WO2018163967A1 - Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法 - Google Patents

Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法 Download PDF

Info

Publication number
WO2018163967A1
WO2018163967A1 PCT/JP2018/007849 JP2018007849W WO2018163967A1 WO 2018163967 A1 WO2018163967 A1 WO 2018163967A1 JP 2018007849 W JP2018007849 W JP 2018007849W WO 2018163967 A1 WO2018163967 A1 WO 2018163967A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
nonmagnetic metal
crystal grains
powder
phase
Prior art date
Application number
PCT/JP2018/007849
Other languages
English (en)
French (fr)
Inventor
健太 高木
渡 山口
貴章 横山
健二 坂口
和弘 吉井
裕史 横山
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社村田製作所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201880006182.XA priority Critical patent/CN110168674B/zh
Priority to JP2019504523A priority patent/JPWO2018163967A1/ja
Priority to DE112018000214.4T priority patent/DE112018000214T5/de
Publication of WO2018163967A1 publication Critical patent/WO2018163967A1/ja
Priority to US16/505,287 priority patent/US11594353B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/025Making ferrous alloys by powder metallurgy having an intermetallic of the REM-Fe type which is not magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • B22F2009/046Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/049Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising at particular temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/40Intermetallics other than rare earth-Co or -Ni or -Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a magnet powder containing Sm—Fe—N-based crystal particles, a sintered magnet produced therefrom, and a production method thereof.
  • the Sm—Fe—N-based magnet is a representative of a rare earth-transition metal-nitrogen-based magnet, and has a high anisotropic magnetic field and saturation magnetization. Further, since the Curie temperature is relatively higher than other rare earth-transition metal-nitrogen magnets, it has excellent heat resistance. For this reason, Sm—Fe—N-based magnets have been used as one of excellent materials for magnet powder.
  • rust does not occur even in a corrosive environment, and the corrosion resistance and adhesion are excellent.
  • the iron-based magnet powder having a coating on the surface contains an abundance of iron oxide in the coating because oxygen contained in the phosphoric acid of the coating causes an oxidation reaction with iron contained in the magnet powder.
  • a reduction reaction of iron oxide occurs due to heat during sintering. For this reason, iron is deposited on the surface of the magnet powder, and the coercive force of the formed sintered magnet is significantly reduced.
  • the present invention has been made in view of the above problem, and reduces the coercive force even by a sintered magnet containing Sm—Fe—N-based crystal grains and having a high coercive force, and heat generated during sintering.
  • An object of the present invention is to provide a magnet powder that can form a sintered magnet without any problems.
  • a sintered magnet according to an aspect of the present invention exists between a crystal phase composed of a plurality of Sm—Fe—N-based crystal grains and an adjacent Sm—Fe—N-based crystal grain.
  • the ratio of the intensity I Fe of the Fe peak to the intensity I SmFeN of the SmFeN peak measured by the X-ray diffraction method is 0.2 or less.
  • a magnet powder according to an aspect of the present invention includes Sm—Fe—N based crystal particles and a nonmagnetic metal layer covering the surface of the Sm—Fe—N based crystal particles.
  • a sintered magnet having a high coercive force and containing Sm—Fe—N-based crystal grains and a sintered magnet can be formed without lowering the coercive force due to heat generated during sintering.
  • Magnet powder is provided.
  • FIG. 1 is an SEM image of a cross section of a sintered magnet in Example 1 of the present invention.
  • FIG. 2 is an SEM image of a cross section of the sintered magnet in Example 2 of the present invention.
  • FIG. 3 is a diagram showing an X-ray diffraction pattern of a sintered magnet in Examples 1 and 2 of the present invention obtained by measurement with an X-ray diffractometer.
  • the sintered magnet of the present invention includes a crystal phase composed of Sm—Fe—N crystal grains and a nonmagnetic metal phase.
  • a crystal phase composed of Sm—Fe—N crystal grains and a nonmagnetic metal phase.
  • the sintered magnet of the present invention includes a crystal phase composed of Sm—Fe—N based crystal grains. Since Sm—Fe—N-based crystal grains have a high anisotropic magnetic field and saturation magnetization, sintered magnets containing crystal phases composed of Sm—Fe—N-based crystal grains have high anisotropy and saturation. With magnetization. In addition, since the Curie temperature of a magnet having an Sm—Fe—N crystal structure is higher than that of other rare earth-transition metal-nitrogen magnets, the sintered magnet includes a crystal phase composed of Sm—Fe—N crystal grains. Is excellent in heat resistance.
  • the Sm—Fe—N based crystal grain means a particle having an Sm—Fe—N based crystal structure.
  • the Sm—Fe—N crystal structure include, but are not limited to, an SmFe 9 N 1.5 structure or an Sm 2 Fe 17 N 3 structure, and any crystal structure composed of Sm, Fe, and N can be used. Can be used.
  • the crystal phase composed of Sm—Fe—N-based crystal grains refers to a phase in a region occupied by Sm—Fe—N-based crystal grains in the sintered magnet of the present invention.
  • the sintered magnet of the present invention includes a nonmagnetic metal phase present between adjacent Sm—Fe—N-based crystal grains.
  • the nonmagnetic metal phase is a phase containing more nonmagnetic metal than a crystal phase composed of Sm—Fe—N-based crystal grains.
  • the nonmagnetic metal may be contained in the nonmagnetic metal phase in a proportion of, for example, 10% by mass or more, preferably 15% by mass or more, and particularly 20% by mass or more, and the proportion covers the entire nonmagnetic metal phase. It may not be uniform. Further, the nonmagnetic metal phase does not substantially contain a nonmagnetic metal oxide.
  • the fact that the nonmagnetic metal phase is “present between adjacent Sm—Fe—N crystal grains” means that among the Sm—Fe—N crystal grains contained in the sintered magnet. It is only necessary that a non-magnetic metal phase exists between adjacent ones and part of the surface of the crystal grains. Among the Sm—Fe—N based crystal grains contained in the sintered magnet, It is not necessary for all the grains in between to have a non-magnetic metal phase. In this state, the nonmagnetic metal phase only needs to exist between some adjacent ones of the Sm—Fe—N-based crystal grains contained in the sintered magnet.
  • a nonmagnetic metal means metals other than a ferromagnetic metal (for example, iron, nickel, cobalt, etc.).
  • the nonmagnetic metal include at least one metal selected from the group consisting of Zn, Al, Sn, Cu, Ti, Sm, Mo, Ru, Ta, W, Ce, La, V, Mn, and Zr. Although it can use, it is not limited to this, One or more types of metals other than a ferromagnetic metal (for example, iron, nickel, cobalt, etc.) can be used arbitrarily.
  • the nonmagnetic metal phase may contain any other element in addition to the nonmagnetic metal element. As other elements, for example, elements such as Fe, N, and C may be included.
  • the sintered magnet of the present invention including at least the two phases described above will be described in more detail below.
  • the sintered magnet of the present invention since there is a nonmagnetic metal phase between adjacent Sm—Fe—N crystal grains, magnetic interference between Sm—Fe—N crystal grains is less likely to occur. Thereby, the fall of the coercive force of a sintered magnet is suppressed. Therefore, the sintered magnet of the present invention has an excellent coercive force as compared with a sintered magnet in which a nonmagnetic metal phase does not exist between adjacent Sm—Fe—N-based crystal grains.
  • Patent Document 2 In order to improve alkali resistance and corrosion resistance, it is known to coat the surface of a magnet powder with an oxide such as Zr (Patent Document 2).
  • an oxide such as Zr or the like forming an oxide
  • an oxidation-reduction reaction in which, for example, an oxide of Sm expressed by the following formula is formed during the sintering of such a magnet powder. Can occur.
  • Fe can be precipitated and the coercive force can be lowered.
  • the ratio of the Fe peak intensity I Fe to the SmFeN peak intensity I SmFeN measured by the X-ray diffraction method of the sintered magnet of the present invention is 0.2 or less.
  • the intensity I SmFeN of the SmFeN peak means the intensity of the measured SmFeN peak having the maximum intensity.
  • the Fe peak intensity I Fe refers to the intensity of the ⁇ -Fe peak.
  • the sintered magnet having such a strength ratio precipitation of iron on the surface of the magnet powder, which can occur during sintering, is effectively suppressed, thereby having an excellent coercive force.
  • the X-ray diffraction intensity of the sintered magnet of the present invention can be measured by, for example, grinding the sintered magnet of the present invention to about 10 to 100 ⁇ m with a stamp mill and measuring powder XRD diffraction with a Rigaku Smart Lab. The measurement method is not limited to this, and any method can be selected.
  • the sintered magnet of the present invention can have a higher coercive force than a sintered magnet not having such a configuration.
  • the sintered magnet means a magnet obtained by baking and hardening magnetic powder at a high temperature.
  • the nonmagnetic metal phase may cover the surface of the Sm—Fe—N crystal grains.
  • the non-magnetic metal phase covers the surface of the Sm—Fe—N-based crystal grains means that the majority of the surface of the Sm—Fe—N-based crystal grains is covered with the non-magnetic metal phase.
  • the line length is 80% or more, preferably 90% or more, more preferably 95% on the crystal grain interface of the cross section of the Sm—Fe—N-based crystal grain confirmed by cross-sectional observation by SEM. It means that a nonmagnetic metal phase in contact with the crystal grain interface exists at the above ratio.
  • the non-magnetic metal phase covers the surface of the Sm—Fe—N-based crystal grains”, so that the magnetic interference between the Sm—Fe—N-based crystal grains is more effective. Therefore, the reduction of the coercive force of the sintered magnet is more effectively suppressed.
  • the nonmagnetic metal phase covers the surface of the Sm—Fe—N-based crystal grains can be confirmed by observing with a cross-sectional SEM or TEM.
  • the content of the metal corresponding to the nonmagnetic metal contained in the nonmagnetic metal phase, excluding Sm, in the crystal phase composed of Sm—Fe—N-based crystal grains may be 1% by mass or less.
  • the crystalline phase of the metal corresponding to the nonmagnetic metal contained in the nonmagnetic metal phase and excluding Sm “the crystalline phase of the metal corresponding to the nonmagnetic metal contained in the nonmagnetic metal phase and excluding Sm”
  • the “content ratio in” means that the metal corresponding to two or more nonmagnetic metals other than Sm contained in the nonmagnetic metal phase with respect to the mass of the entire crystal phase composed of Sm—Fe—N-based crystal grains is Sm— This is the ratio of the total mass of each mass occupied by the crystal phase composed of Fe-N-based crystal grains.
  • the mass% of the nonmagnetic metal with respect to the total mass of the crystal phase composed of Sm—Fe—N-based crystal grains is confirmed by analyzing the composition of the sintered magnet using ICP-AES. be able to.
  • the oxygen content in the sintered magnet of the present invention is preferably 0.7% by mass or less with respect to the mass of the entire sintered magnet. Thereby, the precipitation of ⁇ -Fe due to the oxidation-reduction reaction during sintering can be reduced, and the decrease in coercive force can be suppressed.
