単量体;2-ヒドロキシエチル(メタ)アクリレートとエチレンオキサイド、プロピレンオキサイド、γ-ブチロラクトンまたはε-カプロラクトン等との付加物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の二量体または三量体;グリセロール(メタ)アクリレート等の水酸基を複数有する単量体;ブチルアミノエチル(メタ)アクリレート、(メタ)アクリルアミド等の第一級および第二級アミノ基含有ビニル単量体;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジメチルアミノブチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド等の第三級アミノ基含有ビニル単量体;ビニルピロリドン、ビニルピリジン、ビニルカルバゾール等の複素環族系塩基性単量体;スチレン、ビニルトルエン、α-メチルスチレン、(メタ)アクリロニトリル、酢酸ビニル、プロピオン酸ビニル等のビニル系単量体を挙げることができる。
 上記その他の単量体成分(d)から誘導される構成単位の含有量は、加水分解性樹脂(i)を構成する全構成単位中、0.1~89質量%であることが好ましく、7~75質量%であることがより好ましく、10~70質量%であることがさらに好ましい。0.1質量%以上とすることにより、得られる防汚塗料組成物の諸特性のバランスを整えることが可能となり、89質量%以下とすることにより、形成される塗膜に長期に亘る良好な加水分解性が付与され、防汚剤を使用しない場合でも優れた防汚性を発現し、下地に対する塗膜の密着性とのバランスが良好となる傾向がある。
 上記加水分解性樹脂(i)の製造方法は、特に限定されるものではないが、たとえば、上記した単量体を混合した単量体混合物をラジカル開始剤の存在下に60~180℃の反応温度で5~14時間反応させることによって製造することができる。ラジカル開始剤としては、たとえば、2,2-アゾビスイソブチロニトリル、2,2-アゾビス(2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-メチルブチロニトリル)、過酸化ベンゾイル、クメンヒドロペルオキシド、ラウリルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルパーオキ-2-エチルヘキサノエート等が挙げられる。重合方法は、有機溶剤中で行なう溶液重合法のほか、乳化重合法、懸濁重合法等を採用できるが、トルエン、キシレン、メチルイソブチルケトン、酢酸n-ブチル等の一般の有機溶剤を用いる溶液重合方法が、加水分解性樹脂(i)の生産性や性能の観点から有利である。
 また、金属原子含有重合性単量体(b2)を使用する場合、防汚塗料のハイソリッド化や生産性の向上、および重合時のカレットの生成抑制のために、連鎖移動剤を使用することが好ましい。連鎖移動剤としては、金属原子含有重合性単量体(b)との相溶性の観点から、メルカプタン以外の連鎖移動剤が好ましく、スチレンダイマー等が好ましい。
 加水分解性樹脂(i)の重量平均分子量は、重合条件によっても異なるが、通常、1000~3000000の範囲内であり、3000~100000の範囲内であることが好ましく、5000~50000の範囲内であることがより好ましい。重量平均分子量が1000以上であると、塗膜を形成したときに防汚性が発現できる傾向にあり、重量平均分子量が3000000以下であると、加水分解性樹脂(i)が塗料組成物に均一に分散しやすい傾向にある。なお、ここでいう重量平均分子量は、ゲルパーミエーションクロマトクロマトグラフィー(GPC)により測定されるポリスチレン換算の重量平均分子量である。
 加水分解性樹脂(i)が上記一般式(I)~(IV)で示される1種以上のシリコン含有基を含む樹脂であること(または、シリコン含有重合性単量体(a1)~(a4)の1種以上から誘導される構成単位を含む樹脂であること)は、たとえば、1H-NMR、ICP発光分析等を用いて確認することができる。加水分解性樹脂(i)が上記一般式(VI)~(VII)で示される1種以上の金属原子含有基を含む樹脂であること(金属原子含有重合性単量体(b1)~(b2)の1種以上から誘導される構成単位を含む樹脂であること)は、たとえば、原子吸光分析等を用いて確認することができる。
 〔加水分解性樹脂(ii)〕
 着色防汚塗料に含有され得る加水分解性樹脂(ii)は、上記一般式(I)、(II)、(III)および(IV)で示される基からなる群から選択される少なくとも1種のシリコン含有基と、上記一般式(V)で示されるトリオルガノシリルオキシカルボニル基とを有する。このような特定のシリコン含有基およびトリオルガノシリルオキシカルボニル基を有する加水分解性樹脂(ii)は、トリオルガノシリルオキシカルボニル基の加水分解性に起因して、水中(特には海水中)において徐々に加水分解する性質を示す。したがって、加水分解性樹脂(ii)をビヒクルとする着色防汚塗料から形成された防汚塗膜は、水中浸漬によりその表面が自己研磨され、これにより、塗膜表面の更新性が得られるため、生物が付着しにくくなるとともに、トリオルガノシリルオキシカルボニル基が加水分解されることによる防汚性効果およびシリコン含有基が示す防汚性効果も相俟って、完全に消耗されるまでの間、防汚剤を含有しない場合においても、優れた防汚性能を示すこととなる。また、加水分解性樹脂(ii)を含有する着色防汚塗料から形成される防汚塗料は、耐クラック性にも優れている。
 上記一般式(I)、(II)、(III)および(IV)で示されるシリコン含有基の詳細については、加水分解性樹脂(i)で述べたとおりである。
 上記一般式(V)において、R40、R41およびR42は、同一または異なって、炭素数1~20の炭化水素残基を表す。加水分解性樹脂(ii)は、上記一般式(V)で示されるトリオルガノシリルオキシカルボニル基を2種以上有していてもよい。炭素数1~20の炭化水素残基の具体例を挙げれば、たとえば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基等の炭素数が20以下の直鎖状または分岐状のアルキル基;シクロヘキシル基、置換シクロヘキシル基等の環状アルキル基;アリール基、置換アリール基等が挙げられる。置換アリール基としては、ハロゲン、炭素数18程度までのアルキル基、アシル基、ニトロ基またはアミノ基等で置換されたアリール基等を挙げることができる。なかでも、安定したポリッシングレート(研磨速度)を示す塗膜が得られ、防汚性能を長期間安定して維持することができることから、上記一般式(V)で示されるトリオルガノシリルオキシカルボニル基は、炭化水素残基としてイソプロピル基を含むことが好ましく、R40、R41およびR42のすべてがイソプロピル基であることがより好ましい。
 また、塗膜の自己研磨性を長期間安定して維持でき、これにより長期防汚性により優れるとともに、耐クラック性や下地との密着性により優れる塗膜を形成できる傾向にあることから、加水分解性樹脂(ii)は、上記一般式(VI)および(VII)で示される基からなる群から選択される少なくとも1種の金属原子含有基をさらに有することが好ましい。上記一般式(VI)および(VII)中、Mは2価の金属原子を表し、R30は有機酸残基またはアルコール残基を表す。加水分解性樹脂(ii)は、上記一般式(VI)および(VII)の双方を有していてもよい。2価の金属原子Mとしては、Mg、ZnおよびCuなどを挙げることができ、好ましくは、ZnまたはCuである。
 上記加水分解性樹脂(ii)としては、上記シリコン含有基およびトリオルガノシリルオキシカルボニル基を有する限り特に限定されないが、上記一般式(I’)で示される単量体(a1)、上記一般式(II’)で示される単量体(a2)、上記一般式(III’)で示される単量体(a3)および上記一般式(IV’)で示される単量体(a4)からなる群から選択される少なくとも1種のシリコン含有重合性単量体(a)から誘導される構成単位と、上記一般式(V’)で示されるトリオルガノシリル(メタ)アクリレート(c)から誘導される構成単位とを含むアクリル系樹脂を好適に用いることができる。単量体(a1)~(a4)の詳細については、加水分解性樹脂(i)で述べたとおりである。上記一般式(V’)で示されるトリオルガノシリル(メタ)アクリレート(c)は、上記一般式(V)で示されるトリオルガノシリルオキシカルボニル基を有する重合性単量体である。
 上記一般式(V’)で示されるトリオルガノシリル(メタ)アクリレート(c)は、加水分解性樹脂(ii)に上記一般式(V)で示されるトリオルガノシリルオキシカルボニル基を導入するために用いられる単量体である。上記シリコン含有基に加えて、トリオルガノシリルオキシカルボニル基が導入されることにより、塗膜の良好な自己研磨性が得られ、長期防汚性に優れた塗膜を得ることが可能となる。上記一般式(V’)におけるR40、R41およびR42は、上記一般式(V)におけるR40、R41およびR42と同じ意味を表す。
 加水分解性樹脂(ii)を構成する全構成単位中、上記シリコン含有重合性単量体(a)およびトリオルガノシリル(メタ)アクリレート(c)から誘導される構成単位の合計含有量は、5~90質量%であることが好ましく、15~80質量%であることがより好ましい。5質量%以上とすることで、樹脂の良好な加水分解性を確保できる傾向にあり、90質量%以下とすることにより、塗膜の十分な硬度を確保できる傾向にある。
 また、上記シリコン含有重合性単量体(a)から誘導される構成単位とトリオルガノシリル(メタ)アクリレート(b)から誘導される構成単位との加水分解性樹脂(ii)における含有量の比率は、20/80~80/20(質量比)の範囲とすることが好ましく、30/70~70/30(質量比)の範囲とすることがより好ましい。
 加水分解性樹脂(ii)は、塗膜の自己研磨性を長期間安定して維持でき、これにより長期防汚性により優れるとともに、耐クラック性や下地との密着性により優れる塗膜を形成できる傾向にあることから、上記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)からなる群から選択される少なくとも1種の金属原子含有重合性単量体(b)から誘導される構成単位をさらに含むことが好ましい。上記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)はそれぞれ、上記一般式(VI)および(VII)で示される金属原子含有基を有する金属原子含有重合性単量体である。単量体(b1)および(b2)の詳細については、加水分解性樹脂(i)で述べたとおりである。
 加水分解性樹脂(ii)は、金属原子含有重合性単量体(b1)から誘導される構成単位および金属原子含有重合性単量体(b2)から誘導される構成単位の双方を含んでいてもよい。
 加水分解性樹脂(ii)を構成する全構成単位中、金属原子含有重合性単量体(b)から誘導される構成単位の含有量は、10~60質量%であることが好ましく、15~50質量%であることがより好ましい。10質量%以上とすることにより、樹脂の良好な加水分解性を確保できる傾向にあり、60質量%以下とすることにより、良好な塗膜の可撓性を確保できる傾向にある。
 また、上記シリコン含有重合性単量体(a)およびトリオルガノシリル(メタ)アクリレート(c)から誘導される構成単位の合計含有量と、金属原子含有重合性単量体(b)から誘導される構成単位との加水分解性樹脂(ii)における含有量の比率は、10/90~90/10(質量比)の範囲とすることが好ましい。
 加水分解性樹脂(ii)は、加水分解性樹脂(i)と同様、上記シリコン含有重合性単量体(a)、トリオルガノシリル(メタ)アクリレート(c)および金属原子含有重合性単量体(b)以外のその他の単量体成分(d)から誘導される構成単位を含んでいてもよい。その他の単量体成分(d)の詳細については、加水分解性樹脂(i)で述べたとおりである。
 加水分解性樹脂(ii)は、加水分解性樹脂(i)について示した方法と同様の方法によって製造することができる。
 加水分解性樹脂の含有量(加水分解性樹脂(i)および(ii)の合計含有量)は、着色防汚塗料に含有される固形分(以下、塗料固形分という)中、30~97質量%であることが好ましい。30質量%未満である場合、下地に対する塗膜の密着性が低下し、防汚効果が十分に発揮できない傾向がある。また、97質量%を超える場合には、塗膜の耐クラック性が低下する傾向にある。
 (B)着色顔料
 着色防汚塗料に含有させる着色顔料としては、従来公知の各種の着色顔料を用いることができ、着色顔料の選択により、各種色相の着色防汚塗料を実現することができる(着色防汚塗料の多色化が可能となる)。本発明で用いられる着色防汚塗料は、防汚剤を不含有とすることができるか、またはその添加量を大幅に削減できるとともに、加水分解性樹脂の透明性が高いため、着色顔料に由来する鮮明な色相がほとんどそのまま付与されたものとなっており、上述のように、これにより、着色防汚塗料と被塗物表面との色差を大きくすることができるとともに、膜厚判定機能が向上する。
 着色防汚塗料の多色化は、本発明の方法を適用できる被塗物表面の色の自由度を広げる。着色防汚塗料の色相によっては、ある特定の被塗物について、着色防汚塗料と被塗物表面との色差ΔE3があまり大きくならず、本発明の方法に適さない場合があるが、このような場合であっても、この着色防汚塗料は、着色防汚塗料と被塗物表面との色差ΔE3が十分に大きな表面色を有する他の被塗物に適用できる。換言すれば、着色防汚塗料に添加する着色顔料の種類(着色防汚塗料の色相)は、被塗物の表面色に応じて選択することができる。上述のように、本発明で用いられる着色防汚塗料は多色化が可能であるので、実質的に被塗物表面がどのような色であっても、被塗物表面との色差ΔE3が十分に大きい着色防汚塗料を調製することが可能である。
 着色顔料の具体例を挙げれば、たとえば、酸化チタン、酸化ジルコン、塩基性硫酸鉛、酸化スズ、カーボンブラック、白鉛、黒鉛、硫化亜鉛、酸化亜鉛、酸化クロム、黄色ニッケルチタン、黄色クロムチタン、黄色酸化鉄、赤色酸化鉄、黒色酸化鉄、アゾ系赤・黄色顔料、クロムイエロー、フタロシアニングリーン、フタロシアニンブルー、ウルトラマリンブルー、キナクリドン等の着色顔料などである。これらの着色顔料は、単独で用いてもよく、2種以上を併用してもよい。
 着色顔料の含有量は、たとえば塗料固形分中0.3質量%以上とすることができる。着色顔料の含有量の上限は特に限定されないが、たとえば30質量%以下である。
 (C)防汚剤
 上記着色防汚塗料より得られる防汚塗膜は、上記加水分解性樹脂(i)および/または加水分解性樹脂(ii)に基づく防汚効果により、良好な防汚性能を発揮するものであるが、より防汚性能を高めるため、あるいは防汚性の長期持続性をより高めるために、着色防汚塗料に、必要に応じて防汚剤を配合してもよい。防汚剤としては特に限定されず、公知のものを使用することができ、たとえば、無機化合物、金属を含む有機化合物および金属を含まない有機化合物等を挙げることができる。
 上記防汚剤の具体例を挙げれば、たとえば、酸化亜鉛;亜酸化銅;マンガニーズエチレンビスジチオカーバメート;ジンクジメチルジチオカーバメート;2-メチルチオ-4-t-ブチルアミノ-6-シクロプロピルアミノ-s-トリアジン;2,4,5,6-テトラクロロイソフタロニトリル;N,N-ジメチルジクロロフェニル尿素;ジンクエチレンビスジチオカーバーメート;ロダン銅(チオシアン酸第一銅);4,5-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン(4,5,-ジクロロ-2-n-オクチル-3(2H)イソチアゾロン);N-(フルオロジクロロメチルチオ)フタルイミド;N,N’-ジメチル-N’-フェニル-(N-フルオロジクロロメチルチオ)スルファミド;2-ピリジンチオール-1-オキシド亜鉛塩(ジンクピリチオン)および銅塩(銅ピリチオン)等の金属塩;テトラメチルチウラムジサルファイド;2,4,6-トリクロロフェニルマレイミド;2,3,5,6-テトラクロロ-4-(メチルスルホニル)ピリジン;3-ヨード-2-プロピルブチルカーバーメート;ジヨードメチルパラトリスルホン;フェニル(ビスピリジル)ビスマスジクロライド;2-(4-チアゾリル)-ベンズイミダゾール;トリフェニルボロンピリジン塩;ステアリルアミン-トリフェニルボロン;ラウリルアミン-トリフェニルボロン;ビスジメチルジチオカルバモイルジンクエチレンビスジチオカーバメート;1,1-ジクロロ-N-[(ジメチルアミノ)スルホニル]-1-フルオロ-N-フェニルメタンスルフェンアミド;1,1-ジクロロ-N-[(ジメチルアミノ)スルホニル]-1-フルオロ-N-(4-メチルフェニル)メタンスルフェンアミド;N’-(3,4-ジクロロフェニル)-N,N’-ジメチル尿素;N’-tert-ブチル-N-シクロプロピル-6-(メチルチオ)-1,3,5-トリアジン-2,4-ジアミン;および、4-ブロモ-2-(4-クロロフェニル)-5-(トリフルオロメチル)-1H-ピロール-3-カルボニトリル等を挙げることができる。これらの防汚剤は、単独で用いてもよく、2種以上を併用してもよい。
