WO2020183885A1 - 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末 - Google Patents

希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末 Download PDF

Info

Publication number
WO2020183885A1
WO2020183885A1 PCT/JP2020/000732 JP2020000732W WO2020183885A1 WO 2020183885 A1 WO2020183885 A1 WO 2020183885A1 JP 2020000732 W JP2020000732 W JP 2020000732W WO 2020183885 A1 WO2020183885 A1 WO 2020183885A1
Authority
WO
WIPO (PCT)
Prior art keywords
samarium
rare earth
alloy powder
earth metal
metal
Prior art date
Application number
PCT/JP2020/000732
Other languages
English (en)
French (fr)
Inventor
佐藤 卓
靖 榎戸
周祐 岡田
健太 高木
Original Assignee
Tdk株式会社
国立研究開発法人産業技術総合研究所
佐藤 卓
靖 榎戸
周祐 岡田
健太 高木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社, 国立研究開発法人産業技術総合研究所, 佐藤 卓, 靖 榎戸, 周祐 岡田, 健太 高木 filed Critical Tdk株式会社
Priority to JP2021505544A priority Critical patent/JP7103612B2/ja
Publication of WO2020183885A1 publication Critical patent/WO2020183885A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a method for producing a rare earth metal-transition metal alloy powder and a sumarium-iron alloy powder.
  • TbCu 7- type samarium-iron-nitrogen magnet powder has attracted attention as a raw material for magnets having higher magnetic properties than neodymium magnets.
  • the TbCu 7- type samarium-iron-nitrogen magnet powder is produced by nitriding the TbCu 7- type samarium-iron alloy powder. Further, since the TbCu 7- type samarium-iron alloy has a metastable phase, it cannot be produced by an alloying method by ordinary heat melting and cooling, and is produced by, for example, an ultra-quenching method (Patent Document 1). reference).
  • TbCu 7- type samarium-iron-nitrogen isotropic magnet powder with random crystal orientation can be produced, and as a result, TbCu 7- type samarium-iron having a high maximum energy product can be produced. -It is not possible to manufacture nitrogen magnets.
  • TbCu 7- type samarium-iron-nitrogen magnet In order to produce a TbCu 7- type samarium-iron-nitrogen magnet with a high maximum energy product, it is necessary to produce a TbCu 7- type samarium-iron-nitrogen anisotropic magnet powder, and therefore, a TbCu 7- type samarium-iron. It is necessary to produce a samarium-iron alloy powder containing single crystal particles of the alloy.
  • One aspect of the present invention is to provide a method for producing a rare earth metal-transition metal alloy powder containing single crystal particles of a TbCu 7- type rare earth metal-transition metal alloy.
  • One aspect of the present invention is a method for producing a rare earth metal-transition metal alloy powder, wherein a composition containing a rare earth metal, a transition metal, an alkali metal halide and / or an alkali earth metal halide is used.
  • the rare earth metal includes a step of heat-treating at a temperature equal to or higher than the melting point of the alkali metal halide and / or the alkali earth metal halide, and the rare earth metal is Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy. , Ho, Er, Tm, Yb and Lu, and the transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
  • Another aspect of the present invention is a method for producing a rare earth metal-transition metal based alloy powder, which comprises a rare earth metal, a transition metal, a transition metal oxide and / or a transition metal halide, an alkali metal halide and the like.
  • a composition containing a halide of / or an alkaline earth metal and an alkali metal and / or an alkaline earth metal is heat-treated at a temperature equal to or higher than the melting point of the halide of the alkali metal and / or the halide of the alkaline earth metal.
  • the rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
  • Another aspect of the present invention includes single crystal particles of a TbCu 7- type ferroalloy in a salarium-iron alloy powder.
  • Example 9 is a bright field TEM image of the samarium-iron alloy powder of Example 20. It is a partially enlarged view of the bright-field TEM image of FIG. It is a selected area diffraction image corresponding to the region C of FIG. It is an X-ray diffraction spectrum of the samarium-iron alloy powder of Examples 19-21, 25.
  • a composition containing a rare earth metal, a transition metal, an alkali metal halide and / or an alkali earth metal halide is used. Includes a step of heat treatment at a temperature above the melting point of the alkali metal halide and / or alkaline earth metal halide. Therefore, it can be alloyed at a temperature much lower than the melting point of the metal constituting the rare earth metal-transition metal-based alloy, and as a result, it contains single crystal particles of the TbCu 7 type rare earth metal-transition metal-based alloy. Rare earth metal-transition metal based alloy powder can be produced.
  • the alkali metal halide and / or the alkali earth metal halide when it is a mixture, it is equal to or higher than the melting point of the alkali metal halide and / or the alkali earth metal halide.
  • the temperature means a temperature above the eutectic point of the mixture shown by the state diagram.
  • the rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • Examples of the form of the rare earth metal include powder and the like.
  • the transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
  • Examples of the form of the transition metal include powder and the like.
  • halide in the halide of the alkali metal and / or the halide of the alkaline earth metal examples include fluoride, chloride, bromide, iodide and the like.
  • alkali metal halide examples include LiCl, KCl, NaCl, LiF and the like.
  • halide of the alkaline earth metal examples include CaCl 2 , MgCl 2 , BaCl 2 , SrCl 2 and the like.
  • Examples of the form of the alkali metal halide and / or the alkaline earth metal halide include powder and the like.
  • the rare earth metal and the transition metal are, for example, Sm and Fe, respectively.
  • a samarium-iron alloy powder containing single crystal particles of the samarium-iron alloy can be produced.
  • the rare earth metal and the transition metal are, for example, Nd and Fe, respectively.
  • a neodymium-iron alloy powder containing single crystal particles of the neodymium-iron alloy can be produced.
  • the temperature for heat treatment is preferably 500 ° C. or higher and lower than 800 ° C., and more preferably 550 ° C. or higher and lower than 650 ° C. This makes it possible to produce a rare earth-iron alloy powder containing single crystal particles of a TbCu 7- type rare earth-iron alloy.
  • Rare earth-iron alloys containing single crystal particles of rare earth-iron alloys such as Th 2 Zn 17 type by changing the halides of alkali metals and / or halides of alkaline earth metals and the heat treatment temperature. Powders can be produced.
  • the concentration of the rare earth metal in the halide of the alkali metal and / or the halide of the alkaline earth metal at the heat treatment temperature is preferably 3.2 mol / L or more and 8.2 mol / L or less, preferably 5.2 mol / L. It is more preferably 6.2 mol / L or less. This makes it possible to suppress the formation of different phases such as, for example, a Sm-rich phase (for example, SmFe 2 phase, SmFe 3 phase).
  • the second method for producing the rare earth metal-transition metal alloy powder of the present embodiment is a rare earth metal, a transition metal, a transition metal oxide and / or a transition metal halide, an alkali metal halide and / or.
  • rare earth metal-transition metal based alloy powder can be produced.
  • the rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • Examples of the form of the rare earth metal include powder and the like.
  • the transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
  • oxide of the transition metal examples include Fe 2 O 3 and Fe 3 O 4 .
  • halide in the halide of the transition metal examples include fluoride, chloride, bromide, iodide and the like.
  • halide of the transition metal examples include FeCl 2 , FeCl 3 , FeF 2 , FeI 2, and the like.
  • Examples of the form of the transition metal, the oxide of the transition metal and / or the halide of the transition metal include powder and the like.
  • halide in the halide of the alkali metal and / or the halide of the alkaline earth metal examples include fluoride, chloride, bromide, iodide and the like.
  • alkali metal halide examples include LiCl, KCl, NaCl, LiF and the like.
  • halide of the alkaline earth metal examples include CaCl 2 , MgCl 2 , BaCl 2 , SrCl 2 and the like.
  • Examples of the form of the alkali metal halide and / or the alkaline earth metal halide include powder and the like.
  • alkali metal examples include sodium and the like.
  • alkaline earth metals examples include calcium and magnesium.
  • Examples of the form of the alkali metal and / or alkaline earth metal include powder and the like.
  • an alkali metal and / or an alkaline earth metal is used. Therefore, the alkali metal and / or alkaline earth metal may reduce the oxide of the transition metal and / or the halide of the transition metal, or the rare earth metal and / or the transition metal whose surface has been oxidized. Can be done. As a result, it is possible to suppress the formation of different phases such as, for example, Sm-rich crystal phase (for example, SmFe 2 phase, SmFe 3 phase).
  • the rare earth metal and the transition metal are, for example, Sm and Fe, respectively.