  • the oxygen content in the sintered magnet of the present invention can be confirmed by an inert gas melting-non-dispersive infrared absorption method (NDIR) or the like.
  • the carbon content in the sintered magnet of the present invention is at least 1% by mass, preferably 0.5% by mass or less, more preferably 0.1% by mass or less, based on the total mass of the sintered magnet.
  • Sm—Fe—N C precipitation during sintering can be reduced, and a decrease in coercive force can be suppressed.
  • the carbon content in the sintered magnet of the present invention can be confirmed by a combustion-infrared absorption method or the like.
  • the thickness of the nonmagnetic metal phase may be 1 nm or more and less than 400 nm.
  • the thickness of the nonmagnetic metal phase is less than 400 nm, the decrease in magnetization of the sintered magnet can be effectively suppressed.
  • the thickness of the nonmagnetic metal phase is 1 nm or more, the magnetization of the sintered magnet It is possible to recognize the effect of suppressing the decrease in the thickness.
  • the thickness of the nonmagnetic metal phase is 250 nm or less, a decrease in magnetization of the sintered magnet can be more effectively suppressed.
  • the thickness of the nonmagnetic metal phase when the thickness of the nonmagnetic metal phase is 50 nm or more, the exchange coupling between the magnet particles can be effectively broken, and the coercive force of the sintered magnet can be improved. Therefore, the thickness of the nonmagnetic metal phase can be, for example, 50 nm or more and 250 nm or less. Thus, by increasing the thickness of the nonmagnetic metal phase in an appropriate range, the magnetic coupling blocking effect is increased, and the high coercive force is increased. For example, a coercive force of 11.5 kOe or more, particularly 11.9 kOe or more can be realized.
  • the saturation magnetization (more specifically, the saturation magnetization ratio compared to the case where the nonmagnetic metal phase does not exist) is compared with the case where the nonmagnetic metal phase does not exist. ) Can be improved. Therefore, the thickness of the nonmagnetic metal phase can be, for example, 1 nm or more and 10 nm or less, and the thickness of the nonmagnetic metal phase is as thin as possible within a range in which the effect of suppressing the decrease in magnetization of the sintered magnet can be obtained. By doing so, the saturation magnetization can be generally increased as compared with the case where the nonmagnetic metal phase is not present.
  • the thickness of the nonmagnetic metal phase is defined as the volume V 1 occupied by the nonmagnetic metal phase per unit mass of the sintered magnet, and the Sm—Fe—N-based crystal grains contained per unit mass of the sintered magnet. obtained by dividing the total a 2 of surface area.
  • the volume V 1 occupied by the nonmagnetic metal phase per unit mass of the sintered magnet is calculated by the following procedure.
  • the mass W 1 of the nonmagnetic metal element per unit mass of the sintered magnet is measured by analyzing the composition of the sintered magnet using, for example, ICP-AES.
  • the mass W 1 refers to the total ratio of the respective masses of these two or more types of nonmagnetic metal elements.
  • the composition of the sintered magnet is analyzed by, for example, SEM-EDX to measure the mass% of the non-magnetic metal element in the non-magnetic metal phase, and the above-mentioned W 1 is divided by this mass%.
  • the mass W 2 of the magnetic metal phase is calculated.
  • the true density D 1 indicating the volume of the magnetic metal element per unit mass of the sintered magnet is measured by analyzing the sintered magnet using, for example, a pycnometer. Here, if it contains 2 or more non-magnetic metal element in the sintered magnet, the true density D 1 refers to the total percentage of each mass of the two or more non-magnetic metallic element.
  • the volume V 1 occupied by the nonmagnetic metal phase per unit mass of the sintered magnet is obtained.
  • the total surface area A 2 N 2 ⁇ ⁇ d 2 of the Sm—Fe—N-based crystal grains contained per unit mass of the sintered magnet is calculated.
  • d is the average particle diameter d of the sintered magnet of this invention computed by the method mentioned later.
  • the Sm—Fe—N-based crystal grains an arbitrary average particle diameter can be used, but those having an average particle diameter of 0.04 ⁇ m or more and 5 ⁇ m or less are preferably used.
  • the average grain size of the Sm—Fe—N-based crystal grains is 0.04 ⁇ m or more, superparamagnetization of the Sm—Fe—N-based crystal grains can be effectively suppressed. Further, when the average grain size of the Sm—Fe—N crystal grains is 5 ⁇ m or less, the coercive force can be effectively improved.
  • the calculation method of the “average particle size” of the crystal grains in the sintered magnet in this specification is as follows. First, a cross section of the sintered magnet is photographed by FE-SEM so that at least 50 crystal grains are included, and the total area A and the number N of crystal grains in the cross section of the crystal grains in the photographed image are obtained. Next, the average cross-sectional area a1 of the crystal particles is obtained by A / N, and the square root of the average cross-sectional area a1 is calculated as the average particle diameter d of the crystal particles. Further, in this specification, the term “average particle diameter” used for other than the crystal grains in the sintered magnet refers to a particle size distribution on a volume basis and a cumulative value of 50% in a cumulative curve with the total volume being 100%. % Is the particle size (D50). The average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope.
  • the above-described sintered magnet can be obtained by sintering the magnet powder of the present invention.
  • the magnet powder of the present invention and the production method thereof are described below.
  • the magnet powder of the present invention includes Sm—Fe—N-based crystal particles and a nonmagnetic metal layer covering the surface of the Sm—Fe—N-based crystal particles.
  • the nonmagnetic metal layer refers to a layer substantially composed of only a nonmagnetic metal.
  • the nonmagnetic metal layer covering the surface of the Sm—Fe—N crystal grains means a state in which most of the surface of the Sm—Fe—N crystal grains is covered with a nonmagnetic metal.
  • the line length is 80% or more, preferably 90% or more, more preferably 95% or more. The presence of metal.
  • the nonmagnetic metal layer covers the surface of the Sm—Fe—N crystal particles” suppresses the generation of rust even in a corrosive environment and improves the corrosion resistance of the magnet powder. To do.
  • the exposure of the Sm—Fe—N crystal particle surface to the atmosphere can be reduced, the generation of iron oxide on the surface of the Sm—Fe—N crystal particle when the magnet powder is sintered can be reduced. It is possible to reduce the precipitation of iron on the surface of the Sm—Fe—N-based crystal grains contained in the formed sintered magnet and increase the coercive force of the formed sintered magnet.
  • the method for producing a magnet powder of the present invention includes a step of pulverizing a coarse powder containing Sm—Fe—N single crystals to obtain Sm—Fe—N-based crystal particles, and cutting the nonmagnetic metal to remove the nonmagnetic metal. And a step of covering the surface of the obtained Sm—Fe—N-based crystal particles with the obtained nonmagnetic metal powder. All the above steps are performed in an atmosphere having a low oxygen concentration.
  • the coarse powder for example, a powder having a composition of Sm 2 Fe 17 N 3 and having an average particle diameter of 10 ⁇ m to 200 ⁇ m and an oxygen content ratio of 0.1% by mass to 1.0% by mass is used. can do.
  • Arbitrary pulverization methods can be used for pulverizing the coarse powder.
  • MC44 manufactured by Micromachineion, Inc. which is an airflow pulverization type jet mill, can be used, but is not limited thereto.
  • the pulverization of the coarse powder is preferably performed until the Sm—Fe—N-based crystal particles obtained by pulverization have an average particle size of 0.1 ⁇ m or more and 5.0 ⁇ m or less.
  • the obtained crystal particles have a coercive force of 5 kOe or more and 20 kOe or less.
  • an atmosphere having a low oxygen concentration means a state in which the oxygen concentration (volume basis, the same in this specification) is 10 ppm or less, and for example, an oxygen concentration of 1 ppm, 0.5 ppm, or the like can be used.
  • Crushing and cutting in an atmosphere with a low oxygen concentration is performed by performing crushing and cutting in a glove box substituted with nitrogen, argon, nitrogen, helium, etc., preferably in a glove box connected with a gas circulation type oxygen moisture purifier. Can be achieved.
  • the purity of the nonmagnetic metal to be cut may be 95% or more, preferably 99% or more. Any cutting method can be used for cutting the non-magnetic metal.
  • a carbide grinder, a carbide drill, or the like can be used, but the invention is not limited thereto.
  • Arbitrary methods can be used for coating the Sm—Fe—N-based crystal particles with the nonmagnetic metal powder.
  • any method such as a ball mill, an arc plasma method, and a sputtering method can be used.
  • the amount of the nonmagnetic metal used for the coating may be 0.1% by mass or more and 10% by mass or less, preferably 0.5%, based on the total mass of the Sm—Fe—N-based crystal particles to be coated. It may be from 5% by mass to 5% by mass.
  • the amount of nonmagnetic metal used for the coating may be, for example, 5%, 6%, 8% and 10% by weight.
  • the sintered magnet of the present invention can be manufactured by pressure-sintering the magnet powder of the present invention manufactured as described above in an atmosphere having a low oxygen concentration.
  • any pressure sintering method including current pressure sintering can be used.
  • pressure sintering for example, a magnet powder is filled in a die, and this is not exposed to the atmosphere, but placed in a pulse current sintering machine equipped with a pressurization mechanism using a servo-controlled press device, followed by pulse current sintering. A constant pressure may be applied to the die while maintaining the vacuum in the kneading machine, and current sintering may be performed while maintaining this pressure.
  • the die used may have any shape, and for example, a cylindrical one can be used, but is not limited thereto.
  • the inside of the pulse current sintering machine is preferably maintained at a vacuum of 5 Pa (absolute pressure, the same in this specification) or less.
  • the pressure to be applied may be any pressure that is higher than normal pressure and can form a sintered magnet, and may be in the range of 100 MPa to 2000 MPa, for example.
  • the electric current sintering is preferably performed at a temperature of 400 ° C. or higher and 600 ° C. or lower and a time of 30 seconds or longer and within 10 minutes.
  • Example 1-8 and Comparative Examples 1-2 -Preparation of Sm-Fe-N-based crystal particles
  • This coarse powder (a) contained an Sm—Fe—N single crystal and had an oxygen content of 0.20% by mass and a coercive force of 0.07 kOe.
  • the prepared coarse powder (a) was pulverized until the average particle diameter became 2 ⁇ m using an airflow pulverization type jet mill to produce 100 g of Sm—Fe—N based crystal particles (A).
  • the jet mill was installed in a glove box, and pulverization was performed in this glove box.
  • a gas circulation type oxygen moisture purifier was connected to the glove box.
  • the coercive force of the Sm—Fe—N-based crystal particles (A) obtained after pulverization was 10.8 kOe.
  • two types of magnet powders were prepared by changing the ratio of nonmagnetic metal Zn to the total mass of the Sm—Fe—N crystal particles (A) to be coated.