 防汚剤の含有量は、塗料固形分中、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。防汚剤の含有量が10質量%を超えると、防汚塗膜にクラック、剥離等の欠陥が生じることがある。上述のように、本発明で用いられる着色防汚塗料においては、加水分解性樹脂(i)および(ii)自身がその加水分解性およびシリコン含有基に基づく良好な防汚性能を有しているため、別途の防汚剤の配合量を低減または不含有とすることができる。これにより、鮮明化、多色化および膜厚判定機能がさらに向上された着色防汚塗料を実現することが可能となる。
 (D)熱可塑性樹脂および/または可塑剤
 上記着色防汚塗料は、熱可塑性樹脂および/または可塑剤を含有してもよい。熱可塑性樹脂および/または可塑剤を含有させることにより、塗膜の耐クラック性を向上させることができる。また、塗膜のポリッシングレート(研磨速度)を適度な速度に制御することが可能になるため、塗膜の長期防汚性の点においても有利である。特に、加水分解性樹脂の主成分として、加水分解性樹脂(i)を用いる場合には、熱可塑性樹脂および/または可塑剤を併用することが好ましい。たとえば、被塗物が船舶等である場合、防汚塗膜は、長期間水中(海水など)に浸漬され、また、一定期間水中に浸漬された後、陸揚げされるというサイクルに繰り返し曝されることとなるため、防汚塗膜には、かかる条件下にも耐え得る可とう性が要求される。したがって、耐クラック性は、塗膜に要求される重要な特性である。
 上記熱可塑性樹脂としては、たとえば、塩素化パラフィン;塩化ゴム、塩素化ポリエチレン、塩素化ポリプロピレン等の塩素化ポリオレフィン;ポリビニルエーテル;ポリプロピレンセバケート;部分水添ターフェニル;ポリ酢酸ビニル;(メタ)アクリル酸メチル系共重合体、(メタ)アクリル酸エチル系共重合体、(メタ)アクリル酸プロピル系共重合体、(メタ)アクリル酸ブチル系共重合体、(メタ)アクリル酸シクロヘキシル系共重合体等のポリ(メタ)アクリル酸アルキルエステル;ポリエーテルポリオール;アルキド樹脂;ポリエステル樹脂;塩化ビニル-酢酸ビニル共重合体、塩化ビニル-プロピオン酸ビニル共重合体、塩化ビニル-イソブチルビニルエーテル共重合体、塩化ビニル-イソプロピルビニルエーテル共重合体、塩化ビニル-エチルビニルエーテル共重合体等の塩化ビニル系樹脂;シリコンオイル;ワックス;ワセリン;流動パラフィン;ロジン、水添ロジン、ナフテン酸、脂肪酸およびこれらの2価金属塩;などを挙げることができる。これらの熱可塑性樹脂は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 上記のなかでも、塩素化パラフィン、ポリビニルエーテル、ポリエーテルポリオール、ロジン、塩化ビニル-イソブチルビニルエーテル共重合体が好ましく、特に、塩素化パラフィン、ポリビニルエーテル、ロジンおよび塩化ビニル-イソブチルビニルエーテル共重合体は、塗膜の可塑性および塗膜消耗量の調整に好適であることから、より好ましく用いることができる。
 また、可塑剤としては、たとえば、ジオクチルフタレート(DOP)、ジメチルフタレート、ジシクロヘキシルフタレート、ジイソデシルフタレート(DIDP)等のフタル酸エステル系可塑剤;アジピン酸イソブチル、セバシン酸ジブチル等の脂肪族二塩基酸エステル系可塑剤;ジエチレングリコールジベンゾエート、ペンタエリスリトールアルキルエステル等のグリコールエステル系可塑剤;トリクレジルリン酸(トリクレジルホスフェート)、トリアリールリン酸(トリアリールホスフェート)、トリクロロエチルリン酸等のリン酸エステル系可塑剤;エポキシ大豆油、エポキシステアリン酸オクチル等のエポキシ系可塑剤;ジオクチルスズラウリレート、ジブチルスズラウリレート等の有機スズ系可塑剤;トリメリット酸トリオクチル、トリアセチレン等を挙げることができる。これらの可塑剤は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
 上記のなかでも、ジオクチルフタレート(DOP)、ジメチルフタレート、ジシクロヘキシルフタレート、ジイソデシルフタレート(DIDP)等のフタル酸エステル系可塑剤およびトリクレジルリン酸(トリクレジルホスフェート)、トリアリールリン酸(トリアリールホスフェート)、トリクロロエチルリン酸等のリン酸エステル系可塑剤は、上記加水分解性樹脂および上記熱可塑性樹脂との相溶性に特に優れており、塗膜全体にわたって均質的に耐クラック性を向上させることができることから、好ましく用いることができる。
 上記着色防汚塗料は、熱可塑性樹脂のみを含有していてもよいし、可塑剤のみを含有していてもよいし、熱可塑性樹脂および可塑剤の双方を含有していてもよい。熱可塑性樹脂および可塑剤の併用は、強靭性および可塑性により優れる塗膜が得られ得ることから、好ましい。
 熱可塑性樹脂および可塑剤の含有量は特に制限されないが、それぞれ、上記加水分解性樹脂100質量部に対して、たとえば0~100質量部とすることができ、好ましくは5~50質量部である。
 また、熱可塑性樹脂および可塑剤の合計含有量は、上記加水分解性樹脂100質量部に対して3~100質量部の範囲内とすることが好ましく、より好ましくは5~50質量部である。熱可塑性樹脂および可塑剤の合計含有量が加水分解性樹脂100質量部に対して3質量部未満であると、熱可塑性樹脂および/または可塑剤の添加による耐クラック性の改善効果が認められない傾向にあり、また、熱可塑性樹脂および可塑剤の合計含有量が極端に少ないか、熱可塑性樹脂および可塑剤が含有されない場合には、適度なポリッシングレート(研磨速度)が得られず、長期防汚性が付与されないことがある。また、熱可塑性樹脂および可塑剤の合計含有量が加水分解性樹脂100質量部に対して100質量部を超えると、下地に対する塗膜の密着性が低下し、防汚性が低下する傾向にある。
 (E)その他の添加剤
 着色防汚塗料は、体質顔料、溶剤、水結合剤、タレ止め剤、色分かれ防止剤、沈降防止剤、消泡剤、塗膜消耗調整剤、紫外線吸収剤、表面調整剤、粘度調整剤、レベリング剤、顔料分散剤、防汚剤溶出調整剤などの他の添加剤を含有していてもよい。これら他の添加剤の含有量は、着色顔料による鮮明な色相や下地隠蔽性を阻害せず、着色防汚塗料の膜厚判定機能を低下させない程度とすることが好ましい。
 上記体質顔料としては、たとえば、硫酸バリウム、タルク、クレー、白亜、シリカホワイト、アルミナホワイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、ケイ酸、ケイ酸塩、酸化アルミニウム水和物、硫酸カルシウムなどを挙げることができる。これらの体質顔料は、単独で用いてもよく、2種以上を併用してもよい。
 溶剤としては、たとえば、トルエン、キシレン、エチルベンゼン、シクロペンタン、オクタン、ヘプタン、シクロヘキサン、ホワイトスピリット等の炭化水素類;ジオキサン、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;酢酸ブチル、酢酸プロピル、酢酸ベンジル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエステル類;エチルイソブチルケトン、メチルイソブチルケトン等のケトン類;n-ブタノール、プロピルアルコール等のアルコールなどを挙げることができる。これらの溶剤は、単独で用いてもよく、2種以上を併用してもよい。
 なお、上記着色防汚塗料は、上記加水分解性樹脂(i)、(ii)以外の他のビヒクル成分を含有していてもよい。ただし、その含有量は最小限にとどめることが好ましい。
 上記着色防汚塗料は、たとえば、上記加水分解性樹脂またはこれを含有する樹脂組成物に、着色顔料、ならびに必要に応じて、防汚剤、熱可塑性樹脂および/または可塑剤、その他の添加剤を添加し、ボールミル、ペブルミル、ロールミル、サンドグラインドミル、高速ディスパー等の混合機を用いて混合することにより、調製することができる。
 <着色防汚塗料の膜厚判定機能>
 本発明において用いられる着色防汚塗料は、下記条件(a)および(b)を少なくとも満たし、好ましくはさらに下記条件(d)を満たす、膜厚判定機能に優れた防汚塗料である。
(a)目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜が、被塗物の表面を完全に隠蔽する、
(b)目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜と、乾燥膜厚が0.8Tである着色防汚塗料から形成される塗膜との色差ΔE1が2.0以上である、
(d)目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜と、乾燥膜厚が1.2Tである着色防汚塗料から形成される塗膜との色差ΔE2が1未満である。
 色差ΔE1およびΔE2ならびに後述するΔE3は、三刺激値色彩計SMカラーメーター(型式SM-T45、スガ試験機(株)製、規格JIS Z 8722)等の色差計(色彩計)を使用して、一般に認められた方法により測定することができる。色差ΔE1、ΔE2およびΔE3は、いずれも絶対値である。
 上記条件(a)は、着色防汚塗料から形成される塗膜(ここでいう塗膜は乾燥塗膜であるが、ウェットの塗膜と乾燥塗膜の下地隠蔽性はほぼ同じである。)の被塗物表面の隠蔽性を規定するものである。着色防汚塗料を被塗物表面に塗工していくと、その塗膜厚が大きくなるに従って、被塗物表面の「透け」の程度が小さくなる。被塗物表面の色相が消失し、塗工面の色相が、着色防汚塗料からなる塗膜の色相と同じになったとき、着色防汚塗料から形成される塗膜が、被塗物の表面を完全に隠蔽したと判断される。本発明で用いる着色防汚塗料は、このような被塗物表面の完全隠蔽を、目標乾燥膜厚T以上の乾燥塗膜を形成するとき達成できるものである。
 上記条件(b)は、着色防汚塗料から形成される乾燥塗膜において、その膜厚が目標乾燥膜厚Tであるときと、0.8Tであるときとの色差ΔE1を規定するものである。乾燥塗膜厚が0.8Tである塗膜は、塗装完了直前の塗膜である。したがって、色差ΔE1が2.0以上と大きいことにより、塗装完了間際(目標乾燥膜厚T直前(0.8T)から目標乾燥膜厚Tにかけて)における塗膜色相の膜厚依存性が大きくなるため、目標乾燥膜厚Tを有する乾燥塗膜を極めて正確に形成することができ、わずかな膜厚不足も解消することができる。色差ΔE1は、好ましくは2.5以上である。ただし、色差ΔE1があまりに大きすぎると、わずかな膜厚の差で色ムラが生じやすくなることから、色差ΔE1は好ましくは10以下、より好ましくは5以下である。色差ΔE1「2.0以上」、さらには「2.5以上」は、加水分解性樹脂として加水分解性樹脂(i)および/または(ii)を用いることによって実現されたものであり、従来の加水分解性樹脂では達成することができなかった。
 なお、目標乾燥膜厚Tは、被塗物に要求される防汚性などを考慮して適宜選択することができ、特に限定されるものではないが、たとえば、1コート(本発明の方法を適用して形成される防汚塗膜1層)の乾燥膜厚で、30μm以上300μm以下程度であることができる。
 上記条件(d)は、着色防汚塗料から形成される乾燥塗膜において、その膜厚が目標乾燥膜厚Tであるときと、1.2Tであるときとの色差ΔE2を規定するものである。乾燥塗膜厚が1.2Tである塗膜は、塗装完了直後の塗膜である。色差ΔE2が1以上になると、目標乾燥膜厚Tを有する塗膜と目標乾燥膜厚Tを超える塗膜との間の色差が大きくなり、色ムラが生じやすくなる。色差ΔE2は、好ましくは0.5以下、より好ましくは0.4以下である。
 着色防汚塗料自身と被塗物表面との色差ΔE3は、0より大きいことが好ましく、5以上であることがより好ましい。色差ΔE3が大きいほど、塗装中の塗膜厚が目標とする膜厚に近づくにつれて被塗物との色差が変化する様子を目視で確認することが容易となる。すなわち、色差ΔE3があまり低いと、塗膜によって被塗物表面が完全に隠蔽されたどうかを確認することが困難となり、目標乾燥膜厚Tを有する塗膜が得られにくくなる。本発明では、加水分解性樹脂(i)および/または(ii)をビヒクルとして用いているため、色差ΔE3が大きい着色防汚塗料を容易に得ることができる。
 上記条件を満たす着色防汚塗料は、ビヒクルとして加水分解性樹脂(i)および/または(ii)を用いることを前提として、着色顔料の種類(色相)の選択およびその含有量の調整により得ることができる。着色顔料の含有量に応じて、その着色防汚塗料の目標乾燥膜厚Tを調整することができる。すなわち、基本的には、着色顔料の含有量をより小さくすることにより、その着色防汚塗料の目標乾燥膜厚Tをより大きくすることができる。換言すれば、目標乾燥膜厚Tは、その塗膜に要求される防汚性能、耐クラック性などの塗膜特性や被塗物の種類などから決まってくるため、当該所定の目標乾燥膜厚Tに応じて着色顔料の含有量が調整される。
 また、異なる目標乾燥膜厚Tを有する(異なる着色顔料含有量である)2種以上の着色防汚塗料(上記条件(a)~(c)、好ましくはさらに(d)を具備する本発明に係る防汚塗料)を混合することにより、本発明に用いる着色防汚塗料を調製してもよい。このような調製方法により、混合される着色防汚塗料の目標乾燥膜厚とは異なる目標乾燥膜厚の着色防汚塗料を容易に得ることができる。この方法においては、混合される着色防汚塗料の混合比によって、得られる着色防汚塗料の目標乾燥膜厚Tを調整することができる。
 <防汚塗膜の形成方法>
 本発明の方法では、塗装中の塗膜と被塗物表面との色差の変化を観察しながら、上記着色防汚塗料を被塗物表面に塗工していく。「塗装中の塗膜と被塗物表面との色差の変化を観察する」とは、典型的には、塗工面に被塗物表面の「透け」が生じるかどうか、すなわち、塗装中の塗膜(ウェットの塗膜)が被塗物表面をどの程度隠蔽しているかを観察することであり、本発明では、塗工面の色相が、着色防汚塗料からなる塗膜の色相と同じになるまで、すなわち、被塗物表面が着色防汚塗料からなる塗膜によって完全に隠蔽されるまで塗工を行なう。ウェットの塗膜の下地隠蔽性は、乾燥塗膜の下地隠蔽性はほぼ同じであるので、完全に隠蔽されたときのウェットの塗膜厚は、目標乾燥膜厚に対応する膜厚である。この際、本発明で用いる着色防汚塗料は、上記条件(b)を満たすものであることから、塗装完了直前の塗膜と目標乾燥塗膜に相当するウェット塗膜の膜厚との色差が大きいため、目標乾燥膜厚を有する乾燥塗膜を極めて正確に形成することができる。被塗物表面が着色防汚塗料からなる塗膜によって完全に隠蔽されたかどうかの確認は、目視で容易に行なうことができる。
 以上に示すような本発明の防汚塗膜の形成方法によれば、所定の乾燥膜厚を有する均一な防汚塗膜を、従来と比較して、より正確に形成することができる。
 防汚塗膜は、上記着色防汚塗料を、常法に従って被塗物の表面に塗工した後、必要に応じて常温下または加熱下で溶剤を揮散除去することによって形成することができる。塗工方法としては特に限定されず、たとえば、浸漬法、スプレー法、ハケ塗り、ローラー、静電塗装、電着塗装等の従来公知の方法を挙げることができる。
