WO2019189440A1 - サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法 - Google Patents

サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法 Download PDF

Info

Publication number
WO2019189440A1
WO2019189440A1 PCT/JP2019/013316 JP2019013316W WO2019189440A1 WO 2019189440 A1 WO2019189440 A1 WO 2019189440A1 JP 2019013316 W JP2019013316 W JP 2019013316W WO 2019189440 A1 WO2019189440 A1 WO 2019189440A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
samarium
nitrogen
powder
nitrogen based
Prior art date
Application number
PCT/JP2019/013316
Other languages
English (en)
French (fr)
Inventor
龍司 橋本
靖 榎戸
周祐 岡田
健太 高木
Original Assignee
Tdk株式会社
国立研究開発法人産業技術総合研究所
龍司 橋本
靖 榎戸
周祐 岡田
健太 高木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社, 国立研究開発法人産業技術総合研究所, 龍司 橋本, 靖 榎戸, 周祐 岡田, 健太 高木 filed Critical Tdk株式会社
Priority to US17/042,443 priority Critical patent/US11798739B2/en
Priority to CN201980023125.7A priority patent/CN111937095B/zh
Priority to JP2020509237A priority patent/JP7017744B2/ja
Publication of WO2019189440A1 publication Critical patent/WO2019189440A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for producing a samarium-iron-nitrogen based magnet powder, a samarium-iron-nitrogen based magnet, a samarium-iron-nitrogen based magnet powder, and a method for producing a samarium-iron-nitrogen based magnet.
  • the samarium-iron-nitrogen magnet has a high Curie temperature of 477 ° C, a small temperature change in magnetic properties, and an anisotropic magnetic field of 20.6 MA / m, which is the theoretical value of coercive force. Because of its high value, it is expected as a high-performance magnet.
  • the samarium-iron-nitrogen magnet powder has a problem that the coercive force decreases even when heat treatment is performed at a temperature lower than the decomposition temperature of 620 ° C.
  • Patent Document 1 the surface of Sm 2 Fe 17 alloy powder is coated with Zr, heat-treated to form a ZrFe 2 layer on the surface of the powder, and then subjected to nitriding treatment in a magnetic field to obtain Sm 2 Fe 17 N 3 alloy powder.
  • a method is disclosed.
  • the Sm 2 Fe 17 N 3 alloy powder having the ZrFe 2 layer formed on the surface has a low coercive force after the heat treatment.
  • An object of one embodiment of the present invention is to provide a samarium-iron-nitrogen magnet powder having a high coercive force after heat treatment.
  • One aspect of the present invention is a samarium-iron-nitrogen based magnet powder that is selected from the group consisting of samarium, a main phase containing iron, samarium, iron, zirconium, molybdenum, vanadium, tungsten, and titanium. And a secondary phase in which the atomic ratio of the rare earth element to the iron group element is larger than the atomic ratio of the rare earth element to the iron group element of the main phase, and at least one of the surfaces of the main phase The part is covered with the subphase.
  • a samarium-iron-nitrogen based magnet powder having a high coercive force after heat treatment can be provided.
  • FIG. 2 is a schematic diagram showing a samarium-iron-nitrogen based magnet powder used for manufacturing the samarium-iron-nitrogen based magnet of FIG. 2 is an FE-SEM reflected electron image of a cross section of the samarium-iron-nitrogen magnet powder of Example 1.
  • FIG. 2 is a schematic diagram showing a samarium-iron-nitrogen based magnet powder used for manufacturing the samarium-iron-nitrogen based magnet of FIG. 2 is an FE-SEM reflected electron image of a cross section of the samarium-iron-nitrogen magnet powder of Example 1.
  • the samarium-iron-nitrogen based magnet powder of this embodiment is one or more elements selected from the group consisting of samarium, a main phase containing iron, samarium, iron, zirconium, molybdenum, vanadium, tungsten, and titanium.
  • the samarium-iron-nitrogen based magnet powder means a magnet powder containing samarium, iron and nitrogen.
  • the atomic ratio of the rare earth element to the iron group element of the subphase is preferably 0.15 or more from the viewpoint of demagnetization of the subphase, but it is 0 because the SmFe 5 soft magnetic phase is difficult to precipitate. It is preferably 20 or more. Further, the atomic ratio of the rare earth element to the iron group element of the subphase is preferably 0.50 or more, and more preferably 1.00 or more, since the coercive force after the heat treatment is further improved. .
  • zirconium is an element that has low reactivity and forms a passive state. If a samarium-iron-nitrogen based magnet powder having a high coercive force after heat treatment is used, a high performance magnet can be produced.
  • Aluminum, chromium, etc. are known as elements forming a passive state other than zirconium, but the coercive force after heat treatment of samarium-iron-nitrogen based magnet powder is improved even if these elements are used. do not do. This is thought to be due to the fact that intermetallic compounds other than the samarium-rich phase are formed, and that the uniform subphase is not formed because the melting point is high.
  • phase diagram of samarium and zirconium, and iron and zirconium is a kind of eutectic type, and the liquid phase containing samarium, iron, and zirconium is considered to be easily mixed. It is believed that zirconium is an element suitable for the subphase due to such chemical properties.
  • the samarium-iron-nitrogen based magnet powder has a core / shell structure, that is, a subphase as a shell exists on at least a part of the surface of the core including the main phase.
  • the thickness of the subphase is usually about 1 nm to 100 nm.
  • the surface coverage of the main phase by the subphase is preferably 10% or more, and more preferably 50% or more.
  • the coverage of the surface of the main phase by the subphase is 10% or more, the coercive force after heat treatment of the samarium-iron-nitrogen based magnet powder is further improved.
  • the subphase may contain elements other than samarium, iron, and zirconium, but the ratio is preferably smaller than the ratio of each element of samarium, iron, and zirconium.
  • the crystal structure of the main phase of the samarium-iron-nitrogen based magnet powder may be either a Th 2 Zn 17 type structure or a TbCu 7 type structure, but is preferably a Th 2 Zn 17 type structure. This further improves the coercive force of the samarium-iron-nitrogen based magnet powder after the heat treatment.
  • the samarium-iron-nitrogen based magnet powder may further contain a phase other than the secondary phase.
  • the samarium-iron-nitrogen based magnet powder contains a large amount of iron exhibiting soft magnetism, the magnetic properties deteriorate, so samarium is added in excess of the stoichiometric ratio during production.
  • the samarium-iron-nitrogen based magnet powder may further contain a rare earth element other than samarium such as neodymium and praseodymium, and an iron group element other than iron such as cobalt.
  • a rare earth element other than samarium such as neodymium and praseodymium
  • an iron group element other than iron such as cobalt.
  • the content of rare earth elements other than samarium in all rare earth elements and the content of iron group elements other than iron in all iron group elements must be less than 30 at%, respectively, from the viewpoint of anisotropic magnetic field and magnetization. Is preferred.
  • the average particle size of the samarium-iron-nitrogen magnet powder is preferably 1.0 ⁇ m or less. If the average particle size of the samarium-iron-nitrogen based magnet powder is 1.0 ⁇ m or less, the specific surface area of the samarium-iron-nitrogen based magnet powder becomes large, so that the effect of the secondary phase is easily obtained. The coercive force after heat treatment of samarium-iron-nitrogen based magnet powder is further improved.
  • the oxygen content in the samarium-iron-nitrogen based magnet powder is Usually, it becomes 1.2 mass% or less.
  • the oxygen content in the samarium-iron-nitrogen based magnet powder is usually 0. .8% by mass or more.
  • the subphase contains one or more elements selected from the group consisting of zirconium, molybdenum, vanadium, tungsten, and titanium, these elements form a passive state, so that the acid resistance of the samarium-iron-nitrogen based magnet powder As a result, the oxygen content in the samarium-iron-nitrogen magnet powder can be controlled within an appropriate range.
  • the method for producing the samarium-iron-nitrogen based magnet powder of this embodiment is obtained by reducing and diffusing a samarium-iron alloy precursor powder in an inert gas atmosphere (hereinafter referred to as first reducing diffusion).
  • the subphase before nitriding the samarium-iron-based alloy powder decomposition of the main phase and deterioration of the magnetic properties can be suppressed. Also, by reducing and diffusing in an inert gas atmosphere to form a subphase, the oxygen content in the samarium-iron-nitrogen magnet powder is reduced, and after heat treatment of the samarium-iron-nitrogen magnet powder The coercive force is improved.
  • Inert gas includes argon and the like.
  • nitrogen gas in order to control the nitriding amount of the samarium-iron-nitrogen based magnet powder, it is preferable not to use nitrogen gas during the reduction diffusion.
  • the oxygen concentration in the inert gas atmosphere is 1 ppm or less using a gas purifier or the like.
  • the samarium-iron alloy precursor powder is not particularly limited as long as it can be reduced and diffused to produce a samarium-iron alloy powder, but samarium-iron oxide powder, samarium-iron System hydroxide powder etc. are mentioned, You may use 2 or more types together.
  • samarium-iron-based oxide powder and / or samarium-iron-based hydroxide powder will be referred to as samarium-iron-based (water) oxide powder.
  • the samarium-iron alloy powder means an alloy powder containing samarium and iron.
  • Samarium-iron (water) oxide powder can be produced by a coprecipitation method. Specifically, first, a precipitation agent such as alkali is added to a solution containing samarium salt and iron salt to precipitate a samarium-iron compound (mainly hydroxide), followed by filtration and centrifugation. The precipitate is recovered by separation or the like. Next, the precipitate is washed and then dried to obtain a samarium-iron (water) oxide. Further, samarium-iron (water) oxide powder is roughly pulverized with a blade mill or the like and then finely pulverized with a bead mill or the like to obtain a samarium-iron (water) oxide powder.
  • a precipitation agent such as alkali is added to a solution containing samarium salt and iron salt to precipitate a samarium-iron compound (mainly hydroxide), followed by filtration and centrifugation. The precipitate is recovered by separation or the like.
  • counter ions in samarium salts and iron salts include inorganic ions such as chloride ions, sulfate ions and nitrate ions, and organic ions such as alkoxides.