  • a magnet powder used in Example 2 was obtained by setting the ratio of the nonmagnetic metal to 5% by mass with respect to the total mass of the Sm—Fe—N-based crystal particles (A) as 5% by mass, and 8% by mass.
  • a magnet powder was prepared using the Sm—Fe—N-based crystal particles (A) prepared above, using the Sm—Fe—N-based crystal particles (A) prepared above, using the Sm—Fe—N-based crystal particles (A) prepared above, a magnet powder was prepared using Al, Sn, Cu, Ti, and Sm alone as the nonmagnetic metal instead of Zn.
  • Magnet powders each containing Al, Sn, Cu, Ti, and Sm as nonmagnetic metals each have a nonmagnetic metal ratio of 6% by mass with respect to the total mass of the Sm—Fe—N crystal particles (A) to be coated. Only one type was prepared, and these were used as magnet powders used in Examples 3 to 7, respectively.
  • Example 8 Using the Sm—Fe—N-based crystal particles (A) prepared above, the coating method was changed from mixing using a ball mill to the arc plasma method, and the other pulverization and sintering steps were the same as in Example 1 above. Thus, a sintered magnet of Example 8 was produced. The amount of Zn added by the arc plasma method was 6% by mass with respect to the total mass of the Sm—Fe—N crystal particles (A) to be coated.
  • Example 2 Using the Sm—Fe—N crystal particles (A) produced above, the step of coating the Sm—Fe—N crystal particles (A) with a nonmagnetic metal is not performed, and other pulverization and sintering steps A sintered magnet was produced in the same manner as in Example 1 above, and this was designated as Comparative Example 1. Further, using the Sm—Fe—N-based crystal particles (A) prepared above, the ratio of the nonmagnetic metal to the total mass of the Sm—Fe—N-based crystal particles (A) to be coated was changed to 10% by mass. The other pulverization process and sintering process were performed in the same manner as in Example 1 to produce a sintered magnet, which was designated as Comparative Example 2.
  • Table 1 shows the characteristics of the obtained sintered magnet.
  • “non-magnetic metal” means a non-magnetic metal used for coating
  • the symbol “ ⁇ ” for “thickness of non-magnetic metal phase” indicates that “non-magnetic metal phase does not exist” from SEM observation.
  • “Saturation magnetization ratio” is the ratio of the saturation magnetization of each example or comparative example to the saturation magnetization of the comparative example in which "nonmagnetic metal” for coating is "none”. This means (the same applies to Tables 3 and 4 described later).
  • the “saturation magnetization ratio” in Table 1 is based on the saturation magnetization of Comparative Example 1.
  • the thickness of the non-magnetic metal phase is a value calculated according to the method described above in this specification, and is roughly the coating layer thickness, more specifically, Sm—Fe—N-based crystal grains. It can be understood as an average value of the thickness of the covering nonmagnetic metal phase (the same applies to Tables 3 and 4 described later).
  • the thickness of the nonmagnetic metal phase in the produced sintered magnet was set such that the ratio of the nonmagnetic metal to the total mass of the Sm—Fe—N crystal particles to be coated was 5% by mass.
  • Example 3 to 8 having 50 nm and 6% by mass 100 nm and 8% by mass in Example 2 were 250 nm, and in Comparative Example 2 having 10% by mass, 400 nm and in Comparative Example 1 having 0% by mass, From the SEM observation, it was confirmed that “the nonmagnetic metal phase does not exist”.
  • the average grain size of the crystal grains means the average grain size of the Sm—Fe—N-based crystal grains (the same applies to Tables 3 and 4 described later).
  • the average grain size of the crystal grains was in the range of 1.9 to 2.1 ⁇ m in all of Examples 1 to 8 and Comparative Examples 1 and 2, and was substantially uniform.
  • I Fe / I SmFeN means the ratio of the intensity I Fe of the Fe peak to the intensity I SmFeN of the SmFeN peak measured by the X-ray diffraction method (the same applies to Tables 3 and 4 described later), It is also simply referred to as “XRD peak intensity ratio”.
  • FIG. 3 shows the X-ray diffraction patterns measured for the sintered magnets of Examples 1 and 2 (the lower X-ray diffraction pattern with “Zn 5%” in FIG. 3 is the data of Example 1). The upper X-ray diffraction pattern with “Zn 8%” is the data of Example 2).
  • the XRD peak intensity ratio is in the range of 0.2 or less, and the sintered magnet has excellent coercive force and It had high saturation magnetization.
  • the reason why the XRD peak intensity ratio was able to be 0.2 or less in each example is considered that the oxygen concentration around the magnet powder was sufficiently low during sintering.
  • the preferable oxygen concentration is 10 ppm or less, more preferably 1 ppm or less.
  • the coercive force in the table is measured by a vibrating sample magnetometer (VSM) or the like (the same applies to Tables 3 and 4 described later).
  • VSM vibrating sample magnetometer
  • Examples 1 to 8 since the coercive force was 11.5 kOe or more, there was no decrease due to sintering, and a sintered magnet having an excellent coercive force could be produced.
  • Examples 1 to 7 in which Sm—Fe—N-based crystal particles are coated with a nonmagnetic metal powder using a ball mill, the coercive force is 11.9 kOe or more, and a sintered magnet having a superior coercive force. could be manufactured.
  • the saturation magnetization in the table is measured by a vibrating sample magnetometer (VSM) or the like, similarly to the above coercive force (the same applies to Tables 3 and 4 described later).
  • VSM vibrating sample magnetometer
  • the saturation magnetization was 13.5 kG or more, and the saturation magnetization ratio (the same Sm—Fe—N-based crystal particle (A) was used but was not coated with the nonmagnetic metal powder.
  • the saturation magnetization ratio (Based on Comparative Example 1) is 0.99 or more, more specifically within the range of 0.99 to 1.01, and the high saturation magnetization of the Sm—Fe—N crystal grains is substantially impaired. Therefore, it can be said that a sintered magnet having good magnet characteristics could be manufactured.
  • the sintered magnet of Comparative Example 1 had a saturation magnetization of 13.5 kG or more as in Examples 1 to 8, but the coercive force was 11.2 kOe, which is lower than 11.5 kOe. Since the Sm—Fe—N crystal grains of the magnet powder as the raw material of Comparative Example 1 are not coated with a nonmagnetic metal, the surface of the Sm—Fe—N crystal grains of the obtained sintered magnet is the nonmagnetic metal. Not covered with layers. For this reason, the sintered magnet of Comparative Example 1 is more likely to cause magnetic interference between Sm—Fe—N-based crystal grains as compared with the sintered magnets of Examples 1 to 8, and this reduces the coercive force of the sintered magnet. It is thought that it decreased.
  • the sintered magnet of Comparative Example 2 has a remarkably reduced coercive force as compared with Examples 1 to 8, and the saturation magnetization is also lower than 13.5 kG of Examples 1 to 8. This is because, compared with Examples 1 to 8, the ratio of the nonmagnetic metal mass to the total mass of the sintered magnet was increased, so that the magnet characteristics of the sintered magnet of Comparative Example 2 were impaired. It is considered a thing.
  • FIG. 1 is an SEM image of a cross section of the sintered magnet of Example 1.
  • the phase shown in gray in FIG. 1 is a crystal phase composed of Sm—Fe—N-based crystal grains. The number of crystal grains and the cross-sectional area were measured using image analysis software “WinROOF” manufactured by Mitani Corporation.
  • WinROOF image analysis software
  • FIG. 1 it can be seen that the surface of the Sm—Fe—N crystal grains constituting the crystal phase is covered with a light gray phase.
  • This light gray phase is a non-magnetic metal (zinc in Example 1) phase.
  • the sintered magnet of Example 1 is a nonmagnetic metal present between a crystal phase composed of a plurality of Sm—Fe—N crystal grains and an adjacent Sm—Fe—N crystal grain. It was found to contain a phase.
  • FIG. 2 is an SEM image of a cross section of the sintered magnet of Example 2.
  • the phase shown in gray in FIG. 2 is a crystal phase composed of Sm—Fe—N-based crystal grains.
  • the number of crystal grains and the cross-sectional area were measured using image analysis software “WinROOF” manufactured by Mitani Corporation.
  • FIG. 2 it can be seen that the surface of the Sm—Fe—N crystal grains constituting the crystal phase is covered with a light gray phase.
  • This light gray phase is a non-magnetic metal (zinc in Example 2) phase.
  • composition analysis was performed on points 1a to 1e on the phase shown in gray and points 2a to 2c on the light gray phase by EDX analysis. The results of the composition analysis are shown in Table 2.
  • the metal corresponding to the nonmagnetic metal contained in the nonmagnetic metal phase, except for Sm is contained only at 1% by mass or less.
  • the above metal in other words, a nonmagnetic metal contained in the nonmagnetic metal phase and excluding Sm
  • the above metal is 15.87% by mass or more. It was contained at a ratio of 25.02% by mass or less.
  • the sintered magnet obtained by the production method of the present invention has a crystal phase composed of a plurality of Sm—Fe—N-based crystal grains and adjacent Sm— It was found that the non-magnetic metal phase is present between the Fe—N-based crystal grains and contains more non-magnetic metal than the crystal phase composed of Sm—Fe—N-based crystal grains.
  • a coarse powder (b) having a composition of Sm 2 Fe 17 N 3 and an average particle diameter of about 29 ⁇ m was prepared.
  • This coarse powder (b) contained an Sm—Fe—N single crystal, and had an oxygen content ratio of 0.30 mass% and a coercive force of 0.35 kOe.
  • the prepared coarse powder (b) was pulverized using an airflow pulverization type jet mill until the average particle size became 1.5 ⁇ m to produce 100 g of Sm—Fe—N-based crystal particles (B).
  • the jet mill was installed in a glove box, and pulverization was performed in this glove box.
  • a gas circulation type oxygen moisture purifier was connected to the glove box.
  • the coercive force of the Sm—Fe—N crystal particles (B) obtained after the pulverization was 10.3 kOe.
  • Table 3 shows the characteristics of the obtained sintered magnet.
  • the “saturation magnetization ratio” in Table 3 is based on the saturation magnetization of Comparative Example 3.
  • Example 18 to 23 and Comparative Example 4 -Preparation of Sm-Fe-N-based crystal particles
  • This coarse powder (c) contained an Sm—Fe—N single crystal and had an oxygen content of 0.20 mass% and a coercive force of 0.70 kOe.
  • the prepared coarse powder (c) was pulverized using an air-flow pulverization type jet mill until the average particle size became 1.7 ⁇ m, and 100 g of Sm—Fe—N-based crystal particles (C) were produced.
  • the jet mill was installed in a glove box, and pulverization was performed in this glove box.
  • a gas circulation type oxygen moisture purifier was connected to the glove box.
  • the coercive force of the Sm—Fe—N crystal particles (C) obtained after pulverization was 9.4 kOe.
  • Table 4 shows the characteristics of the obtained sintered magnet.
  • the “saturation magnetization ratio” in Table 4 is based on the saturation magnetization of Comparative Example 4.
  • the sintered magnet and magnet powder of the present invention can be used for a wide range of applications in the fields of various motors. For example, it can be used for in-vehicle auxiliary motors, EV / HEV main motors, etc. More specifically, it should be used for oil pump motors, electric power steering motors, EV / HEV drive motors, etc. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本発明は、Sm-Fe-N系結晶粒を含み、高い保磁力を有する焼結磁石と、焼結に伴い発生する熱によっても保磁力を低下させることなく焼結磁石を形成可能な磁石粉末を提供することを目的とする。複数のSm-Fe-N系結晶粒から成る結晶相と、隣接するSm-Fe-N系結晶粒の間に存在する非磁性金属相とを含み、X線回折法で測定したSmFeNピークの強度ISmFeNに対するFeピークの強度IFeの比が0.2以下である、焼結磁石。Sm-Fe-N系結晶粒子と、該Sm-Fe-N系結晶粒子の表面を被覆する非磁性金属層とを含む、磁石粉末。