  • a samarium-iron alloy powder containing single crystal particles of the samarium-iron alloy can be produced.
  • the rare earth metal and the transition metal are, for example, Nd and Fe, respectively.
  • a neodymium-iron alloy powder containing single crystal particles of the neodymium-iron alloy can be produced.
  • the temperature for heat treatment is preferably 500 ° C. or higher and lower than 800 ° C., and more preferably 550 ° C. or higher and lower than 650 ° C. This makes it possible to produce a rare earth-iron alloy powder containing single crystal particles of a TbCu 7- type rare earth-iron alloy.
  • a rare earth-iron alloy containing single crystal particles of a rare earth-iron alloy such as Th 2 Zn 17 type can be used. Powders can be produced.
  • the concentration of the rare earth metal in the halide of the alkali metal and / or the halide of the alkaline earth metal at the heat treatment temperature is preferably 3.2 mol / L or more and 8.2 mol / L or less, preferably 5.2 mol / L. It is more preferably 6.2 mol / L or less. This makes it possible to suppress the formation of different phases such as, for example, a Sm-rich crystal phase (for example, SmFe 2 phase, SmFe 3 phase).
  • the rare earth metal-transition metal based alloy powder is preferably washed with water in order to remove the halide of the alkali metal and / or the halide of the alkaline earth metal.
  • water is added to the rare earth metal-transition metal alloy powder, the mixture is stirred, and then the decantation operation is repeated.
  • the method for dehydrogenizing the rare earth metal-transition metal alloy powder is not particularly limited, and examples thereof include a method of heat-treating the rare earth metal-transition metal alloy powder in a vacuum or an inert gas atmosphere.
  • the rare earth metal-transition metal alloy powder is heat-treated at 150 to 250 ° C. for 1 to 3 hours in a vacuum or under an argon air flow.
  • the water-washed rare earth metal-transition metal alloy powder is preferably vacuum dried in order to remove water.
  • the temperature for vacuum-drying the water-washed rare earth metal-transition metal alloy powder is preferably room temperature to 100 ° C. This makes it possible to suppress the oxidation of the rare earth metal-transition metal alloy powder.
  • the rare earth metal-transition metal alloy powder washed with water may be replaced with an organic solvent having high volatility such as alcohols and miscible with water, and then vacuum dried.
  • the samarium-iron alloy powder of the present embodiment contains single crystal particles of TbCu 7- type samarium-iron alloy.
  • the powder represents an aggregate of particles
  • the single crystal particles represent isolated particles in which particles having no crystal grain boundaries inside and having the same crystal orientation are not aggregated with other particles. ..
  • the salarium-ferroalloy powder of the present embodiment can be produced by using the method for producing a rare earth metal-transition metal alloy powder of the present embodiment.
  • the intensity ratio is preferably 0.400 or less, more preferably 0.150 or less, and even more preferably 0.001 or less.
  • the intensity ratio of the X-ray diffraction peak on the (1024) plane of the Th 2 Zn 17- type samarium-ferroalloy phase to the X-ray diffraction peak on the (110) plane of the TbCu 7- type samarium-ferroalloy phase is 0.400 or less.
  • the ratio of the TbCu 7- type samarium-ferroalloy phase in the samarium-ferroalloy powder of the present embodiment becomes sufficiently high.
  • the ratio c / a of the lattice constant c to the lattice constant a of the TbCu 7- type samarium-iron alloy phase of the samarium-iron alloy powder of the present embodiment is preferably 0.840 or more, and preferably 0.842 or more. More preferably, it is more preferably 0.846 or more.
  • the ratio c / a of the lattice constant c to the lattice constant a of the TbCu 7- type samarium-iron alloy phase of the samarium-iron alloy powder of the present embodiment is 0.840 or more
  • the samarium-iron alloy powder of the present embodiment contains The ratio of the TbCu 7 type samarium-iron alloy phase is sufficiently high.
  • the ratio of the Fe phase of the samarium-iron alloy powder of the present embodiment is preferably 20% or less, and more preferably 10% or less.
  • the ratio of the Fe phase of the samarium-iron alloy powder of the present embodiment is 20% or less, the ratio of the TbCu 7- type samarium-iron alloy phase in the samarium-iron alloy powder of the present embodiment becomes sufficiently high.
  • the particle size of the samarium-iron alloy powder of the present embodiment is preferably 3 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • TbCu 7- type samarium-iron-nitrogen magnet powder By nitriding the samarium-iron alloy powder of the present embodiment, TbCu 7- type samarium-iron-nitrogen magnet powder can be obtained.
  • the particle size of the single magnetic domain particles of the Th 2 Zn 17- type samarium-iron-nitrogen magnet is about 3 ⁇ m, and the anisotropic magnetic field is about 1/3 of that of the Th 2 Zn 17- type samarium-iron-nitrogen magnet. Therefore, it is considered that the particle size of the single magnetic domain particles of the TbCu 7- type samarium-iron-nitrogen magnet does not exceed 3 ⁇ m.
  • samarium embodiment - the particle size of the iron alloy powder is 3 ⁇ m or less, TbCu 7 type samarium - iron - because the magnetic structure of nitrogen magnetic powder is changed from the multi-domain structure in a single magnetic domain structure, TbCu 7 type
  • the magnetic properties of the sumarium-iron-nitrogen magnet powder are enhanced.
  • the particle size of the samarium-iron alloy powder of the present embodiment is 1 ⁇ m or less, the formation of magnetization reversal nuclei can be suppressed, so that the magnetic characteristics of the TbCu 7- type samarium-iron-nitrogen magnet powder are further high. Become.
  • Example 1 (Heat treatment) 0.40 g of samarium powder, 0.24 g of iron powder, and 1.04 g of lithium chloride powder having a melting point of 605 ° C. were placed in an iron crucible and then heat-treated at 650 ° C. for 6 hours in an Ar atmosphere to obtain a samarium-iron alloy powder. ..
  • the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
  • the concentration of samarium in lithium chloride is calculated by the formula [(mass of samarium powder) / (molar mass of samarium)] / [(mass of lithium chloride) / (density of lithium chloride)]. Was decided by.
  • Example 2 A samarium-iron alloy powder was obtained in the same manner as in Example 1 except that the heat treatment was performed as follows.
  • Example 3 A samarium-iron alloy powder was obtained in the same manner as in Example 2 except that the addition amounts of the samarium powder and the iron powder in the heat treatment were changed to 0.40 g and 0.24 g, respectively.
  • the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
  • Example 4 A samarium-iron alloy powder was obtained in the same manner as in Example 2 except that the amounts of the samarium powder and the iron powder added in the heat treatment were changed to 0.54 g and 0.20 g, respectively.
  • the concentration of samarium in lithium chloride at 650 ° C. was 7.2 mol / L.
  • Example 5 A samarium-iron alloy powder was obtained in the same manner as in Example 2 except that the addition amounts of the samarium powder and the iron powder in the heat treatment were changed to 0.63 g and 0.19 g, respectively.
  • the concentration of samarium in lithium chloride at 650 ° C. was 8.4 mol / L.
  • Example 6 A sumalium-iron alloy powder was obtained in the same manner as in Example 3 except that the amount of calcium powder added in the heat treatment was changed to 0.40 g.
  • the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
  • Example 7 A sumalium-iron alloy powder was obtained in the same manner as in Example 3 except that the amount of calcium powder added in the heat treatment was changed to 0.80 g.
  • the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
  • Example 8 A samarium-iron alloy powder was obtained in the same manner as in Example 3 except that the amount of calcium powder added in the heat treatment was changed to 1.00 g.
  • the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
  • Example 9 In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.71 g of lithium chloride powder and 0.31 g of potassium chloride powder having a melting point of 770 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and potassium chloride at 650 ° C. was 5.4 mol / L.
  • Example 10 In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.78 g of lithium chloride powder and 0.27 g of sodium chloride powder having a melting point of 801 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and sodium chloride at 650 ° C. was 5.4 mol / L.
  • Example 11 In the heat treatment, the sumarium-iron alloy powder was obtained in the same manner as in Example 3 except that 0.92 g of lithium chloride powder and 0.14 g of lithium fluoride powder having a melting point of 848 ° C. were added instead of 1.04 g of lithium chloride powder.
  • the concentration of samarium in lithium chloride and sodium chloride at 650 ° C. was 5.4 mol / L.