  • Examples of the solvent contained in the solution containing the samarium salt and the iron salt include water and organic solvents such as ethanol.
  • alkali examples include alkali metal and alkaline earth metal hydroxides, ammonia and the like.
  • a precipitant precursor that becomes a precipitant by being decomposed by an external action such as heat such as urea may be used.
  • a hot air oven or a vacuum dryer may be used.
  • the process from the preparation of the samarium-iron alloy precursor powder to the production of the samarium-iron-nitrogen magnet powder is carried out using a glove box or the like without exposure to the atmosphere.
  • the samarium-iron alloy precursor powder contains iron oxide or an iron compound
  • the samarium-iron alloy precursor powder may be pre-reduced and reduced to a samarium oxide-iron powder before reducing diffusion.
  • the particle size of the samarium-iron alloy powder can be reduced.
  • the samarium oxide-iron powder means a powder containing samarium oxide and iron.
  • the method for pre-reducing the samarium-iron alloy precursor powder is not particularly limited, but a method of heat-treating the samarium-iron alloy precursor powder at a temperature of 400 ° C. or higher in a reducing atmosphere such as hydrogen. Is mentioned.
  • the samarium-iron (water) oxide powder is pre-reduced at 500 ° C. to 800 ° C.
  • the method for reducing and diffusing samarium-iron powder in an inert gas atmosphere is not particularly limited, but after mixing calcium or calcium hydride and samarium-iron powder, a temperature equal to or higher than the melting point of calcium ( And a method of heating to about 850 ° C. At this time, samarium reduced by calcium diffuses in the calcium melt and reacts with iron or the like to produce samarium-iron alloy powder.
  • samarium-iron alloy powder having an average particle diameter of 1.0 ⁇ m or less
  • samarium oxide-iron powder is reduced at 850 ° C. to 950 ° C. for about 1 minute to 2 hours in an inert gas atmosphere.
  • the samarium oxide-iron-based powder is crystallized as the reduction diffusion proceeds, and a main phase having a Th 2 Zn 17 type structure or a TbCu 7 type structure is formed. At this time, a samarium-rich phase containing samarium and iron and having a larger atomic ratio of samarium to iron than the main phase is formed on the surface of the main phase.
  • one or more elements selected from the group consisting of zirconium, molybdenum, vanadium, tungsten and titanium reduced by calcium diffuse in the calcium melt and react with the samarium-rich phase, thereby forming a subphase. Is done.
  • a samarium compound and an iron compound may be reduced to form a subphase.
  • zirconium compound examples include zirconium chloride, zirconium sulfide, zirconium oxide and the like.
  • molybdenum compound examples include molybdenum chloride, ammonium molybdate, molybdenum oxide, and the like.
  • vanadium compound examples include vanadium chloride, ammonium vanadate, vanadium oxide, and the like.
  • tungsten compounds include tungsten chloride, ammonium tungstate, vanadium oxide, and the like.
  • titanium compound examples include titanium oxide, titanium alkoxide, and titanium chloride.
  • a method for producing a mixture of a samarium-iron alloy powder and one or more compounds selected from the group consisting of zirconium compounds, molybdenum compounds, vanadium compounds, tungsten compounds and titanium compounds for example, the above compounds are dissolved in a solvent.
  • a method of coating the samarium-iron alloy powder after the treatment is performed.
  • the solvent is not particularly limited as long as it can dissolve the above compound, and examples thereof include 2-propanol.
  • the method for nitriding the samarium-iron alloy powder is not particularly limited, but is samarium-iron at 300 ° C. to 500 ° C. in an atmosphere of ammonia, a mixed gas of ammonia and hydrogen, nitrogen, a mixed gas of nitrogen and hydrogen, or the like.
  • the method etc. which heat-process an alloy powder are mentioned.
  • composition of the main phase of the samarium-iron-nitrogen based magnet powder is optimally Sm 2 Fe 17 N 3 in order to increase the magnetic force.
  • the samarium-iron-based alloy powder can be nitrided in a short time, but the nitrogen content in the samarium-iron-nitrogen-based magnet powder may be higher than the optimum value.
  • the samarium-iron-based magnet powder is annealed in hydrogen to discharge excess nitrogen from the crystal lattice, and samarium-iron-nitrogen-based magnet powder The nitrogen content in it can be optimized.
  • samarium-iron alloy powder is heat-treated at 350 ° C. to 450 ° C. for 10 minutes to 2 hours in an ammonia-hydrogen mixed gas stream, then switched to a hydrogen gas stream and annealed at 350 ° C. to 450 ° C. for 30 minutes to 2 hours. .
  • Crude products of samarium-iron-nitrogen based magnet powder contain calcium compounds such as calcium oxide, unreacted metallic calcium, calcium nitride nitrided with metallic calcium, calcium hydride, etc., so that calcium compounds can be dissolved Wash with a suitable solvent.
  • the solvent capable of dissolving the calcium compound is not particularly limited, and examples thereof include water and alcohol. Among these, water is preferable in terms of cost and solubility of the calcium compound.
  • a calcium compound can be removed by adding a crude product of samarium-iron-nitrogen based magnet powder to water and repeating stirring and decantation.
  • the samarium-iron alloy powder may be washed with a solvent capable of dissolving the calcium compound before nitriding the samarium-iron alloy powder.
  • the washed crude product of the samarium-iron-nitrogen based magnet powder is preferably vacuum-dried in order to remove the solvent capable of dissolving the calcium compound.
  • the temperature at which the washed crude product of samarium-iron-nitrogen based magnet powder is vacuum dried is preferably from room temperature to 100 ° C. Thereby, oxidation of the washed crude product of the samarium-iron-nitrogen based magnet powder can be suppressed.
  • washed crude product of samarium-iron-nitrogen magnet powder may be vacuum dried after being replaced with an organic solvent having high volatility such as alcohols and miscible with water.
  • a method for dehydrogenating the washed crude product of the samarium-iron-nitrogen based magnet powder is not particularly limited, but the samarium-iron-nitrogen based magnet powder washed in a vacuum or in an inert gas atmosphere is not particularly limited. The method etc. which heat-process a crude product are mentioned.
  • the washed crude product of samarium-iron-nitrogen based magnet powder is heat treated at 150 ° C. to 450 ° C. for 0 to 1 hour under an argon stream.
  • the washed crude product of samarium-iron-nitrogen magnet powder may be crushed. This improves the remanent magnetization and maximum energy product of the samarium-iron-nitrogen based magnet powder.
  • the crude product of the washed samarium-iron-nitrogen based magnet powder is crushed under conditions weaker than pulverization.
  • the condition weaker than pulverization means a condition in which the washed crude product of the samarium-iron-nitrogen based magnet powder is not pulverized.
  • the gas flow rate and flow velocity are controlled.
  • the samarium-iron based alloy powder may be crushed.
  • the samarium-iron alloy powder is not pulverized after being produced.
  • a samarium-iron alloy powder in which a samarium-rich phase is formed on the surface of the main phase is pulverized, a part of the surface of the particle becomes a fracture surface and the coverage of the surface of the main phase by the samarium-rich phase decreases. .
  • the samarium-iron-nitrogen based magnet of the present embodiment can be manufactured using the samarium-iron-nitrogen based magnet powder of the present embodiment.
  • a samarium-iron-nitrogen based magnet powder is formed into a predetermined shape and then sintered, a samarium-iron-nitrogen based sintered magnet is obtained.
  • the samarium-iron-nitrogen based magnet powder may be formed while applying a magnetic field. Thereby, since the compact of the samarium-iron-nitrogen based magnet powder is oriented in a specific direction, an anisotropic magnet having high magnetic properties can be obtained.
  • the method for sintering the samarium-iron-nitrogen magnet powder compact is not particularly limited, and examples thereof include a discharge plasma method and a hot press method.
  • the same apparatus can be used to form a samarium-iron-nitrogen-based magnet powder and to sinter a compacted samarium-iron-nitrogen-based magnet powder.
  • the samarium-iron-nitrogen magnet of this embodiment includes samarium, a main phase containing iron, samarium, iron, and one or more elements selected from the group consisting of zirconium, molybdenum, vanadium, tungsten, and titanium. And a secondary phase in which the atomic ratio of the rare earth element to the iron group element is larger than the atomic ratio of the rare earth element to the iron group element of the main phase.
  • the samarium-iron-nitrogen magnet of this embodiment may be either a sintered magnet or a bonded magnet.
  • FIG. 1 shows a samarium-iron-nitrogen based sintered magnet as an example of a samarium-iron-nitrogen based magnet.
  • the samarium-iron-nitrogen based sintered magnet 10 includes samarium, a main phase 11 containing iron, samarium, iron, and one or more elements selected from the group consisting of zirconium, molybdenum, vanadium, tungsten, and titanium. And a secondary phase 12 in which the atomic ratio of the rare earth element to the iron group element is larger than the atomic ratio of the rare earth element to the iron group element of the main phase 11.
  • the subphase 12 exists in the boundary region between the adjacent main phases 11.
  • the samarium-iron-nitrogen based sintered magnet 10 can be manufactured using samarium-iron-nitrogen based magnet powder 20 (see FIG. 2) in which the surface of the main phase 11 is coated with the subphase 12. it can.
  • Example 1 Preparation of samarium-iron (water) oxide powder
  • 120 ml of a 2 mol / L aqueous potassium hydroxide solution was added dropwise with stirring, and the mixture was stirred overnight at room temperature.
  • a liquid was prepared.
  • the suspension was filtered and the residue was washed, and then dried in air at 120 ° C. overnight using a hot air drying oven to prepare a sample.
  • the sample was coarsely pulverized by a blade mill and then finely pulverized in ethanol by a rotary mill using stainless balls. Next, after centrifugation, vacuum drying was performed to produce samarium-iron (water) oxide powder.
  • the samarium-iron (water) oxide powder was pre-reduced by heat treatment in a hydrogen stream at 700 ° C. for 6 hours to produce a samarium-iron powder.