 被塗物としては、特に限定されず、たとえば、非処理鋼材、ブラスト処理鋼材、酸処理鋼材、亜鉛メッキ鋼材、ステンレス鋼材等の鋼材;アルミニウム(合金)材、銅(合金)材等の非鉄金属材;コンクリート;プラスチック等からなる各種構造物、特には水中構造物が挙げられる。これらの鋼材および非鉄金属材には溶接線があってもよい。被塗物の具体例を挙げれば、たとえば、船舶;港湾施設;発電所等の取水設備;冷却用導水管等の配管;橋梁;浮標;工業用水系施設;海底基地等の水中構造物を挙げることができる。
 被塗物の着色防汚塗料が塗工される表面は、必要に応じて前処理されたものであってもよく、また、防食塗料、他の防汚塗料、または着色防汚塗料から形成される塗膜の密着性を向上させるためのバインダー塗料などから形成された下塗り塗膜を有していてもよい。下塗り塗膜を形成する塗料は、使用に供された旧い塗膜であってもよい。この場合、本発明の方法は、旧塗膜の補修のために適用されてもよい。上記他の防汚塗料としては、従来公知の防汚塗料のほか、塗工される着色防汚塗料とは異色の、本発明に係る着色防汚塗料であってもよい。また、下塗り塗膜を形成する防汚塗料は、下塗り塗膜の色相がこの上に形成される着色防汚塗料と十分に大きな色差(上記ΔE3に相当する色差)を生じる限り、当該着色防汚塗料と同じ色相であってもよい。被塗物表面に下塗り塗膜が形成される場合、上記条件(a)における「被塗物の表面」とは、下塗り塗膜の表面を意味する。
 以下、実施例および比較例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 〔1〕金属原子含有重合性単量体(b)の調製
 (製造例M1:金属原子含有重合性単量体混合物M1の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM(プロピレングリコールメチルエーテル)85.4質量部および酸化亜鉛40.7質量部を仕込み、撹拌しながら75℃に昇温した。ついで、滴下ロートからメタクリル酸43.1質量部、アクリル酸36.1質量部および水5質量部からなる混合物を3時間で等速滴下した。さらに2時間撹拌した後、PGMを36質量部添加して、透明な金属原子含有重合性単量体混合物M1を得た。固形分は44.8質量%であった。この金属原子含有重合性単量体混合物M1は、金属原子含有重合性単量体(b)として、単量体(b2)である(メタ)アクリル酸亜鉛を含む。
 (製造例M2:金属原子含有重合性単量体混合物M2の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 72.4質量部および酸化亜鉛40.7質量部を仕込み、撹拌しながら75℃に昇温した。ついで、滴下ロートからメタクリル酸30.1質量部、アクリル酸25.2質量部およびバーサチック酸51.6質量部からなる混合物を3時間で等速滴下した。さらに2時間撹拌した後、PGMを11質量部添加して、透明な金属原子含有重合性単量体混合物M2を得た。固形分は59.6質量%であった。この金属原子含有重合性単量体混合物M2は、金属原子含有重合性単量体(b)として、上記一般式(VI’)で示される単量体(b1)である亜鉛(メタ)アクリレート(R30はバーサチック酸残基である)、ならびに単量体(b2)である(メタ)アクリル酸亜鉛を含む。
 (製造例M3:金属原子含有重合性単量体混合物M3の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、キシレン60質量部、PGM 13質量部および酸化亜鉛40.7質量部を仕込み、撹拌しながら75℃に昇温した。ついで、滴下ロートからメタクリル酸32.3質量部、アクリル酸27質量部、オレイン酸37.7質量部、酢酸2.3質量部およびプロピオン酸5.8質量部からなる混合物を3時間で等速滴下した。さらに2時間撹拌した後、キシレン77質量部およびPGMを46質量部添加して、透明な金属原子含有重合性単量体混合物M3を得た。固形分は39.6質量%であった。この金属原子含有重合性単量体混合物M3は、金属原子含有重合性単量体(b)として、上記一般式(VI’)で示される単量体(b1)である亜鉛(メタ)アクリレート(R30はオレイン酸残基、酢酸残基、プロピオン酸残基の1種以上である)、ならびに単量体(b2)である(メタ)アクリル酸亜鉛を含む。
 〔2〕加水分解性樹脂(i)の調製
 (製造例S1:加水分解性樹脂組成物S1の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン65質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート32.3質量部、エチルアクリレート43.9質量部、「FM-0721」(チッソ(株)製)10質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 21.7質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.2質量部、アゾビスイソブチロニトリル(AIBN)2.5質量部およびアゾビスメチルブチロニトリル(AMBN)3質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.1質量部添加して、加水分解性樹脂組成物S1を得た。
 得られた加水分解性樹脂組成物S1をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S1に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で6800であった。また、得られた加水分解性樹脂組成物S1からメタノール再沈殿により単離した加水分解性樹脂を白金るつぼに採取し、硫酸を加えた後、加圧分解容器に入れ加熱した。硫酸を揮発させた後、加水分解性樹脂を完全に灰化させた。この灰化物を放冷後アルカリ融解させ、ICP発光分析装置(セイコーインスツル社製「SPS5100」)で分析したところ、Si原子が確認された。また、加水分解性樹脂を原子吸光分光光度計(島津製作所社製「AA6300」)により分析したところ、Zn原子由来のシグナルが確認された。
 (製造例S2:加水分解性樹脂組成物S2の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン65質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート32.3質量部、エチルアクリレート13.9質量部、「FM-0711」(チッソ(株)製)40質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 21.7質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.2質量部、AIBN 2.5質量部およびAMBN 0.8質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.1質量部添加して、加水分解性樹脂組成物S2を得た。
 得られた加水分解性樹脂組成物S2をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S2に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で8800であった。
 (製造例S3:加水分解性樹脂組成物S3の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部およびキシレン61質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート18質量部、エチルアクリレート25質量部、「X-24-8201」(信越化学(株)製)40質量部、上記製造例M2の金属原子含有重合性単量体混合物M2 28.4質量部、PGM 20質量部、AIBN 2.5質量部およびAMBN 1質量部からなる混合物を4時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを4.6質量部添加して、加水分解性樹脂組成物S3を得た。
 得られた加水分解性樹脂組成物S3をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S3に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で8200であった。
 (製造例S4:加水分解性樹脂組成物S4の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 35質量部およびキシレン41質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート18質量部、エチルアクリレート15質量部、「X-24-8201」(信越化学(株)製)50質量部、上記製造例M3の金属原子含有重合性単量体混合物M3 42.5質量部、PGM 5質量部、AIBN 2.5質量部およびAMBN 1質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを5.5質量部添加して、加水分解性樹脂組成物S4を得た。
 得られた加水分解性樹脂組成物S4をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S4に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で7200であった。
 (製造例S5:加水分解性樹脂組成物S5の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン59質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート26.4質量部、エチルアクリレート25.5質量部、シリコン含有モノマーA 30質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 31.3質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.5質量部、AIBN 2.5質量部およびAMBN 4質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.8質量部添加して、加水分解性樹脂組成物S5を得た。
 得られた加水分解性樹脂組成物S5をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S5に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で6400であった。
 (製造例S6:加水分解性樹脂組成物S6の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン59質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート21.4質量部、エチルアクリレート25.5質量部、スチレン5質量部、シリコン含有モノマーB 30質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 31.3質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.5質量部、AIBN 2.5質量部およびAMBN 2.5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.8質量部添加して、加水分解性樹脂組成物S6を得た。
 得られた加水分解性樹脂組成物S6をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S6に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で6900であった。
 (製造例S7:加水分解性樹脂組成物S7の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン59質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート26.4質量部、エチルアクリレート14.5質量部、2-メトキシエチルアクリレート5質量部、「FM-0711」(チッソ(株)製)20質量部、「TM-0701」(チッソ(株)製)20質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 31.3質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.5質量部、AIBN 2.5質量部およびAMBN 2.5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.8質量部添加して、加水分解性樹脂組成物S7を得た。
 得られた加水分解性樹脂組成物S7をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S7に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で7000であった。
 (製造例S8:加水分解性樹脂組成物S8の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部およびキシレン61質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート18質量部、エチルアクリレート35質量部、シリコン含有モノマーC 30質量部、上記製造例M2の金属原子含有重合性単量体混合物M2 28.4質量部、PGM 20質量部、AIBN 2.5質量部およびAMBN 2質量部からなる混合物を4時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを4.6質量部添加して、加水分解性樹脂組成物S8を得た。
 得られた加水分解性樹脂組成物S8をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S8に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で7700であった。
 (製造例S9:加水分解性樹脂組成物S9の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン59質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート26.4質量部、エチルアクリレート35.5質量部、シリコン含有モノマーD 20質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 31.3質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.5質量部、AIBN 2.5質量部およびAMBN 5.5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.8質量部添加して、加水分解性樹脂組成物S9を得た。
 得られた加水分解性樹脂組成物S9をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S9に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で6000であった。
 (製造例S10:加水分解性樹脂組成物S10の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン65質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート32.3質量部、エチルアクリレート43.9質量部、「FM-7711」(チッソ(株)製)10質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 21.7質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)2質量部、AIBN 2.5質量部およびAMBN 7.5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.1質量部添加して、加水分解性樹脂組成物S10を得た。