  • Example 12 In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.63 g of lithium chloride powder and 0.42 g of calcium chloride powder having a melting point of 772 ° C were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and calcium chloride at 650 ° C. was 5.4 mol / L.
  • Example 13 In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.69 g of lithium chloride powder and 0.39 g of magnesium chloride powder having a melting point of 714 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained.
  • the concentration of samarium in lithium chloride and magnesium chloride at 650 ° C. was 5.4 mol / L.
  • Example 14 In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.62 g of lithium chloride powder and 0.77 g of barium chloride powder having a melting point of 962 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and barium chloride at 650 ° C. was 5.4 mol / L.
  • Example 15 In the heat treatment, a sumalium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.63 g of lithium chloride powder and 0.59 g of strontium chloride powder having a melting point of 874 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and strontium chloride at 650 ° C. was 5.4 mol / L.
  • Example 16 In the heat treatment, neodymium-ferroalloy powder was obtained in the same manner as in Example 3 except that 0.40 g of neodymium powder was added instead of 0.40 g of samarium powder.
  • the concentration of neodymium in lithium chloride at 650 ° C. was 5.4 mol / L.
  • Example 17 In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 9 except that the heat treatment temperature was changed to 600 ° C. Here, the concentration of samarium in lithium chloride at 600 ° C. was 5.4 mol / L.
  • Example 18 In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 9 except that the heat treatment temperature was changed to 550 ° C. Here, the concentration of samarium in lithium chloride at 550 ° C. was 5.4 mol / L.
  • Example 19 In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 1 except that the heat treatment time was changed to 48 hours.
  • the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
  • Example 20 In the heat treatment, Samarium-iron was added in the same manner as in Example 17, except that 0.35 g of lithium chloride powder and 0.71 g of calcium chloride powder were added instead of 0.71 g of lithium chloride powder and 0.31 g of potassium chloride powder. An alloy powder was obtained. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
  • Example 21 In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the heat treatment time was changed to 48 hours.
  • the concentration of samarium in lithium chloride and calcium chloride at 650 ° C. was 5.4 mol / L.
  • Example 22 A samarium-iron alloy powder was obtained in the same manner as in Example 1 except that the heat treatment was performed as follows.
  • Heat treatment After putting 0.25 g of samarium powder, 0.24 g of iron powder, 0.35 g of lithium chloride powder and 0.71 g of calcium chloride powder in an iron crucible, heat treatment is performed at 600 ° C. for 6 hours in an Ar atmosphere, and the samarium-iron alloy powder is used. Got Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 3.2 mol / L.
  • Example 23 A samarium-iron alloy powder was obtained in the same manner as in Example 22 except that the amount of the samarium powder added in the heat treatment was changed to 0.30 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
  • Example 24 A samarium-iron alloy powder was obtained in the same manner as in Example 22 except that the amount of the samarium powder added in the heat treatment was changed to 0.35 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.7 mol / L.
  • Example 25 A samarium-iron alloy powder was obtained in the same manner as in Example 22 except that the amount of the samarium powder added in the heat treatment was changed to 0.40 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
  • Example 26 A sumalium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of calcium powder added in the heat treatment was changed to 0.10 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
  • Example 27 A sumalium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of calcium powder added in the heat treatment was changed to 0.40 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
  • Example 28 A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of the samarium powder added in the heat treatment was changed to 0.25 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 3.2 mol / L.
  • Example 29 A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of the samarium powder added in the heat treatment was changed to 0.30 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
  • Example 30 A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of the samarium powder added in the heat treatment was changed to 0.35 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.7 mol / L.
  • Example 31 A sumalium-iron alloy powder was obtained in the same manner as in Example 30 except that the amount of iron powder added in the heat treatment was changed to 0.12 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
  • Example 32 A sumalium-iron alloy powder was obtained in the same manner as in Example 30 except that the amount of iron powder added in the heat treatment was changed to 0.06 g.
  • the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
  • Table 1 shows the conditions for heat treatment.
  • Intensity ratio of X-ray diffraction peak on the (024) plane of the samarium-iron alloy phase (hereinafter referred to as the intensity ratio of the X-ray diffraction peak), ratio c of the lattice constant c to the lattice constant a of the TbCu 7 type samarium-iron alloy phase
  • the ratio of / a (hereinafter referred to as the lattice constant ratio) and the iron phase was evaluated.
  • TbCu 7- type samarium-iron (or neodymium-iron) alloy The powder was embedded in a resin, polished, and then subjected to focused ion beam (FIB) processing to obtain flakes. Next, a selected area diffraction image of the flakes was obtained using a transmission electron microscope (TEM), and the presence or absence of single crystal particles of the TbCu 7- type sumalium-iron (or neodymium-iron) alloy was evaluated.
  • TEM transmission electron microscope
  • FIG. 1 shows a bright-field TEM image of the samarium-iron alloy powder of Example 20.
  • 2 is a partially enlarged view of the bright field TEM image of FIG. 1
  • FIG. 3 is a selected area diffraction image corresponding to the region C of FIG.
  • the samarium-iron alloy powder of Example 20 has a particle size of 3.0 ⁇ m or less.
  • the selected area diffraction image of FIG. 3 is spot-shaped, it can be seen that the sumarium-iron alloy powder of FIG. 1 contains single crystal particles. Furthermore, since the selected area diffraction image in FIG. 3 matches the space group P6 / mmm, which is a characteristic of the crystal structure of the TbCu 7- type samarium-iron alloy, the samarium-iron alloy powder is a single TbCu 7- type samarium-iron alloy. It can be seen that it contains crystal particles.
  • High Score Plus manufactured by Malvern Panasonic
  • the minimum significance was set to 1.00
  • peak search and profile fitting were performed.
  • the integrated intensity of the diffraction peak on the (110) plane of the TbCu 7- type samarium-ferroalloy phase and the integrated intensity of the diffraction peak on the (024) plane of the Th 2 Zn 17- type samarium-iron alloy phase were determined. After that, the intensity ratio of the X-ray diffraction peak was calculated.
  • the sumarium-iron alloy powders of Examples 19 to 21 and 25 have the intensity ratios of the X-ray diffraction peaks of 0.362, ⁇ 0.001, 0.137, and ⁇ 0.001, respectively. That is, it was found that the ratio of the TbCu 7- type sumalium-iron alloy phase was high.
  • the lattice constant ratio was obtained by performing a Rietbelt analysis.
  • the integrated intensity (I_SmFe) of the main diffraction peak of the iron alloy phase was obtained, and the formula I_Fe / (I_TbCu 7 + I_Fe + I_SmFe) From this, the ratio of the iron phase was calculated.
  • the ratio of the iron phase of the neodymium-iron alloy powder is the integrated strength (I_TbCu 7 ) of the (111) plane in which the main diffraction peak of the TbCu 7 type neodymium-iron alloy phase is observed near 49.0 ° and TbCu. It was calculated in the same manner as the ratio of the iron phase of the sumalium-iron alloy powder except that the integrated intensity (I_NdFe) of the main diffraction peak of the neodymium-iron alloy phase other than the 7- type neodymium-iron alloy phase was determined.
  • Table 2 shows the evaluation results of the presence / absence of single crystal particles of the TbCu 7- type samarium-iron (or neodymium-iron) alloy, the formation phase, the intensity ratio of the X-ray diffraction peak, the lattice constant ratio, and the ratio of the iron phase.
  • Example 16 From Table 2, in Examples 1 to 15 and 17 to 32, a samarium-iron alloy powder containing single crystal particles of a TbCu 7- type samarium-iron alloy was obtained, and in Example 16, a TbCu 7- type neodymium-iron alloy was obtained. It can be seen that a neodymium-iron alloy powder containing single crystal particles can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本発明の一態様は、希土類金属-遷移金属系合金粉末の製造方法において、希土類金属と、遷移金属と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物とを含む組成物を、前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含み、前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。