  • the samarium-iron alloy powder was cooled to room temperature, then replaced with a hydrogen atmosphere, and the temperature was raised to 380 ° C. Next, the mixture is switched to an ammonia-hydrogen mixed gas stream with a volume ratio of 1: 2, and the temperature is raised to 420 ° C. and held for 1 hour to nitride the samarium-iron alloy powder, thereby coarsening the samarium-iron-nitrogen magnet powder. The product was made. Further, after annealing at 420 ° C. for 1 hour in hydrogen, annealing was performed at 420 ° C. for 0.5 hour in argon, thereby optimizing the nitrogen content of the samarium-iron-nitrogen magnet powder.
  • Example 2 and 3 A samarium-iron-nitrogen magnet powder was prepared in the same manner as in Example 1 except that the addition amount of zirconium chloride was changed to 45 mg and 227 mg, respectively, in the second reduction diffusion.
  • Example 4 Same as Example 1 except that 58 g of iron nitrate nonahydrate and 5 g of cobalt nitrate hexahydrate were used instead of 65 g of iron nitrate nonahydrate in preparation of samarium-iron (water) oxide powder. Thus, a samarium-iron-nitrogen magnet powder was produced.
  • Example 1 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 1 except that the second reduction diffusion was not performed.
  • a samarium-iron-nitrogen magnet powder was prepared in the same manner as in Example 1 except that samarium-iron alloy powder from which the samarium-rich phase was removed was used and calcium was added.
  • samarium-iron-nitrogen magnet powder was prepared in the same manner as in Example 1 except that 52 mg of aluminum chloride (AlCl 3 ) and 62 mg of chromium chloride (CrCl 3 ) were used instead of zirconium chloride. Produced.
  • Example 5 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 1 except that the following treatment was performed instead of the second reduction diffusion.
  • Zirconium powder 36 mg and samarium-iron alloy powder 1 g were mixed in 2-propanol for 6 hours by a ball mill and then vacuum-dried. Next, a mixture of zirconium powder and samarium-iron alloy powder was placed in an iron crucible and then heat treated at 730 ° C. to form a subphase.
  • Example 5 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 1 except that in the second reduction diffusion, heating was performed at 900 ° C. without using 2-propanol.
  • Example 6 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 1 except that the stirring time was changed to 60 minutes in the second reduction diffusion.
  • Example 7 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 2 except that zirconium chloride and samarium-iron alloy powder were placed in an iron crucible and heated at 900 ° C. in the second reduction diffusion.
  • Example 8 Samarium was prepared in the same manner as in Example 1 except that the addition amounts of iron nitrate nonahydrate and samarium nitrate hexahydrate were changed to 65 g and 11 g, respectively, in the production of the samarium-iron (water) oxide powder. -An iron-nitrogen magnet powder was prepared.
  • Example 9 Samarium was prepared in the same manner as in Example 1 except that the amount of iron nitrate nonahydrate and samarium nitrate hexahydrate was changed to 65 g and 10 g, respectively, in the preparation of the samarium-iron (water) oxide powder. -An iron-nitrogen magnet powder was prepared.
  • [Main phase] A portion of the samarium-iron-nitrogen magnet powders of Examples 1 to 9 and Comparative Examples 1 to 5 were collected and measured for X-ray diffraction (XRD) spectra. As a result, the main phase of each powder was Th 2 Zn 17 type. It was confirmed to have a structure. Further, from the peak position of the XRD spectrum, the samarium-iron-nitrogen magnet powders of Examples 1 to 9 and Comparative Examples 1 to 5 have an appropriate main phase lattice constant, that is, nitridation of the main phase. The amount was confirmed to be appropriate.
  • XRD X-ray diffraction
  • [Secondary phase] A portion of the samarium-iron-nitrogen magnet powder is sampled, kneaded with a thermosetting epoxy resin, thermally solidified, exposed to a focused ion beam (FIB) and etched to expose the cross section, A sample was prepared. The sample was observed using a scanning electron microscope (FE-SEM). Specifically, the composition of the main phase and the subphase was analyzed by energy dispersive X-ray spectroscopy (EDS). Here, the main phase and the subphase can be distinguished from each other by an FE-SEM reflected electron image or EDS mapping. In addition, when the subphase is particularly thin, it is necessary to use a scanning transmission electron microscope (STEM), but in the present embodiment, this is not necessary.
  • STEM scanning transmission electron microscope
  • the composition of the main phase and the subphase was calculated by performing 20 point analysis for each sample, and calculating the composition ratio of samarium, iron and zirconium as an average value.
  • the content of zirconium in the main phase was 0.1 at% or less, and zirconium was not substantially present in the main phase.
  • FIG. 3 shows an FE-SEM reflected electron image of a cross section of the samarium-iron-nitrogen magnet powder of Example 1.
  • FIG. 3 shows that the samarium-iron-nitrogen magnet powder of Example 1 has a core-shell structure in which the main phase is the core and the subphase is the shell.
  • a gray part is a main phase and a white part is a subphase.
  • the coverage of the surface of the main phase by the subphase is such that the circumference of the main phase in the cross section of the samarium-iron-nitrogen magnet powder observed in the FE-SEM reflected electron image and the subphase exist on the surface. It was calculated as an average value of 20 samarium-iron-nitrogen magnet powders as a ratio of the circumference of the main phase.
  • the samarium-iron-nitrogen magnet powder sintered between particles is used as one samarium-iron-nitrogen magnet powder as a secondary phase. The coverage of the surface of the main phase was calculated.
  • the arithmetic mean value of the equivalent circle diameters of 50 particles randomly selected from the FE-SEM secondary electron image of the surface of the samarium-iron-nitrogen magnet powder, that is, the average particle size was 0.95 ⁇ m. Met.
  • Table 1 shows Sm [at%], Fe + Co [at%], Zr [at%], Sm / m, as compositions of subphases of the samarium-iron-nitrogen magnet powders of Examples 1 to 9 and Comparative Examples 1 to 5.
  • Sm [at%], Fe + Co [at%], and Sm / (Fe + Co) were compiled with (Fe + Co) as the main phase composition. Further, the coverage of the surface of the main phase by the subphase [%] and the coercive force [kA / m] after heat treatment at 500 ° C. are also shown.
  • Table 1 shows the measurement results of the coercive force after heat treatment of samarium-iron-nitrogen magnet powder at 500 ° C.
  • Table 1 shows that the samarium-iron-nitrogen magnet powders of Examples 1 to 9 have a coercive force of 700 kA / m or more after heat treatment at 500 ° C.
  • the samarium-iron-nitrogen magnet powders of Comparative Examples 1, 3, and 4 are formed with a sub-phase that does not contain one or more elements selected from the group consisting of zirconium, molybdenum, vanadium, tungsten, and titanium. Therefore, the coercive force after heat treatment at 500 ° C. is low.
  • the samarium-iron-nitrogen magnet powders of Comparative Examples 2 and 5 have a low coercive force after heat treatment at 500 ° C. because the atomic ratio of samarium to iron in the subphase is smaller than that of the main phase.
  • the samarium-iron-nitrogen magnet powder of Comparative Example 5 has a particularly low coercive force after heat treatment at 500 ° C., which is because of the composition ratio of Fe and Zr in the secondary phase, ZrFe which is a soft magnetic phase. This is considered to be caused by the precipitation of two phases.
  • Example 10 to 13 In the second reduction diffusion, 266 mg of molybdenum chloride (MoCl 5 ), 153 mg of vanadium chloride (VCl 3 ), 386 mg of tungsten chloride (WCl 6 ), and 78 mg of titanium oxide (TiO 2 ) were used instead of zirconium chloride, respectively. In the same manner as in Example 7, samarium-iron-nitrogen magnet powder was produced.
  • MoCl 5 molybdenum chloride
  • VCl 3 vanadium chloride
  • WCl 6 tungsten chloride
  • TiO 2 titanium oxide
  • Table 2 shows the measurement results of coercive force after heat treatment of samarium-iron-nitrogen magnet powder at 500 ° C.
  • M means Mo, V, W, or Ti.
  • Table 2 shows that the samarium-iron-nitrogen magnet powders of Examples 10 to 13 also have a coercive force of 700 kA / m or more after heat treatment at 500 ° C.
  • a part (about 0.1 g) of samarium-iron-nitrogen magnet powder was collected by inert gas melting-non-dispersive infrared absorption method (NDIR), and the oxygen content was measured.
  • NDIR inert gas melting-non-dispersive infrared absorption method
  • Table 3 shows the measurement results of the oxygen content of the samarium-iron-nitrogen magnet powder.
  • the samarium-iron-nitrogen magnet powder of Comparative Example 1 has a high oxygen content because the second reductive diffusion is not performed.
  • a samarium-iron-nitrogen sintered magnet was produced using samarium-iron-nitrogen magnet powder.
  • the cross section of the samarium-iron-nitrogen sintered magnet was observed using a transmission electron microscope (TEM), and the composition of the subphase, the composition of the main phase, and the coverage of the surface of the main phase by the subphase were samarium-iron- It was confirmed that it was equivalent to nitrogen magnet powder.
  • TEM transmission electron microscope
  • Table 4 shows the measurement results of the coercive force of the samarium-iron-nitrogen sintered magnet.
  • Table 4 shows that the samarium-iron-nitrogen sintered magnet produced using the samarium-iron-nitrogen magnet powders of Examples 1, 3, and 12 has a coercive force of 700 kA / m or more.
  • the oxygen content of the samarium-iron-nitrogen sintered magnet was measured by an inert gas melting-non-dispersive infrared absorption method (NDIR).
  • Table 5 shows the measurement results of the oxygen content of the samarium-iron-nitrogen sintered magnet.
  • Table 5 shows that the samarium-iron-nitrogen sintered magnet produced using the samarium-iron-nitrogen magnet powder of Example 3 has a low oxygen content.
  • samarium-iron-nitrogen magnet powder has a higher Curie temperature and a smaller change in coercive force with temperature than neodymium magnets, it is possible to produce a magnet having both high magnetic properties and heat resistance.
  • Such magnets are used, for example, as raw materials for sintered magnets and bond magnets used in home appliances such as air conditioners, production robots, automobiles, etc., and used in motors, sensors, etc. that require high magnetic properties and heat resistance. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本発明の一態様は、サマリウム-鉄-窒素系磁石粉末において、サマリウムと、鉄を含む主相と、サマリウムと、鉄と、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素とを含み、鉄族元素に対する希土類元素の原子数比が、前記主相の鉄族元素に対する希土類元素の原子数比よりも大きい副相を有し、前記主相の表面の少なくとも一部が前記副相により被覆されていることを特徴とする。