 得られた加水分解性樹脂組成物S10をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S10に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で5400であった。また、得られた加水分解性樹脂組成物S10からメタノール再沈殿により単離した加水分解性樹脂を白金るつぼに採取し、硫酸を加えた後、加圧分解容器に入れ加熱した。硫酸を揮発させた後、加水分解性樹脂を完全に灰化させた。この灰化物を放冷後アルカリ融解させ、ICP発光分析装置(セイコーインスツル社製「SPS5100」)で分析したところ、Si原子が確認された。また、加水分解性樹脂を原子吸光分光光度計(島津製作所社製「AA6300」)により分析したところ、Zn原子由来のシグナルが確認された。
 (製造例S11:加水分解性樹脂組成物S11の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン65質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート32.3質量部、エチルアクリレート33.9質量部、「FM-7721」(チッソ(株)製)20質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 21.7質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.5質量部、AIBN 2.5質量部およびAMBN 5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.1質量部添加して、加水分解性樹脂組成物S11を得た。
 得られた加水分解性樹脂組成物S11をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S11に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で6200であった。
 (製造例S12:加水分解性樹脂組成物S12の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン59質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート26.4質量部、エチルアクリレート40.5質量部、シリコン含有モノマーE 15質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 31.3質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)2質量部、AIBN 2.5質量部およびAMBN 8質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.8質量部添加して、加水分解性樹脂組成物S12を得た。
 得られた加水分解性樹脂組成物S12をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S12に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で5600であった。
 (製造例S13:加水分解性樹脂組成物S13の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン59質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート26.4質量部、エチルアクリレート35.5質量部、シリコン含有モノマーF 20質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 31.3質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.5質量部、AIBN 2.5質量部およびAMBN 7.5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.8質量部添加して、加水分解性樹脂組成物S13を得た。
 得られた加水分解性樹脂組成物S13をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S13に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で5500であった。
 (製造例S14:加水分解性樹脂組成物S14の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン65質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート32.3質量部、エチルアクリレート13.9質量部、「FM-7711」(チッソ(株)製)5質量部、「FM-0711」(チッソ(株)製)35質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 21.7質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.2質量部、AIBN 2.5質量部およびAMBN 4質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.1質量部添加して、加水分解性樹脂組成物S14を得た。
 得られた加水分解性樹脂組成物S14をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S14に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で9000であった。
 (製造例S15:加水分解性樹脂組成物S15の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 35質量部およびキシレン31質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート18質量部、エチルアクリレート25質量部、「FM-7721」(チッソ(株)製)10質量部、「X-24-8201」(信越化学(株)製)30質量部、上記製造例M2の金属原子含有重合性単量体混合物M2 28.4質量部、キシレン30質量部、AIBN 2.5質量部およびAMBN 2.5質量部からなる混合物を4時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを4.6質量部添加して、加水分解性樹脂組成物S15を得た。
 得られた加水分解性樹脂組成物S15をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S15に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で7200であった。
 (製造例S16:加水分解性樹脂組成物S16の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 40質量部およびキシレン31質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート18質量部、エチルアクリレート15質量部、「FM-7711」(チッソ(株)製)10質量部、「FM-7721」(チッソ(株)製)10質量部、「FM-0711」(チッソ(株)製)30質量部、上記製造例M3の金属原子含有重合性単量体混合物M3 42.5質量部、キシレン10質量部、AIBN 2.5質量部およびAMBN 4.5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを5.5質量部添加して、加水分解性樹脂組成物S16を得た。
 得られた加水分解性樹脂組成物S16をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S16に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で6400であった。
 (製造例S17:加水分解性樹脂組成物S17の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部、キシレン59質量部およびエチルアクリレート4質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート26.4質量部、エチルアクリレート15.5質量部、シリコン含有モノマーG 2質量部、シリコン含有モノマーD 38質量部、上記製造例M1の金属原子含有重合性単量体混合物M1 31.3質量部、キシレン10質量部、連鎖移動剤(α-メチルスチレンダイマー)1.2質量部、AIBN 2.5質量部およびAMBN 5.5質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを10.8質量部添加して、加水分解性樹脂組成物S17を得た。
 得られた加水分解性樹脂組成物S17をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S17に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で5600であった。
 (製造例S18:加水分解性樹脂組成物S18の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 35質量部およびキシレン31質量部を仕込み、撹拌しながら100℃に昇温した。ついで、滴下ロートからメチルメタクリレート18質量部、エチルアクリレート45質量部、シリコン含有モノマーG 10質量部、「TM-0701」(チッソ(株)製)10質量部、上記製造例M2の金属原子含有重合性単量体混合物M2 28.4質量部、キシレン30質量部、AIBN 2.5質量部、AMBN 5質量部からなる混合物を4時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを4.6質量部添加して、加水分解性樹脂組成物S18を得た。
 得られた加水分解性樹脂組成物S18をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、加水分解性樹脂組成物S18に含まれる加水分解性樹脂の重量平均分子量はポリスチレン換算値で6000であった。
 表1および表2に、上記加水分解性樹脂組成物S1~S18の調製に用いた各原料の仕込み量(質量部)、加水分解性樹脂組成物S1~S18のガードナー粘度(ガードナー泡粘度計を用いて、25℃にて測定)および固形分(質量%)、ならびに組成物中に含まれる加水分解性樹脂の重量平均分子量をまとめた。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 表1および表2に示される商品名および略号は下記のとおりである。
(1)FM-0711(商品名、チッソ(株)品):上記一般式(I’)中、m=0、b=3、n=10、R1~R5およびR31がメチル基であるシリコン含有重合性単量体。
(2)FM-0721(商品名、チッソ(株)品):上記一般式(I’)中、m=0、b=3、n=65、R1~R5およびR31がメチル基であるシリコン含有重合性単量体。
(3)X-24-8201(商品名、信越化学(株)品):上記一般式(I’)中、m=0、b=3、n=25、R1~R5およびR31がメチル基であるシリコン含有重合性単量体。
(4)シリコン含有モノマーA:上記一般式(I’)中、m=10、b=3、n=10、R1~R5およびR31がメチル基であるシリコン含有重合性単量体であって、aが2であるものと3であるものとの1:1(モル比)混合物(このモノマーは、商品名「F2-254-04」で日本ユニカー(株)より販売されていたものである)。
(5)シリコン含有モノマーB:上記一般式(I’)中、m=4、b=3、n=10、R1~R5およびR31がメチル基であるシリコン含有重合性単量体であって、aが2であるものと3であるものとの1:1(モル比)混合物(このモノマーは、商品名「F2-254-14」で日本ユニカー(株)より販売されていたものである)。
(6)TM-0701(商品名、チッソ(株)品):上記一般式(II’)中、p=0、d=3、R6~R8およびR32がメチル基であるシリコン含有重合性単量体。
(7)シリコン含有モノマーC:上記一般式(II’)中、p=0、d=3、R6~R7およびR32がメチル基、R8がRa(x=3、R23~R27はメチル基)であるシリコン含有重合性単量体(このモノマーは、商品名「F2-302-01」で日本ユニカー(株)より販売されていたものである)。
(8)シリコン含有モノマーD:上記一般式(II’)中、p=10、d=3、R6~R7およびR32がメチル基、R8がRa(x=3、R23~R27はメチル基)であるシリコン含有重合性単量体であって、cが2であるものと3であるものとの1:1(モル比)混合物(このモノマーは、商品名「F2-302-04」で日本ユニカー(株)より販売されていたものである)。
(9)FM-7711(商品名、チッソ(株)品):上記一般式(III’)中、qおよびs=0、fおよびg=3、r=10、R9~R12、R33およびR34がメチル基であるシリコン含有重合性単量体。
(10)FM-7721(商品名、チッソ(株)品):上記一般式(III’)中、qおよびs=0、fおよびg=3、r=65、R9~R12、R33およびR34がメチル基であるシリコン含有重合性単量体。
(11)シリコン含有モノマーE:上記一般式(III’)中、qおよびs=10、fおよびg=3、r=10、R9~R12、R33およびR34がメチル基であるシリコン含有重合性単量体であって、eおよびhが2であるものと3であるものとの1:1(モル比)混合物(このモノマーは、商品名「F2-354-04」で日本ユニカー(株)より販売されていたものである)。
(12)シリコン含有モノマーF:上記一般式(IV’)中、tおよびu=0、jおよびk=3、vおよびw=3、R13~R22、R35およびR36がメチル基であるシリコン含有重合性単量体(このモノマーは、商品名「F2-312-01」で日本ユニカー(株)より販売されていたものである)。
(13)シリコン含有モノマーG:上記一般式(IV’)中、tおよびu=10、jおよびk=3、vおよびw=3、R13~R22、R35およびR36がメチル基であるシリコン含有重合性単量体であって、iおよびlが2であるものと3であるものとの1:1(モル比)混合物(このモノマーは、商品名「F2-312-04」で日本ユニカー(株)より販売されていたものである)。
(14)MMA:メチルメタクリレート。
(15)EA:エチルアクリレート。
(16)2-MTA:2-メトキシエチルアクリレート。
(17)ST:スチレン。
(18)AIBN:アゾビスイソブチロニトリル。
(19)AMBN:アゾビスメチルブチロニトリル。
 〔3〕加水分解性樹脂(ii)の調製
 (製造例S19:加水分解性樹脂組成物S19の調製)
 攪拌機、冷却機、温度制御装置、窒素導入管、滴下ロートを備えた4つ口フラスコに、キシレン70質量部を加え100℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン30質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1.5時間保温することにより、ワニスAを得た。得られたワニスA中の固形分は50.1質量%であり、粘度は27ポイズであった。また、ワニスAに含まれる加水分解性樹脂の数平均分子量(GPC、ポリスチレン換算、以下同じ)は15000であった。以下の実施例では、このワニスAをそのまま加水分解性樹脂組成物S19として用いた。
 (製造例S20:加水分解性樹脂組成物S20の調製)