Description

希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末
 本発明は、希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末に関する。
 近年、ネオジム磁石を超える高い磁気特性を有する磁石の原料として、TbCu型サマリウム-鉄-窒素磁石粉末が注目されている。
 TbCu型サマリウム-鉄-窒素磁石粉末は、TbCu型サマリウム-鉄合金粉末を窒化することで製造されている。また、TbCu型サマリウム-鉄合金は、準安定相であるため、通常の加熱溶解及び冷却による合金化方法で製造することができず、例えば、超急冷法で製造されている(特許文献1参照)。
特開平6-172936号公報
 しかしながら、超急冷法を用いると、結晶方位がランダムであるTbCu型サマリウム-鉄-窒素等方性磁石粉末しか製造することができず、その結果、最大エネルギー積が高いTbCu型サマリウム-鉄-窒素磁石を製造することはできない。
 最大エネルギー積が高いTbCu型サマリウム-鉄-窒素磁石を製造するためには、TbCu型サマリウム-鉄-窒素異方性磁石粉末を製造する必要があり、そのために、TbCu型サマリウム-鉄合金の単結晶粒子を含むサマリウム-鉄合金粉末を製造する必要がある。
 本発明の一態様は、TbCu型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末の製造方法を提供することを目的とする。
 本発明の一態様は、希土類金属-遷移金属系合金粉末の製造方法において、希土類金属と、遷移金属と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物とを含む組成物を、前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含み、前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。
 本発明の他の一態様は、希土類金属-遷移金属系合金粉末の製造方法において、希土類金属と、遷移金属、遷移金属の酸化物及び/又は遷移金属のハロゲン化物と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物と、アルカリ金属及び/又はアルカリ土類金属とを含む組成物を、前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含み、前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。
 本発明の他の一態様は、サマリウム-鉄合金粉末において、TbCu型サマリウム-鉄合金の単結晶粒子を含む。
 本発明の一態様によれば、TbCu型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末の製造方法を提供することができる。
実施例20のサマリウム-鉄合金粉末の明視野TEM像である。 図1の明視野TEM像の部分拡大図である。 図2の領域Cに対応する制限視野回折像である。 実施例19~21、25のサマリウム-鉄合金粉末のX線回折スペクトルである。
 以下、本発明を実施するための形態を説明する。なお、本発明は、以下の実施形態に記載した内容により限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は、適宜組み合わせることが可能である。
 [希土類金属-遷移金属系合金粉末の第1の製造方法]
 本実施形態の希土類金属-遷移金属系合金粉末の第1の製造方法は、希土類金属と、遷移金属と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物とを含む組成物を、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含む。このため、希土類金属-遷移金属系合金を構成する金属の融点よりも遙かに低い温度で合金化することができ、その結果、TbCu型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末を製造することができる。
 本明細書及び特許請求の範囲において、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物が混合物である場合、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度とは、状態図により示される混合物の共晶点以上の温度を意味する。
 (熱処理)
 希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上である。
 希土類金属の形態としては、例えば、粉末等が挙げられる。
 遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。
 遷移金属の形態としては、例えば、粉末等が挙げられる。
 アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物におけるハロゲン化物としては、例えば、フッ化物、塩化物、臭化物、ヨウ化物等が挙げられる。
 アルカリ金属のハロゲン化物としては、例えば、LiCl、KCl、NaCl、LiF等が挙げられる。
 アルカリ土類金属のハロゲン化物としては、例えば、CaCl、MgCl、BaCl、SrCl等が挙げられる。
 アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の形態としては、例えば、粉末等が挙げられる。
 希土類金属及び遷移金属が、例えば、それぞれSm及びFeであると、サマリウム-鉄系合金の単結晶粒子を含むサマリウム-鉄系合金粉末を製造することができる。
 また、希土類金属及び遷移金属が、例えば、それぞれNd及びFeであると、ネオジム-鉄系合金の単結晶粒子を含むネオジム-鉄系合金粉末を製造することができる。
 熱処理する温度は、500℃以上800℃未満であることが好ましく、550℃以上650℃未満であることがさらに好ましい。これにより、TbCu型希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。
 なお、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物や、熱処理温度を変更することにより、ThZn17型等の希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。
 熱処理する温度におけるアルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物中の希土類金属の濃度は、3.2mol/L以上8.2mol/L以下であることが好ましく、5.2mol/L以上6.2mol/L以下であることがさらに好ましい。これにより、例えば、Smリッチ相(例えば、SmFe相、SmFe相)等の異相の生成を抑制することができる。
 [希土類金属-遷移金属系合金粉末の第2の製造方法]
 本実施形態の希土類金属-遷移金属系合金粉末の第2の製造方法は、希土類金属と、遷移金属、遷移金属の酸化物及び/又は遷移金属のハロゲン化物と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物と、アルカリ金属及び/又はアルカリ土類金属とを含む組成物を、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含む。このため、希土類金属-遷移金属系合金を構成する金属の融点よりも遙かに低い温度で合金化することができ、その結果、TbCu型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末を製造することができる。
 (熱処理)
 希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上である。
 希土類金属の形態としては、例えば、粉末等が挙げられる。
 遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。
 遷移金属の酸化物としては、例えば、Fe、Fe等が挙げられる。
 遷移金属のハロゲン化物におけるハロゲン化物としては、例えば、フッ化物、塩化物、臭化物、ヨウ化物等が挙げられる。
 遷移金属のハロゲン化物としては、例えば、FeCl、FeCl、FeF、FeI等が挙げられる。
 遷移金属、遷移金属の酸化物及び/又は遷移金属のハロゲン化物の形態としては、例えば、粉末等が挙げられる。
 アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物におけるハロゲン化物としては、例えば、フッ化物、塩化物、臭化物、ヨウ化物等が挙げられる。
 アルカリ金属のハロゲン化物としては、例えば、LiCl、KCl、NaCl、LiF等が挙げられる。