Description

サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法
 本発明は、サマリウム-鉄-窒素系磁石粉末、サマリウム-鉄-窒素系磁石、サマリウム-鉄-窒素系磁石粉末の製造方法及びサマリウム-鉄-窒素系磁石の製造方法に関する。
 サマリウム-鉄-窒素磁石は、キュリー温度が477℃という高い値であること、磁気特性の温度変化が小さいこと、保磁力の理論値とされる異方性磁界が20.6MA/mという非常に高い値であることから、高性能磁石として期待されている。
 ここで、高性能磁石を作製するためには、サマリウム-鉄-窒素磁石粉末を焼結させる必要がある。
 しかしながら、サマリウム-鉄-窒素磁石粉末は、分解温度である620℃より低い温度で熱処理しても、保磁力が低下するという問題がある。
 特許文献1には、SmFe17合金粉末の表面にZrを被覆し、熱処理して粉末の表面にZrFe層を形成した後、磁場中で窒化処理し、SmFe17合金粉末とする方法が開示されている。
特開2015-142119号公報
 しかしながら、ZrFe層が表面に形成されているSmFe17合金粉末は、熱処理した後の保磁力が低い。
 本発明の一態様は、熱処理した後の保磁力が高いサマリウム-鉄-窒素系磁石粉末を提供することを目的とする。
 本発明の一態様は、サマリウム-鉄-窒素系磁石粉末において、サマリウムと、鉄を含む主相と、サマリウムと、鉄と、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素とを含み、鉄族元素に対する希土類元素の原子数比が、前記主相の鉄族元素に対する希土類元素の原子数比よりも大きい副相を有し、前記主相の表面の少なくとも一部が前記副相により被覆されている。
 本発明の一態様によれば、熱処理した後の保磁力が高いサマリウム-鉄-窒素系磁石粉末を提供することができる。
本実施形態のサマリウム-鉄-窒素系磁石の一例を示す模式図である。 図1のサマリウム-鉄-窒素系磁石の製造に用いられるサマリウム-鉄-窒素系磁石粉末を示す模式図である。 実施例1のサマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像である。
 以下、本発明を実施するための形態を説明する。なお、本発明は、以下の実施形態に記載した内容により限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は、適宜組み合わせることが可能である。
 [サマリウム-鉄-窒素系磁石粉末]
 本実施形態のサマリウム-鉄-窒素系磁石粉末は、サマリウムと、鉄を含む主相と、サマリウムと、鉄と、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素とを含み、鉄族元素に対する希土類元素の原子数比が、主相の鉄族元素に対する希土類元素の原子数比よりも大きい副相を有し、主相の表面の少なくとも一部が副相により被覆されている。このため、本実施形態のサマリウム-鉄-窒素系磁石粉末は、熱処理した後の保磁力が高い。
 なお、サマリウム-鉄-窒素系磁石粉末とは、サマリウム、鉄及び窒素を含む磁石粉末を意味する。
 副相の鉄族元素に対する希土類元素の原子数比は、副相の非磁性化の面から、0.15以上であることが好ましいが、SmFe軟磁性相が析出しにくくなることから、0.20以上であることが好ましい。また、副相の鉄族元素に対する希土類元素の原子数比は、熱処理した後の保磁力がさらに向上することから、0.50以上であることが好ましく、1.00以上であることがさらに好ましい。
 ここで、副相は、後述するように、サマリウムリッチ相にジルコニウムが添加されることで、耐酸化性が向上するため、熱処理した後の保磁力が向上すると考えられる。この理由は定かではないが、ジルコニウムは、反応性が低く、不動態を形成する元素であるためであると考えられる。なお、熱処理した後の保磁力が高いサマリウム-鉄-窒素系磁石粉末を用いると、高性能磁石を作製することができる。
 なお、ジルコニウム以外の不動態を形成する元素としては、アルミニウム、クロム等が知られているが、これらの元素を用いても、サマリウム-鉄-窒素系磁石粉末の熱処理した後の保磁力は向上しない。これは、サマリウムリッチ相以外の金属間化合物等が形成されること、融点が高いため、均一な副相が形成されないことが影響していると考えられる。
 また、サマリウムとジルコニウム、鉄とジルコニウムの状態図は、共晶型の一種であり、サマリウム、鉄、ジルコニウムを含む液相は、混合しやすい状態にあると考えられる。ジルコニウムが副相に適した元素であることは、このような化学的性質によるものと考えられる。
 さらに、ジルコニウムの代わりに、又は、ジルコニウムと共に、モリブデン、バナジウム、タングステン、チタンを副相に添加しても、熱処理した後の保磁力が向上する効果が得られる。
 サマリウム-鉄-窒素系磁石粉末は、コア・シェル構造を有する、即ち、主相を含むコアの表面の少なくとも一部に、シェルとしての副相が存在する。
 副相の厚さは、通常、1nm~100nm程度である。
 副相による主相の表面の被覆率は、10%以上であることが好ましく、50%以上であることがさらに好ましい。副相による主相の表面の被覆率が10%以上であると、サマリウム-鉄-窒素系磁石粉末の熱処理した後の保磁力がさらに向上する。
 副相は、サマリウム、鉄、ジルコニウム以外の元素が含まれていてもよいが、その比率は、サマリウム、鉄、ジルコニウムの各元素の比率より小さいことが好ましい。
 サマリウム-鉄-窒素系磁石粉末の主相の結晶構造は、ThZn17型構造及びTbCu型構造のいずれであってもよいが、ThZn17型構造であることが好ましい。これにより、サマリウム-鉄-窒素系磁石粉末の熱処理した後の保磁力がさらに向上する。
 また、サマリウム-鉄-窒素系磁石粉末は、副相以外の相をさらに含んでいてもよい。
 ここで、サマリウム-鉄-窒素系磁石粉末は、軟磁性を示す鉄を多く含むと、磁気特性が低下するため、製造時にサマリウムを量論比よりも過剰に加える。
 サマリウム-鉄-窒素系磁石粉末は、ネオジム、プラセオジム等のサマリウム以外の希土類元素、コバルト等の鉄以外の鉄族元素をさらに含んでいてもよい。なお、全希土類元素中のサマリウム以外の希土類元素の含有量、全鉄族元素中の鉄以外の鉄族元素の含有量は、異方性磁界や磁化の面から、それぞれ30at%未満であることが好ましい。
 サマリウム-鉄-窒素系磁石粉末の平均粒径は、1.0μm以下であることが好ましい。サマリウム-鉄-窒素系磁石粉末の平均粒径が1.0μm以下であると、サマリウム-鉄-窒素系磁石粉末の比表面積が大きくなるため、副相の効果が得られやすくなり、その結果、サマリウム-鉄-窒素系磁石粉末の熱処理した後の保磁力がさらに向上する。
 サマリウム-鉄-窒素系磁石粉末は、後述するように、不活性ガス雰囲気下で還元拡散して、副相が形成されているため、サマリウム-鉄-窒素系磁石粉末中の酸素含有量は、通常、1.2質量%以下となる。
 サマリウム-鉄-窒素系磁石粉末は、後述するように、カルシウム化合物を溶解させることが可能な溶媒で洗浄されているため、サマリウム-鉄-窒素系磁石粉末中の酸素含有量は、通常、0.8質量%以上となる。副相が、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素を含む場合、これらの元素が不動態を形成することで、サマリウム-鉄-窒素系磁石粉末の耐酸化性が向上し、サマリウム-鉄-窒素系磁石粉末中の酸素含有量を適切な範囲にすることができる。
 [サマリウム-鉄-窒素系磁石粉末の製造方法]
 本実施形態のサマリウム-鉄-窒素系磁石粉末の製造方法は、サマリウム-鉄系合金の前駆体粉末を不活性ガス雰囲気下で還元拡散して(以下、第一の還元拡散という)、サマリウム-鉄系合金粉末を作製する工程と、サマリウム-鉄系合金粉末と、ジルコニウム化合物、モリブデン化合物、バナジウム化合物、タングステン化合物及びチタン化合物からなる群より選択される一種以上の化合物との混合物を不活性ガス雰囲気下で還元拡散して(以下、第二の還元拡散という)、副相を形成する工程と、副相が形成されたサマリウム-鉄系合金粉末を窒化する工程と、窒化されたサマリウム-鉄系合金粉末(サマリウム-鉄-窒素系磁石粉末の粗生成物)を、カルシウム化合物を溶解させることが可能な溶媒で洗浄する工程を含む。ここで、サマリウム-鉄系合金粉末を窒化する前に副相を形成することで、主相の分解や磁気特性の低下を抑制することができる。また、不活性ガス雰囲気下で還元拡散して、副相を形成することで、サマリウム-鉄-窒素系磁石粉末中の酸素含有量が少なくなり、サマリウム-鉄-窒素系磁石粉末の熱処理した後の保磁力が向上する。
 不活性ガスとしては、アルゴン等が挙げられる。ここで、サマリウム-鉄-窒素系磁石粉末の窒化量を制御するために、還元拡散する際に窒素ガスを使用しないことが好ましい。
 また、ガス精製装置等を用いて、不活性ガス雰囲気中の酸素濃度を1ppm以下に制御することが好ましい。
 以下、本実施形態のサマリウム-鉄-窒素系磁石粉末の製造方法を具体的に説明する。
 〔サマリウム-鉄系合金の前駆体粉末〕