 上記製造例S19と同様の反応容器に、キシロール80質量部を加え100℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート1質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン20質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1.5時間保温することにより、ワニスBを得た。得られたワニスB中の固形分は49.7質量%であり、粘度は15ポイズであった。また、ワニスBに含まれる加水分解性樹脂の数平均分子量は10000であった。以下の実施例では、このワニスBをそのまま加水分解性樹脂組成物S20として用いた。
 (製造例S21:加水分解性樹脂組成物S21の調製)
 上記製造例S19と同様の反応容器に、キシロール64質量部およびn-ブタノール16質量部を加え100℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン16質量部、n-ブタノール4質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1.5時間保温することにより、ワニスCを得た。得られたワニスC中の固形分は51.2質量%であり、粘度は10ポイズであった。また、ワニスCに含まれる樹脂の数平均分子量は10000であり、酸価は70mgKOH/gであった。
 ついで、同様の反応容器に、ワニスC 100質量部、酢酸銅12.9質量部、水素添加ロジン(ハイペールCH、酸価160mgKOH/g、荒川化学工業社製)21.9質量部およびキシレン60質量部を加えてリフラックス温度まで昇温し、留出する酢酸、水および溶剤の混合液を除去しつつ、同量のキシロールを補充しながら、反応を18時間継続した。反応の終点は、留出した溶剤中の酢酸量を定量することにより決定した。反応液を冷却後、n-ブタノールおよびキシレンを加え、固形分が50.6質量%の加水分解性樹脂組成物S21を得た。
 (製造例S22:加水分解性樹脂組成物S22の調製)
 上記製造例S19と同様の反応容器に、キシロール40質量部およびn-ブタノール20質量部を加え105℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート1質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン30質量部、n-ブタノール10質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1時間保温することにより、ワニスDを得た。得られたワニスD中の固形分は50.5質量%であり、粘度は7ポイズであった。また、ワニスDに含まれる樹脂の数平均分子量は8000であり、酸価は70mgKOH/gであった。
 ついで、同様の反応容器に、ワニスD 100質量部、酢酸銅12.9質量部、WWロジン(WWロジン、酸価160mgKOH/g、荒川化学工業社製)21.9質量部およびキシレン60質量部を用いること以外は、上記製造例S21と同様にして反応を行ない、固形分が52.5質量%の加水分解性樹脂組成物S22を得た。
 (製造例S23:加水分解性樹脂組成物S23の調製)
 上記製造例S19と同様の反応容器に、キシロール70質量部およびn-ブタノール20質量部を加え110℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後1時間保温した。その後、キシロール10質量部を追加し、ワニスEを得た。得られたワニスE中の固形分は49.8質量%であり、粘度は6ポイズであった。また、ワニスEに含まれる樹脂の数平均分子量は8000であり、酸価は30mgKOH/gであった。
 ついで、同様の反応容器に、ワニスE 100質量部、酢酸亜鉛5.9質量部、ナフテン酸(NA-200、酸価200mgKOH/g、大和油脂工業社製)7.5質量部およびキシレン60質量部を加えてリフラックス温度まで昇温し、留出する酢酸、水および溶剤の混合液を除去しつつ、同量のキシロール/n-ブタノール混合液を補充しながら、反応を18時間継続した。反応の終点は、留出した溶剤中の酢酸量を定量することにより決定した。反応液を冷却後、n-ブタノールおよびキシレンを加え、固形分が53.8質量%の加水分解性樹脂組成物S23を得た。
 (製造例S24:加水分解性樹脂組成物S24の調製)
 上記製造例S19と同様の反応容器に、キシロール40質量部およびn-ブタノール40質量部を加え110℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後1時間保温した。その後、キシレン10質量部、n-ブタノール10質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1時間保温することにより、ワニスFを得た。得られたワニスF中の固形分は50.0質量%であり、粘度は11ポイズであった。また、ワニスFに含まれる樹脂の数平均分子量は8000であり、酸価は130mgKOH/gであった。
 ついで、同様の反応容器に、ワニスF 100質量部、酢酸亜鉛23.1質量部、ナフテン酸(NA-165、酸価165mgKOH/g、大和油脂工業社製)39.4質量部およびキシレン60質量部を用いること以外は、上記製造例S23と同様にして反応を行ない、固形分が47.3質量%の加水分解性樹脂組成物S24を得た。
 (製造例S25:加水分解性樹脂組成物S25の調製)
 上記製造例S19と同様の反応容器に、キシロール70質量部およびn-ブタノール30質量部を加え105℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびアゾビスイソブチロニトリル2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後1時間保温することにより、ワニスGを得た。得られたワニスG中の固形分は50.0質量%であり、粘度は18ポイズであった。また、ワニスGに含まれる樹脂の数平均分子量は15000であり、酸価は50mgKOH/gであった。
 ついで、同様の反応容器に、ワニスG 100質量部、酢酸銅9.3質量部、ナフテン酸(NA-200、酸価200mgKOH/g、大和油脂工業社製)12.5質量部およびキシレン60質量部を用いること以外は、上記製造例S21と同様にして反応を行ない、固形分が51.8質量%の加水分解性樹脂組成物S25を得た。
 (製造例S26:加水分解性樹脂組成物S26の調製)
 上記製造例S19と同様の反応容器に、キシロール90質量部を加え105℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート3質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン10質量部、n-ブタノール10質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1.5時間保温することにより、ワニスHを得た。得られたワニスH中の固形分は50.8質量%であり、粘度は10ポイズであった。また、ワニスHに含まれる樹脂の数平均分子量は12000であり、酸価は30mgKOH/gであった。
 ついで、同様の反応容器に、ワニスH 100質量部、酢酸銅5.6質量部、水素添加ロジン(ハイペールCH、酸価160mgKOH/g、荒川化学工業社製)9.4質量部およびキシレン60質量部を用いること以外は、上記製造例S21と同様にして反応を行ない、固形分が55.1質量%の加水分解性樹脂組成物S26を得た。
 (製造例S27:加水分解性樹脂組成物S27の調製)
 上記製造例S19と同様の反応容器に、キシロール64質量部およびn-ブタノール16質量部を加え115℃に保った。この溶液中に表3の配合(質量部)に従ったモノマーおよびt-ブチルパーオキシ-2-エチルヘキサノエート2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後1時間保温した。その後、キシレン16質量部、n-ブタノール4質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1時間保温することにより、ワニスIを得た。得られたワニスI中の固形分は49.5質量%であり、粘度は12ポイズであった。また、ワニスIに含まれる樹脂の数平均分子量は10000であり、酸価は110mgKOH/gであった。
 ついで、同様の反応容器に、ワニスI 100質量部、酢酸亜鉛21.5質量部、ナフテン酸(NA-165、酸価165mgKOH/g、大和油脂工業社製)33.3質量部およびキシレン60質量部を用いること以外は、上記製造例S23と同様にして反応を行ない、固形分が45.6質量%の加水分解性樹脂組成物S27を得た。
 表3に、ワニスA~Iの調製に用いたモノマーの使用量(仕込み量)、ワニスの固形分および粘度をまとめた。
Figure JPOXMLDOC01-appb-T000043
 表3に示される商品名および略号は下記のとおりである(下記以外の商品名および略号については、表1および表2と同様である)。
(1)X-22-174DX(商品名、信越化学(株)品):上記一般式(I’)中、m=0、b=3、R1~R4およびR31がメチル基であり、R5がメチル基またはn-ブチル基であるシリコン含有重合性単量体(官能基当量4600g/mol)。
(2)X-22-2404(商品名、信越化学(株)品):上記一般式(II’)中、p=0、d=3、R6~R8およびR32がメチル基であるシリコン含有重合性単量体(官能基当量420g/mol)。
(3)X-22-164A(商品名、信越化学(株)品):上記一般式(III’)中、qおよびs=0、fおよびg=3、R9~R12、R33およびR34がメチル基であるシリコン含有重合性単量体(官能基当量860g/mol)。
(4)X-22-164C(商品名、信越化学(株)品):上記一般式(III’)中、qおよびs=0、fおよびg=3、R9~R12、R33およびR34がメチル基であるシリコン含有重合性単量体(官能基当量2370g/mol)。
(5)シリコン含有モノマーH:上記一般式(IV’)中、tおよびu=0、jおよびk=3、vおよびw=3、R13~R22、R35およびR36がメチル基であるシリコン含有重合性単量体(このモノマーは、商品名「F2-312-01」で日本ユニカー(株)より販売されていたものである)。
(6)AA:アクリル酸。
(7)TIPSA:アクリル酸トリイソプロピルシリル。
(8)EHMA:メタクリル酸2-エチルヘキシル。
(9)CHMA:メタクリル酸シクロヘキシル。
(10)M-90G:メタクリル酸メトキシポリエチレングリコールエステル(NKエステルM-90G、新中村化学社製)。
 〔4〕比較用樹脂組成物の調製
 (製造例T1:樹脂組成物T1の調製)
 冷却器、温度計、滴下ロートおよび攪拌機を備えた四つ口フラスコに、PGM 15質量部およびキシレン70質量部を仕込み、撹拌しながら110℃に昇温した。ついで、滴下ロートからメチルメタクリレート42.1質量部、エチルアクリレート17.9質量部、「FM-7711」(チッソ(株)製)10質量部、「FM-0711」(チッソ(株)製)30質量部、キシレン10質量部、PGM 11.9質量部、連鎖移動剤(α-メチルスチレンダイマー)3質量部、AIBN 2.5質量部およびAMBN 7質量部からなる混合物を6時間で等速滴下した。滴下終了後、t-ブチルパーオクトエート0.5質量部とキシレン10質量部を30分で滴下し、さらに1時間30分撹拌した後、キシレンを5.1質量部添加して、樹脂組成物T1を得た。樹脂組成物T1の固形分は45.5質量%、ガードナー粘度は+Eであった。
 得られた樹脂組成物T1をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、樹脂組成物T1に含まれる樹脂の重量平均分子量はポリスチレン換算値で8600であった。
 (製造例T2:樹脂組成物T2の調製)
 攪拌機、冷却機、温度制御装置、窒素導入管、滴下ロートを備えた4つ口フラスコにキシレン64質量部、n-ブタノール16質量部を加え100℃に保った。この溶液中に、エチルアクリレート(EA)58.3質量部、メタクリル酸シクロヘキシル(CHMA)15質量部、メタクリル酸メトキシポリエチレングリコールエステル(M-90G)10質量部、アクリル酸(AA)16.7質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(化華アクゾ社製「カヤエステルO」)2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン16質量部、n-ブタノール4質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(化華アクゾ社製「カヤエステルO」)0.2質量部からなる混合液30分間にわたり等速滴下し、滴下終了後1時間30分間保温することにより樹脂ワニスを得た。得られた樹脂ワニス中の固形分は49.8質量%であり、当該樹脂ワニス中の樹脂の酸価は130であった。
 次に、同様の反応容器に、上記樹脂ワニス100質量部、酢酸亜鉛25.4質量部、ナフテン酸(NA-165,酸価165mgKOH/g、大和油脂工業社製)39.2質量部、キシレン110質量部を加えて130℃に加熱し、溶剤とともに酢酸を除去することにより、固形分が41.5質量%、ガードナー粘度W-Xの樹脂組成物T2を得た。
 得られた樹脂組成物T2をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、樹脂組成物T2に含まれる樹脂の重量平均分子量はポリスチレン換算値で8000であった。
 (製造例T3:樹脂組成物T3の調製)
 攪拌機、冷却機、温度制御装置、窒素導入管、滴下ロートを備えた4つ口フラスコに、キシレン64質量部、n-ブタノール16質量部を加え115℃に保った。この溶液中に、メチルメタクリレート(MMA)11.17質量部、エチルアクリレート(EA)16.3質量部、メタクリル酸シクロヘキシル(CHMA)15質量部、アクリル酸シクロヘキシル(CHA)15質量部、メタクリル酸メトキシポリエチレングリコールエステル(M-90G)30質量部、アクリル酸(AA)10.27質量部、メタクリル酸(MAA)12.26質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(化華アクゾ社製「カヤエステルO」)3質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン16質量部、n-ブタノール4質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート(化華アクゾ社製「カヤエステルO」)0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後、1時間30分保温することにより、樹脂ワニスを得た。得られた樹脂ワニス中の固形分は49.7質量%であり、当該樹脂ワニス中の樹脂の酸価は160であった。
 次に、同様の反応容器に、上記樹脂ワニス100質量部、酢酸銅29.6質量部、ピバリン酸(酸価:550mgKOH/g)14.5質量部を用いること以外は、上記製造例T2と同様にして反応を行ない、固形分が45.2質量%、ガードナー粘度Z2-Z3の樹脂組成物T3を得た。
 得られた樹脂組成物T3をGPC(東ソー社製「HLC-8220GPC」、溶離液:ジメチルホルムアミド)にて分析したところ、樹脂組成物T3に含まれる樹脂の重量平均分子量はポリスチレン換算値で6500であった。
 (製造例T4:樹脂組成物T4の調製)
 上記製造例S19と同様の反応容器に、キシロール80質量部を加え100℃に保った。この溶液中に、アクリル酸トリイソプロピルシリル(TIPSA)65.0質量部、メチルメタクリレート(MMA)35.0質量部、およびt-ブチルパーオキシ-2-エチルヘキサノエート2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後1時間保温した。その後、キシレン20質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1.5時間保温することにより、樹脂組成物T4を得た。得られた樹脂組成物T4中の固形分は50.0質量%であり、粘度は8ポイズであった。また、樹脂組成物T4に含まれる樹脂の数平均分子量は10000であった。