Description

Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法
 本発明は、Sm-Fe-N系結晶粒子を含む磁石粉末、およびそれから製造される焼結磁石、ならびにそれらの製造方法に関する。
 Sm-Fe-N系磁石は希土類-遷移金属-窒素系磁石の代表であり、高い異方性磁界と飽和磁化とを有する。またキュリー温度が他の希土類-遷移金属-窒素系磁石よりも比較的高いことから耐熱性に優れる。このため、Sm-Fe-N系磁石は、磁石粉末のための優れた材料の一つとして用いられてきた。
 従来、磁石粉末から磁石を形成する工程において、磁石の耐食性を高めること、および耐アルカリ性を向上させること等の目的で、磁石粉末にコーティングを施した後に磁石を形成することが行われてきた。
 例えば、特許文献1に記載されている磁石合金粉の表面には被膜が形成されているため、腐食環境下でも錆が発生せず、耐食性および密着性に優れている。具体的には、希土類元素を含む鉄系磁石合金からなる磁石粉末の表面に、リン酸鉄と希土類金属リン酸塩を含む複合金属リン酸塩と、ポリフェノールを含む有機化合物からなる無機有機複合被膜を均一に形成することにより、耐食性および密着性を向上させている。
再表2010-071111号公報 特許第4419245号
 しかしながら、表面に被膜を有する鉄系磁石粉末は、被膜のリン酸に含まれる酸素が磁石粉末に含まれる鉄と酸化反応を起こすため、被膜中に酸化鉄を豊富に含んでいる。このような、被膜中に酸化鉄を含む磁石粉末から焼結磁石を形成しようとすると、焼結の際の熱によって酸化鉄の還元反応が起こる。そのため、磁石粉末表面に鉄が析出してしまい、形成される焼結磁石の保磁力が著しく低下してしまうという問題があった。
 本発明は、当該課題に鑑みてなされたものであり、Sm-Fe-N系結晶粒を含み、高い保磁力を有する焼結磁石と、焼結に伴い発生する熱によっても保磁力を低下させることなく焼結磁石を形成可能な磁石粉末を提供することを目的とする。
 前記課題を解決するため、本発明のある局面に係る焼結磁石は、複数のSm-Fe-N系結晶粒から成る結晶相と、隣接するSm-Fe-N系結晶粒の間に存在する非磁性金属相とを含み、X線回折法で測定したSmFeNピークの強度ISmFeNに対するFeピークの強度IFeの比が0.2以下である。
 前記課題を解決するため、本発明のある局面に係る磁石粉末は、Sm-Fe-N系結晶粒子と、該Sm-Fe-N系結晶粒子の表面を被覆する非磁性金属層とを含む。
 本発明によれば、高い保磁力を有する、Sm-Fe-N系結晶粒を含む焼結磁石と、焼結に伴い発生する熱によっても保磁力を低下させることなく焼結磁石を形成可能な磁石粉末が提供される。
図1は、本発明の実施例1における焼結磁石の断面のSEM像である。 図2は、本発明の実施例2における焼結磁石の断面のSEM像である。 図3は、X線回折装置による測定によって得られた本発明の実施例1および2における焼結磁石のX線回折パターンを示した図である。
 本発明の焼結磁石はSm-Fe-N系結晶粒から成る結晶相と、非磁性金属相とを含む。以下、焼結磁石の2つの相についてさらに詳しく説明する。
 (Sm-Fe-N系結晶粒から成る結晶相)
 本発明の焼結磁石は、Sm-Fe-N系結晶粒から成る結晶相を含む。Sm-Fe-N系結晶粒は高い異方性磁界と飽和磁化とを有していることから、Sm-Fe-N系結晶粒から成る結晶相を含む焼結磁石は高い異方性と飽和磁化とを有する。またSm-Fe-N系結晶構造を有する磁石のキュリー温度が他の希土類-遷移金属-窒素系磁石と比較して高いため、Sm-Fe-N系結晶粒から成る結晶相を含む焼結磁石は耐熱性に優れる。本発明においてSm-Fe-N系結晶粒とは、Sm-Fe-N系結晶構造を有する粒子をいう。Sm-Fe-N系結晶構造には例えば、SmFe1.5構造またはSmFe17構造が挙げられるが、これに限定されず、Sm、FeおよびNから成る任意の結晶構造を用いることができる。本発明においてSm-Fe-N系結晶粒から成る結晶相とは、本発明の焼結磁石においてSm-Fe-N系結晶粒が占める領域の相をいう。
 (非磁性金属相)
 本発明の焼結磁石は、隣接するSm-Fe-N系結晶粒の間に存在する非磁性金属相を含む。非磁性金属相とは、非磁性金属をSm-Fe-N系結晶粒から成る結晶相よりも多く含む相である。非磁性金属は、非磁性金属相に、例えば10質量%以上、好ましくは15質量%以上、特に20質量%以上の割合で含まれていてよく、当該割合は、非磁性金属相全体に亘って一様でなくてもよい。また、非磁性金属相は非磁性金属の酸化物を実質的に含んでいない。本明細書において、非磁性金属相が「隣接するSm-Fe-N系結晶粒の間に存在する」状態にあるということは、焼結磁石に含まれるSm-Fe-N系結晶粒のうち隣接するもの同士の間であってそれらの結晶粒の表面の一部に非磁性金属相が存在すれば良く、焼結磁石に含まれるSm-Fe-N系結晶粒のうち隣接するもの同士の間における全ての結晶粒に非磁性金属相が存在することを必要としない。当該状態において非磁性金属相は、焼結磁石に含まれるSm-Fe-N系結晶粒のうち、一部の隣接するもの同士の間に存在していればよい。本明細書において非磁性金属とは、強磁性の金属(例えば鉄、ニッケル、コバルト等)以外の金属をいう。非磁性金属としては、例えば、Zn、Al、Sn、Cu、Ti、Sm、Mo、Ru、Ta、W、Ce、La、V、MnおよびZrからなる群から選択される少なくとも1種の金属を用いることができるが、これに限定されず、強磁性の金属(例えば鉄、ニッケル、コバルト等)以外の1種類以上の金属を任意に用いることができる。非磁性金属相は、非磁性金属元素の他に、任意の他の元素を含んでいてもよい。他の元素として、例えば、Fe、N、C等の元素を含んでいてもよい。
 少なくとも上述した2つの相を含む本発明の焼結磁石について、以下にさらに詳しく説明する。
 (焼結磁石)
 本発明の焼結磁石において、隣接するSm-Fe-N系結晶粒の間に非磁性金属相が存在するため、Sm-Fe-N系結晶粒同士の磁気的干渉が生じにくくなっており、これにより、焼結磁石の保磁力の低下が抑制されている。このため、本発明の焼結磁石は、隣接するSm-Fe-N系結晶粒の間に非磁性金属相が存在しない焼結磁石と比較して優れた保磁力を有している。
 耐アルカリ性および耐食性を向上させるために、磁石粉末の表面をZr等の酸化物で被覆することが知られている(特許文献2)。しかしながら、酸化物を形成しているZr等よりもSmが酸化されやすいため、このような磁石粉末の焼結時に、例えば以下の式で表現されるSmの酸化物が形成される酸化還元反応が生じ得る。
Figure JPOXMLDOC01-appb-C000001
これに伴って、Feが析出して保磁力の低下を生じさせ得ることが、本発明者らの研究により判明した。本発明では、非磁性金属の酸化物を実質的に含んでいない非磁性金属相が、隣接するSm-Fe-N系結晶粒の間に存在するために、上述したSmの酸化と、それに伴って生じ得るFeの析出とを効率的に防止することが実現されている。このようにしてFeの析出が効果的に抑制されていることにより、本発明の焼結磁石の、X線回折法で測定したSmFeNピークの強度ISmFeNに対するFeピークの強度IFeの比が、0.2以下となる。ここで、SmFeNピークの強度ISmFeNとは、測定されたSmFeNピークのうち最大の強度を有するものの強度をいう。また、Feピークの強度IFeとは、α-Feピークの強度をいう。このような強度比を有する焼結磁石においては、焼結時に生じ得る磁石粉末表面の鉄の析出が効果的に抑制されており、これにより優れた保磁力を有している。本発明の焼結磁石のX線回折強度は、例えば本発明の焼結磁石をスタンプミルで10~100μm程度に粉砕し、リガク製Smart Labにて粉末XRD回折測定することにより測定され得るが、測定方法はこれに限定されず、任意の方法を選択することができる。このような構成を有することにより、本発明の焼結磁石は、かかる構成を有しない焼結磁石に比べて高い保磁力を有することができる。本発明において焼結磁石とは、磁性粉末を高温で焼き固めた磁石を意味する。
 本発明の焼結磁石において、非磁性金属相は、Sm-Fe-N系結晶粒の表面を被覆していてもよい。「非磁性金属相が、Sm-Fe-N系結晶粒の表面を被覆」しているとは、Sm-Fe-N系結晶粒の表面の大部分が非磁性金属相によって被覆されている状態をいい、例えば、SEMによる断面観察で確認されたSm-Fe-N系結晶粒の断面が有する結晶粒界面上に、その線路長で80%以上、好ましくは90%以上、より好ましくは95%以上の割合で、結晶粒界面と接する非磁性金属相が存在することをいう。本発明の焼結磁石において、「非磁性金属相が、Sm-Fe-N系結晶粒の表面を被覆」していることにより、Sm-Fe-N系結晶粒同士の磁気的干渉がより効果的に抑制されているため、焼結磁石の保磁力の低下がより効果的に抑制される。本発明における焼結磁石において、「非磁性金属相が、Sm-Fe-N系結晶粒の表面を被覆」していることは断面SEMや、TEMで観察すること等により確認することができる。
 非磁性金属相に含まれる非磁性金属に対応する金属であって、Smを除く金属の、Sm-Fe-N系結晶粒からなる結晶相における含有割合は1質量%以下であってよい。本発明の非磁性金属相にSm以外の非磁性金属が2つ以上含まれる場合、「非磁性金属相に含まれる非磁性金属に対応する金属であって、Smを除く金属の、前記結晶相における含有割合」とは、Sm-Fe-N系結晶粒からなる結晶相全体の質量に対する、非磁性金属相に含まれる、Sm以外の2種以上の非磁性金属に対応する金属が、Sm-Fe-N系結晶粒からなる結晶相で占める各質量を合計した質量の割合をいう。本発明における焼結磁石において、Sm-Fe-N系結晶粒からなる結晶相全体の質量に対する非磁性金属の質量%は、焼結磁石をICP-AESを用いて組成分析すること等により確認することができる。
 本発明の焼結磁石における酸素含有割合は、焼結磁石全体の質量に対して0.7質量%以下であることが好ましい。これにより、焼結時の酸化還元反応によるα-Feの析出を低減し、保磁力低下を抑制することができる。本発明の焼結磁石における酸素含有割合は、不活性ガス融解-非分散型赤外線吸収法(NDIR)等により確認することができる。
 本発明の焼結磁石における炭素含有割合は、焼結磁石全体の質量に対して少なくとも1質量%以下であり、好ましくは0.5質量%以下、より好ましくは0.1質量%以下である。これにより、焼結時のSm-Fe-N,C析出を低減し、保磁力低下を抑制することができる。本発明の焼結磁石における炭素含有割合は、燃焼-赤外線吸収法等により確認することができる。
 本発明の焼結磁石において、非磁性金属相の厚さは1nm以上400nm未満であってよい。非磁性金属相の厚さが400nmを下回ることにより、焼結磁石の磁化の低下を効果的に抑制することができ、非磁性金属相の厚さが1nm以上であれば、焼結磁石の磁化の低下の抑制効果を認めることができる。さらに、非磁性金属相の厚さが250nm以下であることにより、焼結磁石の磁化の低下をより効果的に抑制することができる。また、非磁性金属相の厚さが50nm以上であることにより、磁石粒子間の交換結合を効果的に分断することができ、焼結磁石の保磁力を向上させることができる。よって、非磁性金属相の厚さは、例えば50nm以上250nm以下であり得、このように非磁性金属相の厚さを適正範囲で厚くすることで、磁気的結合遮断効果が高まり、高い保磁力、例えば11.5kOe以上、特に11.9kOe以上の保磁力を実現することができる。あるいは、非磁性金属相の厚さが10nm以下であることにより、非磁性金属相が存在しない場合に比べて飽和磁化(より詳細には、非磁性金属相が存在しない場合に比べた飽和磁化比)を概ね高めるという効果を奏し得る。よって、非磁性金属相の厚さは、例えば1nm以上10nm以下であり得、このように非磁性金属相の厚さを焼結磁石の磁化の低下の抑制効果が得られる範囲で可能な限り薄くすることで、非磁性金属相が存在しない場合に比べて飽和磁化を概ね高めることができる。
 本明細書における非磁性金属相の厚さは、焼結磁石の単位質量あたりに非磁性金属相が占める体積Vを、焼結磁石の単位質量あたりに含まれるSm-Fe-N系結晶粒の表面積の合計Aで除することによって得られる。
 焼結磁石の単位質量あたりに非磁性金属相が占める体積Vは以下の手順で算出される。
1) 焼結磁石を、例えばICP-AES等で組成分析することで、焼結磁石の単位質量あたりの非磁性金属元素の質量Wを測定する。ここで、焼結磁石に2種以上の非磁性金属元素が含まれる場合には、質量Wは、これら2種以上の非磁性金属元素の各質量の合計の割合をいう。
2) 焼結磁石を、例えばSEM-EDX等で組成分析することで、非磁性金属相中の非磁性金属元素の質量%を測定し、前述Wをこの質量%で除することで、非磁性金属相の質量Wを算出する。
3) 焼結磁石を、例えばピクノメーター等を用いて分析することにより、焼結磁石の単位質量あたりの磁性金属元素の体積を示す真密度Dを測定する。ここで、焼結磁石に2種以上の非磁性金属元素が含まれる場合には、真密度Dは、これら2種以上の非磁性金属元素の各質量の合計の割合をいう。