 サマリウム-鉄系合金の前駆体粉末としては、還元拡散することにより、サマリウム-鉄系合金粉末を生成することが可能であれば、特に限定されないが、サマリウム-鉄系酸化物粉末、サマリウム-鉄系水酸化物粉末等が挙げられ、二種以上併用してもよい。
 以下、サマリウム-鉄系酸化物粉末及び/又はサマリウム-鉄系水酸化物粉末を、サマリウム-鉄系(水)酸化物粉末という。
 なお、サマリウム-鉄系合金粉末とは、サマリウム及び鉄を含む合金粉末を意味する。
 サマリウム-鉄系(水)酸化物粉末は、共沈法により作製することができる。具体的には、まず、サマリウム塩と鉄塩を含む溶液にアルカリ等の沈澱剤を添加することで、サマリウム-鉄系化合物(主に水酸化物)の沈澱を析出させた後、ろ過、遠心分離等により沈殿を回収する。次に、沈殿を洗浄した後、乾燥させることで、サマリウム-鉄系(水)酸化物が得られる。さらに、サマリウム-鉄系(水)酸化物をブレードミル等で粗粉砕した後に、ビーズミル等で微粉砕することで、サマリウム-鉄系(水)酸化物粉末が得られる。
 サマリウム塩及び鉄塩における対イオンとしては、塩化物イオン、硫酸イオン、硝酸イオン等の無機イオン、アルコキシド等の有機イオン等が挙げられる。
 サマリウム塩と鉄塩とを含む溶液に含まれる溶媒としては、水、エタノール等の有機溶媒等が挙げられる。
 アルカリとしては、アルカリ金属及びアルカリ土類金属の水酸化物、アンモニア等が挙げられる。
 なお、沈殿剤の代わりに、尿素等の熱等の外的作用で分解して沈澱剤となる沈殿剤の前駆体を用いてもよい。
 洗浄した沈殿を乾燥させる際には、熱風オーブンを用いてもよいし、真空乾燥機を用いてもよい。
 なお、サマリウム-鉄系合金の前駆体粉末を作製した後、サマリウム-鉄-窒素系磁石粉末が得られるまでの工程は、グローブボックス等を用いて、大気に曝すことなく、実施される。
 [予還元〕
 サマリウム-鉄系合金の前駆体粉末が酸化鉄又は鉄化合物を含む場合は、サマリウム-鉄系合金の前駆体粉末を還元拡散する前に、予還元し、酸化サマリウム-鉄系粉末にすることが好ましい。これにより、サマリウム-鉄系合金粉末の粒径を小さくすることができる。
 なお、酸化サマリウム-鉄系粉末とは、酸化サマリウム及び鉄を含む粉末を意味する。
 サマリウム-鉄系合金の前駆体粉末を予還元する方法としては、特に限定されないが、水素等の還元性雰囲気中、400℃以上の温度でサマリウム-鉄系合金の前駆体粉末を熱処理する方法等が挙げられる。
 例えば、平均粒径が1.0μm以下のサマリウム-鉄系合金粉末を得るためには、500℃~800℃でサマリウム-鉄系(水)酸化物粉末を予還元する。
 [第一の還元拡散]
 酸化サマリウム-鉄系粉末を不活性ガス雰囲気下で還元拡散する方法としては、特に限定されないが、カルシウム又は水素化カルシウムと、酸化サマリウム-鉄系粉末を混合した後、カルシウムの融点以上の温度(約850℃)に加熱する方法等が挙げられる。このとき、カルシウムにより還元されたサマリウムがカルシウム融液中を拡散し、鉄等と反応することで、サマリウム-鉄系合金粉末が生成する。
 還元拡散する温度とサマリウム-鉄系合金粉末の粒径との間には相関があり、還元拡散する温度が高い程、サマリウム-鉄系合金粉末の粒径が大きくなる。
 例えば、平均粒径が1.0μm以下のサマリウム-鉄系合金粉末を得るためには、酸化サマリウム-鉄系粉末を、不活性ガス雰囲気下、850℃~950℃で1分間~2時間程度還元拡散する。
 酸化サマリウム-鉄系粉末は、還元拡散の進行に伴って結晶化が進行し、ThZn17型構造又はTbCu型構造を有する主相が形成される。このとき、主相の表面に、サマリウム、鉄を含み、鉄に対するサマリウムの原子数比が主相よりも大きいサマリウムリッチ相が形成される。
 [第二の還元拡散]
 サマリウム-鉄系合金粉末と、ジルコニウム化合物、モリブデン化合物、バナジウム化合物、タングステン化合物及びチタン化合物からなる群より選択される一種以上の化合物との混合物を不活性ガス雰囲気下で還元拡散する方法としては、特に限定されないが、カルシウム又は水素化カルシウムと上記混合物とを混合した後、カルシウムの融点以上の温度(約850℃)に加熱する方法等が挙げられる。このとき、カルシウムにより還元されたジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素がカルシウム融液中を拡散し、サマリウムリッチ相と反応することで、副相が形成される。
 なお、ジルコニウム化合物、モリブデン化合物、バナジウム化合物、タングステン化合物及びチタン化合物からなる群より選択される一種以上の化合物に加えて、サマリウム化合物、鉄化合物を還元して、副相を形成してもよい。
 ジルコニウム化合物としては、例えば、塩化ジルコニウム、硫化ジルコニウム、酸化ジルコニウム等が挙げられる。
 モリブデン化合物としては、例えば、塩化モリブデン、モリブデン酸アンモニウム、酸化モリブデン等が挙げられる。
 バナジウム化合物としては、例えば、塩化バナジウム、バナジン酸アンモニウム、酸化バナジウム等が挙げられる。
 タングステン化合物としては、例えば、塩化タングステン、タングステン酸アンモニウム、酸化バナジウム等が挙げられる。
 チタン化合物としては、例えば、酸化チタン、チタンアルコキシド、塩化チタン等が挙げられる。
 サマリウム-鉄系合金粉末と、ジルコニウム化合物、モリブデン化合物、バナジウム化合物、タングステン化合物及びチタン化合物からなる群より選択される一種以上の化合物との混合物の作製方法としては、例えば、上記化合物を溶媒に溶解させた後、サマリウム-鉄系合金粉末にコーティングする方法等が挙げられる。
 溶媒としては、上記化合物を溶解することが可能であれば、特に限定されないが、2-プロパノール等が挙げられる。
 [窒化]
 サマリウム-鉄系合金粉末を窒化する方法としては、特に限定されないが、アンモニア、アンモニアと水素の混合ガス、窒素、窒素と水素の混合ガス等の雰囲気下、300℃~500℃でサマリウム-鉄系合金粉末を熱処理する方法等が挙げられる。
 サマリウム-鉄-窒素系磁石粉末の主相の組成は、磁力を高くするために、SmFe17が最適である。
 なお、アンモニアを用いる場合、サマリウム-鉄系合金粉末を短時間で窒化することが可能であるが、サマリウム-鉄-窒素系磁石粉末中の窒素含有量が最適値よりも高くなる可能性がある。この場合は、サマリウム-鉄系合金粉末を窒化した後に、サマリウム-鉄-窒素系磁石粉末を水素中でアニールすることで、過剰な窒素を結晶格子から排出させ、サマリウム-鉄-窒素系磁石粉末中の窒素含有量を適正化することができる。
 例えば、アンモニア-水素混合気流下、サマリウム-鉄系合金粉末を350℃~450℃で10分~2時間熱処理した後、水素気流下に切り替え、350℃~450℃で30分~2時間アニールする。
 [洗浄]
 サマリウム-鉄-窒素系磁石粉末の粗生成物は、酸化カルシウム、未反応の金属カルシウム、金属カルシウムが窒化した窒化カルシウム、水素化カルシウム等のカルシウム化合物を含むため、カルシウム化合物を溶解させることが可能な溶媒で洗浄する。
 カルシウム化合物を溶解させることが可能な溶媒としては、特に限定されないが、水、アルコール等が挙げられる。これらの中でも、コストやカルシウム化合物の溶解性の点で、水が好ましい。
 例えば、サマリウム-鉄-窒素系磁石粉末の粗生成物を水に加え、撹拌及びデカンテーションを繰り返すことで、カルシウム化合物を除去することができる。
 なお、サマリウム-鉄系合金粉末を窒化する前に、カルシウム化合物を溶解させることが可能な溶媒でサマリウム-鉄系合金粉末を洗浄してもよい。
 [真空乾燥]
 洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物は、カルシウム化合物を溶解させることが可能な溶媒を除去するために、真空乾燥させることが好ましい。
 洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を真空乾燥させる温度は、常温~100℃であることが好ましい。これにより、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物の酸化を抑制することができる。
 なお、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物をアルコール類等の揮発性が高く、水と混和することが可能な有機溶媒で置換した後、真空乾燥させてもよい。
 [脱水素]
 サマリウム-鉄-窒素系磁石粉末の粗生成物を洗浄する際に、結晶格子に水素が侵入する場合がある。この場合、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を脱水素することが好ましい。
 洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を脱水素する方法としては、特に限定されないが、真空中又は不活性ガス雰囲気中で、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を熱処理する方法等が挙げられる。