 (製造例T5:樹脂組成物T5の調製)
 上記製造例S19と同様の反応容器に、キシロール64質量部およびn-ブタノール16質量部を加え115℃に保った。この溶液中に、アクリル酸トリイソプロピルシリル(TIPSA)40.0質量部、アクリル酸(AA)9.0質量部、エチルアクリレート(EA)26.0質量部、メタクリル酸シクロヘキシル(CHMA)15.0質量部、メタクリル酸メトキシポリエチレングリコールエステル(M-90G)10.0質量部、およびt-ブチルパーオキシ-2-エチルヘキサノエート2質量部からなる混合液を3時間にわたり等速滴下し、滴下終了後30分間保温した。その後、キシレン16質量部、n-ブタノール4質量部およびt-ブチルパーオキシ-2-エチルヘキサノエート0.2質量部からなる混合液を30分間にわたり等速滴下し、滴下終了後1時間保温することにより樹脂ワニスを得た。得られた樹脂ワニス中の固形分は49.7質量%であり、粘度は5ポイズであった。また、この樹脂ワニスに含まれる樹脂の数平均分子量は6000であり、酸価は70mgKOH/gであった。
 ついで、同様の反応容器に、上記樹脂ワニス 100質量部、酢酸銅12.9質量部、水素添加ロジン(ハイペールCH、酸価160mgKOH/g、荒川化学工業社製)21.9質量部およびキシレン60質量部を用いること以外は、上記製造例S21と同様にして反応を行ない、固形分が51.3質量%の樹脂組成物T5を得た。
 〔5〕加水分解性樹脂組成物S1~S27および樹脂組成物T1~T5の隠蔽性評価
 得られた加水分解性樹脂組成物S1~S27または樹脂組成物T1~T5を、横120mm×縦120mm×厚さ0.3mmのJIS K 5600-4-1 4.1.2に準拠した隠蔽率測定板上に、乾燥膜厚が150μmになるようにアプリケーターを用いて塗布し、1昼夜室内に放置することにより乾燥させて、防汚塗膜を有する試験板を得た。得られた試験板について、下記の基準に従って、塗膜の隠蔽性を目視にて評価した。
A:完全に透けており、隠蔽率測定板の白黒の境界を容易に識別できる。
B:僅かに透けており、隠蔽率測定板の白黒の境界をやや識別できる。
C:完全に隠蔽しており、隠蔽率測定板の白黒の境界を識別できない。
 上記隠蔽性評価試験の結果、加水分解性樹脂組成物S1~S27および樹脂組成物T1~T5から形成された塗膜は、いずれも透明性が高く、樹脂自体は隠蔽性を有しないことが確認された。
 <実施例1~13、比較例1~2>
 〔6〕着色防汚塗料の調製
 表4の配合(質量部)に従い、各配合成分を高速ディスパーにて混合することにより、着色防汚塗料(塗料1~15)を調製した。なお、実施例3の塗料3は、塗料1および2を表4に記載の配合比で混合することにより調製した。
Figure JPOXMLDOC01-appb-T000044
 表4に記載の各成分の詳細は以下のとおりである。
(1)亜酸化銅:NCテック(株)製「NC-301」。
(2)防汚剤1:ZPT(ジンクピリチオン)(アーチケミカル社製「ジンクオマジン」)。
(3)防汚剤2:CuPT(銅ピリチオン)(アーチケミカル社製「カッパーオマジン」)。
(4)防汚剤3:1,1-ジクロロ-N-[(ジメチルアミノ)スルホニル]-1-フルオロ-N-(4-メチルフェニル)メタンスルフェンアミド(ランクセス社製「プリベントール A5S」)。
(5)防汚剤4:4,5-ジクロロ-2-n-オクチル-4-イソチアゾリン-3-オン(4,5-ジクロロ-2-nオクチル-3(2H)イソチアゾロン)(ロームアンドハース社製「シーナイン211」)。
(6)防汚剤5:4-ブロモ-2-(4-クロロフェニル)-5-(トリフルオロメチル)-1H-ピロール-3-カルボニトリル(ヤンセンPMP社製「エコネア」)。
(7)酸化チタン:デュポン(株)製「TI-PURE R-900」。
(8)アゾ系黄顔料:大日精化工業(株)製「セイカファーストイエロー 2054C」。
(9)アゾ系赤顔料:富士色素(株)製「FUJI FAST RED 2305A」。
(10)フタロシアニンブルー:山陽色素(株)製「CYANINE BLUE G-105」。
(11)カーボンブラック:旭カーボン(株)製「SUNBLACK X15」。
(12)熱可塑性樹脂1:塩素化パラフィン(東ソー(株)製「トヨパラックス A50」)。
(13)熱可塑性樹脂2:ポリビニルエーテル(BASF JAPAN(株)製「ルトナール A25」)。
(14)熱可塑性樹脂3:ロジン(荒川化学工業(株)製「WWロジン」)。
(15)熱可塑性樹脂4:塩化ビニル-イソブチルビニルエーテル共重合体(BASF JAPAN(株)製「ラロフレックスMP25」)。
(16)可塑剤1:DOP(ジオクチルフタレート)(三菱ガス化学(株)製「DOP」)。
(17)可塑剤2:DIDP(ジイソデシルフタレート)(チッソ(株)製「DIDP」)。
(18)可塑剤3:TCP(トリクレジルホスフェート)(大八化学工業(株)製「TCP」)。
(19)可塑剤4:トリアリールホスフェート(味の素(株)製「レオフォス65」)。(20)硫酸バリウム:内外タルク(株)製「バライトパウダーFBA」。
(21)沈降防止剤:楠本化成(株)製「ディスパロン A600-20X」。
 〔7〕塗料1~15を用いた防汚塗膜の形成および塗料1~15の膜厚判定機能の評価
 あらかじめ防錆塗料が塗布されたブラスト板に、下塗り塗料として塗料a~lのいずれかをブラスト板表面が完全に隠蔽されるまで塗布し、2昼夜室内に放置することにより乾燥させて、下塗り塗膜を有する試験板を得た。下塗り塗料a~lの詳細は以下のとおりである(括弧内は、各下塗り塗料のL*/a*/b*表示系に従う色相である)。当該試験板の下塗り塗膜表面の色相を表5~8に示した。
(a)塗料a:日本ペイントマリン(株)製 防汚塗料「エコロフレックス SPC 250 HyB チェリーV」(L*/a*/b*=31/23/8)。
(b)塗料b:日本ペイントマリン(株)製 防汚塗料「エコロフレックス SPC 200 レッドブラウン」(L*/a*/b*=32/17/6)。
(c)塗料c:日本ペイントマリン(株)製 防汚塗料「うなぎ塗料一番あざやか 特上レッドA」(L*/a*/b*=36/50/13)。
(d)塗料d:日本ペイントマリン(株)製 防食塗料「ユニプライム 100 赤錆」(L*/a*/b*=27/27/15)。
(e)塗料e:日本ペイントマリン(株)製 防汚塗料「エコロフレックス SPC 150 HyB ブラウン」(L*/a*/b*=33/21/10)。
(f)塗料f:日本ペイントマリン(株)製 防食塗料「ラバコート 一号塗料 ライトブラウン」(L*/a*/b*=54/6/4)。
(g)塗料g:日本ペイントマリン(株)製 防汚塗料「ハイソル 100 ブルーA」(L*/a*/b*=31/7/-43)。
(h)塗料h:日本ペイントマリン(株)製 防汚塗料「エコロフレックス SPC ビートルブラック」(L*/a*/b*=21/0/-1)。
(i)塗料i:日本ペイントマリン(株)製 防食塗料「ニッポン V-マリン A/C TF シルバー」(L*/a*/b*=58/-1/-1)。
(j)塗料j:日本ペイントマリン(株)製 防食塗料「NOA A/C II グレー」(L*/a*/b*=60/-1/0)。
(k)塗料k:日本ペイントマリン(株)製 防食塗料「NOA 10F バフ250」(L*/a*/b*=66/1/31)。
(l)塗料l:日本ペイントマリン(株)製 防食塗料「ニッポン E-マリン プライマー ガルバ ホワイト」(L*/a*/b*=87/-1/3)。
 次に、得られた下塗り塗膜を有する試験板の下塗り塗膜表面に、エアレススプレー法により、各実施例および比較例で得られた上塗り塗料としての着色防汚塗料(塗料1~15のいずれか)を塗装し、2昼夜室内に放置することにより乾燥させて、表5~8に示される乾燥膜厚を有する防汚塗膜を形成した。上塗り塗料の乾燥塗膜の膜厚は、実施例1において25、40、50、60μm、実施例2において、25、50、75、100、125、150、180μm、実施例3~13および比較例1~2において、25、50、75、100、125、150μmである。乾燥膜厚は、「MiniTest 3100」(ElektroPhysik社製)を用いて測定した。
 得られた各乾燥膜厚を有する上塗り防汚塗膜について、JIS K 5600-4-5に準拠した、三刺激値色彩計SMカラーメーター(型式SM-T45、スガ試験機(株)製、規格JIS Z 8722)による測定およびJIS K 5600-4-6に準拠した計算により、各乾燥膜厚を有する上塗り防汚塗膜と、各塗料の目標乾燥膜厚T(各塗料の目標乾燥膜厚Tは、表4および表5~8に示されるとおりである)を有する上塗り防汚塗膜との色差ΔEを求めた。また、各乾燥膜厚を有する上塗り防汚塗膜の下地隠蔽性(上塗り防汚塗膜による下塗り塗膜の隠蔽性)を目視観察し、下記判定基準に基づいて評価した。結果を併せて表5~8に示す。
A:全体的に透けている。
B:かなり透けが目立つ。
C:透けが目立つ。
D:ほぼ隠蔽しているが、僅かに透けがある。
E:完全に隠蔽している。
 なお、表5~8における乾燥膜厚0μmでのΔEとは、各塗料と下塗り塗膜表面との色差ΔE3を指している。また、下塗り塗料の欄における「塗膜色相」とは、下塗り塗料の色相自体ではなく、下塗り塗膜表面の色相を示している。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 上記表5~8に示される結果に基づいて算出される実施例1~13および比較例1~2の着色防汚塗料(塗料1~15)のΔE1(目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜と、乾燥膜厚が0.8Tである着色防汚塗料から形成される塗膜との色差)、ΔE2(目標乾燥膜厚Tを有する着色防汚塗料から形成される塗膜と、乾燥膜厚が1.2Tである着色防汚塗料から形成される塗膜との色差)、および色差ΔE3(着色防汚塗料と下塗り塗膜との色差)を表9にまとめた。また、図1は、表7および8に示される塗料3~15についての、乾燥膜厚とΔE(各乾燥膜厚を有する上塗り防汚塗膜と、目標乾燥膜厚を有する上塗り防汚塗膜との色差)との関係をグラフ化したものであり、図2は、図1の一部(目標乾燥膜厚125μm近傍)を拡大して示す図である。
Figure JPOXMLDOC01-appb-T000049
 以上に示されるとおり、実施例1~13の塗料1~13は、上記条件(a)~(b)および(d)を満たす、膜厚判定機能に優れた着色防汚塗料であることがわかる。特に、ΔE1が2.0以上と大きいことから、塗装完了間際における塗膜色相の膜厚依存性が大きくなるため、塗装完了間際での隠蔽性の変化を目視で判断すること容易となる。かかる膜厚判定機能に優れた着色防汚塗料を用いた本発明の防汚塗膜の形成方法によれば、目標乾燥膜厚を有する乾燥塗膜を極めて正確に形成することができ、わずかな膜厚不足も解消することができる。一方、比較例1の塗料14は、ΔE1が1.3と小さいため、塗装完了間際での隠蔽性の変化を目視で判断することが、塗料1~13と比べて困難となっている。比較例2の塗料15は、膜厚判定機能をほとんど有していない。
 <参考例1~59、比較参考例1~7>
 表10~13の配合(質量部)に従い、上記製造例S1~S27で得られた加水分解性樹脂(i)〔加水分解性樹脂組成物S1~S18〕もしくは(ii)〔加水分解性樹脂組成物S19~S27〕または製造例T1~T5で得られた樹脂組成物T1~T5、ならびに表10~13に示すその他の成分を使用して、高速ディスパーにて混合することにより、防汚塗料を調製した。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
 表10~13に記載の各成分の詳細は以下のとおりである(下記以外の商品名および略号については、表4と同様である)。
(1)亜鉛華:堺化学工業(株)製「酸化亜鉛2種」。
 得られた上記各防汚塗料から形成される防汚塗膜について、下記評価方法に従って長期防汚性、下地との密着性、耐クラック性およびポリッシング性を評価した。評価結果を表14~17に示す。
 (1)長期防汚性
 得られた防汚塗料を、あらかじめ防錆塗料が塗布されたブラスト板に乾燥膜厚が300μmとなるように塗布し、2昼夜室内に放置することにより乾燥させて、防汚塗膜を有する試験板を得た。得られた試験板を、岡山県玉野市にある日本ペイントマリン社臨海研究所設置の実験用筏で生物付着試験を行ない、防汚性を評価した。表中の月数は筏浸漬期間を示す。また、表中の数値は、生物付着面積の塗膜面積に占める割合(%)(目視判定)を示しており、15%以下を合格とした。
 (2)下地との密着性(碁盤目付着試験)
 得られた防汚塗料を、あらかじめ防錆塗料が塗布されたブラスト板に乾燥膜厚が150μmとなるように塗布し、2昼夜室内に放置することにより乾燥させて得られた試験板A;および、試験板Aを滅菌濾過海水中に3ヶ月間浸漬した後、1昼夜室内に放置することにより乾燥させて得られた基板の塗膜表面に、該塗膜の形成に用いたのと同じ防汚塗料を乾燥膜厚が150μmとなるように塗布し、2昼夜室内に放置することにより乾燥させて得られた試験板Bを用い、JIS K 5600.5.6に準拠して碁盤目付着試験を行なった(隙間間隔2mm、マス目数25)。表中の数値は、試験結果を下記の基準で評点化したものである。
評価点数10:切り傷1本ごとが、細くて両側が滑らかで、切り傷の交点と正方形の一目一目に剥がれがない。
評価点数8:切り傷の交点にわずかな剥がれがあって、正方形の一目一目に剥がれがなく、欠損部の面積が全正方形面積の5%以内。
評価点数6:切り傷の両側と交点とに剥がれがあって、欠損部の面積が全正方形面積の5~15%。
評価点数4:切り傷による剥がれの幅が広く、欠損部の面積が全正方形面積の15~35%。
評価点数2:切り傷による剥がれの幅は4点よりも広く、欠損部の面積が全正方形面積の35~65%。
評価点数0:剥がれの面積が、全正方形面積の65%以上。
 (3)耐クラック性
 (a)海水浸漬に対する耐クラック性(海水浸漬後の塗膜状態の評価)
 上記長期防汚性試験における筏浸漬期間6ヶ月の試験板の塗膜状態を目視およびラビングで観察し、評価した。クラックが確認されなかったものをAとし、クラックが確認されたものをBとした。
 (b)乾湿繰り返しに対する耐クラック性(乾湿交番試験)
 得られた防汚塗料を、あらかじめ防錆塗料が塗布されたブラスト板に乾燥膜厚が300μmとなるように塗布し、2昼夜室内に放置することにより乾燥させて、防汚塗膜を有する試験板を得た。得られた試験板を、40℃の海水に1週間浸漬した後、1週間室内乾燥を行ない、これを1サイクルとした乾湿交番試験を最大20サイクルまで実施した。途中で塗膜にクラックが発生した場合は、クラックが発生した時点で試験を終了し、その時点でのサイクル数を表に記載した。20サイクル行なってもクラック発生がないものをAとした。
 (4)ポリッシング性(塗膜消耗量(研磨速度)試験)
 得られた防汚塗料を、あらかじめ防錆塗料が塗布されたブラスト板に乾燥膜厚が300μmとなるように塗布し、2昼夜室内に放置することにより乾燥させて、防汚塗膜を有する試験板を得た。この試験板を直径750mm、長さ1200mmの円筒側面に貼り付け、海水中、周速15ノットで24ヶ月間連続回転させ、3ヶ月毎の試験板の塗膜消耗量(塗膜厚みの累積減少量[μm])を測定した。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
 表14~17に示されるように、加水分解性樹脂(i)または(ii)を含む参考例の防汚塗料から得られる防汚塗膜は長期防汚性、下地との密着性および耐クラック性に優れている。一方、比較参考例の防汚塗料から得られる防汚塗膜は、長期防汚性が十分でなく、耐クラック性や下地との密着性に欠ける場合もあった。