 アルカリ土類金属のハロゲン化物としては、例えば、CaCl、MgCl、BaCl、SrCl等が挙げられる。
 アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の形態としては、例えば、粉末等が挙げられる。
 アルカリ金属としては、例えば、ナトリウム等が挙げられる。
 アルカリ土類金属としては、例えば、カルシウム、マグネシウム等が挙げられる。
 アルカリ金属及び/又はアルカリ土類金属の形態としては、例えば、粉末等が挙げられる。
 本実施形態の希土類金属-遷移金属系合金粉末の第2の製造方法では、アルカリ金属及び/又はアルカリ土類金属が用いられている。このため、アルカリ金属及び/又はアルカリ土類金属は、遷移金属の酸化物及び/又は遷移金属のハロゲン化物を還元したり、表面が酸化された希土類金属及び/又は遷移金属を還元したりすることができる。その結果、例えば、Smリッチ結晶相(例えば、SmFe相、SmFe相)等の異相の生成を抑制することができる。
 希土類金属及び遷移金属が、例えば、それぞれSm及びFeであると、サマリウム-鉄系合金の単結晶粒子を含むサマリウム-鉄系合金粉末を製造することができる。
 また、希土類金属及び遷移金属が、例えば、それぞれNd及びFeであると、ネオジム-鉄系合金の単結晶粒子を含むネオジム-鉄系合金粉末を製造することができる。
 熱処理する温度は、500℃以上800℃未満であることが好ましく、550℃以上650℃未満であることがさらに好ましい。これにより、TbCu型希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。
 なお、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属の塩化物や、熱処理温度を変更することにより、ThZn17型等の希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。
 熱処理する温度におけるアルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物中の希土類金属の濃度は、3.2mol/L以上8.2mol/L以下であることが好ましく、5.2mol/L以上6.2mol/L以下であることがさらに好ましい。これにより、例えば、Smリッチ結晶相(例えば、SmFe相、SmFe相)等の異相の生成を抑制することができる。
 [希土類金属-遷移金属系合金粉末の製造方法のその他の工程]
 (水洗)
 希土類金属-遷移金属系合金粉末は、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物を除去するために、水洗することが好ましい。
 例えば、希土類金属-遷移金属系合金粉末に水を加え、撹拌した後、デカンテーションする操作を繰り返す。
 (脱水素)
 希土類金属-遷移金属系合金粉末を水洗する際に、希土類金属-遷移金属系合金粉末の結晶格子間に水素が侵入する場合がある。この場合、希土類金属-遷移金属系合金粉末を脱水素してもよい。
 希土類金属-遷移金属系合金粉末を脱水素する方法としては、特に限定されないが、真空中又は不活性ガス雰囲気中で希土類金属-遷移金属系合金粉末を熱処理する方法等が挙げられる。
 例えば、真空中又はアルゴン気流下、希土類金属-遷移金属系合金粉末を150~250℃で1~3時間熱処理する。
 (真空乾燥)
 水洗された希土類金属-遷移金属系合金粉末は、水を除去するために、真空乾燥させることが好ましい。
 水洗された希土類金属-遷移金属系合金粉末を真空乾燥させる温度は、常温~100℃であることが好ましい。これにより、希土類金属-遷移金属系合金粉末の酸化を抑制することができる。
 なお、水洗された希土類金属-遷移金属系合金粉末をアルコール類等の揮発性が高く、水と混和することが可能な有機溶媒で置換した後、真空乾燥させてもよい。
 (解砕)
 希土類金属-遷移金属系合金粉末を解砕してもよい。
 希土類金属-遷移金属系合金粉末を解砕する際には、ジェットミル、乾式及び湿式のボールミル、振動ミル、媒体撹拌ミル等を用いることができる。
 [サマリウム-鉄合金粉末]
 本実施形態のサマリウム-鉄合金粉末は、TbCu型サマリウム-鉄合金の単結晶粒子を含む。
 ここで、粉末とは、粒子の集合体を表し、単結晶粒子とは、その内部に結晶粒界を含まず、結晶方位が揃った粒子が、他の粒子と凝集していない孤立粒子を表す。
 なお、本実施形態のサマリウム-鉄合金粉末は、本実施形態の希土類金属-遷移金属系合金粉末の製造方法を用いて、製造することができる。
 本実施形態のサマリウム-鉄合金粉末のTbCu型サマリウム-鉄合金相の(110)面のX線回折ピークに対するThZn17型サマリウム-鉄合金相の(024)面のX線回折ピークの強度比は、0.400以下であることが好ましく、0.150以下であることがより好ましく、0.001以下であることがさらに好ましい。TbCu型サマリウム-鉄合金相の(110)面のX線回折ピークに対するThZn17型サマリウム-鉄合金相の(024)面のX線回折ピークの強度比が0.400以下であると、本実施形態のサマリウム-鉄合金粉末中のTbCu型サマリウム-鉄合金相の比率が十分に高くなる。
 本実施形態のサマリウム-鉄合金粉末のTbCu型サマリウム-鉄合金相の格子定数aに対する格子定数cの比c/aが0.840以上であることが好ましく、0.842以上であることがより好ましく、0.846以上であることがさらに好ましい。本実施形態のサマリウム-鉄合金粉末のTbCu型サマリウム-鉄合金相の格子定数aに対する格子定数cの比c/aが0.840以上であると、本実施形態のサマリウム-鉄合金粉末中のTbCu型サマリウム-鉄合金相の比率が十分に高くなる。
 本実施形態のサマリウム-鉄合金粉末のFe相の比率は、20%以下であることが好ましく、10%以下であることがさらに好ましい。本実施形態のサマリウム-鉄合金粉末のFe相の比率が20%以下であると、本実施形態のサマリウム-鉄合金粉末中のTbCu型サマリウム-鉄合金相の比率が十分に高くなる。
 本実施形態のサマリウム-鉄合金粉末の粒子径は、3μm以下であることが好ましく、1μm以下であることがさらに好ましい。
 本実施形態のサマリウム-鉄合金粉末を窒化処理することで、TbCu型サマリウム-鉄-窒素磁石粉末が得られる。ここで、ThZn17型サマリウム-鉄-窒素磁石の単磁区粒子の粒子径は3μm程度であり、異方性磁界がThZn17型サマリウム-鉄-窒素磁石の1/3程度であるため、TbCu型サマリウム-鉄-窒素磁石の単磁区粒子の粒子径が3μmを超えることはないと考えられる。
 したがって、本実施形態のサマリウム-鉄合金粉末の粒子径が3μm以下であると、TbCu型サマリウム-鉄-窒素磁石粉末の磁気構造が多磁区構造から単磁区構造に遷移するため、TbCu型サマリウム-鉄-窒素磁石粉末の磁気特性が高くなる。また、本実施形態のサマリウム-鉄合金粉末の粒子径が1μm以下であると、磁化反転核の形成を抑制することができるため、TbCu型サマリウム-鉄-窒素磁石粉末の磁気特性がさらに高くなる。
 以下、本発明の実施例を説明するが、本発明は、以下の実施例に限定されるものではない。
 [鉄粉末の作製]
 硝酸鉄101.8g、硝酸カルシウム14.9gを水819mLに溶解させた後、撹拌しながら、1mol水酸化カリウム水溶液441mlを滴下し、水酸化鉄の懸濁液を得た。次に、水酸化鉄の懸濁液をろ過し、洗浄した後、熱風乾燥オーブンを用いて、空気中、120℃で一晩乾燥させ、水酸化鉄粉末を得た。次に、水素気流中、500℃で6時間、水酸化鉄粉末を還元し、鉄粉末を得た。
 [実施例1]
 (熱処理)
 サマリウム粉末0.40g、鉄粉末0.24g、融点605℃の塩化リチウム粉末1.04gを鉄製るつぼに入れた後、Ar雰囲気中、650℃で6時間熱処理し、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 塩化リチウム中のサマリウムの濃度は、式
 [(サマリウム粉末の質量)/(サマリウムのモル質量)]/[(塩化リチウムの質量)/(塩化リチウムの密度)]
により決定した。
 (水洗)
 サマリウム-鉄合金粉末を純水で洗浄し、塩化リチウムを除去した。
 (真空乾燥)
 純水で洗浄したサマリウム-鉄合金粉末を、イソプロパノールで置換した後、常温で真空乾燥させた。
 [実施例2]
 以下のように熱処理した以外は、実施例1と同様にして、サマリウム-鉄合金粉末を得た。
 (熱処理)
 サマリウム粉末0.24g、鉄粉末0.29g、融点605℃の塩化リチウム粉末1.04g、カルシウム粉末0.20gを鉄製るつぼに入れた後、Ar雰囲気中、650℃で6時間熱処理し、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、3.2mol/Lであった。
 [実施例3]
 熱処理におけるサマリウム粉末及び鉄粉末の添加量を、それぞれ0.40g及び0.24gに変更した以外は、実施例2と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例4]