 例えば、アルゴン気流下、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を150℃~450℃で0~1時間熱処理する。
 [解砕]
 洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を解砕してもよい。これにより、サマリウム-鉄-窒素系磁石粉末の残留磁化及び最大エネルギー積が向上する。
 例えば、ジェットミル、乾式及び湿式のボールミル、振動ミル、媒体撹拌ミル等を用いて、粉砕より弱い条件で、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を解砕する。ここで、粉砕より弱い条件とは、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を粉砕しない条件を意味する。例えば、ジェットミルを用いる場合、ガス流量や流速を制御する。
 なお、洗浄されたサマリウム-鉄-窒素系磁石粉末の粗生成物を解砕する代わりに、サマリウム-鉄系合金粉末を解砕してもよい。
 ここで、サマリウム-鉄系合金粉末を作製した後、粉砕しないことが好ましい。例えば、主相の表面にサマリウムリッチ相が形成されているサマリウム-鉄系合金粉末を粉砕すると、粒子の表面の一部が破断面となり、サマリウムリッチ相による主相の表面の被覆率が低下する。
 [サマリウム-鉄-窒素系磁石の製造方法]
 本実施形態のサマリウム-鉄-窒素系磁石は、本実施形態のサマリウム-鉄-窒素系磁石粉末を用いて、製造することができる。
 例えば、サマリウム-鉄-窒素系磁石粉末を所定の形状に成形した後、焼結すると、サマリウム-鉄-窒素系焼結磁石が得られる。
 [成形]
 サマリウム-鉄-窒素系磁石粉末を成形する際に、磁場を印加しながら、サマリウム-鉄-窒素系磁石粉末を成形してもよい。これにより、サマリウム-鉄-窒素系磁石粉末の成形体が特定方向に配向するため、磁気特性の高い異方性磁石が得られる。
 [焼結]
 サマリウム-鉄-窒素系磁石粉末の成形体を焼結すると、サマリウム-鉄-窒素系磁石が得られる。
 サマリウム-鉄-窒素系磁石粉末の成形体を焼結する方法としては、特に限定されないが、放電プラズマ法、ホットプレス法等が挙げられる。
 なお、同一の装置を用いて、サマリウム-鉄-窒素系磁石粉末の成形と、サマリウム-鉄-窒素系磁石粉末の成形体の焼結を実施することもできる。
 [サマリウム-鉄-窒素系磁石]
 本実施形態のサマリウム-鉄-窒素系磁石は、サマリウムと、鉄を含む主相と、サマリウムと、鉄と、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素とを含み、鉄族元素に対する希土類元素の原子数比が、主相の鉄族元素に対する希土類元素の原子数比よりも大きい副相を有する。
 本実施形態のサマリウム-鉄-窒素系磁石は、焼結磁石及びボンド磁石のいずれであってもよい。
 図1に、サマリウム-鉄-窒素系磁石の一例として、サマリウム-鉄-窒素系焼結磁石を示す。
 サマリウム-鉄-窒素系焼結磁石10は、サマリウムと、鉄を含む主相11と、サマリウムと、鉄と、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素とを含み、鉄族元素に対する希土類元素の原子数比が、主相11の鉄族元素に対する希土類元素の原子数比よりも大きい副相12を有する。ここで、隣接する主相11の境界領域に、副相12が存在する。
 なお、サマリウム-鉄-窒素系焼結磁石10は、主相11の表面が副相12により被覆されているサマリウム-鉄-窒素系磁石粉末20(図2参照)を用いて、製造することができる。
 以下、本発明の実施例を説明するが、本発明は、以下の実施例に限定されるものではない。
 [実施例1]
 (サマリウム-鉄(水)酸化物粉末の作製)
 硝酸鉄九水和物65g及び硝酸サマリウム六水和物13gを水800mlに溶解させた後、撹拌しながら、2mol/L水酸化カリウム水溶液120mlを滴下し、室温下で一晩撹拌し、懸濁液を作製した。懸濁液をろ過し、濾物を洗浄した後、熱風乾燥オーブンを用いて、空気中、120℃で一晩乾燥させ、サンプルを作製した。サンプルを、ブレードミルにより粗粉砕した後、ステンレスボールを用いる回転ミルにより、エタノール中、微粉砕した。次に、遠心分離した後、真空乾燥させ、サマリウム-鉄(水)酸化物粉末を作製した。
 以下の工程は、グローブボックスの中で、アルゴン雰囲気下、大気に曝すことなく、実施した。
 (予還元)
 サマリウム-鉄(水)酸化物粉末を、水素気流中、700℃で6時間熱処理することにより予還元し、酸化サマリウム-鉄粉末を作製した。
 (第一の還元拡散)
 酸化サマリウム-鉄粉末5gとカルシウム2.5gを鉄製るつぼに入れた後、900℃で1時間加熱することにより還元拡散し、主相の表面にサマリウムリッチ相が形成されているサマリウム-鉄合金粉末を作製した。ここで、サマリウム-鉄合金粉末中に、次工程の還元拡散に必要なカルシウムが残留するように、カルシウムが添加されている。
 (第二の還元拡散)
 塩化ジルコニウム(ZrCl)91mgが2-プロパノール15mlに溶解している溶液にサマリウム-鉄合金粉末1gを入れて、30分間撹拌した後、真空乾燥させた。次に、塩化ジルコニウムとサマリウム-鉄合金粉末の混合物を鉄るつぼに入れ、850℃で加熱することにより還元拡散し、副相を形成した。
 (窒化)
 サマリウム-鉄合金粉末を常温まで冷却した後、水素雰囲気に置換し、380℃まで昇温した。次に、体積比が1:2のアンモニア-水素混合気流に切り替え、420℃まで昇温し、1時間保持することで、サマリウム-鉄合金粉末を窒化し、サマリウム-鉄-窒素磁石粉末の粗生成物を作製した。さらに、水素中、420℃で1時間アニールした後、アルゴン中、420℃で0.5時間アニールすることで、サマリウム-鉄-窒素磁石粉末の窒素含有量を適正化した。
 (洗浄)
 サマリウム-鉄-窒素磁石粉末の粗生成物を純水で5回洗浄し、カルシウム化合物を除去した。
 (真空乾燥)
 洗浄されたサマリウム-鉄-窒素磁石粉末の粗生成物に残留する水を2-プロパノールで置換した後、常温で真空乾燥させた。
 (脱水素)
 乾燥したサマリウム-鉄-窒素磁石粉末の粗生成物を、真空中、200℃で3時間脱水素し、サマリウム-鉄-窒素磁石粉末を作製した。
 [実施例2、3]
 第二の還元拡散において、塩化ジルコニウムの添加量を、それぞれ45mg、227mgに変更した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [実施例4]
 サマリウム-鉄(水)酸化物粉末の作製において、硝酸鉄九水和物65gの代わりに、硝酸鉄九水和物58g、硝酸コバルト六水和物5gを用いた以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [比較例1]
 第二の還元拡散を実施しなかった以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [比較例2]
 第一の還元拡散の後、サマリウム-鉄合金粉末を純水で洗浄し、カルシウム化合物を除去した。次に、洗浄されたサマリウム-鉄合金粉末をpH5.5の酢酸水溶液で15分間の洗浄し、サマリウムリッチ相を除去した。
 第二の還元拡散において、サマリウムリッチ相が除去されたサマリウム-鉄合金粉末を用い、カルシウムを添加した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [比較例3、4]
 第二の還元拡散において、塩化ジルコニウムの代わりに、塩化アルミニウム(AlCl)52mg、塩化クロム(CrCl)62mgを用いた以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [比較例5]
 第二の還元拡散の代わりに、以下の処理を実施した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 ジルコニウム粉末36mgとサマリウム-鉄合金粉末1gを、ボールミルにより、2-プロパノール中、6時間混合した後、真空乾燥させた。次に、ジルコニウム粉末とサマリウム-鉄合金粉末の混合物を鉄るつぼに入れた後、730℃で熱処理し、副相を形成した。
 [実施例5]
 第二の還元拡散において、2-プロパノールを用いず、900℃で加熱した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [実施例6]
 第二の還元拡散において、撹拌時間を60分間に変更した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [実施例7]
 第二の還元拡散において、塩化ジルコニウムとサマリウム-鉄合金粉末を鉄るつぼに入れ、900℃で加熱した以外は、実施例2と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [実施例8]
 サマリウム-鉄(水)酸化物粉末の作製において、硝酸鉄九水和物、硝酸サマリウム六水和物の添加量を、それぞれ65g、11gに変更した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 [実施例9]