4)上述のように測定されたWをDで除することにより、焼結磁石の単位質量あたりに非磁性金属相が占める体積Vが得られる。
 焼結磁石の単位質量あたりに含まれるSm-Fe-N系結晶粒の表面積の合計Aは以下の手順で算出される。
1) ピクノメーターを用いて、表面細孔や内部の空隙を含まない、焼結磁石の単位体積あたりの真密度Dを測定する。真密度Dに粒子1個あたりの体積を乗ずることによって、粒子1個あたりの質量W=D×(πd)/6を算出する。式中、dは後述する方法により算出される本発明の焼結磁石の平均粒径dである。さらに、焼結磁石の単位質量あたりに含まれる粒子の個数をN=1/Wにより算出する。
2)得られたNから、焼結磁石の単位質量あたりに含まれるSm-Fe-N系結晶粒の表面積の合計A=N×πdを算出する。式中、dは後述する方法により算出される本発明の焼結磁石の平均粒径dである。
 Sm-Fe-N系結晶粒には、任意の平均粒径を用いることができるが、0.04μm以上5μm以下の平均粒径を有するものが好ましく用いられる。Sm-Fe-N系結晶粒の平均粒径が0.04μm以上であることにより、Sm-Fe-N系結晶粒の超常磁性化を効果的に抑制することができる。また、Sm-Fe-N系結晶粒の平均粒径が5μm以下であることにより、保磁力を効果的に向上させることができる。
 本明細書における焼結磁石における結晶粒の「平均粒径」の算出方法は次の通りである。初めに、焼結磁石の断面を、少なくとも50個以上の結晶粒子が含まれるようFE-SEMにより撮影し、この撮影画像内の結晶粒子断面の総面積Aと結晶粒子数Nを求める。次に、A/Nで結晶粒子の平均断面積a1を求め、この平均断面積a1の平方根を結晶粒子の平均粒径dとして算出する。また、本明細書において、焼結磁石における結晶粒以外について使用される用語「平均粒径」とは、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が50%となる点の粒径(D50)である。かかる平均粒径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。
 上述した焼結磁石は、本願発明の磁石粉末を焼結することにより得られる。以下に本願発明の磁石粉末とその製造方法について記載する。
 (磁石粉末)
 本発明の磁石粉末は、Sm-Fe-N系結晶粒子と、該Sm-Fe-N系結晶粒子の表面を被覆する非磁性金属層とを含む。本明細書において非磁性金属層とは、実質的に非磁性金属のみからなる層をいう。非磁性金属層がSm-Fe-N系結晶粒子の表面を被覆しているとは、Sm-Fe-N系結晶粒の表面の大部分が非磁性金属によって被覆されている状態をいい、例えば、Sm-Fe-N系結晶粒の断面が有する結晶粒界面上に、その線路長で80%以上、好ましくは90%以上、より好ましくは95%以上の割合で、結晶粒界面と接する非磁性金属が存在することをいう。本発明の磁石粉末において、「非磁性金属層がSm-Fe-N系結晶粒子の表面を被覆している」ことにより、腐食環境下においても錆の発生が抑制され、磁石粉末の耐食性が向上する。また、Sm-Fe-N系結晶粒子表面の大気暴露を低減することにより、磁石粉末を焼結させる際のSm-Fe-N系結晶粒子表面における酸化鉄の発生を低減することができるため、形成された焼結磁石に含まれるSm-Fe-N系結晶粒表面における鉄の析出を低減し、形成された焼結磁石の保磁力を高めることができる。
 (磁石粉末の製造方法)
 本発明の磁石粉末の製造方法は、Sm-Fe-N単結晶を含有する粗粉末を粉砕してSm-Fe-N系結晶粒子を得る工程と、非磁性金属を切削することにより非磁性金属の粉末を得る工程と、得られた非磁性金属の粉末により、得られたSm-Fe-N系結晶粒子の表面を覆う工程とを含む。上記工程は全て低酸素濃度の雰囲気下で行われる。粗粉末としては、例えば、組成がSmFe17であり、10μm以上200μm以下の平均粒径と、0.1質量%以上1.0質量%以下の酸素含有割合とを有するものを使用することができる。粗粉末の粉砕には任意の粉砕方法を用いることができ、例えば気流粉砕型ジェットミルであるMicromacinazione社製MC44等を用いることができるが、これに限定されない。粗粉末の粉砕は、粉砕によって得られるSm-Fe-N系結晶粒子が0.1μm以上5.0μm以下の平均粒径を有するまで行われることが好ましい。この大きさのSm-Fe-N系結晶粒子が得られるまで粗粉末を粉砕することで、得られる結晶粒子は5kOe以上20kOe以下の保磁力を有するようになる。本明細書において、低酸素濃度の雰囲気とは、酸素濃度(体積基準、本明細書において同様)が10ppm以下である状態を意味し、例えば1ppm、0.5ppm等の酸素濃度を用いることができる。低酸素濃度の雰囲気における粉砕および切削は、粉砕および切削を窒素、アルゴンおよび窒素、ヘリウム等で置換したグローブボックス内で、好ましくはガス循環型酸素水分精製器を接続したグローブボックス内で行うことにより、達成することができる。切削する非磁性金属の純度は95%以上、好ましくは99%以上であってよい。非磁性金属の切削には任意の切削方法を用いることができ、例えば超硬グラインダー、超硬ドリル等を用いることができるが、これに限定されない。Sm-Fe-N系結晶粒子の非磁性金属の粉末による被覆には、任意の方法を用いることができ、例えばボールミル、アークプラズマ法およびスパッタ法等の任意の方法を用いることができる。被覆のために使用される非磁性金属の量は、被覆するSm-Fe-N系結晶粒子全体の質量に対して0.1質量%以上10質量%以下であってよく、好ましくは0.5質量%以上5質量%以下であってよい。被覆のために使用される非磁性金属の量は、例えば、5質量%、6質量%、8質量%および10質量%であってよい。
 上述のように製造される本発明の磁石粉末から、本発明の焼結磁石を製造する方法について以下に記載する。
 (焼結磁石の製造方法)
 上述のように製造された本発明の磁石粉末を、低酸素濃度の雰囲気下で加圧焼結することにより、本発明の焼結磁石を製造することができる。上記磁石粉末の加圧焼結には、通電加圧焼結をはじめとする任意の加圧焼結方法を用いることができる。加圧焼結は、例えば、磁石粉末をダイに充填し、これを大気暴露させずにサーボ制御型プレス装置による加圧機構を備えたパルス通電焼結機内に設置し、続いて、パルス通電焼結機内の真空を保持しながら、ダイに一定の圧力を印加し、この圧力を保持したまま通電焼結を行うものであってよい。使用されるダイは、任意の形状を有するものであってよく、例えば、円筒形のものを用いることができるが、これに限定されない。パルス通電焼結機内は5Pa(絶対圧力、本明細書において同様)以下の真空に保持されることが好ましい。印加する圧力は、常圧よりも高く、焼結磁石を形成可能な圧力であればよく、例えば、100MPa以上2000MPa以下の範囲であってよい。通電焼結は400℃以上600℃以下の温度かつ30秒以上10分以内の時間で、行われることが好ましい。
 (実施例1~8および比較例1~2)
・Sm-Fe-N系結晶粒子の作製
 磁石粉末の原料として、組成がSmFe17であり、平均粒径が約25μmの粗粉末(a)を準備した。この粗粉末(a)はSm-Fe-N系単結晶を含有し、0.20質量%の酸素含有割合と、0.07kOeの保磁力とを有した。気流粉砕型ジェットミルを使用し、準備した粗粉末(a)を、その平均粒径が2μmとなるまで粉砕して、Sm-Fe-N系結晶粒子(A)100gを作製した。粉末の酸化を防ぐため、ジェットミルはグローブボックス内に設置し、粉砕はこのグローブボックス内で行った。また、グローブボックスにはガス循環型酸素水分精製器を接続した。粉砕後に得られたSm-Fe-N系結晶粒子(A)の保磁力は、10.8kOeであった。
・非磁性金属の粉末の作製および非磁性金属の粉末によるSm-Fe-N系結晶粒子の被覆(磁石粉末の作製)
 続いて、被覆用の非磁性金属として、純度99.99質量%のZnを、粗粉末の粉砕を行ったグローブボックス内で超硬グラインダーを用いて切削し、非磁性金属の粉末を作製した。この非磁性金属の粉末と、上記で作製したSm-Fe-N系結晶粒子(A)とを、同グローブボックス内に設置したボールミルで混合し、Sm-Fe-N系結晶粒子(A)を非磁性金属によって被覆することにより、磁石粉末を得た。被覆厚みを変えるために、被覆するSm-Fe-N系結晶粒子(A)全体の質量に対する非磁性金属Znの割合を変えて、磁石粉末を2種類作製した。Sm-Fe-N系結晶粒子(A)全体の質量に対する非磁性金属の割合を5質量%としたものを実施例1とし、8質量%としたものを実施例2に用いる磁石粉末とした。さらに、上記で作製したSm-Fe-N系結晶粒子(A)を用い、非磁性金属として、Znに換えてAl、Sn、Cu、Ti、Smをそれぞれ単独で用いた磁石粉末を作製した。非磁性金属としてAl、Sn、Cu、Ti、Smをそれぞれ単独で含む磁石粉末は、被覆するSm-Fe-N系結晶粒子(A)全体の質量に対する非磁性金属の割合を6質量%としてそれぞれ1種類のみ作製し、これらをそれぞれ実施例3~7に用いる磁石粉末とした。
・焼結磁石の作製(磁石粉末の加圧焼結)
 続いて、上記工程により得られた実施例1~7のための磁石粉末についてそれぞれ下記の操作を実施した。磁石粉末を0.5g秤量し、内径6mmの超硬合金製円筒形ダイに充填した。これを大気暴露させずに、サーボ制御型プレス装置による加圧機構を備えたパルス通電焼結機内に設置した。次に、パルス通電焼結機内を2Pa以下の真空および0.4ppm以下の酸素濃度に保ったまま、1200MPaの圧力を印加し、この圧力を保持したまま500℃の焼結温度にて2分間の通電焼結を行った。これにより、実施例1~7の焼結磁石を得た。
 上記で作製したSm-Fe-N系結晶粒子(A)を用いて、被覆方法をボールミルを用いた混合からアークプラズマ法に換えて、その他の粉砕工程および焼結工程を上記実施例1と同様にして、実施例8の焼結磁石を製造した。アークプラズマ法により添加したZnの量は、被覆するSm-Fe-N系結晶粒子(A)全体の質量に対して6質量%であった。
 上記で作製したSm-Fe-N系結晶粒子(A)を用いて、Sm-Fe-N系結晶粒子(A)を非磁性金属によって被覆する工程を行わず、その他の粉砕工程および焼結工程を上記実施例1と同様にして焼結磁石を製造し、これを比較例1とした。さらに、上記で作製したSm-Fe-N系結晶粒子(A)を用いて、被覆するSm-Fe-N系結晶粒子(A)全体の質量に対する非磁性金属の割合を10質量%に変えて、その他の粉砕工程および焼結工程を上記実施例1と同様にして焼結磁石を製造し、これを比較例2とした。
 得られた焼結磁石の特性を表1に示した。表中、「非磁性金属」は、被覆用に使用した非磁性金属を意味し、「非磁性金属相の厚さ」についての記号「-」は、SEM観察から「非磁性金属相が存在しない」ことが確認されたことを意味し、「飽和磁化比」は、被覆用の「非磁性金属」を「なし」とした比較例の飽和磁化に対する各実施例または比較例の飽和磁化の比を意味する(後述する表3および4も同様である)。なお、表1の「飽和磁化比」は、比較例1の飽和磁化を基準としている。
Figure JPOXMLDOC01-appb-T000002
 表中、非磁性金属相の厚さは、本明細書において上述した方法に従って算出した値であり、概略的には、被覆層厚みとして、より詳細には、Sm-Fe-N系結晶粒を覆っている非磁性金属相の厚さの平均値として理解され得る(後述する表3および4も同様である)。実施例1~8において、製造した焼結磁石における非磁性金属相の厚さは、被覆するSm-Fe-N系結晶粒子全体の質量に対する非磁性金属の割合を5質量%とした実施例1では50nm、6質量%とした実施例3~8では100nm、8質量%とした実施例2では250nmとなり、10質量%とした比較例2では400nmとなり、0質量%とした比較例1では、SEM観察から「非磁性金属相が存在しない」ことが確認された。
 また表中、結晶粒の平均粒径は、Sm-Fe-N系結晶粒の平均粒径を意味する(後述する表3および4も同様である)。結晶粒の平均粒径は、実施例1~8および比較例1~2のいずれも1.9~2.1μmの範囲内にあり、略一様であった。
 表中、IFe/ISmFeNは、X線回折法で測定したSmFeNピークの強度ISmFeNに対するFeピークの強度IFeの比を意味し(後述する表3および4も同様である)、以下、単に「XRDピーク強度比」とも言う。図3は、実施例1および2の焼結磁石について測定されたX線回折パターンを示す(図3中、「Zn5%」を付した下側のX線回折パターンが実施例1のデータであり、「Zn8%」を付した上側のX線回折パターンが実施例2のデータである)。実施例1および2のXRDピーク強度比は、測定されたSmFeNピーク(●)のうち図3中の2θ=48°の位置に点線を重ねて示されている(220)面のピーク強度ISmFeNに対する、図3中の2θ=52°の位置に点線を重ねて示されているα-Feの(110)面(■)のピーク強度IFeの比を意味する。他の実施例および比較例についても同様に、X線回折強度からXRDピーク強度比を求めた。図3には上記ピークはいずれもシャープに現れているが、ISmFeNは、SmFeNの(220)面のピークを含むブロードなピークの強度であってもよく、IFeは、Feの(110)面のピークを含むブロードなピークの強度であってもよい。非磁性金属で被覆されている磁石粉末を用いて製造された実施例1~8の焼結磁石において、XRDピーク強度比は0.2以下の範囲にあり、焼結磁石は優れた保磁力と高い飽和磁化とを有した。各実施例においてXRDピーク強度比を0.2以下とすることができたのは、焼結時に磁石粉末の周りの酸素濃度が十分に低かったためであると考えられる。XRDピーク強度比を0.2以下とするために好ましい酸素濃度は10ppm以下、より好ましくは1ppm以下である。