Claims (15)

  1.  被塗物の表面に防汚塗膜を形成する方法であって、
     [1]加水分解性樹脂および着色顔料を含む着色防汚塗料であって、下記条件(a)~(c):
      (a)目標乾燥膜厚Tを有する前記着色防汚塗料から形成される塗膜が、前記被塗物の表面を完全に隠蔽する、
      (b)目標乾燥膜厚Tを有する前記着色防汚塗料から形成される塗膜と、乾燥膜厚が0.8Tである前記着色防汚塗料から形成される塗膜との色差ΔE1が2.0以上である、
      (c)前記加水分解性樹脂が、加水分解性樹脂(i)および/または加水分解性樹脂(ii)を含む、
    を満たす着色防汚塗料を調製する工程と、
     [2]前記被塗物の表面が前記着色防汚塗料からなる塗膜によって完全に隠蔽されるまで、前記着色防汚塗料を前記被塗物の表面に塗工する工程、
    を含み、
     前記加水分解性樹脂(i)は、下記一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    [前記一般式(I)中、aおよびbは、それぞれ独立して2~5の整数を表し、mは0~50の整数、nは3~80の整数を表す。R1~R5は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表す。]
    で示される基、下記一般式(II):
    Figure JPOXMLDOC01-appb-C000002
    [前記一般式(II)中、cおよびdは、それぞれ独立して2~5の整数を表し、pは0~50の整数を表す。R6、R7およびR8は、それぞれ独立してアルキル基、RaまたはRbを表す。
     ここで、Raは、
    Figure JPOXMLDOC01-appb-C000003
     (式中、xは0~20の整数を表す。R23~R27は、同一または異なって、アルキル基を表す。)であり、
     Rbは、
    Figure JPOXMLDOC01-appb-C000004
     (式中、yは1~20の整数を表す。R28およびR29は、同一または異なって、アルキル基を表す。)である。]
    で示される基、下記一般式(III):
    Figure JPOXMLDOC01-appb-C000005
    [前記一般式(III)中、e、f、gおよびhは、それぞれ独立して2~5の整数を表し、qおよびsは、それぞれ独立して0~50の整数を表し、rは3~80の整数を表す。R9~R12は、それぞれ独立してアルキル基、アルコキシ基、フェニル基、置換フェニル基、フェノキシ基または置換フェノキシ基を表す。]
    で示される基、および、下記一般式(IV):
    Figure JPOXMLDOC01-appb-C000006
    [前記一般式(IV)中、i、j、kおよびlは、それぞれ独立して2~5の整数を表し、tおよびuは、それぞれ独立して0~50の整数を表し、vおよびwは、それぞれ独立して0~20の整数を表す。R13~R22は、同一または異なって、アルキル基を表す。]で示される基からなる群から選択される少なくとも1種のシリコン含有基と、2価の金属原子Mを含有する金属原子含有基とを有する加水分解性樹脂であり、
     前記加水分解性樹脂(ii)は、前記一般式(I)、(II)、(III)および(IV)で示される基からなる群から選択される少なくとも1種のシリコン含有基と、下記一般式(V):
    Figure JPOXMLDOC01-appb-C000007
    [前記一般式(V)中、R40、R41およびR42は、同一または異なって、炭素数1~20の炭化水素残基を表す。]
    で示されるトリオルガノシリルオキシカルボニル基とを有する加水分解性樹脂である、防汚塗膜の形成方法。
  2.  前記色差ΔE1が2.5以上である、請求項1に記載の防汚塗膜の形成方法。
  3.  前記着色防汚塗料は、下記条件(d):
      (d)目標乾燥膜厚Tを有する前記着色防汚塗料から形成される塗膜と、乾燥膜厚が1.2Tである前記着色防汚塗料から形成される塗膜との色差ΔE2が1未満である、
    を満たす、請求項1に記載の防汚塗膜の形成方法。
  4.  前記色差ΔE2が0.5以下である、請求項3に記載の防汚塗膜の形成方法。
  5.  前記加水分解性樹脂(i)が有する前記金属原子含有基は、下記一般式(VI)および(VII)で示される基からなる群から選択される少なくとも1種の基である、請求項1に記載の防汚塗膜の形成方法。
    Figure JPOXMLDOC01-appb-C000008
    [前記一般式(VI)中、Mは2価の金属原子を表し、R30は有機酸残基またはアルコール残基を表す。]
    Figure JPOXMLDOC01-appb-C000009
    [前記一般式(VII)中、Mは2価の金属原子を表す。]
  6.  前記加水分解性樹脂(i)は、下記一般式(I’)で示される単量体(a1)、下記一般式(II’)で示される単量体(a2)、下記一般式(III’)で示される単量体(a3)および下記一般式(IV’)で示される単量体(a4)からなる群から選択される少なくとも1種のシリコン含有重合性単量体(a)から誘導される構成単位と、2価の金属原子Mを含有する金属原子含有重合性単量体(b)から誘導される構成単位とを含む請求項1に記載の防汚塗膜の形成方法。
    Figure JPOXMLDOC01-appb-C000010
    [前記一般式(I’)中、R31は水素原子またはメチル基を表し、a、b、m、nおよびR1~R5は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000011
    [前記一般式(II’)中、R32は水素原子またはメチル基を表し、c、d、pおよびR6~R8は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000012
    [前記一般式(III’)中、R33およびR34は水素原子またはメチル基を表し、e、f、g、h、q、r、sおよびR9~R12は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000013
    [前記一般式(IV’)中、R35およびR36は水素原子またはメチル基を表し、i、j、k、l、t、u、v、wおよびR13~R22は、前記と同じ意味を表す。]
  7.  前記金属原子含有重合性単量体(b)は、下記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)からなる群から選択される少なくとも1種を含む請求項6に記載の防汚塗膜の形成方法。
    Figure JPOXMLDOC01-appb-C000014
    [前記一般式(VI’)中、R37は水素原子またはメチル基を表し、MおよびR30は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000015
    [前記一般式(VII’)中、R38およびR39は水素原子またはメチル基を表し、Mは、前記と同じ意味を表す。]
  8.  前記加水分解性樹脂(ii)は、下記一般式(VI)および(VII)で示される基からなる群から選択される少なくとも1種の金属原子含有基をさらに有する請求項1に記載の防汚塗膜の形成方法。
    Figure JPOXMLDOC01-appb-C000016
    [前記一般式(VI)中、Mは2価の金属原子を表し、R30は有機酸残基またはアルコール残基を表す。]
    Figure JPOXMLDOC01-appb-C000017
    [前記一般式(VII)中、Mは2価の金属原子を表す。]
  9.  前記加水分解性樹脂(ii)は、下記一般式(I’)で示される単量体(a1)、下記一般式(II’)で示される単量体(a2)、下記一般式(III’)で示される単量体(a3)および下記一般式(IV’)で示される単量体(a4)からなる群から選択される少なくとも1種のシリコン含有重合性単量体(a)から誘導される構成単位と、下記一般式(V’)で示されるトリオルガノシリル(メタ)アクリレート(c)から誘導される構成単位とを含む請求項1に記載の防汚塗膜の形成方法。
    Figure JPOXMLDOC01-appb-C000018
    [前記一般式(I’)中、R31は水素原子またはメチル基を表し、a、b、m、nおよびR1~R5は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000019
    [前記一般式(II’)中、R32は水素原子またはメチル基を表し、c、d、pおよびR6~R8は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000020
    [前記一般式(III’)中、R33およびR34は水素原子またはメチル基を表し、e、f、g、h、q、r、sおよびR9~R12は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000021
    [前記一般式(IV’)中、R35およびR36は水素原子またはメチル基を表し、i、j、k、l、t、u、v、wおよびR13~R22は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000022
    [前記一般式(V’)中、R43は水素原子またはメチル基を表し、R40~R42は、前記と同じ意味を表す。]
  10.  前記加水分解性樹脂(ii)は、下記一般式(VI’)で示される単量体(b1)および(VII’)で示される単量体(b2)からなる群から選択される少なくとも1種の金属原子含有重合性単量体(b)から誘導される構成単位をさらに含む請求項9に記載の防汚塗膜の形成方法。
    Figure JPOXMLDOC01-appb-C000023
    [前記一般式(VI’)中、R37は水素原子またはメチル基を表し、MおよびR30は、前記と同じ意味を表す。]
    Figure JPOXMLDOC01-appb-C000024
    [前記一般式(VII’)中、R38およびR39は水素原子またはメチル基を表し、Mは、前記と同じ意味を表す。]
  11.  前記着色防汚塗料は、防汚剤をさらに含有し、
     前記防汚剤の含有量は、塗料固形分中、10質量%以下である、請求項1に記載の防汚塗膜の形成方法。
  12.  前記着色防汚塗料は、熱可塑性樹脂および/または可塑剤をさらに含有し、
     前記熱可塑性樹脂および前記可塑剤の合計含有量は、前記加水分解性樹脂100質量部に対して3~100質量部である、請求項1に記載の防汚塗膜の形成方法。
  13.  前記着色防汚塗料は、前記条件(a)~(c)を具備する2種以上の防汚塗料を混合することによって調製され、
     前記2種以上の防汚塗料は、互いに着色顔料の含有量が異なるものである、請求項1に記載の防汚塗膜の形成方法。
  14.  前記被塗物は、その表面に、防食塗料または防汚塗料から形成された下塗り塗膜を有し、前記下塗り塗膜表面上に、前記着色防汚塗料が塗工される、請求項1に記載の防汚塗膜の形成方法。
  15.  前記被塗物は、鋼材、プラスチックまたはコンクリート製である、請求項1に記載の防汚塗膜の形成方法。
PCT/JP2011/063596 2010-06-23 2011-06-14 防汚塗膜の形成方法 WO2011162129A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180018425XA CN102821872A (zh) 2010-06-23 2011-06-14 防污涂膜的形成方法
EP16172513.0A EP3135389B1 (en) 2010-06-23 2011-06-14 Method of forming antifouling coating film
EP11798015.1A EP2537596B1 (en) 2010-06-23 2011-06-14 Method for forming antifouling coating film
SG2012053500A SG186048A1 (en) 2010-06-23 2011-06-14 Method of forming antifouling coating film
US13/576,865 US8936854B2 (en) 2010-06-23 2011-06-14 Method of forming antifouling coating film
KR1020127020673A KR101255971B1 (ko) 2010-06-23 2011-06-14 방오 도막의 형성 방법
US14/586,155 US9695324B2 (en) 2010-06-23 2014-12-30 Method of forming antifouling coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-142566 2010-06-23
JP2010142566A JP4934851B2 (ja) 2010-06-23 2010-06-23 防汚塗膜の形成方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/576,865 A-371-Of-International US8936854B2 (en) 2010-06-23 2011-06-14 Method of forming antifouling coating film
US14/586,155 Continuation US9695324B2 (en) 2010-06-23 2014-12-30 Method of forming antifouling coating film