 サマリウム-鉄(水)酸化物粉末の作製において、硝酸鉄九水和物、硝酸サマリウム六水和物の添加量を、それぞれ65g、10gに変更した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 次に、サマリウム-鉄-窒素磁石粉末の主相及び副相を分析した。
 [主相]
 実施例1~9、比較例1~5のサマリウム-鉄-窒素磁石粉末の一部を採取し、X線回折(XRD)スペクトルを測定したところ、いずれの粉末も主相がThZn17型構造を有することを確認した。また、XRDスペクトルのピーク位置から、実施例1~9、比較例1~5のサマリウム-鉄-窒素磁石粉末は、いずれの粉末も主相の格子定数が適切である、即ち、主相の窒化量が適切であることを確認した。
 [副相]
 サマリウム-鉄-窒素磁石粉末の一部を採取し、熱硬化性エポキシ樹脂と混錬し、熱固化した後、集束イオンビーム(FIB)を照射してエッチング加工することにより、断面を露出させ、試料を作製した。走査型電子顕微鏡(FE-SEM)を用いて、試料を観察した。具体的には、エネルギー分散型X線分光法(EDS)により、主相と副相の組成を分析した。ここで、主相と副相は、FE-SEM反射電子像又はEDSマッピングにより、区別することができる。なお、副相が特に薄い場合には、走査透過型電子顕微鏡(STEM)を用いる必要があるが、本実施例では、その必要は無かった。ここで、主相と副相の組成は、各試料について、点分析を20点実施し、サマリウム、鉄、ジルコニウムの組成比を平均値として算出した。なお、主相中のジルコニウムの含有量は、0.1at%以下となり、ジルコニウムは、主相中に実質的に存在しなかった。
 図3に、実施例1のサマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像を示す。図3から、実施例1のサマリウム-鉄-窒素磁石粉末は、主相をコア、副相をシェルとするコア・シェル構造を有することがわかる。ここで、図3において、灰色部が主相であり、白色部が副相である。
 なお、副相による主相の表面の被覆率は、FE-SEM反射電子像で観察されたサマリウム-鉄-窒素磁石粉末の断面における、主相の周囲の長さと、表面に副相が存在している主相の周囲の長さの比とし、20個のサマリウム-鉄-窒素磁石粉末の平均値として算出した。なお、サマリウム-鉄-窒素磁石粉末同士が粒子間焼結している場合は、粒子間焼結しているサマリウム-鉄-窒素磁石粉末を1個のサマリウム-鉄-窒素磁石粉末として、副相による主相の表面の被覆率を算出した。
 また、サマリウム-鉄-窒素磁石粉末の表面のFE-SEM2次電子像から無作為に選択した50個の粒子の円相当径の算術平均値、即ち、平均粒径を求めたところ、0.95μmであった。
 表1に、実施例1~9、比較例1~5のサマリウム-鉄-窒素磁石粉末の副相の組成として、Sm[at%]、Fe+Co[at%]、Zr[at%]、Sm/(Fe+Co)を、主相の組成として、Sm[at%]、Fe+Co[at%]、Sm/(Fe+Co)をまとめた。また、副相による主相の表面の被覆率[%]、500℃で熱処理した後の保磁力[kA/m]も合わせて記載した。
 次に、サマリウム-鉄-窒素磁石粉末の500℃で熱処理した後の保磁力を測定した。
 [500℃で熱処理した後の保磁力]
 グローブボックスの中に設置した熱処理装置を用いて、サマリウム-鉄-窒素磁石粉末の一部を採取し、真空雰囲気下、500℃で5分間熱処理した後、熱可塑性樹脂と混合し、1592kA/mの磁場中で配向させ、ボンド磁石を作製した。次に、振動試料型磁力計(VSM)を用いて、温度27℃、最大印加磁場7162kA/mの条件で、磁化容易軸方向にボンド磁石を設置し、保磁力を測定した。
 表1に、サマリウム-鉄-窒素磁石粉末の500℃で熱処理した後の保磁力の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~9のサマリウム-鉄-窒素磁石粉末は、500℃で熱処理した後の保磁力が700kA/m以上であることがわかる。
 これに対して、比較例1、3、4のサマリウム-鉄-窒素磁石粉末は、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素を含まない副相が形成されているため、500℃で熱処理した後の保磁力が低い。
 また、比較例2、5のサマリウム-鉄-窒素磁石粉末は、副相の鉄に対するサマリウムの原子数比が主相よりも小さいため、500℃で熱処理した後の保磁力が低い。ここで、比較例5のサマリウム-鉄-窒素磁石粉末は、500℃で熱処理した後の保磁力が特に低いが、これは、副相のFe、Zrの組成比から、軟磁性相であるZrFe相が析出したことが原因であると考えられる。
 [実施例10~13]
 第二の還元拡散において、塩化ジルコニウムの代わりに、それぞれ塩化モリブデン(MoCl)266mg、塩化バナジウム(VCl)153mg、塩化タングステン(WCl)386mg、酸化チタン(TiO)78mgを用いた以外は、実施例7と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 表2に、サマリウム-鉄-窒素磁石粉末の500℃で熱処理した後の保磁力の測定結果を示す。なお、表2中、Mは、Mo、V、W又はTiを意味する。
Figure JPOXMLDOC01-appb-T000002
 表2から、実施例10~13のサマリウム-鉄-窒素磁石粉末も、500℃で熱処理した後の保磁力が700kA/m以上であることがわかる。
 次に、不活性ガス融解-非分散型赤外線吸収法(NDIR)により、サマリウム-鉄-窒素磁石粉末の一部(0.1g程度)を採取し、酸素含有量を測定した。
 表3に、サマリウム-鉄-窒素磁石粉末の酸素含有量の測定結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、実施例3、10~13のサマリウム-鉄-窒素磁石粉末は、酸素含有量が低いことがわかる。
 これに対して、比較例1のサマリウム-鉄-窒素磁石粉末は、第二の還元拡散を実施していないため、酸素含有量が高い。
 次に、サマリウム-鉄-窒素磁石粉末を用いて、サマリウム-鉄-窒素焼結磁石を作製した。
 [サマリウム-鉄-窒素焼結磁石の作製]
 本実施例では、等方性のサマリウム-鉄-窒素焼結磁石を作製した。具体的には、グローブボックスの中で、サマリウム-鉄-窒素磁石粉末0.5gを大きさ5.5mm×5.5mmの超硬合金製直方体型のダイに充填した後、大気に暴すことなく、サーボ制御型プレス装置による加圧機構を備えた放電プラズマ焼結装置内に設置した。次に、放電プラズマ焼結装置内を真空(圧力2Pa以下及び酸素濃度0.4ppm以下)に保持した状態で、圧力1200MPa、温度500℃の条件で、1分間の通電焼結し、サマリウム-鉄-窒素焼結磁石を作製した。次に、不活性ガスで大気圧に戻した後、温度が60℃以下になってから、サマリウム-鉄-窒素焼結磁石を大気中に取り出した。
 サマリウム-鉄-窒素焼結磁石の断面を、透過型電子顕微鏡(TEM)を用いて観察し、副相の組成、主相の組成及び副相による主相の表面の被覆率がサマリウム-鉄-窒素磁石粉末と同等であることを確認した。
 次に、サマリウム-鉄-窒素焼結磁石の保磁力を測定した。
 [保磁力]
 振動試料型磁力計(VSM)を用いて、温度27℃、最大印加磁場7162kA/mの条件で、サマリウム-鉄-窒素焼結磁石の保磁力を測定した。
 表4に、サマリウム-鉄-窒素焼結磁石の保磁力の測定結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表4から、実施例1、3、12のサマリウム-鉄-窒素磁石粉末を用いて作製されているサマリウム-鉄-窒素焼結磁石は、保磁力が700kA/m以上であることがわかる。
 これに対して、比較例1のサマリウム-鉄-窒素磁石粉末を用いて作製されているサマリウム-鉄-窒素焼結磁石の保磁力が低い。
 次に、不活性ガス融解-非分散型赤外線吸収法(NDIR)により、サマリウム-鉄-窒素焼結磁石の酸素含有量を測定した。
 表5に、サマリウム-鉄-窒素焼結磁石の酸素含有量の測定結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表5から、実施例3のサマリウム-鉄-窒素磁石粉末を用いて作製されているサマリウム-鉄-窒素焼結磁石は、酸素含有量が低いことがわかる。
 サマリウム-鉄-窒素磁石粉末は、ネオジム磁石に対し、キュリー温度が高く、温度に対する保磁力の変化が小さいため、高い磁気特性と耐熱性を併せ持った磁石を製造することが可能である。このような磁石は、例えば、エアコン等の家電製品、生産ロボット、自動車等に搭載され、高い磁性特性と耐熱性が求められるモーター、センサー等に使用される焼結磁石及びボンド磁石の原料として利用することができる。
 本願は、日本特許庁に2018年3月29日に出願された基礎出願2018-065356号の優先権を主張するものであり、その全内容を参照によりここに援用する。