 表中の保磁力は、振動試料型磁力計(VSM)等により測定される(後述する表3および4も同様である)。実施例1~8において保磁力はいずれも11.5kOe以上であるため、焼結による低下は生じておらず、優れた保磁力を有する焼結磁石を製造することができた。特に、ボールミルを用いてSm-Fe-N系結晶粒子を非磁性金属の粉末で被覆した実施例1~7においては、保磁力は11.9kOe以上となり、より優れた保磁力を有する焼結磁石を製造することができた。
 表中の飽和磁化は、上記保磁力と同様、振動試料型磁力計(VSM)等により測定される(後述する表3および4も同様である)。実施例1~8において、飽和磁化はいずれも13.5kG以上であり、飽和磁化比(同じSm-Fe-N系結晶粒子(A)を使用しつつも非磁性金属の粉末で被覆しなかった比較例1を基準とする)は0.99以上あり、より詳細には0.99~1.01の範囲以内にあり、Sm-Fe-N系結晶粒子の有する高い飽和磁化が実質的に損なわれていないため、良好な磁石特性を有する焼結磁石を製造することができたといえる。
 比較例1の焼結磁石は、実施例1~8と同様に13.5kG以上の飽和磁化を有したが、保磁力は11.5kOeを下回る11.2kOeであった。比較例1の原料となる磁石粉末のSm-Fe-N系結晶粒子は非磁性金属で被覆されていないため、得られる焼結磁石のSm-Fe-N系結晶粒の表面が前記非磁性金属層で覆われていない。このため比較例1の焼結磁石では、実施例1~8の焼結磁石と比較してSm-Fe-N系結晶粒同士の磁気的干渉が生じやすく、これにより焼結磁石の保磁力が低下したものと考えられる。
 比較例2の焼結磁石は、実施例1~8と比較して保磁力が著しく低下しており、飽和磁化についても実施例1~8の13.5kGを下回っている。これは、実施例1~8と比較して、焼結磁石全体の質量に対して非磁性金属の質量が占める割合が増加したことにより、比較例2の焼結磁石の磁石特性が損なわれたものと考えられる。
 要するに、表1から、Sm-Fe-N系結晶粒の間に非磁性金属相が存在し、かつ、XRDピーク強度比が0.2以下である実施例1~8の焼結磁石では、Sm-Fe-N系結晶粒の間に非磁性金属相が存在しない比較例1の焼結磁石およびXRDピーク強度比が0.2を超える比較例2の焼結磁石と比較して、高い保磁力を有することが確認された。実施例1~8の焼結磁石では、非磁性金属相の厚さは、50nm以上250nm以下であり、11.5kOe以上、特に11.9kOe以上の高い保磁力が達成された。
 図1は実施例1の焼結磁石の断面のSEM像である。図1に灰色で示される相は、Sm-Fe-N系結晶粒から成る結晶相である。結晶粒の個数や断面積の測定は三谷商事製の画像解析ソフト「WinROOF」を用いて行った。図1において、結晶相を構成するSm-Fe-N系結晶粒の表面は薄い灰色の相で覆われているのがわかる。この薄い灰色の相が、非磁性金属(実施例1においては亜鉛)相である。図1のSEM像から、実施例1の焼結磁石が、複数のSm-Fe-N系結晶粒から成る結晶相と、隣接するSm-Fe-N系結晶粒の間に存在する非磁性金属相とを含むことがわかった。
 図2は実施例2の焼結磁石の断面のSEM像である。図2に灰色で示される相は、Sm-Fe-N系結晶粒から成る結晶相である。結晶粒の個数や断面積の測定は三谷商事製の画像解析ソフト「WinROOF」を用いて行った。図2において、結晶相を構成するSm-Fe-N系結晶粒の表面は薄い灰色の相で覆われているのがわかる。この薄い灰色の相が、非磁性金属(実施例2においては亜鉛)相である。JEOL製SEM装置JSM-7800を用いて、EDX分析することによって灰色で示される相上の点1a~1eおよび薄い灰色の相上の点2a~2cの組成分析を行った。組成分析の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000003
 表2の1a~1eにおいて、非磁性金属相に含まれる非磁性金属に対応する金属であって、Smを除く金属(実施例2においては亜鉛)は1質量%以下でしか含まれないのに対して、2a~2cには、上記金属(換言すれば、非磁性金属相に含まれる非磁性金属であって、Smを除く金属)(実施例2においては亜鉛)は15.87質量%以上25.02質量%以下の割合で含まれていた。表2の組成分析の結果と、図2のSEM像から、本発明の製造方法により得られた焼結磁石が、複数のSm-Fe-N系結晶粒から成る結晶相と、隣接するSm-Fe-N系結晶粒の間に存在し、非磁性金属をSm-Fe-N系結晶粒から成る結晶相よりも多く含む非磁性金属相とを含むことがわかった。
 (実施例9~17および比較例3)
・Sm-Fe-N系結晶粒子の作製
 磁石粉末の原料として、組成がSmFe17であり、平均粒径が約29μmの粗粉末(b)を準備した。この粗粉末(b)はSm-Fe-N系単結晶を含有し、0.30質量%の酸素含有割合と、0.35kOeの保磁力とを有した。気流粉砕型ジェットミルを使用し、準備した粗粉末(b)を、その平均粒径が1.5μmとなるまで粉砕して、Sm-Fe-N系結晶粒子(B)100gを作製した。粉末の酸化を防ぐため、ジェットミルはグローブボックス内に設置し、粉砕はこのグローブボックス内で行った。また、グローブボックスにはガス循環型酸素水分精製器を接続した。粉砕後に得られたSm-Fe-N系結晶粒子(B)の保磁力は、10.3kOeであった。
・非磁性金属の粉末の作製および非磁性金属の粉末によるSm-Fe-N系結晶粒子の被覆(磁石粉末の作製)
 続いて、被覆用の非磁性金属として、純度99.99質量%のZnを切削し、非磁性金属の粉末を作製した。この非磁性金属の粉末を、上記で作製したSm-Fe-N系結晶粒子(B)に、スパッタ法を用いて被覆して、実施例9に用いる磁石粉末を作製した。また、被覆用の非磁性金属として、Znに代えて、Sm、Ti、Cu、Mo、Ru、Ta、W、Ceをそれぞれ用いたこと以外は実施例9と同様にして、実施例10~17に用いる磁石粉末を作製した。
・焼結磁石の作製(磁石粉末の加圧焼結)
 続いて、上記工程により得られた実施例9~17のための磁石粉末についてそれぞれ下記の操作を実施した。磁石粉末を0.5g秤量し、内径6mmの超硬合金製円筒形ダイに充填した。これを大気暴露させずに、サーボ制御型プレス装置による加圧機構を備えたパルス通電焼結機内に設置した。次に、パルス通電焼結機内を2Pa以下の真空および0.4ppm以下の酸素濃度に保ったまま、1200MPaの圧力を印加し、この圧力を保持したまま500℃の焼結温度にて1分間の通電焼結を行った。これにより、実施例9~17の焼結磁石を得た。
 上記で作製したSm-Fe-N系結晶粒子(B)を用いて、Sm-Fe-N系結晶粒子(B)に対し、非磁性金属によって被覆する工程を行わなかったこと以外は、実施例9と同様にして焼結磁石を製造し、これを比較例3とした。
 得られた焼結磁石の特性を表3に示した。なお、表3の「飽和磁化比」は、比較例3の飽和磁化を基準としている。
 表3から、Sm-Fe-N系結晶粒の間に非磁性金属相が存在し、かつ、XRDピーク強度比が0.2以下である実施例9~17の焼結磁石では、Sm-Fe-N系結晶粒の間に非磁性金属相が存在しない比較例3の焼結磁石と比較して、高い保磁力を有することが確認された。また、実施例9~17において、飽和磁化はいずれも10.1kG以上であり、飽和磁化比(同じSm-Fe-N系結晶粒子(B)を使用しつつも非磁性金属の粉末で被覆しなかった比較例3を基準とする)は0.99以上あり、より詳細には0.99~1.16の範囲以内にあり、Sm-Fe-N系結晶粒子の有する高い飽和磁化が実質的に損なわれていなかった。実施例1~8の場合に比べて、実施例9~17の場合において、全体的に高い飽和磁化比が得られた。これは、実施例1~8では非磁性金属相の厚さを50nm以上250nm以下としたのに対して、実施例9~17では非磁性金属相の厚さをより薄く、具体的には1nm以上10nm以下の範囲以内としたことによるものと考えられる。(なお、実施例1~8および比較例1~2の場合と実施例9~17および比較例3の場合とでは、使用したSm-Fe-N系結晶粒子が異なるため、保持力および飽和磁化を単純に比較することはできない点に留意されたい。)
 (実施例18~23および比較例4)
・Sm-Fe-N系結晶粒子の作製
 磁石粉末の原料として、組成がSmFe17であり、平均粒径が約23μmの粗粉末(c)を準備した。この粗粉末(c)はSm-Fe-N系単結晶を含有し、0.20質量%の酸素含有割合と、0.70kOeの保磁力とを有した。気流粉砕型ジェットミルを使用し、準備した粗粉末(c)を、その平均粒径が1.7μmとなるまで粉砕して、Sm-Fe-N系結晶粒子(C)100gを作製した。粉末の酸化を防ぐため、ジェットミルはグローブボックス内に設置し、粉砕はこのグローブボックス内で行った。また、グローブボックスにはガス循環型酸素水分精製器を接続した。粉砕後に得られたSm-Fe-N系結晶粒子(C)の保磁力は、9.4kOeであった。
・非磁性金属の粉末の作製および非磁性金属の粉末によるSm-Fe-N系結晶粒子の被覆(磁石粉末の作製)
 続いて、被覆用の非磁性金属として、純度99.99質量%のAlを切削し、非磁性金属の粉末を作製した。この非磁性金属の粉末を、上記で作製したSm-Fe-N系結晶粒子(C)に、スパッタ法を用いて被覆して、実施例18に用いる磁石粉末を作製した。また、被覆用の非磁性金属として、Alに代えて、Sn、La、V、Mn、Zrをそれぞれ用いたこと以外は実施例18と同様にして、実施例19~23に用いる磁石粉末を作製した。
・焼結磁石の作製(磁石粉末の加圧焼結)
 続いて、上記工程により得られた実施例18~23のための磁石粉末についてそれぞれ下記の操作を実施した。磁石粉末を0.5g秤量し、内径6mmの超硬合金製円筒形ダイに充填した。これを大気暴露させずに、サーボ制御型プレス装置による加圧機構を備えたパルス通電焼結機内に設置した。次に、パルス通電焼結機内を2Pa以下の真空および0.4ppm以下の酸素濃度に保ったまま、1200MPaの圧力を印加し、この圧力を保持したまま500℃の焼結温度にて1分間の通電焼結を行った。これにより、実施例18~23の焼結磁石を得た。
 上記で作製したSm-Fe-N系結晶粒子(C)を用いて、Sm-Fe-N系結晶粒子(C)に対し、非磁性金属によって被覆する工程を行わなかったこと以外は、実施例18と同様にして焼結磁石を製造し、これを比較例4とした。
 得られた焼結磁石の特性を表4に示した。なお、表4の「飽和磁化比」は、比較例4の飽和磁化を基準としている。
Figure JPOXMLDOC01-appb-T000005
 表4から、Sm-Fe-N系結晶粒の間に非磁性金属相が存在し、かつ、XRDピーク強度比が0.2以下である実施例18~23の焼結磁石では、Sm-Fe-N系結晶粒の間に非磁性金属相が存在しない比較例4の焼結磁石と比較して、高い保磁力を有することが確認された。また、実施例18~23において、飽和磁化はいずれも10.0kG以上であり、飽和磁化比(同じSm-Fe-N系結晶粒子(C)を使用しつつも非磁性金属の粉末で被覆しなかった比較例4を基準とする)は0.99以上あり、より詳細には0.99~1.16の範囲以内にあり、Sm-Fe-N系結晶粒子の有する高い飽和磁化が実質的に損なわれていなかった。実施例1~8の場合に比べて、実施例18~23の場合において、全体的に高い飽和磁化比が得られた。これは、実施例1~8では非磁性金属相の厚さを50nm以上250nm以下としたのに対して、実施例18~23では非磁性金属相の厚さをより薄く、具体的には1nm以上10nm以下の範囲以内としたことによるものと考えられる。(なお、実施例1~8および比較例1~2の場合と、実施例9~17および比較例3の場合と、実施例18~17および比較例4の場合とでは、使用したSm-Fe-N系結晶粒子が異なるため、保持力および飽和磁化を単純に比較することはできない点に留意されたい。)
 本発明の焼結磁石および磁石粉末は、各種モーターの分野において、広範な用途に使用できる。例えば、車載用補機モーター、EV/HEV用主機モーター等に使用することができ、より具体的には、オイルポンプ用モーター、電動パワーステアリング用モーター、EV/HEV駆動用モーター等に使用することができる。
 本願は、2017年3月10日付けで日本国に出願された特願2017-46463に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。
 1a、1b、1c、1d、1e Sm-Fe-N系結晶粒から成る結晶相
 2a、2b、2c 非磁性金属相