 熱処理におけるサマリウム粉末及び鉄粉末の添加量を、それぞれ0.54g及び0.20gに変更した以外は、実施例2と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、7.2mol/Lであった。
 [実施例5]
 熱処理におけるサマリウム粉末及び鉄粉末の添加量を、それぞれ0.63g及び0.19gに変更した以外は、実施例2と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、8.4mol/Lであった。
 [実施例6]
 熱処理におけるカルシウム粉末の添加量を0.40gに変更した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例7]
 熱処理におけるカルシウム粉末の添加量を0.80gに変更した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例8]
 熱処理におけるカルシウム粉末の添加量を1.00gに変更した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例9]
 熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.71g及び融点770℃の塩化カリウム粉末0.31gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化カリウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例10]
 熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.78g及び融点801℃の塩化ナトリウム粉末0.27gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化ナトリウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例11]
 熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.92g及び融点848℃のフッ化リチウム粉末0.14gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化ナトリウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例12]
 熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.63g及び融点772℃の塩化カルシウム粉末0.42gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例13]
 熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.69g及び融点714℃の塩化マグネシウム粉末0.39gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化マグネシウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例14]
 熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.62g及び融点962℃の塩化バリウム粉末0.77gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化バリウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例15]
 熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.63g及び融点874℃の塩化ストロンチウム粉末0.59gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化ストロンチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例16]
 熱処理において、サマリウム粉末0.40gの代わりに、ネオジム粉末0.40gを添加した以外は、実施例3と同様にして、ネオジム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のネオジムの濃度は、5.4mol/Lであった。
 [実施例17]
 熱処理において、熱処理温度を600℃に変更した以外は、実施例9と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例18]
 熱処理において、熱処理温度を550℃に変更した以外は、実施例9と同様にして、サマリウム-鉄合金粉末を得た。ここで、550℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例19]
 熱処理において、熱処理時間を48時間に変更した以外は、実施例1と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例20]
 熱処理において、塩化リチウム粉末0.71g及び塩化カリウム粉末0.31gの代わりに、塩化リチウム粉末0.35g及び塩化カルシウム粉末0.71gを添加した以外は、実施例17と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例21]
 熱処理において、熱処理時間を48時間に変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例22]
 以下のように熱処理した以外は、実施例1と同様にして、サマリウム-鉄合金粉末を得た。
 (熱処理)
 サマリウム粉末0.25g、鉄粉末0.24g、塩化リチウム粉末0.35g、塩化カルシウム粉末0.71gを鉄製るつぼに入れた後、Ar雰囲気中、600℃で6時間熱処理し、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、3.2mol/Lであった。
 [実施例23]
 熱処理におけるサマリウム粉末の添加量を0.30gに変更した以外は、実施例22と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。
 [実施例24]
 熱処理におけるサマリウム粉末の添加量を0.35gに変更した以外は、実施例22と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.7mol/Lであった。
 [実施例25]
 熱処理におけるサマリウム粉末の添加量を0.40gに変更した以外は、実施例22と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例26]
 熱処理におけるカルシウム粉末の添加量を0.10gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例27]
 熱処理におけるカルシウム粉末の添加量を0.40gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。
 [実施例28]
 熱処理におけるサマリウム粉末の添加量を0.25gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、3.2mol/Lであった。
 [実施例29]
 熱処理におけるサマリウム粉末の添加量を0.30gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。
 [実施例30]
 熱処理におけるサマリウム粉末の添加量を0.35gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.7mol/Lであった。
 [実施例31]
 熱処理における鉄粉末の添加量を0.12gに変更した以外は、実施例30と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。
 [実施例32]
 熱処理における鉄粉末の添加量を0.06gに変更した以外は、実施例30と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。
 [比較例1]
 熱処理において、塩化リチウム粉末を添加しなかった以外は、実施例3と同様にして、サマリウム-鉄合金粉末を作製しようとしたが、サマリウム-鉄合金粉末を作製することができなかった。
 [比較例2]
 熱処理において、サマリウム粉末0.40gの代わりに、酸化サマリウム粉末0.47gを添加した以外は、比較例1と同様にして、サマリウム-鉄合金粉末を作製しようとしたが、サマリウム-鉄合金粉末を作製することができなかった。
 表1に、熱処理の条件を示す。
Figure JPOXMLDOC01-appb-T000001
 