Claims (6)

  1.  サマリウムと、鉄を含む主相と、
     サマリウムと、鉄と、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素とを含み、鉄族元素に対する希土類元素の原子数比が、前記主相の鉄族元素に対する希土類元素の原子数比よりも大きい副相を有し、
     前記主相の表面の少なくとも一部が前記副相により被覆されていることを特徴とするサマリウム-鉄-窒素系磁石粉末。
  2.  前記副相による前記主相の表面の被覆率が10%以上であることを特徴とする請求項1に記載のサマリウム-鉄-窒素系磁石粉末。
  3.  前記副相は、鉄族元素に対する希土類元素の原子数比が0.50以上であることを特徴とする請求項1に記載のサマリウム-鉄-窒素系磁石粉末。
  4.  サマリウムと、鉄を含む主相と、
     サマリウムと、鉄と、ジルコニウム、モリブデン、バナジウム、タングステン及びチタンからなる群より選択される一種以上の元素とを含み、鉄族元素に対する希土類元素の原子数比が、前記主相の鉄族元素に対する希土類元素の原子数比よりも大きい副相を有することを特徴とするサマリウム-鉄-窒素系磁石。
  5.  請求項1に記載のサマリウム-鉄-窒素系磁石粉末を製造する方法であって、
     サマリウム-鉄系合金の前駆体粉末を不活性ガス雰囲気下で還元拡散して、サマリウム-鉄系合金粉末を作製する工程と、
     該サマリウム-鉄系合金粉末と、ジルコニウム化合物、モリブデン化合物、バナジウム化合物、タングステン化合物及びチタン化合物からなる群より選択される一種以上の化合物との混合物を不活性ガス雰囲気下で還元拡散して、副相を形成する工程と、
     該副相が形成されたサマリウム-鉄系合金粉末を窒化する工程を含み、
     前記副相が形成されたサマリウム-鉄系合金粉末又は前記窒化されたサマリウム-鉄系合金粉末を、カルシウム化合物を溶解させることが可能な溶媒で洗浄する工程をさらに含むことを特徴とするサマリウム-鉄-窒素系磁石粉末の製造方法。
  6.  請求項1に記載のサマリウム-鉄-窒素系磁石粉末を用いて、サマリウム-鉄-窒素系磁石を製造することを特徴とするサマリウム-鉄-窒素系磁石の製造方法。
PCT/JP2019/013316 2018-03-29 2019-03-27 サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法 WO2019189440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/042,443 US11798739B2 (en) 2018-03-29 2019-03-27 Samarium-iron-nitrogen based magnet powder and method of manufacturing same, and samarium-iron-nitrogen based magnet and method of manufacturing same
CN201980023125.7A CN111937095B (zh) 2018-03-29 2019-03-27 钐-铁-氮系磁铁粉末及其制造方法以及钐-铁-氮系磁铁及其制造方法
JP2020509237A JP7017744B2 (ja) 2018-03-29 2019-03-27 サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065356 2018-03-29
JP2018065356 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019189440A1 true WO2019189440A1 (ja) 2019-10-03

Family

ID=68062013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013316 WO2019189440A1 (ja) 2018-03-29 2019-03-27 サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法

Country Status (4)

Country Link
US (1) US11798739B2 (ja)
JP (1) JP7017744B2 (ja)
CN (1) CN111937095B (ja)
WO (1) WO2019189440A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200834A1 (ja) * 2020-03-30 2021-10-07 Tdk株式会社 サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末
CN113628822A (zh) * 2021-07-20 2021-11-09 华为技术有限公司 SmFeN永磁体及其制备方法、电机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113510247B (zh) * 2021-04-23 2022-11-22 兰州大学 一种Ce2Fe17及Ce2Fe17N3合金粉末的制备方法
CN116487169B (zh) * 2023-03-30 2023-10-13 广东省科学院资源利用与稀土开发研究所 一种低成本核壳结构的钕铁氮磁粉及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098623A (ja) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 希土類−遷移金属−窒素系磁石粉末及びその製造方法
JP2015142119A (ja) * 2014-01-30 2015-08-03 住友電気工業株式会社 希土類磁石の製造方法
JP2016207678A (ja) * 2015-04-15 2016-12-08 Tdk株式会社 Sm−Fe−N系磁石
WO2018163967A1 (ja) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019695B2 (ja) * 2011-05-02 2016-11-02 信越化学工業株式会社 希土類永久磁石の製造方法
JP5218869B2 (ja) * 2011-05-24 2013-06-26 住友電気工業株式会社 希土類−鉄−窒素系合金材、希土類−鉄−窒素系合金材の製造方法、希土類−鉄系合金材、及び希土類−鉄系合金材の製造方法
JP2016100519A (ja) * 2014-11-25 2016-05-30 住友電気工業株式会社 磁性粉末の製造方法、圧粉磁石部材の製造方法、及び圧粉磁石部材
JP6439876B2 (ja) 2015-08-24 2018-12-19 日産自動車株式会社 磁石粒子およびそれを用いた磁石成形体
US11476020B2 (en) * 2017-06-30 2022-10-18 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098623A (ja) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 希土類−遷移金属−窒素系磁石粉末及びその製造方法
JP2015142119A (ja) * 2014-01-30 2015-08-03 住友電気工業株式会社 希土類磁石の製造方法
JP2016207678A (ja) * 2015-04-15 2016-12-08 Tdk株式会社 Sm−Fe−N系磁石
WO2018163967A1 (ja) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200834A1 (ja) * 2020-03-30 2021-10-07 Tdk株式会社 サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末
JPWO2021200834A1 (ja) * 2020-03-30 2021-10-07
JP7393773B2 (ja) 2020-03-30 2023-12-07 Tdk株式会社 サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末
CN113628822A (zh) * 2021-07-20 2021-11-09 华为技术有限公司 SmFeN永磁体及其制备方法、电机

Also Published As

Publication number Publication date
CN111937095B (zh) 2024-05-21
US11798739B2 (en) 2023-10-24
CN111937095A (zh) 2020-11-13
JPWO2019189440A1 (ja) 2021-04-08
JP7017744B2 (ja) 2022-02-09
US20210082605A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP7017744B2 (ja) サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法
JP7174962B2 (ja) Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法
JP6845491B2 (ja) サマリウム−鉄−窒素磁石粉末及びその製造方法
Okada et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique
JP6553283B2 (ja) サマリウム−鉄−窒素合金粉末及びその製造方法
Bhame et al. Exchange coupled Nd2Fe14B/α-Fe nanocomposite by novel autocombustion-reduction diffusion synthesis
TWI635518B (zh) 磁性粒子之製造方法、磁性粒子及磁性體
Gabay et al. Application of mechanochemical synthesis to manufacturing of permanent magnets
US20200105446A1 (en) Samarium-iron-bismuth-nitrogen-based magnet powder and samarium-iron-bismuth-nitrogen-based sintered magnet
JP7318885B2 (ja) サマリウム-鉄-ビスマス-窒素系磁石粉末及びサマリウム-鉄-ビスマス-窒素系焼結磁石
JP7123469B2 (ja) 焼結磁石の製造方法および焼結磁石
US20220246336A1 (en) Manufacturing method for rare earth magnet
Yonekura et al. Relationship between Nd content and magnetic properties of Nd2Fe14B/Nd nanocomposites chemically synthesized using self-assembled block copolymer templates
JP2023067693A (ja) 希土類磁石及びその製造方法
JP7393773B2 (ja) サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末
EP4187560A1 (en) Rare earth magnet and production method thereof
US20210313098A1 (en) Magnet and method for producing magnet
US20230039058A1 (en) Sm-Fe-N MAGNET
JP2023019418A (ja) Sm-Fe-N系磁石
JPH08188803A (ja) 希土類−遷移金属合金粉末の製造法
JP2022096382A (ja) 希土類磁石及びその製造方法
JP2009030149A (ja) 複合粒子の製造方法
JPH06163230A (ja) ボンド磁石用磁粉の製造方法
JP2021501262A (ja) 磁石粉末および磁石粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777667

Country of ref document: EP

Kind code of ref document: A1