Claims (16)

  1.  複数のSm-Fe-N系結晶粒から成る結晶相と、隣接するSm-Fe-N系結晶粒の間に存在する非磁性金属相とを含み、X線回折法で測定したSmFeNピークの強度ISmFeNに対するFeピークの強度IFeの比が0.2以下である、焼結磁石。
  2.  前記非磁性金属相は、Sm-Fe-N系結晶粒の表面を被覆している、請求項1に記載の焼結磁石。
  3.  前記非磁性金属相は、Zn、Al、Sn、Cu、Ti、Sm、Mo、Ru、Ta、W、Ce、La、V、MnおよびZrからなる群から選択される少なくとも1種の金属を含む、請求項1または2に記載の焼結磁石。
  4.  前記非磁性金属相に含まれる非磁性金属に対応する金属であって、Smを除く金属の前記結晶相における含有割合が1質量%以下である、請求項3に記載の焼結磁石。
  5.  酸素含有割合が0.7質量%以下である、請求項1~4のいずれかに記載の焼結磁石。
  6.  前記非磁性金属相の厚さが1nm以上400nm未満である、請求項1~5のいずれかに記載の焼結磁石。
  7.  前記非磁性金属相の厚さが50nm以上250nm以下である、請求項6に記載の焼結磁石。
  8.  前記非磁性金属相の厚さが1nm以上10nm以下である、請求項6に記載の焼結磁石。
  9.  保磁力が11.5kOe以上である、請求項7に記載の焼結磁石。
  10.  保磁力が11.9kOe以上である、請求項9に記載の焼結磁石。
  11.  炭素含有割合が1質量%以下である、請求項1~10のいずれかに記載の焼結磁石。
  12.  前記Sm-Fe-N系結晶粒の平均粒径が0.04μm以上5μm以下である、請求項1~11のいずれか一項に記載の焼結磁石。
  13.  Sm-Fe-N系結晶粒子と、該Sm-Fe-N系結晶粒子の表面を被覆する非磁性金属層とを含む、磁石粉末。
  14.  前記非磁性金属層は、Zn、Al、Sn、Cu、Ti、Sm、Mo、Ru、Ta、W、Ce、La、V、MnおよびZrからなる群から選択される少なくとも1種の金属を含む、請求項13に記載の磁石粉末。
  15.  Sm-Fe-N単結晶を含有する粗粉末を粉砕してSm-Fe-N系結晶粒子を得る工程と、非磁性金属を切削することにより非磁性金属の粉末を得る工程と、得られた非磁性金属の粉末により、得られたSm-Fe-N系結晶粒子の表面を覆う工程とを含み、上記工程が全て低酸素濃度の雰囲気下で行われる、請求項13または14に記載の磁石粉末を製造する方法。
  16.  請求項13または14に記載の磁石粉末を、低酸素濃度の雰囲気下で加圧焼結することにより、請求項1~12のいずれか一項に記載の焼結磁石を製造する方法。
PCT/JP2018/007849 2017-03-10 2018-03-01 Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法 WO2018163967A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880006182.XA CN110168674B (zh) 2017-03-10 2018-03-01 含有Sm-Fe-N系晶粒的磁体粉末和由该磁体粉末制造的烧结磁体以及它们的制造方法
JP2019504523A JPWO2018163967A1 (ja) 2017-03-10 2018-03-01 Sm−Fe−N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法
DE112018000214.4T DE112018000214T5 (de) 2017-03-10 2018-03-01 Magnetpulver, das SM-Fe-N-basierte Kristallpartikel enthält, aus diesem hergestellter Sintermagnet, Verfahren zur Herstellung dieses Magnetpulvers; und Verfahren zur Herstellung des Sintermagneten
US16/505,287 US11594353B2 (en) 2017-03-10 2019-07-08 Magnetic powder containing Sm—Fe—N-based crystal particles, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046463 2017-03-10
JP2017-046463 2017-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/505,287 Continuation US11594353B2 (en) 2017-03-10 2019-07-08 Magnetic powder containing Sm—Fe—N-based crystal particles, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet

Publications (1)

Publication Number Publication Date
WO2018163967A1 true WO2018163967A1 (ja) 2018-09-13

Family

ID=63448274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007849 WO2018163967A1 (ja) 2017-03-10 2018-03-01 Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法

Country Status (5)

Country Link
US (1) US11594353B2 (ja)
JP (2) JPWO2018163967A1 (ja)
CN (1) CN110168674B (ja)
DE (1) DE112018000214T5 (ja)
WO (1) WO2018163967A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189440A1 (ja) * 2018-03-29 2019-10-03 Tdk株式会社 サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法
WO2020066811A1 (ja) * 2018-09-28 2020-04-02 株式会社豊田自動織機 磁性材料、磁石、及び磁石の製造方法
WO2020183885A1 (ja) * 2019-03-12 2020-09-17 Tdk株式会社 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末
JPWO2020203739A1 (ja) * 2019-04-05 2020-10-08
JP2021077697A (ja) * 2019-11-06 2021-05-20 トヨタ自動車株式会社 希土類磁石の製造方法
JP2021136347A (ja) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 希土類磁石の製造方法
JP7201332B2 (ja) 2018-04-09 2023-01-10 トヨタ自動車株式会社 希土類磁石の製造方法及びそれに用いられる製造装置
JP7364158B2 (ja) 2019-12-26 2023-10-18 国立大学法人東北大学 希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476020B2 (en) * 2017-06-30 2022-10-18 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof
CN116487169B (zh) * 2023-03-30 2023-10-13 广东省科学院资源利用与稀土开发研究所 一种低成本核壳结构的钕铁氮磁粉及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360501A (ja) * 1991-06-07 1992-12-14 Daido Steel Co Ltd 希土類磁石の製造方法
JP2000286115A (ja) * 1999-03-31 2000-10-13 Tdk Corp 磁石の製造方法
JP2005171264A (ja) * 2003-12-05 2005-06-30 Daido Steel Co Ltd 等方性磁石の製造方法およびその磁石
JP2015142119A (ja) * 2014-01-30 2015-08-03 住友電気工業株式会社 希土類磁石の製造方法
WO2015199096A1 (ja) * 2014-06-24 2015-12-30 日産自動車株式会社 希土類磁石成形体の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705985B2 (ja) * 1988-11-14 1998-01-28 旭化成工業株式会社 磁性材料、それから成る磁石及びそれらの製造方法
DE68916184T2 (de) * 1988-11-14 1994-11-17 Asahi Chemical Ind Magnetische Stoffe, enthaltend Seltenerdelemente, Eisen, Stickstoff und Wasserstoff.
CN1028813C (zh) * 1989-09-13 1995-06-07 旭化成工业株式会社 含有稀土元素、铁、氮、氢和氧的磁性材料
JPH05190311A (ja) * 1992-01-17 1993-07-30 Tdk Corp 磁石の製造方法および磁石粉末
JPH08306567A (ja) * 1995-05-10 1996-11-22 Kinya Adachi 高圧焼結による高性能希土類金属間化合物磁石の製造
KR20010022276A (ko) * 1998-05-26 2001-03-15 마쯔노고오지 질화형 희토류 자석재료 및 이를 이용한 희토류 본드 자석
JP4419245B2 (ja) 1999-06-28 2010-02-24 日立金属株式会社 希土類系永久磁石およびその製造方法
JP2001335802A (ja) * 2000-05-26 2001-12-04 Sumitomo Metal Mining Co Ltd 耐酸化性に優れた希土類磁石合金粉末およびそれを用いたボンド磁石
JP2004146713A (ja) * 2002-10-28 2004-05-20 Hitachi Metals Ltd R−t−n系磁粉の製造方法およびr−t−n系ボンド磁石の製造方法
JP4650593B2 (ja) 2008-12-15 2011-03-16 住友金属鉱山株式会社 希土類元素を含む鉄系磁石合金粉、およびその製造方法、得られるボンド磁石用樹脂組成物、ボンド磁石、並びに圧密磁石
JP2013135071A (ja) * 2011-12-26 2013-07-08 Nissan Motor Co Ltd 希土類磁石成形体および低温固化成形方法
KR101536288B1 (ko) * 2014-03-21 2015-07-14 황동환 임플란트 시술용 드릴링 가이드 장치
JP6484994B2 (ja) * 2014-10-21 2019-03-20 日産自動車株式会社 Sm−Fe−N系磁石成形体およびその製造方法
JP6439876B2 (ja) * 2015-08-24 2018-12-19 日産自動車株式会社 磁石粒子およびそれを用いた磁石成形体
JP2017046463A (ja) 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 リニアモータ装置、及び、引き戸装置
CN105355354B (zh) * 2015-12-15 2017-12-08 北京科技大学 一种钐铁氮基各向异性稀土永磁粉及其制备方法
JP2018120942A (ja) * 2017-01-25 2018-08-02 株式会社東芝 永久磁石、回転電機、及び車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360501A (ja) * 1991-06-07 1992-12-14 Daido Steel Co Ltd 希土類磁石の製造方法
JP2000286115A (ja) * 1999-03-31 2000-10-13 Tdk Corp 磁石の製造方法
JP2005171264A (ja) * 2003-12-05 2005-06-30 Daido Steel Co Ltd 等方性磁石の製造方法およびその磁石
JP2015142119A (ja) * 2014-01-30 2015-08-03 住友電気工業株式会社 希土類磁石の製造方法
WO2015199096A1 (ja) * 2014-06-24 2015-12-30 日産自動車株式会社 希土類磁石成形体の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189440A1 (ja) * 2018-03-29 2019-10-03 Tdk株式会社 サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法
US11798739B2 (en) 2018-03-29 2023-10-24 Tdk Corporation Samarium-iron-nitrogen based magnet powder and method of manufacturing same, and samarium-iron-nitrogen based magnet and method of manufacturing same
JP7017744B2 (ja) 2018-03-29 2022-02-09 Tdk株式会社 サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法
JPWO2019189440A1 (ja) * 2018-03-29 2021-04-08 Tdk株式会社 サマリウム−鉄−窒素系磁石粉末及びその製造方法並びにサマリウム−鉄−窒素系磁石及びその製造方法
JP7201332B2 (ja) 2018-04-09 2023-01-10 トヨタ自動車株式会社 希土類磁石の製造方法及びそれに用いられる製造装置
WO2020066811A1 (ja) * 2018-09-28 2020-04-02 株式会社豊田自動織機 磁性材料、磁石、及び磁石の製造方法
JPWO2020183885A1 (ja) * 2019-03-12 2021-10-21 Tdk株式会社 希土類金属−遷移金属系合金粉末の製造方法及びサマリウム−鉄合金粉末
JP7103612B2 (ja) 2019-03-12 2022-07-20 Tdk株式会社 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末
WO2020183885A1 (ja) * 2019-03-12 2020-09-17 Tdk株式会社 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末
WO2020203739A1 (ja) * 2019-04-05 2020-10-08 国立研究開発法人産業技術総合研究所 Sm-Fe-N系磁石粉末、Sm-Fe-N系焼結磁石およびその製造方法
JP7076740B2 (ja) 2019-04-05 2022-05-30 国立研究開発法人産業技術総合研究所 Sm-Fe-N系磁石粉末、Sm-Fe-N系焼結磁石およびその製造方法
JPWO2020203739A1 (ja) * 2019-04-05 2020-10-08
JP2021077697A (ja) * 2019-11-06 2021-05-20 トヨタ自動車株式会社 希土類磁石の製造方法
JP7259705B2 (ja) 2019-11-06 2023-04-18 トヨタ自動車株式会社 希土類磁石の製造方法
JP7364158B2 (ja) 2019-12-26 2023-10-18 国立大学法人東北大学 希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法
JP2021136347A (ja) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 希土類磁石の製造方法
JP7338510B2 (ja) 2020-02-27 2023-09-05 トヨタ自動車株式会社 希土類磁石の製造方法

Also Published As

Publication number Publication date
CN110168674B (zh) 2022-10-28
JPWO2018163967A1 (ja) 2019-11-07
JP2021122061A (ja) 2021-08-26
CN110168674A (zh) 2019-08-23
DE112018000214T5 (de) 2019-09-05
US11594353B2 (en) 2023-02-28
JP7174962B2 (ja) 2022-11-18
US20190333661A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP7174962B2 (ja) Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法
TWI673730B (zh) R-Fe-B系燒結磁石及其製造方法
JP6274216B2 (ja) R−t−b系焼結磁石、および、モータ
EP3435387B1 (en) Magnetic material and manufacturing method therefor
JP4900121B2 (ja) フッ化物コート膜形成処理液およびフッ化物コート膜形成方法
US11732336B2 (en) Magnetic material and method for producing same
EP2484464B1 (en) Powder for magnetic member, powder compact, and magnetic member
EP2696356A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
WO2015020182A1 (ja) R-t-b系焼結磁石、および、モータ
JP6521415B2 (ja) 磁性材料とその製造方法
EP3690071A1 (en) Magnetic material and method for producing same
JP6500387B2 (ja) 高保磁力磁石の製造方法
JP6860808B2 (ja) R−t−b系焼結磁石の製造方法
CN108701517A (zh) R-t-b系烧结磁体的制造方法
JP2005325450A (ja) 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石
JP2002105503A (ja) 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石
WO2018101402A1 (ja) R-t-b系焼結磁石およびその製造方法
JP7168394B2 (ja) 希土類磁石及びその製造方法
EP3588517B1 (en) Magnetic material and process for manufacturing same
JP2018029108A (ja) R−t−b系焼結磁石の製造方法
JP2016149397A (ja) R−t−b系焼結磁石
WO2018123988A1 (ja) 希土類-遷移金属系強磁性合金
JP7001259B2 (ja) 磁性材料およびその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504523

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18764705

Country of ref document: EP

Kind code of ref document: A1