 次に、TbCu型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無、形成相、TbCu型サマリウム-鉄合金相の(110)面のX線回折ピークに対するThZn17型サマリウム-鉄合金相の(024)面のX線回折ピークの強度比(以下、X線回折ピークの強度比という)、TbCu型サマリウム-鉄合金相の格子定数aに対する格子定数cの比c/a(以下、格子定数比という)、鉄相の比率を評価した。
 [TbCu型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無]
 粉末を樹脂に包埋し、研磨した後、集束イオンビーム(FIB)加工することにより、薄片を得た。次に、透過型電子顕微鏡(TEM)を用いて、薄片の制限視野回折像を取得し、TbCu型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無を評価した。
 図1に、実施例20のサマリウム-鉄合金粉末の明視野TEM像を示す。また、図2は、図1の明視野TEM像の部分拡大図であり、図3は、図2の領域Cに対応する制限視野回折像である。
 図1から、実施例20のサマリウム-鉄合金粉末は、粒子径が3.0μm以下であることがわかる。
 また、図3の制限視野回折像がスポット状であることから、図1のサマリウム-鉄合金粉末が単結晶粒子を含むことがわかる。さらに、図3の制限視野回折像がTbCu型サマリウム-鉄合金の結晶構造の特徴である空間群P6/mmmと一致することから、サマリウム-鉄合金粉末がTbCu型サマリウム-鉄合金の単結晶粒子を含むことがわかる。
 [形成相、X線回折ピークの強度比、格子定数比、鉄相の比率]
 X線回折装置Empyrean(Malvern Panalytical製)及びX線検出器Pixcel 1D(Malvern Panalytical製)を用いて、サマリウム-鉄合金粉末のX線回折スペクトルを測定した。具体的には、X線源として、Co管球を使用し、管電圧45kV、管電流40mA、測定角度30~60°、測定ステップ幅0.013°、幅スキャンスピード0.09°/secの条件で、サマリウム-鉄合金粉末のX線回折スペクトルを測定した(図4参照)。
 X線回折パターンの解析ソフトとして、High Score Plus(Malvern Panalytical製)を用い、最小有意度を1.00に設定して、ピークサーチ及びプロファイルフィッティングを実施した。具体的には、TbCu型サマリウム-鉄合金相の(110)面の回折ピークの積分強度と、ThZn17型サマリウム-鉄合金相の(024)面の回折ピークの積分強度を求めた後、X線回折ピークの強度比を算出した。
 図4から、実施例19~21、25のサマリウム-鉄合金粉末は、X線回折ピークの強度比が、それぞれ0.362、<0.001、0.137、<0.001であること、即ち、TbCu型サマリウム-鉄合金相の比率が高いことがわかった。
 また、サマリウム-鉄合金粉末のX線回折スペクトルを測定した後(図4参照)、リートベルト解析を実施することにより、格子定数比を求めた。
 図4から、実施例19~21、25のサマリウム-鉄合金粉末の格子定数比は、それぞれ0.840、0.846、0.842、0.846であることがわかった。
 さらに、X線回折パターンの解析ソフトとして、High Score Plus(Malvern Panalytical製)を用いて、TbCu型サマリウム-鉄合金相の主回折ピークである49.8°近傍に観測される(111)面の積分強度(I_TbCu)と、Fe相の主回折ピークである52.7°近傍に観測される(110)面の積分強度(I_Fe)と、TbCu型サマリウム-鉄合金相以外のサマリウム-鉄合金相の主回折ピークの積分強度(I_SmFe)を求め、式
 I_Fe/(I_TbCu+I_Fe+I_SmFe)
から、鉄相の比率を算出した。
 図4から、実施例19~21、25のサマリウム-鉄合金粉末の鉄相の比率は、それぞれ1%未満、7%、6%、7%であることがわかった。
 なお、ネオジム-鉄合金粉末の鉄相の比率は、TbCu型ネオジム-鉄合金相の主回折ピークが49.0°近傍に観測される(111)面の積分強度(I_TbCu)と、TbCu型ネオジム-鉄合金相以外のネオジム-鉄合金相の主回折ピークの積分強度(I_NdFe)を求めた以外は、サマリウム-鉄合金粉末の鉄相の比率と同様にして、算出した。
 表2に、TbCu型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無、形成相、X線回折ピークの強度比、格子定数比、鉄相の比率の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2から、実施例1~15、17~32では、TbCu型サマリウム-鉄合金の単結晶粒子を含むサマリウム-鉄合金粉末が得られ、実施例16では、TbCu型ネオジム-鉄合金の単結晶粒子を含むネオジム-鉄合金粉末が得られることがわかる。
 これに対して、比較例1、2では、アルカリ金属のハロゲン化物又はアルカリ金属土類金属のハロゲン化物を添加せず、650℃で熱処理したため、サマリウム-鉄合金粉末が得られない。
 本願は、日本特許庁に2019年3月12日に出願された基礎出願2019-044953号の優先権を主張するものであり、その全内容を参照によりここに援用する。

Claims (15)

  1.  希土類金属と、遷移金属と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物とを含む組成物を、前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含み、
     前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、
     前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である、希土類金属-遷移金属系合金粉末の製造方法。
  2.  前記希土類金属は、SmまたはNdであり、
     前記遷移金属は、Feである、請求項1に記載の希土類金属-遷移金属系合金粉末の製造方法。
  3.  前記熱処理する温度は、500℃以上800℃未満である、請求項1に記載の希土類金属-遷移金属系合金粉末の製造方法。
  4.  前記熱処理する温度における前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属ハロゲン化物中の前記希土類金属の濃度が3.2mol/L以上8.2mol/L以下である、請求項1に記載の希土類金属-遷移金属系合金粉末の製造方法。
  5.  TbCu型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末を製造する、請求項1に記載の希土類金属-遷移金属系合金粉末の製造方法。
  6.  希土類金属と、遷移金属、遷移金属の酸化物及び/又は遷移金属のハロゲン化物と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物と、アルカリ金属及び/又はアルカリ土類金属とを含む組成物を、前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含み、
     前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、
     前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である、希土類金属-遷移金属系合金粉末の製造方法。
  7.  前記希土類金属は、SmまたはNdであり、
     前記遷移金属は、Feである、請求項6に記載の希土類金属-遷移金属系合金粉末の製造方法。
  8.  前記熱処理する温度は、500℃以上800℃未満である、請求項6に記載の希土類金属-遷移金属系合金粉末の製造方法。
  9.  前記熱処理する温度における前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属ハロゲン化物中の前記希土類金属の濃度が3.2mol/L以上8.2mol/L以下である、請求項6に記載の希土類金属-遷移金属系合金粉末の製造方法。
  10.  TbCu型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末を製造する、請求項6に記載の希土類金属-遷移金属系合金粉末の製造方法。
  11.  TbCu型サマリウム-鉄合金の単結晶粒子を含む、サマリウム-鉄合金粉末。
  12.  TbCu型サマリウム-鉄合金相の(110)面のX線回折ピークに対するThZn17型サマリウム-鉄合金相の(024)面のX線回折ピークの強度比が0.400以下である、請求項11に記載のサマリウム-鉄合金粉末。
  13.  TbCu型サマリウム-鉄合金相の格子定数aに対する格子定数cの比c/aが0.840以上である、請求項11に記載のサマリウム-鉄合金粉末。
  14.  Fe相の比率が20%以下である、請求項11に記載のサマリウム-鉄合金粉末。
  15.  粒子径が3.0μm以下である、請求項11に記載のサマリウム-鉄合金粉末。
PCT/JP2020/000732 2019-03-12 2020-01-10 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末 WO2020183885A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021505544A JP7103612B2 (ja) 2019-03-12 2020-01-10 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-044953 2019-03-12
JP2019044953 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020183885A1 true WO2020183885A1 (ja) 2020-09-17

Family

ID=72427829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000732 WO2020183885A1 (ja) 2019-03-12 2020-01-10 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末

Country Status (2)

Country Link
JP (1) JP7103612B2 (ja)
WO (1) WO2020183885A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268046A (ja) * 1991-02-22 1992-09-24 Dowa Mining Co Ltd 不可逆減磁の小さい熱安定性に優れたR−Fe−Co−B−C系永久磁石合金
JPH06310316A (ja) * 1993-04-20 1994-11-04 Mitsubishi Materials Corp 希土類−Fe−C−N金属間化合物磁性材料粉末およびその製造法
JP2007119909A (ja) * 2005-09-29 2007-05-17 Sumitomo Metal Mining Co Ltd 希土類―鉄―窒素系磁石粉末およびその製造方法
JP2008505500A (ja) * 2004-06-30 2008-02-21 ユニバーシティ・オブ・デイトン 異方性ナノコンポジット希土類永久磁石とそれらの製造方法
JP2009088121A (ja) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd 希土類−鉄−マンガン−窒素系磁石粉末
JP2018127716A (ja) * 2017-02-06 2018-08-16 国立大学法人東北大学 希土類鉄窒素系磁性粉末とその製造方法
WO2018163967A1 (ja) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法
JP2018186255A (ja) * 2017-04-27 2018-11-22 住友電気工業株式会社 希土類磁石の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268046A (ja) * 1991-02-22 1992-09-24 Dowa Mining Co Ltd 不可逆減磁の小さい熱安定性に優れたR−Fe−Co−B−C系永久磁石合金
JPH06310316A (ja) * 1993-04-20 1994-11-04 Mitsubishi Materials Corp 希土類−Fe−C−N金属間化合物磁性材料粉末およびその製造法
JP2008505500A (ja) * 2004-06-30 2008-02-21 ユニバーシティ・オブ・デイトン 異方性ナノコンポジット希土類永久磁石とそれらの製造方法
JP2007119909A (ja) * 2005-09-29 2007-05-17 Sumitomo Metal Mining Co Ltd 希土類―鉄―窒素系磁石粉末およびその製造方法
JP2009088121A (ja) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd 希土類−鉄−マンガン−窒素系磁石粉末
JP2018127716A (ja) * 2017-02-06 2018-08-16 国立大学法人東北大学 希土類鉄窒素系磁性粉末とその製造方法
WO2018163967A1 (ja) * 2017-03-10 2018-09-13 国立研究開発法人産業技術総合研究所 Sm-Fe-N系結晶粒子を含む磁石粉末およびそれから製造される焼結磁石ならびにそれらの製造方法
JP2018186255A (ja) * 2017-04-27 2018-11-22 住友電気工業株式会社 希土類磁石の製造方法

Also Published As

Publication number Publication date
JP7103612B2 (ja) 2022-07-20
JPWO2020183885A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6288076B2 (ja) R−t−b系焼結磁石
WO2015129861A1 (ja) R-t-b系焼結磁石およびその製造方法
JP6845491B2 (ja) サマリウム−鉄−窒素磁石粉末及びその製造方法
JP6319808B2 (ja) 磁性化合物及びその製造方法
WO2012002059A1 (ja) R-t-b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP6094612B2 (ja) R−t−b系焼結磁石の製造方法
WO2015022945A1 (ja) R-t-b系焼結磁石
Okada et al. Synthesis of Sm2Fe17N3 powder having a new level of high coercivity by preventing decrease of coercivity in washing step of reduction-diffusion process
Poenaru et al. Ce and La as substitutes for Nd in Nd2Fe14B-based melt-spun alloys and hot-deformed magnets: a comparison of structural and magnetic properties
Kim et al. Effects of calcination conditions on magnetic properties in strontium ferrite synthesized by the molten salt method
Sato et al. Development of TbCu7-type Sm-Fe-N anisotropic magnet powder and its sintered magnets
WO2020183885A1 (ja) 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末
WO2020183886A1 (ja) 異方性磁石粉末、異方性磁石及び異方性磁石粉末の製造方法
JP4274480B2 (ja) R−t−b系焼結磁石
JP7137830B2 (ja) 合金粒子の製造方法および合金粒子
JP2015135935A (ja) 希土類磁石
Turgut et al. Metastable Co3C nanocrystalline powder produced via reactive ball milling: synthesis and magnetic properties
CN114373593B (zh) 一种r-t-b磁体及其制备方法
WO2016151619A1 (ja) 磁石材料、永久磁石、モータ、および発電機
JP2020155476A (ja) R‐t‐b系永久磁石
JP7349173B2 (ja) 準安定単結晶希土類磁石微粉及びその製造方法
JPWO2018101409A1 (ja) 希土類焼結磁石
Chen et al. Formation of Metastable Pr~ 2Fe~ 2~ 3B~ 3 Phase and Its Effect on Magnetic Properties in Rapidly Quenched Pr~ 9Fe~ 9~ 1~-~ xB~ x Nanocomposites
JP2022147588A (ja) R‐t‐b系磁石粉末及びその製造方法
WO2017191790A1 (ja) 希土類永久磁石及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769566

Country of ref document: EP

Kind code of ref document: A1