Publications (1)

Publication Number Publication Date
WO2011162129A1 true WO2011162129A1 (ja) 2011-12-29

Family

ID=45371323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063596 WO2011162129A1 (ja) 2010-06-23 2011-06-14 防汚塗膜の形成方法

Country Status (7)

Country Link
US (2) US8936854B2 (ja)
EP (2) EP2537596B1 (ja)
JP (1) JP4934851B2 (ja)
KR (1) KR101255971B1 (ja)
CN (1) CN102821872A (ja)
SG (1) SG186048A1 (ja)
WO (1) WO2011162129A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175246A1 (ja) * 2013-04-23 2014-10-30 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚基材および防汚基材の製造方法
WO2014189069A1 (ja) * 2013-05-22 2014-11-27 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚塗膜付基材および該基材の製造方法
WO2018181429A1 (ja) * 2017-03-29 2018-10-04 三菱ケミカル株式会社 (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物
US11643489B2 (en) 2015-09-25 2023-05-09 Mitsubishi Chemical Corporation (Meth)acrylic copolymer, polymer solution, polymer-containing composition, anti-fouling coating composition, and method for producing (meth)acrylic copolymer

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282499B2 (ja) * 2014-03-20 2018-02-21 富士フイルム株式会社 顔料分散液、白色加飾材、白色加飾材形成用の転写材料、タッチパネル及びこれらの応用
JP5702503B1 (ja) * 2014-09-16 2015-04-15 日本ペイントマリン株式会社 乾燥塗膜の形成方法、及びそれに用いる塗料
US9334196B2 (en) * 2014-09-19 2016-05-10 Magneco/Metrel, Inc. Paint composition for concrete and masonry surfaces
US9512042B2 (en) 2014-09-19 2016-12-06 Magneco/Metrel, Inc. Method of coating concrete and masonry surfaces
WO2016167360A1 (ja) * 2015-04-16 2016-10-20 三菱レイヨン株式会社 防汚塗料組成物
JP6578721B2 (ja) * 2015-04-17 2019-09-25 日油株式会社 ポリシロキサン基含有グラフト共重合体及び粘着剤組成物
SG10201913128XA (en) * 2015-07-31 2020-02-27 Chugoku Marine Paints Antifouling coating composition, antifouling coating film, antifouling substrate, rosin compound for antifouling coating composition and method for producing antifouling coating composition
TWI795345B (zh) * 2015-10-13 2023-03-11 日商三菱化學股份有限公司 (甲基)丙烯酸系共聚合物、樹脂組成物、防污塗料組成物及(甲基)丙烯酸系共聚合物的製造方法
CN109311284B (zh) * 2016-07-01 2021-07-13 中国涂料株式会社 层叠防污涂膜、防污基材和船舶
US10590283B2 (en) 2016-08-12 2020-03-17 Magneco/Metrel, Inc. Method of providing a protective coating composition for molten aluminum and alkali metal environments
GB201703457D0 (en) * 2017-03-03 2017-04-19 Jotun As Composition
US10494305B2 (en) 2017-03-16 2019-12-03 Magneco/Metrel, Inc. Method of making refractory article resistant to high temperature shock and creep
WO2018221641A1 (ja) * 2017-06-01 2018-12-06 中国塗料株式会社 積層防汚塗膜、積層防汚塗膜付き基材及びその製造方法、積層防汚塗膜形成用塗料キット、上層防汚塗料組成物、並びに防汚方法
WO2018221642A1 (ja) * 2017-06-01 2018-12-06 中国塗料株式会社 積層防汚塗膜、積層防汚塗膜付き基材及びその製造方法、積層防汚塗膜形成用塗料キット、上層防汚塗料組成物、並びに防汚方法
EP3489310A1 (en) * 2017-11-24 2019-05-29 Jotun A/S Antifouling composition
EP3567084B1 (en) * 2018-03-30 2021-03-10 Nippon Paint Marine Coatings Co., Ltd. Coating composition and coating film formed therefrom
EP3567085B1 (en) * 2018-03-30 2022-05-04 Nippon Paint Marine Coatings Co., Ltd. Coating composition and coating film formed therefrom
CN111868185A (zh) * 2018-04-12 2020-10-30 日东化成株式会社 防污涂料组合物
JP7111364B2 (ja) * 2019-05-22 2022-08-02 日東化成株式会社 複層防汚塗膜、該塗膜を表面に有する塗装物
US11746176B2 (en) * 2019-07-05 2023-09-05 Board Of Trustees Of Michigan State University Omniphobic compatibilizers for clear coatings, related articles, and related methods
KR20230161937A (ko) * 2021-03-31 2023-11-28 미쯔비시 케미컬 주식회사 화합물, 중합체 및 방오 도료 조성물
WO2024004031A1 (ja) 2022-06-28 2024-01-04 日本ペイントマリン株式会社 塗料組成物及び塗膜
JP7324379B1 (ja) * 2022-06-28 2023-08-09 日本ペイントマリン株式会社 塗料組成物及び塗膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005692A (ja) 1998-06-22 2000-01-11 Nippon Paint Marine Kk 防汚塗膜の形成方法
JP2004300410A (ja) * 2003-03-14 2004-10-28 Mitsubishi Rayon Co Ltd 塗料組成物及び共重合体
JP2006503115A (ja) * 2002-02-21 2006-01-26 ヨトゥン エイエス 自己研磨性防汚塗料
WO2008105122A1 (ja) * 2007-02-27 2008-09-04 Nitto Kasei Co., Ltd. 防汚塗料組成物、該組成物の製造方法、該組成物を用いて形成される防汚塗膜、該塗膜を表面に有する塗装物、及び該塗膜を形成する防汚処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2188938B (en) * 1985-12-27 1990-03-21 Nippon Oils & Fats Co Ltd Antifouling coating composition comprising a polymer having siloxane and/or alkylsilyl groups
JP3857010B2 (ja) * 2000-02-17 2006-12-13 日本ペイント株式会社 共重合体及び塗料組成物
JP2002066445A (ja) * 2000-09-01 2002-03-05 Nippon Paint Marine Kk 塗膜形成方法
NO328137B1 (no) 2001-12-26 2009-12-14 Nippon Paint Co Ltd Akrylharpiks og antibegroingsbelegg
JP4361239B2 (ja) * 2002-03-06 2009-11-11 中国塗料株式会社 防汚塗料組成物、該組成物からなる塗膜、該塗膜で被覆された基材、および防汚方法
CN100473698C (zh) 2003-03-14 2009-04-01 三菱丽阳株式会社 防污涂料组合物
TWI303654B (en) * 2003-03-14 2008-12-01 Mitsubishi Rayon Co Antifouling coating composition
JP5466347B2 (ja) 2004-09-08 2014-04-09 中国塗料株式会社 防汚塗料組成物、その塗膜、該塗膜で被覆された船舶または水中構造物及び防汚方法
TWI440673B (zh) * 2008-09-30 2014-06-11 Nippon Paint Co Ltd Coating composition and method for producing the same, coating film and water structure
US9845395B2 (en) 2009-10-13 2017-12-19 Nippon Paint Marine Coatings Co., Ltd. Antifouling coating composition, antifouling film, composite film, and in-water structure
KR101406655B1 (ko) 2009-10-13 2014-06-11 닛뽄 페인트 마린 가부시키가이샤 방오 도료 조성물, 및 방오 도막, 복합 도막 및 수중 구조물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005692A (ja) 1998-06-22 2000-01-11 Nippon Paint Marine Kk 防汚塗膜の形成方法
JP2006503115A (ja) * 2002-02-21 2006-01-26 ヨトゥン エイエス 自己研磨性防汚塗料
JP2004300410A (ja) * 2003-03-14 2004-10-28 Mitsubishi Rayon Co Ltd 塗料組成物及び共重合体
WO2008105122A1 (ja) * 2007-02-27 2008-09-04 Nitto Kasei Co., Ltd. 防汚塗料組成物、該組成物の製造方法、該組成物を用いて形成される防汚塗膜、該塗膜を表面に有する塗装物、及び該塗膜を形成する防汚処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2537596A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175246A1 (ja) * 2013-04-23 2014-10-30 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚基材および防汚基材の製造方法
JP5989237B2 (ja) * 2013-04-23 2016-09-07 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚基材および防汚基材の製造方法
US9976040B2 (en) 2013-04-23 2018-05-22 Chugoku Marine Paints, Ltd. Antifouling coating composition, antifouling coating film, antifouling substrate, and method for producing antifouling substrate
WO2014189069A1 (ja) * 2013-05-22 2014-11-27 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚塗膜付基材および該基材の製造方法
JPWO2014189069A1 (ja) * 2013-05-22 2017-02-23 中国塗料株式会社 防汚塗料組成物、防汚塗膜、防汚塗膜付基材および該基材の製造方法
KR101821475B1 (ko) 2013-05-22 2018-01-23 주고꾸 도료 가부시키가이샤 방오 도료 조성물, 방오 도막, 방오 도막 부착 기재 및 그 기재의 제조방법
US9969892B2 (en) 2013-05-22 2018-05-15 Chugoku Marine Paints, Ltd. Antifouling coating composition, antifouling coating film, substrate with antifouling coating film, and production process for the substrate
US11643489B2 (en) 2015-09-25 2023-05-09 Mitsubishi Chemical Corporation (Meth)acrylic copolymer, polymer solution, polymer-containing composition, anti-fouling coating composition, and method for producing (meth)acrylic copolymer
WO2018181429A1 (ja) * 2017-03-29 2018-10-04 三菱ケミカル株式会社 (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物
JPWO2018181429A1 (ja) * 2017-03-29 2020-02-06 三菱ケミカル株式会社 (メタ)アクリル系共重合体、その製造方法、樹脂組成物及び防汚塗料組成物
JP7056648B2 (ja) 2017-03-29 2022-04-19 三菱ケミカル株式会社 樹脂組成物、その製造方法及び防汚塗料組成物
US11414508B2 (en) 2017-03-29 2022-08-16 Mitsubishi Chemical Corporation Resin composition with a (meth)acrylic copolymer, antifouling paint composition, and method for producing same

Also Published As

Publication number Publication date
JP4934851B2 (ja) 2012-05-23
JP2012005934A (ja) 2012-01-12
EP2537596B1 (en) 2016-06-08
US20150118405A1 (en) 2015-04-30
SG186048A1 (en) 2013-01-30
EP3135389B1 (en) 2022-03-16
US9695324B2 (en) 2017-07-04
KR20120096112A (ko) 2012-08-29
EP2537596A1 (en) 2012-12-26
EP3135389A1 (en) 2017-03-01
EP2537596A4 (en) 2013-04-03
US20120294825A1 (en) 2012-11-22
US8936854B2 (en) 2015-01-20
CN102821872A (zh) 2012-12-12
KR101255971B1 (ko) 2013-04-23

Similar Documents

Publication Publication Date Title
JP4934851B2 (ja) 防汚塗膜の形成方法
JP6426790B2 (ja) 防汚塗料組成物、ならびに防汚塗膜、複合塗膜および水中構造物
JP5415551B2 (ja) 防汚塗料組成物、ならびに防汚塗膜、複合塗膜および水中構造物
NO339929B1 (no) Grohemmende maling
KR20210024066A (ko) 방오도료 조성물, 방오도막, 방오도막 부착 기재 및 그의 제조방법, 및 보수방법
JP6472582B1 (ja) 塗料組成物及びそれから形成される塗膜
JP6499809B1 (ja) 塗料組成物及びそれから形成される塗膜
JP7324379B1 (ja) 塗料組成物及び塗膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018425.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6368/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13576865

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127020673

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011798015

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE